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ABSTRACT: The net stress plus suction and the average skeleton stress plus modified 

suction are two alternative sets of energetically consistent stress variables for modelling 

the hydro-mechanical behaviour of unsaturated soils. When used in conjunction with 

their work-conjugate strains, both sets of stress variables correctly calculate the first-

order term of the hydro-mechanical work input into a soil element subjected to 

infinitesimal changes of deformation and water content. They therefore also correctly 

calculate the increment of internal energy along a given stress-strain path, that is the 

integral of the first-order term of the infinitesimal work input.  

This paper shows, however, that the above two sets of stress variables lead to different 

expressions of the second-order term of the hydro-mechanical work input. The above 

sets are therefore no longer equivalent with respect to other aspects of material 

behaviour governed by the second-order work such as the flow rule imposing normality 

between plastic strains and potential surface in the conjugate stress-strain space. If an 

elasto-plastic model formulated in terms of net stress plus suction is recast in terms of 

average skeleton stress plus modified suction (or vice versa), the normality between 

plastic strain vectors and potential surface is lost. To restore normality in both stress 

spaces, it is necessary to impose specific forms of elastic and plastic behaviour. 

 

KEYWORDS: unsaturated soils; effective stress; suction, work input; plastic flow; 

elasto-plasticity.  
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1. INTRODUCTION 

Since Alonso et al. [1] published the first elasto-plastic model for unsaturated soils, 

many alternative constitutive formulations have been proposed with the most recent 

ones coupling mechanical and hydraulic behaviour in a single analytical framework. 

An important aspect of these models is the choice of stress-strain variables. A large 

variety of possibilities exists in the literature as discussed, for example, by Gens [2] and 

D’Onza et al. [3]. Some stress-strain variables have been chosen because of 

experimental convenience, i.e. variables that are easier to measure or control during 

laboratory testing [4]. Other stress-strain variables have instead been chosen because of 

theoretical rigour, i.e. variables originating from a thermodynamic analysis and/or a 

physical interpretation of microscopic behaviour, as in the works of Houlsby [5], 

Gallipoli et al. [6], Sheng et al. [7] and Coussy et al. [8]. 

In the latter group, the following two alternative sets of work-conjugate stress-strain 

variables are commonly used because they both allow calculation of the internal energy 

change along a given stress-strain path: 

(1) The net stress (mechanical stress) plus suction (hydraulic stress) and the Cauchy 

strain (mechanical strain) plus water ratio strain (hydraulic strain) (Vaunat et al. [9] 

provide an example of a constitutive model using this set of variables); 

(2) The average skeleton stress (mechanical stress) plus modified suction (hydraulic 

stress) and the Cauchy strain (mechanical strain) plus water saturation strain 

(hydraulic strain) (Lloret-Cabot et al. [10] ; [11] provide an example of a 

constitutive model using this set of variables). 
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The above two sets of stress-strain variables correctly calculate the first-order term of 

the infinitesimal hydro-mechanical work input into an unsaturated soil element. 

Therefore, they also correctly calculate the change of internal energy along a given 

stress-strain path, which coincides with the integral of the first-order term of the work 

input under adiabatic conditions.  

However, as shown in this paper, the above two sets of variables lead to different 

expressions of the second-order term of the infinitesimal work input. This has 

implications for those aspects of material behaviour that are governed by the second-

order work such as the flow rule in elasto-plastic models. In particular, the normality 

between plastic strain vectors and potential function is lost when both these quantities 

are mapped from one stress space to the other. This violates the very definition of plastic 

flow and it can only be avoided if specific restrictions are imposed on the material 

constitutive law. 

2. WORK INPUT PER UNIT VOLUME 

For a single-phase material, the infinitesimal mechanical work input limited to the 

second order term is expressed as: 

 d𝑊 d𝑊 d𝑊  (1) 

where the first- and second-order terms are respectively defined as: 

 d𝑊  𝜎  d𝜖  (2) 

and 
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 d𝑊
1
2

 d𝜎  d𝜖  (3) 

with 𝜎  and 𝜖  being the stress and strain variables, respectively. 

The increment of internal energy of a material subjected to a given stress-strain path is 

calculated by integration of the first-order term d𝑊  as the second-order term d𝑊  

is comparatively negligible. The second-order term of the work input may however be 

important for reasons other than calculating the change of internal energy. For example, 

Drucker [12] postulated that the positiveness of the second-order work is a sufficient 

condition to ensure the stable response of a material subjected to controlled loading 

[13] ; [14]: 

 d𝜎  d𝜖 0 ⟹   𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (4) 

The second-order term of the work input is also intrinsically linked to the definition of 

the flow rule in classic elasto-plastic models. The flow rule imposes that the plastic 

strains are proportional to the flow vector calculated as the gradient of the plastic 

potential function defined in the conjugate stress space. Plastic strains are therefore 

normal to equipotential surfaces, which in turn implies that the second-order plastic 

work must be zero for any stress increment tangent to these surfaces. This aspect is 

further investigated in the present paper with specific reference to three-phase porous 

materials like unsaturated soils. The hydro-mechanical behaviour of these materials can 

be described by two alternative sets of energetically consistent stress variables, i.e. the 

net stress plus suction and the average skeleton stress plus modified suction, and their 

respective conjugate strains, i.e. the Cauchy strain plus water ratio strain and the 

Cauchy strain plus water saturation strain. In particular, the present paper explores 

whether the normality between equipotential surfaces and plastic strain vectors is 
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preserved when both these geometrical quantities are mapped from one stress-strain 

space to the other. The mapping relationships between the two spaces are simply 

derived from the definitions of the stress and strain variables.  

The paper starts by comparing the expressions of the first-order terms of the hydro-

mechanical work input in the two stress-strain spaces. This does not bring any new 

knowledge but facilitates the subsequent analysis of the second-order terms, which 

provides the basis for the further study of plastic flow. 

First-order work input in an unsaturated soil 

The definitions of work input given by equations (2) and (3) apply to single-phase 

materials. In the case of three-phase materials such as unsaturated soils, these 

definitions must be extended to take into account the contributions of liquid and gas 

phases inside material pores. Houlsby [5] showed that, if the movement of the air-water 

interfaces is neglected, the first-order term of the infinitesimal hydro-mechanical work 

input into an unsaturated soil element can be alternatively expressed in terms of net 

stress plus suction or average skeleton stress plus modified suction as: 

 d𝑊 〈𝐹𝑜𝑟𝑚 1〉  𝜎  𝑑𝜖 𝑠d𝜖  (5) 

 𝑑𝑊 〈𝐹𝑜𝑟𝑚 2〉  𝜎  d𝜖 𝑠 d 𝑆  (6) 

where: 

1. 𝜎  and 𝑠 are the net stress (tensor) and suction (scalar) respectively 

defined as: 
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 𝜎 𝜎 𝑢 𝛿  (7a) 

 𝑠 𝑢 𝑢  (7b) 

with 𝜎  being the total stress (tensor), 𝑢  the pore air pressure (scalar), 𝑢  

the pore water pressure (scalar) and 𝛿   the Kronecker’s delta. 

2. 𝜎  and 𝑠  are the average skeleton stress (tensor) and the modified suction 

(scalar) defined as : 

 𝜎 𝜎 𝑆 𝑢 1 𝑆 𝑢 𝛿 𝜎 𝑆 𝑠𝛿  (8a) 

 𝑠 𝑛𝑠 (8b) 

with 𝑆  being the degree of saturation and 𝑛 being the porosity. One 

advantage of using the average skeleton stress of equation (8a), instead of 

the net stress of equation (7a), is that the average skeleton stress 

automatically reduces to Terzaghi effective stress when the material is 

saturated by water (𝑆 1) or by air (𝑆 0). 

3. 𝜖  is the Cauchy strain (tensor), which is conjugate of the net stress 𝜎  

and of the average skeleton stress 𝜎 . 

4. 𝜖  is the water ratio strain (scalar), which is conjugate of suction 𝑠. The 

infinitesimal change of water ratio strain is defined as: 

 d𝜖  
d𝑒  
1 𝑒

 (9) 

where 𝑒 is the void ratio and 𝑒   is the water ratio defined as the volume of 

water per unit volume of solids. A decrease of water ratio produces an 
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increase of water ratio strain due to the minus sign in equation (9), which is 

consistent with the soil mechanics convention of compression positive 

volumetric strains. 

5. 𝑆  is the water saturation strain (scalar), which is simply the negative of 

the degree of saturation 𝑆 , and is conjugate of the modified suction 

𝑠 . The infinitesimal change of the water saturation strain is therefore 

expressed as: 

 d 𝑆 d
𝑒
𝑒

𝑒 d𝑒 𝑒d𝑒
𝑒

𝑆 d𝑒 d𝑒
𝑒

 (10) 

 

Second-order work input in an unsaturated soil 

Either net stress plus suction (equations (7a) and (7b)) or average skeleton stress plus 

modified suction (equations (8a) and (8b)) provide an adequate set of stress variables 

for calculating the first-order term of the hydro-mechanical work input when used in 

conjunction with their respective conjugate strains. The same is however not true for 

the second-order term of the hydro-mechanical work input, whose value changes 

depending on the chosen set of stress variables. To show this, the second-order term of 

the work input is here defined in terms of both net stress plus suction and average 

skeleton stress plus modified suction according to the following two alternative forms: 

 d𝑊 〈𝐹𝑜𝑟𝑚 1〉
1
2

d𝜎  d𝜖 d𝑠 d𝜖  (11) 

 d𝑊 〈𝐹𝑜𝑟𝑚 2〉  
1
2

d𝜎  d𝜖 d𝑠 d 𝑆  (12) 
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To compare the above two forms we map the second one, i.e. equation (12), from the 

space of average skeleton stress plus modified suction to the space of net stress plus 

suction. For this, the relationships between stress increments in the two spaces are first 

obtained through differentiation of the average skeleton stress and modified suction 

expressions of equations (8a) and (8b), respectively. This leads to the expression of the 

increments d𝜎  and d𝑠  in terms of the increments d𝜎  and d𝑠 as: 

 d𝜎 d𝜎 𝑆  d𝑠 𝛿 𝑠 d𝑆  𝛿  (13a) 

 d𝑠 𝑛d𝑠 𝑠d𝑛 (13b) 

which are then substituted into equation (12) to give: 

 

d𝑊 〈𝐹𝑜𝑟𝑚 2〉

 
1
2

d𝜎 d𝜖 𝑆  d𝑠 𝛿 d𝜖

𝑠 d𝑆  𝛿 d𝜖 𝑛 d𝑠 d 𝑆

𝑠 d𝑛 d 𝑆  

(14) 

Next, the relationship between the increments of water saturation strain d 𝑆  and 

water ratio strain d𝜖  is obtained by substituting into equation (10) the definitions of 

porosity 𝑛 , incremental water ratio strain d𝜖   
 and incremental 

volumetric strain 𝛿 d𝜖  (compression positive): 

 d 𝑆
d𝜖 𝑆 𝛿 d𝜖

𝑛
 (15) 
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By substituting equation (15) into equation (14) and noting that d𝑛 𝑛 1 𝛿 d𝜖 , 

the second form of equation (12) is finally recast in terms of net stress plus suction and 

corresponding conjugate strains as: 

 

          d𝑊 〈𝐹𝑜𝑟𝑚 2〉

1
2

d𝜎 d𝜖 d𝑠 d𝜖
1
2

 
𝑠 2 𝑛

𝑛
 𝛿 d𝜖 d𝜖 𝑆 𝛿 d𝜖  

(16) 

Comparison of equations (11) and (16) shows a difference, which implies that one of 

the two forms must be incorrect. Equation (11) coincides with the expression of the 

second-order work derived by Buscarnera and di Prisco [15] via an energy balance 

approach similar to that followed by Houlsby [5] for deriving the expression of the first-

order work. This suggests that equation (11) is correct while equation (12) is incorrect, 

which implies that the net stress plus suction should be used for calculating the second-

order work while the average skeleton stress plus modified suction should be avoided 

for this purpose. This has also an impact on other aspects of material behaviour related 

to the second-order work, including the definition of the flow rule in elasto-plastic 

models as it will be discussed in the next section. It is also worth emphasizing that the 

above result has no implications for material energy and the two sets of variables are 

both energetically consistent. This is because, as shown by Houlsby [5], both sets of 

variables correctly calculate the first-order work whose integration gives the change of 

internal energy along a generic stress-strain path.  

The difference 𝐸  between the two forms of equations (11) and (16) is: 

 𝐸
1
2

 
𝑠 2 𝑛

𝑛
 𝛿 d𝜖 d𝜖 𝑆 𝛿 d𝜖  (17) 
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which can alternatively be expressed in terms of d 𝑆  instead of d𝜖  by recalling 

equations (15) : 

 𝐸
1
2

 𝑠 2 𝑛  𝛿 d𝜖 d 𝑆  (18) 

Given that suction 𝑠 is generally positive and porosity n  is bound between zero and 

one, this difference only vanishes for strain paths where no change of either volumetric 

or saturation strain occurs, i.e. when either 𝛿 d𝜖 0 or d 𝑆 0. 

3. PLASTIC FLOW RULE 

The two second-order work forms calculated in the previous section are here exploited 

to investigate the normality between plastic flow vectors and equipotential surfaces 

when an elasto-plastic soil model formulated in the space of net stress plus suction is 

mapped to the space of average skeleton stress plus modified suction, or vice versa.  

Let us first note that equation (15) can be separately written for the elastic and plastic 

strain components: 

 d 𝑆
𝑑𝜖 𝑆 𝛿 𝑑𝜖

𝑛
 (19) 

 d 𝑆
d𝜖 𝑆 𝛿 d𝜖

𝑛
 (20) 

where superscripts "e" and "p" indicate the elastic and plastic components of strains, 

respectively. 

Consider now a material element at yielding which undergoes an infinitesimal change 

of plastic strain represented as d𝜖  , d𝜖  in the conjugate strain space of net stress 
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plus suction, and as d𝜖  , d 𝑆  in the conjugate strain space of average skeleton 

stress plus modified suction. Next, let us consider an arbitrary infinitesimal stress 

change, which is represented as d𝜎 , d𝑠  in the space of net stress plus suction, and 

as d𝜎 , d𝑠  in the space of average skeleton stress plus modified suction. Note that 

the above are different representations (i.e. representations in distinct constitutive 

spaces) of the same infinitesimal increments of stresses and strains. It is therefore 

possible to change from one representation to the other by using the mapping 

relationships of equations (20), (13a) and (13b). 

These different representations of stress and strain increments produce the following 

two different representations of the second-order plastic work: 

 d𝑊 〈𝐹𝑜𝑟𝑚 1〉
1
2

d𝜎 d𝜖 d𝑠 d𝜖  (21) 

 d𝑊 〈𝐹𝑜𝑟𝑚 2〉
1
2

d𝜎 d𝜖 d𝑠 d 𝑆  (22) 

For ease of comparison, the second form of equation (22) is mapped from the space of 

average skeleton stress plus modified suction to the space of net stress plus suction. To 

this end, the average skeleton stress and modified suction are first recast in terms of net 

stress and suction by using equations (13a) and (13b): 

 

d𝑊 〈𝐹𝑜𝑟𝑚 2〉

1
2

d𝜎 𝑆  d𝑠 𝛿 𝑠 d𝑆  𝛿 d𝜖

𝑠 d𝑛 𝑛 d𝑠  d 𝑆  

(23) 
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Then, the increments of water saturation strain are recast in terms of the corresponding 

increments of water ratio strain by replacing d 𝑆  with equation (20) and d𝑆

d 𝑆  with the opposite of equation (15) which, after noting that d𝑛

1 𝑛 𝛿 d𝜖 , yields: 

 

d𝑊 〈𝐹𝑜𝑟𝑚 2〉

1
2

d𝜎  d𝜖 d𝑠 d𝜖

1
2

𝑠
𝑛

d𝜖 𝑛 2  𝑆  𝛿  d𝜖  𝛿  d𝜖

1 𝑛  𝛿  d𝜖  d𝜖  

(24) 

Comparison of equations (21) and (24) indicates again that the two forms of the second-

order plastic work do not coincide and that the difference 𝐸  is: 

 

𝐸
1
2

𝑠
𝑛

𝑑𝜖 𝑛 2  𝑆  𝛿  𝑑𝜖  𝛿  𝑑𝜖

1 𝑛  𝛿  𝑑𝜖  𝑑𝜖  

(25) 

Alternatively, by recalling equations (15) and (20), the difference 𝐸  can be 

expressed in terms of d 𝑆  and d 𝑆  instead of d𝜖  and d𝜖  as: 

 

𝐸
1
2

𝑠 d 𝑆  𝛿  d𝜖

1 𝑛  𝛿  d𝜖 d 𝑆  

(26) 

The above result has some consequences on the definition of the plastic flow rule as 

explained in the following. 

Normality of plastic flow vectors to plastic potential 
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Let us consider an equipotential surface passing through a generic stress state at 

yielding. The mathematical expression of this surface can be mapped between the two 

spaces of average skeleton stress plus modified suction and net stress plus suction by 

using the stress definitions of equations (8a) and (8b).  

The flow rule imposes that, in the space of net stress plus suction, the infinitesimal 

changes of conjugate plastic strains are proportional to a flow vector defined as the 

gradient of the potential function, 𝑔 as: 

 d𝜖 
𝜕𝑔

𝜕𝜎
 (27) 

 d𝜖 
𝜕𝑔
𝜕𝑠

 (28) 

where the constant of proportionality is given by plastic multiplier, . 

Similarly, in the space of average skeleton stress plus modified suction, the flow rule 

imposes that the infinitesimal changes of conjugate plastic strains are proportional to a 

flow vector defined as the gradient of the potential function, 𝑔  as: 

 d𝜖 𝜆
𝜕𝑔
𝜕𝜎

 (29) 

 d 𝑆 𝜆
𝜕𝑔
𝜕𝑠

 (30) 

where the constant of proportionality is given by the plastic multiplier, 𝜆 . 

Taking into account equations (27) and (28), we rewrite the two forms of the second-

order plastic work given by equations (21) and (24) as: 
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 d𝑊 〈𝐹𝑜𝑟𝑚 1〉

2

d𝜎  
𝜕𝑔

𝜕𝜎
d𝑠 

𝜕𝑔
𝜕𝑠

 (31) 

 

d𝑊 〈𝐹𝑜𝑟𝑚 2〉


2

d𝜎  
𝜕𝑔

𝜕𝜎
d𝑠 

𝜕𝑔
𝜕𝑠

𝐸  
(32) 

Let us now assume an arbitrary stress increment tangent to the equipotential surface in 

the space of net stress plus suction. By definition of flow rule, the chosen stress 

increment vector d𝜎 , d𝑠  must be normal to the flow vector , , which 

means that d𝜎 d𝑠 0 and the second-order plastic work calculated by 

equation (31) vanishes: 

 d𝑊 〈𝐹𝑜𝑟𝑚 1〉 0  (33) 

If the stress increments and plastic flow vectors were normal also in the space of 

average skeleton stress and modified suction, the second-order term of the plastic work 

calculated by equation (32) should be zero too. This is however not the case because, if 

d𝜎 d𝑠 0 is substituted in equation (32), we are left with: 

 d𝑊 〈𝐹𝑜𝑟𝑚 2〉 𝐸  (34) 

In conclusion, the normality between the plastic flow vector and the equipotential 

surface is not preserved when these two geometrical quantities are mapped from the 

space of net stress plus suction to the space of average skeleton stress plus modified 

suction. Similarly, if the plastic flow vector is perpendicular to the equipotential surface 

in the space of average skeleton stress plus modified suction, this normality is lost when 

these two quantities are recast in the space of net stress plus suction. This is of course 
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also true in the case of an associated flow rule, i.e. when potential and yield functions 

coincide, which means that associativeness is lost if the model is mapped between 

different stress spaces. This aspect is particularly relevant to finite element models 

because the assumption of an associated flow rule ensures the symmetry of the tangent 

stiffness matrix of the numerical model. Symmetric matrices can be easily inverted by 

means of efficient algorithms that cannot however be applied to asymmetric matrices. 

Mapping an associated model from one stress space to the other should therefore be 

weighted against potential disadvantages resulting from the loss of structural symmetry. 

Normality is preserved in both stress spaces only if the right hand side of equation (34) 

is equal to zero, that is if 𝐸 0. This condition can be formulated in terms of d𝜖  

and d𝜖  or, alternatively, in terms of d𝑆  and d𝑆  by imposing that either equation 

(25) or equation (26) is equal to zero. This gives the following two alternative 

expressions of the same restriction: 

 1
2

𝑠
𝑛

d𝜖 𝑛 2  𝑆  𝛿  d𝜖  𝛿  d𝜖 1 𝑛  𝛿  d𝜖  d𝜖  0 (35) 

 1
2

𝑠 d 𝑆  𝛿  d𝜖 1 𝑛  𝛿  d𝜖 d 𝑆 0 
(36) 

By using the plastic flow rule of equations (27) and (28), equation (35) is rewritten as: 

 

2

𝑠
𝑛

d𝜖 𝑛 2  𝑆  𝛿  d𝜖  𝛿  
𝜕𝑔

𝜕𝜎
1 𝑛  𝛿  d𝜖  

𝜕𝑔
𝜕𝑠

0 (37) 

Similarly, by using the plastic flow definitions of equations (29) and (30), equation (36) 

is rewritten as: 
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𝜆
2

𝑠 d 𝑆  𝛿  
𝜕𝑔
𝜕𝜎

1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

0 (38) 

Given that suction and porosity are positive (𝑠 0 and 𝑛 0) and the plastic strain 

increment is non-null ( 0 and 𝜆 0), equations (37) and (38) are only fulfilled if 

the following two conditions are satisfied: 

 
d𝜖 𝑛 2  𝑆  𝛿  d𝜖  𝛿  

𝜕𝑔
𝜕𝜎

1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

0 (39) 

 d 𝑆  𝛿  
𝜕𝑔
𝜕𝜎

1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

0 (40) 

Considering that 𝛿  (where 𝑝  is the mean average skeleton stress) and 

 𝛿    (where 𝑝  is the mean net stress) equations (39) and (40) can be 

further rewritten as: 

 
d𝜖 𝑛 2  𝑆  𝛿  d𝜖  

𝜕𝑔
𝜕𝑝

 1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

0 
(41) 

 d 𝑆  
𝜕𝑔
𝜕𝑝

1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

0 (42) 

Equation (41) imposes that 𝐸 0 by enforcing a relationship between the plastic 

potential 𝑔 and the increments of Cauchy strain d𝜖  and water ratio strain d𝜖  along 

the generic equipotential surface in the space of net stress plus suction. Similarly, 

equation (42) imposes that 𝐸 0 by enforcing a relationship between the plastic 

potential 𝑔  and the increments of Cauchy strain d𝜖  and water saturation strain 

d 𝑆  along the generic equipotential surface in the space of average skeleton stress 
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plus modified suction. Note that equations (41) and (42) are different representations 

of the same restriction in two distinct stress spaces. Therefore, if one of them is verified, 

the other one is also automatically true. 

The consequences of equations (41) and (42) are further investigated in the following 

with respect to the two cases of elastic and elasto-plastic stress increments along the 

generic equipotential surface. 

Case 1: elastic stress increment 

We first consider the case of an elastic increment along the generic equipotential 

surface. If the flow rule is associated, the stress state will move along the yield locus, 

which coincides with the equipotential surface (Figure 1a). Conversely, if the flow rule 

is not associated, the stress state will head inside the yield locus along the equipotential 

surface (Figure 1b).  

Because the increments of water saturation strain d 𝑆  and Cauchy strain d𝜖  

coincide with their elastic components d 𝑆  and 𝑑𝜖 , the two equations (41) and 

(42) can be rewritten as: 

 
d𝜖 𝑛 2  𝑆  𝛿  d𝜖  

𝜕𝑔
𝜕𝑝

1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

0 
(43) 

 d 𝑆  
𝜕𝑔
𝜕𝑝

1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

0 (44) 

and, by recalling that d𝑛 1 𝑛  𝛿  d𝜖 : 

 
𝑆

𝑛 2
1 𝑛

 d𝑛 d𝜖  
𝜕𝑔

𝜕𝑝
d𝑛  

𝜕𝑔
𝜕𝑠

0 
(45) 
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 d𝑆
𝜕𝑔
𝜕𝑝

d𝑛
𝜕𝑔
𝜕𝑠

0 (46) 

Equations (45) and (46) impose a restriction on the elastic law, and in particular on the 

admissible elastic changes of porosity, degree of saturation and water ratio strain along 

the generic equipotential surface. Once again, equations (45) and (46) are alternative 

forms of the same restriction but in different stress spaces. This restriction must be 

respected if the normality between plastic flow vectors and equipotential surfaces is to 

be preserved in both stress spaces. Of course, this restriction is automatically respected 

if elastic strains are neglected altogether.  

Case 2: elasto-plastic stress increment 

Next, we consider the case of an elasto-plastic increment along the generic equipotential 

surface. If the flow rule is associated and the model is non-strain-hardening, the stress 

state will move along the yield locus which coincides with the equipotential surface 

(Figure 1a). If the flow rule is instead not associated and the model is strain-hardening, 

then the stress state will head outside the yield locus along the equipotential surface 

(Figure 1b).  

Note that, for the other two possibilities where the flow rule is associated and the model 

is strain-hardening or the flow rule is not associated and the model is non-strain-

hardening, only the previous case of an elastic increment can occur along the 

equipotential surface. Therefore, in these two instances, it is sufficient to satisfy only 

the elastic restriction imposed by equations (45) and (46) to preserve normality. 

For an elasto-plastic increment, equations (41) and (42) can be rewritten by separating 

the elastic and plastic strains as: 
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d𝜖 𝑛 2  𝑆  𝛿  d𝜖  
𝜕𝑔

𝜕𝑝
 1 𝑛  𝛿  d𝜖  

𝜕𝑔
𝜕𝑠

 d𝜖 𝑛 2  𝑆  𝛿  d𝜖  
𝜕𝑔

𝜕𝑝
 1 𝑛  𝛿  d𝜖  

𝜕𝑔
𝜕𝑠

0 

(47) 

d𝑆  
𝜕𝑔
𝜕𝑝

1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

 d𝑆  
𝜕𝑔
𝜕𝑝

1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

0 (48) 

Here, we assume that the elastic restriction imposed by equations (45) and (46) are 

already satisfied so that equations (47) and (48) can be rewritten with reference only to 

plastic increments as: 

 
 d𝜖 𝑛 2  𝑆  𝛿  d𝜖  

𝜕𝑔
𝜕𝑝

 1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

0 
(49) 

 d𝑆  
𝜕𝑔
𝜕𝑝

1 𝑛  𝛿  d𝜖  
𝜕𝑔
𝜕𝑠

0 (50) 

By further taking into account the plastic flow rule of equations (27), (28), (29) and 

(30), we rewrite equations (49) and (50) as: 

 
2 𝑛

𝜕𝑔
𝜕𝑝

 
𝜕𝑔
𝜕𝑠

 𝑆  
𝜕𝑔

𝜕𝑝
0 

(51) 

 2 𝑛
𝜕𝑔
𝜕𝑝

 
𝜕𝑔
𝜕𝑠

0 (52) 

Given that porosity 𝑛 is comprised between zero and one, equations (51) and (52) are 

fulfilled if the following conditions are respectively verified: 

 
𝜕𝑔

𝜕𝑝
 

𝜕𝑔
𝜕𝑠

 𝑆  
𝜕𝑔

𝜕𝑝
0 (53) 
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 𝜕𝑔
𝜕𝑝

 
𝜕𝑔
𝜕𝑠

0 
(54) 

Equations (53) and (54) are alternative representations, in different stress spaces, of the 

same restriction imposed this time on the plastic potential function. This restriction 

must be respected if the normality of the plastic flow rule is to be preserved in both 

stress spaces of net stress plus suction and average skeleton stress plus modified 

suction.  

In the space of net stress plus suction, equation (53) requires that either the component 

 of the plastic flow vector is zero or the ratio between the two components of the 

plastic flow vectors  is equal to 𝑆 . This requirement is met by a constitutive 

model where the equipotential surfaces in the 𝑝 , 𝑠  plane are quadrilaterals with 

two sides parallel to the 𝑝  axis and the other two sides given by parallel lines with 

slope 1 𝑆⁄ . 

Equivalently, in the space of average skeleton stress plus modified suction, equation 

(54) requires that at least one component of the plastic flow vector, that is either  or 

,  is zero. This requirement is met by a constitutive model where the equipotential 

surfaces in the 𝑝 , 𝑠  plane are rectangles with sides parallel to the 𝑝  and 𝑠 axes. 

4. CONCLUSIONS 

Multiple choices of stress-strain variables are possible to describe the deformation and 

water retention behaviour of unsaturated soils. Among these, the net stress plus suction 

and the average skeleton stress plus modified suction represent two alternative sets of 

energetically consistent stress variables. This means that, when used in conjunction 
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with their conjugate strains, both sets of stresses correctly calculate the first-order work 

input and, by integration, the change of internal energy along a generic stress-strain 

path. 

However, as shown in this paper, the net stress plus suction and the average skeleton 

stress plus modified suction calculate different expressions of the second-order work 

input. This difference only vanishes for strain paths that do not induce changes of either 

volumetric strain or degree of saturation. The correct expression of the second-order 

work is the one in terms of net stress plus suction as shown by Buscarnera and di Prisco 

[15]. This does not contradict the suitability of both sets of variables for calculating 

changes of internal energy because, as shown by Houlsby [5], both sets correctly 

calculate the first-order work whose integration along a stress-strain path gives the 

change of internal energy.  

The paper has also shown that an elasto-plastic model formulated in terms of one set of 

stress-strain variables can be recast in the other set of stress-strain variables via standard 

mapping relationships between the two stress-strain spaces. However, if a model 

formulated in terms of net stress plus suction is recast in terms of average skeleton stress 

plus modified suction (or viceversa), the normality of the flow vectors to the 

equipotential surfaces may be lost, which of course violates the very definition of 

plastic potential. Moreover, for an associated flow rule, this loss of normality will result 

in a loss of symmetry of the stiffness matrix inside finite element models, which will 

produce a deterioration of algorithmic efficiency. 

In order to preserve normality in both stress spaces, it is necessary to impose some 

restrictions on the constitutive law, i.e. specific forms of elastic behaviour and plastic 

potential must be assumed. 
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FIGURES 
 

 
 
 

  

 
 
 
 

CAPTIONS 
 
Figure 1. Schematic representation of plastic yield and equipotential surfaces with a) 
associated flow rule and b) non-associated flow rule 


