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An approach to enhance efficiency of DEM modelling of soils with

crushable grains

M. O. CIANTIA*, M. ARROYO*, F. CALVETTIf and A. GENS*

In this study oedometric compression tests of hydrocarbon coke, Fontainebleau sand and silica sand
are simulated in three dimensions using breakable particles. The method adapts a rigorous breakage
criterion for elasto-brittle spheres to represent failure of grains isolated between platens or within
granular masses. The breakage criterion allows for the effect of particle bulk and contact properties to
be treated separately. A discrete fragmentation multigenerational approach is applied as a spawning
procedure. The number of particles quickly increases during the simulation, but is kept manageable by
systematic fine exclusion and upscaling. Fine exclusion leads to mass losses between generations, but
that loss is accounted for outside the mechanical model. Sensitivity analysis shows that it is enough to
keep 53% of the crushed particle mass within the mechanical model to correctly reproduce
experimental macroscopic behaviour. Practical upscaling rules are proposed for (a) contact stiffness,
(b) breakage criteria and (c) grain size distribution, and validated simulating the same test, reducing
by half the initial number of particles. The results are promising as both the mechanical and grading

evolution are well captured with two orders of magnitude savings in computing efficiency.
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INTRODUCTION

Grain fragmentation is significant for several important
geotechnical problems, for instance settlement of rockfill
dam shoulders (Alonso et al., 2005), side friction on driven
piles (Yang et al., 2010), durability of railway ballast and so
on. Numerical models of such problems might not be
sufficiently accurate if grain fragmentation is ignored. Grain
size evolution can be incorporated into continuum constitu-
tive models using suitable formulations (Kikumoto et al.,
2010; Zhang et al., 2013), but it can also be modelled using
the discrete-element method (DEM).

Grain crushing has been modelled using DEM and em-
ploying two alternative approaches. The first is a discrete
fragmentation method, a multigenerational approach, in
which single elements break and are replaced by a new
generation of smaller grains, previously non-existent in the
simulation. The second approach does not introduce new
particles but instead uses multigrain agglomerates or grain
clusters that are susceptible to break into smaller fragments.
This latter method, despite allowing a rich description of
single grain shape and variability (Cheng et al., 2003;
Bolton et al., 2008; Alonso et al., 2012; Cil & Alshibli,
2012), quickly becomes impractical when the model size
grows, as is typical of the large-scale problems of direct
engineering application. This has caused increased interest
in the multigenerational approach, with several develop-
ments, initially in two dimensions (Astrom & Herrmann,
1998; Tsoungui et al., 1999a; Lobo-Guerrero & Vallejo,
2005; Ben-Nun & Einav, 2008; Ben-Nun et al., 2010), and
more recently in three dimensions (Marketos & Bolton,
2009; Bruchmiiller et al., 2011; McDowell & de Bono,
2013).
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To apply a multigenerational approach, several further
modelling choices are necessary. The most important ones
are a particle failure criterion and a particle spawning
procedure (Brosh et al., 2011). The particle failure criterion
is used to decide when a particle is crushed. Herein a new
and versatile particle failure criterion, inspired by the analy-
tical work of Russell & Muir Wood (2009), is proposed. The
particle spawning procedure establishes the relationship be-
tween the disappearing broken particle and the new genera-
tion of smaller particles (daughters) that replace it, whose
size, initial state and properties require specification. One
point of debate in this respect has been the issue of mass
conservation between generations. Some modellers (Ben-
Nun & Einav, 2010; Brosh et al., 2011; Bruchmiiller et al.,
2011; McDowell & de Bono, 2013) enforce strict mass
conservation, while others allow partial (Lobo-Guerrero &
Vallejo, 2005) or even total (Couroyer et al., 2000; Marketos
& Bolton, 2009) mass loss when a particle breaks.

Mass conservation between generations is problematic
because a new generation of spherical particles does not fit
into the volume of the lost particle. Several strategies to
alleviate this limitation have been put forward (filling of
nearby voids, forced daughter overlapping, time-dependent
particle volume increases). These strategies are not without
problems: forced overlapping, for instance, results in large
repulsive forces between daughters; filling of nearby voids
requires a local void search at each breakage. Mass conser-
vation also adds to the computational cost of the simulation
partly because of these strategies, but mostly because the
number of particles increases at a fast rate.

Mass conservation within the model is very important in
process engineering applications, where mass control and
mass ratios are key parameters. This is not so evident in
geotechnical applications, such as pile driving, where the
mechanical response of the system to an external load is the
major interest. It is perhaps possible to correctly represent
the macroscopic mechanical response while neglecting a
mass fraction. This is the hypothesis explored here, where,
at the post-processing stage, the mass of broken particles not
included in the newly spawned particles is distributed in
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finer fractions. This facilitates the comparison of model
results with experimental data on evolving porosity and
specimen grain size distributions (GSDs).

The modelling choices explained above (multigenerational
approach, non-conservative particle spawning procedure)
have as a major underlying rationale the reduction of
computational cost. A further step along this line is to use
upscaled particle sizes, a technique previously applied in
geotechnical engineering applications (Utili & Nova, 2008;
Gabrieli et al., 2009; Arroyo et al., 2011; Butlanska et al.,
2013). Upscaling rules are here proposed for particle
strength and for contact stiffness parameters, using both
linear and Hertzian contact laws.

Increased computational efficiency would be counter-
productive if the outcomes of the model were not realistic.
The approach proposed in this paper is thus validated by
simulating one-dimensional compression tests of materials
with very different crushability. One example at the high
end of crushability is given by petroleum coke (McDowell
& Bolton, 1998). At the low end of crushability, simulations
of tests on Fontaineblau sand (Yang et al., 2010) and silica
sand (McDowell, 2002) are presented. Model validation
against the experimental results is performed using the ob-
served macroscopic stress—strain response, by checking the
at-rest stress pressure coefficient and, when available, by
examining the evolution of grain sizes.

MODEL DESCRIPTION

The numerical models applied here were built using the
PFC3D code (Itasca, 2008). This code implements the DEM
in a similar form to that originally described by Cundall &
Strack (1979). As detailed below, interaction between parti-
cles was described either by a linear elastic or a simplified
Hertz—Mindlin contact law with a friction limit. These
contact laws are well known and described elsewhere (e.g.
O’Sullivan, 2011); here the focus is placed on the particular
ingredients that were newly specified for this work.

Particle failure

A variety of particle failure criteria have been used in the
past by researchers applying the multigenerational approach.
A grain failure criterion is a limit condition. Sometimes this
condition has been cast directly as a limit on the maximum
contact force acting on the particle (Astrom & Herrmann,
1998; Marketos & Bolton, 2009). More often the condition
is posited as a limit on some characteristic strength that
needs to be then related to the contact forces acting on the
particle. For instance, Lobo-Guerrero & Vallejo (2005) pos-
tulate a limit tensile strength that is related to forces acting
on discs (they were working on two dimensions) by analogy
to a Brazilian test, itself interpreted by a simplified uniform
stress model. Ben-Nun & Einav (2008) generalised this,
using explicit multiplicative correction factors to account for
the effects of coordination number and contact curvature.

Other approaches use as a starting point the average
particle stress tensor (which can be derived from contact
forces, see O’Sullivan (2011)). The limit condition is then
expressed as a limit on this average stress state, usually
taking the form of one of the classic failure conditions of
solid mechanics. Thus, Tsoungui et al. (1999a) use a two-
dimensional (2D) equivalent of the Drucker—Prager criterion,
and McDowell & de Bono (2013) used a Von Mises
criterion. Because of limiting average particle stress, contact
related phenomena — such as stress concentrations — need to
be separately introduced in the formulation.

The alternative proposed here deals with bulk and contact
properties by means of a single coherent expression. Russell

& Muir Wood (2009) combined a two-parameter material
strength criterion with the analysis of the elastic stress
distribution induced by point loads on a sphere to obtain a
failure criterion. They obtained an analytical expression for
maximum mobilised shear strength for a diametrically
loaded sphere. The same expression was later proven valid
for spheres within regular assemblies, with coordination
numbers varying between 6 and 12 (Russell et al., 2009). As
shown below, the mobilised shear strength expression pro-
vides a limit to the maximum contact force acting on a
particle. This seemed a good basis on which to establish a
failure criterion that was rigorous, versatile and computation-
ally efficient.

The limit condition for grain failure derived by Russell &
Muir Wood (2009) can be expressed as

Kmob = K (1)

where Kpnop and x are the mobilised and intrinsic strengths
of the grains, respectively. The latter is derived from a bi-
parametric strength criterion (Christensen, 2000), where the
two parameters ¥ and x are related to the uniaxial compres-
sive, 0, and tensile, o, strengths of the material by
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For most geological materials ) ranges from 10 to 170
(Goodman, 1989; Christensen, 2000). According to Christen-
sen (2000) this parameter reflects microstructural properties
of the material.

Analysing point load tests and assuming contacts with a
small area, Russell & Muir Wood (2009) show that Kb 1S a
maximum at a distance of Rtan6, below the centre of the
contact (Fig. 1). They also give an approximate expression
for the maximum mobilised strength that is valid for small
contact angles:
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Russell et al. (2009) show that the same expression is,
within the same degree of approximation, still valid for
spheres under multiple contact loads. The force F' is now the
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Fig. 1. Force F acts normal to sphere surface on an area defined
by the angle 0,. The equivalent stress acting on the area is p
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maximum normal contact force acting on the sphere. The
mobilised strength expression can be compactly written as
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where v is the Poisson ratio and x is the microstructure
parameter defined above. F is the load, R is the sphere
radius and 6, is a solid angle ‘seen’ from the centre of the
particle, which defines the small area of stress application.
Substituting equation (4) in equation (1) results in a limiting
criterion for the normal contact forces

F =<

foz V) J'[Rz sin2 90 = GlimAF = Flim (5)

As indicated in equation (5) the limiting force is obtained
as the product of a limit strength value, oy, dependent on
material parameters, and a contact area Ar The clear separa-
tion of these two aspects of grain failure is one attractive
aspect of this criterion, because properties governing contact
area can take very different values in single grain tests and
in granular assemblies. However, for practical application to
discrete models of soils further development is necessary.

There is a large natural variability in shape, composition,
microstructure and contact conditions in soils that is not
reflected in the above model. This variability is observed, for
instance, in single grain crushing experiments both as disper-
sion of force measurements for particles having the same
nominal size and as a size dependency of the average
strength values. To incorporate that variability into the
simulation, the limit strength, defined as

(6)

o K

lim f(X, 1/)
is assumed as normally distributed for a given sphere size.
The coefficient of variation of the distribution is designated
‘var.” and is considered a material parameter.

A size effect in particle strength, where smaller particles
are stronger than larger ones, has been repeatedly observed
in experiments. The validity of Weibullian statistics (Wei-
bull, 1951), to describe granular crushing is still being
debated. On the one hand, alternative explanations for size
effect are also available (e.g. Alonso ef al., 2012). On the
other hand, the experimental evidence is ambiguous: some
studies (Tsoungui et al., 1999b; McDowell & Amon, 2000;
Lobo-Guerrero & Vallejo, 2006) have found that the same
value of the Weibull modulus is able to fit both the
variability at a given scale and the variability across scales,
yet others (Jansen & Stoyan, 2000; Lim et al, 2004;
Brzesowsky et al., 2011) obtain the opposite result.

In this work size effect is incorporated as a dependency of
the mean strength value on particle diameter through a
correction factor, fs,. Although this correction factor is
casted in a Weibull-like form, equation (7) is postulated only
on a heuristic basis and, following McDowell & de Bono
(2013), is best simply described as a hardening rule.

Olim = Olim,ofsize(d)

d —3/m (7)
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where m is a material parameter and Oy is the mean limit
strength at dy, which is the reference diameter (chosen as
2 mm).

To evaluate the contact area 4Ar in equation (5) several
hypothesis can be made. Perhaps the simplest is to consider
the contact solid angle 6y as a material constant indepen-

f size(d) =

dently specified from oy,. In this case the contact area at
failure is given by

Ap — %dz sin” 6, (8)

An alternative is to determine A using Hertzian contact
theory for smooth particles. It is then possible to express the
contact area in terms of the elastic properties of the contact-
ing materials (£ and v) and the acting contact force. For
smooth spheres the radius of the contact area is
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where 7| and r, are the radius of the contacting spheres and
E1, v their moduli.

Contact area and contact stiffness can be separately
specified in the numerical model, with different degrees of
refinement. In what follows, several combinations are ex-
plored: the constant failure solid angle model is combined
both with a linear and a non-linear (Hertzian) stiffness
model; Hertzian stiffness is also combined with the smooth
Hertzian contact area model. More refined models for con-
tact area, for instance using some measure of surface rough-
ness, might also be easily implemented (e.g. Russell & Muir
Wood, 2009).

Particle splitting and lost mass

Once the limit condition is reached, a particle, modelled
with a sphere in PFC 3D, will split into smaller inscribed
tangent spheres. The daughter fragments assume the velocity
and material parameters of the mother particle, except for
the intrinsic strength (Ojimo) that is randomly assigned
respecting the normal distribution criteria.

It is clear that this way of modelling crushing does not
conserve the mass within the numerical simulation. The
underlying assumption here is that the mass lost is formed
by finer particles that have a small influence on the macro-
scopic mechanical response. The heterogeneity of the magni-
tude of contact forces in discrete media force networks is
well known (Radjai et al,, 1996). The dominant role of
distinct strong force chains in the mechanical macroscopic
response has also been clearly established (Thornton &
Antony, 2000). More recently (Torok et al., 2005), it was
noted that larger particles do participate much more than
smaller particles in force transmission through the granular
mass. For the particular case of oedometric compression this
is supported, for instance, by DEM analyses presented by
Minh & Cheng (2013).

On the other hand, when interpreting the test results, this
mass should be accounted for. This is particularly important
when tracking the evolution of the GSD during the test, a
result that is frequently obtained in experiments. Some
hypothesis about the size distribution of the lost mass is
necessary. It has been repeatedly observed (e.g. Turcotte,
1986; McDowell et al., 1996; Altuhafi & Coop, 2011) that
grain crushing leads to the emergence of a fractal distribu-
tion of particle sizes, with fractal dimension « close to 2-6.
Such distribution can be expressed (Einav, 2007) as
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where Mr is the total mass, M<q) is the mass of particles
smaller than d, dp,y is the maximum particle size and dpi, is
the minimum observed particle size. Accordingly, the deleted
mass is assumed to distribute in particles fitting a fractal
size distribution with exponent 2-6, dn.x given by the
smallest particle spawned during the crushing event and dpin
given by the smallest diameter in the experimental GSD.
Figure 2 shows how this rule operates in a simple aca-
demic example. Consider as initial condition two spheres of
I mm diameter and assume that one of them reaches the
crushing limit condition, breaking into two smaller particles
of 0-5mm diameter each. In this situation 75% of that
sphere or, equivalently, 37-5% of the total initial mass is
lost. The lost mass is apportioned according to a fractal
distribution characterised, in this example, by a maximum
and minimum diameter of 0-5 and 0-1 mm, respectively. The
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Fig. 3. Alternative configurations of sibling particles

final GSD is hence the sum of the crushed and fractal
distributions.

To position the spawned particles after a fragmentation
event, different apollonian sphere packings (arrangement of
non-overlapping tangent spheres within a containing spheri-
cal space) were investigated (Fig. 3). As noted in Fig. 3 the
amount of volume lost is reduced as the number of spawned
particles is increased. Indeed porosity zero would be attained
in the limit if the sequence was continued indefinitely. The
apollonian packing of spheres has as a limit a fractal with
dimension 2-47 (Borkovec et al., 1994). Such value is very
close to those usually quoted for the limit GSD of fully
fragmented soils (Ben-Nun et al., 2010; Minh & Cheng,
2013).

The common feature used as a guideline for building
these gaskets is placing the centre of the largest fragments
on planes perpendicular to the direction of the normal
component of the force causing particle breakage. As de-
tailed in the Appendix, once the limit condition is reached,
the splitting configuration is subject to two subsequent
rotations in space (one around the x and one around the y
axis) until the local z axis is aligned with the normal
component of the maximum contact force (Fig. 4). This is
inspired by typical splitting configurations observed in fra-
gile materials when subject to concentrated forces (e.g.
Yashima et al., 1987; Cil & Alshibli, 2012).

To further limit the computational cost the crushing
procedure was only applied for particles above a certain
minimum particle size, djimit, called the comminution limit.
Strictly speaking the comminution limit for single grains can
be very small. Cheng et al. (2003) quote a value of 1 um for
silica. Much larger values are frequently employed, both
when using agglomerates and when using discrete fragmen-
tation (e.g. Marketos & Bolton (2009) use 0-25 mm or a
diimit/dso of 0-17). This is justified on pragmatic grounds and
also as a way to represent the cushioning effect of neglected
fines, which in other approaches is introduced using coordi-
nation-number correction factors in the particle breakage
criterion. Introducing a comminution limit does change the
macroscopic response of the model; for instance McDowell

Three-ball dV = 70% Four-ball dV = 64%

14-ball dV = 47%

57-ball dV = 37%
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Fig. 4. Particle crushing configuration: (a) intact grain subject to five contact forces; (b) sibling disposition; (c) sibling

reorientation

& de Bono (2013), using a djimit/dso of 0-25, showed that
compressibility was much reduced at high stresses, some-
thing frequently observed in the laboratory (Mesri & Vard-
hanabhuti, 2009). However, this result might depend on
other aspects of the model implemented.

A parametric study was performed to decide which split-
ting configuration to use in the simulations. The effect of
the size of the larger particles in a splitting configuration
was previously explored by McDowell & de Bono (2013),
who found it relatively inconsequential. The parametric
study focused then on the number of particles to include in
the splitting configuration and on the ratio djimit/dso.

Considering first the number of particles, the results
showed that the macro-mechanical response (normal com-
pression line (NCL)) of the discrete materials spawning 14-
ball and 57-ball gaskets on crushing was very similar (Fig.
5(a)). The comminution limit value had a larger effect.
Raising its value made the inverted curvature of the com-
pression line appear and resulted in a less evolved GSD
(Fig. 5(b)). The value of the comminution limit controlled
the rate of increase of computing time with number of
particles in the splitting configuration (Fig. 5(c)).

On this basis the 14-ball crushed configuration represented
in Fig. 3 was used in this work for all the simulations
presented afterwards. The comminution limit for the differ-
ent materials was chosen on a case-per-case basis, trying to
minimise computational time while preserving the similitude
with experimental results.

Upscaling procedure

Scaling up the particle size while maintaining constant
other geometrical dimensions of the problem reduces the
number of particles in the model (Fig. 6). An upscaling
procedure is judged successful if the macroscopic quantities
of interest such as compressibility, yield stress in NCLs and
so on, remain unchanged. For this to be possible, the
formulation of the contact laws needs to be modified to take
into account the particle scaling factor, N. Also the grading
evolution computed during compression should be correct
when scaled back.

An upper limit to particle scaling is given by the relevant
dimensions of the model. A sufficiently large number of
particles should remain so that the granular media response
is maintained in an average sense. In the simulations of one-
dimensional (1D) compression presented later, the most
relevant dimension is the specimen diameter: in this work

the integer scaling factors applied are such that specimen
diameter is always one order of magnitude above the scaled
average-particle diameter. Specimen height is less important
here because no attempt is made to describe possible strain
localisation inside the specimens. When localisation is of
concern the strong horizontal boundary effects discussed by
Marketos & Bolton (2010) should be considered.

Stiffness. For the linear contact law Gabrieli et al. (2009)
explain how the macroscopic stiffness is invariant to the grain
scale if the normal (ky) and tangential (ks) contact stiffnesses
are established according to the rule

DD,

kN = 2K epp ———
N effD1 D, (13)

ks = askN

where D; and D, are the diameters of the two spheres in
contact and K¢ and ag, taken as 0-25 in all the linear contact
model simulations presented in the following, are material
constants. On the other hand, if the contact law is the
simplified Hertz—Mindlin, the standard formulation (Itasca,
2008) is used since it already includes a similar scaling factor
when calculating the normal and shear contact stiffness

|V DitD
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where U is the sphere overlap, F is the magnitude of the
normal contact force and the () brackets indicate the mean
value of the quantity considered of the two balls in contact
(shear modulus G and Poisson ratio v).

Particle strength. Scaling of particle strength is made simple
by the fact that a reference dimension is already present in
the formulation of the size dependency factor in equation (7).
The scale factor N is then just factored in the definition of the
reference dimension dj.
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Fig. 5. Oedometric compression of a crushable sand. Parametric study on the effect on mechanical response: (a) of splitting
configuration; (b) of djimit/dsp ratio. (c) Effect of the same variables on simulation time and final number of particles
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GSD. Uniform scaling of particle size shifts the GSD line
towards the right proportionally to the scaling factor N. In
order to compare GSD evolutions of the same test with
different scaling factors all GSD are divided by the scale
factor N (downscaling procedure).

Calibration
In the model just described some material parameters are
familiar from non-crushable DEM models. These are inter-

granular friction (¢) and those relevant for the elastic
contact laws (K., as for the linear one; G and v for the
Hertzian one). Other parameters are new. These include the
parameters describing crushability, namely var., m, Ojimo and
— only for the fixed contact breakage area model — 6. As
for the spawning procedure, here only the comminution limit
diimit 18 left as a parameter, because the breakage configura-
tion is fixed.

This adds to a total of six or seven parameters which, in
principle, might all be obtained by matching several macro-
scopic test responses in a procedure similar to that used in
continuum-based models or — within DEM — of bonded
contact models for rocks (see e.g. Cheung et al., 2013). But
other sources of information can also be used to calibrate or
at least constrain the parameter values for any given material.
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Fig. 6. (a) Scale 1 corresponding to 5388 particles and (b) scale 2
corresponding to 791 for the same oedometric compression test

The value oy, 1s a property of the bulk material constitutive
of the grains and, as defined in equation (6) is ultimately
dependent on the material parameters entering the Russell and
Muir Wood criterion (v, %, k) or, equivalently, (v, o, o). For
soils, however, this definition is difficult to apply, because (a)
the reference bulk material depends on the mineralogical
composition of the grains, and (b) precise data on tensile
strength for geomaterials are relatively scarce. However, order
of magnitude estimates can be obtained. For instance, a
commercial grade fused silica (see http://www.mt-berlin.com),
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has values o, = 1100 MPa and o; = 48 MPa, leading to y = 22
and, assuming v = 0-3, to gjj, = 2300 MPa.

Single-grain platen crushing tests are well adapted to
provide the parameters regarding variability of strength for a
particular grain size (var.) and the variation of strength as a
function of particle size (m). If the contact angle at failure
0y is assumed as a material constant, the crushing criterion
in equation (5) limits the maximum force in a platen
crushing test as follows

d —3/m
Flim < O1imyo (d_0> %dz sin® 6, (16)

Alternatively, if Hertzian contact theory is used to calcu-
late the evolution of contact area, for a single sphere loaded
between platens the equivalent radius (equation (10)) is just
r' = d/z’ V1 = Vparticles V2 = Vsteel» E| = Eparticles E; = Egeel
and the limit force reads

d\ 7" 3\
Fim = im. -4 ey
1 {01 ’0(d0> JT(4E,)

Variability of strength for a particular grain size (var.) can
be obtained representing crushing force distributions for
given particle diameter, whereas the variability of strength
with particle size (m) can be derived from the mean crush-
ing forces at various diameters. An example of the latter, for
various materials, is given in Fig. 7 for the constant angle
model and in Fig. 8 for the Hertzian area model. It is clear
that the choice of contact area model does affect the value
of the constant m of the hardening law (equation (7)). The
Hertzian area model requires larger m values to fit the data
slope, or, according to equation (7), a smaller correction
factor.

Single-grain platen crushing tests also can provide esti-
mates for other model parameters, albeit with a lower degree
of accuracy. As reported in Table 1 and Table 2, several
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Fig. 7. Fixed contact area: particle limit contact force as a function of particle diameter for different m
values. In the same plot experimental results of single grain crush experiments; data from Yashima et al.

(1987); Nakata et al. (2001); McDowell (2002)
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Table 1. Parameters of fixed contact angle model in Fig. 7

6o: rad Olim,0: MPa dp: mm
/9 300 2
/18 1200 2
/24 2060 2

combinations of 6y and 0Oymo — for the fixed contact area
model — or of particle G and oiim, can be chosen to plot
the lines in Fig. 7 and in Fig. 8. These values can be used
as guidance to choose relevant values for specimen simula-
tions. It should be stressed that these estimates can only be
approximate, since several aspects left out of the model —
particle shape, contact asperity, microflaw scaling, and so on
— need not have the same influence on the mechanics of
platen crushing and crushing within a granular mass. Further
discussion on parameter calibration can be found in Ciantia
et al. (2014).

MODEL APPLICATION

Simulations of 1D compression tests are presented for
three different materials. The first is a weak (low stress)
crushable material and the other two are relatively strong
sands. The effect of three different modelling characteristics

Table 2. Parameters of Hertzian contact area model in Fig. 8

is investigated: contact stiffness description (linear or Hert-
zian); contact area description (fixed small angle or Hert-
zian); and scaling factor.

The simulation set is fully described in Table 3. The
identification code of the numerical simulations (test-ID)
employed in later figures is composed of two letters and a
number. The first letter identifies the contact law (L stands
for linear, H for Hertzian); the second letter indicates
whether the contact angle is constant (C) or variable (V)
and, finally, the number identifies the scaling factor applied
to the material GSD. All the simulations employed a local
non-viscous damping coefficient (Cundall, 1987) of 0-05.

Specimens were created to a relative density slightly above
target value using the radius expansion method (Itasca,
2008). Velocities were then set to zero. Isotropic compres-
sion to 5 kPa was used to obtain — by trial and error, using a
temporary interparticle friction reduction — a closer fit (with-
in 5%) to the initial porosity target of each simulation. Once
the target porosity was attained, friction was set to the final
calibrated value and equilibrium was reached under an
isotropic pressure of 5 kPa.

The geometry of the oedometer at 5kPa at the stable
configurations for each sample is also reported in Table 3.
As is the case for the reference experiments, the numerical
tests took place under load control. The vertical stress during
the simulations covered several orders of magnitude and a
logarithmic control of the load increment was used

Material Olim,0: MPa do: mm Vquartz Grarticle: GPa | Epariicte: GPa Vsteel Egeel: GPa
Petroleum coke 200 2 0-3 0-33 0-866 0-3 200
Fontainebleau sand 800 2 0-3 3 7-8 03 200
Silica sand 2200 2 03 18 46-8 0-3 200
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Table 3. Discrete-element method input parameters for simulation

Test-ID Scale, | Contact D at H at dso: Micro K |p:rad| G: v | Olimo: 6o: rad m | Var. | djjmic: mm
N law SkPa: | 5kPa:| mm | porosity, | MPa GPa MPa
cm cm Rint
Petroleum coke
L-C-1 1 Linear 20-0 5-158 | 75 0-48 333|104 - - 300 /9 211 0-25 dso
L-C-2 2 Linear 20-0 5977 7-5 0-48 333104 — — 300 /9 2 (1 0-25 dso
H-C-1 1 Hertzian | 20-0 5-132| 75 0-48 - 0-4 0-33] 0-3 | 300 /9 211 0-25 dso
H-C-2 2 Hertzian | 20-0 5-183 | 7-5 0-48 — 0-4 0-33| 0-3 300 /9 2 (1 0-25 dso
H-V-1 1 Hertzian | 20-0 5-132| 75 0-48 - 0-4 0-33] 0-3 | 200 |Equation (9) 10 |1 0-25 dso
H-V-2 2 Hertzian | 20-0 5-183 | 7-5 0-48 — 0-4 0-33| 0-3 200 | Equation (9)| 10 |1 0-25 dso
Fontainebleau sand
L-C-5 5 Linear 27 0-984 | 0-21 0 300 0275 - - 820 /18 3 10-48| 0-55ds
L-C-10 10 Linear 27 0-992 | 0-21 0 300 0-275| - — 820 /18 3 10-48| 0-55ds
H-C-5 5 Hertzian 27 0-983 | 0-21 0 - 0-275] 3 0-3 820 /18 3 10-48| 0-55dsg
H-C-10 10 Hertzian 2-7 0-993 | 0-21 0 — 0-275] 3 0-3 820 /18 3 10-48| 0-55ds
H-V-5 5 Hertzian 27 0993 | 0-21 0 - 0-275] 3 0-3 | 1200 | Equation (9)| 10 |0-48| 0-55ds
H-V-10 10 Hertzian 27 0-993 | 0-21 0 — 0-275| 3 0-3 | 1200 | Equation (9)| 10 |0-48| 0-55dsg
Silica sand
H-C-1 1 Hertzian 4-620 | 1-388 | 1-5 0 — 0-35 |18 0-3 | 5000 /24 3 10-48| 0-55ds
H-C-2 2 Hertzian 4-624 | 1431 | 1-5 0 — 0-35 |18 0-3 | 5000 /24 3 10-48| 0-55ds
H-V-1 1 Hertzian 4620 | 1-388 | 15 0 - 0-35 |18 0-3 | 5000 | Equation (9) 10 |0-48| 0-55dsg
H-V-2 2 Hertzian 4-624 | 1431 | 1-5 0 — 0-35 |18 0-3 | 5000 | Equation (9)| 10 |0-48| 0-55ds
- ; . .
il ol reported in Table 4. They were chosen to attain the larger

0. =0_+Lc|0wr + log (cnef)] (18) load steps that were compatible with quasi-static conditions.
where Lc is a load increase coefficient, i indicates the step Low-strength crushing material: petroleum coke
of the calculation and o, is a reference stress of 1 kPa. The reference experimental test used here is a 1D normal

The coefficient Lc values applied in the simulations are compression curve for petroleum coke reported alongside its

Table 4. Discrete-element method model results

Test-ID Scale, N | Contact Law Lc djimit: mm | Initial number | Final number | Crush events | Excluded Model run:
of particles of particles particles min
Petroleum coke
L-C-1 1 Linear 0-01 1-875 5388 90525 6549 1-4 X 100 251
L-C-2 2 Linear 0-01 1-875 791 19004 1401 3.1 X 10° 68
H-C-1 1 Hertzian 0-01 1-875 5388 99209 7217 1-6 X 10° 316
H-C-2 2 Hertzian 0-01 1-875 680 18984 1408 31 %X 10° 48
H-V-1* 1 Hertzian 0-01 1-875 5388 171918 12810 2-8 X 100 1020
H-V—Zf‘ 2 Hertzian 0-01 1-875 680 22988 1716 3-8 X 10° 268
H-V-17 1 Hertzian 0-01 1-875 5388 231809 17417 3-8 X 10° 3682
H-V-2f 2 Hertzian 0-01 1-875 680 34415 2595 57 X 10° 1087
Fontainebleau sand
L-C-5 5 Linear 0-1 0-1155 8932 20060 856 19 X 10° 300
L-C-10 10 Linear 0-1 0-1155 1122 2734 124 2-7 X 10* 55
H-C-5 5 Hertzian 0-1 0-1155 8932 31448 1732 3-8 X 10° 340
H-C-10 10 Hertzian 0-1 0-1155 1122 4502 260 57 X 10* 50
H-V-5 5 Hertzian 0-1 0-1155 8932 24116 1168 26 X 10° 475
H-V-10 10 Hertzian 0-1 0-1155 1122 3137 155 3-4 X 10* 55
Silica sand
H-C-1 1 Hertzian 0-1 0-825 13849 138935 9622 2-1 X 100 1890
H-C-2 2 Hertzian 0-1 0-825 1736 18779 1311 2:9 X 10° 263
H-V-1 1 Hertzian 0-1 0-825 13849 102 522 6821 1-5 X 100 1028
H-V-2 2 Hertzian 0-1 0-825 1736 13995 943 2-1 X 10° 131

* Values for simulations H-V-1 and H-V-2 until 5 MPa vertical stress (similar to the others for this material).
T Values for simulations H-V-1 and H-V-2 until 10 MPa vertical stress (as shown in Fig. 10).
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evolving particle size distribution by McDowell & Bolton
(1998) (Fig. 9).

The grains of this material are very porous. To account
for this micro-porosity, the DEM particles themselves are
assumed to have constant porosity, niy, taken as 48% in
correspondence with typical values for activated carbons
(Diaz-Teran et al., 2001). Particle microporosity is assumed
independent of particle size and not affected by breakage.
This hypothesis only holds if the micropores are much
smaller than the particle itself and, since this study is
dealing with large particles (Fig. 9), the hypothesis is
assumed to be valid. The latter assumption allows the real
solid volume of a grain to be calculated

VEi=V1 — nin) (19)

and hence the porosity of an ensemble of porous grains

n=1—(1—n)1 - ni) (20)

There were no other mechanical tests available for this
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Fig.9. (a) One-dimensional normal compression curve and
(b) evolving particle size distribution for petroleum coke. (Data
from McDowell & Bolton (1998))

material. Some material parameters (Ker, ¢, G) were cali-
brated by fitting the pre-yield stretch of the NCL. The yield
stress itself was used to select the value of 0jjng. There were
no single particle crush data for coke. Granular microporous
soils have shown (McDowell & Amon, 2000) larger within-
size variability and smaller across-sizes variability than non-
microporous soils. Hence var. was assigned a value of 1.
Relatively low values of m were initially selected in the
range suggested by Fig. 2 and Fig. 3 and then adjusted to fit
the post-yield behaviour. The comminution limit dijmir was
chosen relatively low (0-25 dsp) because particle size for this
material was initially large.

Figure 10 shows the results of DEM simulations of
oedometric compression for this material, both at scale 1
and 2. The behaviour in compression of this material is
dominated by crushing. Simulations without crushing were
also performed for the different contact models. As shown
in the figure, without crushing no model is able to approx-
imate the experimental behaviour. At high pressures the non-
linear Hertzian stiffness results in less deformation than the
linear contact law, but that is a result of excessive particle
overlap.

As expected, the numerical result is far more realistic
after crushing is activated (Figs 10(a) and 10(b)). The effect
of the contact stiffness hypothesis (linear or Hertzian) is not
significant. The effect of the assumption about contact area
is secondary to that of activating crushing, but still signifi-
cant. Simulations with a variable (Hertzian) contact area do
result in a better reproduction of the experimental compres-
sion curve (Figs 10(e) and 10(f)). During the first stages of
compression, particularly in Figs 10(b) and 10(d), a kink
does appear in the simulated GSD. This is an artefact of the
splitting configuration chosen: in this very uniform material
(initial ratio of largest to smallest particle is 2) the largest
possible daughter particle of the initial material has a
diameter smaller than the initial minimum size. In other
words, there is no overlap between initial particle and
fragment sizes. An interesting result is that, independently of
the different constitutive hypothesis applied, upscaling by a
factor of 2 does seem to have a very minor effect on the
macroscopic outcomes of the simulations.

The forces acting during the simulation against the radial
confining wall are easily integrated to evaluate horizontal
stress and, therefore, the lateral pressure coefficient, ko,
defined as the ratio between radial and vertical stress. Fig.
11 shows again how the dominant effect here is that of
crushing, and that both linear and Hertzian — be that with
constant or variable contact angle — contact laws give very
similar results in terms of &y and stress paths in the g—p
plane. Note that the initial isotropic state (ko= 1) is an
artefact due to the sample formation procedure.

The classic experimental trends summarised by Mesri &
Vardhanabhuti (2009) are well captured by the DEM simula-
tions. Dense, crushable soils start with a low value of ko;
during crushing compression a linear increase occurs until
they reach an asymptotic value related, by Jaky’s formula, to
their constant volume friction angle. The asymptotic value
of kp depends somewhat on the chosen contact model; the
equivalent friction angle of the Hertzian contact models is
higher than that of the linear model.

High-strength crushing material no. 1: Fontainebleau sand
In the previous section it was observed that, for highly
crushable materials, the use of a linear or Hertzian contact
model did not produce major differences in terms of mech-
anical response and GSD evolution. However, when con-
sidering strong materials, the elastic components of
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Fig. 10. Comparison of scale 1 and scale 2 DEM simulations and experimental data of one-dimensional compression tests for petroleum
coke: (a), (c) and (e) in compression law; (b), (d) and (f) GSD evolution; (g) to (i) show the initial and final configurations of the models.
The darker particles in parts (g) to (i) represent particles spawned after breakage (red, blue and black particles represent first, second

and third generation of particles, respectively) (continued)

deformation are more important and contact stiffness should
play a larger role.

A high-stress oedometer on Fontaineblau sand reported by
Yang et al. (2010) is used as an example. Low-confining-
pressure triaxial compression results by Seif El Dine (2007)
and Seif El Dine et al. (2010), as shown in Fig. 12(a) and
Fig. 12(b), were used here to calibrate basic DEM contact
parameters (Kefr, ¢, G). The triaxial simulations were per-
formed without crushing, because crushing is small at low
confining pressure. For the high-pressure oedometer, as illu-
strated in Fig. 12(c), the models without crushing are

inappropriate. At high pressures the two simulations bracket
the experimental result, with the linear model being too
compliant and the Hertzian model too rigid. No specific
particle crushing tests were available for this case and the
parameters controlling grain strength variability (m and var.)
were assumed equal to those of other siliceous sands repre-
sented in Fig. 2 and Fig. 3. Tables 1 and 2 were used to
guess initial values for ojimo and 6y, later slightly adjusted to
capture yield stress. The comminution limit djiyie is higher
here (0-55 dso) because particle size for this material was
initially small.
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Fig. 10. (Continued)

Activating crushing significantly increases the curvature of
the NCL beyond the stress level marked by oOiimo. While
this causes the NCL to move further away from the experi-
mental data for the linear contact model simulation, in the
Hertzian contact model this crushing induced deformation
brings the simulation closer to the experimental results (Figs
13(a) and 13(b)). Introducing the Hertzian contact area
model has the opposite result (i.e. reducing the curvature) at
high stresses. Unfortunately, the experimental data do not
reach the stress level at which the constant and Hertzian
contact models diverge, nor do they include evolution of the
GSD for this test. In Figs 13(c) and 13(d) it can be seen,
however, that the linear contact model has resulted here in
less fragmentation than the Hertzian contact model simula-
tions. The Hertzian model remains stiffer at high pressures,
and therefore more contacts attain the crushing limit condi-
tion. The macroscopic results appear quite insensitive to a
doubling of the scale factor (from 5 to 10) for all the
different contact models tested.

The stress paths and simulated ky evolution are presented
in Fig. 14. With or without crushing, the linear contact
model shows a behaviour that does not converge to a
horizontal %y asymptote, contrary to general evidence (e.g.
Mesri & Vardhanabhuti, 2009). In contrast, the Hertzian
model with crushing does lead to a behaviour converging to

an asymptotic ko value. The Jaky-inferred asymptotic friction
angle inferred from the simulations (29° and 33°) is close to
the value suggested by the low-density triaxial test in Fig.
12(a).

High particle strength poses a problem to the linear model
implemented here, because the tests attain large stresses. As
noted by Masin (2012), when using uncrushable particles,
the 1D compression line will eventually curve above 10—
20 MPa (Fig. 12(c)) owing to particle overlap. This effect
can be corrected by selecting a very high contact stiffness,
but this, in turn, will not allow the initial part of the curve
to be captured correctly.

High-stress crushing material no. 2: silica sand

McDowell (2002) presents oedometric results for another
strong silica sand that go further in terms of applied stress
and also include GSD. This experiment was later simulated
using aggregates by McDowell & Harireche (2002) and
single particles by McDowell & de Bono (2013). McDowell
(2002) also presents grain crush data for this sand. The grain
crush data were used to establish var. and m. Contact param-
eters (Table 3) were again calibrated using the initial elastic
part of the curve (¢, G, K.). Tables 1 and 2 were used to
guess initial values for ojimo and 6y; the location of the yield
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Fig. 12. DEM simulation of drained triaxial compression test (cell
pressure 100 kPa): (a) deviatoric stress plotted against axial
strain; (b) volumetric strain plotted against axial strain;
(c) oedometric compression of Fontainebleau sand without con-
sidering particle breakage. The L and H symbols in the key
correspond to ‘linear’ and ‘Hertzian’ contact models, respectively

point was used to adjust ojimo. At the larger stress levels
(above 50 MPa) the experiment showed a clear stiffening
behaviour; to capture better this behaviour and based on the
sensitivity analysis described in Fig. 7 the comminution limit
was set to 0-55 dso.

Only Hertzian contact models will be considered here,
since the poor performance of the linear contact model for
strong materials was already illustrated in the previous
section. In particular, in Fig. 15 the simulation results
obtained using constant and variable contact angle failure
criteria are compared with the experimental results in a
n—o, plane and a &,—0, plane. The latter was used to better
compare the results as it is difficult to achieve the same
initial porosity in the numerical models. It can be appre-
ciated how the Hertzian contact area with variable contact
angle (H-V) tests shows a better approximation to the
experimental results than the tests with constant contact area
(H-C). In Fig. 16 the evolution of GSD is compared with
the experimental data. Here too the H-V runs seem to
perform better than the H-C simulations. Finally, in Fig. 17
the evolution of &y with vertical load is presented, as for the
other two materials. It is again noted that simulation results
with a scale factor of 2 gave very similar results to those
with a factor of 1.

DISCUSSION

The modelling approach described here can be easily
generalised to accommodate different contact area or contact
stiffness models. Other particle material failure criteria (e.g.
Mohr—Coulomb or Hoek—Brown), might be used, but the
analytical work of Russell & Muir Wood (2009) would then
need to be replicated. Variable internal porosity can be also
incorporated, as illustrated by Ciantia ef al. (2015).

How best to constrain the choice of a practical comminu-
tion limit is also a subject worthy of more detailed investiga-
tions. As illustrated in Fig. 15 this is particularly important
for modelling advanced breakage states, where the mass not
represented in the mechanical model is larger. The same
figure also illustrates that, despite its limitations, the pro-
posed approach is accurate up to stresses that double those
attainable when mass conservation is strictly enforced (as
was the case in the simulation by McDowell & de Bono,
2013). This useful range extension is also enabled by the
proposed procedure for post-processing GSD. That post-
processing works best if there is a good overlap of fragment
sizes and original particle size.

In previous sections, the authors have highlighted the
performance of the models from the point of view of their
ability to reproduce the experimental observations. However,
particularly if the final goal is to apply the calibrated
discrete materials to simulate larger scale problems, it is also
pertinent to discuss model efficiency. In this context, effi-
ciency is closely represented by model runtime, since all the
simulations were performed using the same hardware (In-
tel® Core™ i7-3770 CPU at 3-40 GHz with 8-00 GB of
Ram). Table 4 thus summarises several outcomes of the
model: model runtime, initial and final particle number and
crush events. The table also includes a number, ‘Excluded
particles’, that roughly estimates the number of particles that
would have been necessary to preserve mass. It is computed
apportioning all the mass lost as particles with diameter half
the size of the smallest particle obtained by the crushing
event.

As expected, the number of crushing events is relatively
higher for the weak material than for the strong ones. For
the petroleum coke there were far more crushing events than
initial particles, whereas for the strong sands the number of
crushing events remained well below that of initial particles.
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Fig. 13. DEM simulation of oedometric compression showing the effect of particle breakage on (a) NCL and (b) GSD
evolution for scale 5 linear (L) and Hertzian (H) contact models; (c) and (d) show the same results for scale 10 simulations

Also, as expected, a major factor affecting model efficiency
seems to be the number of particles at the beginning of the
simulation. Since this number scales with the cube of the
linear scaling factor, doubling the scaling factor results in
runs that are typically around six times faster.

In this respect, it should be finally noted that the com-
puted number of excluded particles is, roughly, around 15
times that of the final number of particles in the simulation.
As was already shown in Fig. 7(c), this clearly implies that
the choice of the particle spawning procedure has a very
important bearing on the computational efficiency of the
model. The compounded effect of scaling particle size and
limiting spawning fragments in these simulations is a factor
close to 100 in simulation runtime (Fig. 18).

Contact models do also have an influence on runtime, but
this is second order and affected by code-specific issues. For
instance, the variation of stiffness with particle size (equa-
tion (14)) is intrinsic to the Hertzian contact model while it
had to be coded separately by means of FISH (short for
FLACish, a PFC built-in programming language) functions
for the linear contact model. FISH functions result in com-
munication overheads that might be avoided if the contact
model source code is directly modified.

CONCLUSIONS

A multigenerational DEM approach has been used to
simulate 1D compression of soils of very different grain
strength. Linear and Hertzian contact models are compared
with experimental data from the literature, in terms of
NCLs, GSD evolution, lateral pressure coefficient, ky and
computational burden. For highly crushable materials such
as petroleum coke (charcoal) the two contact models give
very similar results in terms of slope of NCL, GSD evolu-
tion and evolution of ky with vertical stress. On the other
hand, when strong grained materials are considered, the
linear contact model does not adequately reproduce crushing
and all its mechanical consequences.

Besides having a rigorous basis, the breakage model intro-
duced allows for a clear separation between bulk and contact
properties that allow separate refinement of these two
aspects and flexibility in calibration, for instance using
single particle compression tests. The use of upscaled mod-
els in calibration makes the calibration process quite effi-
cient.

The spawning procedure advocated results in lost mass
during the simulation; however, that loss does not seem
to affect significantly the ability of the models to match
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Fig. 16. GSD evolution for: (a) experimental result; (b) H-C-1 and H-C-2; (c) H-V-1 and H-V-2

the experimentally observed macroscopic response. This
model feature takes advantage of the generally highly
redundant and skewed mechanics of force transmission
through discrete materials. This work also substantiates
the computational efficiency of the upscaling rules pro-
posed. It is shown that calculation time can be reduced
considerably with little difference in terms of mechanical
behaviour and GSD evolution. The proposed procedures
can be considered as a springboard for future large-scale
simulations.
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APPENDIX. PARTICLE SPAWNING PROCEDURE
DETAILS

By means of a FISH function, during the numerical analysis, a
loop across all particles checks if any of the contacts transmits a
force that exceeds the limit condition. If the failure criteria are
violated, the unit vector n of components, n, n, n, that identifies the
direction of the force is temporary saved. At this point the crushed
configuration in its reference disposition is created replacing the
original sphere. Subsequently, using the coordinates of the centres of
the daughter particles in the reference system (Table 5), the
configuration is subject to two subsequent rotations; one with
respect to the y’ axis and the other with respect to the x’ axis such
that the vertical axis in the reference configuration is parallel to the
direction of the contact force.
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NOTATION
Ar

contact area

Dy, D,
Arimit
dmax
dmin

do
do

diameters of the two spheres in contact
comminution limit

maximum particle size

minimum observed particle size
particle diameter

reference diameter (chosen as 2 mm)

magnitude of normal contact force
magnitude of limit normal contact force
G shear modulus

i step of the calculation

material constants

normal contact stiffness

tangential contact stiffness

lateral pressure coefficient

10000
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Table 5. Fourteen-ball configuration where R represents the
radius of the ‘mother ball’ while r stands for the radius of the
daughter particles

Ball ID /R x'/R y'/R Z'/R

1 0-4641 0 0-5359 0

2 0-4641 —0-4641 —0-2679 0

3 0-4641 0-4641 —0-2679 0

4 0-2240 —0-6720 0-3880 0

5 0-2240 0-6720 0-3880 0

6 0-2240 0-0000 —0-7760 0

7 0-3659 0 0 0-6339
8 0-3659 0 0 —0-6339
9 0-2573 0 —0-5942 0-4456
10 0-2573 0-5146 0-2971 0-4456
11 0-2573 —0-5146 0-2971 0-4456
12 0-2573 0 —0-5942 —0-4456
13 0-2573 0-5146 0-2971 —0-4456
14 0-2573 —0-5146 0-2971 —0-4456

Lc  load increase coefficient
Mt total mass
mass of particles smaller than d
m material parameter
N scaling factor
n  porosity
nipe  internal porosity
p mean stress
q deviatoric stress
R sphere radius
ry radius of contact area
U sphere overlap
var. coefficient of variation
&, axial strain
&y volumetric strain
6y solid angle ‘seen’ from centre of particle
Kk intrinsic strength
Kmob Mmobilised strength
v Poisson ratio
p equivalent stress acting on contact area
o, compressive strength
Olim  limit strength
mean limit strength
O reference stress of 1 kPa
oy tensile strength
o, vertical stress
¢ intergranular friction
X microstructure parameter
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