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Abstract
Due to complex nature of nearly all infrastructures (and more specifically concrete dams), the uncertainty quantification is
an inseparable part of risk assessment. Uncertainties might be propagated in different aspects depending on their relative
importance such as epistemic and aleatory, or spatial and temporal. The objective of this paper is to focus on the material and
modeling uncertainties, and to couple them with soft computing techniques aiming to reduce the computational burden of
the conventional Monte Carlo-based finite element simulations. Several scenarios are considered in which the concrete and
foundation material properties, the water level, and the dam geometry are assumed as random variables. Five soft computing
techniques (i.e., random forest, boosted regression trees, multi-adaptive regression splines, artificial neural networks, and
support vector machines) are employed to predict various quantities of interest based on different training sizes. It is argued
that the artificial neural network is the most accurate algorithm in majority of cases, with enough accuracy as to be useful
in reliability analysis as a complement to numerical models. The results with 200 samples in the training set are enough for
reaching useful accuracy in most cases. For the simple prediction tasks, the results were predicted with less than 1% error.
It is observed that increasing the number of input parameters increases the prediction error. The partial dependence plots
provided most sensitive variables in dam design, which were consistent with the physics of the problem. Finally, several
practical recommendations are provided for future applications.

Keywords Soft computing · Uncertainty quantification · Dam class · Machine learning · Response prediction · Big data

1 Introduction

Dams are complicated infrastructures whose responses are
affected by many internal and external parameters (Moran
et al. 2018). A proper safety assessment of dam structures
requires a multi-disciplinary program combining differ-
ent expertise such as structural engineering, geotechnical,
hydraulic, and material. (Hariri-Ardebili 2018). On the other
hand, dams are aging, andmost of themwere built at the time
with limited technical information and computational tools.
For example, American Society of Civil Engineers (ACSE)
reports that by 2025, 70% of dams will be over 50 years old
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in the USA (ASCE 2017). There is a similar situation in other
countries.

In addition, with recent advances in computer science and
information technology, there are large amount of data either
directly gathered from the dammonitoring, or numerical sim-
ulations. The former one is usually used in the context of
structural health monitoring (SHM) (Bukenya et al. 2014) to
process themeasureddata during the life timeof the structure.
There is an increasing interest in the research community
to integrate the overall response effectively (Salazar et al.
2015a).

Majority of the efforts in this area are focused on devel-
oping statistical tools to interpret the collected dam data.
They are some times combined with numerical methods
to improve the prediction (Fedele et al. 2005). Methods
based on multiple linear regression (MLR), artificial neural
networks (ANN), adaptive network-based fuzzy inference
system (ANFIS), support vector regression (SVR), genetic
algorithms (GA),multi-adaptive regression splines (MARS),
and boosted regression trees (BRT), among others have been

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-04623-x&domain=pdf
http://orcid.org/0000-0001-6772-1468
http://orcid.org/0000-0002-5566-3253


M. A. Hariri-Ardebili, F. Salazar

used for the characterization of dam behavior under envi-
ronment loads (Mata 2011; Ranković et al. 2012, 2014;
Stojanovic et al. 2013; Salazar et al. 2016).

1.1 Literature review: soft computing in dam
engineering

On the other hand, the soft computing (SC) techniques can
be directly fed with the synthetic results obtained from
numerical simulations (more specifically finite element (FE)
analysis). The main objective of this group of applications
is to develop some structure-dependent surrogate models
with limited number of initial simulations. This can be very
helpful since majority of dam engineering problems have
a multi-physics nature implying that they are computation-
ally expensive to perform. More specifically, dealing with
stochastic transient (e.g., seismic) simulations is computa-
tionally demanding, which limits both the application of
probabilistic methods and also increases their bias due to
lack of enough simulations. Thus, the SC methods seem to
be appropriate alternative for the crude Monte Carlo-type
simulations.

Unfortunately, this field is new in dam engineering and
there is limited research devoted to probabilistic dam safety.
In the following, the current applications are summarized:

– Chen et al. (2010) proposed an improved response sur-
face meta-model (RSM) for a coupled foundation–dam
system with linear behavior under sliding failure mode.
Modulus of elasticity in rock and concrete is assumed to
be randomvariables (RVs). The accuracy is evaluated as a
function of number of iterations in the adopted weighted
regression-based algorithm. It was reported that the pro-
posed method not only saves the arithmetic operations,
but also improves the efficiency of calculations and stor-
age.

– Karimi et al. (2010) proposed an ANN-based procedure
for system identification of gravity dams coupled with
a hybrid FE-boundary element analysis to predict the
dynamic characteristics of an empty dam. The gravity
dam is modeled as a linear elastic system on a rigid foun-
dation with unbounded reservoir. The conjugate gradient
and the Levenberg–Marquardt algorithms were used for
training theANNs.The results of solving inverse problem
were compared with numerical simulations to demon-
strate the accuracy of the proposed method.

– Fan et al. (2010) combined the RSM and finite step
method to fit the explicit performance function and relia-
bility index calculation. The failure path and functionality
failure mode were computed for a RCC dam. They sim-
ply reported the validity of the applied method compared
to the traditional reliability index.

– Gaspar et al. (2014) developed a probabilistic thermo-
chemo-mechanicalmodel for someRCC’s physical prop-
erties. A global sensitivity analysis was performed, and
the heterogeneity on those parameters is also consid-
ered using a bi-dimensional random field. Using the
random fields theory, a variance reduction in the output
is observed. Among the considered RVs, the convection
coefficient presents negligible sensitivity index.

– Cheng et al. (2015) adopted the kernel principle compo-
nent analysis (KPCA) method for dam health monitoring
under varying conditions, and to eliminate the effect of
environmental variables. It was reported that using the
data observed from ambient vibration testing of dams,
the identification and warning capabilities of structural
damage can be improved.

– Gu et al. (2015) developed a new method based on chaos
genetic optimization algorithm to inverse the actual ini-
tial zoning deformation modulus and to determine the
inversion objective function using the dam displacement
measured data and FE method. No particular conclusion
is presented in this paper.

– Gu et al. (2010) combined the concept of least squares
support vector machine (LS-SVM) with back analysis
technique to determine the mechanical properties of the
RCC dams. A three-step approach is used: (1) uniform
design of experiment is chosen for the initial samples,
(2) train the samples using a transversely isotropicmodel,
and (3) establish a complex nonlinearmodel between sys-
tem output (i.e., relative values of hydraulic components
of dam displacements) and the inputs (i.e., mechanical
parameters).

– Su et al. (2016) performed a very similar research aswell.
A back analysis is performed for gravity dams including
a sensitivity-based criterion for optimal parameter selec-
tion.Ahybridmethodof SVM,ANN, anduniformdesign
methods was used to map the relationship between dam
structural response and multi-material parameters at dif-
ferent regions.

– Rezaiee-Pajand and Tavakoli (2015) introduced an effi-
cient method for crack detection in concrete gravity dams
using a hybrid GA and FE methods. The GA identifies
the location and magnitude of cracks in dams by mini-
mizing the difference between the analytical responses
and the measured ones.

– Xin and Chongshi (2016) performed the stability failure
analysis of a gravity dam using the credibility theory. In
this procedure, the stability is evaluated as a combined
event of fuzziness and randomness of failure criterion,
measured data, and design parameters.

– Cao et al. (2017) applied the fuzzy random event to study
the stability of high arch dam abutments. The instability
risk ratio models were proposed based on the credibil-
ity theory and were calculated using the Monte Carlo
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simulation (MCS) and fuzzy random post-processing. A
Gaussian random model was adapted to generate several
realizations of spatial variability. The results showed that
the proposed method is feasible with sound findings.

– Hariri-Ardebili and Pourkamali-Anaraki (2018a, b)
showed the application of several SC techniques inmulti-
hazard analysis of gravity dams. Both the simplified
models and the nonlinear damage analyses were per-
formed. Seismic, hydrologic, and aging hazard were
studied separately. They reported that SC techniques are
useful when they are combined with FE analyses. These
techniques can be used for prediction of future dam
response, as well as the classification of safe/failed states.
Several systematic algorithms are proposed in order to
implement the real-world dam analysis data.

– Hariri-Ardebili and Barak (2020) compared several SC
techniques in numerical seismic analysis of gravity dams.
A large set of ground motion meta-features are extracted,
and various feature selection techniques were applied
to select the most efficient subset of ground motion
unique signatures. They reported that overall ANN is
the optimal method. Finally, Hariri-Ardebili and Sudret
(2020) applied the polynomial chaos expansion (PCE) for
material uncertainty quantification of four different case
studies including an arch dam–reservoir–foundation cou-
pled system, and gravity dams.A step-by-step framework
is presented with practical recommendations. Impact of
various number of initial samples as well as the engi-
neering demand parameter is evaluated. Accuracy is
compared with traditional ANN, and the advantage of
PCE is shown.

1.2 Theoretical underpinning on probabilistic
analyses

The objective of this paper is to focus on the material and
modeling uncertainties in probabilistic FE analysis of con-
crete dams. This is, in deed, classified under the epistemic
uncertainties according to Der-Kiureghian and Ditlevsen
(2009). The classical structural reliability is based on quan-
titative evaluation of the limit state’s (LS) exceedance prob-
ability, PLS, given the uncertainties in the input parameters
(Sørensen 2004). The LS function, G, divides the response
domain into safe, G > 0, and failed, G ≤ 0, regions:

G (X) = C (X) − D (X) (1)

where X ⊂ R
M is a random vector of N basic RVs X =

X1, X2, . . . , XN . C and D refer to capacity and demand,
respectively.

The time invariant probability of LS can be determined in
terms of joint probability density function (PDF) of the all

contributing variables as (Melchers 1999):

PLS =
∫

{x : G(x)≤0}
fX (x)dx (2)

Due to implicit nature of this integration, the direct esti-
mation of the probability of LS is difficult. As an alternative,
the simulation-based techniques are widely used (e.g., MCS)
(Ditlevsen and Madsen 1996). The MCS is straightforward
and based on the theory of large numbers:

P̂LS = 1

Nsim

Nsim∑
j=1

ILS
(
x j

) = Nexc

Nsim
,

ILS (x) =
{
1 if G(x) ≤ 0
0 if G(x) > 0

(3)

where Nexc and Nsim are, respectively, the number of simula-
tions exceeding the LS, and the total number of simulations;
the hat is the sign of estimation; and ILS is a binary classifier.

The major drawback in this technique is the large num-
ber of simulations to get the stable results which limits its
application for transient analysis of dams. Variance reduction
techniques such Latin hypercube sampling (LHS) (McKay
et al. 1979) can be used, but they still require relatively large
number of simulations.

1.3 Novelty and contribution

So far, the presented methods in Sect. 1.2 are all based on
simulation-based techniques. As an alternative, a relatively
small set of simulations can be used to feed into a SCmodel to
develop itsmeta-model (Simpson et al. 2001). The developed
meta-model can later be used to enlarge Nsim with negligi-
ble computational cost. Figure 1 illustrates this procedure
schematically.

The key issue in this procedure is to predict the quanti-
ties of interest (QoIs) with high accuracy and limited initial
simulations. There aremultiple alternatives to build themeta-
models (in terms of the SC technique, and the training
options), and their performance (in terms of the prediction
accuracy) depends on the problem at hand. A step-by-step
procedure for the proposed method in Fig. 1 can be summa-
rized as follows:

– Identify themost important physical features in the struc-
ture,

– Develop the finite element model which is as representa-
tive as possible (capturing the main response features),

– Identify all the uncertainty sources in material properties
and assign most appropriate distributional model (either
from literature, or from experimental tests),
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Fig. 1 Schematic explanation of the combined numerical simulations with soft computing techniques

– Draw sample a large number of realizations and perform
a crudeMCS or LHS. This database serves as a reference
model for validation.

– Draw a (relatively) small number of samples. This
database is used as a target meta-model.

– Perform probabilistic finite element simulations for both
the small and large databases.

– Use the pair of input–output from small database in
several soft computing algorithms and train several meta-
models.

– Feed the same input of large database into the meta-
models and “predict” the new outputs.

– Compare the “predicted” outputs with “exact” finite ele-
ment based ones and determine the accuracy of the
proposed SC method. If acceptable, recommend the SC
method as an alternative method in response prediction
of large-scale dam engineering problems.

The main objectives of this work are:

– Performing a comparative study of the predictive capac-
ity of five SC algorithms in the frame of probabilistic
analysis of dams.

– Account for both the material and modeling uncertainty
with 14 random variables.

– Identification of the effect of the RVs in the displacement
and stress responses of the system.

– Propose a geometry-based meta-model for initial sketch
out of gravity dams in an optimal way.

1.4 Organization of paper

The paper is organized in the following order: a general intro-
duction and detailed literature review is presented in Sect. 1.
A brief review on five SC techniques used in this paper is
presented in Sect. 2. The case study and the computational
model are presented in Sect. 3.1. Various prediction tasks
with increasing complexities are introduced next, Sect. 3.2,
and the results are discussed in Sect. 4. Finally, the paper
is wrapped up with general conclusions, recommendations,
and future works, Sect. 5.

2 Soft computing techniques

The great development of data science has resulted in the
existence of a huge community of scientists and engineers
who constantly propose new techniques or improvedversions
of the existing ones to generate predictive models. Most of
them can be used almost indistinctly for the stated objec-
tives: the goal is identifying a univocal relationship between
some input variables (i.e., RVs) and certain system responses
(i.e., QoIs). It is therefore a conventional problem of regres-
sion.

A complete analysis of all possible alternatives is infea-
sible to perform. Therefore, five of the most popular SC
techniques, which have been previously used in dam engi-
neering problems (Salazar et al. 2015b), are selected for the
comparison. Since the theoretical fundamentals of these tech-
niques are well documented in other articles, only succinct
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introductions are included herein, together with the consid-
ered training options.

All techniques feature some random component in the
training process. To account for that, as well as for the vari-
ability in the training sample, one hundred repetitions of each
model were fitted, and their accuracy analyzed for compari-
son.

In spite of that, the result of this work cannot be consid-
ered as the final word in terms of the appropriateness of each
SC technique for this problem. Although we tried to per-
form a fair comparison, for which we used similar degree of
parameter tuning for every algorithm, this analysis is empiri-
cal, and different results may be obtained when other kind of
numerical simulation, random variables, or training options
are employed.

2.1 Random forests

Random forest (RF) is an ensemble model based on the idea
of the superior performance of a large dataset of simple mod-
els over a single complex one. Thus, the prediction of a
RF model is computed as the average prediction of (typi-
cally) hundreds of regression trees (Breiman 2001; Hastie
et al. 2011). The training process includes features to control
over-fitting and capturing the existing patterns in the training
dataset. It can be summarized as follows:

– For i = 1, . . . , Nt , where Nt is the number of trees
in the RF, a random subsample of the trainings set is
taken.

– A regression tree is fitted to the subsample without prun-
ing, taking a random subsample of the input variables for
each split.

– The model output is computed as the average predictions
of each individual tree.

Although these models have shown to be specially appro-
priate for prediction tasks where the number of input
variables is large compared to the training samples Díaz-
Uriarte and De Andres (2006) they have also offered
useful results in more conventional settings Salazar et al.
(2015b). Since they are insensible to input variables with
different ranges of variation, they require a simple pre-
processing. In addition, variable selection is automatically
performed during the model training. Therefore, the predic-
tions are not affected by the presence of non-informative
variables.

In this work, the library randomforest (Liaw and
Wiener 2002) in the R environment (R Core Team 2018)
is used (the same environment is used for all the SC tech-
niques), with default training parameters.

2.2 Boosted regression trees

Boosted regression trees (BRTs) are categorized in ensemble
methods, because their outcome is combination of mul-
tiple models (Friedman 2001). Although boosting can be
used in combination with base models of different nature,
the regression trees are used in this work. Therefore, BRTs
share some of the advantages of RFs in terms of preprocess-
ing effort and capability for handling the interactions and
nonlinearities.

Unlike RFs, the prediction is now computed as the sum
of the individual trees, since each one is fitted to the residual
of the previous model. Thus, the process starts with a simple
model m1 fitted to the training data; the residual r1 is com-
puted, a newmodelm2 is fitted to estimate r1, and its result is
added (with opposite signed) to the prediction ofm1, obtain-
ing M2 = m1 +m2. The next model is generated to estimate
the residual ofM2, denoted by r2. The process continues until
obtaining the complete model MN = ∑N

i=1 mi .
Another important difference between BRT and RF is the

use of very simple trees in the ensemble, typically including
a few branches. The complexity of these base learners is
controlled by the interaction.depth parameter in the
gbm library used (Greenwell et al. 2018). This parameter is
set to 2 in this paper, to consider two-way interaction among
the inputs.

The result of eachmodel is down-weighted by a shrinkage
parameter ν to control over-fitting. With the same purpose,
each sub-model is trained on a random subsample of the
original training dataset. A maximum of 2000 trees was used
in this work, and the optimal value was selected after five-
fold cross-validation. The shrinkage parameter was set to
0.01, and the remaining parameters were set to their default
values.

2.3 Multi-adaptive regression splines

Multi-adaptive regression splines (MARS) is an adaptive
technique proposed by Friedman (1991), Friedman and
Roosen (1995) whose outcome is computed as the com-
bination of piecewise linear functions. These are defined
in reflected pairs which take the form max(0, Xi − t) and
max(t − Xi , 0), where Xi is one of the input variables, and t
is a constant often called knot. All functions of this kind are
defined as candidate functions, being t all observed values
for each Xi in the training set. The function which results in
greater minimization of the residual error is chosen and pro-
gressively added until the model includes some pre-defined
amount of terms. This typically results in over-fitting; there-
fore, the final model is obtained after some terms are pruned
using generalized cross-validation (GCV) criterion: a version
of the residual sum of squares which considers the number
of terms in the ensemble (Friedman et al. 2001).
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These models are also acknowledged to be appropriate
to handle nonlinear effects of inputs while being inter-
pretable. In addition, the algorithm implicitly includes
variable selection, since the candidate functions involving
non-informative inputs are not selected to be part of the
final model, and vice versa. The library earth is adopted,
and all the default parameters were considered except the
number of terms in the final model (parameter nprune),
whichwas selected via fivefold cross-validation repeated five
times.

2.4 Artificial neural networks

Artificial neural networks (ANN) have been extensively
applied in different fields, including dam safety (Mata 2011)
and other problems in dam engineering such as hydraulic
analyses (Salazar et al. 2013). They are appropriate for non-
linear effects and complex interactions. In contrast to other
algorithms considered, input normalization is necessary
before model training, which requires de-normalizing the
model outcome to compute accuracy. The models resulting
from the training process depend on the random initialization
of the weights.

A simple version of the multilayer perceptron with one
hidden layer was used. Preprocess included scaling and
centering of input variables. Since there is not a standard
procedure to determine the number of units in the hidden
layer, we tried networks including 2, 4, and 6 neurons. Over-
fitting is controlled by means of the regularization parameter
decay. We used grid search to obtain the best combina-
tion of hyper-parameters (size and decay). For the latter,
we tried 10e−3, 10e−4 and 10e−5. Thus, we considered nine
different settings, which were evaluated by means of four-
fold cross-validation repeated three times. The combination
of network architecture and regularization parameter with
highest accuracy was later used to fit a new model with the
entire training set.

The caret library (Kuhn 2008) was used for parameter
selection, and the nnet library (Venables and Ripley 2002)
for fitting the ANN models.

2.5 Support vector machines

Support vector machines (SVM) also stands among the
most popular SC techniques. Although they were initially
developed for classification purposes, they can be used for
regression as well. Multiple options can be considered, not
only with regard the training parameters, but also in terms
of the nature of the kernel function used (Scholkopf and
Smola 2001). The fundamentals of the method can be found
in different sources (Smola and Schölkopf 2004; Moguerza
and Muñoz 2006). The algorithm is based on performing

linear regression on modified input variables (often termed
features), which are obtained from a nonlinear transfor-
mation of the original inputs. A differential characteristic
of this method is the use of an ε-insensitive error func-
tion, i.e., residuals below ε are neglected during the fitting
process.

We followed a similar procedure as that described for
ANNs to select the valueof thehyper-parameters. In this case,
the library used (e1071; Dimitriadou et al. 2008) includes a
function for parameter tuning. We chose a radial basis func-
tion as kernel, which depends on one parameter, γ . Again,
we used grid search to compute the best combination of the
training parameters, trying 0.01 and 0.001 for γ and 100, 500,
and 1000 for the cost parameter. Here, we used fourfold
cross-validation repeated five times. The remaining parame-
ters were kept at their default values.

3 Numerical model

3.1 Case study description

Koyna Dam is used as pilot case study for numerical sim-
ulations (Bhattacharjee and Leger 1994). The dam includes
56 blocks in which 7 are overflow blocks. The height of the
central non-overflowmonoliths is 103 m, the thickness at the
base and at the crest is 70.2 m and 14.8 m, respectively. Fig-
ure 2a shows the 3D slice view of the geometry model for
the dam (including the base dimensions) prepared in ANSYS
(2007). Analysis of concrete gravity dams can be performed
in two or three dimensions. Usually due to large dimension of
dams in cross-stream direction, two-dimensional (2D)model
is adopted with plane strain assumption (Fenves and Chopra
1984).

In the current paper, 2D plane strain model is used to
reduce the computational cost. The finite element mesh for
the dam–reservoir–foundation system is shown in Fig. 2b.
Four-nodes linear elastic elements are used in dam and foun-
dation domain, while the water is modeled using pressure-
based elements. Solid and fluid elements are in interaction
at the dam–water interface, as well as the foundation–water
interface.

The most optimal mesh size in structural engineering
applications is those with aspect ratio close to one. This
may imply a very fine mesh all over the system and thus
unnecessarily increases the run time. On the other hand,
one may take the advantage of a “smart mesh” in which
the mesh density is only refined at the critical locations
(e.g., high stress zones, and potential failure zones), while
it remains relatively coarse for other zones. Such a tech-
nique is used in Fig. 2b where the mesh density is high for
the neck area and dam–foundation interface [two potential
failure modes for gravity dams (Ghanaat 2004)]. This mesh
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Fig. 2 Description of case study, Koyna Dam, including the dam body, foundation, and reservoir

ensures the trade-off between moderate computational cost
(a large number of simulations were required) and refine-
ment in the areas of interest. Such a non-uniform mesh for
dam body is already reported by other researchers as well
(Bhattacharjee and Leger 1993; Guanglun et al. 2000; Zhang
et al. 2013). On the other hand, the direct responses (i.e., dis-
placement and stress) are not required in the foundation and
reservoir domains. We only need to consider their “impact”
and “interaction” with the dam body. Therefore, the elements
in foundation region (and far away fromdam) have large ratio
distortiongrid. Similarly, for the reservoir,we just transfer the
water pressure to damupstream face, and thus, a non-uniform
mesh is acceptable. Non-uniform meshing in reservoir and
foundation domains is also reported by several researchers
(Arabshahi and Lotfi 2008; Ghaemian et al. 2014; Segura
et al. 2019; Ganji et al. 2019).

Fluid–structure interaction (FSI) is an important issue in
dynamic analysis of concrete dams. In the adopted technique,
the unknown variables are the displacements (in the solid
domain) and the pressures (in the fluid domain). The water
is linearly compressible, and its viscosity is neglected. The
coupled equation of motion is solved using second-order dif-
ferential equations in both domains, Fig. 3. A direct time inte-
gration scheme is used to find the displacement and hydro-
dynamic pressure at the end of the time increment i+1 given
those quantities at time i . The α-method is implemented
for discretization (implicit–implicit technique). Finally, the
staggered solution is adopted to solve the coupled system
(Hariri-Ardebili and Mirzabozorg 2013).

Table 1 represents the material properties for mass
concrete and the foundation rock. It includes the mean,
coefficient of variation (COV), and the truncation bound.
Normal distribution is assumed in all cases (any other model
might be used based on the detailed field investigations).

Applied loads on the system are: self-weight, hydrostatic
pressure (normal water level (NWL) is at 91.75 m for
the pilot model), bottom sediment (wave reflection coef-
ficient for the reservoir bottom materials is assumed to
be 0.75), and earthquake-induced loads (both inertia and
hydrodynamic).

The seismic excitation is applied at the foundation base,
whereas the recorded earthquake signal is on the free-field.
Therefore, a de-convolution process is required to deter-
mine the motion at the rigid base boundary (Saouma et al.
2010). LomaPrieta earthquake of 1989 at SanFrancisco 1295
Shafter station with 6.9 magnitude (PEER 2014) is used for
all the transient simulations. The ground motion record-to-
record variability is not considered in this paper, as it is a topic
of separate study under fragility analysis (Hariri-Ardebili and
Saouma 2016).

3.2 Prediction tasks

First, the conventionalMCS is performed using the advanced
LHS technique where Nsim = 10,000. Six material proper-
ties in Table 1 are assumed to be RVs. Although it is possible
to adopt any distributional model for the RVs, the truncated
normal distribution is used in all cases for simplicity.

Maximum crest displacement and maximum vertical
stress at heel are chosen as two QoIs. Note that σyy is the
governing stress component in 2D analysis of gravity dams
which leads to crack opening at the dam heel. On the other
hand, the �max represents the overall stability. Figure 4a,
b illustrates dependency of the mean and 95% confidence
intervals (CI) to the sample size in displacement-based and
stress-based results, respectively. It seems that stability of the
stress-based results is faster.
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Fig. 3 Stagger solution for FSI problem (Hariri-Ardebili and Mirzabozorg 2013)

Table 1 Material properties for
the concrete and foundation

ID Quantity Symbol Unit Mean COV Truncation

M1 Concrete modulus of elasticity Ec GPa 24 0.10 [19.1 28.8]

– Concrete Poisson’s ratio νc – 0.2 – –

M2 Concrete mass density ρc kg/m3 2470 0.1 [2160 2790]

M3 Concrete hysteretic damping ηc – 0.06 0.33 [0.02 0.10]

M4 Foundation modulus of elasticity E f GPa 21.5 0.10 [17.7 25.4]

– Foundation Poisson’s ratio ν f – 0.33 – –

M5 Foundation mass density ρ f kg/m3 2680 0.1 [2320 3040]

M6 Foundation hysteretic damping η f – 0.05 0.40 [0.02 0.08]

Fig. 4 Uncertainty
quantification based on LHS
with 10,000 simulations
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The objective is to compare different SC techniques in
prediction of structural response, as well as their relative per-
formance. The prediction accuracy is assessed by means of

the mean absolute error (MAE), the mean absolute percent-
age error (MAPE), and the average relative variance (ARV)
(Weigend et al. 1992):
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Fig. 5 Schematic presentation of different prediction tasks

MAE =
∑N
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N

MAPE = 100

N

N∑
i=1

∣∣∣∣∣
QoIFEi − QoISCi

QoIFEi

∣∣∣∣∣

ARV =
∑N

i=1

(
QoIFEi − QoISCi

)2
∑N

i=1

(
QoIFEi − ¯QoIFE

)2

(4)

where N is the size of the test set, QoIFEi are the observed

outputs from finite element, ¯QoIFE is the mean value, and
QoISCi are the predicted values by SC.

Prediction tasks (PT) can be summarized as follows with
increasing complexities, Fig. 5:

PT-1: The pilot dam with fixed reservoir at NWL, and six
material properties as RVs. 10,000 realizations were
used for algorithm comparison.

PT-2: Scaled pilot dam with fixed reservoir at NWL, and
six material RVS. Eight different scale factors (SF)
are used for scaling the dam size up and down.

PT-3: The pilot dam with variable water level (simulating
the flooding conditions), and also six material prop-
erties as RVs.

PT-4: A class of different dam shapes (with seven RVs con-
trolling the geometry), variable water level, and six
random material properties.

PT-5: The pilot dam is analyzed to assess the sensitivity of
the predictive models on multiple points along the
height of the dam (and not a single-targeted task).

4 Results and discussion

4.1 PT-1: pilot model

The first prediction task (i.e., PT-1) is the full analysis of
the Koyna Dam in Fig. 5. Assumptions and procedure are
summarized as follows:

– The geometry of the dam and the water level is fixed.
– Initially, 10,000 simulations are performed in which only
the six material properties are RVs.

– Five different SC methods are used for prediction.
– Two QoIs are studied, i.e., crest displacement and heel
stress.

– Three metrics are used to evaluate the accuracy of pre-
diction, Eq. 4.

– Different sample sizes are used for training, namely 50,
100, 200, 300, 500, 1000, and 2000.
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Fig. 6 Prediction accuracy of the algorithms in PT-1 considered for the validation set (8000 cases) and 100 iterations

– The rest of the simulations (8000) are taken as external
validation to control the accuracy.

– Evaluation is based on the validation set.
– For each training set, 100 iterations are repeated to
account for the randomness in realizations of the RVs, as
well as in the training process of the algorithms. Results
are presented as mean and mean ± standard deviation
(STD).

– To prevent poor performance of the SC models when
extrapolating, themaximumandminimumvalues of each
RV are always included in the training set.

Figure 6 presents the variation of the prediction accuracy
for different training sets, SC algorithms, QoIs and metrics.
Major observations are:

– In general (as expected), increasing the number of train-
ing samples reduces the mean and STD of the error for
all metrics and SC techniques.

– ANN provides the highest accuracy for both outputs, fol-
lowed by SVM. The RF is the worst case, specially for
the smaller Ntrain.

– The ANN, SVM, and BRT reach the stability after about
Ntrain = 500. However, similar results are obtained
with Ntrain = 300, which can be useful for practi-
cal/engineering purposes.

– Results are similar for both displacement and stress in
relative terms (MAPE and ARV). The differences of dis-
placement and stress in MAE are due to the range of
variation of both variables.

The results for ANN were further analyzed by computing
the partial dependence plots for the input RVs and the both
QoIs. They present the average effect of each predictor on the
response. The plots show the average influence in solid blue
and the standard deviation intervals in dashed-red, Fig. 7.

From the observation of the results for displacements, it
can be concluded that concrete properties are more relevant
than those of the foundation: The range of the vertical axis
for M1−3 is higher than those for M4−6. In addition, there
is higher variance in the results for the foundation parame-
ters in relative terms. As expected, higher Ec increases the
stiffness and therefore reduces the displacement. This input
has the greater relevance, with the average response ranging
from 13.5 mm for the lower bond of Ec to 17.5 mm for the
upper one. Concrete density has opposite effect, though less
important. Finally, the model captured the expected effect of
damping, with high values resulting in lower displacements.
The influence of all RVs in displacement is barely linear
except for E f , which nonetheless has very low relevance.

For the heel stress, the major influence is observed for
M2, with similar shape as for displacements. This implies
that the dynamic effect of higher concrete density is not fully
compensated by the corresponding increase in compression
stress. The effect of M1 has a local minimum at about Ec =
25 GPa, though the average influence is around 25% of that
observed for M2. Damping also showed greater effect in this
case than Ec. Both M4 and M5 showed low influence.

Last but not least, the sensitivity of the six RVs is assessed
with respect to each other. Only the ANN model is used
in conjunction with the Olden index (Olden and Jackson
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Fig. 7 Partial dependence plots for six RVs in PT-1

2002). This is a measure of the effect of each input in
the system response based on the value of the connection
weights between neurons that accounts for their signs. There-
fore, it allows distinguishing between positive and negative
correlation between inputs and response. Since previous
applications of this index showed some dependency on the
random component of the training algorithm (Salazar and
Crookston 2019), a ANNmodel with 300 random samples is
trained for 100 times. This reduces the uncertainty anddepen-
dency of the Olden index. Results are reported in Fig. 8 for
both QoIs.

The most important parameters to control the displace-
ment are concrete modulus of elasticity andmass density. On
the other hand, the stress-based importance analysis reveals
interesting findings: (1) three concrete properties are impor-
tant than three foundation ones, (2) there is a very similar
ratio among three concrete and three foundation properties,
and (3) rockmass density is least effect of the results. Finally,
the concrete modulus of elasticity has completely different
behavior on displacement and stress. This conflicting criteria
might be important in displacement-based and stress-based
design procedure.

4.2 PT-2: dam class effect

The second task is to investigate the impact of dam class
on the accuracy of the prediction task. For this purpose, the
same shape (geometry) of the pilot dam is preservedwith fol-
lowing scale factors (SF): 0.25, 0.50, 0.75, 1.00 (pilot dam),
1.25, 1.50, 1.75, and 2.00. All the assumptions are similar
to PT-1; however, only 1000 finite element simulations are
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Fig. 8 Relative influence of the predictors for 100 training repetitions
in PT-1

conducted for each of those 8 dam classes (totally 8000 sim-
ulations). Since the number of initial simulations is reduced,
the number of training size is also limited to nomore than500.
Moreover, the uncertainty in the sample selection for training
is neglected, as the results of the previous task showed that
it had no influence in the algorithm comparison.

The concept of dam class is very important, because
not all the QoIs are linearly scaled up/down by scaling the
dam geometry (Hariri-Ardebili and Saouma 2018). Detailed
response variation of different damclasses is shown inFig. 19
along the upstream face. As clear, the dispersion and pat-
tern of both displacement and stresses change with dam size.
More interestingly, it is the location of dominant stress which
moves from the heel to the upper location by increasing the
dam size. For the dam with SF = 0.25, the critical zone is
heel, while for the one with SF = 2.00 it is located at the
height of about 120 m from the heel.

Figure 9 explores the dam class dependency of the dis-
placement responses more in detail. Figure 9a shows the
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Fig. 9 Summary uncertainty
quantification of different dam
classes
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cumulative distribution function (CDF) of the normalized
(with respect to mean) displacement at the crest. The mean
crest displacement increased from 0.7, 6.1, 11.4, 15.0, 26.3,
33.1, 43.0, to 41.6 mm for SF of 0.25 to 2.00, respectively.
There is a considerable variation among theCDFcurves (both
in shape anddispersion).Results are further propagated along
the upstream face through the coefficient of variation (COV),
Fig. 9b. As seen, dispersion is quite large not only among the
dams but also along the dam face.

Figure 10 shows the comparison of the algorithms in terms
of prediction accuracy (based onMAPE) and dam class. The
following observations can be drawn:

– Again, increasing the size of the training set reduces the
MAPE error. However, there is a little decrease in accu-
racy for training sets above 100–200 samples. This can
be useful for practical purposes.

– For all the dam classes, the ANN model offers best pre-
diction.

– For majority of the dam classes, the SVM is also com-
peting with ANN model.

– The worst performance is recorded for RF, nearly for all
the dam classes.

– In general, the stress-based prediction models lead to
lower MAPE than the displacement-based models.

– There is no particular correlation among the accuracy
of prediction and dam class. In fact, results in terms of
MAPE are similar for different SF and training set size.
The greater differences observed correspond to models
trainedwith 25–50 samples,which are clearly insufficient
for practical applications.

Similar observations can be reported for the other metrics.
In order to present a big picture of “normalized” performance
of all SCmodels, the training size of 300 is selected (which is
minimum stable and practical size for FE simulations). For
each of two QoIs, and three metrics, the normalized accu-
racy with respect to largest errors in that comparison group
is presented. Figure 11 illustrates the matrix presentation of
the normalized performance. The six matrices are based on
three performance metric and twoQoIs. The 8×5 grid inside

each matrix refers to eight SFs for dam classes and five SC
algorithms. For each subplot, the maximum error is also pro-
vided under the caption. One may observe that:

– Interestingly, the accuracy of the ANN model is barely
insensitive to the dam class.

– The SVM also has minimum reaction to the dam class.
– Three other algorithms (and specially RF andMARS) are
highly affected by dam class, with poorer performance
on average for high SF values.

– The maximum displacement-based errors are larger than
stress-based ones.

4.3 PT-3: water-level effect

So far, only the material properties are assumed to be RVs,
and the dam class is studied with parametric model. Reser-
voir water is another important factor that affects the seismic
response of the dams. Both hydrostatic and hydrodynamic
pressures change themagnitude and pattern of forces induced
during the seismic excitation. Therefore, the prediction task
in PT-1 is repeated again accounting for the water variations.
Auniformdistribution is used to the pool elevationwith lower
bound of 0.5Hd (minimum water level in winter) and upper
bound of Hd (where Hd is dam height). Initial FE simulations
were limited to 1000 runs.

The MAPE-based prediction accuracy for five SC algo-
rithms is shown in Fig. 12 (two other metrics are skipped).
One may draw the following observations:

– There is a clear decrease in prediction accuracy compared
to PT-1, where water level was taken as constant.

– At the same time, the ANN model outperformed the
remaining algorithms.

– Performance of the ANN model becomes better once at
least 200 training samples are used.

– Again, the RF is the less accurate SC technique.

In viewof these results, theANNmodelwas again selected
to investigate the sensitivity of the QoIs to the RVs, also
evaluated using Olden index, Fig. 13a, b. As before, these
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Fig. 10 Prediction accuracy of different dam classes in PT-2 only based on MAPE metric

results correspond to 100 repetitions of model fitting with
300 samples in the training set. Compared to PT-1 and PT-
2, it reveals that the water-level variations have the greatest
influence on the dam response. Since the index is positive,
higherwater level is associatedwith larger crest displacement
and higher heel stress (which is consistent with the physics
of the problem). In addition, concrete modulus of elasticity
and mass density (i.e., RV M1 and M2) are also effective

(similar to the previous task). Themean influence ofmodulus
of elasticity on stress response is nearly zero, similar to results
in PT-1 (Fig. 7b).

Figure 13c, d shows the partial dependenceof bothQoIs on
water level, which is the most influential variable. Displace-
ment response seems to be more nonlinear than the stress.
The partial dependency is skipped for other RVs, since they
are similar to those reported in PT-1 and PT-2.
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Fig. 11 Normalized performance of different SC techniques with two QoIs, and three metrics; training size is 300 in all cases; the maximum error
is shown for each group

Fig. 12 Prediction accuracy for
the algorithms in PT-3 only
based on MAPE metric
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Fig. 13 Relative influence of the predictors for 100 training repetitions; and partial dependence on WL
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Fig. 14 The first 60 random gravity dam shapes generated based on a MATLAB code; the box size is 150 × 225 m in all cases

Fig. 15 Prediction accuracy for
the algorithms in PT-4 (only
based on MAPE)
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4.4 PT-4: material andmodeling effect

Finally, the shape of the gravity dam is also assumed to be
unknown (i.e., variable) in addition to the material random-
ness and water level. This is, in fact, a very important topic
for users dealing with a diverse portfolio of dams. Develop-
ing a general approach which can be used for different dam
shapes is of interest for many big dam owners (e.g., USBR).
There are several evidence that dam design companies try to
correlate the response of dams in different size and shape.

To account for different dam shapes (note that this is dif-
ferent from SF used in PT-2), a generic form for the gravity
dam is proposed with 7 variable lengths as shown in Fig. 5
(L1 to L7). The following relations are used in order to gen-
erate a random dam shape, Fig. 14:

– L1 = rand (50, 150) m.
– L2 = L1 × α1; α1 = rand(0.00, 0.03)
– L3 = L4 × α3; α3 = rand(1.00, 1.15)
– L4 = L1 × α2; α2 = rand(0.12, 0.24)
– L5 = L1 × α4; α4 = rand(1.20, 1.50)
– L6 = L5 × α5; α5 = rand(0.30, 0.70)
– L7 = L5 × α6; α6 = rand(0.75, 0.90)
– WL = L5 × α7; α7 = rand(0.50, 1.00)

Figure 15 shows the comparison of the algorithms in terms
of prediction accuracy. A similar pattern is observed, with the
ANNmodel featuring highest accuracy.With somuch uncer-
tainty, prediction accuracy decreases compared to previous
tasks. The results suggest that the training set size should be
enlarged for stable results (in particular for heel stress). How-
ever, the ANNmodel was capable of predicting both outputs
with around 6% error. The displacement-based error varia-
tion for different SC algorithms is well-separated compared
to stress-based errors.

Next, the results of the sensitivity analysis of the 6+ 1+
7 = 14 RVs and the ANN model are shown in Fig. 16 for
both displacement and stress QoIs. The results are based on
the model trained with 500 samples and 100 iterations. The
major observations are:

– The impact ofmaterial randomness is overshadowedwith
modeling/geometry uncertainty.

– The most influencing RV is L5 (dam height) for both
QoIs, followed by L7 (neck height) for displacements
and by L1 (base length) for heel stress.

– The water level, WL, has positive effect on both QoIs,
with higher impact on stress. However, it has lower rele-
vance than the mentioned geometrical parameters.
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Fig. 16 Relative influence of the predictors for 100 training repetitions; and partial dependence on WL and shape

– The impact of each geometry is next discussed which is
consistent with the physics of the problem in all cases:

– L1 (base length) has negative impact on both QoIs
(mainly dominates stress).

– L2 and L6 (location of upstream slope) have practi-
cally no impact on the response quantities.

– L3 (width of the lower neck) has negative impact
on displacement as increasing it increases the stiff-
ness and thus, reduces the displacement. On the other
hand, it has a positive impact of stress as it increases
the weight.

– L4 (width of the upper neck) has practically no impact
on the base stress, and a slight positive impact on the
crest displacement.

– L5 (dam height) is the most effective parameter and
has a positive correlation with both QoIs.

– L7 (neck height) has a negative impact on displace-
ment, as increasing it makes the neck shorter (and
stiffer) and reduces the displacement. It does not have
practically impact on base stress.

– The relative importance of 6material RVs is qualitatively
similar to those obtained in the pilot model, though lower
as compared to the geometrical parameters.

The findings in Fig. 16 are further supported by detailed
dependence plots in Fig. 17. General observations are simi-
lar to those explained for the sensitivity plots. However, the
dependence plots show the linear or nonlinear trend of the
QoIs with respect to input parameters. Ofmore importance is
the sigmoid shape of the L5 (so far themost important param-
eter) with respect to QoIs. The narrow upper/lower bound of
water level is also confirms the direct and strong correlation
of this external load on the dam response.

4.5 PT-5: multi-targeted problem

So far, all the prediction tasks focused on a scalar value for
displacement or stress. However, in most of the cases, it is
required to predict the response ofmultiple points in the finite

element model. One way (and probably the easiest way) is
to process each point of interest (PoI) individually and inde-
pendent from other ones. An alternative (and probably the
most elegant) way to predict multiple points, is to account for
potential correlation among the responses (this will be post-
poned to another paper with more details). This problem is
referred to “multi-targeted prediction” (Spyromitros-Xioufis
et al. 2016).

In this section, the pilot dam in PT-1 is studied again;
however, the QoIs are predicted in multiple PoIs along the
upstream face. Again, the ANN algorithm is selected as the
best technique. For each PoI, 50 iterations of the training
process are performed. The prediction accuracy is reported
in 25 nodal points, and 24 elements along the upstream face,
Fig. 18. Six training sizes from 50 to 500 are used for each
of three metrics. As before, increasing the training sample
results in improved accuracy, with low effect for more than
200 cases. The results are similar for all PoIs in relative terms
(MAPE and ARV). The difference for MAE is due to the
value of the corresponding QoI for each PoI. In this regard, it
should be noted that all results are ordered from the top (blue)
to the bottom (red) of the upstream face. Thus, MAE follows
the same trend as the corresponding QoI along the upstream
face: from top to bottom, it decreases for displacements and
increases for stress.

4.6 Overall considerations

The obvious advantage of using SC techniques over numeri-
cal models is the reduction in computational cost. However,
this is, indeed, an advantage in practical applications only
in case the predictions of the QoIs are accurate enough.
Establishing an error threshold to determine whether amodel
is useful in practice is not straightforward, and generally
depends on the problem at hand. Some relevant aspects can
nonetheless be mentioned:

– There will always be a discrepancy between the numeri-
cal and the SC model that will need to be properly quan-
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Fig. 17 Partial dependence plots for 14 RVs in PT-4

tified. Cross-validation is the most convenient approach
to reduce the overall computational cost.

– The numerical model is also an approximation to reality
that implies some degree of simplification/uncertainty.
The accuracy of the model is more difficult to evaluate,
unless past behavior of a dam is analyzed and monitoring
data is available. Even in these cases, the measuring error
can play a crucial role. Therefore, there is always uncer-
tainty that must be taken into account when evaluating
the results of this type of analyses.

– Workingwith SC-basedmeta-models, one should be cau-
tious about extrapolating data. The predictions of these
models in situations outside the range of variation of the
training set are in general less reliable. In this work, we

avoided this effect by including the bounded (i.e., max-
imum and minimum) RVs in the training set. We thus
could ensure that the prediction error computed on the
validation set did not include cases outside that range.
This procedure can be used when the training data are
generated by numerical models, but that is not the case if
monitoring data are used instead Salazar et al. (2017).

On another note, the examination of ANN models gen-
erated useful information on dam response and the effect of
each of the input variables. The results of this work are in
agreement with existing knowledge on dam behavior, which
allowed verifying the validity of this analysis. This procedure
can be more appropriate than conventional sensitivity analy-
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sis based on numerical models, since SC techniques account
for interaction among inputs.

As mentioned in Sect. 2, the comparison among algo-
rithms is empirical and thus cannot be extrapolated to all kind
of structural analysis of dams. In addition to possible effects
of the particularities of the model, the training options may
have an influence. Moreover, other existing algorithms were
not considered, which offered useful results in other settings,
e.g., PCE as reported by Hariri-Ardebili and Sudret (2020).

5 Conclusions

Results of the capability of five SC techniques for estimating
QoIs in dynamic analysis of dams were presented. Although
the options for fine tuning of each model cannot be fully
considered, the results consistently point to ANN as the
most accurate algorithm for this problem and all levels of
complexity analyzed. The applied methodology allowed for
reliable results in terms of prediction accuracy due to the rel-
atively high number of cases used for validation. Although
all algorithms can be further tuned for particular problems,
the robustness of ANNs for this task with low level of adap-
tation can be an advantage to be applied by dam engineers,
without the need for deep knowledge of the fitting options.

In this matter, special attention should be paid to control
over-fitting. In this research, we run 1000–10,000 FE sim-
ulations to generate a large validation set. This allowed to
obtain reliable conclusions in terms of prediction accuracy.
In practice, however, the benefits of using SC models would
be lost if such set of runs were made. Therefore, alternative
procedures should be used such as cross-validation.

For the simplest task, with only 6 RVs involved, 100 real-
izations were enough to predict both crest displacement and
heel stress with less than 1% error. This value was halved
when the training set was enlarged up to 500 cases.

Prediction error was higher when additional parameters
were considered as variables, as was the case with dam size
and water level. In these cases, however, the ANN was again
the most accurate technique, and it results the most robust in
relation with the dam size.

SC models can also be useful for better understanding the
effect of the input parameters (here, the RVs) on the system
response. Partial dependence plots and measures of variable
importancebasedon theOlden indexwere applied in this case
for the ANN models. Results showed some degree of varia-
tion due to the random component of the process. In addition
to the well-known dependency of ANN fitting to the random
initialization of the weights, there is also a random compo-
nent in this procedure when running RV realizations. The
results of the tests performed suggest that conclusions made
using one single ANNmodel can be misleading, but also that
average results of 50–100 iterations provide stable results.

The interpretation of the ANN models can be used for
selecting which input parameters to consider as RVs. This is
also critical in reliability analysis, since the number of RVs
strongly affects the amount of cases needed in Monte Carlo
simulations.

The partial dependence plots provided interesting infor-
mation for all settings. The average effect of each input on
both QoIs was correctly captured by the ANN model. The
results of the task in which geometrical parameters were also
taken as RVs were of particular interest: Although the geo-
metrical parameters featured strong correlation, the model
was capable of correctly identifying dam height as the most
influential variable for both QoIs. The results for other inputs
were also in agreement with engineering knowledge. This
feature can be useful in more complex settings, with high
number of RVs involved and more uncertainty on their true
effects.

Overall, the results suggest that ANN models can be use-
ful in probabilistic dynamic analysis of dams for generating
large datasets to be used for Monte Carlo simulation: The
results with 200 samples in the training set were enough for
reaching useful accuracy in most cases (below 1% error in
PT-1, and below 2% for PT-2 and PT-3). This implies a rel-
evant reduction in computational burden in a typical Monte
Carlo analysis. Similar conclusions can be drawn for other
QoIs, as shown in PT-5.

From a practical viewpoint, it can be concluded that SC
techniques are ready to be applied in combination with
numerical models for the probabilistic design of concrete
dams. An efficient procedure would include further tuning
of the SC model, a reduced number of numerical simula-
tions and cross-validation. Such methodology would open
possibilities to overcome the limitations of the conventional
procedure based on numerical modeling due to the compu-
tational burden. For instance, the effect of the distribution of
the material parameters could be assessed (shape and trunca-
tion bounds), which can be helpful in defining the measures
for quality control during construction. Other options may
include the consideration of the spatial variation of the mate-
rial properties, as well as the assessment of the uncertainty
of the loads.

The authors are working on more specific features for
practical purposes: analysis of alternatives for more accurate
multi-target prediction, a methodology for input selection
based on model interpretation (partial dependence and vari-
able importance) considering larger sets of RVs, and the
integration of these tools in an efficient overall procedure
for reliability analysis of dams.
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A Detailed response of dams with scale
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Fig. 19 Detailed uncertainty quantification of different dam classes
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of support vector regression identification model for prediction of
dam structural behaviour. Struct Saf 48:33–39
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