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Abstract

An embedded formulation for the simulation of immiscible multi-fluid
problems is proposed. The method is particularly designed for handling
gas-liquid systems. Gas and liquid are modeled using the Eulerian and
the Lagrangian formulation, respectively. The Lagrangian domain (liquid)
moves on top of the fixed Eulerian mesh. The location of the material
interface is exactly defined by the position of the boundary mesh of the
Lagrangian domain. The individual fluid problems are solved in a par-
titioned fashion and are coupled using a Dirichlet-Neumann algorithm.
Representation of the pressure discontinuity across the interface does not
require any additional techniques being an intrinsic feature of the method.
The proposed formulation is validated and its potential applications are
shown.

1 Introduction

Multi-fluid systems are encountered in a large number of natural and industrial
processes. This work focuses on the immiscible incompressible liquid-gas sys-
tems, frequently found in civil and mechanical engineering. By far, the most
common two-fluid system in these applications is water-air. Such systems are
representative for e.g. free-surface flow problems whenever the effects of air are
not negligible (e.g. water sloshing) and pipe flows in the presence of water (e.g.
water droplets exposed to airflow).

In spite of the fact that multi-fluid flows are frequently encountered in nature
and engineering practice, they still pose a major research challenge from both
theoretical and computational points of view. Multi-fluid problems require not
only modeling of the physical constituents (each of the fluids), but also the in-
teraction between them. The main challenges of a multi-fluid simulation consist
in a) detecting the interface between fluids b) accounting for the discontinuities
in the material properties (density, viscosity) across this interface. Modeling of
these challenging aspects is closely related to the kinematic frameworks chosen
for each fluid.

State-of-the-art Several strategies for immiscible multi-fluid simulation have
been developed in the past. One such strategy relies on using Eulerian approach.
In such case both fluids are solved using a single fixed mesh. The fluid interface
crosses the elements of the fixed mesh at arbitrary positions and must be deter-
mined by special interface capturing techniques. These techniques provide an
additional equation describing the evolution of the interface. One typical choice



is the level-set approach, a method based on a convection of the smooth distance
function [1], [2]. Zero of the distance function represents the interface position.
Similarly, Volume of Fluid (VOF) methods introduce an convection equation
for the discontinuous volume fraction function [3]. Combination of an Eulerian
formulation with a moving Lagrangian interface can be found in [4]. In all these
approaches the conservation equations of both fluids ares solved simultaneously
in a single equations system, while the interface equation is solved in a sepa-
rate step and may violate the conservation. Thus, the majority of the interface
capturing techniques exhibit deficiencies in conserving the mass. Several recent
studies have introduced novel techniques for alleviating this deficiency [5], [6],
(7, 8], [9].

Fixed mesh approaches also require special techniques for representing the
discontinuity of the material properties across the interface. These include pres-
sure and/or velocity enrichment or discontinuous interpolations for the interface
elements [10], [9]. The enhanced integration techniques are necessary to ade-
quately represent the contribution of the interface elements to the governing
system of equations.

Another strategy for immiscible multi-fluid simulation relies on solving the
heterogeneous system monolithically in a Lagrangian fashion [11], [12]. In such
case the interface coincides with the position of the nodes of the moving compu-
tational mesh and its evolution is defined by the solution of the flow problem.
Thus, no additional techniques are necessary for detecting the moving interface
position. The interface remains sharp along time and no interface smearing
(often encountered in the Eulerian approaches) takes place. However, in order
to represent the discontinuity at the interface nodes, degrees of freedom must
be duplicated [12].

Similarly to Lagrangian techniques, in the Arbitrary-Lagrangian-Fulerian
(ALE) approaches the interface position is identified by the computational mesh
[13]. ALE methods provide additional control over the element distortion lack-
ing in purely Lagrangian methods. However, both the Lagrangian and ALE
methods allow for only moderate mesh deformations without falling into ele-
ment degradation. The re-meshing may lead to difficulties in preserving the
interface. If no special care is taken, the swapping of interface elements’ edges
may lead to interface “break-up”.

Yet there exists another possibility, the embedded approach!, often used
in the field of fluid-structure interaction (FSI) modeling (see e.g. [14]), but
merely addressed in the multi-fluid context. It relies on combining an Eulerian
and a Lagrangian description for the individual fluids of a multi-fluid problem
and solving them in a partitioned manner. A fluid described by a Lagrangian
formulation can be naturally embedded into an Eulerian mesh similarly to La-
grangian structures embedded into Eulerian fluid in the FSI methods®. Accord-
ing to the embedded strategy applied to the gas-liquid systems the Lagrangian
sub-domain (liquid) is moving on top of the fixed Eulerian mesh forcing the
gas to deform accordingly and receiving the feedback in terms of stresses at the
interface boundary.

For problems involving motion of liquid in gas, it is advantageous to use the

1These are also known in the literature under the names such as “immersed boundary” or
“fictitious domain” methods.

2This holds for immiscible fluids. In case of miscible fluids the embedded approach is not
straightforward, as the phases in such cases cannot be clearly separated and are not conserved



e My
Qe M=l Q

o

(a) Schematic representation of the (b) Dirichlet and Neumann parts of ex-
embedded two-fluid system ternal boundary I'g

Figure 1: Embedded setting. Domains and boundaries.

Eulerian description for the latter, while adopting the Lagrangian description for
the former. Gases occupy the entire domain and do not undergo shape changes
at the external boundaries. Thus, the Eulerian formulation is convenient for
its description. On the other hand, for moving liquid domains containing free-
surfaces Lagrangian fluid formulations (such as e.g. Particle Finite Element
Method (PFEM) [15] or multiple Smooth Particle Hydrodynamics (SPH) ap-
proaches) proved to be very advantageous, allowing for the exact tracking of the
deforming domain.

The paper is organized as follows. First, the embedded setting is introduced
and the governing equations for the gas and the liquid are presented. Next, the
coupling strategy is described. The Dirichlet-Neumann approach is specified.
The paper concludes with several numerical examples.

2 Numerical model

2.1 Governing equations

Let us consider Lagrangian domain Qj, (representing liquid) embedded into
the Eulerian domain Qg with an external boundary I'p (see Fig. 1(a)). In
the embedded setting the interface I'; between the two fluids is defined by the
position of the boundary of the Lagrangian domain I';,. The interface I'; splits
the Eulerian domain into two parts: the real one 7}, (representing the gas)
and the fictitious one Qg that does not have physical meaning. Note that at
the continuous level the fictitious Eulerian domain exactly coincides with the
Lagrangian domain and I'; = I';,. Next we present the governing equations for
the gas and the liquid domains.

Let us assume that both substances are incompressible Newtonian fluids.
The governing system in either domain is therefore the Navier-Stokes equations
equipped with the incompressibility condition:



pf‘t, —uV - (Vv + V() + Vp =pg in Q% and Qp (1)

V-v=0 in QF and Qp, (2)
where % is the material time derivative of the velocity, p is the pressure, ¢ is
the time, g is the body force, p is the fluid density and p is the fluid dynamic
viscosity. The physical properties are defined as p = pg in Q and p = pr, in
Q.

Boundary and interface conditions In order to ensure the well-posedness
of the Navier-Stokes problem defined by Eqs. (1), (2) suitable boundary condi-
tions must be specified. On the external boundary I'y = I'p U 'y, such that
I'p NT'y = 0, the following conditions are prescribed:

v =vP" at I'p (3)

o-n=ocl" at I'y (4)

where vP" is the prescribed velocity, n is the outer unit normal to I'y, and "
is the prescribed traction vector.
On the internal interface I'; the coupling conditions are:

[v]=0 at I'; (5)
[o] -n=~kn at 'y (6)

where n now is the unit normal to the interface I'y, v and x are the surface
tension coefficient and the interface curvature, respectively. The [x] symbol
represents the jump in the quantity = across the interface.

Eq. (5) expresses the continuity of all velocity components ([v] = vg — vy,
where indices F and L distinguish the quantities corresponding to the Eulerian
fluid (gas) and the Lagrangian fluid (liquid), respectively). The equality of the
normal components of velocity ensures no mass flow across the interface. The
tangential components’ equality is similar to a no-slip condition and is necessary
when fluids with non-zero viscosity are considered. Eq. (6) expresses that the
difference in the normal stress across the interface is balanced by the surface
tension force.

Projecting Eq. (6) onto the normal and tangential directions leads to the
following scalar interface conditions:

n-fo] -n=~k at 'y (7)
t-[o] n=0 at T'y (8)

Noting that the jump in the stress across the interface is equal to the difference
between the stresses of the two fluids [o] = o — o and splitting the stress

tensor into volumetric and deviatoric part as o0 = —pI + 2,uv"+fvTV results in:
(pe —pL) + pEn - [VV+VTV}E'n—uL-n~ [VV-I—VTV]L'IIZ’W{ (9)
ppt- [Vv+Viv] o on—pp t- [Vv+VTv], n=0 (10)



2.2 Finite Element formulation for the gas

The equal order linear velocity/pressure interpolations over 3-noded triangles
(2D) or 4-noded tetrahedra (3D) are used here for the space discretization of the
governing equations Eqgs. (1), (2). We assume Backward Euler time discretiza-
tion scheme exclusively for the sake of simplicity. All the arguments presented
in the paper are valid for any implicit time integration scheme. Being standard,
the space and time discretization are not discussed here (see e.g. [16], [17]).

Given v, and p, at t,, the time discrete problem consists in finding v, 41
and p,41 at t, 41 as the solution of

‘_’n _‘_/n [ — _ _ =
MHT + [K (Vn1) + pL] Vg1 + Gppg = F (11)

Dv,41 =0 (12)

where M is the mass matrix, L is the Laplacian matrix, G is the gradient
matrix, K(¥,1) is the non-linear convection operator, v and p are the velocity
and pressure respectively and F is the body force vector.

The matrices are assembled from the elemental contributions defined as

M = ,0/ NN7dQ (13)
Qe
L= / VNVNTaQ (14)
Qe
G= —/ VNNdQ (15)
Qe
K(v) :p/ N (v - VN)d2 (16)
Qe
F = / NfdQ (17)
Qe
D=-G” (18)

N stands for the vector of standard linear FE shape functions, €. is the
element integration domain.

The conditions at the external boundary are: v=0at I'p and o0 -n =0 at
Iy ( see Fig.1(b)).

Tt is well-known that the governing system defined by Egs. (11),(12) must be
stabilized (convection stabilization and inf-sup stabilization of the incompress-
ibility constraint for equal order velocity-pressure elements). Discussing details
of the stabilization lies outside of scope of this work and the ideas presented
here can be applied in conjunction with practically any stabilization technique.
In the present work Algebraic Sub-Grid Scales (ASGS) stabilization [18] is im-
plemented. The stabilized equations are:

Vil — Vo e i ) i
M= 4 (K (Vi) + L+ Sk Vass (G 486 P =F - (19)

Dv,11+8Sppnt1 =0 (20)



The stabilization matrices are defined as (see [18] for details):

_ 14 _
SK = /Qe (Vn+1 . VN) T (EN + PVn41 VN> (21)
S¢ = / (Vns1 - VN) 7VNASQ (22)
Qe
Sp = / (VN) 7 (LN + PVt VN) o (23)
. At "

_ -1
where 7 is an algorithmic stabilization coefficient defined as 7 = (2‘ L:’H + %) )

where & is the element size.

For reducing the computational cost associated to the solution of the govern-
ing system, the fractional splitting is applied. Fractional step or pressure pro-
jection approach (see [19], [20] or [21] ) uncouples the velocity and the pressure.
Instead of one large and poorly conditioned system of equations two smaller and
better conditioned systems are solved. Fractional step approach is applied here
at a purely algebraic level (according to [22]), splitting the momentum equation
Egs. (19) into two parts by introducing the intermediate velocity v. Thus, the
original monolithic system Egs. (19), (20) is replaced by

V-,

M=+ [K(¥) + L+ S| ¥+ [G + 8] pn = F (24)
Vg1 — V _ _

M= 4 (G 4 S6] (Pas1 —Pa) =0 (25)

Dv,1+Sppni1 =0 (26)

where Vv is an auxiliary variable, representing intermediate or “fractional” veloc-
ity. Eq. (24) is known as “fractional momentum” and Eq. (25) as “end-of-step
momentum” equations.

The pressure Poisson’s equation is obtained by applying the incompressibility
condition Eq. (26) to the end-of-step momentum equation, leading to

DV = [AtDM™'G — Sp| (Pn+1 — Pn) (27)

The term DM™'G can approximated as DM 'G &~ L as the former one re-
quires performing global matrix-vector multiplications and is, thus, computa-
tionally more expensive. Therefore, Eq. (27) obtains the following form:

Dv = [AtL - SD] (ﬁnJrl - pn) (28)

In order to overcome the singularity of the Laplacian matrix L, an essential
boundary condition for the pressure p = 0 at I'y is specified. Egs. (24), (25)
and (28) define the set of discrete governing equations in the Eulerian domain.
The fractional momentum equation is non-linear due to the dependence of the
convective term (and the corresponding stabilization terms) upon the unknown
velocity. The fixed point iteration method is applied for their solution. Once
Eq. (24) is solved for the fractional velocity v, pressure p,4+1 is obtained by
solving Eq. (28) and finally the end-of-step velocity v, is obtained using Eq.
(25).



2.3 Finite Element formulation for the liquid

A powerful class of Lagrangian methods capable of liquid flow modeling is the
Particle Finite Element Method [15], [23]. It allows to naturally track the motion
of boundaries and interfaces. In the present work we adopt the basic features
of the PFEM in the model for the liquid.

The PFEM describes the fluid in an updated Lagrangian framework. The
mesh nodes are treated as particles that can freely move and even separate
from the main fluid domain. The key idea of the PFEM is that the variables are
stored at the nodes instead of the Gauss points. This results in a hybrid between
a standard FE and a mesh-free method. A finite element mesh is created at
every time step of the dynamic problem and the solution is then stored at the
nodes. The nodes move according to their velocity to the new positions and
then the finite element mesh is re-generated using Delaunay triangulation [24].
For further details on the PFEM approach the reader may refer to [15].

The discrete version of the governing equations (Eq. (1) and (2)) in the
Lagrangian framework is given by:

‘_’n - ‘_In — _ I~ —
MHT + puLvy1 + Gppp1 = F + Fipy (29)

Dv,i1 +Sppry1 =0 (30)

Note the absence of the convective term and the corresponding stabilization in
the Lagrangian equations. Note also that discrete operators follow the defini-
tions given by Eqgs. (13)-(18), but are now calculated using the current config-
uration X, 41 according to updated Lagrangian approach [15],[25].

The force Fj,,; in Eq. (29) includes the Neumann due to the interaction with
gas(normal and shear stresses as well as surface tension). They are described in
detail in Section 2.4.

In the present implementation Egs. (29), (30) are solved in a coupled (mono-
lithic) fashion. In a coupled scheme no artificial pressure boundary condition
at I';, needs to be prescribed 3. Thus, violating the incompressibility condition
at the boundary is avoided. In case of the fractional step method, the position
of the boundary nodes corresponding to the fractional (non-divergence free) ve-
locity alter the curvature of the boundary and consequently, the surface tension
force. We show in Section(3.1) that this may lead to the spurious oscillations at
the boundary. Note, however, that solving the governing system in a coupled
fashion is not the only remedy. Any technique not requiring inconsistent pres-
sure boundary condition can be applied. Interesting alternatives include the use
of non-singular approximations of the Laplacian matrix in the pressure Poisson’s
equation or the schemes based on consistent pressure boundary condition (e.g.
incremental pressure-correction scheme in rotational form, see [21]).

Egs. (29), (30) are non-linear since in the updated Lagrangian setting the
discrete operators (Egs. (13)-(18)) correspond to the unknown current config-
uration (X,41). Therefore, the governing equations’ system must be solved
iteratively, updating the operators at every iteration 1.

3In the fractional step technique described in this paper, fixing pressure is necessary due
to the presence of the singular Laplacian matrix. At the nodes where the pressure is fixed, the
end-of-step momentum equation does not provide the velocity correction since the difference
between the current and historical pressure is zero (see Eq. 25)). Therefore, the fractional
velocity persists at the boundary



Let us define the residuals of the momentum and the continuity equations:

At
t.=—DV, 1 — Spp (32)

FLoF \7% —Vn i —;
Fop=F +Fiy — [M“ + pL Gpn+1:| (31)

The governing system in the residual form can thus be written as:

(M5 &) ()~ () -

Once the system (Eq. (33)) is solved, the velocity and the pressure are
updated as \7;111 =Vl 1 +dvand ﬁﬁlt_ll = Pl 41 +dp. The position of the nodes
in Qr, is updated as X5} = X,, + At - \_fijf,_ll

The integration domains necessary for the computation of the discrete oper-
ators (Egs. (13)-(18)) are be updated according to this new configuration X} .
Once the convergence of the iterative loop was achieved and the end-of-step ve-
locity (V,+1) and pressure (p,+1) were obtained, the definitive mesh position is
computed as

Xn+1 =X, + At - Vit1 (34)

2.4 Coupling strategy

Lets us consider the Eulerian and the Lagrangian domains discretized with a
finite element mesh. Fig. 2(a) shows the overlapping meshes. One can distin-
guish the boundary of the Lagrangian domain I';, and its representation on the
Eulerian mesh I';. Note that as the element size h — 0 in both domains, the
two boundaries tend to coincide: I'; — I',. The embedded interface I'; (see
black polyline in Fig. 2(b)) splits the Eulerian domain into real and fictitious
parts Q% and Qé, as already mentioned. We shall denominate the nodes and
the elements contained in 2%, and Qé “real” and “fictitious, respectively (see
Fig. 2(b)). We also distinguish the “interface elements”, i. e. the elements cut
by I'; and thus containing both the real and the fictitious nodes. This is shown
in Fig. 2(c), where the interface elements are shown in gray, fictitious and real
nodes are indicated by black and gray dots, respectively.

For the coupling of the sub-problems we propose a Dirichlet-Neumann cou-
pling technique. The action of the liquid (Lagrangian fluid) onto gas (Eulerian
fluid) is represented via the Dirichlet boundary condition at I'; ensuring the
interface condition defined by Eq. (5). The feedback of the gas is represented
by the interface Neumann b.c. applied at the immersed liquid boundary I'y,.
This b.c. represents the interface condition defined by Egs. (9) and (10)).

Dirichlet boundary condition The interface I'; intersects the Eulerian
mesh at arbitrary positions, not necessarily at the nodes (see Fig. 2). There-
fore in order to apply the interface Dirichlet boundary condition (vg = v, at
T';) two options exist. First one consists in sub-dividing the Eulerian elements,
so that the intersections between the Lagrangian boundary I';, and Eulerian
mesh coincide with the newly introduced nodes. This choice permits apply-
ing the boundary condition in a “strong way” by prescribing the velocity of
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Figure 2: Embedded setting: real, fictitious and interface parts of the Eulerian
domain

the Lagrangian domain boundary at these newly introduced nodes of the Eule-
rian domain. Unfortunately, reconstruction of the Eulerian mesh according to
element subdivision leads to changing size and structure of the global govern-
ing system matrices and requires their update at every time step, which has a
negative effect upon the computational efficiency.

The second option relies on applying the interface Dirichlet boundary condi-
tion in a “weak” sense, i.e. minimizing the difference between the velocity of the
Lagrangian and Eulerian domain at the interface. in the integral sense along the
interface I';. The interface Dirichlet boundary condition can thus be applied
at the existing fictitious nodes of the interface elements® (see black dots in the
interface elements in Fig. 2(c)). This way, only the existing degrees of free-
dom are used and thus the global matrix structure corresponding the Eulerian
domain remains unaltered [26].

Given the velocity vy of the liquid at its boundary, the difference to be
minimized is given by (see e.g. [27] or [28] for details)

/ w(Vn+1 — VL)dF] =0 (35)
Ty

where v, 11 and vy, are the velocities of the Eulerian and Lagrangian domains
at the interface, respectively and w = N7q is the velocity test function.

4This can be understood as: apply a velocity at fictitious nodes of the Eulerian interface
elements, such that the difference between the resulting velocity of the Eulerian fluid and the
liquid surface is zero in the least square sense.



After velocity discretization (v = Nv) Eq. (35) leads to:
Mszn-&-l = fF[ (36)

where v, 41 is the velocity of the nodes of the interface elements,Mr, = fl‘] NTNdr,

and fr, = sz N?V rdl'r, where Ny are the shape functions corresponding to the
fictitious nodes. Considering that the interface elements contain both “real” and
“fictitious” nodes (with a certain abuse of notation V,4+1 = Vypt1,r + Vi, 7,
assuming that the entries in the vectors of the “real” nodal velocities corre-

sponding to the “fictitious” nodes are zero and vice versa®), one can rewrite Eq.
(36) as

Mr, Vi1, + Mr, Vyq1, ¢ =11, (37)

which is a constraint that complements Eqgs. (24), (25) and (28) accounting
for the motion of the Lagrangian fluid. We propose to treat this constraint
explicitly, solving Eqgs. (24), (25) and (26) and Eq. (37) in a staggered fashion.
This can be done assuming that the velocity at the “real” nodes of the interface
elements is known and equal to the velocity obtained at the previous time step
(see large gray dots in Fig. 3).

QEr r
Vn+1lr=Vnr %
fix
Vn+15=7
L solve
QEf
L J
& L J ®

Figure 3: Explicit treatment of interface boundary condition for velocity.
This can be expressed as

Mr, V1,5 = fr, = Mr, Vg1, (38)

‘_/nJrl,’I’ ~ ‘_/n,r (39)

where n corresponds to the time step index. Solving Eq. (38) the velocity at
the fictitious nodes is obtained (see black dots in Fig. 3), that is consequently
applied as the interface Dirichlet boundary condition at the next time step,
representing the action of the Lagrangian fluid onto the Eulerian one. Note
that the fully fictitious fluid elements are excluded from the system.

Neumann boundary condition Interface Neumann boundary condition rep-
resents the normal and shear stress components exerted by the gas upon the
liquid as well as the surface tension. It corresponds the interface condition de-
fined by Eqs. (7) and (8). It is accounted for by the term Fy,; (Eq. (40)) in

5for example, let us consider a triangular interface element, whose nodes 1 and 3 are “real”
and 2 is “fictitious”. Then ¥, = [v1,0,¥3]T and ¥ = [0,v2,0]T

10



the momentum Eq. (29) of the liquid. This term is computed as a sum of the
following contributions:

1‘_11'71t = FN + Fst + Fsh on I_‘L (40)
where
FN:— NpE-ndFL—i—,uE/ (V(NV)—FV(NV)T)E-ndFL on Iy
FL 1—‘L
(41)
F,=— Nk -n dly onI'y,
I'r
(42)
Fop = i / (V(N9) + Y (N9)T) mar (43)
Tz 2

The integrands in the terms F and Fgj, are computed in the interface ele-
ments of the Eulerian mesh and then are projected onto I'y, where the integrals
are computed. The surface tension force is computed directly on the Lagrangian
mesh.

2.5 Solution algorithm

To this end all the ingredients of the embedded Eulerian-Lagrangian multi-fluid
formulation are defined. The overall solution of the coupled gas-liquid problem
is presented next. Let us consider that at the time step ¢,, the solution (velocity
V., and pressure p,) is known in both the domains Qp and Q. To find the
velocity and pressure fields at t,1 the following algorithm is implemented:

1. Solve the liquid problem using PFEM (Eq. (33)) and update the mesh
position (Eq. 34).
Output: new position of the Lagrangian mesh, v, 11 prp41 in Qg“

2. Identify the position of Lagrangian domain within the Eulerian one. Iden-
tify the interface elements, the “real” and the “fictitious” elements and
nodes.

Output: I'y

3. In Qp: fix the velocity at the “real” nodes of the interface elements to the
known gas velocity: v, ,41 = V.

4. Solve the minimization problem (Eq. (38)) obtaining the velocity at the
“fictitious” nodes of the interface elements V¢ 1.
Fix the velocity at the fictitious nodes (interface Dirichlet b.c.).

5. “Switch off” the fictitious Eulerian elements (g, ).

6. Solve the gas problem (using real part of the Eulerian domain Qg ) (Egs.
(24), (25) and (26)) equipped with the interface Dirichlet boundary con-
dition applied to the fictitious nodes.

Output: velocity and pressure v, 1 and P41 in Q%H.

11
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Figure 4: Pressure field at the final time step

7. Project the air stresses onto the liquid boundary I'z, surface and compute
the corresponding force term F,,.(Eq. (40)) for the momentum equation
of the liquid (29).

8. Go to next time step

An iterative version of the coupled scheme is obtained by repeating steps 1-7
until convergence in terms of the velocity of the Lagrangian boundary nodes of

. . . .. 59
T'; is achieved to the required precision e: VIl <
[[Vrt1ll

3 Examples

The method proposed here was implemented within the Kratos Multi- Physics,
a C++ object oriented FE framework [29].

3.1 Static droplet

The first example models a circular liquid droplet (Lagrangian fluid L) immersed
into gas (Eulerian fluid E) at rest. The surface tension force is the only acting
force and gravity is neglected (¢ = 0). Both fluids have equal densities (pg =
pr = 1 kg m™3), viscosities (up = pr, = 1 kg m~! s71) and the corresponding
surface tension coefficient is ¥ = 1 N m~!. The domain is defined by a square of
1 x 1 m filled with fluid F, and a circular droplet of fluid L with radius R = 0.25
m at the center of the domain. The whole domain is meshed using triangular
elements of size h = 1/25 m. According to the Laplace-Young equation, the
pressure jump across the interface between the fluids is Ap = v/R = 4 Pa at
the steady state. The result of the simulation of 1 s with a time step of 0.01 s
is shown in Fig. 4.

Fig. 6 shows the pressure profile across the middle section of the domain.
The analytical solution is compared with the one obtained using the purely
Lagrangian multi-fluid formulation proposed in [12] and the present embedded
method.

Results show that the pressure profile obtained with the presented method
has better agreement with the exact solution than the one obtained with the

12
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Figure 5: Comparison between the fully Lagrangian formulation ([12]), the em-
bedded method and the analytical solution. pi#® = 0 Pa

fully Lagrangian formulation. The pressure discontinuity at the interface is
represented exactly when using the present method.

De Mier [12] shows that if the pressure discontinuity is modeled by a con-
tinuous approximation with steep gradient, the steady state solution exhibits
spurious velocities at the interface because the pressure gradient term dominates
in the governing equation. This effect can be seen in 6, where the pressure dis-
continuity is approximated by a continuous steep change across the interface
elements. One can also observe slight under and over-shoots of pressure in
the results corresponding the fully Lagrangian method [12]. The corresponding
spurious velocities, in turn, lead to temporal evolution of curvature (which, ac-
cording to the analytical solution must be constant). Thus the solution deviates
from the exact one (constant). Fig. 5(b) shows the evolution of the curvature
at an interface node with coordinates (0.5,0.75) according to both models. The
result obtained with the embedded formulation shows perfect agreement with
the exact solution.

Solution schemes for the liquid phase The comparison of different solu-
tion schemes applied to the solution of the governing equations for the liquid
phase is shown in Fig. 6. The example is solved for lower viscosity values
(1 =0.001 kg m~! s~ and p =0.00001 kg m~! s~! were considered) in order to
reduce the damping. The velocity at the boundary and the pressure at the first
layer of nodes in the vicinity of the boundary are analyzed (the coordinates of
the nodes are (0.25, 0.5) and (0.29, 0.5), respectively). The external pressure
in the air is neglected (pg = 0) and the only acting force is the surface ten-
sion (yx = 4 Pa). The solutions obtained using the coupled velocity-pressure
(monolithic) solver and the one of the fractional step solver are compared in Fig.
6(a). In the fractional step method, the pressure at the liquid surface is fixed.
This “strong” way of imposing pressure violates the incompressibility condition,
leading to the motion of the boundary. Thus, the curvature and therefore the
surface tension force also deviate from the exact value. As a consequence, oscil-
lations appear in the solution. For low viscosity values the oscillations become
more pronounced. In the case of the coupled velocity-pressure (monolithic)
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solver no “artificial” pressure boundary condition is necessary. One can see an
exact stable solution. Next, the surface surface tension (y=0) term is neglected,
however external pressure (pg = 4Pa) is applied. In this case both schemes
show stable results (see Fig. 6(b)). Evolution of the velocity at a boundary
node for different schemes is depicted in Fig. 6(c).
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Figure 6: Comparison among the solutions obtained using the coupled (mono-
lithic) and the fractional step scheme in the liquid phase.

Different initial conditions Next, the example is examined under different
initial conditions. A non-zero initial pressure (10 Pa) is applied in fluid E. Zero
initial pressure in fluid L is maintained. According to Laplace-Young equation,
the pressure jump must remain Ap = py, —pr = v/ R = 4 Pa at the steady state.
To achieve this value the pressure in fluid L must increase up to 14 Pa. Fig.
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Pa)

7(a) shows that the simulation results coincide with the analytical solution.

3.2 Oescillation of free and levitating droplet

This example examines the oscillatory behavior of a liquid droplet. When its
initial shape is different from the equilibrium one (i.e., spherical if gravity was
neglected) the droplet exhibits several oscillations prior to reaching the equilib-
rium state. Lamb (see p. 475 in [30]) performed an analytical study and found
the expression for droplets’ eigenfrequencies:

1 |n(n—-1)(n+2)y
n—%V s (44)

where n is the oscillation mode, py, is the liquid’s density and R is the droplet
radius. Recently, the oscillatory droplet behavior and its interaction with an
airflow was analyzed numerically by Bouwhuis et al. [31].

3.2.1 Free droplet

First, we examine the free oscillations of the droplet. The setup is similar to
the one shown in the previous example: a water droplet is placed in the center
of a square domain filled with air. However, the initial shape of the droplet
is elliptical instead of spherical (Fig. 11(a)), with a = 1 and b = 3 mm, as
proposed in [31]. The actual physical densities of water and air are used in this
example. The gravity force is neglected. Two different values of water viscosity
are used in order to check its effect on the resulting oscillations, and the time
step is set to 1079 s.

According to Eq. (44) and considering the first non-zero oscillation mode
(n=2), the frequency should be ~ 43 Hz. The values obtained using the present
model (f = 46 Hz) show a very good agreement with the analytical value. The
predicted value shows good agreement with the numerical simulation results
from [31] as well (~ 50 Hz). It is important to note that both the viscosity and
the time step used in the numerical simulations have to be sufficiently low in
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Figure 9: Drop levitated by an airflow entering the domain with uniform velocity
Ua

order to observe oscillations in the air-water interface [31]. No oscillations may
be detected for large viscosity values, confirming the observation of Bouwhuis.

3.2.2 Droplet levitated by an airflow

In this section the behavior of the droplet exposed to an airflow is studied. A
liquid droplet is immersed in a rectangular channel of 10 mm width. A constant
air flux is generated at the bottom of the channel. A schematic representation
of the test case is shown in Fig. 9. The data is taken from [31].

For a given set of parameters the droplet levitates on top of the air cushion.
At the beginning, the droplet tends to approach the channel bottom. As the
droplet descends, the air velocity and pressure increase (the cushion is created)
producing the desired effect of levitation.

The parameters describing the behavior of the droplet can be combined into
3 dimensionless numbers: the Bond number Bo (accounting for gravity against
surface tension effects), the capillary number Ca (gas viscosity against surface
tension) and the ratio between the dynamic viscosity of the gas and the liquid
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2
Bo=4/2 Lf J (45)
Ca= % (46)
A=EL (47)

HE

where R is the unperturbed droplet radius and puy and pg are the liquid and
gas viscosities, respectively.

The simulation was performed for Bo = 1, Ca = 2.5 x 1074, A = 11 x 103.
The time step used in the simulations was 107° s.
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(a) t = 65 ms

Figure 10: Velocity field in the air domain

Fig. 10 shows the velocity pattern in the air domain. One can see the
non-steady oscillatory nature of the airflow. In the present work the dynamic
simulation was performed for both the gas and the liquid, while in [31] the
inertial effects in the gas were neglected.

The mean droplet shape after the onset of the periodic oscillations and the
corresponding air pressure across the “cushion” are shown in Fig. 11. Results
are compared against the ones of [31].

The “chimney” effect is observed as expected (an air bubble develops below
the drop and pierces the center of the droplet). The maximum pressure gradient
coincides with the neck position. The obtained pressure distribution and the
droplet shape closely resembles the results in [31].

3.3 Two-fluid sloshing

Two previous examples dealt with the problems where the effect of surface
tension was dominating and the liquid domain was not undergoing severe defor-
mations. Next, the embedded method is tested in application to the case where
gravitational effects are dominating, the domain undergoes severe deformations
and the surface tension effects can be neglected.
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This numerical test for two-fluid problems was proposed originally by Tez-

duyar et al. in [32], studied in detail by Cruchaga et al [5], [33] and recently
by de Mier [12]. The computational domain consists of a closed container with
the dimensions 0.8 x 0.6 m. The container is filled with two immiscible fluids,
the lighter one being on top of the heavier one. The initial, inclined interface
is linear with an average height of 0.3 m. The fluid properties used in [32]
are taken here as the reference parameters. The top fluid has density pr = 1
kg/m?, the dynamic viscosity is constant ug = pz, = 1072 Pa- s in both fluids,
and the gravity acceleration is set to g = —0.294 m/s? in the vertical direction.
The density value of the bottom fluid is varied. A no-slip condition is set at
the horizontal walls, while at the vertical walls a slip condition is prescribed.
Following the proposal of de Mier [12] the slip condition in the Lagrangian do-
main is modeled by considering viscosity pr = 0 at the elements encountered
in contact with the wall.

Partitioning validation Prior to considering fluids with different densities,
we test the capability of the proposed partitioned approach in representing the
hydrostatic case (pg = pr = 1 kg/m?). The corresponding exact solution is
zero velocity in the entire domain and the hydrostatic pressure distribution.

Before the coupling is applied, a non-zero velocity arises at the interface and
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Figure 13: Pressure field in the Lagrangian domain for the density ratio 1:1.
Prior to the application of the coupling (left) and after applying the coupling
(right).
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Figure 14: Error at t=0.5 s against time step

the pressure distribution is different from the hydrostatic one. However, the
exact hydrostatic solution is recovered already in the first time step (see Fig.
13). The time step size used in the simulation was set to 0.01 s.

Time accuracy The convergence rate is assessed by measuring the absolute
error in the velocity as a function of time step size for the hydrostatic case. Four
time step sizes were considered: dt=0.1 s, dt=0.01 s, dt=0.003 s, dt=0.001 s.
Convergence of the time approximation is displayed in Fig. 14. The diminishing
of the error with decreasing the time step is plotted. The error has been com-
puted as the sum of the nodal errors at time t=0.5 s: Err =Y ||v, — vi* ||
(n is the number of nodes). Since the exact solution of the problem is the zero
velocity in the entire domain, the error is simply the sum of nodal velocities.
One can see that the proposed method exhibits linear convergence rate.

Fluids with different densities Next, two fluids with different densities are
considered. The densities of the bottom and the top fluids are p;, = 2 kg/m? and
pe = 1 kg/m?, respectively. The unstructured uniform triangular FE meshes
with approximately 20000 elements and the time step size of dt = 0.005 s were
used if not mentioned otherwise. Fig. 15 displays the pressure fields at different
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Figure 15: Pressure contours for two-fluid sloshing with density ratio 2:1

time instances for each domain. The Eulerian and the Lagrangian domains are
juxtaposed.

Pressure distribution along the vertical cut made at the end of the simulation
(t=100 s) is shown on Fig. 16. One can see the continuous pressure and the
discontinuous pressure gradient at the interface due to density change. The
pressure distribution is hydrostatic at the steady state.

Fig. 18(a) shows the evolution of the relative height of the interface (hye; =
h6.0'3. where h,.; and h are the relative and absolute interface heights, respec-
tively) at the left vertical wall, comparing the results obtained using the present
formulations with the ones found in literature [5]. One can see a good agreement
both in the amplitude evolution and the frequency. However, slight difference
(around 10 %) in the period of oscillation is observed for this case. It is worth
mentioning that Cruchaga et al. observed a slightly lower period of oscillation
when their method was applied without the mass correction technique (see e.g.
p. 8 in [5]). No mass correction was applied in the present work.
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Figure 17: Liquid wave height at the left wall using different mesh sizes and
time steps. Density ratio 2:1

Fig. 17(a) displays the comparison of the solutions obtained using three
different meshes (5000, 10000 and 20000 elements). One can observe conver-
gent solution. The solution obtained with the iterative version of the coupling
(convergence tolerance was set to e = 10E — 06) is compared with the staggered
one.

comparison of the solutions obtained using time steps is shown in Fig. 17(b).

Next we examine the same example increasing the liquid density to pr =4
kg/m? and maintaining the gas density as pg = 1 kg/m?. Fig. 18(b) shows the
evolution of the relative height of the interface at the left vertical wall (com-
parison with the results reported in [5]). We observe increments in oscillation
amplitude, frequency, and the time it takes to reach the equilibrium position.
One can see a very good agreement with the results found in [5].

In application to this example our approach allowed to avoid a) interface
distortions faced in the purely Lagrangian multi-fluid formulations (see e.g. p.
71 in [12]) b) necessity of using discontinuous pressure shape functions or enrich-
ment for representing the pressure gradient discontinuity. It is worth mentioning
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Figure 18: Liquid wave height at the left wall compared to reference [5]

that the interface height at the steady state is coinciding with the theoretical
one (0.3), giving an insight of a good overall mass conservation of the method.
The volume change encountered at ¢ = 100 s for the meshes containing 5000
and 20000 elements was of order of around 2% and 0.5%, respectively.

4 Summary and conclusions

This paper presented an embedded formulation for gas-liquid systems based
upon a combination of the Eulerian and the Lagrangian formulations. Gas was
modeled by the Eulerian formulation, while the Lagrangian one was adopted
for the liquid. The fluids were coupled using a Dirichlet-Neumann coupling.
The interface Dirichlet boundary condition was satisfied in an integral sense
minimizing the velocity difference of the two fluids across the interface. This
condition was applied at the fictitious nodes of the interface elements of the
Eulerian mesh. Normal and the shear stresses in the gas phase projected onto
Lagrangian boundary mesh as well as the surface tension provided Neumann
boundary condition for the liquid surface. Staggered approach for the solution
of the coupled problem was proposed. An important advantage of the proposed
embedded approach is that the interface position is exactly defined by the La-
grangian mesh. The interface maintains itself sharp without diffusion along
time. The weak/strong pressure discontinuity along the interface due density
change/surface tension is naturally accounted for by the method.

The formulation is particularly advantageous for the problems where the
gas phase constitutes the major part of the overall computational domain. This
allows to take the maximum advantage of the Lagrangian description for the
liquid with changing boundaries while not increasing considerably the overall
computational cost due to re-meshing or the use of the coupled velocity-pressure
scheme.

Several test computations were carried out to evaluate the performance of the
method. The formulation led to stable solutions for a wide range of the density
ratios of the fluids involved. It was found that for the staggered version of the

22

100



formulation is first order accurate in time. It was observed that including the
viscous stress in the coupling is essential in the problems dealing with droplets
exposed to the air flux.

The main advantages of the formulation are

e Modular approach
e Natural representation of the pressure discontinuity across the interface

e Application of Dirichlet boundary condition in an integral way using the
fictitious nodes of the interface elements

e Additional techniques (typical for fully Eulerian formulations) for interface
tracking are not necessary

e Absence of problems with interface preservation (typical for the purely
Lagrangian multi-fluid formulations)

e Good mass conservation

Keeping in mind all the advantages of the formulation, it is important to note
that it also has some limitations. For optimal functionality of the method the
mesh sizes of the involved domains should be similar. This precludes the use
of highly heterogeneous meshes. Time step size is generally restricted due to
the danger of the element inversion faced in the classical PFEM method used
for the liquid in the present work. Modeling the liquid domain using a novel
Lagrangian formulation based on explicit stream-line temporal integration [34]
is a promising alternative that must be studied in the future. While keeping the
overall “architecture” of the approach proposed here, this alternative Lagrangian
formulation may lead to considerable advantages in computational efficiency.

Coupled velocity-pressure scheme used in the present work for the liquid
phase was chosen in order to avoid the artificial pressure boundary condition
necessary in the standard fractional step schemes. This was found particularly
important for the problems where surface tension effects cannot be neglected.
In such cases standard fractional step schemes led to spurious oscillations of the
interface. Alternatives to the coupled scheme such as e.g. incremental pressure-
correction scheme in rotational form that provides the consistent boundary con-
dition for the pressure [21], [35] must be investigated. Possibility of using this
approach in both domains and its impact on the computational efficiency will
be investigated in the future.
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