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Abstract11

Quasi-brittle materials exhibit strain softening. Their modeling requires regularized consti-12

tutive formulations to avoid instabilities on the material level. A commonly used model is the13

implicit gradient enhanced damage model. For complex geometries, it still shows structural14

instabilities when integrated with classical backward Euler schemes. An alternative is the15

implicit-explicit (IMPL-EX) integration scheme. It consists of the extrapolation of internal16

variables followed by an implicit calculation of the solution fields. The solution procedure17

for the nonlinear gradient enhanced damage model is thus transformed into a sequence of18

problems that are algorithmically linear in every time step. Therefore, they require one19

single Newton-Raphson iteration per time step to converge. This provides both additional20

robustness and computational speedup. The introduced extrapolation error is controlled21

by adaptive time stepping schemes. Two novel classes of error control schemes that provide22

further performance improvements are introduced and assessed. In a three dimensional com-23
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pression test for a mesoscale model of concrete, the presented scheme provides a speedup of24

about 40 compared to an adaptive backward Euler time integration.25

Keywords: implicit explicit schemes, gradient enhanced damage model, adaptive time26

stepping, continuum damage, robustness27

INTRODUCTION28

The implicit gradient enhanced damage formulation as introduced by (Peerlings et al. 1996)29

models quasi-brittle material failure. As opposed to the spontaneous failure of brittle ma-30

terials, these materials exhibit strain softening. After reaching a peak load, quasi-brittle31

materials do not collapse instantly. Material defects like microcracks cause a loss of the ma-32

terial’s stiffness. The load-carrying capacity gradually decreases for increasing deformations33

and complete material failure only occurs as soon as many microscopic defects connect to34

form a macroscopic crack.35

In continuum damage mechanics, the loss of material stiffness is often modeled with a dam-36

age variable. Strain concentrations lead to material deterioration which itself causes strain37

growth. This process builds up to narrow localization bands and causes, without further38

treatment, various numerical problems.39

In classical local continuum damage models, this band comprises only a single layer of el-40

ements. The local stress-strain relation has to include the element length (Oliver 1989)41

as an additional parameter to provide a regularized energy dissipation upon mesh refine-42

ment (Bažant and Belytschko 1985). This leads to smeared crack models with weak dis-43

continuities (Rots et al. 1985; Jirásek and Zimmermann 1998; Carol and Bazant 1997).44

Alternatively, the location of the band can be predefined, e.g. in traction-separation in-45

terface models (Carol et al. 1997) or in the context of the continuum strong discontinuity46

framework (Oliver et al. 2002; Cazes et al. 2016).47

Numerical problems arise in the backward Euler solution of local damage models. The48

acoustic tensor can become ill-conditioned (Jirásek 2007). This can lead to zero eigenvalues49

in the element stiffness matrices that propagate through the mesh eventually resulting in an50
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ill-conditioned global algorithmic stiffness matrix (Oliver et al. 2006).51

This issue can be solved by secant stiffness based methods. For each load step, the sequen-52

tially linear approach (Rots et al. 2008; Graça-e Costa et al. 2012) repeatedly identifies criti-53

cal elements and adapts their internal variables until equilibrium is reached. The method can54

be applied to smeared and discrete crack models and exhibits a "saw tooth" load-displacement55

relation. An alternative is the implicit-explicit (IMPL-EX) scheme (Oliver et al. 2008) that56

is investigated in this paper. It adapts the internal variables in all elements simultaneously57

once per load step to obtain the secant stiffness. This requires only minor changes to existing58

model implementations and smoothly approximates the load-displacement curve.59

Another type of model is a nonlocal models (Bažant and Jirásek 2002), either of the integral60

type (Bažant et al. 1984; Bazant and Pijaudier-Cabot 1988; De Vree et al. 1995) or in a61

gradient formulation (Triantafyllidis and Aifantis 1986; Pham et al. 2011). The focus of this62

paper is the implicit gradient enhanced damage model by (Peerlings et al. 1996) where the63

acoustic tensor is proven to remain well-posed (Peerlings et al. 1998). The damage variable64

is driven by a nonlocal equivalent strain field. Its evolution is described by an additional65

screened Poisson equation, which essentially limits the curvature of the nonlocal strain. This66

results in a smooth damage field. The fully damaged material in the center of a damage67

zone represents a macroscopic crack, the surrounding partially damage material represents68

a distribution of micro cracks.69

When modeling complex geometries like concrete on the mesoscale - including aggregates,70

matrix material and interfaces (Unger and Eckardt 2011) - the number of structural insta-71

bilities increase. Accurately resolving the equilibrium path in a backward Euler scheme now72

requires tiny time steps and the computational cost increases. Here, the IMPL-EX scheme73

provides two benefits. First, its implementation of the method itself is less invasive and74

even the implementation of the mechanical models is simplified, because certain derivatives75

vanish. Secondly, it reduces the computational effort by improving the properties of the76

global matrix and by reducing the number of time steps required to finish the simulation.77
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The latter is achieved by using error control schemes (Oliver et al. 2008; Blanco et al. 2007).78

Each IMPL-EX iteration introduces an extrapolation error that depends on the time step79

length. The right choice of this time step ensures that the extrapolation error is limited to80

a prescribed value.81

In this paper, the governing equations and the finite element discretization of the implicit82

gradient enhanced damage model are shown first, including the adaptive backward Euler83

scheme. Next, the IMPL-EX scheme and its application to the model are discussed in detail.84

A special focus is given to the development of a new class of adaptive time stepping schemes.85

The model is validated for a double-notched tensile test and the novel time stepping schemes86

are assessed. Two and three dimensional compression tests explore the potential speedup of87

the IMPL-EX method.88

GOVERNING EQUATIONS89

The thermodynamically consistent formulation of the implicit gradient enhanced damage90

model is derived in detail by (Peerlings et al. 2004) and briefly sketched here. In a simplified91

version, it resembles the original model introduced in (Peerlings et al. 1996).92

The free energy potential ψ for the isothermal, linear elasticity deformation is postulated to93

be94

ψ(ε, ε̄eq, ω) = 1
2(1 − ω)ε : C : ε + 1

2h(εeq − ε̄eq)2 + 1
2hl

2∇ε̄eq · ∇ε̄eq. (1)

The first term is the elastic potential, modified by the isotropic damage variable ω. Here,95

ε denotes the symmetric gradient of the displacement field d and C is the undamaged96

elasticity tensor. The second term describes the stored energy between a nonlocal strain97

field ε̄eq and a local strain norm εeq. The latter one is defined as an invariant of the strain98

field ε. The parameter h can be interpreted as a local-to-nonlocal coupling modulus. The99

third term includes the energy of gradients of the nonlocal strain field and the nonlocal100

length parameter l.101
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(Poh and Sun 2017) enhance this formulation based on the following idea. At the onset of102

damage, the nonlocal interaction causes the formation of diffuse networks of microcracks. As103

the load increases, the process zone width decreases and the elastic bulk material unloads.104

Towards material failure, a very narrow macroscopic crack forms. This is modeled with a105

decreasing nonlocal interaction function g(ω) that reduces the nonlocal length parameter106

upon damage growth. The enhanced free energy potential now reads107

ψ(ε, ε̄eq, ω) = 1
2(1 − ω)ε : C : ε+ 1

2h(εeq − ε̄eq)2 + 1
2h g(ω) l2∇ε̄eq · ∇ε̄eq (2)

with108

g(ω) = (1 −R) exp(−ηω) +R − exp(−η)
1 − exp(−η) (3)

such that g(ω = 0) = 1 and g(ω = 1) = R, with the parameters R = 0.005 and η = 5.109

For thermodynamic consistency, the dissipation inequality110

Ḋ =
∫

V

[
σ : ε̇ − ψ̇

]
dV ≥ 0 (4)

must be satisfied within the whole body volume V , where σ denotes the Cauchy stress and111

˙( ) is the derivative of ( ) with respect to time. Inserting the time derivative of Eq. (2) into112

Eq. (4) and integrating by parts yields113

Ḋ =
∫

V

(
σ − (1 − ω)C : ε − h(εeq − ε̄eq)∂εeq

∂ε

)
: ε̇dV

+
∫

V
h
[
εeq − ε̄eq + g l2∇2ε̄eq

]
ε̇eqdV −

∫
S
h g l2∇ε̄eq · nε̇eqdS

+
∫

V

[
1
2ε : C : ε − 1

2h
dg
dω l

2∇2ε̄eq

]
ω̇dV ≥ 0. (5)

where S is the boundary of V with the outwards normal vector n.114
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The stress-strain relation115

σ = (1 − ω)C : ε + h(εeq − ε̄eq)∂εeq

∂ε
(6)

causes the first term of Eq. (5) to vanish.116

We now require Ḋ = 0 in the elastic regime (ω̇ = 0) by fullfilling117

ε̄eq − gl2∇2ε̄eq = εeq in V and (7)

∇ε̄eq · n = 0 on S. (8)

The screened Poisson equation in Eq. (7) limits the curvature of the nonlocal equivalent118

strain field ε̄eq. Note that this equation (for g ≡ 1) can also be derived from a Taylor119

expansion of a nonlocal integral model (e.g. (Pijaudier-Cabot and Bažant 1987; Bazant and120

Pijaudier-Cabot 1988)) (Peerlings et al. 1996). In fact, it is equivalent to a nonlocal integral121

model with the Green’s function of Eq. (7) as the weighting function (Peerlings et al. 2001).122

With Eqs. (6) to (8), the dissipation inequality from Eq. (5) now reads123

Ḋ =
∫

V

[
1
2ε : C : ε − 1

2h
dg
dω l

2∇2ε̄eq

]
ω̇dV ≥ 0. (9)

Since g is a monotonically decreasing function, the integrand remains non-negative as long as124

the damage growth remains non-negative. Therefore, damage is defined as a monotonically125

increasing function of the scalar history variable κ, which itself is driven by the nonlocal126

equivalent strains through the Karush–Kuhn–Tucker conditions127

κ̇ ≥ 0, ε̄eq − κ ≤ 0, κ̇(ε̄eq − κ) = 0. (10)
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A discretization in time steps ∆t at time t leads to128

κt+∆t = max(κt, ε̄eq,t+∆t) (11)

and points out the physical meaning. The history variable κ represents the highest nonlocal129

equivalent strain ever reached during the loading history.130

The isotropic, exponential damage law ω(κ), (e.g. (Mazars and Pijaudier-Cabot 1989; Oliver131

et al. 1990; Peerlings et al. 1998)) is used for all numerical examples in this work.132

ω =


0 if κ < κ0,

1 − κ0
κ

(1 − α + α exp (β(κ0 − κ))) otherwise,
(12)

κ0 is a damage initiation threshold, β controls the post peak slope and α ensures a residual133

strength. Inserted in Eq. (6) (with h = 0) and uniaxially loaded with εx = κ, a physical134

interpretation of these parameters is derived by135

ft = max
κ

σx,= σx(κ0) = Eκ0, (13)

fresidual = σx(κ → ∞) = (1 − α)ft and (14)

gf =
∫ ∞

κ0
σx(κ)dκ = ft

β
(15)

with the tensile strength ft, the residual strength fresidual and the local fracture energy136

parameter gf ([N/mm2]). Note that the latter one does not correspond to the global fracture137

energy Gf ([N/mm]) obtained from experiments and has to be calibrated.138

The different material behavior in tension and compression that quasi-brittle materials like139

concrete typically exhibit is accounted for in the definition of εeq. The strain-based modified140
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von Mises definition (De Vree et al. 1995) is employed, resulting in141

εeq(ε) = k − 1
2k(1 − 2ν)I1 + 1

2k

√√√√( k − 1
1 − 2ν I1

)2

+ 2k
(1 + ν)2J2 (16)

with the first strain tensor invariant I1, the second deviatoric strain invariant J2 and Poisson’s142

ratio ν. The factor k = fc/ft expresses the ratio of the materials compressive strength fc and143

its tensile strength ft - a uniaxial tensile strain and a k-times higher uniaxial compressive144

strain both lead to the same εeq.145

For the discretization of the full model, we refer to (Poh and Sun 2017). In this paper,146

a simplified version of the model with h = 0 is used, which is also thermodynamically147

admissible (Peerlings et al. 2004) Since the discretization offers insights on the IMPL-EX148

benefits, a brief introduction is given.149

The nodal degrees of freedom are the displacements d and the nonlocal equivalent strains ε̄eq.150

They are interpolated with the shape functions N and the derivative of the shape functions151

B such that the continuous fields d and ε̄eq and their derivatives are approximated by152

d = Nd, ε = Bd, (17)

ε̄eq = N̄ ε̄eq and ∇ε̄eq = B̄ε̄eq, (18)

where (̄ ) denotes the interpolation for the nonlocal equivalent strain field. The interpolations153

can be chosen independently for each degree of freedom type. As discussed in Appendix I, the154

highest order of convergence is obtained for identical interpolation orders. The discretized155

weak forms of local momentum balance ∇ · σ = 0 and the screened Poisson equation in156
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Eq. (7) are combined into a joint residual vector R157

R =

Rd

Rε

 = 0 with (19)

Rd =
∫

Ω
BT (1 − ω)Cε dΩ and (20)

Rε =
∫

Ω
N̄T (ε̄eq − εeq) dΩ +

∫
Ω

B̄Tgl2∇ε̄eq dΩ . (21)

BACKWARD EULER TIME INTEGRATION158

The quasi-static problem is discretized into pseudo time steps ∆t and the load is applied as159

a linear function of the pseudo time t until tmax = 1 s. Equilibrium is obtained after load160

incrementation with Newton-Raphson iterations. The linear Taylor expansion leads to the161

system of equations162

−

Kdd Kdε

Kεd Kεε


∆d

∆ε̄eq

 =

Rd

Rε

 (22)

with163

Kdd = ∂Rd

∂d
=

∫
Ω
(1 − ω)BT CB dΩ (23)

Kdε = ∂Rd

∂ε̄eq
= −

∫
Ω

BT dω
dκ

dκ
dε̄eq

CεN̄ dΩ (24)

Kεd = ∂Rε

∂d
= −

∫
Ω

N̄T ∂εeq

∂ε
B dΩ (25)

Kεε = ∂Rε

∂ε̄eq
=

∫
Ω

(
N̄TN̄ + gl2B̄TB̄ + B̄T l2∇ε̄eq

dg
dω

dω
κ

dκ
dε̄eq

N̄

)
dΩ. (26)

The resulting asymmetric system of equations is solved with the LU decomposition of the164

MUMPS solver (Amestoy et al. 2001; Amestoy et al. 2006).165

A line search algorithm is used to increase the robustness of the method. After solving the166
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system, the solution ∆u = (∆d ∆ε̄eq)T is applied with a factor η. Both conditions167

‖R(u + η∆u)‖ < ε (27)

‖R(u)‖ − ‖R(u + η∆u)‖ ≥ 1
2η‖R(u)‖ (28)

must hold to accept the solution, where ε is a tolerance and ‖ · ‖ a residual norm. The168

first condition ensures a converged solution and the second one a quadratic convergence. If169

both conditions fail, η (initially η = 1) is reduced by a factor of 1/2 up to six times. If170

the conditions are still not fulfilled, the equilibrium for time t + ∆t is not reached. For a171

fixed ∆t, this causes the whole time integration to fail. In an adaptive scheme, as shown172

Algorithm 1, the previous solution of time t is restored and a smaller ∆t is chosen.173

Algorithm 1: Adaptive backward Euler time stepping scheme
Global degrees of freedom u
history variables κ
initial time step ∆t
while time t < tend, step n do

Increase load increment
Solve for new state un,κn within N Newton-Raphson iterations and a line
search algorithm

if N < 3 then
∆t = min(1.5∆t,∆tmax)

end
if no convergence then

if ∆t < ∆tmin then
Abort

end
restore un−1,κn−1
∆t = 0.5∆t
continue

end
end

IMPL-EX TIME INTEGRATION174

The implicit/explicit (IMPL-EX) scheme (Oliver et al. 2008) is a time integration scheme175

for nonlinear constitutive models. These nonlinearities often arise from internal history176
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variables of the model and their evolution equations. Those variables store the state of the177

material, e.g. the plastic strains in a plasticity model, or in this case, the historic maximum178

of the nonlocal equivalent strains κ. By extrapolating those variables based on previously179

calculated values, the nonlinearities vanish. The resulting system is now linear, which leads180

to a robust solution procedure and increases the overall performance of the simulation.181

Again, the pseudo time t is discretized into several time steps, ∆tn for the n-th step, and182

each step consists of three stages. The explicit stage performs an extrapolation of the history183

variables. In the present model, the history variable κ is driven by the nonlocal strain field.184

Its value is continuous in time and, because of the nonlocality, continuous in space. Thus, it185

is a reasonable choice for the extrapolation variable - in contrast to the damage variable ω186

that exhibits a jump in the derivative upon damage initiation at κ0 (see Eq. (12)). The187

extrapolation for the time step n+ 1 reads188

κ̃n+1 = κn + ∆tn+1

∆tn
∆κn with (29)

∆κn = κn − κn−1, (30)

where ( ˜ ) denotes the extrapolated values.189

The second stage of the scheme is the solution of the global system of equations. The value190

of κ̃n+1 is no longer unknown and replaces κ in Eqs. (20) to (26). Note that the derivative191

with respect to κ in Eq. (24) vanishes, resulting in Kdε = 0. Consequently, the system of192

equations in Eq. (22) can be solved separately in two steps. Firstly, the displacement degrees193

of freedom dn+1 are solved via the linear equations194

Kdd(dn, κ̃n+1)∆dn+1 = −Rd(dn, κ̃n+1). (31)

Secondly, also Eq. (21) turns into a linear equation, because the displacements dn+1 are now195

known and g = g(ω(κ̃n+1)), so dg/dκ = 0. It can be reformulated to directly obtain the new196
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nonlocal equivalent strains with197

Rε =
∫

Ω

(
N̄TN̄ + gl2B̄TB̄

)
dΩ ε̄eq,n+1−

∫
Ω

N̄T εeq(dn+1) dΩ = 0 (32)

Kεε
d

dκ
=0 ε̄eq,n+1=

∫
Ω

N̄T εeq(dn+1) dΩ. (33)

For the case of a constant nonlocal interaction, g ≡ 1, the matrix Kεε
d/dκ=0 is constant. Then,198

the solution can be sped up by applying a precalculated factorization of the matrix to the199

changing right hand sides.200

In the third and final implicit stage of the algorithm, the nodal values dn+1 and ε̄eq,n+1 are201

fixed and the conditions in Eq. (11) are evaluated to obtain and store the implicit values202

κn+1. The old extrapolated values κ̃n+1 are no longer needed. A summary of the whole203

scheme is provided in Algorithm 2.204

Algorithm 2: General IMPL-EX scheme
Global degrees of freedom u
internal variables κ
initial time steps ∆t0 = ∆t1 = ∆t
while time t < tend, step n do

1. explicit stage: Extrapolation ( ˜ ) of the internal variables
κ̃n+1 = κn + ∆tn+1

∆tn
(κn − κn−1)

2. Solve R(un+1, κ̃n+1) for un+1, possibly separated
Note that derivatives with respect to κ vanish.

3. implicit stage: Evaluate the evolution equation Eq. (10)
κn+1 = max(ε̄eq,n+1,κn)

if adaptive time stepping then
Adjust ∆tn+1 based on extrapolation error and ∆tn. See Section 5.

else
∆tn+1 = ∆tn

end
end

The algorithm only requires the additional trivial implementation for the extrapolation of205

the history variables in Eq. (30). Other changes are significant simplifications compared to206

the backward Euler scheme.207
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First, backward Euler requires the calculation of the full algorithmic tangent matrix. In the208

IMPL-EX scheme, the algorithmic tangent stiffness in Eqs. (23) to (26) is reduced to the209

diagonal terms Kdd and Kεε. This can save time when experimenting with new damage210

models or strain norms, because the derivatives ∂ω/∂κ and ∂ε̄eq/∂ε are not required. Es-211

pecially the strain norms often include strain invariants or eigenvalues, where implementing212

the derivatives is error prone and time consuming.213

Secondly, a Newton-Raphson algorithm has to be employed for the solution of the nonlinear214

system of equations in the backward Euler scheme, often coupled with a line search algorithm215

for additional stability. For IMPL-EX, the system of equations becomes linear and is solved216

only once per load increment. Therefore, a Newton-Raphson algorithm is not required.217

The system also becomes symmetric and the faster LDLT decomposition is employed. The218

decoupling of the monolithic system into two smaller systems for d and ε̄eq decreases the219

total solution time in a direct solver. Altogether, the computational effort for solving a single220

time step is greatly reduced.221

Thirdly, a backward Euler requires small time steps in certain parts of the loading process to222

remain on the equilibrium path. Thus, a feasible implementation has to include an adaptive223

time stepping scheme. If a Newton-Raphson iteration fails to converge for a given time224

step, it is restarted with a smaller one. This requires restoring of nodal values and history225

variables of the last converged time step. In adaptive time stepping schemes for IMPL-EX226

(see next section), this is not required.227

The extrapolation of the history variables in IMPL-EX defines a modified residual that ap-228

proximates the equilibrium state, but does not exactly fulfill it. For a well-posed problem,229

decreasing the time step and decreasing the element sizes, the IMPL-EX scheme converges230

to the exact solution. However, for ill-posed problems such as problems with snap-back phe-231

nomena or bifurcation, an inexact solution will be obtained. In case of bifurcation problems,232

the scheme will decide to continue on one branch of the bifurcation, for snap-back phenom-233

ena it will jump over the snap back.234
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Within the IMPL-EX scheme, all hessian matrices are symmetric and positive definite (for235

damage ω > 0, which is fulfilled by the damage law Eq. (12)). This is in contrast to the236

generally used backward Euler method. There, the ill-posedness of the problem results in237

convergence problems related to the numerical solution of the resulting system of equations.238

Even though the IMPL-EX scheme might not be able identify ill-posed problems, it often239

gives valuable insights into the failure mechanisms, e.g. the occurrence snap-backs. For some240

problems with bifurcation (e.g. a symmetric particle embedded in a matrix that cracks along241

that particle interface or extending this to mesoscale models with many particles), it is of242

interest to follow an arbitrary branch within the bifurcation problem.243

The extrapolation of κ eliminates the nonlinearities in Eq. (20) corresponding to the nonlinear244

relation between stress and damage(κ). If the proposed algorithm is applied to problems245

with additional nonlinearities, a linear system can be obtained by defining these variables as246

internal variables and extrapolate them. One example is the monolithic solution of the system247

instead of the more efficient split into subsystems. In this case, the term Kεd (Eq. (25)) still248

contains the nonlinear derivative of the strain norm εeq with respect to the strains. Other249

examples include stress-strain relations that distinguish between damage in compression and250

tension to model crack closure effects (Desmorat 2016).251

ADAPTIVE IMPL-EX TIME STEPPING252

The IMPL-EX scheme introduces an additional error, the extrapolation error of κ̃. This error253

is influenced by the time step ∆t and smaller time steps will result in smaller extrapolation254

errors. Even though κ is continuously growing, the resulting stresses may not. They are255

calculated with the damage law in Eq. (12). At damage initiation (κ = κ0), this function256

transitions from ω = 0 to a very steep gradient. It is crucial to capture this event with257

a fine resolution to obtain a small error in the residual. However, there is no need for a258

high resolution in the elastic loading regime (κ < κ0) or when the material is almost fully259

damaged (κ � κ0). Increasing the time steps in these situations can save a significant260

amount of iterations.261
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The goal of the adaptive time stepping is to find a way of calculating the new time step262

∆tn+1 such that it keeps the extrapolation error bounded. For the present model, this263

means smaller time steps in the region of damage initiation and larger ones elsewhere.264

Two adaptive time stepping schemes for IMPL-EX are presented by (Oliver et al. 2008) and265

(Blanco et al. 2007). Both schemes find the new time step based on the maximal absolute266

extrapolation error of the internal variables. The derivation of similar error schemes for the267

present model is shown in Section 5. After that, two new classes of error control schemes268

are introduced, one based on the relative error of the internal variables in Section 5 and one269

based on the absolute error of the damage variable in Section 5. All presented schemes are270

summarized in Table 1.271

Absolute error control272

The absolute extrapolation error eextrapolation is limited to a certain fraction ξ of the material273

parameter κ0274

eextrapolation
n+1 (x) = |κn+1(x) − κ̃n+1(x)| ≤ ξκ0 ∀x ∈ Ω. (34)

Taylor expansion of κn+1 yields275

κn+1 = κn + κ̇n∆tn+1 + 1
2 κ̈n∆t2n+1 + O(∆t3n+1) (35)

and the approximation of the first time derivative κ̇n ≈ ∆κn/∆tn from the previous time276

step277

κn+1 ≈ κn + ∆κn
∆tn+1

∆tn︸ ︷︷ ︸
κ̃n+1

+1
2 κ̈n∆t2n+1 (36)

eextrapolation
n+1 ≈ 1

2 |κ̈n|∆t2n+1 (37)
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eliminates κ̃n+1 from Eq. (34). Approximating κ̈n and using Eq. (30) leads to278

|κ̈n| ≈ |κ̇n − κ̇n−1|
∆tn

= 1
∆t2n

∣∣∣∣∣κn − κn−1 − ∆κn−1
∆tn

∆tn−1

∣∣∣∣∣
= 1

∆t2n
|κn − κ̃n| = 1

∆t2n
eextrapolation

n . (38)

Inserted into Eq. (37), this relates the approximation of the extrapolation error at step n+1279

to the known value eextrapolation
n of the previous time step. The new time step depends on the280

largest extrapolation error for all quadrature points and Eq. (34) now reads281

∆tn+1 ≤ ∆tn min
x∈Ω

√
2ξκ0

|κn(x) − κ̃n(x)| . (39)

As pointed out by (Oliver et al. 2008), limiting the time step growth with the acceleration282

factor η = 1.3 via ∆tn+1 ≤ η∆tn is beneficial. This also covers the case of a vanishing283

extrapolation error e ≈ 0 since the resulting time step is limited. This case occurs in the284

elastic regime at the beginning of the simulations. Here, the automatic time stepping only285

depends on the initial time step ∆t0 that has to be chosen small enough so that the first286

time step remains within the elastic regime. This limitation with η is also applied for all287

further adaptive time stepping algorithms.288

A different approach aims for limiting the absolute change of κ during one time step using289

the condition290

eincrement
n+1 (x) = κ̃n+1(x) − κn(x)

= ∆κn(x)∆tn+1

∆tn
≤ ξκ0 ∀x ∈ Ω (40)

leading to the new time step291

∆tn+1 ≤ ∆tn min
x∈Ω

ξκ0

(κn(x) − κn−1(x)) . (41)
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Note that this approach does not include the extrapolated values κ̃ in the calculation of the292

new time step.293

Since both approaches relate the error value to the fixed value κ0, they are referred to as294

absolute error control.295

Relative error control296

A new class of adaptive time stepping schemes is derived from the absolute error schemes297

by changing the reference from the constant value κ0 to κn(x). This leads to the definition298

of the relative extrapolation error299

rextrapolation
n+1 (x) = eextrapolation

n+1 (x)
κn(x) ≤ ξ ∀x ∈ Ω (42)

and the new time step300

∆tn+1 ≤ ∆tn min
x∈Ω

√√√√ 2ξκn(x)
|κn(x) − κ̃n(x)| . (43)

The condition for the incremental relative error now reads301

rincrement(x) = eincrement
n+1
κn(x) ≤ ξ ∀x ∈ Ω (44)

and yields302

∆tn+1 ≤ ∆tn min
x∈Ω

ξκn(x)
κn(x) − κn−1(x) . (45)

Error control based on the damage variable303

The overall structural equilibrium is determined by the stresses. They are closely related304

to the damage variable ω. Based on this idea, another novel approach aims at defining the305
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extrapolation error in terms of ω306

|(1 − ω̃) − (1 − ω)| = |ω̃ − ω| < ξ. (46)

Following the derivation of (Blanco et al. 2007), the condition307

eω
n+1(x) = ω̃n+1(x) − ωn(x) < ξ ∀x ∈ Ω (47)

has to hold. The term ω̃n+1 is rewritten as308

ω̃n+1 = ω(κ̃n+1) = ω

(
κn + ∆κn

∆tn+1

∆tn

)
(48)

≈ ω(κn) + ∂ω(κn)
∂κ

∆κn
∆tn+1

∆tn
. (49)

and the new time step is defined as309

eω
n+1 ≈ ∂ω(κn)

∂κ
∆κn

∆tn+1

∆tn
(50)

∆tn+1 ≤ ∆tn min
x∈Ω

ξ
∂ω(κn(x))

∂κ
∆κn(x)

(51)

This method additionally requires the evaluation of the derivative ∂ω/∂κ for the current310

value κn. By definition in Eq. (12) the derivative vanishes for κ ≤ κ0. This case is covered311

by the η limitation of the time step, introduced in Section 5.312

NUMERICAL EXAMPLES313

Double notched tensile test314

The setup and the material parameters of this experiment (shown in Fig. 1) are taken from315

(Peerlings et al. 1998). The specimen has a thickness of 50 mm and plane-stress conditions316

are assumed. The mesh consists of quadrilateral elements with an edge length of 1.25 mm.317

The damage law is visualized in Fig. 2 and the modified Mises equivalent strain norm318
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from Eq. (16) is used. As in the reference implementation, a constant nonlocal interac-319

tion (g(ω) ≡ 1) is used.320

The displacements at the bottom of the specimen are fixed. The load is applied at the top321

using direct displacement control and is gradually increased up to the pseudo time t = 1s.322

The final damage distribution is show in Fig. 3. This experiment is now used to analyze the323

fixed and adaptive time stepping schemes introduced in the previous sections. The results324

are shown in Fig. 4, where the accuracy is measured by the global fracture energy Gf and325

the number of iterations indicates the performance.326

Remark: The term iteration refers to Newton-Raphson iterations and corresponds to the327

number of direct solver calls. In this example, a single backward Euler iteration takes328

about 0.16 s, an IMPL-EX iteration about 0.08 s. Thus, a qualitative comparison in terms329

of computational time can be deduced by adding the factor 2 to the backward Euler sim-330

ulations. The global fracture energy Gf is calculated by a trapezoidal integration of the331

load-displacement curve up to the boundary displacement ∆u = 0.1 mm. This is further332

explained in Appendix I.333

A reference fracture energy Gf,ref is obtained by a high resolution (6400 fixed time steps)334

backward Euler calculation.335

The fixed time stepping schemes are compared first, IMPL-EX as IMPL-EX
fixed and backward336

Euler as backw. Euler
fixed . The latter one requires a certain minimal time step, typically near the337

peak load, to find a converged solution. In this setup, the least accurate solution requires a338

time step ∆t = 1/1600 s that corresponds to 3939 iterations. That means that the backward339

Euler time integration scheme cannot fulfill conditions Eqs. (27) to (28) with a significantly340

larger time step. The IMPL-EX scheme with a fixed time step cannot obtain the same341

accuracy with a comparable number of iterations. It is, however, capable to find a less342

accurate solution with far less iterations - for example only ≈ 250 iterations at 1 % error.343

Each adaptive IMPL-EX scheme defines the variable ξ that controls the error threshold. A344

lower threshold leads to smaller time steps and, thus, to more iterations. These schemes are345
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compared to each other and to an adaptive backward Euler simulation, marked at about 200346

iterations with backw. Euler
adaptive .347

The rincrement outperforms the other schemes for less than 1000 iterations. For a higher348

number of iterations, the eω scheme is the most accurate one. To understand the performance349

and accuracy differences, the behavior at the peak load of the load-displacement curve is350

analyzed next. The parameter ξ is chosen to result in about 100 iterations in each scheme351

and the corresponding load-displacement curves are plotted in Fig. 5. As in Fig. 4, backw. Euler
fixed352

marks a high resolution reference solution.353

IMPL-EX with fixed time steps and the absolute error schemes miss the point of damage354

initiation and overestimate the peak load by ≈ 10 %. The overshooting of the relative355

and damage based schemes is significantly smaller. The damage based scheme resolves the356

peak load more accurately whereas the relative incremental schemes continues closer to the357

reference equilibrium path in the post-peak region.358

The value of the history parameter κ at the peak load is small (= κ0) compared to the value359

in the damaged material (' 25κ0 for ω > 0.99). A small error ∆κ at peak load causes a360

much larger error in the resulting damage value (and the residual R) than the same ∆κ in361

the almost completely damaged material. The relative error schemes and the one using ω362

directly exploit this fact. This results in a time step distribution with short time steps in363

the region of the peak load and larger time steps towards the end of the simulation. Thus,364

they generally perform better than their absolute counterparts - and the fixed stepping. The365

adaptive schemes rincrement and eω perform best. Thus, they are further analyzed in the366

following examples to find the most suitable scheme. IMPL-EX with fixed time steps is also367

considered further as a simple alternative to the adaptive, error controlled time stepping.368

Two-dimensional compression test369

The setup of the next example is shown in Fig. 6. It is simulated under plane stress conditions370

and 120 × 120 quadrilateral elements with quadratic interpolation for d and ε̄eq. It is taken371

from (Poh and Sun 2017), where it is used to demonstrate the correct failure pattern of372

20 Titscher, January 30, 2019



the decreasing nonlocal interaction model (g from Eq. (3)). In this setup, a mode II failure373

is expected with an inclined shear band starting from the defect region (Fig. 7), whereas374

the constant interaction models with a constant length scale parameter l show a horizontal375

localization.376

The comparison of the backward Euler time integration with the IMPL-EX time integration377

is shown in Fig. 8. To evaluate the computational effort related to each calculation, a378

simulation time is measured and shown in the legend. The time spent in the solver (here379

MUMPS(Amestoy et al. 2001; Amestoy et al. 2006)) is used, because this time usually380

dominates the total simulation time, but does not depend on implementation details of the381

used finite element tool.382

The fixed time stepping schemes in Fig. 8a are compared first. Similar results as in Section 6383

are observable. The backward Euler simulation requires a certain minimal time step to find384

the equilibrium solution. In this case, this time step lays between ∆t = 0.0006s (failed, not385

shown in the plot) and ∆t = 0.0005s. The IMPL-EX simulations find a good agreement386

with far less iterations. For ∆t = 0.005, the curve overestimates the peak load and deviates387

slightly deviates from the equilibrium path. For smaller IMPL-EX time steps, the load-388

displacement curve is in good agreement with the backward Euler solution, for a fraction of389

the solver time.390

Figure 8b compares the damage based time stepping from Section 5 to the adaptive backward391

Euler simulation. For all values of ξ, the peak load is well resolved, but the forces on the392

softening branch of the load-displacement curve are overestimated. Smaller values of ξ do393

fix this problem. Then, however, the computational effort is similar or higher compared to394

the fixed time stepping. However, these adaptive methods have the advantage that the time395

step does not have to be prescribed a priori. The time step concentration over the whole396

load-displacement curve is indicated by the vertical marks. The backward Euler simulation397

shows a higher concentration around the peak load, but the softening branch is also resolved.398

The damage based error control limits the growth of the damage variable. On damage399
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initiation, the derivative dω/dκ is very steep and the resulting time steps are very small. As400

κ grows further, the derivative rapidly goes towards zero and causes large time steps, not401

only in the fully localized state, but already in the softening branch. This is in agreement402

with the mark distribution of Fig. 8b.403

Figure 8c shows the relative incremental error scheme in comparison to adaptive backward404

Euler. Apart from a slight overestimation of the peak load, the solution for ξ = 0.1 is hard405

to distinguish from the backward Euler simulation. Compared to the latter one, a solver406

time speedup of about 6 is reached. Due to the matrix sparsity and size of the system, a407

performance difference is more pronounced in a larger, three dimensional simulation and will408

be discussed based on the next example.409

Three-dimensional compression test410

The aim of this experiment is to show the performance aspect of the IMPL-EX scheme com-411

pared to a backward Euler integration. The mesoscale geometry of the 40 mm × 40 mm × 40 mm412

specimen is randomly generated (Titscher and Unger 2015) from a B16 grading curve (de-413

fined in DIN 1045-2) and 60 % aggregate volume fraction. Aggregates smaller than 8 mm414

are assumed to be represented by the matrix material and were not resolved explicitly.415

The material models used in this experiment are taken from (Unger and Eckardt 2011)416

and are shown in Table 2. Tetrahedral elements are used for the matrix material and the417

aggregates. The interfaces are represented by pentahedral (wedge) elements and a regularized418

local damage model. The continuum strong discontinuity approach (CSDA) as introduced419

by (Oliver et al. 2002) has been applied to model the interfacial transition zone (ITZ) using420

very thin, regularized continuum elements. The ITZ is a very thin layer between concrete421

aggregates and the mortar matrix that is weaker than the surrounding material. This allows422

handling the interface elements in the same stress-strain framework as the bulk material.423

In contrast to damage zones within the matrix material, the damage path in the ITZ is424
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known a priori and CSDA elements with the local damage model425

σ = (1 − ω(κ)) C : ε with (52)

κ̇ ≥ 0, εeq − κ ≤ 0, κ̇(εeq − κ) = 0 (53)

are employed. In contrast to Eq. (10), the history variables κ are driven by the local equiv-426

alent strains εeq, defined in Eq. (16). The full tangent in the backward Euler scheme427

(
∂σ

∂ε

)
backw. Euler

= (1 − ω(κ))C − C : ε
∂ω

∂κ

∂κ

∂εeq

∂εeq

∂ε
(54)

includes a nonlinear second term that can lead to an ill-conditioned system (Jirásek 2007).428

For the IMPL-EX adaptation, similar to the one of the gradient enhanced damage model,429

the system is solved with the extrapolated values κ̃ instead of κ. Thus, the corresponding430

secant tangent431

(
∂σ

∂ε

)
IMPL-EX

= (1 − ω(κ̃))C (55)

used in the solution procedure of IMPL-EX remains positive definite.432

The displacement field d is discretized according to Eq. (17) with the same interpolation433

order as for the gradient damage model.434

The damage law from Eq. (12) is used and the fracture energy parameter gf is regularized435

with the element thickness t via436

gf = Gf

t
. (56)

Obtaining the fracture energy parameter gf for the nonlocal matrix material requires a cali-437

bration. This is done in a one dimensional tensile test with a similar setup as in Appendix I.438

Displacement boundary conditions are applied at the top and bottom surface. Movement in439
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the horizontal directions is suppressed to model the static friction between the specimen and440

the testing machine. In horizontal direction, the bottom is fixed and direct displacement441

control is applied to all nodes of the top surface. The other surfaces are stress-free. All fields442

(geometry, d and ε̄eq) are interpolated with quadratic shape functions. The average element443

length as well as the nonlocal length parameter l is chosen to be 2 mm. The resulting mesh444

has ≈ 5 × 104 elements and ≈ 3.3 × 105 degrees of freedom.445

The resulting load-displacement curves for different time integration schemes are shown in446

Fig. 11. There is nearly no visible difference between the IMPL-EX solution with 400 fixed447

time steps and the adaptive backward Euler reference solution. Due to the rather long448

solution time of the latter one, we do not provide a backward Euler solution with a fixed449

time step. The IMPL-EX calculation with 200 time steps suffers from a small oscillation near450

the peak load and continues very close to the equilibrium path. Compared to the backward451

Euler simulation, this results in a computational speedup of ≈ 11. Significant overshooting452

to 110 % of the peak load is observable for IMPL-EX with 50 fixed time steps. The adaptive453

time stepping scheme with ξ = 0.15 corresponds to 57 time steps and resolves the peak454

load correctly. Its accuracy is comparable to IMPL-EX with 200 fixed time steps. Thus,455

the speedup compared to the adaptive backward Euler solution increases to ≈ 40. Another456

adaptive simulation with ξ = 0.25 is shown. It corresponds to 44 time steps and resolves the457

peak load with an error of ≈ 5 %. In the post-peak behavior it deviates from the equilibrium458

path, which introduces an additional error in the global fracture energy.459

The differences in the wall time required to perform the simulations, has two main reasons.460

First, the number of iterations itself. The backward Euler scheme requires 259 time steps,461

with multiple iterations within each step due to the nonlinearity. Additionally, some time462

steps do not reach the desired tolerance within the maximum number of iterations and463

require a restart with a reduced time step. This results in 1100 total solutions of the global464

system of equations. Second, the time per iteration differs. In the backward Euler scheme,465

the asymmetric sparse system Eq. (22) is solved for both the displacements and the nonlocal466
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equivalent strains, resulting in ≈ 108 s per solve. The IMPL-EX scheme requires ≈ 53 s per467

iteration, since the system is split. The solution of Eq. (33) is sped up by using a factorization468

that is calculated only once at the beginning of the simulation. The remaining Eq. (31) yields469

a linear, symmetric system containing only the displacement degrees of freedom.470

CONCLUSIONS471

The IMPL-EX integration of the implicit gradient enhanced damage model is presented as an472

alternative to a classic, backward Euler time integration. Its implementation is less invasive473

and mainly requires the extrapolation of the history variables. This decouples the system of474

equations and provides various numerical benefits. The backward Euler algorithm requires475

the full algorithmic stiffness and the resulting monolithic system is nonlinear and asymmetric.476

The decoupling allows a subsequent solution of each subsystem, in which one tangent is linear477

and symmetric and the second one, for the classic model with constant nonlocal interaction,478

is constant. Additionally, off-diagonal terms in the algorithmic stiffness matrix are no longer479

required and only the block-diagonal matrix entries have to be computed/implemented.480

A significant speedup can be achieved for simulations involving complex geometries, like481

concrete on the mesoscale, where backward Euler schemes exhibit instabilities. There is a482

certain minimal time step for the backward Euler scheme which constrains the run time of483

the simulation. By accepting a loss in accuracy, the IMPL-EX scheme can find solutions484

with an arbitrary number of iterations. The actual speedup, however, strongly depends on485

the problem. In a three-dimensional compression test, a reasonable approximation of an486

adaptive backward Euler solution is obtained with equidistant IMPL-EX time steps and a487

speedup of ≈ 11.488

IMPL-EX extrapolation errors during the damage initiation have a larger influence than the489

same errors in a nearly fully damaged material. Since smaller time steps lead to smaller490

errors, it is beneficial to concentrate the time steps around the point of damage initiation.491

This is achieved by using adaptive time stepping algorithms. The performance of three492

different classes of algorithms is assessed. The scheme that limits the relative error of the493
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history variables performs best. It is capable of reducing the number of iterations while494

maintaining the accuracy. In the the three-dimensional compression test mentioned above,495

a significant speedup (≈ 40) is obtained.496

ACKNOWLEDGMENT497

The research was supported by the Federal Institute for Materials Research and Testing,498

Berlin, Germany and by the German Research Foundation (DFG) under project Un224/7-1.499

Additionally, the research leading to these results has received funding from the European500

Research Council under the European Union’s Seventh Framework Programme (FP/2007-501

2013) / ERC Grant Agreement n. 320815 (ERC Advanced Grant Project "Advanced tools502

for computational design of engineering materials" COMP-DES-MAT).503

References504

Amestoy, P. R., Duff, I. S., Koster, J., and L’Excellent, J.-Y. (2001). “A fully asynchronous505

multifrontal solver using distributed dynamic scheduling.” SIAM Journal on Matrix Anal-506

ysis and Applications, 23(1), 15–41.507

Amestoy, P. R., Guermouche, A., L’Excellent, J.-Y., and Pralet, S. (2006). “Hybrid schedul-508

ing for the parallel solution of linear systems.” Parallel Computing, 32(2), 136–156.509

Bažant, Z. P. and Belytschko, T. B. (1985). “Wave propagation in a strain-softening bar:510

exact solution.” Journal of Engineering Mechanics, 111(3), 381–389.511

Bažant, Z. P., Belytschko, T. B., and Chang, T.-P. (1984). “Continuum theory for strain-512

softening.” Journal of Engineering Mechanics, 110(12), 1666–1692.513

Bažant, Z. P. and Jirásek, M. (2002). “Nonlocal integral formulations of plasticity and dam-514

age: survey of progress.” Journal of Engineering Mechanics, 128(11), 1119–1149.515

Bazant, Z. P. and Pijaudier-Cabot, G. (1988). “Nonlocal continuum damage, localization516

instability and convergence.” Journal of applied mechanics, 55(2), 287–293.517

Blanco, S., Oliver, J., and Huespe, A. (2007). “Contribuciones a la simulación numérica518

del fallo material en medios tridimensionales mediante la metodología de discontinuidades519

fuertes de continuo.” Ph.D. thesis, Universitat Politécnica de Catalunya,520

26 Titscher, January 30, 2019



Carol, I. and Bazant, Z. P. (1997). “Damage and plasticity in microplane theory.” Interna-521

tional Journal of Solids and Structures, 34(29), 3807–3835.522

Carol, I., Prat, P. C., and López, C. M. (1997). “Normal/shear cracking model: application523

to discrete crack analysis.” Journal of engineering mechanics, 123(8), 765–773.524

Cazes, F., Meschke, G., and Zhou, M.-M. (2016). “Strong discontinuity approaches: An525

algorithm for robust performance and comparative assessment of accuracy.” International526

Journal of Solids and Structures, 96, 355–379.527

De Vree, J., Brekelmans, W., and Van Gils, M. (1995). “Comparison of nonlocal approaches528

in continuum damage mechanics.” Computers & Structures, 55(4), 581–588.529

Desmorat, R. (2016). “Anisotropic damage modeling of concrete materials.” International530

Journal of Damage Mechanics, 25(6), 818–852.531

Graça-e Costa, R., Alfaiate, J., Dias-da Costa, D., and Sluys, L. J. (2012). “A non-iterative532

approach for the modelling of quasi-brittle materials.” International Journal of Fracture,533

178(1), 281–298.534

Jirásek, M. (2007). “Mathematical analysis of strain localization.” Revue européenne de génie535

civil, 11(7-8), 977–991.536

Jirásek, M. and Zimmermann, T. (1998). “Rotating crack model with transition to scalar537

damage.” Journal of engineering mechanics, 124(3), 277–284.538

Mazars, J. and Pijaudier-Cabot, G. (1989). “Continuum damage theory - application to539

concrete.” Journal of Engineering Mechanics, 115(2), 345–365.540

Oliver, J. (1989). “A consistent characteristic length for smeared cracking models.” Interna-541

tional Journal for Numerical Methods in Engineering, 28(2), 461–474.542

Oliver, J., Cervera, M., Oller, S., and Lubliner, J. (1990). “Isotropic damage models and543

smeared crack analysis of concrete.” Second international conference on computer aided544

analysis and design of concrete structures, Vol. 2, 945–958.545

Oliver, J., Huespe, A., Blanco, S., and Linero, D. (2006). “Stability and robustness issues in546

numerical modeling of material failure with the strong discontinuity approach.” Computer547

27 Titscher, January 30, 2019



Methods in Applied Mechanics and Engineering, 195(52), 7093–7114.548

Oliver, J., Huespe, A., and Cante, J. (2008). “An implicit/explicit integration scheme to549

increase computability of non-linear material and contact/friction problems.” Computer550

Methods in Applied Mechanics and Engineering, 197(21), 1865–1889.551

Oliver, J., Huespe, A., Pulido, M., and Chaves, E. (2002). “From continuum mechanics to552

fracture mechanics: the strong discontinuity approach.” Engineering Fracture Mechanics,553

69(2), 113–136.554

Peerlings, R., De Borst, R., Brekelmans, W., and Geers, M. (1998). “Gradient-enhanced555

damage modelling of concrete fracture.” Mechanics of Cohesive-frictional Materials, 3(4),556

323–342.557

Peerlings, R., Geers, M., De Borst, R., and Brekelmans, W. (2001). “A critical comparison558

of nonlocal and gradient-enhanced softening continua.” International Journal of solids and559

Structures, 38(44), 7723–7746.560

Peerlings, R., Massart, T., and Geers, M. (2004). “A thermodynamically motivated implicit561

gradient damage framework and its application to brick masonry cracking.” Computer562

methods in applied mechanics and engineering, 193(30-32), 3403–3417.563

Peerlings, R. H. J., De Borst, R., Brekelmans, W. A. M., and De Vree, J. H. P. (1996). “Gra-564

dient enhanced damage for quasi-brittle materials.” International Journal for Numerical565

Methods in Engineering, 39(19), 3391–3403.566

Pham, K., Amor, H., Marigo, J.-J., and Maurini, C. (2011). “Gradient damage models and567

their use to approximate brittle fracture.” International Journal of Damage Mechanics,568

20(4), 618–652.569

Pijaudier-Cabot, G. and Bažant, Z. P. (1987). “Nonlocal damage theory.” Journal of engi-570

neering mechanics, 113(10), 1512–1533.571

Poh, L. H. and Sun, G. (2017). “Localizing gradient damage model with decreasing interac-572

tions.” International Journal for Numerical Methods in Engineering, 110(6), 503–522.573

Rots, J., Nauta, P., Kuster, G., and Blaauwendraad, J. (1985). “Smeared crack approach574

28 Titscher, January 30, 2019



and fracture localization in concrete.” Report no., Delft University of Technology.575

Rots, J. G., Belletti, B., and Invernizzi, S. (2008). “Robust modeling of rc structures with an576

"event-by-event" strategy.” Engineering Fracture Mechanics, 75(3), 590 – 614 International577

Conference of Crack Paths.578

Simone, A., Askes, H., Peerlings, R., and Sluys, L. (2003). “Interpolation requirements for579

implicit gradient-enhanced continuum damage models.” International Journal for Numer-580

ical Methods in Biomedical Engineering, 19(7), 563–572.581

Titscher, T. and Unger, J. F. (2015). “Application of molecular dynamics simulations for the582

generation of dense concrete mesoscale geometries.” Computers & Structures, 158, 274 –583

284.584

Triantafyllidis, N. and Aifantis, E. C. (1986). “A gradient approach to localization of defor-585

mation. i. hyperelastic materials.” Journal of Elasticity, 16(3), 225–237.586

Unger, J. F. and Eckardt, S. (2011). “Multiscale modeling of concrete.” Archives of Compu-587

tational Methods in Engineering, 18(3), 341.588

29 Titscher, January 30, 2019



Appendix I. ANALYSIS OF THE INTERPOLATION ORDER589

As stated by (Simone et al. 2003), the Babuska-Brezzi condition does not apply for the590

discretized gradient enhanced continuum damage model. The interpolation orders for the591

displacement field and the nonlocal equivalent strain field do not need to be related and any592

interpolation can be employed.593

Figure 12a shows the convergence analysis of a one-dimensional specimen of length L. The594

boundary x = 0 is fixed and the boundary condition u(x = L) = ∆u is applied in 104
595

equidistant load steps. An imperfection is imposed with a predamaged zone by setting the596

initial value κ = 3κ0 in 2 % of the elements. The numerical integration uses five Gauss-597

Legendre integration points for all interpolation orders. The global fracture energy is chosen598

as a measure of the accuracy and is obtained by integrating (trapezoidal rule) the load-599

displacement curve600

Gf = 1
A

∫
F (u)du− LE

3κ∫
0

σ(κ)dκ
︸ ︷︷ ︸

pre-damage

. (57)

The reference solution Gf,ref is obtained from a simulation with 4000 elements and quartic601

interpolation for both fields, corresponding to 16000 DOFs.602

The analysis for the double notched specimen from Section 6 is shown in Fig. 12b. The603

element size LE is chosen as fractions of the notch geometry of 5 mm and the reference604

solution Gf,ref is obtained from a quadratic-quadratic interpolation with LE = 5 mm/24.605

The numerical cost of a backward Euler integration scheme is dominated by the solution of606

the global system of equations, which itself depends on the number of degrees of freedom607

(DOFs). Thus, the results in Fig. 12 do not represent a convergence analysis, but an analysis608

of the computational cost. The slope of the curves is influenced by the lowest interpolation609

order. The error for a given number of DOFs is slightly lower, if the displacement field is610

interpolated one order higher. However, if the higher order interpolation is available, it is611

highly beneficial to also use it for the nonlocal equivalent strain field, since it increases the612
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overall order of the method.613

Note that equal interpolation orders for both fields lead to jumps in the stress field, e.g. for614

the linear-linear case: Linear displacements result in constant strains. The stresses are calcu-615

lated via the damage ω which depends on the nonlocal equivalent strain field ω(κ(ε̄eq)). Since616

they are allowed to change linearly, constant strains can lead to non constant stresses. This617

is a post-processing problem and can be solved by e.g. a smoothing of the stresses (Simone618

et al. 2003).619
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Table 1. Overview of the adaptive time stepping schemes

abbreviation time step ∆t ≤ ∆tn min
x∈Ω

. . .

eextrapolation

Section 5

√
2ξκ0

|κn(x) − κ̃n(x)|

rextrapolation

Section 5

√
2ξκn(x)

|κn(x) − κ̃n(x)|

eincrement

Section 5
ξκ0

(κn(x) − κn−1(x))

rincrement

Section 5
ξκn(x)

κn(x) − κn−1(x)

eω

Section 5
ξ

∂ω(κn(x))
∂κ

(κn(x) − κn−1(x))
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Table 2. Material parameters for the three-dimensional compression test.

Parameter Unit Matrix Interface Aggregate
Young’s modulus E [MPa] 26738 26738 2 · 26738
Poisson’s ratio ν 0.18 0.18 0.18
Strength

tensile ft [MPa] 3.4 F · 3.4 −
compressive fc [MPa] 34 F · 34 −

Fracture energy
global Gf [N/mm] 0.12 F · 0.12 −
local gf [MPa] 0.0216 F

t · 0.12 −
Nonlocal parameter l [mm] 2 − −
Nonlocal interaction g ≡ 1 − −
Interface thickness t [mm] − 0.5 −
Interface reduction F − 0.75 −
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Fig. 1. Setup of the double-notched tensile test.
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Fig. 2. One-dimensional stress-strain relation for the exponential damage law (Eq. (12))
and the material parameters from Fig. 1.
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Fig. 3. The final damage distribution of the double-notched tensile test is shown as a
contour plot. The iso-damage lines correspond to ω = [0.1, 0.5, 0.9] from outside to inside.
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Fig. 4. Convergence analysis of the adaptive time stepping schemes for the double-notched
tensile test.
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Fig. 5. Load-displacement curves for double notched specimen. All schemes (except the
reference backw. Euler

fixed ) were adjusted to about 100 iterations.
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Fig. 6. Setup of the two dimensional compression test. The gray defect region has a reduced
damage initiation threshold of κ0,defect = 0.5κ0.
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(a) (b)

Fig. 7. Plots of the damage field ω (a) and the nonlocal equivalent strain field ε̄eq (b) of
the two dimensional compression test.
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Fig. 8. Load-displacement curves for the two dimensional compression test. The perfor-
mance and accuracy of the backward Euler time integration is compared to the IMPL-EX
time integration. Vertical marks indicate every 10th time step in the adaptive schemes to
indicate the evolution of the time step.
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Fig. 9. Visualization of the mesoscale geometry and the used material models in the three-
dimensional compression test.
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(a) F = Fmax (b) F = 0.6Fmax (c) F = 0.25Fmax

Fig. 10. Damage plot of the adaptive backward Euler solution at different loading states
after the post-peak. Elements with damage ω > 0.99 are shown as solid elements, others as
wireframe.

46 Titscher, January 30, 2019



−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

0

−10

−20

−30

−40

−50

−60

∆u [mm]

F
[k

N
]

backw. Euler
adaptive 33.15 h
IMPL-EX
∆t=1/400s 5.89 h
IMPL-EX
∆t=1/200s 2.94 h
IMPL-EX
∆t=1/50s 0.74 h

rincrement ξ = 0.15 0.84 h
rincrement ξ = 0.25 0.65 h

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

0

−10

−20

−30

−40

−50

−60

∆u [mm]

F
[k

N
]

backw. Euler
adaptive 33.15 h
IMPL-EX
∆t=1/400s 5.89 h
IMPL-EX
∆t=1/200s 2.94 h
IMPL-EX
∆t=1/50s 0.74 h

rincrement ξ = 0.15 0.84 h
rincrement ξ = 0.25 0.65 h

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

0

−10

−20

−30

−40

−50

−60

∆u [mm]

F
[k

N
]

backw. Euler
adaptive 33.15 h
IMPL-EX
∆t=1/400s 5.89 h
IMPL-EX
∆t=1/200s 2.94 h
IMPL-EX
∆t=1/50s 0.74 h

rincrement ξ = 0.15 0.84 h
rincrement ξ = 0.25 0.65 h

Fig. 11. Load-displacement curves for the three-dimensional compression test. The legend
shows the solver time.
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Fig. 12. Analysis of the computational cost of different combinations of interpolation orders
and element sizes (expressed as degrees of freedom (DOF)). The exponent in the legend shows
the interpolation order for the displacement field d and the nonlocal equivalent strain field
ε̄eq.
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