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SUMMARY

This paper deals with the question of how to efficiently integrate a constitutive model that describes the
densification of powders and the potential formation of cracks in Powder Metallurgy (P/M) cold compaction
processes. The analyzed model is a large strain, elastoplastic model of the Drucker–Prager/Cap type, refined
to cover also the prediction of crack formation, and featuring non-conventional elements such as a density-
dependent Von Mises yield surface; a parabolic plastic potential function for the Drucker–Prager envelope;
and a softening law whose softening modulus is dependent on the level of densification. The employed
integration procedure is a non-conventional hybrid or IMPLicit–EXplicit (IMPL-EX) scheme, whose
essence is to solve explicitly for some variables and implicitly for others, with the peculiarity of the ‘explicit’
variables being but extrapolated values of the same quantities computed, at previous time steps, by means
of a fully implicit scheme. The return-mapping equations stemming from this implicit scheme are solved
using an unconditionally convergent, fractional step method-based iterative procedure. The performance
of the IMPL-EX integration algorithm is critically assessed in two different situations: the densification
of a cylindrical specimen, and the fracture process in a diametral compression test. Results obtained
show conclusively that the proposed hybrid integration strategy offers an efficient solution to the trade-off
between robustness and computational time requirements. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Powder metallurgy (P/M) is a forming technology aimed at achieving net or near-net parts by
compacting metal powders into a discrete shape, and subsequently heating the preform to a
temperature below its melting point (sintering). To deem successful a given compaction route, the
compacted part, usually referred to as ‘compact’ or ‘green compact’, has to meet two major quality
requirements: (I) density distribution must be as uniform as possible, to avoid uneven shrinkage
in the subsequent sintering; (II) the compact must be free of cracks or other mechanical defects
that may prove eventually detrimental to the efficient performance of the finished part. These
quality requirements indicate clearly the features of the material response that a numerical model
should capture to be a meaningful representation of the industrial process. Not only must it be
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736 J. A. HERNÁNDEZ ET AL.

able to predict final density distributions and estimate with a reasonable accuracy the increase of
strength induced by densification; it must also consider the eventual initiation and growth of cracks
caused by inappropriate ejection schemes or improper tooling deflections, a task by no means
trivial, since densification and cracking, both paradigms of non-linear material behavior, are also
intimately connected phenomena: the higher the density attained locally, the higher the strength
and the toughness, and hence the resistance to the propagation of cracks.

The first author has proposed elsewhere [1] a large strain, elastoplastic constitutive model able
to describe, in a unified manner, these conspicuously distinct phenomena. The model is basically
an extension of the classical Drucker–Prager/Cap type model, which is refined to cover also the
description of material failure. The purpose of this paper is to discuss in-depth how to efficiently
integrate in time this type of constitutive model.

A review of the P/M compaction modeling literature reveals that, in selecting the method for
integrating the constitutive rate equations, P/M modelers have largely favored the explicit forward
Euler scheme [2–7] over the implicit backward Euler method [8, 9] and other more complex
procedures [10]. The reason behind the popularity of explicit solutions is well known: easiness of
implementation. In implicit methods, the convergence of the Newton–Raphson iterative solution
for the non-linear equilibrium equation is inescapably bound up with the spectral properties of the
resulting tangent stiffness matrix, which, in turn, depends crucially on the positive-definite character
of such an algorithmic tangent operator. Owing to the aforementioned highly non-linear, tightly
coupled nature of the constitutive equations, the derivation of a closed-form expression for the
algorithmic tangent operator consistent with the fully implicit scheme is, on its own, an exceedingly
complicated task. Furthermore, even in the case of having at one’s disposal this algorithmic tangent
operator, the lack of positive definiteness caused by strain softening—an indispensable element to
model cracking (via strain localization)—will eventually degrade the conditioning of the global
tangent stiffness matrix, and, consequently, affect adversely the robustness of the accompanying
Newton–Raphson algorithm.

The circumstances, in principle, seem to call for explicit methods. However, conventional explicit
schemes, due to stability reasons, also suffer from a severe limitation: they impose stringent step-size
restrictions. The presence of a single, excessively small element suffices to drive down dramatically
the critical time step, and therefore increase the computational cost to an arbitrarily large value.
In other engineering fields, the need to alleviate this shortcoming has prompted investigations
on alternative means of integrating complex constitutive models. In an attempt to combine the
strengths of both conventional implicit and explicit methods, and inspired by the success of the
so-called semi-implicit methods for the solution of the equations of motion in computational fluid
mechanics [11], several authors have developed hybrid integration schemes [12–16]. The qualifier
‘hybrid’ means that these methods do not fall neatly in either the categories ‘implicit’ or ‘explicit’,
but rather share some features of both procedures. They are implicit in the sense that the update
of some variables involves the solution of a system of equations; the explicit character comes
from the fact that other variables, by contrast, are presumed known or obtained explicitly at the
beginning of the time increment.

In this work, we have modified and adapted to the problem under consideration one of
these hybrid integration schemes; specifically, the so-called IMPL-EX (IMPLicit–EXplicit) scheme
proposed by Oliver et al. [15, 17], and originally conceived for overcoming the abovementioned
softening-induced robustness problems encountered in the simulation of material failure. The
distinguishing feature of this hybrid integration scheme is the manner in which the ‘explicit’
variables—those whose values are presumed known at the beginning of the time increment—are
calculated. Rather than updating these variables by using the pertinent explicit difference equations,
as done, for instance, in [12]; or by simply freezing them and a posteriori performing the update,
as suggested in [16], the IMPL-EX methodology obtains these values as extrapolations of the
same quantities calculated, at previous time steps, by accomplishing a fully implicit integration.
According to Oliver et al. (see Reference [17]), this strategy permits to retain the remarkable
stability properties exhibited by fully implicit solutions, while at the same time eliminating the
robustness deficiencies caused by strain softening.
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In contrast to other semi-implicit methods, thus, the IMPL-EX integration procedure does
actually entail the solution of the non-linear system of equations stemming from the implicit
backward Euler, the so-called return-mapping equations. This task also conceals many algorithmic
challenges, mainly because of, again, the presence of softening. Indeed, the closest point projection
method and the cutting-plane algorithm are well-established methods for solving these equations
[18]. However, they can only be applied with confidence in the case plasticity models that only
feature hardening rules; convergence of the local accompanying iterative scheme (normally a
Newton–Raphson algorithm) is not guaranteed when softening comes into play, since the problem
ceases to fulfill the required convexity conditions. The related literature abounds with references
to strategies that avoid these difficulties (for a fairly comprehensive review, see Armero and Pérez-
Foguet [19, 20] and references therein); however, these strategies are specific to particular models,
and their generalization is still an open problem.

Therefore, motivated by the inherent limitations of conventional procedures and the ad hoc char-
acter of the amendments proposed in the literature, we have developed a return-mapping algorithm
especially adapted to the constitutive model under consideration. The essence of the proposed
algorithm lies in the decoupling of the evolution equations for the plastic strains and the internal
variables, after the fashion of fractional step methods (see e.g. Reference [21]). It will be proved
analytically that this method converges to the solution regardless of both the value of the material
parameters and the location of the elastic trial stress with respect to the prevailing yield surfaces.

The paper is organized as follows. In Section 2, the constitutive laws and evolution equations
developed in Reference [1] are conveniently summarized. The basis of the algorithm for solving
the return-mapping equations are presented in Section 3; the mathematical formalisms behind the
issues of the existence and uniqueness of solution of such equations are thoroughly discussed in
Appendix A. In Section 4, the stress update and algorithmic tangent moduli expressions stemming
from the IMPL-EX scheme are provided; to preserve the continuity of the presentation, the deriva-
tion of the algorithmic tangent moduli is relegated to Appendix B. Section 5 is concerned with
the numerical assessment of the proposed integration procedure. Finally, some concluding remarks
are provided in the closing section.

2. PRELIMINARIES

Consider the powder contained in the die cavity as a deformable body B consisting of continuously
distributed material occupying, at a reference time t0, a region �0 of Rn(n=2,3). The deformation
at time t relative to the reference configuration is given by an one-to-one C2 mapping u :�0→
�t⊂Rn . Reference [1] is entirely devoted to formulate a system of constitutive laws and evolution
equations that describes mathematically the effects that a given deformation history

t̂ �→Ft̂ (X)=F(X, t̂) where t̂ ∈ [t0, t] (1)

(F denoting the deformation gradient of u) has on the physical attributes of the powder at a
point X∈�0 (a quadrature point in typical finite element implementations). In the following, we
summarize and discuss briefly the most relevant aspects of this constitutive model.

2.1. Kinematics and internal variables

The classical assumption of the local multiplicative decomposition of F into plastic and elastic
parts is adopted. The kinematic description considers arbitrarily large plastic deformations and
small elastic strains. Under such conditions, the Almansi strain tensor e and the rate of deformation
tensor d inherit the additive structure of classical small strain formulations

e=ee+ep, d=de+dp, (2)

where the subscripts ‘e’ and ‘p’ denote the elastic and plastic parts, respectively.
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738 J. A. HERNÁNDEZ ET AL.

The distinct irreversible processes occurring at the microscopic level are macroscopically
described in terms of two strain-like, scalar internal variables: an internal hardening variable (�h),
associated with the accumulated compressive (plastic) strain, and an internal softening variable
(�s), dependent on the accumulated (plastic) shear strain. The formal definition of both �h and �s

is deferred to Section 2.4.

2.2. Elastic strain–stress relationship

Owing to the smallness of the elastic strains, the stress–elastic strains constitutive law is borrowed
from that of the classical infinitesimal theory

s=ce :ee, (3)

where s denotes the Kirchhoff stress tensor and ce stands for the fourth-order elasticity tensor in
the current configuration; under the assumption of isotropy, the expression for ce reduces to

ce=�e(�h)1⊗1+2�e(�h)(Isym− 1
3 1⊗1), (4)

where 1 denotes the second-order identity tensor; Isym symbolizes the symmetric fourth-order
identity tensor, and �e=Ee(�h)/(3(1−2�e)) and �e=Ee(�h)/(2(1+�e)) the bulk modulus and
shear modulus, respectively. These elastic parameters are not constant, but depend on the hardening
internal variable through the Young’s modulus Ee

Ee(�h)= �0

�h
E0eBE (�h−�0), (5)

where‡ �0 stands for the initial relative (to the fully dense material) density. For a typical Distaloy
AE steel powder, we have E0=1360.92MPa and BE=8.82; the Poisson’s ratio �e is regarded as
constant (�e=0.29).

2.3. Yield condition and hardening/softening laws

The elastic domain in the Kirchhoff stress space is bounded by three yield surfaces that intersect
nonsmoothly; namely, an elliptical cap �e centered at the origin, a classical Drucker–Prager
envelope �d , and a pressure-independent Von Mises yield locus �v

�e =�1=q2+s2
2 (�h)p2−s2

1 (�h)s2
2 (�h), (6)

�d =�2=q+�p−c(�h,�s), (7)

�v =�3=q−cv(�h), (8)

where p= 1
3 trs and q=√devs :devs. The relationships between the constitutive parameters s1,

s2 and cv , and the internal variable �h, are given by the following (highly non-linear) hardening
laws:

s1(�h)= �0

�h
As1

(
ln

(
1−�app

1−�h

)) 1
Ns1

, (9)

s2 =
√

3(1−ktr)

1+2ktr
with

ktr(�
h)=

{
ktr0 if �h��ktr

,

(�h−�ktr
)(Aktr�

h+Bktr )+ktr0 if �h>�ktr
,

(10)

‡The factor �0/�
h appears to put into correspondence true stress data with the Kirchhoff stress values.
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cv(�h)=

⎧⎪⎨
⎪⎩

qint if �h��v0,√
2

3

�0

�h
	y(1−Acvh (�h−Bcvh )(1−�h)) if �h>�v0.

(11)

where �app stands for the relative apparent density, defined as the ratio of the apparent density 
app
to the theoretical density 
th of the corresponding metal or alloy. The fitted constant for a Distaloy
AE alloy with 
app=3.04g/cm3 and 
th=7.33g/cm3 are: As1=95.4439MPa and Ns1=0.6506,
for (9); Aktr=1.074, Bktr=0.242, ktr0=1/3 and �ktr

=0.635, for (10); and Acvh=58.160, Bcvh=
0.8252, 	y=370MPa and �v0=0.92, for (11). The variable qint is the deviatoric stress measure
at the intersection between the Drucker–Prager and elliptical cap (�Ed,e

s ). The first part of (11)
indicates, thus, that for �h<�v0, the Von Mises yield surface reduces to a point, the intersection
between the other two yield surfaces, and comes actually into play only for �h>�v0 (high levels
of compaction, see Figure 1).

In (7), the parameter � is considered constant (�=2.29). The variable c, on the other hand,
is customarily referred to as cohesion and can be interpreted as the shear strength under zero
hydrostatic stress (intersection of the Drucker–Prager yield surface with the q-axis); it is the only
state variable of the problem that depends on both internal variables �h and �s. We further assume
that the following decomposition for the rate of change of cohesion holds:

ċ= ċh+ ċs, (12)

where the subscripts h and s denote hardening and softening, respectively. The hardening law ch
takes the following exponential form:

ch(�h)=
√

2

3

�0

�h
ccy

h =
√

2

3

�0

�h
AcheBch�h

(13)

with Ach=0.001MPa and Bch=11.2368 for a Distaloy AE powder; the softening counterpart cs
displays also an exponential format

cs(�h,�s)=c0

(
exp

(
H0�

s

c0

)
−1

)
, (14)

where H0 denotes the softening parameter and c0 stands for the cohesion at the moment tis in which
yielding on the Drucker–Prager yield surface commences, that is, c0=ch(�h(tis)). The tangential

s

s s

c
tan

c

q

p

q

p

(b)(a)

Figure 1. Yield surfaces for two different states: (a) Drucker–Prager + elliptical cap, for moderate level
of compaction and (b) Drucker–Prager + elliptical cap + Von Mises, for high level of compaction (close

to the theoretical density of the fully dense material).
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slope H of the curve described by (14) is termed the continuum softening modulus [22], and it
can be expressed as

H=H0
c0+cs

c0
=H0

c

c0
. (15)

To alleviate the acclaimed shortcoming of the lack of convergence upon refinement of the finite
element mesh, typical of softening models, the softening modulus is related to the localization
bandwidth l f through the expression H0= l f Ĥ0 [23]. The so-called intrinsic softening param-
eter [22], denoted as Ĥ0, is calibrated from experimentally obtained fracture energy values; as
mentioned earlier, the toughness of the powder increases with the level of densification (�h), and
this consideration is reflected in the following empirical correlation for Ĥ0:

|Ĥ0(�h)|= �0

�h
AH exp(BH �h), (16)

where AH =3.574N/mm3 and BH =12.963.

2.4. Flow rules and evolutionary equations for the internal variables

Koiter’s generalization of the flow rule is applied to obtain the rate of plastic deformation tensor
dp in terms of the plastic flow vectors m� associated with each yield surface

dp=
∑

�∈{e,d,v}
�̇
�
m�. (17)

The consistency parameters (or plastic multipliers) �̇
�

must obey the standard Karush–Kuhn–Tucker
conditions, that, in the context of rate-independent plasticity, read as:

�̇
� � 0, ��(s,�h,ns)�0, (18)

�̇
�
��(s,�h,ns)= 0 (no sum on �), (19)

�̇
�
�̇

�
(s,�h,ns)= 0 (no sum on �). (20)

Flow rules are associative on both the elliptical and the Von Mises yield surface

me = ��e

�s
=2devs+ 2

3
s2

2 p1, (21)

mv = 2devs (22)

and non-associative on the Drucker–Prager envelope, on which the plastic potential function Qd

defines a parabola in the mean-deviatoric stress plane

Qd=q2+�c�p→md= �Qd

�s
=2devs+ 1

3
�c�1, (23)

where � is a dilatancy constant close to zero ( typically �=0.01; for �=0, the isochoric flow rule
is recovered).

One of the fundamental assumptions on which the constitutive model under consideration is
built is that the magnitude of elastic strains is small in comparison with irrecoverable deformations.
This assumption affords to draw an approximation between �h (accumulated compressive plastic
strains) and the relative density �. Accordingly, the evolution equation for the internal hardening
variable can be written as

�̇
h=�hH(�̇)H(�̇

e
)
�̇

�
=H(�̇

e
�̇)

�̇

�
, (24)
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where H(•) denotes the Heavyside step function. The factor H(�̇) in the above equation accounts
for the fact that �h can only evolve if �̇>0, i.e. if density increases at the analyzed point. The other
Heaviside factor, H(�̇

e
), adds the proviso that the elliptical yield surface must be active (�̇

e
>0)

for �h to increase. The major benefit arising from this approximation is that, once the sign of �̇
e

is
known, the differential equation represented by expression (24) can be integrated in closed form.

Finally, the evolutionary equation for the internal softening variable takes the following form:

�s=2(1−H(�̇
e
))�̇

d
q. (25)

In virtue of the above equation, the internal softening variable only evolves when the stress state
is on the Drucker–Prager yield surface. The Heaviside term in the above equation precludes the
possibility of both internal variables increasing simultaneously at the intersection of the Drucker–
Prager and the elliptical yield surface.

3. STRESS UPDATE FOR THE IMPLICIT INTEGRATION SCHEME

Consider a time discretization of the interval under study, [t0, t f ]=⋃N
n=1[tn, tn+1], and let

{�h
n,�

s
n,En,Ep,n} be the initial data at tn . In conformance with the strain-driven format of the

problem, the deformation gradient Fn+1 at tn+1, and therefore the Green-Lagrange strain tensor
En+1 and derived strain quantities, are presumed known. Our aim is to find the Kirchhoff stress
tensor and other state variables at the end of the interval [tn, tn+1] by applying an implicit backward
Euler difference scheme to the constitutive equations presented in Section 2.

We begin by the stress–elastic strain constitutive relationship (3). Since this relation is not
expressed in rate form, we can simply write its discrete counterpart as

sn+1=ce,n+1 : (en+1−ep,n+1), (26)

where the notation ce,n+1 indicates that ce,n+1=ce(�h
n+1). In order to satisfy the requirement of

objectivity, the flow rule represented by (17) is first transformed back to the reference configura-
tion �0; then, the exact derivative at tn+1 is approximated by a first-order backward-difference.
Substitution of this approximation leads to the following algebraic finite difference equation:

Ep,n+1=Ep,n+
∑

∈Jact
n+1

��
n+1�

∗(m
n+1), (27)

where ��
n+1 denotes the discrete plastic multiplier ��

n+1=�tn+1�̇

, with �tn+1= tn+1− tn; Jact

n+1

is the set of active constrains, defined as Jact
n+1={∈{1,2,3} |��

n+1>0}; and the symbol �∗(•)
stands for the pull-back operator§ �∗(•)=FT

n+1 ·(•) ·Fn+1. We revert again to the spatial description

by obtaining the push forward, defined as �∗(•)=F−T
n+1 ·(•) ·F−1

n+1, of (27)

�∗(Ep,n+1) = �∗(Ep,n)+ ∑
∈Jact

n+1

��
n+1�∗(�

∗(m
n+1))⇒

ep,n+1 = ĕp,n+
∑

∈Jact
n+1

��
n+1m

n+1,

(28)

§Push-forward and pull-back transformations depend on the covariant or contra-variant nature of their arguments. As
usual, strain measures are considered here covariant tensors, whereas stress quantities are regarded as contravariant
quantities.
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742 J. A. HERNÁNDEZ ET AL.

where the ‘breve’ symbol in ĕp,n is attached to indicate that ĕp,n is a strain measure computed at
time tn but transformed to the current configuration �n+1 via a push-forward operation, i.e.

ĕp,n=�∗(Ep,n)=F−T
n+1 ·Ep,n ·F−1

n+1=DF−T
n+1 ·ep,n ·DF−1

n+1. (29)

In the above, DF−T
n+1 denotes the incremental deformation gradient DFn+1=Fn+1 ·F−1

n .
The same approximation of the time derivative is carried out on the evolutionary equation (25)

for the internal softening variable, yielding the following difference equation:

�s
n+1=�s

n+2(1−H(��e
n+1))��d

n+1qn+1, (30)

where qn+1=‖devsn+1‖. As regards the rate equation (24) for the internal hardening variable, it
proves more accurate to first express (24) in terms of logarithms and then introduce the approxi-
mation of the time derivatives:

�
�t

(log�h)=H(�̇
e
�̇)

�
�t

(log�)⇒ �h
n+1

�h
n

=
(

�n+1

�n

)H(��e
n+1(�n+1−�n))

. (31)

The parameters governing both the size and shape of the elliptical cap surface, and the location of
the Von Mises yield surface, can be obtained through simple functional evaluations, i.e. s1,n+1=
s1(�h

n+1), s2,n+1=s2(�h
n+1) and cv,n+1=cv(�h

n+1). The cohesion variable c depends on both �h

and �s (see Equations (13) and (14)); its update formula is derived thus from approximating the
derivative of the cohesion rate equation

ċ = �ch

��h
�̇

h+

H︷︸︸︷
�cs

��s �̇
s⇒

cn+1 = cn+ �ch

��h

∣∣∣∣
n+1

(�h
n+1−�h

n)+Hn+1(�s
n+1−�s

n).

(32)

In turn, Equation (15) enables the continuum softening modulus Hn+1 appearing in the above
equation to be evaluated as

Hn+1=H0(�h
n+1)

cn+1

c0(�h
n+1)

. (33)

The above equation can be simplified if we take into account that, according to Equation (25),
the simultaneous increase of both internal variables is not possible. Since the internal softening
variable �s, and therefore also Hn+1, only evolves when the Drucker–Prager yield surface is active,
it follows that, in this situation, �h

n+1=�h
n and c0(�h

n+1)=ch(�h
n)=ch,n; thus, (33) can be rewritten as

Hn+1=H0,n
cn+1

ch,n
. (34)

Finally, the discrete counterpart of the Karush–Kuhn–Tucker loading/unloading conditions can
be written as

��
n+1 � 0,�

n+1�0 (=1,2,3), (35)

��
n+1�


n+1 = 0 (=1,2,3) (no sum on ), (36)

where

�e
n+1≡�1

n+1 = q2
n+1+s2,n+1

2 p2
n+1−s1,n+1

2s2,n+1
2, (37)

�d
n+1≡�2

n+1 = qn+1+�pn+1−cn+1, (38)

�v
n+1≡�3

n+1 = qn+1−cv,n+1. (39)
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To cast the loading–unloading conditions in a format readily amenable to computational imple-
mentation, we introduce the notion of trial elastic state (see e.g. [24]), which arises from assuming
elastic behavior throughout the time step [tn, tn+1]. Accordingly, the ‘trial’ counterparts at tn+1
of the plastic Almansi strain tensor, the internal variables and the Kirchhoff stress tensor are
expressible as

etr
p,n+1 = ĕp,n, (40)

�h,tr
n+1 = �h

n, (41)

�s,tr
n+1 = �s

n (42)

and

strn+1=ce,n : (en+1− ĕp,n), (43)

respectively. If the trial stress defined in (43) lies within the elastic domain determined by the
prevailing yield condition, the incremental deformation is entirely elastic, and hence sn+1=strn+1.
By contrast, if the yield condition is violated, that is, if

�,tr
n+1>0 for any =1,2,3, (44)

the tentative assumption of elastic response is rejected, and the updated state is obtained by
‘returning’ the trial state to the yield surface. To determine the ‘return’ direction, it proves conve-
nient to combine Equations (26) and (28) with the preceding definition of trial stress. An easy
manipulation of these expressions leads to the following result:

sn+1=strn+1+�ce,n+1 : (en+1− ĕp,n)−
3∑

=1
��

n+1ce,n+1 :m
n+1. (45)

The above expression bears a formal resemblance to its counterpart in classical infinitesimal
plasticity (see e.g. [24]), a fact attributable to the assumption of negligible elastic strains. Apart
from the plastic strain tensor at tn ĕp,n , which is affected by the incremental push-forward operator,
the only departure from the classical plasticity formulation lies in the presence of the term �ce,n+1;
this fourth-order tensor is defined as

�ce,n+1=ce(�h
n+1)−ce(�h

n)= (�e
n+1−�e

n)1⊗1+2(�e
n+1−�e

n)Idev (46)

and reveals the coupling between elastic and plastic responses, i.e. the fact that the elastic moduli
Ee increases as hardening progresses.

3.1. Fractional step-based return-mapping algorithm

It was pointed out in the introductory section that the presence of softening and the highly non-linear,
tightly coupled nature of the problem affects adversely the solution of the above return-mapping
equations by means of standard procedures. The peculiar feature of the proposed return-mapping
algorithm is the iterative process adopted to ‘return’ the trial stress to the yield surface, which is
not a standard Newton–Raphson scheme or variants thereof; rather, it has the flavor of fractional
step methods (FSM), since it is based on the decoupling of the evolution equations for the plastic
strains and the internal variables. It can be viewed also as a natural extension of the two-step
algorithm derived from the elastic–plastic operator split, in the sense that it involves the repetitive
application of a predictor–corrector procedure. The steps of the algorithm are thoroughly detailed
in Box 3.1. In each iteration, the predictor state arises from freezing the internal variables and
solving the resulting return-mapping problem (Equations (49) and (50)); in the corrector step,
the update of the internal variables (Equations (52) and (53)) using the value of the stress state
computed in the predictor stage is performed. The cycle is repeated until a convergence criterion
is met.
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1. Compute trial elastic stress

strn+1 = ce,n : (en+1− ĕp,n), (47)

J
act,tr
n+1 = {∈{e,d,v} |�,tr

n+1>0}. (48)

IF J
act,tr
n+1 =∅ THEN

Set (•)n+1= (•)∗trn+1 EXIT
ELSE

k =1, Jact,(1)=J
act,tr
n+1 , n(0)= [�h

n,�
s
n],

ENDIF
2. Predictor step of the FSM return-mapping algorithm. Obtain s(k) and ��,(k),∈Jact,(k)

solving∗

s(k) = strn+1+�c(k−1)
e : (en+1−ĕp,n)− ∑

∈Jact,(k)
��,(k)c(k−1)

e :m,(k),�(s(k),n(k−1)) (49)

= 0 ∀∈Jact,(k), (50)

where

c(k−1)
e =ce(n(k−1)), m,(k)=m(s(k),n(k−1)). (51)

(∗ If the active set Jact,(k) contains more than two indices, this system has to be solved for each pair of

indices).
IF ��,(k)<0, for any ∈Jact,(k)

Reset Jact,(k)={∈{e,v,d} |��,(k)>0}.
Goto to step 2.

ENDIF
3. Corrector step. Update of the internal variables.

�h,(k) = �h
n

(
�n+1

�n

)H(��e,(k)(�n+1−�n))
, (52)

�s,(k) = �s
n+2(1−H(��e,(k)))��d (s(k),n(k))q(k). (53)

4. Check convergence
IF |�(s(k),n(k))|<T O L1 ∀∈Jact,(k) AND ‖n(k)−n(k−1)‖<T O L2

Set (•)n+1= (•)k EXIT
ELSE

Set k←k+1. Goto step 2.
ENDIF

Box 3.1: Basic steps of FMS return-mapping algorithm.

3.1.1. Predictor stage. Keeping �h and �s fixed amounts to assume that the yield surfaces remain
unchanged in stress space during this predictor step; the problem can be, thus, legitimately regarded
as a perfect plasticity return-mapping problem. The question of the existence and uniqueness of
solution in the predictor stage is easily resolved, since, in a perfect plasticity case, a sufficient
condition for existence and uniqueness is the convexity of the elastic domain in stress space¶ [24].
The computational effort required to obtain this unique solution varies depending on the active

¶Examination of Figure 1, along with straightforward geometric considerations, permits to conclude that the elastic
domain enclosed by the considered yield surfaces is indeed convex in stress space.
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constraints at each iteration; however, as we argue in the following discussion, it can be computed
in closed form, regardless of the yield surface (or surfaces) the trial stress is projected onto.

Elliptical cap: The elliptical yield surface (with associative flow rule) falls within the class of
general quadratic models of classical plasticity, wherein the solution of the corresponding return-
mapping equations can be computed by solving a quartic equation [24]. To derive such equation,
first, (49) is particularized to the case in which only the elliptical cap is active, and then resolved
into its mean and deviatoric components‖

p(k) = p(k−1)
up

1+2�e,(k−1)��e,(k)s(k−1)
2

2
, (54)

q(k) = q(k−1)
up

1+4�e,(k−1)��e,(k)
, (55)

where

p(k−1)
up = ptr

n+1+��e,(k−1)tr (en+1− ĕp,n), (56)

q(k−1)
up = ‖devstrn+1+2��e,(k−1)dev(en+1− ĕp,n)‖. (57)

After substituting Equations (54) and (55) into the yield condition (37), we arrive at the following
quartic polynomial in q(k):

a4q4+a3q3+a2q2+a1q+a0=0, (58)

where the coefficients ai , i=1, . . . ,4 are given by

a4 = b2
2, a3=2b1s2

2qupb2, a2=s2
2 ((qups2b1)2+ pup

2−s2
1b2

2)), (59)

a1 =−2s2
2 (s1s2)2b1qupb2, a0=−(s1s3

2b1qup)2 (60)

and

b2= (1−b1s2
2 ), b1= �e

2�e
. (61)

The unique positive root of Equation (58) in the interval [0,s1s2] can be determined in closed
form by a modified version, proposed by Simo [24], of the classical solution procedure for quartic
equations. Once the values of p(k) and q(k) have been obtained, the updated stress tensor can be
calculated as

s(k)= p(k)1+ q(k)

q(k−1)
up

(devstrn+1+2��e,(k−1)dev(en+1− ĕp,n)). (62)

Drucker–Prager and Von Mises yield surfaces: The ‘predictor’ stress when either the Von Mises
or the Drucker–Prager yield surfaces can be calculated also in closed form. In the case of the
Von Mises yield surface, the deviatoric nature of the plastic flow on such surface renders such a
task simple matter: q(k)=c(k−1)

v and p(k)= p(k−1). The computation of the updated stress when
only the Drucker–Prager yield surface is active is also trivial; it only involves the solution of a
quadratic polynomial in q(k−1). The expression of this polynomial is derived following the same
logic leading to (58):

�(q(k))=q(k)2+(�ptr
n+1+c(k−1)(�−1))q(k)−�c(k−1)q tr

n+1=0, (63)

‖For notational simplicity, we omit the index n+1 to those variables that are updated during the iterative process,
i.e. s(k)=sn+1,(k).
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where

�=�2�
�e

4�e
. (64)

Besides, it can be easily deduced, by virtue of the intermediate value theorem, that the desired
root must lie in the interval [0,q tr

n+1].
Corner points: In situations in which the set of active constraints Jact,(k) contains two indices, the

enforcement of the plastic consistency conditions places the stress s(k) at the interception point of
the corresponding active yield surfaces. As the yield condition is constructed by a quadratic function
(the elliptical cap yield surface �Ee

s) and two affine functions (the Drucker–Prager yield surface
�Ed
s and the Von Mises yield surface �Ee

s ), this intersection can be obtained in closed form by
solving, at worst, a quadratic equation. Following a common procedure in nonsmooth multisurface
plasticity [24], the task of ascertaining whether the two presumably active yield constraints are
indeed active is carried out by checking whether the corresponding plastic multipliers are, as Kuhn-
Tucker complementary conditions demand, positive. If not, the index associated to the negative
plastic multiplier is discarded from the set of active constraints, and the predictor step is performed
again with the new set of active constraints.

3.1.2. Corrector stage. The corrector step involves the update of the internal variables (Equa-
tions (52) and (53) in Box 3.1) using the stress value s(k) computed in the predictor stage.

Internal hardening variable: The evolutionary Equation (52) for the internal hardening variable
�h, however, is solely governed by the change in relative density (which is prescribed during the
iterations) and the nonzero character of ��e,(k); the value of s(k) is, hence, not actually needed
for updating �h,(k). This aspect of simplicity, which, we recall, stems from the assumption of
negligible elastic strains, can be exploited to increase the speed (per step) of the algorithm. It
proves advantageous to, before going through the predictor step, check whether �n+1>�n and
��e

n+1>0. Such being the case, the predictor stage in the first iteration can be skipped and one
can directly update the internal variable as �h,(1)=�h

n�n+1/�n . Then, the trial stress is projected
back to the updated yield surfaces: convergence of the iterative predictor–corrector scheme will
be achieved in only one effective iteration.

Internal softening variable: Note that the simultaneous increase, in the same iteration, of both
internal hardening and softening variables cannot take place: the purposefully introduced factor
(1−H(��e,(k))) in (53) precludes this possibility. The internal softening variable, thus, only evolves
when plastic yielding occurs on the Drucker–Prager failure envelope. Observe also that the right-
hand side of the evolutionary equation (53) does depend on the current stress through its deviatoric
part and the consistency parameter. An important implication of this is that, in contrast to the
situation encountered above, the FSM predictor–corrector scheme cannot be solved exactly in a
finite number of iterations; the number of iterations required to achieve convergence will depend
on the prescribed error threshold and on the corresponding rate of convergence.

3.1.3. Convergence analysis when the Drucker–Prager envelope is active. To improve the confi-
dence in the proposed FSM return-mapping algorithm, thus, it is crucial to ascertain whether the
algorithm is convergent to a unique solution when the Drucker–Prager yield surface is active, and
to analyze the conditions under which such a desirable feature, if it exists, can be guaranteed.
The strategy adopted in the following to accomplish this task is to reduce the predictor–corrector
scheme to a single recursion formula in terms of the norm of the deviatoric stress; then, the
convergence characteristics of the sequence {q(k)}∞k=0 defined by this recursion will be analyzed
by means of fundamental theorems of calculus.

To this end, the polynomial equation (63) for the predictor stage is first solved for c(k−1):

�pd=c(k−1)= q(k)(q(k)+�ptr
n+1)

1
2�(q tr

n+1−q(k))+q(k)
. (65)
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A similar relation for the corrector equation (53) can be drawn; from the deviatoric component
of (49), one can deduce first the value of the plastic multiplier ��d,(k) as a function of q

��d,(k)= 1

4�e
n

q tr
n+1−q(k)

q(k)
. (66)

Upon substitution of this value into Equation (53), we obtain

�s,(k)=�s
n+

q tr
n+1−q(k)

2�e
n

. (67)

Now, inserting the above equation into the discrete version of the softening law (Equation (32)),
and making use of the definition of softening modulus (34), we find that

c(k)=cn+ Ĥ0,n

ch,n
2�e

nc(k)(q tr
n+1−q(k)), (68)

where Ĥ0,n=H0,n/(2�e
n). Solving Equation (68) for c(k), we obtain the counterpart of Equation (65)

for the corrector stage:

�cr =c(k)= cn

1− Ĥ0,n

ch,n
(q tr

n+1−q(k))

= cn

1+ |Ĥ0,n|
ch,n

(q tr
n+1−q(k))

. (69)

Finally, the expected recursion formula arises from simply equating the right-hand sides of
Equation (65) (for k→k+1) and Equation (69)

�pd (q(k+1))=�cr (q(k)) (70)

that is,

�pd (q(k+1))︷ ︸︸ ︷
q(k+1)(q(k+1)+�ptr

n+1)
1

2
�(q tr

n+1−q(k+1))+q(k+1)
=

�cr (q(k))︷ ︸︸ ︷
cn

1+ |Ĥ0,n|
ch,n

(q tr
n+1−q(k))

(71)

with q(0)=q tr
n+1.

The above recursion possesses an interesting geometrical interpretation, illustrated in Figure 2.
The predictor and corrector equations �pd=0 and �cr =0 are represented in the c−q plane.
The method bears some resemblance to the so-called fixed-point iteration method [25, 26]: the
predictor step consists of finding the intersection between the horizontal lines (c constant) and the
predictor curve �pd=0; the corrector step, on the other hand involves solving the intersection of
the corrector graph �cr =0 and the vertical lines (q constant).

The required conditions for convergence can be intuitively appreciated in Figure 2. Both predictor
and corrector curves should be continuous, monotonically increasing functions in the interval
[qmin,q tr

n+1], where qmin=max(0,−�ptr
n+1)∗∗; furthermore, they should intersect only at one point.

In Appendix A, Proposition A1, the sufficient conditions for the sequence defined by (71) to
converge are established in a mathematically formal manner. Moreover, in the same appendix, it
is rigorously proved that the particular functional forms of �cr and �pd (Equations (65) and (69),
respectively) do satisfy these sufficient conditions. What is more remarkable is that the convergence
is unconditional: no matter how far the trial stress may be from the prevailing Drucker–Prager
yield surface, or how large may be the values of the softening modulus or other material parameters
may be, the method will find invariably the limit of the sequence {q (k)}∞k=0, and hence the updated
stress qn+1.

∗∗From Equation (65) and the positiveness of both q and c, it follows that the limit of the sequence must lie in the
interval [qmin,q tr

n+1].
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Figure 2. Linearly convergent FSM sequence.
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Figure 3. Quadratically convergent FSM sequence.

The issue of rate of convergence of the iterative scheme, on the other hand, is addressed in
Proposition A3 of Appendix A. As could be expected—in view of its resemblance to the fixed-
point iterative method—, the rate at which the method approaches the solution is only linear. This
relatively slow convergence rate, in comparison with the quadratically Newton–Raphson iterative
schemes that accompany other return-mapping algorithm (e.g. closest point projection), raises
inevitably the question of how to increase, maintaining the predictor–corrector structure, the rate
of convergence of the proposed method.

The plot in Figure 3 illustrates graphically the strategy that can be followed to arrive at a
quadratically convergent FSM algorithm: the predictor stage would remain unaltered (projection
onto the yield surface with c constant); the corrector step, by contrast, would be modified and
accomplished by finding the intersection between the curve �cr =0 and the straight line tangent
to �pd=0 at q(k−1). Observe, however, that this alternative scheme involves the linearization of
the predictor function �pd , and this exacts a significant price: the convexity of such a function in
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the neighborhood of the solution appears as a necessary condition for convergence. As shown in
Appendix A.3, the predictor function is convex whenever the following inequality is satisfied:

1
2�

�d,tr
n+1︷ ︸︸ ︷

(q tr
n+1+�ptr

n+1)−�ptr
n+1>0. (72)

Since �d,tr
n+1>0 and �>0, it follows that only for ptr

n+1<0—when the trial stress falls in the second
(compressive) quadrant of the p−q plane—the above inequality holds regardless of the value
of the material parameter �=�2�(�e

n/4�e
n); for ptr

n+1>0, its observation depends on � and, thus,
the convexity condition cannot be guaranteed for any conceivable trial stress.†† In the interest of
robustness, thus, this appealing quadratically convergent FSM scheme is abandoned in favor of
the originally proposed linearly convergent one.

4. IMPL-EX INTEGRATION SCHEME

We must note emphatically that the stress values computed by the foregoing fully implicit scheme
are not actually employed in computing the current internal forces. As pointed out in the preamble,
the backward Euler implicit scheme is to be viewed as an auxiliary integration procedure; the
information obtained from this scheme at tn , tn−1 . . . is used only at tn+1 to update certain variables.
The stress values that actually determine the internal forces appearing in the weak formulation of
the problem are those furnished by the IMPL-EX integration scheme. This section is devoted to
derive the stress update and algorithmic tangent moduli closed-form expressions stemming from
this integration procedure.

4.1. Stress update

We begin the derivation of the Impl-Ex stress update procedure by selecting those variables to be
treated explicitly, i.e. those quantities that do not depend upon the current (at tn+1) deformation state.
By definition, internal variables, denoted collectively by n, are monotonically increasing functions
of time, i.e. ṅ�0; they are logical candidates, thus, to be treated explicitly, since its evolution can be
predicted more accurately than other variables exhibiting non-monotonic behavior. To determine
the Impl-Ex counterpart of �h at tn+1, consider, first, Taylor’s expansion of the exact solution for
the internal variable, denoted by an overbar on the symbol n, to the governing differential equation
at tn+1 around tn:

n̄n+1= n̄n+
�n
�t

∣∣∣∣
n̄n

�tn+1+O(�2tn+1). (73)

Next, Taylor’s expansion is carried out again around tn , but evaluated at tn−1, yielding

n̄n= n̄n−1+
�n
�t

∣∣∣∣
n̄n

�tn+O(�2tn). (74)

If the remainder term in Equation (73) is truncated, the resulting expression would correspond to a
explicit finite difference equation. The expression emanating from truncation of the remainder term
in Equation (74), on the other hand, is a standard implicit finite difference equation. The application
of an explicit difference scheme for marching the solution forward from one time level to the next

††Interestingly, note that it is precisely because of the lack of convexity—due to the presence of softening—that we
refrained from using standard return-mapping algorithms.
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time level does not require to solve any system of equation, but presents the inconvenience that,
since the yield condition is not enforced at tn+1, the error may accumulate and the yield condition
may be substantially violated, leading to updated stresses prohibitively far from the yield surface
if the time step is not sufficiently small. In implicit difference schemes, by contrast, the plastic
consistency condition is enforced at tn+1, and hence fulfilled exactly; closed-form expressions for
the constitutive tangent operators, however, can become excessively complicated to determine,
and, furthermore, the robustness of the accompanying Newton–Raphson scheme is significantly
impaired due to ill-conditioning associated to strain softening [15].

The essence of the Impl-Ex integration method is to combine the advantageous features of
both implicit and explicit methods, while, at the same time, minimizing their disadvantages.
According to Oliver et al. [15], such a balanced blend is achieved by approximating the derivative
in Equation (73) by the derivative appearing in expression Equation (74); i.e. truncating the
term O(�2tn) in Equation (74), solving then for the derivative term in this equation, and finally
substituting the resulting expression in Equation (73), we obtain

ñn+1=nn+(nn−nn−1)
�tn+1

�tn
, (75)

where the tilde symbol in ñn+1 indicates that it is the value of the internal variables stemming
from the Impl-Ex integration. Equation (75) represents, thus, the Impl-Ex update of the internal
variables at tn+1 (ñn+1) in terms of implicit values computed at tn and tn−1 (nn and nn−1,
respectively). As in explicit methods, the yield condition is not enforced at time tn+1. However, in
contrast to explicit methods, the accumulated error cannot grow unboundedly, since in each step
the implicitly calculated variables contributes to keep the stress close to the yield surfaces. The
main restriction on the size of time steps stems from accuracy requirements, as in fully implicit
schemes.

The set of state variables defining the size and shape of the yield surfaces at time tn+1 can
be simply obtained from the corresponding hardening/softening laws using the vector of internal

variables derived in Equation (75) as argument, e.g. s̃1,n+1=s1h(�̃
h
n+1). As regards the plastic

multipliers, Oliver et al. [15] propose to compute these variables by simply multiplying the
corresponding implicit discrete plastic multiplier at tn by the quotient �tn+1/�tn , i.e. ��̃n+1=
��n(�tn+1/�tn). Although rigorously valid, in principle, only for plasticity models with a single
yield surface,‡‡ we adopt also this update procedure; hence:

��̃

n+1=��

n
�tn+1

�tn
, =e,d,v. (76)

As it will become apparent in the following, considering ��̃

n+1 independent of the current defor-

mation affords great simplification of the expression for the algorithmic tangent moduli.
The concept of extrapolation is not applied for computing the Impl-Ex Kirchhoff stress tensor at

tn+1. Consequently, its update expression follows easily from Equation (45) by simply replacing

�h
n+1,�

s
n+1 and ��

n+1 by their Impl-Ex counterparts, i.e.:

s̃n+1=strn+1+�c̃e,n+1 : (en+1− ĕp,n)−
3∑

=1
��̃


n+1c̃e,n+1 :m̃

n+1. (77)

‡‡ The Impl-Ex integration scheme was conceived [15] for integrating numerically elastic–plastic constitutive models
with a single yield surface and a single scalar internal variable; in those cases, by properly defining the flow

rule, the rate of change of the internal variable can be identified with the continuum plastic multiplier, i.e. �̇= �̇,

and therefore, from (75) one can legitimately write ��̃n+1=��n/�tn .
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In general, obtaining s̃n+1 from Equation (77) requires solving a non-linear tensor equation.
However, in our case, inspection of Equations (21)–(23) reveals that the plastic flow vector on any
of the three yield surfaces bears an affine relation with the Kirchhoff stress tensor

m̃
n+1= Ã


n+1 : s̃n+1+B̃


n+1, (78)

where the fourth-order and second-order tensors Ã

n+1 and B̃


n+1, respectively, are defined by

Ã

n+1=2Idev+ 1

3 ũ
n+11⊗1, B̃


n+1= ṽ


n+11. (79)

The yield surface-dependent parameters ũ
n+1 and ṽ


n+1, =e,d,v, are given, in turn, by the

following relationships:

ũe
n+1 = 2

3 (s̃2,n+1)2, ũd
n+1= ũv

n+1=0, (80)

ṽe
n+1 = ṽv

n+1=0, ṽd
n+1= 1

3�c̃n+1�. (81)

Substituting Equation (78) into Equation (77) and solving for s̃n+1 yields

s̃n+1= R̃
−1
n+1 :

(
strn+1+�c̃e,n+1 : (en+1− ĕp,n)− c̃e,n+1 :

3∑
=1

��̃

n+1B̃


n+1

)
, (82)

where

R̃n+1=I+ c̃e,n+1 :
3∑

=1
��̃


n+1Ã


n+1. (83)

Equation (82) constitutes a closed-form formula for the Kirchhoff stress update at tn+1. For imple-
mentational purposes, it proves useful to decompose Equation (82) into deviatoric and hydrostatic
components

s̃n+1=dev(s̃n+1)+ p̃n+11, (84)

where

dev(s̃n+1)= dev(strn+1)+2��̃e
n+1dev(en+1− ĕp,n)

1+4�̃e
n+1

∑3
=1 ��̃


n+1

, (85)

p̃n+1 =
ptr

n+1+��̃e
n+1tr (en+1− ĕp,n)+3�̃e

n+1
∑3

=1 ��̃

n+1ṽ


n+1

1− �̃e
n+1

∑3
=1 ��̃


n+1ũ

n+1

. (86)

4.2. Algorithmic elastoplastic tangent moduli

Attention is focused now on obtaining a closed-form expression for the algorithmic tangent moduli
consistent with the Impl-Ex integration scheme, that is, the fourth-order c̃ep,n+1 tensor satisfying
the following relationship:

Lv s̃n+1= c̃ep,n+1 :Lven+1= c̃ep,n+1 :dn+1, (87)

wherein the Lie derivative Lv(•) is used to preserve objectivity. The simplicity, in comparison to
a standard implicit integration scheme, afforded by the use of the Impl-Ex stress-update scheme
arises from the fact that the derivative of the plastic multipliers and the internal variables vanishes,

in virtue of the extrapolated character of these variables, that is, ��̃

n+1 and ñn+1 do not depend
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on the deformation state at tn+1. However, even with this simplification, it takes tedious algebra
to derive a closed-form expression for c̃ep,n+1. This derivation is hence relegated to Appendix B,
and we simply record here the final expression, which takes the following form:

c̃ep,n+1= R̃
−1
n+1 :

(
ãe,n+1(ẽe,n+1)+ c̃e,n+1 :

(
I−

3∑
=1

��̃

n+1z̃

n+1(s̃n+1)

))
. (88)

The isotropic fourth-order tensor R̃n+1 was introduced when deriving the closed-form expression
for the stress-update (see Equation (83)). The fourth-order non-symmetric tensor ãe,n+1(ẽe,n+1)
arises, as explained in Appendix B, formulae (B5) and (B10), from applying the Lie derivative
to the metric tensor appearing in the definitions of both the elasticity tensor and the plastic flow
vectors; these tensors are, thus, large strains contributions. Accordingly, if the corresponding terms
are discarded from Equation (88), one obtains the algorithmic tangent operator for the Impl-Ex
integration scheme corresponding to a small strain formulation:

c̃ep,n+1|‖e‖�1= R̃
−1
n+1 : c̃e,n+1. (89)

Expanding this equation using Equation (83) gives

c̃ep,n+1|‖e‖�1= �̃imx
n+11⊗1+2�̃imx

n+1Idev, (90)

where

�̃imx
n+1 =

�̃e
n+1

1+3�̃e
n+1

∑3
=1 ��̃


n+1ũ

n+1

= �̃e
n+1

1+2�̃e
n+1��̃

e
n+1(s̃2,n+1)2

, (91)

�̃imx
n+1 =

�̃e
n+1

1+4�̃e
n+1

∑3
=1 ��̃


n+1

. (92)

Inspection of Equation (90) indicates that, in the small strain setting, the algorithmic tangent oper-
ator emanating from the Impl-Ex integration scheme is an isotropic tensor of rank 4, characterized
by two parameters, which, in analogy to the notation for the elastic bulk and shear modulus,

are denoted by �̃imx
n+1 and �̃imx

n+1. Furthermore, since ��̃

n+1�0, it follows from Equations (91) and

(92) that

�̃imx
n+1 � �̃e

n+1, (93)

�̃imx
n+1 � �̃e

n+1, (94)

where the inequality or equality holds accordingly as the material is deforming plastically or
elastically, respectively.

As alluded to in the introduction, the development of the implicit–explicit integration scheme
was prompted by the need to enhance the spectral properties of the algorithmic elastoplastic
moduli, whose positive definiteness cannot be guaranteed when using a standard implicit integration
scheme, mainly due to the presence of strain softening. Since, according to Equations (91) and
(92), �̃imx

n+1>0 and �̃imx
n+1>0, it follows then that the algorithmic elastoplastic moduli shown in (90)

is positive definite. Another remarkable property of this small strain algorithmic operator is that
it does not depend on the deformation state at tn+1, hence it can be regarded as step-constant.
This means that, if one disregards other sources of non-linearities rather than the material one,
the structural tangent stiffness matrix would be constant and, consequently, the convergence to
equilibrium states could be achieved in only one iteration per time step.
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One can conclude from the foregoing remark that the positive definiteness of the algorithmic
elastoplastic moduli is guaranteed in those situations in which a small strain kinematics is sufficient
to yield a realistic description of the deformation state. The ejection stage, which is part of the
compaction cycle in which the compacted powder is more liable to develop cracks, falls within
these types of situations, since the magnitude of plastic and elastic strains are relatively small, and,
besides, the motion of the compact through the die cavity during ejection involves no solid rigid
rotations. Therefore, we can assert that, in contrast to the situation that one would encounter if
a standard implicit integration scheme is employed, the numerical performance of the algorithm
is not impaired by the presence of strain softening, at least in the computation of the response
corresponding to the ejection stage.

5. NUMERICAL RESULTS

In this section, we examine the performance of the proposed integration algorithm§§ in two
distinctly different situations, namely: (a) the pressing of a cylindrical part, in which hardening

behavior dominates the response (�̇
h
>0, �̇

s=0); and (b) a fracture test, in which strain localiza-
tion induced by strain softening (�̇

s
>0) takes place, while no perceptible density changes occur

(�̇
h=0). In the first case, results for several time discretizations will be critically compared with

the pertinent analytical solution. No analytical data is available for the fracture test; the study in
this case will be confined to assess the ability of the algorithm to compute the post-peak response.

Before launching into details, it is convenient to provide an abridged overview of some aspects
of the numerical implementation which, although not addressed in this work, are crucial for
acquiring a proper grasp of the ensuing computed results. As regards finite element approximation,
an updated lagrangian viewpoint has been adopted for describing the motion of the mesh, with
a mesh update procedure based on the so-called Particle Finite Element Method (PFEM) (see
[27]). This method imposes a limitation concerning element technology: finite elements are to be
three-node triangular elements (linear). To avoid the acclaimed inaccuracies that may emerge in
the response in using such simple finite elements (e.g. locking), a finite element approximation
based on a mixed variational formulation, with displacements and pressure as basic variables, and
continuous linear interpolation for both fields, has been implemented.¶¶ The localization bandwidth
at each quadrature point (see Section 2.3) is calculated as l f =

√
2Ae, where Ae is the area of the

corresponding triangular element.

5.1. Pressing of a cylindrical part

A cylindrical part made of an iron-based Distaloy AE powder, with equal apparent and initial
relative densities �app=�0=0.414, is pressed until reaching a final relative density 
=0.98. The
radius of the cylinder is 25 mm, and its initial height h0=15mm; see Figure 4. A downward
displacement �U=−8.72mm is prescribed on the top surface of the cylinder; the bottom surface
remains stationary and the displacement of the nodes of the lateral surface is restrained in the
radial direction (equivalent to a perfectly rigid die). The total time is �T =1 s; this gives an axial
stretch ratio:

�z(t)= h(t)

h0
=1−0.57t with t ∈ [0,1]. (95)

Material parameters can be obtained from the empirical adjustment presented in Section 2.

§§Examples in which the ability of the constitutive model (integrated in time using the IMPL-EX scheme) to evaluate
the risk of cracking in practical situations is evaluated can be found in Reference [1].
¶¶For details on the implementation procedure for the employed mixed formulation, the reader is referred to [28, 29].
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Figure 4. Initial dimensions of the cylindrical part.
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Figure 5. Average axial pressure during pressing versus time. Analytical solution and results for several
time steps (uniformly spaced). The final portion of the curves is shown in magnified form.

5.1.1. Study of convergence with refinement of time discretization. Figure 5 shows axial pressure
versus time graphs computed using different number of (constant) time steps; the curve corre-
sponding to the analytical solution, derived in Reference [30], and that reads as:

|	z(t)|= |�z|
J
= �0s1(�)

�(�z)

√
2

3
s2

2 (�)+1 (96)

with �≈�h=�0/�
2
z , is also displayed. The sequence of graphs is clearly convergent; the analytical

curve and the result with N=200 steps are virtually indistinguishable. Inspection of the initial
portion of the curves reveals an anomalous behavior for low number of steps. At the very first
increment, the solution calculated for the four cases presented an ‘overshoot’. The magnitude of
the deviation decreases as the time step is reduced, being practically imperceptible for N=200
steps. It transpires that this overshooting is not connected with any type of instability, since the
computed response returns to the presumably correct course at the second step. For instance, for
N=50 steps, the axial stress computed at the first increment is largely overestimated (40 MPa,
in contrast to the 0.1 MPa predicted with N=200 steps). Despite this initial substantial error, the
drift from the correct curve in subsequent increments remains bounded, being the magnitude of the
maximum pressure (compaction pressure) only 3.5 % below the pressure computed with N=200
steps.
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Figure 6. Average axial pressure during pressing versus time. Results for several time steps (constant and
variable time steps). The final portion of the curves is shown in magnified form.

The origin of this non-physical overshooting behavior is to be sought in the numerical integration
of the constitutive equation, more precisely, in the intricacies of the IMPL-EX integration scheme.
As explained in Section 4, the essence of this integration procedure is to obtain the stresses and
other state variables at a given time step in terms of variables computed at the previous time step
by accomplishing an implicit integration. At the very first increment, obviously, no information
is available to carry out this extrapolation. The integration algorithm resolves this inconsistency
by further assuming that the plastic multipliers are initially zero. Such an assumption amounts to
presume that the body behaves elastically at the first step. This explains why, for the four cases,
axial stresses at the first increment lie along a straight line (see Figure 5).

It follows then that the natural way to counteract this overshooting problem is to reduce the
time step size. However, diminishing uniformly the step size over the whole time domain is not
an efficient practice. It is preferably a ‘smart’ distribution of the time step length that permits the
reduction of the integration error at reduced computational cost. Adequate time step distributions
can be obtained by using either adaptive time stepping schemes, of the type described in Reference
[15], or from elaborated heuristics taking into account the inherent non-linearity of the material.
Here, we employ the one proposed in Reference [15]. In Figure 6, the response obtained using
50 and 200 equally sized spaced time intervals is compared with the solution computed with 50
variable-sized time steps. The size distribution for the non-uniform discretization generated by
the adaptive algorithm is shown in Figure 7(b). The relatively small size of the two first intervals
is related with the need to overcome the overshooting problem. Observe that the size of the
subsequent time steps is directly connected with the compressibility of the material: as the slope
of the pressure versus density curve becomes more pronounced, the length of the time step is
progressively reduced, so that the incremental changes in stress remains approximately constant.
Inspection of Figure 6 indicates that a similar level of accuracy is obtained by using either 200
steps uniformly spaced or 50 steps with sizes non-uniformly distributed. The use of this ‘smart’
step size distribution has reduced thus the computational effort by a factor of 200/50=4. Finally,
Figure 7(b) displays the number of global equilibrium iterations required to achieve convergence
at each increment for the case N=50 variable time steps. The number of iterations ranges between
1 and 3, resulting in a total number of computational cycles (number of increments times number
of iterations) of 66.

5.2. Diametral compression test

The fracture test chosen for assessing the performance of the IMPL-EX algorithm in situations
involving strain softening is the diametral compression or Brazilian test. Force is applied over two
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the case N=50 (variable) steps shown in Figure 6.
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Figure 8. Diametral compression test.

diametrically opposite arcs of angular width 2�B=14◦ (see Figure 8). The fixture tools are modeled
as elastic bodies, with Young’s modulus Etool=2.1105 MPa and Poisson’s coefficient �=0.3. The
final dimensions are D=25mm and t=5mm, where D denotes the diameter and t the height of
the cylindrical specimen. According to Doremus et al. [31], these dimensions (t/D=0.2) ensure
that the proviso plane stress can be employed to analyze the stress state during the experiment. For
simulating the experiment, a vertical displacement of 0.2 mm is prescribed upon the top face of the
upper fixture tool. The density of the specimen is assumed uniform and equal to 7.21g/cm3. The
material properties correspond to a Distaloy AE powder with apparent and theoretical density 3.10
and 7.48g/cm3, respectively, and can thus be obtained from the curve-fitting equations presented
in Section 2 by simply setting the internal hardening parameter to �h≈�=7.21/7.48=0.96.

Convergence analysis under refinement of the discretized time is carried out by examining F−v

plots. The vertical deflection v corresponds to the displacement prescribed upon the nodes located
at the top face of the fixture tool; the applied load F is obtained as the sum of the forces at these
nodes. The mesh used for the computations is displayed in Figure 9; the higher mesh density in
the vertical central band is dictated by foresight of the fact that the dominant crack will be located
along the loaded diameter.

Figure 10 shows the result of the convergence study. The plot of applied load versus deflection
takes essentially the same form in all the analyzed cases, the only substantial difference being the
post-peak behavior. The branch OA corresponds to linear elasticity. After point A, a slight decrease
in slope occurs. This subtle change of stiffness indicates crack initiation at the center of the disk
(see Figure 11). The development of the central dominant crack progresses until the maximum
force is reached (point B in case N=800). The magnitude of the maximum force estimated using
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Figure 9. Mesh layout.
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Figure 10. Applied load versus deflection. Results for several time steps.

N=50 steps differs from that calculated with N=800 by only 4.3%. Following the attainment of
the peak-load, the central fiber suddenly ceases to contribute to the rigidity in the vertical direction,
and the computed force drops rapidly (point C). The abruptness of this decay is accentuated as the
time step size is reduced. The enlarged view of path BC, shown in the upper-left part of Figure 10,
reveals that the transition from B to C, although certainly quite abrupt, is not instantaneous; that
is, several time steps are required in its computation.‖‖ The post-peak ascending branch (CD)
corresponds, approximately, to the response of a specimen split into two halves.

These numerical results serve as convincing proof that the solution provided by the Impl-Ex
integration algorithm converges as the length of the time step is reduced also in situations entailing
strain softening. A remarkable feature is that one iteration per step, for the five cases presented,
was required to achieve convergence to equilibrium states; this confirms the robustness of the
Impl-Ex integration scheme (see Section 4). Not least among its merits is the ability to compute
the post-peak response (curve BCD in Figure 10). A standard implicit integration scheme would
probably encounter serious difficulties∗∗∗ in advancing the solution beyond this critical point, since

‖‖An instantaneous drop would correspond to a perfectly brittle response. A force versus displacement graph that
exhibits such feature warns of trouble with potential snap-back behavior [33].∗∗∗Especially if the solution algorithm is not enhanced by cumbersome continuation methods (see e.g. [33, 34]).
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Figure 11. Contour plots of computed cohesion corresponding to: (a) initiation of
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comparison with images recorded experimentally [32].

strain softening invariably impair, to a greater or lesser degree, the conditioning of the implicit
tangent stiffness matrix, and hence the computability of the response.

In order to facilitate the comparison, equally spaced intervals have been used in the simulation
of this test. However, we should note that considerable gain in computational efficiency could have
been achieved by means of the adaptive time-stepping scheme mentioned in the previous section.
Since, under elastic conditions, the IMPLE-EX and the fully implicit integration procedures yield
identical results, the elastic response OA in Figure 10 could have been obtained in just a single step.

6. CONCLUSIONS

Standard implicit and explicit integration schemes have complementary advantages and drawbacks;
accordingly, a combined or hybrid (implicit–explicit) approach should furnish superior results. The
goal of this paper was to explore this issue for the particular case of the integration of a complex,
multisurface constitutive model able to describe both the densification of metal powders and the
cracking of green compacts in P/M cold compaction processes. The hybrid integration procedure
employed for this purpose has been the so-called IMPL-EX scheme, pioneered by Oliver et al.
[15, 17]. First, it has been shown that the use of the IMPL-EX method eliminates the adverse effects
of softening-induced non-positive definite algorithmic elastoplastic moduli, which is one the flaws
exhibited by fully implicit solutions. Unconditional stability, on the other hand, is inherited from
the implicit part of the algorithm; the only restriction in the size of time step stems, thus, from
accuracy considerations, as in fully implicit methods. Consequently, if used in conjunction with an
appropriate adaptive time stepping scheme, the IMPL-EX integration scheme can offer an efficient
solution to the trade-off between robustness and computational time requirements.

The distinguishing feature of the IMPL-EX integration strategy is that it does entail the solution,
at each time increment, of the non-linear system of equations stemming from the implicit backward
Euler difference scheme. A major contribution of this paper has been the development of an appar-
ently novel, fractional step method-based (FSM) algorithm for solving these equations. It has been
demonstrated in a mathematically sound manner that the proposed algorithm provides a remarkable
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aspect of robustness, inasmuch as it converges to the solution regardless of the values of the mate-
rial properties and the location of the elastic trial stress in relation with respect to the prevailing
yield surfaces; furthermore, its convergence is even faster when the trial stress is placed far from
the yield surface. The algorithm dispenses with the need for computing gradients of any involved
function (yield surfaces, hardening/softening laws) and, hence, it seems suitable for solving the
return-mapping equations of complex constitutive models with nonsmooth hardening/softening
laws and yield surfaces. Attempts to generalize and apply the FSM algorithm to other material
models, however, should be tempered against the computational cost of undertaking the predictor
step (projection of the trial stress state back to a fixed yield surface): should this step require an
iterative process on its own, the application of the FSM algorithm might prove computationally
inefficient, since local convergence would involve two (nested) iterations. Finally, a subtle, yet
significant, advantage of using the proposed FSM algorithm is the considerable amount of flexibility
it affords in the corresponding computational implementation. Indeed, yield of plastic potential
surfaces, on the one hand, and evolutionary equations and hardening/softening laws, on the other,
are treated separately. This means that the implementation of, e.g. a distinct hardening/softening
law can be conducted in a modular fashion: the predictor step equations would remain unaltered,
and only pertinent changes on the equations for the corrector step would be needed.

APPENDIX A: CONVERGENCE ANALYSIS FOR THE FSM
PREDICTOR–CORRECTOR SCHEME

This appendix is devoted to study the properties of the sequence {q (k)}∞k=0 defined by the following
recursion formula (see Section 3.1):

�pd (q(k+1))︷ ︸︸ ︷
q(k+1)(q(k+1)+�ptr

n+1)
1

2
�(q tr

n+1−q(k+1))+q(k+1)
=

�cr (q(k))︷ ︸︸ ︷
cn

1+ |Ĥ0,n|
ch,n

(q tr
n+1−q(k))

(A1)

with q(0)=q tr
n+1, in the interval [qmin,q tr

n+1], where qmin=max(0,−�ptr
n+1).

A.1 Sufficient conditions for convergence

Proposition A1
Let {q(k)} be the sequence defined by the recursion formula

�pd (q(k+1))=�cr (q(k)), q(0)=q tr
n+1.

Assume that:

(I) �pd (q) and �cr (q) are continuously differentiable in [qmin,q tr
n+1].

(II) �pd (q) and �cr (q) are monotonically increasing functions, i.e. �̇pd (q)�0 and �cr (q)�0,
∀q∈ [qmin,q tr

n+1].
(III) �pd (q tr

n+1)��cr (q tr
n+1) and �pd (qmin)��cr (qmin).

(IV) There exists an unique solution q∗ in the interval [qmin,q tr
n+1] to the equation �pd=�cr .

Then, the sequence {q(k)} converges to q∗.

Proof
The proof is carried out by showing that {q(k)} is a bounded monotonic (decreasing) sequence.
In virtue of assumption I , we can expand �pd (q(k+1)) and �pd (q(k+1)) in the Taylor series

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:735–767
DOI: 10.1002/nme



760 J. A. HERNÁNDEZ ET AL.

about q(k):

�pd (q(k+1))=�pd (q(k))+�̇pd (�p)(q(k+1)−q(k)), �p∈ [q(k+1),q(k)], (A2)

�cr (q(k+1))=�cr (q(k))+�̇cr (�c)(q(k+1)−q(k)), �c∈ [q(k+1),q(k)]. (A3)

Employing the recursion formula, we may write the above equations as

�cr (q(k))−�pd (q(k))= �̇pd (�p)(q(k+1)−q(k)), �p∈ [q(k+1),q(k)], (A4)

�cr (q(k+1))−�pd (q(k+1))= �̇cr (�c)(q(k+1)−q(k)), �c∈ [q(k+1),q(k)]. (A5)

The monotonic character of {q(k)}, i.e. q(k+1)�q(k) for all k=0,1,2 . . . is proved by induction
on k. The result holds trivially for k=0, q(1)�q(0), as can be deduced from assumptions II and III
and by evaluating (A4):

�cr (q(0)) −�pd (q(0))=�̇pd (�p)(q(1)−q(0))⇒
�cr (q tr

n+1) −�pd (q tr
n+1)�0, �̇pd (�p)�0⇒q(1)�q(0).

(A6)

Therefore, assume now that the result is also true for some k= i , that is, q (i)�q(i−1). Combining
(A4) and (A5), we obtain

q(i+1)−q(i)= �̇cr (�c)

�̇pd (�p)
(q(i)−q(i−1)). (A7)

Since both �̇cr and �̇pd are nonnegative for all q∈ [qmin,q tr
n+1] (assumption II), it follows imme-

diately that q(i+1)−q(i)�0.
To complete the proof, we shall show that q(k)∈ [qmin,q tr

n+1] for all k, i.e. the sequence is
bounded, and hence convergent. To this end, we shall argue by contradiction. Suppose that there
exists k>0 such that q(k)∈ [qmin,q∗]. From (A4), the following property can be deduced:

�cr (q(k))��pd (q(k)) (A8)

for all k. Since from assumption III �pd (qmin)−�cr (qmin)�0, we know by the intermediate value
problem that �pd−�cr has a zero in [qmin,q(k)], a fact that contradicts assumption IV, hence
q(k)∈ [qmin,q tr

n+1] for all k. Furthermore, since the sequence is decreasing, it follows immediately
that q∗ is its limit, as asserted. �

We are now confronted with the task of ascertaining whether the particular functional forms of
�cr and �pd (see Equations (65) and (69), respectively) satisfy the sufficient conditions listed in
the foregoing result. As regards the condition of continuity and differentiability, notice that both
�pd and �cr are rational functions of q:

�pd= Npd (q)

Dpd (q)
, �cr = Ncr

Dcr (q)
. (A9)

Since Dcr (q) �=0 for all q∈ [qmin,q tr
n+1], �cr (q) is continuously differentiable on the interval

[qmin,q tr
n+1]. For q tr

n+1=0, the predictor function �pd has a singularity at q=0, i.e. Dpd (0)=0.
However, as may be inferred from Equations (63) and (68), in this case the solution to the return-
mapping algorithm is trivial, since the internal variable does not evolve and the trial stress is
simply ‘returned’ to the Drucker–Prager apex, i.e.:

q tr
n+1=0�⇒qn+1=0, cn+1=cn, pn+1= cn

�
. (A10)

Thus, in order to ensure also the continuity and differentiability of �pd , the particular case q tr
n+1=0

is henceforth excluded from the analysis.
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Condition II states that �̇cr (q)�0 and �̇pd (q)�0. The verification for �cr is straightforward:

�̇cr (q)= cn|Ĥ0,n|

ch,n

(
1+ |Ĥ0,n|

ch,n
(q tr

n+1−q(k))

)2
�0 ∀q. (A11)

To study the sign of the derivative of �pd , we can write

�pd (q)= q
1
2�(q tr

n+1−q)+q
(q+�ptr

n+1)=F(q)(q+�ptr
n+1), (A12)

where F(q)∈ [0,1] for q∈ [qmin,q tr
n+1]. Using the product rule, we obtain

�̇pd (q)= Ḟ(

>0︷ ︸︸ ︷
q+�ptr

n+1)+F. (A13)

Since ��0, the derivative of F

Ḟ= 1

2

�q tr
n+1

( 1
2�(q tr

n+1−q)+q)2
(A14)

is also positive for all q . Hence, it follows from Equation (A13) that �̇pd (q)�0 for all q∈
[qmin,q tr

n+1].
The condition III at the extremes of the interval is also satisfied:

�pd (q tr
n+1)−�cr (q tr

n+1)= q tr
n+1+�ptr

n+1−cn=�d,tr
n+1>0, (A15)

�pd (qmin)−�cr (qmin)= 0− cn

1+ |Ĥ0,n|
ch,n

(q tr
n+1−qmin)

�0. (A16)

Finally, we prove in the following that the function �(q)=�pd (q)−�cr (q) has an unique zero
in the interval [qmin,q tr

n+1] (condition I V ). In turn, this result provides the assurance that the

solution exists when J
act,tr
n+1 ={d}.

Proposition A2
The function defined as �(q)=�pd (q)−�cr (q), with �pd and �pd given in Equations (69) and
(65), respectively, has an unique zero in the interval [qmin,q tr

n+1].

Proof
Multiplying �=0 by the denominators of �pd and �cr (which are non-vanishing ∀q∈
[qmin,q tr

n+1]), a cubic polynomial R(q)=∑3
i=0 ri qi=0 is obtained. After elementary manipula-

tions, the coefficients (ri , i=0 . . .3) are found to be given by:

r3 =−|Ĥ0,n|
ch,n

, r2=
(

1+ |Ĥ0,n|
ch,n

(q tr
n+1−�ptr

n+1)

)
, (A17)

r0 =− 1
2 cnq tr

n+1�, r1=r2−cn(1− 1
2�). (A18)

Evaluation of the polynomial R at the extremes of the interval yields

R(qmin)=−cn(

>0︷ ︸︸ ︷
1
2�(q tr

n+1−qmin)+qmin)�0, (A19)

R(q tr
n+1)= q tr

n+1(q tr
n+1+�ptr

n+1)−cn=q tr
n+1�

d,tr
n+1�0. (A20)
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Thus, since R(qmin) and R(q tr
n+1) have opposite signs, we know by the intermediate value

theorem that there exist n roots of R in [qmin,q tr
n+1], with n=1 or n=3. The signs of r0 and r3

indicate that R(0)<0 and R(−∞)>0. Therefore, following the same logic as above, R=0 have
m negative roots, with m=1 or m=3. If we suppose that n=3, then the total number of zeros
would be n+m=4 or n+m=6, which cannot be true, since the polynomial is cubic. Hence, R
has only one root in [qmin,q tr

n+1], and, consequently, � possesses an unique zero in [qmin,q tr
n+1],

as asserted.

Therefore, we conclude that the functional forms of �cr and �pd , given in Equations (69) and
(65), respectively, fulfill the sufficient conditions for the sequence defined by the recursion formula
(70) to converge.

A.2 Rate of convergence

Proposition A3
Let {q(k)} be the convergent sequence defined by the recursion formula �pd (q(k+1))=�cr (q(k)).
Let q∗ denote the limit of this sequence and consider an interval [q∗,]⊂ [q∗,q tr

n+1] such that

�̇pd (�)

�̇cr (�)
<1 (A21)

for all �∈ [q∗,]. Let N be a positive integer such that q(N )�. Then, the error, denoted as
e=q−q∗, decreases for all k�N , being the rate of this decrease linear.

Proof
Expressing �pd (q(k+1)) and �cr (q(k)) in the Taylor series about q∗ and truncating after the first-
order term yields:

�pd (q(k+1))=�pd (q∗)+�̇pd (�p)(

e(k+1)︷ ︸︸ ︷
q(k+1)−q(q∗)), �p∈ [q∗,q(k+1)] (A22)

and

�cr (q(k))=�cr (q∗)+�̇cr (�c)(

e(k)︷ ︸︸ ︷
q(k+1)−q(k)), �c∈ [q∗,q(k)] (A23)

respectively. Subtracting Equation (A23) from Equation (A22) gives:

�pd (q(k+1))−�cr (q(k))= (�pd (q∗)−�cr (q∗))+�̇pd (�p)e(k+1)−�̇cr (�c)e(k). (A24)

Since �pd (q∗)=�cr (q∗) and �pd (q(k+1))=�cr (q(k)), after solving for e(k+1) we obtain

e(k+1)= �̇cr (�c)

�̇pd (�p)
e(k). (A25)

For k>N , q(k),q(k−1)∈ [q∗,]. Then, the error decreases by a factor �̇cr (�p)/�̇pd (�c), �p∈
[q∗,q(k+1)], �c∈ [q∗,q(k)]. Equation (A25) further shows that e(k+1) depends linearly on e(k). �

Thus, the above proposition shows that the rate of convergence is linear in a neighborhood of the
solution in which �̇cr>�̇pd . It is straightforward to prove, by contradiction, that this condition of
greater slope of the predictor curve in some [q∗,],∈ [0,q tr

n+1−q∗] always holds. Suppose that

�̇cr (q∗)<�̇pd (q∗). The continuity assumption implies that, for some �>0, �pd (q∗+�)<�cr (q∗+
�), which is a contradiction, since �pd (q)��cr (q) for all q∈ [q∗,q tr

n+1].
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The so-called asymptotic convergence factor [25] �̇cr/�̇pd can be estimated grossly using the
mean value theorem:

�cr

�pd
= �cr (q tr

n+1)−�cr (qmin)

�pd (q tr
n+1)−�pd (qmin)

= |Ĥ0,n|/ch,n(q tr
n+1−qmin)

1+|Ĥ0,n|/ch,n(q tr
n+1−qmin)

1

�d,tr
n+1

cn
+1

. (A26)

A.3 Quadratically convergent method

By simply modifying the equation for the update of cohesion in the corrector step, it is plausible
to devise, in the light of the predictor–corrector philosophy, a method with a higher rate of
convergence. The corresponding sequence is defined by the recursion formulae

�pd (q(2k−1))=�cr (q(2k−2)), (A27)

�cr (q(2k))=�pd (q(2k−1))+�̇pd (q(2k−1))(q(2k)−q(2k−1)) (A28)

with k=1,2 . . . and q(0). The analysis of the convergence of this sequence is undertaken in a similar
manner to that presented in Proposition A3.††† We simply quote the final result (for k→∞):

e(2k−1) = �̇cr (q∗)
�̇pd (q∗)

e(2k−2), (A29)

e(2k) = 1

2

�̈cr (q∗)
�̇pd (q∗)−�̇cr (q∗)

e2
(2k−1). (A30)

Combining Equations (A29) and (A30), we obtain

e(2k)= 1

2

�̈cr (q∗)
�̇pd (q∗)−�̇cr (q∗)

(
�̇cr (q∗)
�̇pd (q∗)

)2

e2
(2k−2). (A31)

The above equation reveals that the rate of convergence of this modified FSM algorithm is quadratic.
However, in return for its enhanced convergence, a necessary condition for the sequence defined
by Equations (A29) and (A30) to be monotonic decreasing is that �̈pd>0 in a neighborhood of the
solution, i.e. the predictor function must be convex. To check whether this condition is satisfied,
(A13) is differentiated with respect to q , yielding

�̈pd=2Ḟ+ F̈(q+�ptr
n+1). (A32)

After some manipulation, F̈ can be expressed as

F̈= −2(1−1/2�)

q(1−1/2�)+1/2�q tr
n+1

Ḟ . (A33)

Substitution of the above into (A32) leads to

�̈pd=2Ḟ

(
1− −(1−1/2�)

q(1−1/2�)+1/2�q tr
n+1

(q+�ptr
n+1)

)
. (A34)

†††The only difference lies in that, in (A28), �pd (q(2k−1)) is expanded in a Taylor series around q∗ up to the
second-order term.
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Thus, the predictor function is convex whenever the following inequality is satisfied:

1>
(1−1/2�)

q(1−1/2�)+1/2�q tr
n+1

(q+�ptr
n+1), (A35)

which, upon rearranging, gives

1
2�(q tr

n+1+�ptr
n+1)−�ptr

n+1>0. (A36)

It follows from the preceding equation that the convexity condition cannot be guaranteed for any
admissible values of the trial stress and the material parameter �. Only for ptr

n+1<0 the above
inequality holds regardless of the value of �.

APPENDIX B: DERIVATION OF THE IMPL-EX ALGORITHMIC ELASTOPLASTIC
TANGENT MODULI

The spatial algorithmic tangent moduli is the fourth-order tensor satisfying:

Lv s̃n+1= c̃ep,n+1 :Lven+1= c̃ep,n+1 :dn+1. (B1)

Taking the Lie derivative of the constitutive relation s̃n+1= c̃e,n+1 : ẽe,n+1, we obtain

Lv s̃n+1=Lv c̃e,n+1 : ẽe,n+1+ c̃e,n+1 : (dn+1−Lv ẽp,n+1). (B2)

The derivation of an expression for the Lie derivative of tensor c̃e,n+1 is accomplished by applying
systematically the standard product rule—that also holds for the Lie derivative, i.e. Lv(A ·B)=
Lv A ·B+A ·Lv B—on the components of the elasticity tensor (see (4)). Considering that the Lie
derivative of the metric tensor‡‡‡ is, in component form, (Lvg)∗ab=2dab, it can be shown that the
Lie derivative of the (fully contravariant) fourth-order volumetric tensor (Ivol)abcd=g−1⊗g−1)abcd

is given by:

(LvIvol)
abcdecd=−2(tre(I)abe f +gabee f )def . (B3)

The same lines that lead to the above equation can be followed to deduce the expression for the
Lie derivative of the (fully contravariant) fourth order, symmetric identity tensor:

(LvIsym)abcdecd=−2(ea f gbe+gaeebf )def , (B4)

From identities (B3) and (B4), and after some algebra, one finally arrives at

ãe,n+1(ẽe,n+1)=−2((�̃e
n+1− 2

3 �̃e
n+1)(1⊗ ẽe,n+1+ tr ẽe,n+1I)+2�̃e

n+1Is(ẽe,n+1)), (B5)

where the operator Is(•) has the following component form:

(Is(•))abef = 1
2 ((•)a f �be+(•)b f �ae). (B6)

‡‡‡In a cartesian coordinates system, gab=�ab, being �ab the second-order Kronecker delta. Index convention used
throughout this appendix, on the other hand, follows [35]: upper case letters refer to the reference configuration
�0 and lower case for the current configuration �t ; index placement (superindex or subindex) indicates the
contravariant or covariant nature, respectively, of the corresponding tensors.
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The rightmost term in (B2) can be expanded using Koiter’s rule:

Lv ẽp,n+1 =Lv ĕp,n+
3∑

=1

=0︷ ︸︸ ︷
���̃


n+1

�tn+1
m̃

n+1+
3∑

=1
��̃


n+1Lvm̃

n+1

= Fn+1 ·

=0︷ ︸︸ ︷
�Ep,n

�tn+1
·FT

n+1+
3∑

=1
��̃


n+1Lvm̃

n+1

=
3∑

=1
��̃


n+1Lvm̃

n+1.

(B7)

Hence, the task of obtaining the Lie derivative of ẽp,n+1 reduces to finding the Lie derivative
of the plastic flow vectors associated to each surface. Applying the Lie derivative to the affine
transformation (78) relating the plastic flow vector and the Kirchhoff stress tensor yields

Lvm̃
n+1 =Lv(Ã


n+1 : s̃n+1)+LvB̃


n+1

=LvÃ

n+1 : s̃n+1+Ã


n+1 :Lv s̃n+1+LvB̃


n+1.

(B8)

The procedure for determining the Lie derivative of Ã

n+1 parallels that followed in arriving at

(B5)§§§ ; the double contraction of Ã

n+1 and the contravariant Kirchhoff stress s̃n+1) is express-

ible as:

LvÃ

n+1 : s̃n+1=as(ũ


n+1, s̃n+1) :dn+1, (B9)

where

as(ũ

n+1, s̃n+1)=2( 1

3 (ũ
n+1−2)(1⊗ s̃n+1+ tr s̃n+1I)+4Is(s̃n+1)). (B10)

The remaining term in (B8) is given by

LvB̃

n+1=

�ṽ

n+1

�tn+1
1+ ṽ


n+1Lv1. (B11)

The first term on the right-hand side of the above equation is zero, since ṽ

n+1 depends upon �̃

h
n+1

and �̃
h
n+1. The second term involves the Lie derivative of the covariant identity tensor, that is, the

metric tensor. Thus, Equation (B11) can be written as

LvB̃

n+1=2ṽ


n+1dn+1. (B12)

The derivative Lv ẽp,n+1 is then obtained by combining Equations (B12), (B9) and (B8):

Lv ẽp,n+1=
(

3∑
=1

��̃

n+1(as(ũ


n+1, s̃n+1)+2ṽ


n+1)

)
:dn+1+

(
3∑

=1
��̃


n+1Ã


n+1

)
:Lv s̃n+1. (B13)

§§§The only difference arises from the fact that Ã

n+1 is a fully covariant tensor (as distinct from the elasticity tensor

c̃e,n+1, which is fully contravariant), since m̃
n+1 has the same tensorial character as the plastic strain tensor, that

is, m̃
n+1 is also covariant.
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After substituting (B13) and (B5) into (B2), and collecting terms involving Lv s̃n+1 and dn+1,
the expected expression for the spatial algorithmic tangent tensor is finally achieved

c̃ep,n+1= R̃
−1
n+1 :

(
ae(ẽe,n+1)+ c̃e,n+1 :

(
I−

3∑
=1

��̃

n+1z̃

n+1(s̃n+1)

))
, (B14)

where

R̃n+1=I+ c̃e,n+1 :
3∑

=1
��̃


n+1Ã


n+1 (B15)

and

z̃
n+1(s̃n+1)=as(ũ


n+1, s̃n+1)+2ṽ


n+1I. (B16)
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