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Abstract: The prediction task is attracting more and more attention among the power system community. Accurate
predictions of electrical quantities up to a few hours ahead (e.g. renewable production, electrical load etc.) are for
instance crucial for distribution system operators to operate their network in the presence of a high share of
renewables, or for energy producers to maximise their profits by optimising their portfolio management. In the
literature, statistical approaches are usually proposed to predict electrical quantities. In the present study, the authors
present a novel method based on matrix factorisation. The authors’ approach is inspired by the literature on data
mining and knowledge discovery and the methodologies involved in recommender systems. The idea is to transpose
the problem of predicting ratings in a recommender system to a problem of forecasting electrical quantities in a power
system. Preliminary results on a real wind speed dataset tend to show that the matrix factorisation model provides
similar results than auto regressive integrated models in terms of accuracy (MAE and RMSE). The authors’ approach is
nevertheless highly scalable and can deal with noisy data (e.g. missing data).
1 Introduction

The prediction task is attracting more and more attention among the
power system community. Accurate predictions of electrical
quantities up to a few hours ahead (e.g. renewable production,
electrical load etc.) are for instance crucial for distribution system
operators to operate their network in the presence of a high share
of renewables, or for energy producers to maximise their profits by
optimising their portfolio management. Even the importance of
predicting unknown data in the past has been noted in [1].

In the literature, statistical approaches are usually proposed to predict
electrical quantities such as electrical load or wind speed data (in
relation with the prediction of renewable production). First predictive
models were auto regressive, auto regressive moving average
(ARMA) and auto regressive integrated (ARIMA) models [2]. For
instance, a periodic autoregressive model was used in [3] to perform
customer segmentation based on the forecast of short-term load.
Wind speed data were also predicted by ARMA models in [4].

Other methods involving machine-learning techniques can be
identified. In this context, artificial neural networks have been
extensively used in the literature [2, 5–8]. Other specific approaches
relying on generalised principal component analysis [9] or extreme
learning machines [10] were also proposed.

In the present paper, we introduce a novel method based on matrix
factorisation to predict electrical quantities. Our approach is inspired
by the literature on data mining and knowledge discovery and the
methodologies involved in recommender systems.

Recommender systems are powerful tools that provide people with
recommendations of items they will appreciate, based on their past
preferences, history of purchase etc. A standard way to perform
this task is to consider a matrix X of ratings where each row
stands for a user and each column for an item (e.g. a movie). An
element xij of the matrix is a rating given by the user i to the item j.
The objective is to predict the unknown xij’s in the matrix X.
One of the most effective techniques to do so is matrix
factorisation (MF). It has been popularised by the winners of the
Netflix prize in [11]. The idea is to decompose the incomplete
CI
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matrix X into the product of two matrices W and H. Finally, the
unknown values in the matrix X can be obtained by computing WH.

Our contribution is to propose a MF method to forecast electrical
quantities by transposing the problem of predicting ratings in a
recommender system to a problem of forecasting (e.g. electrical
load or wind speed for estimating renewable production). As a
consequence, each row in the matrix X stands for a given period
of time (a day, a week etc.) and each column stands for the
temporal granularity of the data (quarter-hourly data, hourly data
etc.). To illustrate our purpose, let us consider wind speed data
(which can be transformed into the power produced by a wind
farm using a power curve). The matrix X is first built with
previous measurements of wind speed. Then, the last row is filled
with the last known measurements of the current day. As a
consequence, the last columns of the last row are unknown and
can be forecasted by factorising the matrix.

A very few works are dedicated to the prediction of electrical
quantities based on MF. Authors in [12] used sparse MF for that
matter. Very recently, temporal dependency was included into a
regularised MF procedure [13]. The interest of these approaches is
to be highly scalable and to deal with noisy data (e.g. missing data).

In this work, a real dataset of wind speed data was extracted from
the Royal Netherlands Meteorological Institute database. The
prediction accuracy was evaluated by computing the mean
absolute error (MAE) and the root mean square error (RMSE).
The method has been compared with the persistence model and
ARIMA prediction models. First results tend to show that the MF
model provides similar results than ARIMA models in terms of
accuracy (MAE and RMSE).
2 Methods

2.1 Matrix factorisation

MF allows us to decompose a given matrix into the product of two
matrices.
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It can be proven [14] that the rank factorisation of a
matrix X [ Rm× n of rank f is a factorisation:

X = WH , (1)

where W [ Rm×f , H [ R f×n, and rank(X) = rank(W) =
rank(H) = f.

Based on that, we can define the low-rank matrix approximation of
a matrix X [ Rm×n. The idea is to find the best approximation
X̂ ≃ X such that rank X̂

( )
≤ f . This problem can be written as [15]

min
X̂

X − X̂
∥∥∥ ∥∥∥2

F
such that rank X̂

( )
≤ f , (2)

where ‖‖F is the Frobenius norm.
Since rank X̂

( )
≤ f , X̂ can be factorised following (1). The

problem defined in (2) becomes

min
W,H

X −WH‖ ‖2F , (3)

where X̂ = WH .
2.2 MF for missing data

When data are missing in the matrix X, it is possible to approximate
X and then recovers the missing data. In the collaborative filtering
community, MF techniques are widely used to recover missing
data, for instance to build recommender systems. Therefore, we
will first introduce recommender systems and how missing data
are recovered and then transpose these concepts to the problem of
prediction of electrical quantities.

Recommender systems try to provide people with
recommendations of items they will appreciate based on their past
preferences, history of purchase, and demographic information.
Data in most standard recommender systems are often represented
with a matrix since it is characterised by three sets: a set of users
U= u1, u2, . . . , um

{ }
and a set of items I= i1, i2, . . . , in

{ }
and a

set of evaluations. For instance, if we want to recommend movies,
evaluation could be a rating rui given by a user u to a movie i.
Therefore, a m×n matrix R is built with all the known ratings. By
predicting the unknown ratings, one can know the predicted
interest of one user for an item and make recommendations
accordingly. Let us consider a matrix R with three users and three
movies. User 1 has seen movie 2, user 2 has seen movie 3, and
user 3 has seen movie 1. The matrix R would be

R =
? ru1i2 ?

? ? ru2i3
ru3i1 ? ?

⎛⎝ ⎞⎠, (4)

where ‘?’ are unknown ratings.
In [11], Koren et al. present a basic MF model based on (3). With

this technique, a rating rui can be approximated by r̂ui, the inner
product of user-item interactions. If we consider matrices W and H
described in (3), we can write that

r̂ui = wuhi, (5)

where wu is a row of W representing user u and hi is a column of H
representing item i.

The challenge is then to compute all the wu and hi. For that matter,
it is described in [11] that wu and hi can be obtained by modelling
directly the known ratings only, while avoiding over fitting thanks
to a regularised model. As a consequence, the system proposed
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in [11] will perform a MF by only considering known ratings and
the objective function to be minimised is written as

min
w∗,h∗

∑
u,i( )[k

rui − wuhi
( )2 + l wu

∥∥ ∥∥2 + hi
∥∥ ∥∥2( )

(6)

where k is the set of the (u, i) pairs for which rui is known, l is a
parameter controlling the regularisation to avoid over fitting.

Finally, computing all the wu and hi allows to obtain the matrices
W and H. The product between W and H then gives an
approximation of matrix R.

Problem defined in (6) can be solved with stochastic gradient
descent. Further details on how to implement it are provided in [11].
2.3 Prediction of electrical quantities

To transpose the problem of recommender systems to the problem of
predicting electrical quantities, we first have to adapt the data. For
recommender systems, we had a matrix with rui, a rating given by
a user to an item. Now, we have an electrical quantity (e.g.
electrical load), a period of time (e.g. a day, a week etc.) and a
temporal granularity of the data (e.g. quarter-hourly data, hourly
data etc.).

Let us imagine that today is Saturday and that we want to predict
the electrical load of one user for the next day, i.e. Sunday.
Furthermore, we have recorded the electrical load corresponding to
this user for the last three weeks. As a consequence, we have a
small matrix with three rows (the last row is corresponding to the
current week) and seven columns (column 1 is Monday and
column 7 is Sunday). We know all the rui in the matrix, except the
one at the intersection of the last row and the last column. Our
matrix R is therefore written as

R =
ru1i1 ru1i2 . . . ru1 i6 ru1 i7
ru2i1 ru2i2 . . . ru2 i6 ru2 i7
ru3i1 ru3i2 . . . ru3 i6 ?

⎛⎝ ⎞⎠, (7)

where ‘?’ is the unknown electrical load.
Actually, matrix in (7) has a similar structure to matrix in (4)

which characterises data of a recommender system. The only
difference is that in the case of the prediction of electrical
quantities, only one row and the last columns are concerned by
unknown values, since the data to be predicted are in the future.

As a consequence, the unknown electrical load of matrix R in (7)
can be found with the factorisation of R, following (6).

Finally, we provide an illustration of a specific behaviour when we
predict electrical quantities with MF. If we consider the matrix in (7),
u3 is the current week, i1 is Monday and i7 is Sunday. As we
proposed, let us consider that we are on Saturday and that we want
to predict the electrical load for Sunday but also for the Monday
of the next week. We could add a fourth row in our matrix but
this row would be characterised by only unknown values.
Therefore, we have to shift the data in the matrix in such a way
that the Monday of the fourth week appears on the third row. Such
a shift implies

R =
ru1i2 ru1i3 . . . ru1 i7 ru2 i1
ru2i3 ru2i3 . . . ru2 i7 ru3 i1
ru3i2 ru3i3 . . . ? ?

⎛⎝ ⎞⎠, (8)

where ‘?’ are the unknown electrical loads.
3 Experiments

3.1 Data and methods

In the present paper, we decided to perform experiments on wind
speed data as a first application.
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Table 1 MAE and RMSE values for the persistence model

Persistence model

Horizon 1 h 2 h 3 h 4 h 5 h

MAE 0.8061 1.0466 1.2405 1.4276 1.5960
RMSE 1.1445 1.4589 1.7074 1.9338 2.1376

Table 3 MAE and RMSE values for our approach

Our approach

Horizon 1 h 2 h 3 h 4 h 5 h

MAE 0.8954 1.0692 1.2197 1.3593 1.4844
RMSE 1.2155 1.4445 1.6361 1.8103 1.9687

Fig. 1 Wind speed dataset used for the experiments

Table 2 MAE and RMSE values for the ARIMA model

ARIMA model

Horizon 1 h 2 h 3 h 4 h 5 h

MAE 0.8041 1.0290 1.2081 1.3731 1.5162
RMSE 1.1077 1.4011 1.6240 1.8163 1.9799
The dataset used in these experiments contains wind speeds
measured in Rotterdam, the Netherlands, from 1986 to 1995. Data
were obtained on the website of the Koninklijk Nederlands
Meteorologisch Instituut (KNMI). The wind speeds were measured
every hour. As a consequence, the resulting matrix R has 3652
rows and 24 columns. The dataset was divided into one training
set containing the first 9 years of data (from 1986 to 1994). The
last year (1995) was used as a test set (Fig. 1). The matrix for the
training set (Rtraining) and the matrix for the test set (Rtest) have the
following form:

Rtraining =

ru1i1 ru1i2 . . . ru1 i24
ru2i1 ru2i2 . . . ru2 i24

..

. ..
.

. . . ..
.

ru3287i1 ru3287i2 · · · ru3287i24

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠, (9)

Rtest =

ru3288i1 ru3288i2 . . . ru3288i24
ru3289i1 ru3289i2 . . . ru3289i24

..

. ..
.

. . . ..
.

ru3652i1 ru3652i2 · · · ru3652i24

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠, (10)

First, (6) is used to factorise matrix Rtraining, according to

Rtraining = W trainingH training, (11)

where W training [ R3287×f andH training [ R f×24.

If we consider that we want to predict the 24th hour of the first day of
1995 (i.e. we want to predict ru3288i24 in matrix Rtest), we need to
create a new matrix by adding the first row of matrix Rtest to
matrix Rtraining. We obtain

Rtraining, new =

ru1i1 ru1 i2 . . . ru1 i24
ru2i1 ru2 i2 . . . ru2 i24

..

. ..
.

. . . ..
.

ru3288i1 ru3288i2 · · · ?

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠, (12)

where ‘?’ is the unknown wind speed we want to predict.
On this new matrix, we only need to use (6) to obtain the last row

of the new matrixW, which corresponds to the row we have added to
Rtraining. This process is repeated for all the values contained in Rtest.

The approach described in the present work is mainly influenced
by three parameters: the number of factors conditioning the rank of
the approximated matrix WH, the regularisation parameter l in the
optimisation problem in (6) and the number of iterations needed
by the gradient descent algorithm to converge to an adequate
solution. The optimal value of these parameters has been
calculated by performing an exhaustive search among values
CI
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manually defined. The optimal values were chosen as the ones
providing the lowest MAE resulting from the experiments.
4 Results

In this section, we evaluate the behaviour of our prediction approach
based on MF regarding two criteria:

i. MAE

MAE = 1

n

∑n
t=1

r̂t − rr
∣∣ ∣∣ (13)

ii. RMSE

RMSE =
����������������
1

n

∑n
t=1

r̂t − rr
∣∣ ∣∣2√

(14)

In (13) and (14), n is the number of values in the test set, r̂t is a
predicted value, and rt is the real value corresponding to r̂t .

Two methods were used in order to evaluate and compare our
approach:

(i) Persistence model: it assumes that the future value to be
predicted is equal to the last known value.
(ii) ARIMA model [16]: we used the ARIMA forecast tool in
MATLAB to implement this approach.

The analysis of Tables 1–3 shows that at a short-time horizon
(1 h), the ARIMA model is the best but the persistence model
presents an interesting precision too. From a horizon time of 3 h,
our approach is very competitive with the ARIMA model in terms
of accuracy (MAE and RMSE).
5 Conclusion

In this paper, we proposed a novel method based on MF to predict
electrical quantities. Our approach is inspired by the literature on
data mining and knowledge discovery and the methodologies
involved in recommender systems. Our contribution was to
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propose a MF method by transposing the problem of predicting
ratings in a recommender system to a problem of forecasting.
Experiments were performed on a real wind speed dataset from the
KNMI. Results showed that our approach is competitive with
ARIMA models. However, an interesting characteristic of MF is
its ability to be highly scalable and to deal with noisy data or with
missing data. In the future, it would be interesting to evaluate the
impact with larger datasets and with noisy data on the precision of
prediction. Another interesting property of MF is the possibility to
introduce a priori knowledge into the mathematical formulation
(e.g. the results of an independent ARIMA forecast). By doing so,
accuracy is therefore expected to improve, placing MF as a
promising alternative to forecast electrical quantities.
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