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Spreadsheet-Based Pipe Networks Analysis for Teaching and Learning
Purpose

Abstract
An example of hydraulic design project for teaching purpose is presented. Students’ task is to develop a looped
distribution network for water (i.e. to determinate node consumptions, disposal of pipes, and finally to
calculate flow rates in the network’s pipes and their optimal diameters). This can be accomplished by using the
original Hardy Cross method, the improved Hardy Cross method, the node-loop method, etc. For the
improved Hardy Cross method and the node-loop method, use of matrix calculation is mandatory. Because
the analysis of water distribution networks is an essential component of civil engineering water resources
curricula, the adequate technique better than the hand-oriented one is desired in order to increase students’
understanding of this kind of engineering systems and of relevant design issues in more concise and effective
way. The described use of spreadsheet solvers is more than suitable for the purpose, especially knowing that
spreadsheet solvers are much more matrix friendly compared with the hand-orientated calculation. Although
matrix calculation is not mandatory for the original Hardy Cross method, even in that case it is preferred for
better understanding of the problem. The application of commonly available spreadsheet software (Microsoft
Excel) including two real classroom tasks is presented.

Keywords
Excel Spreadsheet, Hydraulics, Pipe networks, Water distribution systems, Engineering education, Students’
tasks, Colebrook-White equation, Darcy friction factor, Hardy Cross method
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Spreadsheet-Based Pipe Networks Analysis for Teaching 

and Learning Purpose 

Introduction 

In a teaching of methods for piping systems there are tensions between the study of 

fundamental scientific theory and the application of design methodologies. For 

example, students usually understand the basic idea of the well-known Hardy Cross 

method, but some difficulties can occur during the work on an example of design 

project. Only the Hardy Cross method (Cross 1936) can be used for an example project 

without introduction of matrix calculation. This implies that use of spreadsheet solver 

tools or some kind of specialised software for matrix calculation such as MATLAB are 

more adequate for teaching and learning of more complex methods, such as the 

improved Hardy Cross method and the node-loop method.  

The paper will provide information about: 

1. Hydraulic background; introduction of physical laws which governs flow of 

water through one single pipe including determination of hydraulic 

resistances, and laws of flow through looped networks of pipes; 

2. Details about methods used for calculation of flow through looped networks 

of pipes including specific tasks to be assigned to students (complete 

spreadsheets with examples attached as Electronic Annexes to this paper); 

3. Information about teaching background and expected pedagogical benefits. 

1. Hydraulic laws used for calculation 

Some details about calculation of hydraulic resistances regarding flow through a single 

pipe with further consequences on calculation of flow and pressure distribution 

through a network of looped pipes will be provided in this Section. 

1.1. Fluid in pipes and flow 

Fluid in a network of pipes beside the water can be natural gas for distribution in the 

municipalities (Manojlović et al. 1994, Brkić 2009, Pambour et al. 2016), oil (Brimberg 

et el. 2003), air in the case of ventilation systems in buildings or mines (Aynsley 1997), 

etc. Turbulent flow resistance which occurs in a single pipe is usually described by the 

empirical Colebrook’s equation (Colebrook 1939) developed from the experiment 

conducted by Colebrook and White (1937). The diagram which corresponds to the 

Colebrook’s equation was developed Moody (1944) inspired by the work of Hunter 

Rouse (in Australia the Moody diagram is known also as the Rouse diagram). Flow 

resistance λ in our case will be calculated using the Colebrook’s equation (1): 
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λ-flow friction factor, known also as Darcy, Darcy-Weisbach or Moody friction factor 

(dimensionless); 

ε/D-Relative roughness of inner surface of pipe (dimensionless);  

Re-Reynolds number (dimensionless) defined by (3): 
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ν-velocity of flow (m/sec); 

D-inner pipe diameter (m); 

μ-kinematic viscosity of fluid (m2/sec); 

Q-volumetric flow rate (m3/sec); and 

π-Ludolph number, π≈3.1415. 
 

Because the Colebrook’s equation is with unknown quantity λ on the both sides of 

equal sign, i.e. λ is given in implicit way, iterative procedure has to be followed where 

some additional details can be found in Brkić (2012a).  

To work with iterative calculation and to allow necessary implicit calculation in 

Microsoft Excel, ‘Office button’ at the upper-left corner of the Excel screen has to be 

pressed, and in the ‘Excel options’ ‘Formulas’ has to be chosen where finally box 

‘Enable iterative calculation’ has to be ticked. This allows implementation of so called 

‘Circular references’ into a calculation. To avoid such iterative calculus, as an 

alternative, students involved in such computational tasks can use some of the 

available explicit approximations to the Colebrook’s equation where their codes 

suitable for Microsoft Excel can be found in Brkić (2011a) and Ćojbašić and Brkić 

(2013). 

Further to calculate pressure drop Δp, the Darcy-Weisbach equation which relates Δp 

with flow Q calculated using the Colebrook’s equation should be used (3): 
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Δp-pressure drop (Pa); 

 -density of fluid (kg/m3); 

λ-flow friction factor, known also as Darcy, Darcy-Weisbach or Moody friction factor 

(dimensionless); 

L-pipe length (m); 

Q-volumetric flow rate (m3/sec); 

D-inner pipe diameter (m); and 

π-Ludolph number, π≈3.1415. 
 

In electrical circuits equation related to the Darcy-Weisbach’s (3) is the Ohm’s equation 

which relates voltage (pressure drop Δp is equivalent in hydraulics), electrical current 

(volumetric flow Q is equivalent in hydraulics) and electrical resistance (in common 

electrical circuits it is constant while in hydraulics, flow resistance depends on density 

of fluid, flow friction factor, pipe length and on inner pipe diameter). Also, the Ohm’s 

law is linear with the thermal resistance almost always given with a constant value 

while the Darcy-Weisbach law is quadratic with hydraulic resistance changeable in 

relation to the flow rate (where flow friction factor λ depends on the Reynolds number 

Re which further depends on flow rate Q). 
 

Note that in addition to the Darcy, Darcy-Weisbach or Moody friction factor, in this 

paper noted as λ, some researcher use the Fanning friction factor which is one-fourth 
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of the Darcy friction factor. The Fanning friction factor is the more commonly used by 

chemical engineers and those following the British imperial system of measures. 
 

Some researchers use less reliable Hazen-Williams relation instead of the Colebrook’s 

equation to correlate water flow, pressure drops in pipes and hydraulic frictions (Liou 

1998; Travis and Mays 2007). 
 

Possible additional tasks for students. Combining Colebrook’s (1), Darcy-Weisbach’s 

(2) and Reynolds’ relation (3), flow Q in a way to avoid iterative calculus has to be 

expressed (Swamee and Rathie 2007); Solution is given with Eq. (4): 
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 (4) 

Q-volumetric flow rate (m3/sec); 

D-inner pipe diameter (m); 

Δp-pressure drop (Pa); 

 -density of fluid (kg/m3); 

μ-kinematic viscosity of fluid (m2/sec); 

L-pipe length (m); 

ε/D-Relative roughness of inner surface of pipe (dimensionless); and 

π-Ludolph number, π≈3.1415. 
 

Further additional tasks for students can be introduced, such as to solve the 

Colebrook’s equation through the Lambert-W function (Sonnad and Goudar 2004; 

Brkić 2011b, 2012ab, 2017; Rollmann and Spindler 2015; Mikata and Walczak 2015) 

1.2. Flow through looped network of pipes 

The hydraulic computations involved in designing water distribution systems can be 

only approximated as it is impossible to consider all the factors affecting loss of head 

in a complicated network of pipes. In a water distribution system, the friction head 

losses usually predominate where other minor losses can be ordinarily neglected 

without serious errors (Chansler and Rowe 1990). The calculation of friction head 

losses is explained in the previous Section of this paper. 

The steady-state flow distribution of an incompressible fluid through a piping network 

is governed by mass and energy balance. Mass balance is governed by the first 

Kirchhoff’s law while energy balance is governed through the second Kirchhoff’s law. 

The problem is not linear such as in electric circuits and an iterative procedure must 

be used. The hydraulic network can be compared with the electric network when 

diodes are in circuit instead of common resistors. In hydraulic networks, initial flow 

distribution has to be randomly chosen but in that way to satisfy mass balance for 

every node within the network (first Kirchhoff’s law). Such random distribution will 

not simultaneously satisfy energy balance for all loops of pipes within the network 

(second Kirchhoff’s law) where these balance will be found using iterative procedure 

such as those proposed by Hardy Cross in the basic form and later improved and 

accelerated by many researchers (Shamir and Howard 1968; Epp and Fowler 1970; 

Hamam and Brameller 1971; Wood and Charles 1972; Wood and Rayes 1981; Todini 

and Pilati 1988). 
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All methods assume equilibrium between pressure and friction forces in steady and 

incompressible flow. As a result, they cannot be successfully used in unsteady and 

compressible flow calculations with large pressure drop where inertia force is 

important. The presented calculations in this paper are for water flow. On the other 

hand, in the case of minor pressure drop in the networks for distribution of gaseous 

fluids it is possible to treat such gases as incompressible, i.e. as water. Some different 

approaches exist but the problem is not much different because the resistances in the 

networks for gas distribution depend also on flow as it is in the case of the distribution 

of liquids (Brkić 2011cd). 

 

Improved Hardy Cross method. The original Hardy Cross method is some sort of 

single adjustment method which threats every single equation related to the loops in 

the network sequentially while the improved version treats the whole network system 

and related system of equations simultaneously (similar approach is used in the node-

loop method). The Hardy Cross iterative method with its modification by Epp and 

Fowler (1970) today is widely used for calculation of fluid flow through looped 

network of pipes. In both version of the Hardy Cross method, corrections of flow ΔQ 

are calculated in every iteration rather than flow Q directly (Figure 1 - right). These 

corrections should be added to or subtracted from the flow calculated in previous 

iteration according to specific algebraic rules (Brkić 2009; Corfield et al. 1974). In the 

both versions of the Hardy Cross method, the original and the improved, the main 

problem for students would be how to choose the correct algebraic sign in certain cases 

in order to add calculated correction of flow to the flow calculated in the previous 

iteration. This problem is overwhelmed by introduction of the node-loop method (here 

shown in part A of the project). The improved Hardy Cross method will be used in the 

example; part B for diameter optimisation. 

Similar as in direct problem of calculation of flow distribution, in the optimisation 

problem solved using the modified Hardy Cross method result of calculation in each 

iteration is correction of pipe diameter (not diameter directly); example in this paper - 

part B.  

The node-loop method. This method unites the matrix of loops and of nodes which 

makes possible direct calculation of final flow Q in each of the iterations (Figure 1 – 

left), and not anymore through the correction of flow ΔQ as in the Hardy Cross method 

(Figure 1 – right). The main strength of the node-loop method introduced by Wood 

and Charles (1972) does not reflect in noticeably reduced number of iteration 

compared to the improved Hardy Cross method. The main advantage of this method 

is in its the capability to solve directly the pipe flow rates (one step less). Wood and 

Rayes (1981) later introduced some further improvements in the node-loop method.  

The node-loop method will be used in the example; part A, for flow calculation. 
 

Matrix calculus in spreadsheet environment. To enter matrix, i.e. array formula in 

Microsoft Excel, the range of matrix must be selected starting with the cell in which 

formula is typed. Then function button F2 at keyboard has to be pressed following 

with CTRL+SHIFT+ENTER. If the formula is not entered as an array formula, the 

single result will appear (first row and column of matrix). Following this, Microsoft 

Excel can be used efficiently as a tool for solution to the presented problems. 
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Figure 1: Steps of the procedure for solution of problem using the node-loop method (left) and the 

Hardy Cross method (right) 
 

Size of used matrices and speed of convergence. Large dimension of the simulated 

distribution networks is connected with large matrices and by the rule the more 

efficient methods usually require larger matrices but less number of iterations to reach 

balanced solution. It is worth to point out that the original Hardy Cross method is 

much slower in case of large-scale networks compared with the methods here 

presented through the educational example. The original Hardy Cross method can be 

used for simple networks but only for educational purposes as a first step toward 

better understanding of the main principles of calculation. 
 

Additional methods. Another methods are also available (Shamir and Howard 1968; 

Hamam and Brameller 1971; Walski 1984, 2006; Todini and Pilati 1988; Boulos et al. 

2006; Ormsbee 2006; Brkić 2011d). They also can be used in work with students. 

 

Possible additional tasks for students. It is possible to choose randomly pressure 

drop pattern to satisfy the second Kirchhoff’s law for every loop and then through 

iterative procedure to find flow balance for every node. Shamir and Howard (1968) 

reformulated the original Hardy Cross method to solve node equations and not any 

more loop equations. Methods based on node equations are less reliable and have to 

be employed with caution. The convergence of loop methods is faster than the 

convergence of nodal methods since the error functions have the form close to 

quadratic instead of square root. Students can also use nodal approach to solve the 

assigned problems. 
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2. Formulation of problems and details about specific tasks to be assigned 

The presented problem which students have to solve has two parts:  

A. to find flows using the node-loop method in all conduits for maximal node 

consumption (simulation problem), and 

B. to optimize pipe diameters for flow velocity using the improved Hardy Cross 

method, for 1 m/h (optimization problem) for calculated flows in the part A 

of the project.  
 

Huddleston et al. (2004) discussed the use of spreadsheet tools to introduce students 

to fundamental concepts of water distribution network analysis by using an 

illustration network which is a variation of the network presented by Wood and 

Charles (1972). This network will be used in this paper. Both presented students’ 

problems can be solved using Microsoft Excel.  

Goal is that each student fully understand all methods prescribed by curriculum, and 

that will be accomplished during one twelve-week semester if each student solve 

simple network problem using all available methods at least once.  

To design or analyse any water distribution system, the pipe lengths and roughness, 

as well as fluid properties, must be defined. The kinematic viscosity of water is 

prescribed as μ=1.0037·10−6 m2/s, and absolute roughness of pipes is estimated at 

ε=0.00026 m (Huddleston et al. 2004), both will be used as inputs for the Colebrook’s 

formula. Pressures will be expressed in Pa, not in meter equivalents. The network is in 

a flat area with no variation in elevation. 

First of all, maximal consumption for each node including one or more inlet nodes has 

to be determined. In Figure 2 inlet nodes are 1 (through pipe 20) and 5 (through pipe 

21) with inlet rates shown in figure 2.  

Four outlet nodes also exist in the example network from Figure 2 and these nodes are 

4, 6, 9 and 11. Outlet flow rates for these nodes are also shown in Figure 2. All other 

nodes are neither inlet nor outlet nodes. 

 

 
Figure 2: Hydraulic network for example problem 

 

Tasks for students. The node-loop method for flow calculation, as part A of students’ 

project and the improved (modified) Hardy Cross method, as part B are chosen to be 

presented. Both methods are more efficient compared to the original Hardy Cross 

method. In simulation problem, part A, calculation of flow rates for known pipe 

diameters will be performed, and as second problem, part B, pipe diameters will be 
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optimized after recommended flow velocity. Solution of simulation problem; part A, 

is unique for the known and locked up values of pipe diameters, node inputs and node 

consumptions. Optimization problem; part B, has unique results for locked up values 

of flow rates only if the flow velocities per pipes are also locked up. 
 

Possible additional tasks for students. Whole calculation can be done in MATLAB 

which is the software developed especially for matrix calculation (Ćojbašić and Brkić 

2013; Brkić and Ćojbašić 2016). 

2.1. Part A of design project; Flow rates calculation using the node-loop method 

In this part first assumed flow are chosen to satisfy first Kirchhoff’s law (5). Pipe 

diameters and node input and output cannot be changed during the iterative 

procedure. Goal is to find final flow distribution for pipeline system from Figure 2. 

Pipe lengths and pipes diameters are listed in Table 1 together with the final solutions 

of flow. The final flows do not depend on first assumed water flows per pipes as shown 

by Gay and Middleton (1971). The solution is unique for chosen system. The final flows 

listed in Table 1 are those for which the second Kirchhoff’s law is satisfied for all loops. 

Final flows are those which values are not changed between two successive iterations 

(must be satisfied for flow in each pipe). 
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Q-volumetric flow rate (m3/sec). 
 

Twelve node equations (5) can be noted in matrix form (6). One node from (5) has to 

be noted as “referent”, and hence must be omitted from the so called the node matrix 

(6). The node matrix with all nodes included is not linearly independent. To obtain 

linear independence any row of the node matrix has to be omitted (to be chosen 

arbitrary). No information on the topology in that way will be lost. Node 12 is chosen 

as referent and hence will be virtually omitted from the calculation.  

An alternative approach would be to introduce so called pseudo-loop in the system 

(close the path via reservoirs where closed paths will have a null total energy loss by 

definition, while opened paths, i.e. pseudo-loops will have an energy loss dictated by 

the flow condition at the path end points). Approach with pseudo-loop can be used 

also for learning and can be also assigned as Possible additional tasks for students 

(for the pseudo-loop approach see Boulos et al. 2006). 
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In previous matrix [N], 1 means that pipe is connected to node and that the arrow in 

Figure 2 is pointing toward node in the first iteration for the first assumed flow; -1 

means opposite and 0 means that pipe is not connected to related node. In [N] matrix 

(6), rows represent nodes while columns represent pipes. Of course, terms in this 

matrix will be changed during the iteration process, i.e. only terms with 1 or -1 can 

change their signs, while terms with 0 always remain unchanged for this topology of 

network (Figure 2). 

To introduce the node-loop method, beside the above presented node matrix, the loop 

matrix must be formed using eight loop equations (7). 
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   (7) 

Δp-pressure drop (Pa); 

 -density of fluid (kg/m3); 

λ-flow friction factor, known also as Darcy, Darcy-Weisbach or Moody friction factor 

(dimensionless); 

L-pipe length (m); 

Q-volumetric flow rate (m3/sec); 

D-inner pipe diameter (m); and 

π-Ludolph number, π≈3.1415. 
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Pressure drop in pipes is calculated using the Darcy-Weisbach scheme, and the Darcy 

friction factor (λ) is calculated after the well-known implicit Colebrook’s relation. The 

loop matrix [L] can be noted as follow (8): 
 

 
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







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

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 (8) 
 

In the loop matrix, rows represent loops and columns as in the node matrix, represent 

pipes. The sign for the term is adopted as positive, i.e. as 1 if the assumed flow is 

clockwise, or as negative, i.e. -1 if it is counter-clockwise relative to the loop. 

The first Kirchhoff’s law in matrix form can be noted as [N]x[Q]=0, while the second 

one can be noted as [L]x[Δp]=0, where [Q]=[Q/1/, Q/2/,········, Q/19/]T transposes matrix of 

flow per pipe, and [Δp1, Δp2, · ·······, Δp8]T transposes matrix of algebraic sums of 

pressure drops per loops. 

 

For the node-loop method calculation, the node-loop matrix [NL] has to be formed to 

unite both, the node matrix [N] and the loop matrix [L]. First eleven rows in [NL] 

matrix are from [N], and next eight rows are from [L] where each term is multiplied 

by first derivative (for each pipe) of Δp where Q is treated as variable (9): 
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

 (9) 

F’-first derivative of function; 

Q-volumetric flow rate (m3/sec); 

 -partial derivative, here Q is variable; 

Δp-pressure drop (Pa); 

 -density of fluid (kg/m3); 

λ-flow friction factor, known also as Darcy, Darcy-Weisbach or Moody friction factor 

(dimensionless); 

L-pipe length (m); 

D-inner pipe diameter (m);  

R- auxiliary equivalent of resistance; and 

π-Ludolph number, π≈3.1415. 
 

After that solution for the unknown, flow rates have to be calculated using (10): 
 

[Q]=inv[NL]x[V]         (10) 

 

For constitution of matrix [V], the rules will be shown in example (11).  
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In matrix [V], the sign in front of (Q) differentiate input and output nodes. 
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 (11) 

Δp-pressure drop (Pa); 

Q-volumetric flow rate (m3/sec);  

 -partial derivative, Q is variable; and 

C-as defined in eq. (7). 
 

Matrix [NL] is made using matrix [N] and [L] where in matrix [L] all terms are 

multiplied by appropriate first derivative of pressure drop function (12). 
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  (12) 

F’-first derivative of function; as defined in Eq. (9). 
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The sign minus in front of some terms in resulting matrix [Q] means that sing 

preceding this term in the previous iteration must be changed (calculated flow 

direction in this pipe has been changed). Nine iterations are enough for the calculation 

of water network from Figure 2 (algebraic sum of pressure drops for all contours is 

approximately zero). 

Data necessary for calculation are listed in Table 1. 

 
Table 1: Data for example problem from Figure 2 /part A of students’ design project/ 

Pipe number Diameter (m) Length (m) 
Flow rate (m3/h) 

Velocity (m/s) 
Initial Final 

/1/ 0.305 457.2 173.32 200.67 0.76 

/2/ 0.203 304.8 150 144.10 1.24 

/3/ 0.203 365.8 130 59.29 0.51 

/4/ 0.203 609.6 6.6 -37.23 0.32 

/5/ 0.203 853.4 100 31.27 0.27 

/6/ 0.203 335.3 0.28 -45.17 0.39 

/7/ 0.203 304.8 16.88 53.90 0.46 

/8/ 0.203 762.0 13.56 34.82 0.30 

/9/ 0.203 243.8 200 172.65 1.48 

/10/ 0.152 396.2 50 1.39 0.02 

/11/ 0.152 304.8 70 38.88 0.60 

/12/ 0.254 335.3 51.96 26.70 0.15 

/13/ 0.254 304.8 32.96 57.86 0.32 

/14/ 0.152 548.6 3.32 19.09 0.29 

/15/ 0.152 335.3 23.32 56.57 0.87 

/16/ 0.152 548.6 17.16 8.73 0.13 

/17/ 0.254 365.9 20 84.81 0.46 

/18/ 0.152 548.6 9 -14.28 0.22 

/19/ 0.152 396.2 10 -16.88 0.26 
 

Presented example in MS Excel; Part A is available as electronic annex attached to the 

electronic version of this paper (Table S1). 

2.2. Part B of design project; Pipe diameter optimisation using Improved Hardy 

Cross method 

In the problem of optimization of pipe diameters, flow rates calculated in ‘part A’ of 

the students’ design project are not any more treated as variable. These flow rates in 

the next calculation will be locked up, while the pipes diameters will be treated as 

variable (13). 
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 (13) 

F’-first derivative of function; 

D-inner pipe diameter (m);  
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 -partial derivative, here D is variable; 

Δp-pressure drop (Pa); 

Q-volumetric flow rate (m3/sec); 

 -density of fluid (kg/m3); 

λ-flow friction factor, known also as Darcy, Darcy-Weisbach or Moody friction factor 

(dimensionless); 

L-pipe length (m); 

R-auxiliary equivalent of resistance; and 

π-Ludolph number, π≈3.1415. 
 

According to the improved Hardy Cross method, correction for pipe diameters for 

each pipe which belong to the related loop is (14). 
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  (14) 

Δp-pressure drop (Pa); 

D-inner pipe diameter (m);  

 -partial derivative, D is variable; and 

C-as defined in eq. (7). 
 

For example the term in the first row and the first column in the previous iteration, is 

(15): 
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 (15) 

Δp-pressure drop (Pa); 

Q-volumetric flow rate (m3/sec); 

 -density of fluid (kg/m3); 

λ-flow friction factor, known also as Darcy, Darcy-Weisbach or Moody friction factor 

(dimensionless); 

L-pipe length (m); 

D-inner pipe diameter (m);  

 -partial derivative, D is variable; and 

C-as defined in eq. (7). 
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First matrix in the previous relation (14) is symmetrical; for example (16): 
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 (16) 

Δp-pressure drop (Pa);  

D-inner pipe diameter (m); and 

 -partial derivative, D is variable. 
 

This is because pipe 10 is mutual for two adjacent loops (loop {1} and loop {2}). 

Matrix reformulation of the original Hardy Cross method can be made if all terms in 

the first matrix (14) with exception of those from the main diagonal, are equalized with 

zero (this could be assigned as Possible additional tasks for students). Rules for 

determination of algebraic signs for the corrections of diameter can be seen in Brkić 

(2009) and in Corfield et al. (1974). 

Calculated diameters (optimized for velocity of 1 m/s and for the locked up values of 

flow rates calculated in part a) will be listed in Table 2. 
 

Table 2: Data for example problem from Figure 1 /part B of students’ design project/ 

Pipe number 
aFlow rate 

(m3/h) 

Length 

(m) 

Diameter (m) Velocity (m/s) 

bInitial cFinal Initial Final 

/1/ 200.67 457.2 0.2664 0.2483 0.76 1.15 

/2/ 144.10 304.8 0.2257 0.2025 1.24 1.24 

/3/ 59.29 365.8 0.1448 0.1417 0.51 1.04 

/4/ -37.23 609.6 0.1147 0.1125 0.32 1.04 

/5/ 31.27 853.4 0.1051 0.1043 0.27 1.02 

/6/ -45.17 335.3 0.1263 0.1236 0.39 1.05 

/7/ 53.90 304.8 0.1380 0.1690 0.46 0.67 

/8/ 34.82 762.0 0.1109 0.1173 0.30 0.89 

/9/ 172.65 243.8 0.2471 0.2651 1.48 0.87 

/10/ 1.39 396.2 0.0221 0.0338 0.02 0.43 

/11/ 38.88 304.8 0.1172 0.1094 0.60 1.15 

/12/ 26.70 335.3 0.0971 0.0912 0.15 1.13 

/13/ 57.86 304.8 0.1430 0.1460 0.32 0.96 

/14/ 19.09 548.6 0.0821 0.1067 0.29 0.59 

/15/ 56.57 335.3 0.1414 0.1465 0.87 0.93 

/16/ 8.73 548.6 0.0555 0.0893 0.13 0.39 

/17/ 84.81 365.9 0.1731 0.1531 0.46 1.28 

/18/ -14.28 548.6 0.0710 0.0746 0.22 0.91 

/19/ -16.88 396.2 0.0772 0.0825 0.26 0.88 
athe minus (-) sign indicates that the flow direction is opposite to that shown in Figure 2,  
busing (17),  
cthese are final calculated diameters, but real values must be adopted from the list of standard diameters 

(first larger if velocity is higher than 1 m/s and first smaller if velocity is below 1 m/s) 
 

The flow rates are locked up, while the velocities are not (average velocity for all pipe 

are 1 m/s, but in particular pipes, speed have values slightly above or below optimized 
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velocity values which in our case is 1 m/s). Diameters of pipes for known flow rates 

through pipes and fixed value of water velocity will be calculated after (17): 

 

 





v

Q
D

4
 (17) 

D-inner pipe diameter (m); 

Q-volumetric flow rate (m3/sec);  

ν-velocity of fluid (m/sec); and 

π-Ludolph number, π≈3.1415. 

 

These values of diameters (17) are initial for calculation while flows are final calculated 

in ‘part A’ of the project. As the diameters must be chosen among a finite set of 

available nominal values, this optimization problem is highly combinatorial. 
 

The presented example in MS Excel; Part B is available as electronic annex attached to 

the electronic version of this paper (Table S2). 

3. Teaching background and expected pedagogical benefits  

Some experiences from real classroom will be discussed. Teaching experience is mostly 

from Serbia but also some inputs are from Italy, the Netherlands and Belgium. 

3.1. Teaching background 

Formal engineering education has traditionally been delivered using the low 

technology lecturing method, in which lecturer and student meet face to face where 

lecturer is speaker while students are only listeners. It was largely an interaction 

between a student and the professor, with other students listening and occasional 

student-student involvement after class. Today, one of the tasks of good lecturer is to 

develop students’ creative thinking. Some experience with implementation of the 

shown spreadsheet task will be discussed here. 

Individual vs. Group learning. Creating a practical exam involves not only selecting 

what important is and organizing all material but also discussing the exam in a group 

settings. It is better if students not only discuss and solve their group tasks together, 

but also it is important that every student has his/her unique problem (like examples 

presented in this paper) which has to solve solely after discussion in the group. It is 

important for students to develop relationships with other class members and to form 

study group early in the course but to solve task individually (Hoffmann and McGuire 

2010). In that way every member of such informal group of students has opportunity 

to learn and to discuss problems in a group but each of the individuals has to solve 

his/her problem and to take exams solely. Attempt to make problem for group of three 

or more students is not very wise because in such case usually only one or two students 

really try to solve the problem while the rest the group use some sort of “drone 

strategy” to avoid to participate. 

Serbian experience. Advanced students in Serbia, from where the examples of 

students’ project are taken, can earn additional ECTS (European Credit Transfer 

System) through tutorial work with other fellow students. Note that course has locked 

up number of ECTS, e.g. 6. Student can replace e.g. 0.5 ECTS with tutorial work instead 
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to solve one task, or can improve his/her final grade. Every successful student at the 

end of semester has equal number of ECTS, but 10% of the best with outstanding 

performance with only minor errors has best grade 10/ten/, etc., next 25% has grade 

9/nine/, next 30% has grade 8/eight/, next 25% grade 7/seven/ and finally last 10% has 

mark 6/six/ which means that their work meets the minimum criteria. All other 

students have grade 5/five/ in the meaning fail with considerable further work 

required which can be done only in the next year course. Student can be not graded if 

his/her performance during semester was satisfactory but the student did not complete 

all obligations due to objective reasons. Such student does not have to wait next year 

to be graded. Many professors do not follow this distribution of marks. 

Serbia is involved in European Bologna process since 2005. This means that traditional 

final exams at the end of semester have to be replaced with continuous work during 

semester. Students now have to learn during whole time of course duration while final 

exam is divided in several parts, but anyway it has to be noted that each year certain 

number of students still use to come at the end of semester and want to take classical 

exam.  

3.2. Pedagogical impacts of the presented spreadsheet-based problems 

High level and efficient computer software is used to help each student to simulate 

and solve some problems. However, such software is expensive and therefore not 

available for everyone. For example, MATLAB, software specialized for matrix 

calculation is rarely available at Serbian universities due to high costs. Spreadsheets 

on the other hand are almost universal on today’s computers and they bridge the gap 

between hand calculations and high level computations. Computers are increasingly 

becoming available at low prices and the spreadsheet software especially. Today, use 

of spreadsheets is almost universal in the engineering education worldwide. Because 

of the mathematical nature of engineering studies the use in which spreadsheet allows 

for numerical computations and for creation of good charts makes it the favourite tool 

for engineering education.  

Survey and questionnaire. Spreadsheet oriented case studies proposed in this paper 

were commented by students between 2006 and 2010 in Serbia. During that period 

students were surveyed. Questionnaire was not always identical but it was always 

anonymous and on voluntary base. In sum 92 students fulfilled this simple form. From 

the survey it can be concluded that Microsoft Excel is almost universally available (it 

has also to be noted that the most copies of this software in Serbia are still not legally 

installed). As reported by students, most of them have their own personal computer 

(on the other hand official statistic says that in 2010 only 35.6% of Serbian households 

had personal computer and only 23.4% used internet). The surveyed students also 

reported that they use Serbia use wide spectrum of available software packages (in 

Serbia a number of them is not still legally installed). The results of the questionnaire 

further show that spreadsheet approach has major positive impact on the development 

of skills of student and that the retention of knowledge is improved compared with 

standard hand oriented calculations; 97% of students think that this case study 

spreadsheet oriented approach enable new way of thinking about the issue, 95% think 

that they take a more active part in the learning process, 92% think that they are more 

engaged in classes, 84% of students are glad because they can solve spreadsheet case 

study as part of exam, 68% think that they learned more in classes solving Excel exams 
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(2% think that they learned less) and 59% think that they will more likely to do 

independent research outside the classroom to improve their understanding of the 

material (5% told that they do not want to do independent research). Most of students 

think that computer-based tools encourage spontaneous student collaboration. Some 

students also told on the contrary that Excel take up too much class time.  

Benefits of spreadsheet oriented teaching and learning. The arguments for use of 

spreadsheet solver are based on the fact that basics of spreadsheets are easy to learn, 

the tedium of iterative calculations is easily removed letting the student to concentrate 

on the core of the problem, spreadsheet solver encourage structured thinking which 

leading to better solutions of physical problems. Most important for the students, 

competency in use of spreadsheets builds confidence and prepares him/her to learn 

higher level software and programming. This consequently means that future 

engineers also will be capable to solve real problems in real world and also to publish 

or to present orally their achievements. Solution of here presented hydraulic problem 

was not primarily goal. Student task will be successfully solved even if he/she e.g. try 

to solve very complicated network but fail. This fail attempts occurred in less than 15% 

of students’ tasks. In such case student can pass that part of exam solving very simple 

network. It is important to realise that everyone learns differently. An attainable goal 

in some area for one student may be trivial for another. It is most relevant to develop 

engineering skills and creative mind than to solve each problem solely and accurately 

during first attempt. At the end of course most of the students are capable to solve 

problems in very realistic network of pipes.  

Open book policy. Some lecturers, especially the older ones, sometimes use to force 

students to remember very complicated formulas. Time spend to memorize such 

materials are more or less always wasted. Today, “open book” policy can be 

recommended. Useful knowledge is not in memorizing of formulas but in conceptual 

understanding of problem. Engineering is related to the application of sciences to real-

world applications, and engineering graduates must be familiar with professional 

problems, practical applications, and relevant solutions for the benefit of society. 

Engineering curricula are developed to provide students with the knowledge and 

skills needed to best serve their chosen industry.  

External support from the experts from companies. Selected experts can be consulted 

to bring more realist problem to the students. In this case, attempt to involve such 

experts from gas distribution companies or from local municipality waterworks in 

teaching, failed. Surprisingly, they believe that the presented types of problems today 

can be solved using professional packages without going deeper into discussion about 

background method (goal oriented approach).  

Conclusion 

The reason for the wide use of spreadsheets is its design, a two-dimensional array with 

the capacity to link rows and columns, a classic calculation structure in engineering. A 

modern spreadsheet has true programming languages to carry out automation of tasks 

as well as powerful mathematical routines capable of solving very complex numerical 

problems. The use of spreadsheets is so commonplace in today’s workplace that their 

use should be implemented in the engineering curriculum. Design project, like here 

presented, provide an excellent opportunity to incorporate computer usage into a 
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curriculum. Furthermore, presented projects cannot be solved in easy way without the 

use of spreadsheet. For many students, this is the first time they have solved realistic 

problems. Such projects can enhance students’ computer skills and prepare them for 

the challenges they will face on the job. 

Microsoft Excel, a commonly available spreadsheet provides an efficient way to enable 

undergraduate students to solve a relatively complex engineering system while 

minimizing the computational burden (Iglesias and Paniagua 1999; Weiss and Gulliver 

2001; Couvillion and Hodge 2009). Microsoft Excel can be also successfully used in 

other engineering fields (Brkić and Tanasković 2008). 

This study examines the use of Excel, a commonly available spreadsheet package, to 

analyse a water distribution network. The most famous method for solving this type 

of problems is the Hardy-Cross method, which was firstly devised for hand 

calculations, in 1936 (Cross 1936). This method today has only great historical and 

teaching value as alma mater of all today available and more efficient methods. 

Example of two of these more efficient methods is shown in this paper; improved 

Hardy Cross method by Epp and Fowler (1970) and the node-loop method. Two 

presented methods are applied to develop the network equations and Excel is used to 

solve the nonlinear system of these equations. Convergence properties of both 

presented method are equally good (approximately 9 iterations are required in both 

presented problems). The easiness of building a new network in Excel or modifying 

an existing one allows the student to readily observe how small changes in the network 

configuration may produce interesting results such as a flow reversal in a certain 

conduits.  

The Excel illustration is presented as a bridge that enables students to analyse more 

realistic applications while still requiring enough manual development to reinforce the 

underlying engineering principles. Computer technology plays a significant role in 

engineering education. Determining how and at what level to introduce technology 

within the curricula is a significant challenge to educators (Jewell 2001). Better students 

can develop some advance solutions using other software tools (Lopes 2004). Not only 

students of hydraulics (El-Awad 2016), but equally students with main subjects in 

informatics, can also participate as members of multidisciplinary students’ teams. 

Today many studies support conclusion that the computers give unavoidable help in 

students’ oriented teaching. Finally, everybody have to admit that such methods 

involved with large matrices shown in this paper cannot be used without computers, 

and according to teaching curriculum students have to understand essence of these 

methods which cannot be achieved without examples solved by students themselves. 

 

Disclaimer. The views expressed are purely those of the writer and may not in any 

circumstance be regarded as stating an official position of the European Commission. 
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