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Abstract. Nowadays, the model order reduction techniques have become an intensive research field
because of the increasing interest in the computational modeling of complex phenomena in multi-
physic problems, and its consequent increment in high-computing demanding processes; it is well
known that the availability of high-performance computing capacity is, in most of cases limited, there-
fore, the model order reduction becomes a novelty tool to overcome this paradigm, that represents an
immediately challenge in our research community. In computational multiscale modeling for instance,
in order to study the interaction between components, a different numerical model has to be solved in
each scale, this feature increases radically the computational cost. We present a reduced model based
on a multi-scale framework for numerical modeling of the structural failure of heterogeneous quasi-
brittle materials using the Strong Discontinuity Approach (CSD). Themodel is assessed by application
to cementitious materials. The Proper Orthogonal Decomposition (POD) and the Reduced Order In-
tegration Cubature are the proposed techniques to develop the reduced model, these two techniques
work together to reduce both, the complexity and computational time of the high-fidelity model, in
our case the FE2 standard model.

Introduction

The present model departs from the multiscale framework developed in [2] for the numerical model-
ing of failure via hierarchical multi-scale models, taking advantage of the reduced order techniques
developed in [1], the theoretical framework used in this work is based on the so-called (FE2)methods
via first order computational homogenization for the coupling between scales, in which homogenized
quantities at the lower scale, represented by a so-called failure-cell, are therefore transferred, in a
one-way fashion, to material points (Gauss points) of the macroscopic structure. The formulation is
presented in terms of strains in a non-conventional format imposing the natural multiscale bound-
ary conditions via Lagrange multipliers. This work attempts to solve the problematic of excessive
computational time in multi-scale models, in our case an additional complexity is induced by the
discontinuous displacement field produced by the strain localization at both scales. Nonetheless, the
methodology can also be straightforward extended to problems with continuous fields.

Model description

Generalities of FE2 method applied to multiscale fracture problems: This approach is developed
under a small strain framework, the equality of internal power at both scales is guaranteed via Hill-
Mandell Macro-Homogeneity principle. In this approach, the macroscopic constitutive response is
proven to be point-wise equivalent to an inelastic law (in an incremental fashion) as a function of the
homogenized elastic tangent tensor, Chom, and the incremental homogenized inelastic strain rate ε̇(i)
i.e.:
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σ̇ = Chom : (ε̇(x)− ε̇(i)) ε̇(i) =
1

lµ
(n⊗ β̇) (1)

Where, the inelastic strain component ε̇(i) is expressed as a function of the homogenized variables
taken from the lower scale, and represent the average value of the symmetrical tensor product between
the strong discontinuity normal n, and the rate of displacement jump β̇ of each cohesive band, belong-
ing to the manifold of the mesoscopic failure mechanism Sµ, i.e. the mesoscopic crack. In addition,
the so-called material characteristic length lµ is defined as the ratio between the measure (volume
or area) of the representative volume and the measure (surface or length) of the mesoscopic failure
mechanism. The equations that govern the lower scales are the next:

Problem I: Given a macroscale strain ε, Find ũµ such that εµ = ε+∇sũµ and:

∫
Bµ

σµ(εµ) : ∇sũµ dBµ = 0 ; ∀ũµ ∈ Vu
µ := {ũµ |

∫
Bµ

∇sũµ dBµ = 0}; (2)

Model Order Reduction techniques: The reduction process is divided into two sequential stages.
The first stage consists of a common Galerkin projection, via Proper Orthogonal Decomposition POD
for the meso-scale strain field, onto a small space (reduced-order space). For the second stage, the
main goal is to reduce the number of integration points given by the standard Gauss quadrature, by
defining a new scheme that efficiently determines optimal points and its corresponding weights so
that the error in the integration of the reduced model is minimized (Reduced Order Cubature - ROC).

In order to provide the reduced model with the input parameters and entities, the general procedure
is also divided into two parts, the first one (offline part) in which the projection operators for the meso-
scale strain field and the parameters of the new integration cubature are computed. These data, together
with the material and geometrical parameters, define the set of input parameters for the first and second
stage (online part). By comparison with the standard (FE2) scheme, the proposed model in (2) can
be redefined in term of strains in a generalized fashion, imposing the kinematic constraint (2-b) in an
explicit way via Lagrange multipliers.

Problem IB: Given a macro-scale strain ε, find ε̃µ and λ satisfying:

(ε̃µ(ε, dµ),λ(ε, dµ)) = arg{minε̃µ max
λ

Π(ε̃µ,λ)}; such that ḋµ(y, εµ) = g(εµ, dµ) (3)

Where Π is the homogenized potential of energy at the meso-scale.
Projection of strain field via POD: The reduction of the meso-scale strain field is based on the

projection of the weak form of the discrete mechanical problem into a reduced manifold (reduced-
order space), this reduced space is spanned by Ritz (globally supported) basis functions obtained via
Singular Value Decomposition (SVD) of a set of snapshots taken from training tests computed during
the offline part. Following this reasoning, the meso-scale strain fluctuation can be expressed as:

ε̃µ(y, t) =
nε∑
i=1

Φi(y)ci(t) = Φ(y)c(t) (4)

Where c(t) = {c1, c2, c3, . . . , cnε} is time dependent (c ∈ Rnε) and represents the amplitude of
the corresponding meso-scale strain mode updated during the online part. Now, introducing (4) into
the Problem IB and, after some straightforward manipulations, results into a new model written in
terms of the reduced basis:
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Problem II: Given a macro-scale strain ε, find c ∈ Rnε satisfying:

∫
Bµ

ΦT [σµ(ε+Φc) + λ] dBµ = 0; tal que
∫
Bµ

Φ(y) c(t) dBµ = 0; (5)

Solving the system of equations (5) for c and λ (Lagrange multiplier to ensure the equality of
internal power at both scales via Hill-Mandel Macro-Homogeneity principle), it can be immediately
noticed that this problem with nε + nσ equations will be cheaper, (in computational cost terms), than
the standard (FE2) framework. However, the matricial form of Problem II has to be computed (in
a standard way) prior its projection onto the reduced-order space. This fact highlights that the actual
bottleneck for fast online computation is not the solution of the discrete balance equations but, rather,
the determination of the stresses. To persue the main objective of the second stage, we develop a
Hyperreduced Order Model (HPROM) via Reduced Optimized Cubature (ROC), this technique is
based on a discreteminimization problem that allows determining the optimized location of integration
points and the corresponding weights.

The success of our proposed scheme, relies on the fact that it is possible to find a set of integration
points nr, substantially smaller than the ones given by the Gauss standard quadrature, minimizing the
error in the assessment of (5). Introducing the new integraton rule into the Problem II, we get:

Problem III: Given the macro-scale strain ε, find c ∈ Rnε satisfying:

nr∑
j=1

(Φ(zj)
Tσµ(zj, c))ωj +

∫
Bµ

ΦTλ dBµ = 0; tal que
∫
Bµ

Φ(y) c(t) dBµ = 0; (6)

Numerical Results: Application to simulation of fracture in cementitious materials

The macro-scale will be splitted into two subdomains, the dark gray domain will be modeled using an
elastic monoscale constitutive law, taking the elastic homogenized constitutive tangent tensor, and, in
the green domain the Hiper-Reduced Order Model (HPROM). The finite element mesh of the meso-
scale is also depicted in figure (1-b), Material properties have been taken from [3].

(a) Macroscale FE dis-
cretization

(b) Meso-scale FE dis-
cretization

(c) Material properties

Fig. 1: Finite element discretization and material properties

The figure (2-a) shows the structural response in terms of load-displacement (P−δ) curve (vertical
load of the bottom, rightmost corner node versus displacement at the same place) for each set of strain
modes nε and integration points nr. It is also shown the sensitivity in the convergence of the structural
behavior as nε increases. In figure (2-b), it can be observed the convergence results for the meso-scale
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tests using the Hiper-Reduced Order Model; fixing a number of strain modes nε, we get an optimal
number of integration points. In addition, it can be immediately noticed that, as the number of strain
modes nε increases, the error decreases monotonically. The imposition of a judicious equilibrium
between error and number of integration points plays an important role in the good performance of
the method.

(a) Macro-structural response - L Shape Panel (b) Convergence analysis of the meso-scale

Fig. 2: Convergence error in macro and meso scales

Conclusions

The result of this work is a reduced model based on a hierarchical (FE2) multiscale approach for
material failure in cementitious materials, that preserves all features of the standard FE model [2].
Furthermore, the two presented simulations show the convergence of themeso-scale and the sensitivity
of the macro-structural behavior, as a function of the amount of strain modes, nε, and the number of
integration points, nr. The reduced model solves the problem of unafordable computational cost.
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