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Abstract 

We present a finite element method with a finite thickness embedded weak 

discontinuity to analyze ductile fracture problems. The formulation is restricted to 

small geometry changes. The material response is characterized by a constitutive 

relation for a progressively cavitating elastic–plastic solid. As voids nucleate, grow 

and coalesce, the stiffness of the material degrades. An embedded weak 

discontinuity is introduced when the condition for loss of ellipticity is met. The 

resulting localized deformation band is given a specified thickness which introduces 

a length scale thus providing a regularization of the post-localization response. Also 

since the constitutive relation for a progressively cavitation solid is used inside the 

band in the post-localization regime, the traction-opening relation across the band 

depends on the stress triaxiality. The methodology is illustrated through several 

example problems including mode I crack growth and localization and failure in 

notched bars. Various finite element meshes and values of the thickness of the 

localization band are used in the calculations to illustrate the convergence with 

mesh refinement and the dependence on the value chosen for the localization band 

thickness. 
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1. Introduction 

In a cohesive approach to fracture, two independent constitutive relations are used; 

one characterizing the deformation behavior of the bulk material and another, for 

the fracture process, giving the response of one or more cohesive surfaces (or 

cohesive zones) ([Dugdale, 1960], [Barenblatt, 1962], [Hillerborg et al., 1976], 

[Needleman, 1987] and [Xu and Needleman, 1994]). The volumetric response is 

specified in terms of a stress–strain relation while the cohesive response is specified 

in terms of a traction–displacement relation that initially increases, attains a 

maximum and then decreases to zero thereby leading to the creation of new free 

surface. From dimensional considerations a characteristic length is introduced. A 

disadvantage of this approach is that the cohesive traction–separation relation does 

not directly involve the hydrostatic stress which plays a key role in the progressive 

cavitation process of ductile fracture. In order to overcome this limitation, 

Siegmund and Brocks (2000) have considered a cohesive strength that is 

hydrostatic stress dependent.  

 

In another approach, a single volumetric constitutive relation is used which allows 

for the possibility of the complete loss of stress carrying capacity, with the 

associated creation of new free surface. In this approach, at least in its simplest 

implementations, e.g., (Gurson, 1975) and (Tvergaard, 1990), there is no material 

characteristic length. Hence, in a finite element analysis predictions of progressive 

fracture are inherently mesh dependent. Nonlocal constitutive relations have been 

developed, e.g., (Leblond et al., 1994) and (Gologanu et al., 1997), which do 

contain a characteristic length. Such a formulation is aimed at capturing size 

dependence at the micromechanical scale. Accurate computations using such a 

constitutive relation require mesh sizes smaller than the characteristic length which 

is typically of the order of tens or a few hundred microns. In a component or 

structural level analysis of ductile fracture the computational cost for using such a 

fine mesh is generally prohibitive. 

 

The formulation we present here is aimed at component or structural level analysis 

of room temperature ductile fracture of structural metals occurring by the 

nucleation, growth and coalescence of micro-voids. A characteristic feature of this 

model is that it is strongly influenced by the stress triaxiality. The size dependence 

that we aim to capture is that associated with the localization of deformation which, 

for a rate independent solid under quasi-static loading conditions, results in a loss 

of ellipticity of the governing equations so that the initial/boundary value problem 

becomes ill-posed. 
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We use a standard finite element formulation and within each element monitor the 

sign of the determinant of the relevant acoustic tensor. When that determinant 

vanishes, the shape functions in the element are enhanced by additional functions 

which allow for a weak discontinuity band of finite thickness. Plastic deformation 

continues inside the band while elastic unloading takes place outside the band. The 

thickness of the localization band is considered to be a material property and is a 

prescribed quantity. Hence in our formulation the material characteristic length is 

presumed to be smaller than the element size. There is a large literature on 

embedding discontinuity modes, both weak and strong, in various contexts into 

finite element formulations, e.g., (Ortiz et al., 1987), (Moes et al., 1999), (Wells 

and Sluys, 2001), (Oliver et al., 2002), (Remmers et al., 2003) and (Belytschko et 

al., 2008). The finite element formulation here differs in having a finite thickness 

band. The post-localization response in the band is governed by the pre-localization 

constitutive relation which allows for the complete loss of stress carrying capacity 

and the creation of new free surface. Hence, in our formulation the discontinuity 

can transition from a weak discontinuity to a strong discontinuity, using a unified 

constitutive framework. Once the band forms, the net effect is similar to having a 

cohesive surface with a hydrostatic stress dependent cohesive law that emerges 

directly from the material’s constitutive description. Although we focus attention on 

ductile fracture analyses and in particular on the Gurson (1975) framework, the 

methodology can be directly used with any rate independent constitutive relation 

that permits a complete loss of stress carrying capacity. 

 

2. Governing equations 

2.1. Field equations 

Attention is restricted to small deformations so that geometry change effects are 

neglected. With body forces neglected, the principle of virtual work is written as 

(1) 

∫Ωσ: δudΩ=∫Γt·δudΓ 

where δ denotes an admissible variation, Ω is a region bounded by Γ, σ is the 

stress tensor, u is the displacement vector, is the gradient operator and 

(2) 

t=σ·ν 

with ν normal to Γ.  

The boundary conditions on Γ are to prescribe either the traction t or the 

displacement u. 
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The strain tensor is defined by 

(3) 

 

Here ( )T denotes the transpose.  

2.2. Constitutive relation 

The constitutive relation used for the specimen is a modified Gurson ([Gurson, 

1975], [Tvergaard, 1981], [Tvergaard, 1982] and [Tvergaard and Needleman, 

1984]) constitutive relation for a progressively cavitating plastic solid that has been 

extensively used to model ductile damage and is briefly outlined here. Attention is 

confined to small deformations, i.e., geometry changes are neglected, and to rate 

independent matrix material behavior. Background on the (Gurson (1975)) 

framework and further details are given in (Tvergaard, 1990) and (Needleman et 

al., 1992). Some recent ductile fracture modeling studies are presented in (Lorentz 

et al., 2008), (Li and Karr, 2009) and (Bai and Wierzbicki, 2008). 

The constitutive relation used is a small deformation specialization of a rate 

independent modified Gurson constitutive relation with the total strain rate, , 

written as the sum of an elastic strain rate, , and a plastic strain rate, , with 

(4) 

 

where 

(5) 

 

with 

(6) 

 

Here, (·) denotes the rate of change with respect to some monotonically increasing 

time-like parameter, Ce is the tensor of isotropic elastic moduli with Young’s 

modulus E and Poisson’s ratio ν, I and are, respectively, the fourth order and 

second order identity tensors.  

The plastic strain rate, , is given by 

(7) 
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in terms of the yield criterion 

(8) 

 

where f* is a specified function of the void volume fraction f and 

(9) 

 

Here, denotes the trace.  

The parameters q1 and q2 were introduced by (Tvergaard, 1981) and (Tvergaard, 

1982) and the function f*, which accounts for the effects of rapid void coalescence 

at failure through the model parameters fc and ff (Tvergaard and Needleman, 

1984), is given by 

(10) 

 

The matrix flow strength is given by 

(11) 

 

where σy is the initial yield strength, N is the strain hardening exponent and is the 

matrix equivalent plastic strain and its rate is related with the macroscopic plastic 

work rate through 

(12) 

 

The initial void volume fraction is taken to be f0 and the evolution of the void 

volume fraction is governed by 

(13) 

 

The first term on the right-hand side of Eq. (13) accounts for void growth and the 

second term for void nucleation.  

Consideration here is restricted to plastic strain controlled nucleation with (Chu and 

Needleman, 1980) 
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(14) 

 

where fN, sN and N are material parameters.  

For plastic loading the plastic strain rate can be written as ([Gurson, 1975] and 

[Needleman and Rice, 1978]) 

(15) 

 

where 

(16) 

 

with 

(17) 

 

Combining Eqs. (4), (5) and (15), together with the loading/unloading condition, 

and inverting gives 

(18) 

 

 

 

where Ce is given by Eq. (6), Cp is given by 

(19) 

 

and P=Ce:p=p:Ce. Both Ce and Cp have major symmetries.  
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3. Localization analysis 

The localization analysis is based on the work of (Hadamard, 1903), (Thomas, 

1961), (Hill, 1962) and (Rice, 1976). Explicit results for the Gurson (1975) and 

modified Gurson solids are given in (Needleman and Rice, 1978), (Sánchez et al., 

2008) and (Saje et al., 1982). 

We consider a band across which there is a possible jump in the displacement rate 

gradient but the displacement rates remain continuous. The structure of this jump 

must be a tensor of rank one, given by 

(20) 

 

where denotes a jump, n is the band normal and an arbitrary velocity vector. 

Incremental equilibrium across the band requires 

(21) 

 

Assuming plastic loading Eqs. (20) and (21) together with Eq. (19) require 

(22) 

 

Hence, either or 

(23) 

det(n·Cp·n)=0 

As shown in (Oliver et al., 2004) and (Sánchez et al., 2008), Eq. (23) can be 

written as 

(24) 

 

where ξ is defined in Eq. (19), Qe=n·Ce·n and 

(25) 
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Since 

(26) 

 

is positive for E>0 and -1 ν 1/2, a weak discontinuity is possible when 

. Using the condition to detect the onset of localization is 

computationally convenient.  

After localization occurs, continued plastic loading takes place in the band which is 

presumed to have a uniform strain and stress state, and elastic unloading occurs 

outside the band. 

A connection can be made with a cohesive surface approach. Denote the total 

volume under consideration by Ω, a band volume ΩD of thickness D and bounded by 

two surfaces ΓD+ and ΓD- across which a jump in the displacement rate gradient 

develops as sketched in Fig. 1. The vector , which is the difference 

between the velocity vector on the boundary ΓD+ and that on ΓD- is introduced. 

Denoting the volume outside ΩD by Ωo, the stress work rate is given by 

(27) 

 

From the equilibrium condition ( ·σ=0) in Ωo and ΩD, traction continuity Eq. (21) 

in ΓD+ and ΓD- and the velocity field continuity, Green’s theorem gives 

(28) 

 

where t=σ·ν denotes the traction vector on the external surface Γext of Ω.  

 

 

Fig. 1. Connection of the finite thickness band method with the cohesive surface 

approach. 
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Focussing on discontinuities of displacement gradient rate that are localized in 

domains ΩD having a small thickness and since the band is taken to be 

homogeneously deformed, the stresses are uniform across ΩD so that, from Green’s 

theorem, the second term of Eq. (27) can be written as 

(29) 

 

where any contribution along the edge of the band is neglected.  

The relations in Eqs. (27), (28) and (29) can be rewritten as 

(30) 

 

where the last term can be interpreted as the work rate produced by cohesive 

tractions (-tD) in Ω0, acting on a ΩD-representative mean surface ΓD, in between ΓD+ 

and ΓD-, which are induced by stresses in ΩD. Thus, by using a porous plastic 

constitutive relation, the effect of stress triaxiality in a localized band is accounted 

for. The band thickness D now enters the formulation as a material parameter to be 

specified. By way of contrast, in a cohesive surface formulation the characteristic 

length enters through a constitutive relation for t on ΓD. Furthermore, since the 

stress carrying capacity in the band vanishes when f=ff creating new free surface, 

the formulation here provides a transition from a weak discontinuity to a strong 

discontinuity.  

 

 

4. Finite element implementation 

The computational procedure is based on a finite element formulation with 

embedded weak discontinuity modes. The key features of the formulation are the 

finite thickness of the band and the use of a tracking algorithm to obtain 

geometrical continuity of the band across the finite element mesh. The 

implementation is confined to two dimensions and is a direct extension of the non-

symmetrical, kinematical and statically optimal four node quadrilateral finite 

element formulation with embedded strong discontinuities described in Oliver et al. 

(2003). Additional aspects of a similar finite element technology can be found in 

(Manzoli and Shing, 2006) and (Linder and Armero, 2007). A sketch of the 

implementation, in the context of a finite thickness band method, is briefly 

described here. 
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Let a body Ω having a strain discontinuity finite band of thickness D and orthogonal 

to n, as shown in Fig. 2(c), be given. We use Ω+ and Ω- to denote the two parts of 

the body divided by this finite thickness band. 

 

 
 

Fig. 2. Weak discontinuity kinematics used in the finite element formulation. (a) Shape 

functions of the embedded weak discontinuity mode . (b) Displacement and 

strain fields. (c) Finite element with a weak discontinuity band displaying the nodes 

, (d) The quadrature points for the integration rule.  

 

The discrete displacement field is then written as: 

(31) 

 

where represents a smooth part of the displacement field that, in the domain 

Ωe of a finite element e, is interpolated by the standard bilinear shape functions: 

Ni(x),i=1,…,4 and the nodal displacements: , ( ). The second term 

in Eq. (31) is the embedded weak discontinuity mode which is proportional to the 

displacement jump vector across the band: β. In finite element e, this term is 

interpolated by: 

(32) 

 

where Nsol comes from the addition of the shape functions Ni corresponding to the 

element nodes that are in Ωe+ ( ). The function is 

(33) 
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with xo an arbitrary point on the border and D the specified band 

thickness.  

The one-parameter interpolation in Eq. (32) provides a weak discontinuity mode 

with a constant displacement jump per element. Fig. 2(a) displays the shape 

function for the one-dimensional case, and Fig. 2(b) shows the 

corresponding displacement and strain fields determined by Eq. (31). 

The strain , compatible with the displacement Eq. (31), is evaluated by defining a 

generalized strain–displacement matrix B and displacement vector , such that the 

discrete strain–displacement relation reads 

(34) 

 

 

 

The coefficient μD is 0 or 1 depending if the strain evaluation point is outside or 

inside , respectively, and sym is the symmetric gradient operator. The standard 

B-bar technique which involves modifying the matrix B, see Hughes (1980), is used 

in order to prevent locking caused by possible isochoric deformations. The 

modifications proposed by the B-bar technique apply to those terms related with 
symNi and Nsol in Bu and Bβ while the term multiplied by μD remains unchanged.  

Following the Petrov–Galerkin approach of Oliver et al. (2003), the equilibrium 

equations are written as follows 

(35) 

 

 

(36) 

 

with being the element volume outside the band . The last equation weakly 

imposes the equilibrium condition Eq. (21) across the band.  

The numerical integration of the terms in Eqs. (35) and (36) is performed by a six 

point integration rule, as depicted in Fig. 2(d). The role specified for each 

quadrature point, is summarized as follows:  
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(i) The standard four point Gaussian quadrature rule, for the bilinear quadrilateral 
elements, specifies the position and weights of the Gauss Points (1,…,4). The terms 
in Eq. (35) are evaluated using these four points, specifying μD=0 in Eq. (34).  
(ii) Gauss points five and six are at the same geometrical position, the center of the 
element. 
(iii) The two terms in Eq. (36) are integrated using a one-point integration rule: 
Gauss point 5 is used for the second term and Gauss point 6 for the first term. The 
stress σD, using the strain D, by setting μD=1 in Eq. (34) and the constitutive 
relation of Section 2.2, is computed at Gauss point 6. While the stress σΩ0, with 
μD=0 is computed at Gauss point 5. The traction tD in ΓD, Eq. (30), does not appear 
explicitly in the formulation. Even though, it could be obtained from the projection 
(σD·n). 
(iv) Gauss points 5 and 6 have the same stress–strain states prior to the activation 
of the weak discontinuity mode. 
Additional numerical implementation aspects and features are:  

(1) The localization condition is monitored in each finite element (at 
Gauss point 5 which is at the geometrical finite element center) using the 
procedure given by Oliver and Huespe (2004). The orientation no is defined by 

(37) 
no=cos(θo)PI+sin(θo)PIII 

 

(38) 

 

 

 

where {PI>PII>PIII} and {PI,PII,PIII} are the eigenvalues and eigenvectors of P, 
respectively, with P=Ce:p and p defined in Eq. (7). Thus, the bifurcation detection 
procedure consists of evaluating Eqs. (37) and (38) and Zo=Z(no) at any stage of a 

plastic loading process and comparing Zo with . A localization bifurcation occurs 

when and, therefore, ncrit=no.  
(2) When the localization condition is first satisfied for some band normal n at one 
of these Gauss points, the bulk Gauss points (1,…,5) are required to undergo elastic 
unloading, while plastic loading continues at Gauss point 6. Thus, the weak 
discontinuity mode, Eq. (32), becomes active allowing the development of plastic 
loading in the band that is compatible with elastic unloading outside the band. 
(3) In the present numerical implementation, a fundamental ingredient is the 
geometric continuity of the weak discontinuity mode across the finite element 
mesh. In general, Eq. (38) gives rise to two distinct localization angles. At the 
initiation of a localization band, by means of numerical experimentation, one of 
these angles is chosen as the one leading to the less dissipative response. 
Subsequently the detection of the nodes is determined through a discontinuity 
tracking algorithm following the global approach presented in Oliver et al. (2004). 
(4) The degrees of freedom βe corresponding to the weak discontinuity modes are 
local to each element and can therefore be condensed at the element level to 
increase the computational efficiency. 
The methodology was implemented in the COMET finite element code, see Cervera 

et al. (2001). 
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5. Numerical examples 

5.1. Localization band 

The rectangular bar sketched in the insert of Fig. 3(a), is subject to prescribed 

displacement loading in the x2-direction corresponding to plane strain tension. The 

sides x1=-b/2,b/2 are traction free. The material parameters used in the calculation 

are: and ff=0.25. 

The initial void volume fraction is f0=0.005 and void nucleation is characterized by 

N=0.3, fN=0.04 and sN=0.1. The specimen dimensions are 2b parallel to the loading 

axis and b perpendicular to the loading axis. Since geometry changes are 

neglected, the localization results presented here are not aimed at modeling 

material behavior but are aimed at illustrating the capability of the numerical 

method. A bifurcation analysis gives that localization initiates at crit=0.205 and 

that the localization band forms at an angle of 40°. Prior to the onset of 

localization, deformation is uniform with a stress triaxiality ratio, T=σm/σe, of 

T=0.57. 

 

 
 

Fig. 3. Localization and failure in plane strain tension. (a) Normalized load versus 

axial strain obtained using the weak discontinuity formulation for D/b=0.0125 and 

D/b=0.025 with n=6,12. The inserts show a sketch of the specimen analyzed and 

details of the post-localization response. (b) Contours of void volume fraction f 

showing the localization and failure mode at Δu2/b=0.215; (c) Deformed mesh at 

Δu2/b=0.215. (d–f) Results obtained using a formulation without including weak 

discontinuity modes with (d) normalized load versus axial strain. (e) Contours of 

void volume fraction f showing the localization and failure mode at Δu2/b=0.457. (f) 

Deformed mesh at Δu2/b=0.457. The void fraction contours in white show finite 

elements for which f>0.2.  

 

Curves of load versus applied displacement are shown in Fig. 3(a) for two values of 

the thickness D,D/b=0.0125 and D/b=0.025. Quadrilateral bilinear displacement 
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elements are used with an n×n element mesh so that each element has an aspect 

ratio of two which is an unfavorable aspect ratio for resolving localization in a 40° 

band. The onset of localization takes place at a smaller strain than N and is well 

represented in all calculations in Fig. 3(a). The post-localization response is 

relatively independent of the mesh resolution, it depends only on the value of D. In 

Fig. 3(b), contours of void volume fraction are plotted which show the orientation of 

the localization band for the n=12 calculation with D/b=0.0125, and Fig. 3(c) 

displays the deformed mesh at Δu2/b=0.215. 

Without including the enhanced modes in the finite element formulation, 

localization initiates at crit=0.328 (with n=12), see Fig. 3(d), and the band angle is 

perpendicular to the loading direction, Fig. 3(e). The deformed mesh at 

Δu2/b=0.457 is shown in Fig. 3(f). As seen in Fig. 3(d), the post-localization 

response depends strongly on the mesh resolution. 

5.2. Mode I crack growth 

We consider small scale yielding of a mode I crack as displayed in Fig. 4. The 

exterior boundary of the domain analyzed is subject to imposed displacements that 

are compatible with the mode I linear elastic singular crack tip field which are given 

by 

(39) 

 

 

(40) 

 

where and θ=tan-1x2/x1 and traction free conditions are imposed 

along the crack faces. Under small scale yielding conditions, the stress intensity 

factor KI is related to the Rice’s (Rice, 1968) J-integral .  
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Fig. 4. (a) Sketch of the small scale yielding crack growth problem analyzed. (b) 

Mesh 0 is used in an analysis without any weak discontinuity modes; b is the side 

length of the square elements along the initial crack plane.  

 

The material parameters used in the analysis are: σy/E=0.0025, ν=0.3, N=0.1, 

q1=1.5, q2=1.0. The initial void volume fraction is f0=0.005 and void nucleation is 

characterized by N=0.3, fN=0.04 and sN=0.1. In the calculations in this Section we 

take f*≡f. 

Two types of calculations are carried out: (i) three meshes are used to compute 

crack growth resistance curves, curves of J versus the amount of crack growth Δa, 

for three values of the characteristic length parameter D as displayed in the inserts 

in Figs. 5(a)–(c); and (ii) for comparison purposes a calculation without any weak 

discontinuity modes using the mesh termed Mesh 0 in Fig. 4. In Mesh 0, b is the 

side length of the square elements along the initial crack plane and hence also the 

initial crack tip opening. The calculation with Mesh 0 can be regarded as a “cell” 

calculation, Xia and Shih (1995), with cell size b.   

 

 
  

 

Fig. 5. Normalized curves of J versus the amount of crack growth Δa for various 

values of the characteristic length D and for various finite element meshes. (a) 

Mesh 1; element size 2.5b×5b. (b) Mesh 2; element size 1.25b×5b/2. (c) Mesh 3; 

element size 1.25b×5b/3. For comparison purposes a calculation without weak 

discontinuity modes is shown (Mesh 0). In this case, the normalization D=b is used.  

 

The initial crack tip opening is also b for the three meshes in Fig. 5 but the mesh 

height is rapidly increased to 5b in Mesh 1, to 5b/2 in Mesh 2 and to 5b/3 in Mesh 

3. For all three meshes, the orientation of the localization band is consistent with 

crack growth along the initial crack plane. Without any additional localization 

modes, the plastic dissipation associated with fracture and hence the crack growth 
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resistance is sensitive to the height of the elements along the initial crack plane. 

The width of the finite elements along the crack plane also is of significance in 

correctly capturing the steep stress gradients ahead of the crack tip. 

Normalized crack growth resistance curves, J/(σyD) versus Δa/D, are plotted in 

 

 Fig. 5. In each of Figs. 5(a)–(c) results are shown for several values of D. For 

comparison purposes, the Mesh 0 calculation without result any weak discontinuity 

modes (the result for the Mesh 0 calculation is normalized by D=b) is shown in 

each plot. Due to the scaling of the axes, all curves in Fig. 5 should be the same for 

all values of D and for all the finite element meshes. Except for an initial transient, 

this is essentially the case in Fig. 5(b) and (c). For the crudest mesh, Mesh 1 in Fig. 

5(a), there is a greater variation with the value of D and also the “steady state” 

value of the crack growth resistance differs from that with the cell-type calculation 

using Mesh 0. 

 

Fig. 6 shows curves of normalized J versus the amount of crack growth Δa with 

D/b=1 using Meshes 1, 2 and 3. For comparison purposes, the calculation without 

any weak discontinuity modes is shown (the Mesh 0 cell-type calculation which is 

normalized using D=b). The good agreement in Fig. 5 and Fig. 6 between the 

results for Mesh 0, where there is a conventional implementation of the constitutive 

response, and those for Mesh 2 and Mesh 3 suggests that the loading–unloading 

behavior is correctly represented in the calculations using weak discontinuity 

modes. It is also worth noting that the crack growth calculations here represent a 

situation where there is a transition from a weak discontinuity to a strong 

discontinuity. Also, although similar results are obtained with the cell model Mesh 0 

calculations, an advantage of our formulation is that the finite element 

discretization and the material characteristic length are specified independently. 

 

 
 

Fig. 6. Normalized curves of J versus the amount of crack growth Δa for Meshes 1, 
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2 and 3 with D/b=1. For comparison purposes a calculation without weak 

discontinuity modes is shown (Mesh 0). In this case, the normalization D=b is used.  

 

5.3. Ductile fracture in notched bars 

There are numerous works analyzing the ductile rupture of notched bars by means 

of numerical solutions, for example, (Needleman and Tvergaard, 1984), (Becker et 

al., 1988) and (Besson et al., 2001). In particular, (Besson et al., 2001) and 

(Besson et al., 2003) utilize the localization bifurcation criterion as a localization 

indicator as we do. Since geometry changes are neglected in the calculations here, 

our aim is not to analyze ductile fracture phenomena but to illustrate the capability 

of our methodology to capture curved cracks. We carry out calculations for the two 

notch geometries considered by Needleman and Tvergaard (1984) but restrict 

attention to plane strain conditions. Fig. 7 shows the geometries of the A-notch and 

D-notch bars along with the near notch finite element meshes used. The A-notch 

finite element mesh has 792 elements with their size in the strain localization zone 

being he/b≈0.0250. The D-notch finite element mesh has 1132 elements, with 

element sizes he/b=0.020–0.028 in the strain localization zone. 

 

 
 

Fig. 7. Geometry of the A-notch and D-notch specimens and the finite element 

meshes used.  

 

The material parameters are σy/E=0.0033, ν=0.3, N=0.06, q1=1.5, q2=1.0 and 

void nucleation is characterized by N=0.3, fN=0.04 and sN=0.1. The initial void 

volume fraction is taken to be f0=0.0001 and the void coalescence parameters in 

Eq. (10) are fc=0.15 and ff=0.25. 

Fig. 8 displays curves of normalized average stress versus the average axial strain 

for the two notch geometries. For comparison purposes, corresponding results from 

Needleman and Tvergaard (1984) (where geometry changes were accounted for) 

are also plotted. We also show results obtained from calculations where no weak 

discontinuity modes were added. The effect produced by varying the characteristic 
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band thickness D on the overall response is shown in Fig. 8(b) for the D-notch 

geometry specimen. 

 

 
 

Fig. 8. Curves of load versus applied displacement for notched bars in plane strain. 

(a) A-notched bar. (b) D-notched bar.  

 

Because the band angle rendering the acoustic tensor singular is not unique in 

general, a choice is involved in selecting the direction of the weak discontinuity 

mode. Hence, alternative modes of propagation are possible. The solution 

computed with the present numerical technique corresponds to a possible failure 

mode but from a single calculation it cannot be ascertained that the mode chosen is 

the one that gives the smallest failure strain and/or the minimum energy 

dissipation. 

Contours of void volume fraction f are shown in Fig. 9 and Fig. 10. In the early 

stages of deformation, the largest values of f are at the notch root which is where 

the localization condition is first met. A shear band then propagates from this point 

at an angle of approximately 135° with the x1-axis. But it stops at a distance of 

approximately, 0.1b for the D-notch and 0.16b for the A-notch specimens, 

respectively. A new band develops at a direction of approximately 30°–45° with the 

x1-axis intersecting the center of the bar. The D-notch bar shows a smoother 

transition from one localization band to the other. In this case, the band in the 

transition zone is not a shear band but a mixed mode band with a strong mode I 

component. Various stages of crack growth are displayed in Figs. 9(a)–(d) and Figs. 

10(a)–(d), respectively, for both notch geometries. Also, in these figures the 

deformed meshes in the end of analysis are shown. 
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Fig. 9. Field quantity distributions and a deformed mesh showing the evolution of 

material failure for the A-notch geometry with D/b=0.016. (a) Void volume fraction 

distributions at P/2bσy=0.98,Δu2/l=0.020. This coincides with the first time that 

material instability is detected in the notch root. (b) Void volume fraction 

distributions at P/2bσy=0.72, Δu2/l=0.036. (c) Void volume fraction distributions at 

P/2bσy=0.39, Δu2/l=0.037. (d) Void volume fraction distributions at P/2bσy=0.016, 

Δu2/l=0.040. (e) Distribution of u2 at P/2bσy=0.016, Δu2/l=0.040. (f) Deformed 

mesh at P/2bσy=0.016, Δu2/l=0.040. The white finite elements in the void volume 

fraction contour plots correspond to f>0.2.  

 

 
 

Fig. 10. Field quantity distributions and a deformed mesh showing the evolution of 

material failure for the D-notch geometry with D/b=0.02. (a) Void volume fraction 

distributions at P/2bσy=0.92, Δu2/l=0.009. This coincides with the first time that 

material instability is detected in the notch root. (b) Void volume fraction 

distributions at P/2bσy=0.99, Δu2/l=0.016. (c) Void volume fraction distributions at 

P/2bσy=0.34, Δu2/l=0.020. (d) Void volume fraction distributions at 

P/2bσy=0.03,Δu2/l=0.024. (e) Distribution of u2 at P/2bσy=0.03, Δu2/l=0.024. (f) 

Deformed mesh at P/2bσy=0.03, Δu2/l=0.024. The white finite elements in the void 

volume fraction contour plots correspond to f>0.2.  
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Inclusion of weak discontinuity modes in the numerical procedure results in an 

increase in the computational cost that can be estimated. The CPU time to solve the 

case in Fig. 8(b) with D/b=0.02 is compared with that for the case without any 

discontinuity modes under the following conditions:  

(i) The solution named without any weak discontinuity modes was obtained using a standard 

B-bar quadrilateral finite element with four integration points.  
(ii) The solution with D/b=0.02 was obtained using six quadrature points in all finite 
elements even in those finite elements where the enhanced modes remain inactive 
throughout the analysis. The computing time for this calculation could obviously be reduced 
by only including the additional integration points in elements where they are needed. 
(iii) Both calculations were run for 2900 steps at which point a complete loss of load carrying 
capacity was reached. Also in both calculations one iteration per time step was needed. 
 
The required CPU time for computing the solution, with D/b=0.02, was 1074 s. 

While the CPU time for computing the solution with no weak discontinuity modes 

was 463 s. Thus, the solution with the enhanced modes required a factor of 2.3 

more CPU time. 

6. Concluding remarks 

We have presented a method with a finite thickness embedded weak discontinuity 

band for analyzing problems involving a complete loss of stress carrying capacity 

that may be preceded by a localization bifurcation. The particular constitutive 

relation used is one that models ductile fracture due to progressive cavitation. The 

post-localization response in the band is governed by the pre-localization 

constitutive relation so that a unified constitutive framework can give rise to a 

transition from a weak discontinuity to a strong discontinuity. The band thickness 

enters the formulation as a material parameter. Its value is independent of the 

finite element discretization which is in contrast to the cell model of Xia and Shih 

(1995) where the material length scale and the mesh size are strongly coupled. 

The numerical examples have illustrated the capabilities of the methodology. In 

order to focus on the basic numerical issues, we have neglected geometry changes 

in the formulation presented. In work in progress, the methodology presented here 

is being extended to a full finite deformation framework and being used to analyze 

ductile fracture problems. Some implementation details differ but, as in the simpler 

context considered here, the finite thickness band methodology provides a 

regularization which permits convergent localization solutions to be obtained that 

allow for the transition from localization to the creation of new free surface with a 

hydrostatic stress dependence as needed for modeling ductile fracture. We also 

emphasize that this methodology can be used with any rate independent 

constitutive relation that permits a complete loss of stress carrying capacity. 
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