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Abstract In recent years, big efforts have been ded-
icated to identify which are the factors with highest
influence in the energy consumption of residential
buildings. These factors include aspects such as
weather dependence, user behaviour, socio-
economic situation, type of the energy installations
and typology of buildings. The high number of fac-
tors increases the complexity of analysis and leads to
a lack of confidence in the results of the energy
simulation analysis. This fact grows when we move
one step up and perform global analysis of blocks of
buildings. The aim of this study is to report a new
methodology for the assessment of the energy per-
formance of large groups of buildings when consid-
ering the real use of energy. We combine two

clustering methods, Generative Topographic Map-
ping and k-means, to obtain reference dwellings that
can be considered as representative of the different
energy pat terns and energy systems of the
neighbourhood. Then, simulation of energy demand
and indoor temperature against the monitored com-
fort conditions in a short period is performed to
obtain end use load disaggregation. This methodolo-
gy was applied in a district at Terrassa City (Spain),
and six reference dwellings were selected. Results
showed that the method was able to identify the main
patterns and provide occupants with feasible recom-
mendations so that they can make required decisions
at neighbourhood level. Moreover, given that the
proposed method is based on the comparison with
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similar buildings, it could motivate building occu-
pants to implement community improvement actions,
as well as to modify their behaviour.

Keywords Building energy use . Energy building
simulation . Clustering analysis . Urban energy
refurbishment

Abbreviations
IEA-
EBC

International Energy Agency–Energy in
Building and Communities

EPBD European Union Energy Performance of
Buildings Directive

EUI Energy use intensity

Highlights

& Energy audits, tenant’s surveys and empirical tests
in households are performed

& Normalisation and selection of relevant variables
with respect to energy use are obtained

& Clustering of variables is carried out to characterise
the different groups of dwellings

& Refinement of energy simulation of representative
dwellings with monitoring data is presented

& Energy disaggregation and stock aggregation to the
whole district are calculated

& Results serve to evaluate the energy current situation
and related socio-economic impacts

& Potential impacts of energy-saving measures are
finally presented

Introduction

In recent years, there has been a growing interest in
understanding and analysing the real energy perfor-
mance of buildings. This interest has beenmainly driven
by the evidence of the high variability in the energy
consumption of buildings with very similar characteris-
tics (IEA-CBCS Annex 33 2010; IEA-CBCS Annex 53
2013). This high variability, along with the lack of
confidence in the estimation of real energy use, is at its
most relevant, and sometimes a critical factor, in pro-
jects oriented at the neighbourhood level (IEA-CBCS
Annex 33). At such level, the improvement in energy

efficiency is not only determined by urban and architec-
tural aspects but also by the upgrading of installations
and/or by changes in users’ behaviour.

This variety of factors increases the complexity of
analysis of the real energy use of buildings. This com-
plexity can be partly explained by defining the influenc-
ing factors in energy use of buildings. In the IEA-EBC
Annex 53, the main influencing factors of building
energy consumption were proposed to fall into six cat-
egories: (1) climate, (2) building envelope, (3) building
services and energy systems, (4) building operation and
maintenance, (5) occupant activities and behaviour and
(6) indoor environmental quality. The three first catego-
ries are related to variables influencing building energy
performance, and as defined by the European Union
Energy Performance of Buildings Directive (EPBD)
(Directive 2010/31/EU 2010), they are usually calculat-
ed by fixing standard conditions for the other three
categories, which are specifically related to actual build-
ing functions. As a consequence, the building energy
performance is calculated, assuming that all of the
analysed buildings operate under the same standardised
functioning conditions, as outlined in IEA-EBC Annex
33 (2010). This approach allows a coherent comparison
of the calculated building energy performance, but this
calculation is not strictly related to the real energy con-
sumption (IEA-CBCS Annex 53 2013). This type of
calculation allows obtaining the asset rating energy per-
formance indicators, in contrast to the operational rat-
ings, which are based on measured energy use, often
normalised for relevant variables like climate and level
of energy service (Goldstein and Eley 2014). When the
focus moves to the real use of buildings, all six catego-
ries of influencing factors must be taken into account.
The influencing factors could be seen as driving forces
for changing energy use and are of great relevance if we
extend the analysis from an isolated building to a group
of buildings or to a neighbourhood level.

A first approach of this new paradigm is shown in Li
et al. (2014), where a portfolio analysis and detailed case
studies of the energy use of 51 high-performance build-
ings around the world is performed. This study conclud-
ed that no single factor determines the actual energy
performance of these types of buildings and adding
multiple efficient technologies does not necessarily im-
prove building energy performance; therefore, an inte-
grated design approach that takes account of climate,
technology, occupant behaviour, and operations and
maintenance practices should be implemented to
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maximise energy savings in HPBs. Several models for
the integration of the influence of occupants’ behaviour
into building energy performance calculations have re-
cently been proposed. A number of studies (Nakagami
1996; Lopes et al. 2005; Yu et al. 2011) suggest that an
optimal approach to the quantification of the global
effect of occupants’ behaviour should be based on
knowledge extraction from monitored data and from
occupants’ surveys rather than on improving theoretical
building energy simulation models. Moreover,
neighbourhoods or large group of buildings often yield
less data (and are less frequently surveyed) than indi-
vidual buildings. This fact increases the uncertainty of
simulations due to the broad assumptions about input
data that must be often relied upon. The results of the
reviewed studies (IEA-CBCS Annex 33 2010; Yu et al.
2010; Yu et al. 2011) show that a combination of statis-
tical analysis with prediction models (both heuristic
simulation and inverse models), complemented in some
cases with monitoring data analysis, can be a powerful
tool for the development of energy urban actions aiming
at reducing the energy consumption in existing build-
ings. According to this approach, descriptive statistics
have been used to identify the most important factors
and reference members of the set, by grouping the
buildings/houses according to them (Räsänen et al.
2008; McLoughlin et al. 2012). The identification of
factors may help the better implementation of subse-
quent steps of the simulation of the current situation and
of energy improvement scenarios (Yu et al. 2011; Ueno
et al. 2006). In the same way, results of a framework to
model personalised occupancy profiles for representing
occupants’ long-term presence patterns presented in
Yang and Becerik-Gerber (2014) show that the
personalised occupancy profiles acquired through
time-series modelling, pattern recognition modelling
and stochastic process modelling outperform the fixed
design profiles currently used in building energy simu-
lations. A brief description of common bottom-up model-
ling techniques (statistical and building physics-based)
can be found in Kavgic et al. (2010) and Murray et al.
(2014). An example of statistical modelling is also de-
scribed in Yu et al. (2010), where a decision tree method
for building energy demand characterisation was pro-
posed and applied to historical data from a sample of
Japanese residential buildings. Taking the same statistical
approach, some studies about classification of buildings
according to the relevant factors and the different hourly
profiles of users have been carried out. The user behaviour

in these studies is usually represented as time-based pro-
files or patterns. An example of data mining applied to
investigate the behaviour of occupants adjusting their
thermostat settings and heating system operations in a
62-unit affordable housing complex can be found in Ren
et al. (2015). The results from this study affirm that data-
mining techniques are an effectivemethod to analyse large
data sets and extract hidden patterns to inform design and
improve operations. Decision trees were used to ascertain
occupant behaviour patterns. As a general rule in this
approach, clustering is used to group energy consumers
of similar characteristics (Chicco et al. 2003; Chicco
2012); to predict future energy demand; or to detect
atypical, usually undesired, behaviours (Räsänen et al.
2008; Tsekouras et al. 2008; Yang and Becerik-Gerber
2014; Li et al. 2010). Following with this approach, a
framework combining statistical analysis with two data-
mining techniques, clustering and association rules, was
employed to identify occupant behaviour patterns of win-
dow opening and closing in a natural ventilated office
building in Germany, using detailed time interval-
measured building data (Oca and Hong 2014). Results
showed that there were two typical window opening
office user profiles, one mainly physical environmental
driven and one mainly contextual driven. Conclusions
showed that, although occupant behaviour seemed to be
somewhat predictive and subject to the constraints or
motivating factors of thermal comfort and time manage-
ment, behavioural patterns are not only statistical relevant
driver-response conditioning clusters but also incorporate
the motivational dimension with typical window opening
habits.

On the other hand, and considering only the building
physic models at district level, the reported approaches
generally include the energy calculation of a sample of
houses considered to be representative of the
neighbourhood/district/nation stock, as described in
Swan et al. (2009). In some cases, simulation methods
were used to conduct building energy consumption
calculations, in order to identify the correlation between
building energy consumption and different influencing
factors (e.g. building relative compactness, building
control strategies) (Ourghi et al. 2007).

However, simulation methods do not perform so
well in simulating energy performance for occupied
buildings as compared to non-occupied buildings,
due to a lack of sufficient knowledge about occupant
behaviour patterns, which are normally very difficult
to parameterise. Moreover, the calibration of
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building simulation programs against real conditions
is a normally complex undertaking and the learning
process is time-consuming (Yu et al. 2011). Com-
plementary approaches which try to reduce the gap
between simulation and real consumption are based
in using data-mining techniques to identify patterns
of use of usual occupancy schedules, or working
profiles that can be used as input to current building
energy modelling programs, such as Energy Plus or
IDA-ICE, to investigate impact of occupant pres-
ence on design, operation and energy use in office
buildings (Oca and Hong 2015). The main goal of
the current study is the assessment of the energy
performance of medium and large groups of build-
ings when aiming at eliciting common characteris-
tics of building/dwelling typologies and the main
factors influencing in their energy consumption. Im-
proving the understanding of these influencing fac-
tors will allow us not only to improve the accuracy
of prediction or classification methods but also to
incorporate the socio-economic impact in decision
making for urban refurbishment projects. In order to
achieve this objective, the paper is structured as
follows: first, the methodology is described as a
combination of innovative and standard statistic
methods for clustering (Generative Topographic
Mapping and k-means), together with simulation

tools that are employed to obtain realistic assump-
tions about user behaviour in the main representative
groups of dwellings of a neighbourhood. These as-
sumptions enable the estimation of present energy
consumption at the level of individual properties as
well as at the neighbourhood level. Then, this ap-
proach is implemented in a case study involving a
district of the city of Terrassa (Spain), including an
estimation of the potential impact of improvement
measures. Finally, a discussion of the appropriate-
ness of the approach is also provided.

Methodology

The analytical framework involves both quantitative
and qualitative household information (inputs), the steps
of the working process (process) and the results obtain-
ed at each step (outputs). The developed methodology is
presented in Fig. 1; the quantitative data set comprises
electricity and gas bills, complemented with electricity
consumption and indoor temperature measurements
over 15-min periods, as well as results of blowing door
tests. The qualitative data set includes the household
occupants’ responses to surveys and interviews carried
out by the researcher team.

Fig. 1 Global view of the working process
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Data acquisition and treatment

A study entitled BDiagnostic and analysis of energy
improvements in low-income districts in Catalonia re-
gion: case study in Can Jofresa’s neighbourhood
(Terrassa)^ was carried out by CIMNE from May
2008 to May 2010. The investigated neighbourhood is
located in the city of Terrassa (Barcelona, population
215,517, as of 2014), in NE Spain, and consists of 12H-
shaped 15-story tower blocks (60 dwellings per tower,
720 households in total (see Fig. 2). The tower had the
stairs and lifts in the centre. The apartments’ distribution
is always the same for the whole building.

For this project, the data was specifically collected
following two phases of data acquisition. A first stage
based on field surveys of energy-related data, monthly

energy bills (gas and electricity) and equipment inven-
tory (number of appliances with their nominal power),
as well as an exhaustive list of the lighting systems, were
carried out in those occupied dwellings; inhabitants
accepted visits to fill surveys and to supply their energy
bills (166 dwellings). The rationale behind these surveys
was to obtain an overall vision of all the aspects of the
household related to energy that can be parameterised
(as indicator, numeric value or categorical value). There
were defined 43 questions with predefined answers to
choose. These 43 questions were classified in those
sections: (i) general information about the household,
(ii) economic data (incomes), (iii) energy and water
consumption, (iii) data about perception of energy con-
sumption, (iv) comfort and (v) time at home and use of
appliances.

Fig. 2 General site view (left)
and pilot tower detail (right)
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In parallel, some field measurements to estimate U
values of walls, windows, thermal bridges and doors
were obtained from ad hoc tests and measures per-
formed in one of the tower blocks. Different procedures
were carried out depending on the construction element
type: (a) for external walls (façades), the construction
was analysed by means of drilling a hole in an unoccu-
pied ground-floor apartment; (b) regarding the internal
floors, ground floors and roof, it was assumed that they
consisted of the typical construction used in the 70s for
this kind of social housing project; (c) regarding the
internal walls and partitions, and internal and external
doors, a specific construction was assumed after an
external visual checking; (d) infiltration rates of the
whole house were measured by means of a blowing
door test, in four occupied dwellings with the different
types of windows; and (e) the location and surface of
thermal bridges were identified by means of an infrared
camera (and highU value was assigned to this surface of
the wall).

A second step of data acquisition was performed
into the six reference dwellings. In this second
phase, the monitoring of indoor temperature (mea-
sured in one bedroom and in the living room),
electricity half hourly consumption (monitoring
equipment installed next to the meter) and outdoor
temperature (meteorological station in the roof of

the building) was carried for two periods of the year
(3 months both in summer and in winter). Table 1
shows the survey items and corresponding investi-
gation methods.

Data reduction and aggregation were then per-
formed to obtain a more parsimonious representation
of the original data. Normalisation of the yearly
energy consumption per unit of surface (kWh/m2 ·
yr) was applied (called energy use intensity (EUI)).
An aggregation was carried out in some of the
surveyed items for a more clear understanding of
the variables under analysis. For instance, questions
related to the type of window frames, type of glass
and degree of windows tightness were grouped in a
categorisation of the quality of windows (1 = very
poor, 2 = poor, 3 = good, 4 = very good). This pro-
cess of related question grouping was also carried
out for the categorical answers, in order to have a
more understandable classification. The categories
of variables in Table 2 were selected according to
their relationship with the energy consumption. For
instance, the type of heating is defined by their
energy efficiency, so that 1 is the lowest and 4 is
the highest. The same with windows, where Bvery
poor^ is value 1, corresponding to non-isolated glasses,
and 4 is double glazed. At the same time, we decided
to change the order of the numbers of categories

Table 1 Investigation items and methods

Method Number
dwellings

Survey
items

Energy
sources

Measuring
time

Questionnaire survey 166 Lifestyle, utilisation of equipment,
annual income and relevant
socio-economic information

None Once only

Inquiring survey
and visit

166 Other issues, such as basic
building information
(type of windows,
number appliances)

None Once only

Monthly energy bills
(last 24 months)

59 Monthly and yearly final
energy consumptions

Electricity
natural gas

Every month or 2 months
(depending on the house)
for the last 2 years

Field measurement
-Hole in façades
-Infrared camera
-Blowing door test

1 tower,
6 dwellings

Estimation of U values
U values and surface
thermal bridges

Infiltration rate ACH (1/h)

Once only

Monitoring data
-Indoor temperature
and humidity

-Méteo station
-Electric consumption

1 building
6 dwellings

Comfort conditions and
reference indoor
temperature (two rooms)

Outdoor temperature
Hourly electric consumption

None
Electricity

Measured every 15 min.
Two periods of 3 months
(summer, winter)

Measured every 15 min
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for some variables in order to avoid the same linear
dependency (from lower to upper) with energy con-
sumption (EUI) for all variables. This is the case of
variable X9, where Bnever use AC^, which is the most
energy efficient option, is the lowest (see Table 2).

A close scrutiny of the data, starting by eliminat-
ing variables linked to questions with unclear an-
swers, or those not directly related to energy con-
sumption was carried out. Different data gap-filling
procedures were applied in case of missing data
depending of the type of variables: (i) for monthly

energy consumption data, the gap filling procedure
was to take the monthly consumption of the same
month (or bimonth) of previous year as the first
estimates, taking into account that in Spain, it was
usual at the time to measure every 2 months or even
more; (ii) in case of categorical variables related to
perception of energy consumption, comfort and use
of appliances, missing data was filled with the op-
tion equal or equivalent to Bdo not know^ or with
the most usual answer, like Bwhole day^ Bno
thermostat^, Bmedium temperature^, ^do not care^

Table 2 List of variables selected in this study to analyse their influence in energy consumption

Code Relevant Name Category Range value Value

X1 Yes Space heating Heating use Yes/no (1-0)

X2 Type of space heating Heating use Electric stove/gas stove/gas
boiler/heat pump

(1 to 4)

X3 Type of windows Thermal comfort Very poor/poor/ normal/good (1 to 4)

X4 Yes Number of months heating Thermal comfort
and heating use

Number (month) (0 to 6)

X5 Yes Heating schedules Thermal comfort
and heating use

Little/morning-afternoon/lunch-
dinner/afternoon/night/all day

(1 to 6)

X6 Yes Degree of comfort Thermal comfort Very low, low, medium, high (1 to 4)

X7 Yes Number of rooms unheated Thermal comfort All/all bedrooms/one bedroom/only
dining room/only kitchen/none

(1 to 6)

X8 Air conditioning (AC) Cooling use Yes/no (1,0)

X9 Use of AC Cooling use Never/occasionally/few/
noon-night/always

(1 to 4)

X10 Number of adults
and children

Socio-economic Number (person) (1 to 6)

X11 Yes Total monthly income Socio-economic Number (€/month) 1160–6000

X12 Yes Degree of good
practices in heating

User behaviour Little awareness/normal
awareness/high awareness

(1 to 3)

X13 Yes Use of awnings User behaviour Much use/none (1-0)

X14 Type of cooking facilities Kitchen Gas/ceramic hob (1-0)

X15 Yes Type of fridge Appliances Large/medium (1-0)

X16 Use of washer User behaviour Very inefficient/inefficient/normal/
efficient/very efficient

(1 to 5)

X17 Yes Number of appliances Appliances Number (units) (0–27)

X18 Yes Switch off appliances by night User behaviour Yes/no (1,0)

X19 Number of energy-saving lamps Lighting Number (units) (0 to 20)

X20 Number of fluorescent tubes Lighting Number (units) (0 to 5)

X21 Type hot water system Hot water Electric storage, NG heater,
butane gas heater

(1 to 3)

X22 Yes Shower time Hot water Number (minutes) (5–40)

X23 Decrease of consumption Awareness Yes/no (1-0)

X24 Yes Number of appliances
to switch off

User behaviour

X25 Time at home Socio-economic Morning, morning and night,
evening, all day, no routine,
lunch and dinner, night

(1 to 6)
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and Bno routine^; and (iii) for numerical values (i.e.
economic data, number of people, data of the house-
hold), a second round of phone questionnaires was
performed focused on this missing data. All house-
hold with gaps and with no second round of ques-
tionnaires were rejected. The scrutiny of the 166
surveys revealed that only 146 sets (from 166) of
socio-economic data and 51 (from 59) sets of energy
monthly data were complete. As a result of this
process, a data set of 25 variables (from 43) for
146 dwellings was obtained (see Table 2).

Subsequently, a data transformation was applied
to variables shown in Table 2 to deal with the
differences in scale and in categories of the ob-
tained data set. Specifically, min–max normalisa-
tion was performed to scale the values so that they
fell within a predetermined range. This technique
of linear normalisation has the advantage of pre-
serving the relationships between the original data.
In this study, the new range is defined as (0, 1).

For the second phase of data acquisition (only
in six reference dwellings), we preceded to the
estimation of the basic parameters for the energy
simulation of the hourly thermal demand of those
reference dwellings. Other parameters such as
number of people, internal gains, use of night
ventilation, comfort temperature and schedule time
at home were estimated according to relevant var-
iables of each cluster and then refined with the
monitoring process. As outlined above, the adjust-
ment of an overall infiltration rate for each dwell-
ing was defined according to blowing door tests

Selection of relevant variables

After typification of the 25 initial variables, two
approaches have been selected to obtain the rele-
vance of the variables, first the relevance with
respect to the EUI and second the relevance of
correlations between variables. For the first item,
the relevance corresponds to a weighting scheme
that returns the squared value of the correlation
between variables and the EUI as the attribute
weight. In the correlation analysis of this project,
correlation Pearson’s coefficient is used to assess
the strength of the linear relationships between
variables and EUI. Correlation analysis in this case
is performed using calculation of squares of corre-
lations and so we can verbally describe the

strength of the correlation using the guidelines
firstly proposed by Cohen (Cohen 1988) and mod-
ified by Evans (Evans 1996) that are widely use in
behavioural science. Evans proposed Bas a
convention^ for the absolute value of r, next
guidelines (0–0.19) Bvery weak^, 0.20–0.39
Bweak^, (0.40–0.59) Bmoderate^, (0.60–0.79)
Bstrong^ and (0.80–1.0) Bvery strong^. In our
study, we are looking for a classification of dwell-
ings based only on variables that have an impact
in energy consumption, so that we are interested in
variables showing at least a weak linear relation-
ship with EUI; therefore, the selected threshold is
less to 0.2 to reject variables.

The second approach is related to the sample size
and the relationship between variables. It should be
avoided to use an abundance of clustering variables
with high correlation in the clustering analysis, since
specific aspects covered by these variables will be
overrepresented in the clustering solution (Mooi
et al. 2014). In a subsequent step, the correlation
matrix is calculated in order to quantify the rank
correlations between variables. From previous pro-
jects, we can also affirm that absolute correlations
with above 0.80 are always problematic, so that a
threshold value of 0.8 was set as a minimum crite-
rion to consider two variables as highly correlated.
These two processes yield a selection of the most
relevant (typical) variables (13 variables), as it can
be seen in Table 2.

Data clustering with the Generative Topographic
Mapping and k-means algorithms

Clustering is a process in which we aim to infer data
grouping structure that is unknown beforehand. It is
often used as an exploratory strategy that attempts to
partition the data into groups that are internally
homogeneous and different enough from other
groups. Unlike in classification, no groups are
predefined and there is no explicit modelling of the
relationship between data and class labels. In this
study, we combine two clustering methods, namely
Generative Topographic Mapping (GTM) (Bishop
et al. 1998) and the well-known k-means (Jain
2010), in the exploratory process of data clustering.
GTM is chosen in this study because it simulta-
neously generates a data partition for clustering
and an intuitive visualisation of the data in 2-D. It
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is a probabilistic alternative to the well-known self-
organising map (SOM) (Kohonen 2001), which has
successfully been applied to energy use profiling.
GTM is preferred to the more standard SOM in this
study because its probabilistic definition ensures the
convergence towards a minimum of a properly de-
fined error function, as well as the adaptive estima-
tion of the optimum values of some of its variables.

Formally, GTM is a non-linear latent variable
model (Bishop 1998) of the manifold learning fam-
ily, and as such, data are modelled through a low-
dimensional manifold embedded in the data space.
Such manifold is defined as a mesh whose knots are
the centres of probability distributions (usually
Gaussians) that become prototype representatives
(cluster centres) of groups of data. In different var-
iants, GTM has been used for missing data imputa-
tion (Vellido et al 2007, 2011), outlier detection
(Tosi and Vellido 2013) or time series analysis
(Tosi et al. 2014), as well as applied in areas such
as medicine (Cruz and Vellido 2011) or e-learning
(Etchells et al. 2006), amongst others.

The GTM is mathematically defined as a non-
linear mapping from points u in a low-dimensional
latent space (used for visualisation) onto the proto-
types y residing in data space, with a functional form
described as y = Φ(u)W, where Φ is a set of M basis
functions Φ(u) = {ϕ1(u),…, ϕM(u)} andW is a matrix
of adaptive weights that defines a specific mapping.
The probability distribution for data point x in a data
space X = {x1,…, xN} with x ∈ℜD, being generated
by a latent point u, is defined as an isotropic Gaussian
noise distribution with common inverse variance β,
from which the likelihood of the model can be de-
fined. The adaptive parameters of the model (W, β)
can then be estimated through maximum likelihood
using, for instance, the expectation-maximisation
(EM) algorithm (Dempster et al. 1977). In order to
use GTM for visualisation, the relation between each
data point x and each latent space point u is quanti-
fied as a conditional probability p(uk|xn) and its cal-
culation is a by-product of the maximisation step of
EM. This probability is known as the responsibility
rkn of each latent point uk for the generation of each
data point xn. Each data point xn can therefore be
visualised by its assignment to the location in the
latent space (to the cluster), where the mode of the
corresponding conditional probability is highest; that
is, unmod ¼ argmaxuk rkn

This type of visualisation, known as mode projection,
was used in the experiments reported in the
BExperimental results^ section. The fact that clustering
is somehow subordinated to visualisation in GTMmeans
that the resulting clustering solution is often too detailed
for practical purposes. To overcome this limitation, the
well-trodden k-means algorithm, which, as SOM, has
been used for energy use profiling, was used to cluster
the prototypes resulting from GTM. K-means aims to
partition our GTM prototypes {uk}k = 1

K into L/L ≤K clus-
ters Si, in such a way that the within-cluster sum of

squares argminSi ∑
L

i¼1
∑
u∈Si

u−μik k 2, where μi are the

second-stage cluster centres, is minimised.
This becomes, de facto, a two-stage clustering proce-

dure; first, the original household data are clustered by
GTM, which defines prototypes as cluster centres, and
second, k-means clusters these prototypes to end up with
a more parsimonious final cluster partition that can be
interpreted in terms of the original data variables with the
assistance of the GTM visualisation maps.

Definition of reference dwellings

The definition of reference dwellings is then carried out
by identifying those which meet the following two main
criteria: first, having the values of relevant variables
closest to the values of the centroid of each cluster in
terms of Euclidean distance and second, having the
monthly EUI (kWh/m2 · month) of gas and electricity
closest to the median monthly value of each cluster, also
in terms of Euclidean distance.

Thermal simulation and refinement of the reference
dwellings

The methodology for this step of simulation and refine-
ment was mainly based on the American Society of
Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) recommendations (AHSRAE 1999) for en-
ergy modelling and calibration of existing buildings. It
was considered that following the ASHRAE’s recom-
mendations [8] was the best choice for the project in
order to follow widely recognised procedures when
working with building’s energy-related issues. Never-
theless, the method did not follow exactly the mentioned
suggestions for energy modelling and calibration, as it
needed to be adapted to the specific characteristics of
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this project (ASHRAE’s recommendations are more
focused in non-residential buildings).There was mainly
two differences: (i) occupation schedule, in the present
project, an occupancy schedule was first derived from
results of data analysis of surveys (see BDefinition of
reference dwellings^ section). Afterwards, when the
monitored indoor temperature and hourly electrical en-
ergy consumption monitoring data was available, an
accurate occupancy schedule was defined (see BEnergy
simulation and refinement of the reference buildings of
each cluster^ section), (ii) the project’s parameter for
model acceptance, in contrast to proposed in previous
research (Pedrini et al. 2002) and in ASHRAE method-
ology, where calibration was made against monthly
energy consumption; in the present project, the model
calibration and the simulation is made against the indoor
hourly temperature. This difference is mainly due to the
fact that the calibration of the dwellings’ existing sys-
tems was not our goal. In our case, it was intended to
characterise the buildings’ fabric, the occupancy and its
related parameters of energy use, in order to obtain a
more realistic description of the energy loads of the
building. In other words, for this project, the dwellings’
inside temperature and relative humidity were moni-
tored and a meteorological station (measuring tempera-
ture, relative humidity and solar radiation) was installed
on the building’s roof. Our aim was to be able to use the
hourly inside temperature as the parameter for model
evaluation and calibration. Given the specific character-
istics of the project, it was considered that this could be a
more accurate analysis for model calibration. Neverthe-
less, ASHRAE’s premises for model acceptance were
taken as reference; simulation results with accuracy
within 10 % of real measured data were considered
adequate.

In order to check the real indoor conditions in the
selected reference dwellings and to calculate their relat-
ed heating and cooling demands, a thermal simulation
was performed with Energy Plus software (Energy Plus
2009).The measured indoor temperature, electricity
hourly consumption and outdoor temperature in the
representative dwellings (see Table 1) were chosen as
reference for refinement of the energy demand simula-
tion. In the current project, two different dwellings, each
with its specific characteristics, were firstly modelled,
one of them having no heating or cooling systems (non-
AC or non-air-conditioned residence or dwelling from
now on) and the other one having both (AC residence or
dwelling from now on). From these results of

calibration, four more dwellings corresponding to the
reference dwellings were then modelled to obtain their
heating and cooling loads. The procedure is based on
four consecutive steps: (i) first, generation of the basic
models for the two apartments with information from
building design, ad hoc tests (see BData acquisition and
treatment^ section) and results from surveys; (ii) mon-
itoring and calibration of the non-AC residence through
the collection of more detailed data from energy audits
and indoor T monitoring temperature (two periods of
monitoring); (iii) monitoring and calibration of the AC
residence through the collection of more detailed data
from energy audits and hourly indoor T and hourly
electricity consumption; and (iv) then, to obtain the
more realistic values of comfort conditions (T set point
for heating and/or cooling) from these calibration and
proceed by simulate for the whole year, the heating and
cooling need to reach these comfort conditions.

Results of the different steps of the procedure are
shown in BEnergy simulation and refinement of the
reference buildings of each cluster^ section, where all
parameters for simulations of the six reference dwellings
are summarised. Some of these parameters, like U
values, infiltration rate (ACH) and type of windows,
were obtained from ad hoc tests and measures as ex-
plained above (see BData acquisition and treatment^
section). The adjustment of the other parameters such
as natural ventilation rate, use of shading devices, in-
door set point temperature, hours/day being at home,
internal energy demand (number of electrical appli-
ances, nominal power and artificial lighting) and use of
heating and AC (in air-conditioned dwellings) were
preliminary estimated according to relevant variables
of each reference dwelling of each cluster and subse-
quently changed (iterative process) to obtain the mini-
mum relative error between Tindoor and Tsimulated for the
monitoring period (summer and winter).

Extrapolation of results for the entire neighbourhood

Extrapolation of results and calculation of disaggregated
energy consumption for the whole district were carried
out considering a tower of 60 dwellings with the same
distribution of types of households as those obtained
from the clustering procedure as a pilot. This pilot tower
was considered to be an appropriate representative of the
12 towers of the district. A proportional aggregation
according to the surface area of dwellings in each cluster
was implemented to estimate the total energy demand of

368 Energy Efficiency (2017) 10:359–382



the neighbourhood. We used the so-called weighting
coefficient, which is the number of buildings of the
stock which are represented by each archetype building,
as presented in Mata et al. (2014).

Experimental results

Data collection and preprocessing

As explained in BData acquisition and treatment^ sec-
tion, a close scrutiny of the data from the 166 surveys,
for which 59 have a yearly period of monthly energy
data, revealed that only 146 sets of socio-economic data
and 51 sets of energy monthly data were complete. As
previously explained, aggregation and data transforma-
tion of related questions from surveys were carried out,
resulting on a data set of 25 variables for the 146
dwellings. Table 2 shows the complete list of variables
extracted from the questionnaires.

Selection of influencing variables

Correlation between variables and EUI was calculated for
the 51 samples with monthly bills, under the assumption
that this result will apply to the rest of samples, as ex-
plained in BData acquisition and treatment^ section. The
covariance matrix was then calculated over the remaining
variables of the 146 dwellings. This resulted in a selection
of 13 variables for clustering (markedwith yes in Table 2).

From those variables (see Table 1 for coding), five
are related to heating use and comfort (X1, X4, X5, X6 and
X7), two are related to electricity consumption (X15,
X17), four to energy behaviour and awareness (X12,
X13, X18 and X24), one to the economic situation (X11)
and one to hot water consumption (X22). Note that none
of the variables are related to summer comfort, air
conditioning or the kitchen. The reason for this is that
only a few dwellings have air-conditioning systems
(around 25 % of the total) and their use is low (as will
be confirmed in the next section).

Two-stage clustering results

The selected data (13 relevant variables from 146
dwellings) underwent a two-stage, fully unsuper-
vised, clustering process, in which GTM was first
used to obtain a loose data partition into natural
groups with a focus on exploratory visualisation.

For the experiments reported in this study, the visu-
alisation grid of GTM latent nodes was fixed to
square layouts of 10 × 10 nodes (i.e. 100 constrained
mixture components) Figure 3 (right) shows the 2-D
representation of the 146 13-D points on the GTM
2-D visualisation space, according to their mode
projection as described in BData clustering with the
GTM and k-means algorithms^ section. Each square
corresponds to one of the latent points in the 10 × 10
grid, and its relative size corresponds to the ratio of
cases (dwellings) assigned to that point. The differ-
ent square sizes and the empty spaces in some areas
are a clear indication that the analysed data have
some intrinsic cluster structure. The k-means algo-
rithm was then applied to the obtained prototypes
(the functional images of the latent points) in order
to further group the different visualisation regions
into a specific number of clusters.

The adequate number of clusters must be estimated
according to some criterion. In our experiments, we
used the silhouette index, which provides a succinct
graphical representation of how well each data item (a
dwelling in our experiments) lies within its cluster. It
was first described by Rousseeuw (1987), and a value
near 1 indicates the simultaneous near-maximum
levels of intra-cluster homogeneity and inter-cluster
heterogeneity, whereas a value near −1 indicates the
corresponding near-minimum ones. This index is a
way to quantitatively compare different clustering
solutions, that is, partitions of the same data that
differ in the number of clusters, with the best solution
yielding the highest silhouette value. In the case of
our experiments, a value of 0.3 was the highest and it
corresponds to a six-cluster solution, which becomes
our partition of choice. In real data sets of relatively
small size (in the sense that only a small number of
cases are available; in our case, only 146), clusters are
bound to be, on average, smaller and less internally
homogeneous, with individual atypical data or out-
liers having a higher impact on the index than when
large data samples are available. For all these reasons,
we reckon that a value of 0.3 is acceptable. The
distribution of colours in the map of Fig. 3 (right)
reflects the results of this second stage of the cluster-
ing process. Importantly in terms of usability and data
consistency assessment, the six cluster solution is
shown to partition the data in mostly self-contained
independent map areas with minimal cluster overlap-
ping and very little cluster discontinuity.
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Reference maps and feature-based interpretation

Visualisation is of little use unless we make it interpret-
able (Vellido et al. 2011). In order to make practical sense
of these six clusters, an interpretation on the basis of the
original 13 variables is needed. GTM provides such
interpretation through the so-called reference maps,
shown in Fig. 3 (left). Each reference map displays a
variable’s relative contribution over the representation
map (and thus how it contributes to the clustering solution
as a whole). We can do this because each of the 100
elements of these grids corresponds to one of the GTMs
generated in the first-stage clusters and, as a result, to the
reference vector (centroid) of each of these clusters. We
can therefore visualise the distribution of each of the
elements of these vectors (which corresponds to each of
the data variables) over the GTM reference map. Some-
times, the distribution of values of the variables over the
reference maps at least partially explains the distribution
of second-stage clusters, so that the latter can be summar-
ily described according to the former.

The reference maps are coded in grey scale, from
black (lowest values) to white (highest values), allowing
a straightforward interpretation. It can be seen, for in-
stance, that the reference map relative to variable X1

(space heating), which reflects whether the household
has central space heating system (yes) or stoves (no), is
neatly partitioned vertically according to low/high
values. Its correspondence with the GTM map in Fig. 3

(right) reveals that almost all households with only
stoves (electric or gas) are located on the left-hand side
of the map, which corresponds strictly to cluster 3 (in
yellow). This cluster also seems to be neatly
characterised by low values (black colour on the left)
of X4 and X5 (months of heating and heating schedule),
and therefore, variable X1 dominates the first level of the
partition. Similar exploratory interpretations can be car-
ried for other clusters using the reference maps.

Through visual interpretation, different variables
seem to contribute in different degrees to explaining
the final cluster partition in Fig. 3.

Characterisation of groups of households

Beyond visual exploration, we would like to quantify the
specificity of the clusters according to actual characteris-
tics. For this, we could display, in the categorical vari-
ables, the percentage of households that exhibit a specific
categorical value, whilst, for real-valued variables, we
could display the quartile values of their distribution in
each of the identified clusters. We select from the 13
relevant variables used for clustering those variables that
are highly distributed over the clusters. The selected nine
Brepresentative variables^ are X2 = type of space heating,
X4 = number of month heating, X5 = heating schedule,
X7 = number of rooms unheated, X11 = total month in-
come, X13 = use of awnings in summer, X17 = number of
appliances and X18 = switch off appliances by night (see

Fig. 3 a, rightGTM 10 × 10 cluster map, blue cluster 0, light blue cluster 1, green cluster 2, yellow cluster 3, red cluster 4 and brown cluster
5. b, left Reference maps of single 13 variables
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Fig. 4). It should be noted that, rather than selecting X1,
which can only discriminate those households without
centralised space heating, we have selected X2 as repre-
sentative variable (it is in fact highly correlated to X1)
because households without centralised space heating
will be determinant in making decisions about energy
improvements at building level due to their low comfort,
consumption and low incomes (they represent 10 % of
the whole analysed sample).

Beyond the subset of relevant variables, there are
others that are unevenly distributed over the different
clusters. Due to this different distribution over groups,
they could also be considered when trying to understand
the characteristics of groups. This second set of vari-
ables could be denoted as complementary features of the
different groups of households and might be considered
as Bcomplementary variables^. It includes X3 = quality
of windows, X8 = type of AC, X9 = use of AC,
X10 = number of people and X26 = time at home (see
Fig. 5, top). Additionally, the distribution of the yearly
aggregatedmonthly bills (gas and electricity collected in
some of the households) can be obtained for each cluster
(Fig. 5, bottom). A description of the main categories of
the representative and complementary variables, accord-
ing to the analysis of graphics in Figs. 4 and 5, together
with the mean values of energy consumption, income
and energy costs for each cluster are shown in Table 3.
This table can be seen as a characterisation of the groups

of households. In this table, we can see that 12 variables
have finally been selected (both representative and com-
plementary) as the main representative to characterise
the different clusters. In the practical description of
groups, we have also included the number of people
living at home but only to increase the description of
each group.

In relation to energy consumption, Table 3 shows the
mean consumption of each cluster as well as the stan-
dard deviation. We can affirm that households of people
spending long periods at home (mainly elderly people)
but in poor comfort conditions (cluster 5) and small
families spending very limited time at home (cluster 3)
are representative of the groups with lowest-energy
consumption rates (both gas and electricity). The type
of space heating in cluster 3 (only gas stoves) and the
little use of heating and small number of rooms usually
heated in cluster 5 (only bedrooms in the majority of
dwellings), together with the small number of appli-
ances (6 and 8, respectively, to cluster 3 and cluster 5),
are the main influencing factors that explain these low-
energy consumptions. In contrast, cluster 4 represent the
highest-energy consumption. This group is mainly
formed by families with more people (usually adults
with children), many rooms heated (70 % of dwellings
have only dining room and kitchen unheated), intensive
use of heating (although average is 2 months of heating,
the majority of dwellings use heating from half to all

Fig. 4 topDistribution of relevant categorical variables for each cluster and bottommaximum, minimum, median and 25 and 75% quartiles
of continuous variables within each cluster
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day), high number of appliances (12 units) and medium
time spent at home

Dwellings in cluster 2, cluster 1 and cluster 0 show
very similar gas and electricity consumption rates, due to
the similarities type and use of heating system, time spent
at home, income and comfort (number of rooms unheat-
ed). The small increase in energy consumption observed
for cluster 2 over clusters 0 and 1 is due to small varia-
tions in combinations of these variables related to energy
use (mainly use of heating, income and comfort).

The average income per family ranges from 2300 to
3.150€ per month (in year 2008), as it is also shown in
Table 3. The influence of differences in monthly income
on energy consumption is only important at the extremes
(cluster 4 with highest consumption and income and clus-
ter 3 with lowest), where this difference leads to different
type and use of their heating energy systems, as well as
different number of appliances. That is to say, dwellings in
cluster 3 do not have central heating, and only have 6
appliances (in average) and dwellings in cluster 4 use
intensively their central heating system (at least half day)
and have 11 appliances. An important aspect that is also
highlighted in Table 3 is that these high differences in
energy consumption are not reflected in same differences
in energy cost, due to the structure of energy tariffs in
Spain, where the fixed terms are very high (especially in
electricity). All groups spent around 3 % of their monthly

income in energy consumption. However, this percentage
may increase up to 11 % for cluster 3 and cluster 5 in
months of high-energy consumption (winter).

Differences of energy consumption within clusters

In order to examine the variability in annual gas and
electricity consumption within each cluster, the yearly
EUI of gas and electricity was normalised and plotted
(see Fig. 6). The normalisation is based on dividing all
the EUI of dwellings by the median value in each cluster,
thus highlighting the variability and allowing the EUI to be
plotted together on the same scale. As shown in Fig. 6, a
significant variability that ranges from close to zero to
about one time upon the mean value is induced by some
aspects of the user behaviour that have not been identified
throw the questionnaires. Since the energy consumption
(separately electricity and natural gas) in each building is
normalised by the mean value of all the buildings in that
cluster, the values range from zero to zero point five as
many as the mean value was considered to be an insignif-
icant variation. Accordingly, the threshold value for sig-
nificant variation is defined as 0.5. Such important vari-
ability in electricity consumption implies that there still
remains great potential for energy saving by improving
occupant behaviour. Contrarily, considering the relatively
narrow range of cluster 4 (gas consumption) and cluster 5

Fig. 5 top Distribution of complementary categorical variables within each cluster and bottom maximum, minimum, median and 25 and
75 % quartiles of EUI of gas and electricity
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(both electricity and gas), there could be little expectation
of reducing energy consumption in these clusters via
improving occupant behaviour.

Selection of reference dwellings

The next step of the analysis consists on the characteri-
sation of the reference dwellings that can represent each
cluster. This task was carried out by selecting those
dwellings that complied with the two criteria previously
defined in BDefinition of reference dwellings^ section
(minimum Euclidean distance of all relevant variables
and monthly energy consumption to the centroid of each
cluster). An example for cluster 0 of visualisation of the
monthly EUI values of natural gas and electricity (sepa-
rately), with their corresponding median value, is shown
in Fig. 7. The dashed grey line corresponds to the median
value, whilst the red line corresponds to the reference
building. It can be seen that the monthly distance between
the median and the selected reference dwelling is accept-
able, as significant differences are identified only in
2 months. According to this procedure, the ID of the six
selected reference dwellings, together with their related

energy consumption, were obtained (see Table 4). The
results of corresponding variables of each reference
dwelling are summarised in Table 5.

Energy simulation and refinement of the reference
buildings of each cluster

As outlined above, the first step of simulation consisted in
generating a first model of the two apartments (basic
models of an air-conditioned and a non-air-conditioned
dwellings, corresponding to cluster 3 and cluster 4 refer-
ence dwellings). The apartments’ distribution was always
the same. In the model, every zone represented one room
in the residence in order to obtain accurate inside temper-
ature values (see Fig. 8). The rest of the dwellings in the
building were used only for shadowing simulation pur-
poses, as well as the rest of the buildings in the district. In
the base case, all walls between dwellings as well as
ceilings and floors are considered to be adiabatic. The
simulations are done firstly with free temperature mode,
and then fixing standard criteria of T set point (21 °C in
winter and 24 °C in summer), the rest of parameters like
occupancy rates or internal gains are estimated according

Fig. 6 Box plots of the normalised EUI of gas (left) and electricity (right) in each cluster

Fig. 7 Monthly gas and electricity consumption of households in cluster 0
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to results of clustering or to usual values in Catalonia
region. In the AC dwelling case, the relative error between
the simulated and measured indoor temperatures (see
BThermal simulation and refinement of the reference
dwellings^ section) was higher than 10 % for the
46.85 % of the monitoring time. The non-AC residence’s
basic model also gave us an error bigger than 10 % for the

48.93 % of the total monitoring time. The big differences
found between real and simulated inside temperatures
showed that the models were not realistically representing
the two studied dwellings. These results led us to step 2,
which would provide us with more detailed information
about the dwellings’ inside conditions and its occupants’
habits

Table 4 Yearly EUI of gas and electricity and energy thermal demand for cooling and heating of reference buildings

Group Percent of
dwellings

Surface
(m2)

ID reference
dwelling

Gas consumption
(kWh/yr · m2)

Electricity
consumption
(kWh/yr · m2)

Heating demand
(kWh/m2 · yr)a

Cooling demand
(kWh/m2 · yr)b

Cluster 0 22 % 89 38 57 27 38 0

Cluster 1 18 % 89 44 53 46 36 −16
Cluster 2 21 % 65 139 64 42 44 −10
Cluster 3 10 % 65 123 32 23 21 0

Cluster 4 11 % 89 32 93 68 63 -17

Cluster 5 19 % 65 127 37 27 24 0

aHeating demand is obtained by simulating with an ideal heating system that covers the defined equivalent winter T set point
b Cooling demand is obtained by simulating with an ideal AC system that covers the set point T when the household has air-conditioned
system

Table 5 Input data values for the air and non-air-conditioned calibrated dwellings

Description Non-AC dwelling AC dwelling

External walls (U value) 1.54 W/m2K 1.54 W/m2K

East Façade openings
(double glazing; U value)

3.23 W/m2K 3.23 W/m2K

Internal façade openings
(single glazing; U value)

6.14 W/m2K 6.14 W/m2K

Thermal bridges 4.51 W/m2K 4.51 W/m2K

Infiltration rates (empirical
from blow door test)

0.40 ACH 0.40 ACH

Occupancy schedule (living room)
adjusted with simulations. Values
that lead to minimum error
between Treal and Tsimulated

11 months a year, 0.015 people/m2 from
7:00 to 10:00 and 16:00 to 24:00

January to December, 0.02 people/m2 from
8:30 to 9:30 and from 15:00 to 24:00

Ventilation schedule (whole
dwelling) adjusted with
simulations. Values
that lead to minimum error
between Treal and Tsimulated

Winter, 0.6 ACH from 0 to 24 h. Spring
and autumn, 1.5 ACH from 21 to 10 h.
July, 3 ACH from 21 to 10 h. August,
1.5 ACH from 0 to 24 h

Winter, 0.5 ACH from 0 to 24 h. Spring and
autumn, 0.9 ACH from 18:00 to 24:00.
Summer, 2 ACH from 01:00 to 6:00

Lighting internal gains (living room)
adjusted with simulations. Values
that lead to minimum error
between Treal and Tsimulated

Winter, 2.4 W/m2 from 7:00 to 9:00 and 4 W/m2

from 17:30 to 24:00. Spring, summer and
autumn (except August), 2.4 W/m2 from 7:00
to 8:00 and 3.2 W/m2 from 20:00 to 24:00

Winter, 2.4 from 7:00 to 9:00 and 4 from
17:30 to 24:00. Spring, summer and
autumn (except August), 2.4 from 7:00
to 8:00 and 3.2 from 20:00 to 24:00

Equipment internal gains adjusted
with simulations

45 W/m2 45 W/m2

Environmental control adjusted
with simulations

No heated nor cooled, 24° by night, 26 °C by
day (summer) and 15 °C by night, 18 °C
by day (winter)

Summer, 25 °C (l3:00–21:00 h in living room
and 22:00–24:00 h in bedroom). Winter,
21 °C (l3:00–21:00 h whole dwelling)
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In this second step, the adjustment of an overall
infiltration rate for each dwelling was defined ac-
cording to blowing door tests. For the adjustment of
night ventilation, time at home, internal gains and
cooling heating period definition, the indoor tem-
perature was simulated (without HVAC system)
against the real indoor T during the monitoring
period. The assumption of adiabatic walls, ceilings
and floors was also changed to only consider as
adiabatic ceilings and floors.

Table 5 shows the values of the different input vari-
ables affecting the energy balance of this residence after
model calibration.

Results for both simulated and real indoor tem-
perature (dining room) for this dwelling (reference
dwelling of cluster 3) in August is shown in Fig. 9.
These results show that the relative error was above
10 % only the 0.94 % of the total monitoring time,
which reaches the acceptable accuracy threshold in
adjustment of an energy simulation model defined
by AHSRAE (1999). This adjustment procedure was
also applied in cluster 4 reference dwelling (air
conditioned). In this case, dwelling’s envelope char-
acteristics were assumed to be reliable, as it was one
of the outputs of the non-AC dwelling model cali-
bration. For the same reasons, internal gains rates
could be quickly assessed adapting results to the
specific characteristics of the AC dwelling (artificial
lighting, equipment, occupancy rates and natural

ventilation rates). The main changes that could not
be deduced from the non-AC case, as the energy use
profile is absolutely different, is the quantity (num-
ber of equipment and nominal power) and type of
existing air condition and electrical appliances. Al-
so, the occupants’ goal in terms of comfort was
going to be absolutely different. Therefore, it was
necessary to analyse the available electricity moni-
toring data and take some conclusions. The analysis
involved the comparison of hourly electricity con-
sumption against the difference of temperature be-
tween Texternal and Tindoor (ΔT). There is a close
relationship between the temperature variation and
changes in consumption. When (ΔT) rises, electric-
ity consumption rises by the same proportion and
the same when it drops. This analysis provided
detailed information regarding occupancy schedules
and energy use (specially the use of the air-
conditioning system) in the residence.

The input of the new data permitted a refinement of
the basic AC dwelling model, adjusting the parameters
mentioned above. Table 5 shows the values of the
different modified input variables after model calibra-
tion. Results also showed an error above 10 % in only
1.94 % of total hours (see Fig. 9, bottom). Small varia-
tions of these conditions were selected for the rest of
reference dwellings according to their related influenc-
ing variables (cluster 0, cluster 1, cluster 2 and cluster 5).
An extended simulation based on results obtained from

Fig. 8 Computer model. top leftComplete district, top right complete building (15 stories, 60 dwellings) reference dwellings of each cluster
in grey shades, bottom left WO dwelling and bottom right east oriented dwelling
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the monitoring period was performed in order to obtain
the energy demands for the whole year (also in winter).

Figure 9 shows the results of typical cluster 3 non-
air-conditioned dwelling, where the hourly indoor
temperature in August is around 26 °C during the
day and around 24 °C at night (average in summer is
25.5 °C during the day and 23 °C during the night). In
winter, the average of measured temperature is 18 °C
for the complete day and 15 °C over night (these types
of dwellings have butane gas or electric stoves as
heating systems). Thermal energy demands for

dwellings considering these comfort conditions are
21.23kWh/m2 · yr for heating (see Table 4). Small
variations in comparison to cluster 3 when simulating
the cluster 5 reference dwelling were obtained. In the
case of cluster 0, the higher heating demand in com-
parison to cluster 3 is due to the use of a centralised
heating system that allows the inhabitants to get better
thermal set points and comfort. Thermal energy de-
mands for cluster 4 representative dwelling are
63.20 kWh/m2 · yr for heating and −17.58Kwh/m2 ·
yr for cooling, as shown in Table 4. Conditions of less

Fig. 9 Simulation results for indoor T for the cluster 3 reference non-air-conditioned dwelling in August (top) and the cluster 4 reference air-
conditioned dwelling, also in August (bottom). Text = external temperature
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comfort, in comparison to cluster 4, specially in win-
ter, were assumed for clusters 2 and 1.

Disaggregation of consumption and stock aggregation
for the whole district

To obtain energy consumption and demand for the
whole district, we assume that results obtained in the
pilot tower may be extrapolated, after refinement, to the
whole district. Taking the percentage of dwellings in
each cluster together with their respective energy de-
mands, the total energy demand of the tower was calcu-
lated. Then, some assumptions were made in order to
disaggregate the gas and electricity consumptions; for
the gas stoves and gas heater (centralised), performance
were assumed to be, in turn, 75 and 79 %, and for split
units, they were assumed to be 111.6 %, according to the
official annex document of the national energy certifi-
cation (Salmerón et al. 2009; CTE 1999). Results are
shown in Table 6.

Conclusions

It can be concluded that the methodology used in this
study is relatively simple and reliable, as intended clus-
tering of data obtained from surveys in combination
with refined simulation models allowed the evaluation
of the current situation and of the impact of socio-
economic aspects and tenants’ behaviour in a realistic
way. The increase in time effort, as compared to simu-
lations based on standard characterisation of dwellings,

is compensated by the higher quality of results in to the
objective of understanding the real situation. The pro-
posed methodology is useful in evaluating the current
situation of energy consumption of the different types of
families and dwellings, and in foreseeing the possibili-
ties of implementing a real project of refurbishment in
existing districts, where the different impacts in the
different groups of tenants are a key factor in decision
making.

Results of energy disaggregation are quite different
than expected; 29 % of the residences consumed in
similar patterns to the two non-AC dwellings (clusters
3 and 5; see Tables 4 and 6), that is, very low, both in
terms of total consumption and in terms of the main
component of consumption, gas for heating. These two
groups were originally supposed to be one of the minor
energy consumers in the district, in proportion, due to
the fact that previous hypothesis assumed that buildings
were badly isolated with old thermal systems, therefore
with high heating consumption. These dwellings are
often occupied by one or two elderly people (high time
at home), little families or couples spending little time at
home, with low incomes and sacrificing their thermal
comfort in winter to not to spend too much money in
heating their homes.

On the other hand, dwellings with AC and central
heating system, with higher incomes and with a high
number of appliances, represent only 11 % of the district
(cluster 4). Dwellings with centralised space heating but
normal conditions of comfort (around 55–60 % of hours
per year with comfort as it can be seen in the yearly
simulation results of indoor T in the reference dwellings)

Table 6 Aggregated results for the whole pilot tower and district

Number
dwellings

Percentage Total
consumption
(MWh/yr)

Heating
consumption
(MWh/yr)

HW +
kitchen
(MWh/yr)

Cooling
consumption
(MWh/yr)

Appliances
+ light
(MWh/yr)

C0 13 22 % 94 54 10.2 0.0 30.3

C1 11 18 % 100 47 7.1 14.7 32.0

C2 12 21 % 83 44 6.4 7.5 25.5

C3 6 10 % 22 11 1.5 0.0 9.0

C4 7 11 % 95 47 7.9 9.3 30.6

C5 11 19 % 48 23 5.1 0.0 20.2

Tower 60 442 226 38.2 31.5 147.6

Whole
district

5304 2712 458 378 1771

Percent 51 % 9 % 7 % 33 %
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are the main group of the district (cluster 1, cluster 2 and
cluster 0 represent 61% of the total).Many of them (45%
of dwellings) have AC system but with low use in sum-
mer. They spend middle-range time at home and middle-
range incomes.

The reference consumption of gas for heating in
Barcelona Metropolitan region is 62.3 kWh/m2 · yr
(according to the national energy code; CTE 1999).
The consumption in 89 % of the analysed dwellings is
lower than this reference value. However, in this minor-
ity of households that consume more, the difference is
considerable up to 35 % of the CTE. In these dwellings,
the greatest consumption is due to heating, but followed
by electricity consumption due to light and appliances,
which represent 29 to 41 % of total energy consumption
(within cluster 4). These results also strongly correlate
with the level of income of the families, since 36 % of
difference in monthly income between clusters 3 and 4
exist, which is enough to be the cause of big changes in
the type of space heating systems and in number and use
of appliances.

Families in cluster 3 and cluster 5 are at the limit of
energy poverty; they can neither reduce their consump-
tion more nor invest in improvements. A majority of
dwellings (cluster 1, cluster 2 and cluster 0) have low or
medium consumption and assume a certain thermal
discomfort, and a small group of families (cluster 4)
reach high levels of consumption. Therefore, retrofitting
measures offering improvements in heating efficiency
or in improving isolation of envelope, although implies
benefits in indoor comfort, mostly benefit families with
higher consumption and have little impact on the
poorest families, in terms of economic savings. The vast
majority of families are somewhere between these two
extremes. Therefore, any improvement that implies a
certain level of investment must be designed consider-
ing finance mechanisms to help make costs affordable
and offer subsidies for the poorest families. On the other
hand, improvements in heating systems and in thermal
comfort will lead to an increase of the energy consump-
tion in households with less comfort, as explained by the
Jevons’ paradox phenomena (Giampietro et al. 2011),
so any technology that will be implemented should
offset the increase with a further increase in energy
efficiency or renewable energy contribution.

In relation to cooling loads, we can affirm that in non-
air-conditioned dwellings, thermal conditions in sum-
mer are not as bad as expected prior to analysis. In visits,
even during some especially hot summer days, indoor

conditions were found to be comfortable. Even though
the building’s envelope characteristics were in general
rather bad (low insulation level) and the buildings are
under high insulation rates in summer, it was found that
the building’s cooling loads in the dwelling are extreme-
ly low, as a consequence of climate’s characteristics in
the area, high natural ventilation potential, good orien-
tation of buildings, and good use of canopies and other
shading devices and low internal gains. Instead, high
conditions of discomfort were found in winter. This is a
very interesting finding, since there are a lot of similar
social-housing districts in the country, all with similar
shapes, surroundings (in the outskirts of cities, free of
the obstructions and, as a result, exposed to the wind)
and envelope’s characteristics.

Complementary to this, we can see that, although the
greatest consumption is due to heating (about 50 %),
lighting and appliance consumption represents from
33 % of the total. This is a rather interesting finding,
as many of energy-saving actions in these consumptions
imply low investments, with good payback periods,
which could led to important impacts in terms of eco-
nomic savings in the majority of medium- and low-
income dwellings.

In future research, other actions beyond traditional
isolation systems, such as energy management control
systems, boiler replacement, micro-generation systems,
solar heat water systems or freezer replacement, will be
considered to obtain improvements with low or even
none economical cost (Table 7).
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