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Abstract In this two-part paper we begin the development
of a new class of methods for modeling fluid—structure inter-
action (FSI) phenomena for air blast. We aim to develop
accurate, robust, and practical computational methodology,
which is capable of modeling the dynamics of air blast cou-
pled with the structure response, where the latter involves
large, inelastic deformations and disintegration into frag-
ments. An immersed approach is adopted, which leads to
an a-priori monolithic FSI formulation with intrinsic contact
detection between solid objects, and without formal restric-
tions on the solid motions. In Part I of this paper, the core
air-blast FSI methodology suitable for a variety of discretiza-
tions is presented and tested using standard finite elements.
Part II of this paper focuses on a particular instantiation of
the proposed framework, which couples isogeometric anal-
ysis (IGA) based on non-uniform rational B-splines and
a reproducing-kernel particle method (RKPM), which is a
meshfree technique. The combination of IGA and RKPM is
felt to be particularly attractive for the problem class of inter-
est due to the higher-order accuracy and smoothness of both
discretizations, and relative simplicity of RKPM in handling
fragmentation scenarios. A collection of mostly 2D numeri-
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cal examples is presented in each of the parts to illustrate the
good performance of the proposed air-blast FSI framework.

Keywords Air blast - FSI - Immersed methods - FEM -
IGA - RKPM

1 Introduction

In Part I of this paper we proposed a computational fluid—
structure interaction (FSI) framework, which is based on
the immersed methodology, and which is aimed at mod-
eling the dynamics of air blast coupled with the structure
response involving large, inelastic deformations, and dis-
integration into fragments. In the proposed framework, the
Navier—Stokes equations of compressible flows are coupled
with those of a large-deformation inelastic solid. Two dis-
cretizations, background and foreground, are employed in
the formulation: A fixed background discretization provides
the basis functions used to approximate the unknowns of the
coupled FSI problem; A foreground discretization moving
with the solid material particles tracks the solid current posi-
tion, stores the history-dependent variables, and is employed
to perform numerical quadrature for the solid terms. The
formulation was successfully tested using the standard low-
order finite-element discretization.

Here, in Part II of the manuscript we focus on a particu-
lar instantiation of the proposed framework, which couples
isogeometric analysis (IGA) [1,2] based on non-uniform
rational B-splines (NURBS) [3-5] as the background dis-
cretization, and the reproducing-kernel particle method
(RKPM) [6-9] as the foreground discretization. This com-
bination is particularly attractive for the problem class of
interest due to the higher-order accuracy and higher degree
of continuity inherent in both techniques, and the relative
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simplicity of RKPM in handling the solid large-deformation
and fragmentation scenarios. Higher-order accuracy and
smoothness of the discretizations was shown to be beneficial
for both fluid and solid/structural mechanics applications,
both in terms of accuracy [10,11] and robustness [12] of
the resulting discrete solutions. In addition, in the present
framework, higher-order smoothness of the background dis-
cretization yields a continuous representation of the strain
rate, and thus precludes jumps in the stress and other history
variables as the Lagrangian particles cross the background-
element boundaries. We note that the strain-rate discontinuity
across element boundaries is recognized as a shortcoming of
FEM-based material-point-type methods [13], which may be
naturally overcome using IGA for the background discretiza-
tion.

The paper is outlined as follows. In Sect. 2 we review
the basics of NURBS-based IGA. In Sect. 3 we give a brief
overview of Meshfree methods, with an emphasis on RKPM
and domain-integration techniques. In Sect. 4 we present
the items specific to the IGA-RKPM coupling for air-blast
FSI. In Sect. 5 we compute several numerical examples that
demonstrate the good accuracy, stability, and robustness of
the proposed formulation. While a simulation showing mul-
tiple solid objects with no restriction on the object motion
is presented, fragmentation simulations, which require con-
stitutive models that involve damage and/or fracture, are left
for future work. In Sect. 6 we draw conclusions and outline
future research directions.

2 NURBS-based IGA

In this section we briefly recall the basics of IGA [1,2] based
on NURBS [3-5]. NURBS are convenient for free-form sur-
face modeling, and can represent exactly all conic sections.
In addition, they exhibit excellent mathematical properties,
such as derivative-continuity across element boundaries,
optimal approximation [14], and the ability to be refined
through knot insertion and degree elevation. We note that
in the present effort NURBS-based IGA is employed to pro-
vide a smooth background-mesh discretization, which has
significant benefits compared to C°-continuous approxima-
tions in many applications [11,14—18]. In the present work
we do not directly take advantage of the geometric flexibility
of IGA, although one may envision cases where background
discretization conforming to geometrically-complex fluid-
mechanics domains may be desirable.

2.1 B-splines
NURBS are built from B-splines. A necessary component for

the construction of B-splines is the knot vector. A knot vector
in 1D is a non-decreasing set of coordinates in the parametric
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domain written as & = {§1,&2,...,&,4py1}, where § € R
is the ith knot, i is the knotindex,i = 1,2,...,n+p+1,p
is the polynomial order, and n is the number of B-spline basis
functions. Knots divide the parametric domain into elements.
For a given knot vector, the B-spline basis functions
are defined recursively starting with piecewise constants
(p =0):
Nio(€) = L it g <& <é&ip, )

0 otherwise.

For p =1, 2,3, ..., they are defined by

Nip(®) = %Ni,p_ms)
Eivpt1 —§

_|_
Sitp+r1 —&it

Nit1,p-1(8), 2

which is the Cox—de Boor recursion formula [19,20].

Knot vectors may be open or closed. In an open knot vector
the first and last knot values appear p+1 times. B-spline basis
functions constructed using an open knot vector are inter-
polatory at the endpoints of the parametric interval, which
facilitates imposition of boundary conditions. In general, B-
splines are not interpolatory at interior knots. Only open knot
vectors are employed in the present work.

Basis functions of order p have p —m; continuous deriva-
tives at knot &;, where m; is the multiplicity of the knot &; in
the knot vector.

The B-spline basis functions are pointwise non-negative,
satisfy the partition of unity, that is,

D NipE)=1VEeEg, 3)

i=1

and the support of each basis function »; , is compact and
contained in the interval [&;, &4 p41].

2.2 NURBS

Geometric entities in RY are obtained by a projective trans-
formation of B-spline curves in RI*!, where d is the space
dimension. Conic sections may be exactly constructed by
projective transformations of piecewise quadratic curves.
This projective transformation gives rise to NURBS basis
functions with the following structure:

Ni,p(&)w;
R/ () = 22— 4
i &) WE “
where W (&) is the weighting function given by
WE) = Nip@Ew. )

i=1
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where w;’s are positive weights. As is evident from the above
expressions, unlike B-spline or standard FEM basis functions
that are piecewise polynomials, NURBS are piecewise ratio-
nal functions.

NURBS curves are constructed using a linear combination
of NURBS basis functions as

CE) =) RI'(®B, (6)
i=1

where B, € RY are the control points. Given addi-
tional knot vectors H = {51,712, ..., Mm+q+1} and Z =
{¢1, 82, ..., Ci4r+1}, NURBS basis functions in 2D and 3D
may be defined as

Nip(E)M; s(Mw;

R s = n m ’ 7
h &m 25 25 N, OM; (w5 @
and
R, )
_ Nip@EYM;q(n) L (O wi,jk
S X Yk Ny, &M DLy (w5
(8

respectively, where w; 5 and w; 5 ¢ are the corresponding
weights.

Following the properties of B-splines, NURBS basis func-
tions in all dimensions are pointwise nonnegative, form a
partition of unity, are compactly supported, and reduce to
B-splines if all the weights are equal.

Analogously to NURBS curves, NURBS surfaces and vol-
umes are defined as

SEm=) Y RI'E B ©)
i=1 j=1
and
n m 1
VEO =YY > R G0 OB (10)
i=1 j=1k=I

respectively, where B; ;’s and B; ; ; form a control mesh.
2.3 Analysis framework

We write N (&) and N (x) to refer to a generic NURBS basis
function defined on the parametric and physical domains,
respectively. We also make use of a single-index notation, and
letindices A, B, C, ... label the NURBS basis functions. In
this setting, the geometry mapping may be expressed as

103
Nnp A
xE) =) xaNa(®), (11)
A=1

where n,, denotes the number of control points in the
mesh with coordinates given by x4’s. This mapping may
be restricted to a NURBS patch or element.

The IGA solution in the parametric domain, taken to be
scalar-valued for the purposes of illustration, is assumed to
be governed by the same NURBS basis functions, and may
be expressed as

Npp

Q") =) uaNa®), (12)

A=l

where u 4’s are the control variables or degrees of freedom
(DOF). The IGA solution in the physical domain is defined as
apush-forward of its parametric counterpart given by Eq. (12)
by the geometrical mapping given by Eq. (11), and may be
expressed as

W) =Y uaNa®), (13)
A=1

where

Na(x) = NaE ' (x)). (14)

Equations (11)—(14) constitute the well-known isoparamet-
ric construction widely used in FEM and IGA. The above
construction guarantees optimal approximation properties of
NURBS spaces as shown in [14,21].

The first and second partial derivatives of the basis func-
tions in Eq. (14) with respect to physical coordinates, which
are employed in the weak formulation of the FSI problem pre-
sented in Part I of this paper, are computed using the chain
rule in a manner similar to FEM. To carry out the background-
domain weak-form integrals, standard Gaussian quadrature
is employed. It should be noted that more efficient quadrature
rules for IGA have been recently proposed (see, e.g., [22,23])
and may be employed for better efficiency of the computa-
tional procedures. Dirichlet boundary conditions in IGA may
be imposed strongly by selecting appropriate values of con-
trol variables belonging to essential boundaries, or weakly
by means of Nitsche-like methods [24]. Because of the vari-
ational structure of IGA, Neumann boundary conditions are
enforced weakly as in standard FEM.

3 RKPM-based Meshfree methods

Like IGA, Meshfree methods is a class of numerical methods
that solve partial differential equations. They retain the useful
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characteristics of the FEM, such as good approximation prop-
erties and compact support of shape functions, but attempt
to overcome some of the disadvantages, like mesh entangle-
ment, material distortion, mesh dependency, and difficulty
in constructing approximations with arbitrary order of con-
tinuity [6]. Meshfree methods share a common feature that
no standard mesh data structures are required to define the
discrete approximation spaces, which are constructed based
on scattered points (or particles). These methods provide
considerable advantages over traditional FEM for solving
problems involving large deformations, damage, /#-adaptive
refinement, and evolving discontinuities. The reproducing-
kernel particle method (RKPM) [7-9,25] is a prominent
representative of a class of Meshfree methods, and is pre-
sented in what follows.

3.1 RKPM

We assume that the problem domain (in our case, the solid
domain Q°)is discretized by a set of n,, Lagrangian particles.
An RKPM basis function associated with a given particle
A, W4 (x), is constructed by multiplying a kernel function
®,(x — x4) with a correction function C(X, X — X4) as

Uux) =CX, x—x4)P,(X —X4). (15)

The function C(x, X — X4) may be expressed as

CO,x—xXa) = Y (x—X4)%ba(x)

le|<p

=p’ (x — x4)b(x), (16)

where p(x — x4) is the pth-order monomial basis vector,
b(x) is the unknown coefficient vector, @ is a multi-index,
and |e/| is its norm. The unknown coefficient vector b(x) is
determined by imposing pth-order polynomial reproducing
conditions on the space spanned by RKPM basis functions,
namely,

Npp
Z Wa(x)x% =x%, || < p, (17)
A=l

or, equivalently,

Npp
Y WaAPp(x —xa) = p(0). (18)

A=1

Substituting the expression for W4 (x) from Eq. (15) into
Eq. (18), and solving for b(x), gives

b(x) = M~ (x)p(0), (19)
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where the moment matrix M(x) is given by

Npp

M) = Y px - x)p’ X —x)@a(x—x4).  (20)
A=1

The moment matrix is invertible at location x if the reproduc-
ing conditions given by Eq. (17) are linearly independent [25,
26]. Anexplicit form of the RKPM basis functions is obtained
by substituting the result from Eq. (19) into Eq. (15):

Wax) =p" (OM ™ (X)p(x — x4) Dy (x — Xa). 2

For the kernel function we choose a radial cubic B-spline,
namely,

Du(x —x4) = Dy(s) =

0, otherwise

where

X — x4l
S = —
a

(23)

and a is the support radius. More discussion on the choice of
the kernel function may be found in [7]. Note that the conti-
nuity of the RKPM discretization is inherited by that of the
kernel function, and thus arbitrarily smooth discretizations
that are independent of the order of approximation may be
easily constructed.

The discrete RKPM solution u” (x) is given by

Npp

W'(x) =" WaXus (24)
A=1

where u 4’s are the unknown DOFs associated with Lagran-
gian particles. As in the case of NURBS-based IGA,
RKPM basis functions are generally non-interpolatory at the
Lagrangian-particle locations.

3.2 Domain integration for RKPM

As shown in the previous section, the RKPM basis functions
are constructed directly in the physical domain without the
requirement of an underlying mesh and the corresponding
data structures. While this flexibility makes RKPM attrac-
tive for approximating large deformation and fragmentation
of the material, it also leads to challenges associated with
domain integration. The fact that the RKPM basis functions
are non-polynomial [see Eq. (18) for their structure] leads to
additional challenges for domain integration.
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Domain integration in RKPM is usually carried out using
either Gaussian quadrature or nodal integration. To carry out
Gaussian quadrature one needs to generate a background
mesh, which, in some sense, goes against the philosophy
of Meshfree methods. In addition, in order to reap the full
benefits of Gaussian quadrature, the integration cells need to
be aligned with the supports of the RKPM basis functions,
which is not easily accomplished.

On the other hand, pure nodal integration, despite its
efficiency, exhibits low convergence rates and rank instabil-
ity [27]. Special techniques have been developed for RKPM
in recent years to circumvent these issues. These include
Stabilized Conforming Nodal Integration (SCNI) [28], Sta-
bilized Non-Conforming Nodal Integration (SNNI) [29],
Variationally Consistent Integration (VCI) [28,30,31], and
Naturally Stabilized Nodal Integration (NSNI) with VCI cor-
rection [32] techniques, among others. The main idea of the
SCNI technique is to “smooth” the basis-function gradient
over conforming integration cells that partition the problem
domain. The smoothed gradient V in each integration cell
Q4 is computed using the divergence theorem as follows

~ 1 1
V\PB(XA) = —— V‘-I/B dQ = —/ \IandI‘,
124] Jo, 1S241 Jog,

(25)

where |Q24] is the area in 2D or volume in 3D of the
integration cell corresponding to node A, n is the unit out-
ward normal to the cell boundary €24, and index B points
to all RKPM basis functions that are supported in £24.
The conforming integration with strain smoothing satisfies
the so-called integration constraint, which ensures that the
patch tests are satisfied. Strain smoothing also avoids tak-
ing direct derivatives at the Lagrangian nodes. (Doing so in
the Lagrangian setting yields instability in the Galerkin solu-
tion due to severe underestimation of the strain energy of
short-wavelength modes.) While SCNI preserves first-order
exactness, for problems involving very large deformation or
fragmentation the requirement of conforming cells is chal-
lenging to maintain because these need to be periodically
regenerated during the simulation. For these reasons, SNNI
was introduced in [29], and presents a simplification of SCNI
in that the smoothing zones, which are typically simple
geometric shapes, are no longer required to be conform-
ing. However, relaxation of the conforming-cell condition
can yield non-convergent solutions, because the integration
constraint, and thus the linear exactness in the Galerkin solu-
tion, are no longer satisfied. Recently, in [32], the authors
developed the NSNI technique that overcomes the instabil-
ities of nodal integration by introducing a first-order Taylor
expansion of the strains in the internal virtual-work terms.
This approach introduces higher-order derivatives in the for-

mulation, which may be accommodated in the RKPM and
IGA frameworks since both employ smooth discretizations.
An implicit gradient [33] has been introduced in NSNI to
avoid taking higher-order derivatives of the shape func-
tions.

4 Numerical aspects of IGA-RKPM coupling

In this section we focus on the numerical aspects of air-blast
FSI that specifically pertain to the IGA-RKPM coupling. We
repeat the semi-discrete formulation of the coupled problem
from Part I of this paper for convenience:

Find Y" € ", such that YW" € V",

MEW" X" + BLW! Y!) — FL (W) + BY (W', Y") + BE(W!, Y
+ M (W' Y") + BS (W Y") — F& (W)
— ML (W' Y") + BL, (W' Y") — FL (W) + B (Wh, Y
+ BEW Y + /ﬂ Bh Iw'ini1l - ;0,1 a0
o, ‘ (26)

where Y" is the discrete vector-valued trial function corre-
sponding to pressure-primitive variables, W” is the discrete
vector-valued test function, and S and V" are the associated
discrete function spaces. We remind the reader that super-
script f refers to the fluid, and s to the solid parts of the
problem, and 2 is the background domain occupied by the
fluid and partially covered by the Lagrangian particles of the
solid domain °.

We summarize the important IGA-RKPM coupling aspects
in what follows:

e The spaces of discrete trial and test functions are defined
on the background domain €2, resulting in the FSI prob-
lem DOFs residing on the background mesh. Equal-order
NURBS discretization is employed for all the unknowns
in the variable set Y”.

e The terms on the first line of Eq. (26) are evaluated over
the entire background NURBS domain using Gaussian
quadrature with p4-1 points in each tensor-product direc-
tion. More efficient quadrature rules are also possible
(see [22,23] for recent advances in numerical integration
for IGA).

e The terms on the second and third lines of Eq. (26)
are evaluated using RKPM domain-integration tech-
niques. Nodal integration is performed using the RKPM
Lagrangian points with two options for the background
NURBS basis-function gradient evaluation: 1. Direct
evaluation at the location corresponding to that of
the Lagrangian particle; 2. Smoothed definition as per
Eq. (25) with the smoothing zone of simple shape con-
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structed around each Lagrangian particle in the spirit
of SNNI. We found that Option 1 is more economical
and delivers stable results in the present setting. We are,
however, aware of the potential instabilities and inac-
curacies associated with this type of integration, and
plan to explore an NSNI-type approach in the future
work.

e The terms on the fourth line, which correspond to ghost-
velocity stabilization [34], are identically zero because
the basis functions employed in our discretization are
smooth. In principle, the generalization of ghost penalties
to higher-order bases involves jumps of higher deriva-
tives, leaving nonzero terms even for spline spaces
of maximal continuity. (See, e.g., Remark 1 in [35]
or Eq. (11) in [36].) Although we are aware of this
generalization, we did not find penalization of jumps
in higher derivatives necessary in the present frame-
work.

e Domain integration of the terms on the second and third
lines of Eq. (26) require the evaluation of the determinant
of the deformation gradient from the solid reference to
its current configuration at a Lagrangian-node location
X4, which is the nodal quadrature point. In this work
the deformation gradient is taken directly from the fore-
ground RKPM discretization, and may be expressed as

Nnp

ad av
F(X0) = 5= (Xa) = ) xa 2= (X), @7
B=1

where the above sum is performed only over the RKPM
basis functions supported at location X4 in the refer-
ence configuration. Note that only the current position
of the Lagrangian particle xp and the RKPM basis-
function gradient with respect to the spatial coordi-
nates of the reference configuration X are required to
evaluate the above expression. In our computations,
the RKPM basis-function gradient is replaced by its
smoothed counterpart over the integration cell in the ref-
erence configuration as per Eq. (25), and is computed
only once in the beginning of the simulation for effi-
ciency.

As an alternative approach, the determinant of the defor-
mation gradient may be computed from the generating
equation for F (see, e.g., [37])

oF

= VuF, 28
o7 u (28)

X

or for the determinant itself,

aJ

=V-ul. 29
o7 u (29)

X
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Definitions in Egs. (28) and (29) do not rely on the dis-
cretization of the solid domain and may be better suited
when fragmentation scenarios are simulated.

e Stress update described in Part I of this paper is per-
formed at the Lagrangian nodes of the foreground
discretization where the history variables are stored.
If damage is included in the modeling, which is not
the case in the present paper, the corresponding his-
tory variables would also be stored at the same loca-
tions.

S Numerical examples

In this section we present one 1D and five 2D computational
examples that demonstrate the capabilities, robustness, and
accuracy of IGA-RKPM coupling for air-blast FSI. The com-
putational examples are: Sod shock tube, Sedov blast, Taylor
bar impact, chamber detonation, flexible panel subjected to
a shock load, and detonation with multiple objects. The first
three examples test the accuracy of standalone compressible-
flow and solid mechanics formulations. Examples four and
five are the same as in Part I of the present paper. The
former example demonstrates the ability of the proposed
framework to produce convergent FSI solutions under mesh
refinement, while the latter example validates the formula-
tion using experimental data. The final example, which is
similar to the one presented in Part I of the present paper,
shows the ability of the proposed methodology to handle
blast in the presence of multiple objects without restriction
on their motion and including contact between the objects.
C!-continuous quadratic NURBS and RKPM functions with
linear consistency and kernel given by Eq. (22) are employed
in all computations. Unless otherwise stated, in all compu-
tations the fluid is assumed to have properties of air with
constant viscosity u = 1.81 x 107> kg/(ms), Prandtl num-
ber 0.72, and adiabatic index y = 1.4. The time step for
each problem is selected from considerations of stability
and two-to-four explicit corrector passes are employed in
the computations.

5.1 Sod shock tube problem

We compute a 1D Sod shock tube problem [38], which is
an inviscid hydrodynamics example. At the initial time, two
material states are prescribed on each half of a unit-length
domain. As time evolves, a rarefaction wave, contact discon-
tinuity and shock discontinuity are formed in the domain.
On the left, the initial conditions are p = 1.0, v = 0.0,
and p = 1.0, while on the right, the initial conditions are
p =0.1,v=0.0, and p = 0.125. (The problem is specified
in non-dimensional units.) The discretization consists of 300
uniform elements, and the numerical results at time t = 0.2
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Fig. 1 Sod shock tube problem in 1D. Solution at time ¢ = (.2. a Pressure. b Velocity. ¢ Density. d Internal energy. (Color figure online)
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Fig. 3 Sedov blast problem in 2D. Scatter plot of density versus radial
coordinate for the three meshes employed. The exact solution is also
plotted to illustrate convergence with mesh refinement. (Color figure
online)

Fig. 2 Sedov blast problem in 2D. Density contours at time ¢ = 1.0. 5.2 Sedov blast problem

(Color figure online)

are compared to the analytical solution in Fig. 1. Ascanbe =~ We compute the 2D inviscid Sedov blast problem [39] on
seen in the figure, the numerical results have no oscillations, ~ a square domain with edge length L = 1.1. A sudden
and match the exact solution very well. release of energy at the origin creates an expanding shock
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Vacuum Steel Bar

36 mm

mm

6.4 mm-
b——— 21mm ————]

Fig. 4 Taylor bar impact. Problem setup

wave. The initial conditions of the problem consist of zero
velocity field and a Dirac-delta distribution of the internal-
energy density at the origin so the total energy is equal
to 0.25. (The problem is also specified in non-dimensional

units.) The initial density is set to p = 1, the tempera-
ture is set consistent with the internal energy density, and
pressure is set consistent with the ideal gas law. Meshes of
64 x 64, 128 x 128, and 256 x 256 elements are employed
in the computations. Figure 2 shows the density contours
at time r = 1.0 on the mesh of 256 x 256 elements. The
solution appears to be smooth, stable, and radially symmet-
ric. Figure 3 shows the scatter plot of density vs. distance
from the origin at time ¢+ = 1.0 for all three meshes. Con-
vergence to the analytical result is evident from the plot.
Very little scatter in the data is also observed, suggest-
ing the methodology has excellent symmetry preservation
properties.

5.3 Taylor bar impact

We simulate a steel bar impacting a rigid wall at the initial
velocity of 227 m/s. The bar has an initial height of 32 mm,
width of 6.4 mm, and is discretized using 250 x 150 particles.
The background domain has a height of 36 mm, width of
21 mm, and is discretized using 77 x45 elements.

No-penetration and zero tangential-stress boundary con-
ditions are applied at the bottom wall. The bar is also assumed
to be placed in vacuum, that is, only the solid mechanics equa-
tions are solved without contributions from the surrounding
fluid. Figure 4 shows the problem setup while Fig. 5 shows
the background and foreground problem meshes. The mate-
rial properties are summarized in Table 1.

Results of the immersed approach are compared with
those obtained by solving the problem using a Lagrangian

Fig. 5 Taylor bar impact.

Background and foreground

problem meshes
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Table 1 Taylor bar impact

Young’s modulus E 200 GPa
Poisson’s ratio v 0.30
Density p 2700 kg/m>
Yield stress o, 0.29GPa
Hardening modulus h 0.1 GPa

Material properties

RKPM formulation. The Taylor-bar height and width time
histories are plotted in Fig. 6. Excellent agreement between
the two computations is achieved for these quantities. Fig-
ure 7 shows the final deformed shape of the Taylor bar with
a zoom on the impact region where most of the deforma-
tion occurs. The immersed and RKPM computations are in

immersed methodology is capable of accurately capturing
the solid plastic deformations.

5.4 Chamber detonation

In this coupled FSI example, a steel bar is subjected to
a detonation blast load. A bar with dimensions 0.2 m X
0.1 m is placed at the center of a closed chamber with
dimensions 0.4 m x 0.4 m. The bar thickness is set to
3.5 mm. Figure 8 shows the problem description. The bar
material properties correspond to those of steel, and are
summarized in Table 2. The air in the chamber is initially
at rest with 7 = 270 K and p = 100, 000 Pa. The det-
onation is initiated by setting higher-than-ambient values
of the pressure, p = 6, 746,268.65 Pa, and temperature,

very good agreement with each other, demonstrating thatthe 7 = 1,465 K, in a semi-circular region centered on the
Fig. 6 Taylor bar iI'npact: ----- Immersed == ==Meshfree
Comparison of the time history 0.032
of Taylor bar height (a) and ’ \\
width (b) between the immersed N\,
. AN
and Lagrangian RKPM 0.031 '~
simulations. (Color figure \.\
online) 0.030 N
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Fig. 7 Taylor bar impact.
Overlapping, deformed
configurations of the Taylor bar
from the immersed (blue) and
RKPM (red) simulations. Zoom
on the region near the impact
where most of the deformation
occurs. (Color figure online)
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Fig. 8 Chamber detonation. Problem setup and dimensions
Table 2 Chamber detonation Four problem discretizations with increasing mesh refine-
Young’s modulus E 200GPa ment levels are considered: (1) Fluid: 40 x 40 elements; Solid:
Poisson’s rafio v 0.29 53 x 26 particles; (2) Fluid: 80 x 80 elements; Solid: 105 x 53
) articles; (3) Fluid: 120 x 120 elements; Solid: 158 x 79
Density p 7870 kg/m3 partt 3) . i
) particles; (4) Fluid: 160 x 160 elements; Solid: 210 x 105
Yield stress o, 0.4GPa . . . . .
. particles. Figure 9 shows the air pressure at different time
Hardening modulus h 0.1GPa

Material properties of a steel bar

left wall and with radius of 6.1 mm. Free-slip and no-
penetration boundary conditions are assumed at the chamber
walls.

@ Springer

instants and the final, deformed shape of the bar computed
on the finest mesh. Note the “mushrooming” at the left edge
of the bar and very large deformation at the bar corners. Also
note the permanent indentation on the right edge of the bar
resulting from shock waves bouncing off the right wall and
impacting the specimen.
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Fig. 9 Chamber detonation. Pressure at different time instants and final, deformed configuration of a steel bar. a 0.1 ms. b 0.4ms. ¢ 0.7 ms. d Final

configuration. (Color figure online)

Figure 10 shows the time history of the bar center-of-mass
displacement, and pressure at the detonation center (Point 1
in the figure) and right-wall center (Point 2 in the figure).
The results exhibit good convergence with mesh refinement,
and are in good agreement with the ALE results from Part I
of this paper. Shock waves bouncing between the right wall
and moving bar are captured very well in the simulations.

5.5 Shock wave impacting an elastic panel

In this example, a thin steel panel is impacted by a pla-
nar shock wave in air. The problem setup is shown in
Fig. 11. The panel thickness is 1 mm, and it extends 40 mm
from a mounting point with forward-facing step geome-
try where it is clamped. The fluid domain has dimensions
600 mm x 80 mm. The step has a height of 15 mm
and starts 335 mm from the left boundary. Inflow bound-
ary conditions are applied on the left side while rigid-wall

boundary conditions are applied elsewhere. In this example
the panel material is assumed to be elastic with the prop-
erties given in Table 3. The shock is placed at 330 mm
from the left wall and travels into air at rest with density
p = 1.2kg/m> and pressure p = 100 kPa. Behind the
shock the density is p = 1.6458kg/m?, the pressure is
p = 156.18 kPa, and the horizontal velocity v = 112.61 m/s.
The background mesh has 480 x 64 elements, while the
panel foreground mesh makes use of 10 x 500 Lagrangian
particles. The step is modeled in an immersed fashion with
zero velocity assigned to the block of control points cor-
responding to the step location. The problem has been
previously investigated both experimentally and numeri-
cally in [40,41], and is also computed in Part I of this
paper.

Figure 12 shows the pressure field and panel displaced
configuration at different time instants. After the initial
impact of the shock wave the panel begins to oscillate. Fig-

@ Springer



112 Comput Mech (2017) 60:101-116

—— Fluid 160 x 160, Solid 210 x 105 —— Fluid 120 x 120, Solid 158 x 79 — Fluid 160 160, Solid 210x 105 — Fluid 120x 120, Solid 158 x 79
—— Fluid 80 x 80, Solid 105x53 = Fluid 40 x 40, Solid 53 x 26 — Fluid 80x80, Solid 105x53  — Fluid 40x 40, Solid 53 x 26
6
0.06 - o X10
0.05 7.0 |
‘E’ 0.04 © >
. [
= & 50
[]
(]
E 003 5 40|
< a
2 @ 30|
2 002 &
a 2.0
0.01
1.0
0.00 . . . . . . : 0.0 . : ‘ ‘
0 0.0002 0.004 0.0006 00008 0001 00012 0.0014 0 0.0002 00004 00006 00008 0001 0.0012 0.0014
Time (s) Time (s)
(a) (b)
—— Fluid 160 x 160, Solid 210x 105 —— Fluid 120 x 120, Solid 158 x 79
— Fluid 80 x 80, Solid 105 x 53 — Fluid 40 x 40, Solid 53 x 26
x 108
45
4.0
35
© 3.0
e
o 2.5
2 20
[]
& 15
1.0
05 -
0.0 ‘ ‘ : ‘
0 0.0002 0.0004 00006 0.0008 0001 0.0012 0.0014
Time (s)

(c)

Fig. 10 Chamber detonation. a Horizontal displacement of the bar center of mass; b pressure at the center of detonation; ¢ pressure at the center
of the right wall. (Color figure online)
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Fig. 11 Shock wave impacting an elastic panel. Problem setup
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Table 3 Shock wave impacting an elastic panel

Young’s modulus E 220GPa
Poisson’s ratio v 0.33
Density p 7600 kg/m>

Material properties of the steel panel

ure 13a shows a comparison of the computed and measured
panel-tip displacement time histories. The two quantities
are in  good agreement, both in terms of the oscillation
magnitude and frequency, suggesting that the background
mesh is sufficiently fine to provide the appropriate level of
the panel through-thickness resolution. Figure 13b shows a
comparison of the computed and measured pressure time his-
tories at the pressure-sensor position. Very good agreement
is obtained in this case as well, suggesting that the complex
dynamics of shocked flow is well captured in the simula-
tion.

Remark Note that in Part 1 of the paper, toward the end
of the simulation, the predicted pressure signal starts to drift
from the experimental curve due to a spurious reflection wave
arriving from the left boundary where inflow boundary con-
ditions are prescribed. No such drift is seen in the present
simulation, because the inflow boundary is placed much fur-
ther to the left of the panel than in the simulation presented
in Part I of the paper.

1.2 105

1.6 105

5.6 Detonation with multiple objects

This last example shows the ability of the proposed method
to naturally handle scenarios of detonation in the presence
of multiple objects. Several rectangular objects are placed
in a rectangular chamber with dimensions 1.2 m x 0.8 m,
and are subjected to a detonation load. Figure 14 shows the
problem setup. The largest objects have dimensions 0.26 m
x 0.075 m, the smallest ones 0.0375 m x 0.05 m,
and the rest 0.075 m x 0.1 m. The detonation is ini-
tiated by assuming air at rest with 7 = 270 K and
p = 100,000 Pa, and elevating the pressure to p =
11.0 MPa and temperature to 7 = 1,550 K in the zone
of radius 0.05 m. All objects are assumed to have the
material properties of steel, and are modeled as elastic.
Slip boundary conditions are applied at the chamber walls.
Uniform mesh with dimension 0.006 m for the air and
0.0034 m for the solid objects is employed for the problem
discretization.

Figure 15 shows the air speed and the solid deformed con-
figuration at different instants after the detonation is initiated.
The solid objects contact each other, impact the chamber
walls, and, in general, move without any restrictions under
the action of blast waves. The flow solution remains stable
with crisp resolution of the shock waves throughout the com-
putation.

2.0 10°

ot

8.33 10*

2.32 10°

(a)

(b)

(c)

(d)

Fig. 12 Shock wave impacting an elastic panel. Pressure field and deflected panel at different time instants. a 70 ps. b 150 pus. ¢ 200 ps. d 570 ps.

e 1000 ps. f 1245 ws. (Color figure online)
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Fig. 13 Shock wave impacting an elastic panel. Time history of
a panel tip displacement; b pressure at the sensor location. Compu-
tational results from [41] are also shown for comparison. (Color figure
online)

6 Conclusions

In Part II of this paper, a computational framework for air-
blast FSI based on an immersed approach, which models the
interaction of compressible flow in the high-Mach-number
regime with inelastic solids and structures, is discretized
using the IGA-RKPM coupling. The NURBS-based iso-
geometric background discretization is fixed and provides
the discrete trial and test function spaces for the coupled
FSI problem. The RKPM-based foreground discretization is
moving with the solid material particles and is employed to
track its current position, store history-dependent variables,
and perform numerical quadrature.

Several attributes of the coupled IGA-RKPM formula-
tion are exploited to improve the accuracy and robustness
of the immersed air-blast FSI framework. Most notably, the
higher-order accuracy and smoothness of the background dis-
cretization delivers high-quality compressible-flow solutions
with shocks. In addition, the higher-order smoothness of the
background basis functions gives a continuous representation
of the strain-rate field, which greatly improves the quality of
the solid mechanics solution. Finally, the ghost velocity sta-
bilization needed for the stability of the C°-continuous case
is completely obviated.

This work presents first steps in the direction of air-
blast FSI and defines the underlying framework and core
methodologies for this class of problems. Future efforts will
be focused on 3D computations, improvement of the nodal
domain-integration techniques, and accurate representation
of the solid disintegration and fragmentation during blast.
In addition, for the solid discretization, it may be beneficial
to develop a methodology that directly employs the RKPM
approximation for the space of trial functions.

Fig. 14 Detonation with
multiple objects. Problem setup
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Fig. 15 Detonation with multiple objects. Air speed and solid in the current configuration at different instants during the simulation. a 0.01 ms.
b0.2ms.c0.4ms.d 0.6ms. e 0.8ms. f 1.0ms. g 1.2ms. h 1.4ms. (Color figure online)
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