
Commutativity, 
omeasurability, and


ontextuality in the Ko
hen-Spe
ker arguments

Gábor Hofer-Szabó

∗

Abstra
t

If non
ontextuality is de�ned as the robustness of a system's response to a mea-

surement against other simultaneous measurements, then the Ko
hen-Spe
ker ar-

guments do not provide an algebrai
 proof for quantum 
ontextuality. Namely, for

the argument to be e�e
tive, (i) ea
h operator must be uniquely asso
iated with a

measurement and (ii) 
ommuting operators must represent simultaneous measure-

ments. However, in all Ko
hen-Spe
ker arguments dis
ussed in the literature either

(i) or (ii) is not met. Arguments meeting (i) 
ontain at least one subset of mutually


ommuting operators whi
h do not represent simultaneous measurements and hen
e

fail to physi
ally justify the fun
tional 
omposition prin
iple. Arguments meeting

(ii) asso
iate some operators with more than one measurement and hen
e need to

invoke an extra assumption di�erent from non
ontextuality.
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1 Introdu
tion: the main argument in brief

The aim of this paper is to 
hallenge the view that Ko
hen-Spe
ker (KS) arguments

provide an algebrai
 proof for quantum 
ontextuality if non
ontextuality is interpreted

as the robustness of a system's response to a measurement against other simultaneous

measurements.

As a start, it is worth dis
erning KS arguments from KS theorems. KS theorems

are simply mathemati
al theorems in form of a 
oloring problem, while KS arguments

are physi
al arguments devised to prove that quantum me
hani
s (QM) is 
ontextual.

The KS theorems start from a family of self-adjoint operators arranged on a hypergraph

1

su
h that the subsets of mutually 
ommuting operators de�ne the hyperedges
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hypergraph.

3

Two examples for su
h a hypergraph are the GHZ graph (on the left) and

the Peres-Mermin graph (on the right). Here ea
h hyperedge is depi
ted by an unbroken

line 
onne
ting 4 
ollinear verti
es on the GHZ graph and 3 
ollinear verti
es on the Peres-

Mermin graph. Next, one introdu
es value assignments on the graph, that is, fun
tions

assigning to ea
h vertex one of the eigenvalues of the operators represented by the vertex

in every quantum state. Sin
e the operators are typi
ally proje
tions or 
ontra
tions,

the assignments generally yield the numbers 0, +1 and −1. The value assignments are,

however, 
onstrained by the so-
alled fun
tional 
omposition prin
iple

4

(FUNC) requiring

that if the operators on a given hyperedge stand in a 
ertain fun
tional relation to one

another, then the values assigned to the operators should also stand in the same fun
tional

relation in every quantum state.

5

In the 
ase of the GHZ graph, for example, the produ
t

of the operators on every hyperedge is the unit operator +1̂, ex
ept for the horizontal

hyperedge, where the produ
t is −1̂. In the 
ase of the Peres-Mermin graph the produ
t

of the operators on every hyperedge is +1̂, ex
ept for the third verti
al hyperedge, where

it is −1̂. Sin
e the eigenvalues of ea
h operator on both graphs is ±1, FUNC allows

for only su
h value assignments for whi
h the produ
t of the assigned numbers on every

hyperedge equals the produ
t of the operators (that is, +1 or −1) on that hyperedge. It

is easy to show that there is no su
h value assignment on the above two graphs. More

generally, KS theorems provide 
omplex hypergraphs of operators su
h that there is no

value assignment on the graph respe
ting FUNC. Some KS theorems work only in spe
i�


quantum states, others a
ross all states. Thus, one 
an di�erentiate state-dependent and

state-independent (algebrai
) KS theorems.

To pro
eed from a KS theorem to a KS argument, one needs to provide a physi
al

interpretation for the KS graph. To this aim, one �rst assumes that QM admits an

ontologi
al (hidden variable) model. In other words, one assumes that the quantum states

are simply distributions of underlying (dispersion-free) onti
 states. Next, one asso
iates

the operators with observables and measurements. Measurements are �lists of instru
tions

to be implemented in the laboratory� (Spekkens, 2005, p. 2) and observables are physi
al
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See e.g. (Abramsky and Brandenburger, 2011), (Cabello et al. 2014), and (A
ín et al., 2015).
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See (Redhead, 1989, p. 121) and (Held, 2018, Se
. 4).
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Alternatively: the values assigned to mutually 
ommuting operators are the eigenvalues 
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to one of the 
ommon eigenstates of these operators.
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magnitudes whi
h 
hara
terize a given quantum system. In a value-de�nite (deterministi
)

ontologi
al model ea
h observable has a well-de�ned value in every onti
 state. Ea
h

observable is also asso
iated with a measurement (pro
edure) su
h that the out
ome of the

measurement reveals (faithfully) the value of the observable. Furthermore, ea
h observable

A and the 
orresponding measurement a is represented by a self-adjoint operator â su
h

that the values of the observable and the out
omes of the measurement are just the

eigenvalues of the operator. The exa
t nature of these asso
iations will be examined

below. Finally, one interprets the quantum probability of an operator's spe
tral proje
tion

asso
iated with a given eigenvalue as the probability of the 
orresponding observables

having the value asso
iated with that eigenvalue, and also as the 
onditional probability

of the out
ome asso
iated with that value provided the 
orresponding measurement is

performed.

On this interpretation ea
h value assignment on a KS graph represents a possible

distribution of values in a given onti
 state whi
h the observables asso
iated with the

operators on the graph 
an take and whi
h the 
orresponding measurements reveal. The


onstraint FUNC is justi�ed as follows. Mutually 
ommuting operators on a hyperedge

have 
ommon eigenstates. If one prepares the system in one of these eigenstates, then the

fun
tional relationship between the operators will be realized as the fun
tional relationship

between the out
omes of the 
orresponding measurements, and also between the values of

the asso
iated observables. Note that to justify FUNC in an eigenstate, the measurements

need not be 
omeasurable (simultaneously measurable). But what justi�es FUNC in a

general quantum state? Here one 
an 
ome up with three answers.

First, one 
an say that any onti
 state featuring in the support of a general quantum

state must also show up in the support of at least one eigenstate.

6

This answer, however,

is not very appealing. After all, why should every quantum state be 
omposed of the

same onti
 states as the eigenstates are?

Se
ond, one 
an say that the mutually 
ommuting operators {âi} of the graph rep-

resent simultaneous measurements {ai} and on performing these joint measurements one


an dire
tly observe the fun
tional relationship in question between the joint measurement

out
omes and hen
e (assuming faithful measurement) between the values of the observ-

ables. Note that simultaneous measurements are understood here in the very physi
al

sense, namely as measurements whi
h 
an jointly be performed at the same time on the

same system. Also note that, although simultaneous measurements get represented in

QM by 
ommuting operators, the 
onverse is not true: from the mathemati
al fa
t that


ertain measurements are represented by 
ommuting operators it does not follow that

these measurements 
an be simultaneously performed. We 
ome ba
k to this important

point below.

Third, one 
an refer to the mathemati
al fa
t that for every set {âi} of mutually


ommuting operators sitting on a hyperedge there is an operator b̂ and fun
tions {fi}

6

Maroney and Timpson (2014) 
all it �operational eigenstate support ma
rorealism.�
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su
h that âi = fi(b̂). Thus, one 
an say that there is only one single observable B with a


orresponding measurement b and the set {âi} of mutually 
ommuting operators simply

represents the di�erent fun
tions {fi(B)} of this very observable. Consequently, FUNC

holds trivially: it simply expresses the fun
tional relationship among the di�erent fun
-

tions of the out
omes of b. Note that in this 
ase the measurements {fi(b)} asso
iated with
{âi} 
an be 
alled �simultaneously measurable� only metaphori
ally sin
e one performs

only one single measurement, namely b, and applies the fun
tions to the out
ome.

Now we show that these latter two justi�
ations of FUNC lead to two di�erent re-

alizations of a KS graph. To redu
e metaphysi
s and to get 
loser to the experimental

testability, we eliminate the 
on
ept of observable from the dis
ussion and adopt an op-

erational approa
h relying purely on operators and measurements. We 
all an asso
iation

of the operators of a KS graph with measurements a realization of the graph. A real-

ization is unique if ea
h operator on the graph is asso
iated with only one measurement

and non-unique if some operators are asso
iated with more than one measurement. A

measurement asso
iated with an operator is said to be realizing the operator. Now, in

the third justi�
ations of FUNC above a set of operators {âi} sitting on a hyperedge is

realized by one single measurement b sin
e the fun
tions fi applied to the measurement b

are represented by âi. Call a realization hyperedge-based if there is at least one hyperedge

on the graph whi
h is realized by (di�erent fun
tions of) one single measurement.

In a unique realization of the Peres-Mermin graph, for example, one has 9 di�erent

measurements asso
iated with the 9 verti
es (operators) of the graph. In a (maximally)

hyperedge-based realization of the same graph one has only 6 measurements asso
iated

with the 6 hyperedges (three rows or and three 
olumns) of the graph. Can this latter

realization be unique? No, it 
annot, as the following simple lemma shows:

Lemma. A hyperedge-based realization in whi
h all sets of mutually 
ommuting operators

represent simultaneous measurements 
annot be unique.

Proof. Let â1 be an operator sitting at the interse
tion of two hyperedges su
h that

all operators (among them â1) on the one hyperedge are realized by a measurement

b. Suppose a 
ontrario that â1 is realized only by b. Now, sin
e mutually 
ommuting

operators represent simultaneous measurements, the measurements realizing the operators

on the other hyperedge must be 
omeasurable with at least one measurement realizing â1.

But there is only one measurement realizing â1, namely b. Therefore, the measurements

realizing the operators on the other hyperedge are 
omeasurable with b. But then all

operators on the two hyperedges either represent fun
tions of b or measurements whi
h

are 
omeasurable with b. Assuming that simultaneous measurements get represented

by 
ommuting operators, this means that all operators on both hyperedges 
ommute.

Contradi
tion. Consequently, â1 
annot be realized only by b.

That is, a realization of a KS graph where all sets of mutually 
ommuting operators are

realized by simultaneous measurements but some su
h sets by one single measurement
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annot be unique. In other words, only the above se
ond justi�
ation of FUNC 
an lead

to a unique realization, the third justi�
ation always leads to a non-unique realization.

To avoid the no-go result of the KS argument, unique and non-unique realizations

follow di�erent strategies. On a unique realization one blo
ks the argument by assuming

that at least one measurement (asso
iated with an operator sitting at the interse
tion of

two hyperedges) 
an have di�erent out
omes in an onti
 state depending on whether it

is simultaneously performed with measurements represented by operators on the one or

on the other hyperedge. On a non-unique realization, however, the argument 
an also be

blo
ked by assuming that di�erent measurements represented by the same operator (at

the interse
tion of two hyperedges) 
an have di�erent out
omes in a given onti
 state.

These two strategies for avoiding the no-go result represent two di�erent interpreta-

tions of (non)
ontextuality. On the �rst interpretation, non
ontextuality is the indepen-

den
e of the out
ome of a measurement in every onti
 state from whi
h other measure-

ments it is simultaneously measured with. On the se
ond interpretation non
ontextuality

is a perfe
t 
orrelation in every onti
 state between the out
omes of two di�erent measure-

ments represented by the same operator.

7

Note that the two interpretations are di�erent

and logi
ally independent.

Histori
ally, the �rst interpretation of non
ontextuality goes ba
k to Bell, the se
ond

interpretation to Van Fraassen. Bell interprets non
ontextuality as: the �measurement of

an observable must yield the same value independently of what other measurements may

be made simultaneously� (Bell, 1966/2004, p. 9). Van Fraassen's 
ontextuality, however,

is based on the insight that �[t℄wo observables [a and b℄ are statisti
ally equivalent if they

have the same probability distribution . . . In that 
ase they are represented in physi
s by

the same Hermitean operator. . . . But that does not mean that a = b� (Van Fraassen,

1979, p. 158). In other words, two observables 
an be represented by the same self-adjoint

operator without being the same. But then, one is not for
ed to assign the same value to

them. Redhead (1989, p. 135) 
alls this fa
t ontologi
al 
ontextuality.

Many authors working in the operational approa
h (Spekkens, 2005; Hermens, 2011;

Leifer, 2014; et
.) follow this se
ond interpretation. Spekkens, for example, writes: �A

non
ontextual ontologi
al model of an operational theory is one wherein if two experi-

mental pro
edures are operationally equivalent [that is, they are represented by the same

self-adjoint operator℄, then they have equivalent representations in the ontologi
al model.�

(Spekkens, 2005, p. 1) There are also experiments devised to test non
ontextuality in this

se
ond sense (Mazurek, 2016). The general idea behind this understanding of non
ontex-

tuality, on
e again, is that if two measurements�even if they are not simultaneous�are

represented by the same self-adjoint operator (whi
h, as Van Fraassen rightly says, em-

piri
ally just means that the out
ome statisti
s of the two measurement are the same),

then it is rational to assume that in every onti
 state the out
omes (or more generally,

7

Both de�nitions of non
ontextuality 
an be generalized for probabilisti
 ontologi
al models by repla
-

ing �out
ome� by �probability distribution of the out
omes.�
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the probability distributions of the out
omes) of the two measurements are also the same.

I don't doubt that this is a reasonable requirement on an ontologi
al model.

8

I think,

however, that this requirement is more 
losely related to the spe
ial way in whi
h QM

is representing the 
onditional probabilities and mu
h less to the very 
on
ept of 
ontex-

tuality. If out
omes of di�erent measurements (de�ned via di�erent �lists of laboratory

instru
tions�) are represented by the same proje
tion, as happens in QM, then there might

indeed seem to be a need for the �
ontext� to dismantle what was put together by the rep-

resentation. But this 
ontextuality is simply the 
onsequen
e of a spe
ial representation

whi
h does not dis
riminate mathemati
ally between that whi
h is di�erent physi
ally,

namely the out
omes of di�erent measurements. Had this di�eren
e been respe
ted by

the representation, ontologi
al 
ontextuality would not arise.

If one relies, however, on the everyday usage of the term, then �
ontext� refers simply

to the 
ir
umstan
es in whi
h a 
ertain event, observation or measurement o

urs. These


ir
umstan
es are not 
onstitutive in the de�nition of the very event or measurement, but


an signi�
antly in�uen
e the o

urren
e of the event or the result of the measurement.

The important aspe
t of these 
ir
umstan
es, however, is that they are simultaneously

present with the event or measurement. A possible 
ontext for a measurement in physi
s

is another measurement whi
h is performed simultaneously with the one in question.

(A non-simultaneous measurement 
annot provide su
h a 
ontext sin
e it lives in another

possible world.) In this sense non
ontextuality refers to a kind of robustness of the de�nite

response to a measurement on a given system, with respe
t to simultaneous measurements

that are also performed on the system. I will refer to this kind of non
ontextuality as

simultaneous non
ontextuality. If we understand non
ontextuality in this way, we just

arrive at the above �rst interpretation of non
ontextuality.

I have no obje
tion against using non
ontextuality in the se
ond sense as Spekkens

and many others use it. However, in this paper I will use non
ontextuality ex
lusively in

the �rst sense (that is, as simultaneous non
ontextuality) and refer to the se
ond one as

Spekkens' 
ondition. My aim is to explore whether the KS arguments 
an prove that QM is


ontextual in the �rst sense. The 
hallenge is then to 
onstru
t (i) a unique realization for

a KS graph, that is, to asso
iate ea
h operator of the graph with a di�erent measurement

su
h that (ii) mutually 
ommuting operators represent simultaneous measurements. We

stress that points (i) and (ii) are both important. Mutually 
ommuting operators must

represent simultaneous measurements, otherwise FUNC, on whi
h the whole KS theorem

is based, will not be physi
ally justi�ed. And the realization must be unique sin
e non-

unique realizations realizing 
ertain operators by more than one measurement need to

invoke non
ontextuality in the se
ond sense that is, Spekkens' 
ondition. By abandoning

Spekkens' 
ondition (that is, by allowing the system to respond di�erently to di�erent

measurements represented by the same operator) one 
an always blo
k the KS argument.

In short, simultaneous measurability and unique realization are both sine qua non in

8

However, in Se
tion 13, I show a simple 
lassi
al ontologi
al models in whi
h this 
ondition is violated.
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proving quantum 
ontextuality.

9

In the paper I will pro
eed as follows. First, I introdu
e the framework of operational

theories (Se
t. 2) and ontologi
al (hidden variable) models (Se
t. 3); and de�ne (simul-

taneous) non
ontextuality (Se
t. 4). Then, I a

ommodate QM in this framework (Se
t.

5); pi
k a simple example, the Peres-Mermin square (Se
t. 6); 
larify what operational

theories would realize it (Se
t. 7); and show that the standard spin measurement real-

ization does not do the job (Se
t. 8). Next, I 
ategorize KS argument into three types

(Se
t. 9), investigate the GHZ argument as an argument of type II (Se
t. 10); show

that arguments of type III 
an be e�e
tive only if they swit
h to non-unique realization

(Se
t. 11) and if they assume Spekkens' 
ondition (Se
t. 12). Using a simple toy model,

I 
ompare Spekkens' 
ondition and non
ontextuality (Se
t. 13). Finally, I 
ontrast the

KS arguments with the Bell-type arguments (Se
t. 14).

2 Operational theories

An operational theory is a physi
al theory spe
ifying the probability of the out
omes of

some measurements performed on a physi
al system prepared previously in 
ertain states.

Let s, t, ... ∈ S be the possible states or preparations of the system under investigation. Let

a, b, ... ∈ M b
be the basi
 measurements whi
h 
an be performed on the system yielding

the out
omes Ai, Bj , ... (i ∈ I, j ∈ J, ...) respe
tively. Suppose that the measurements

are repeatable and we perform them many times and obtain stable long-run relative

frequen
ies for the out
omes in ea
h state:

#(Ai ∧ a ∧ s)

#(a ∧ s)
,

#(Bj ∧ b ∧ r)

#(b ∧ r)
, . . .

These relative frequen
ies allow us to introdu
e the 
onditional probabilities of obtain-

ing 
ertain out
omes given that the system has been prepared in 
ertain states and the

appropriate measurements have been performed:

p(Ai|a ∧ s) , p(Bj |b ∧ r) , . . .

We 
all a state s ∈ S an eigenstate of the measurement a if

p(Ai|a ∧ s) ∈ {0, 1} for all i ∈ I (1)

If two measurements, say a and b, 
an be jointly or simultaneously performed, then

the joint frequen
ies

#(Ai ∧ Bj ∧ a ∧ b ∧ s)

#(a ∧ b ∧ s)

9

Throughout the paper I will use the term �quantum 
ontextuality� as the non-existen
e of a non
on-

textual value-de�nite ontologi
al model for QM.
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are also well-de�ned whi
h allows us to introdu
e the joint 
onditional probabilities:

p(Ai ∧ Bj |a ∧ b ∧ s)

Jointly or simultaneously performable measurements are also 
alled 
omeasurable.

Whether two measurements are 
omeasurable is a physi
al question. One 
an measure

the width and the length of a table at the same time. But one 
annot jointly 
he
k�using

Arthur Fine's example�whether a given pie
e of wood is 
ombustible and whether it 
an

�oat on water. The two measurements 
annot be simultaneously performed; you 
annot

burn the pie
e of wood while in water. Similarly, you are not going to burn the pie
e of

wood along with throwing it in water�unless you want to test whether the ash �oats.

Let M denote the set of all measurements (basi
 and joint) physi
ally performable on

a system and let the variables x, y range over the measurements in M . The out
omes of x

and y are denoted by Xk
and Y l

, (k ∈ Kx, l ∈ Ly), respe
tively, and the set of out
omes

of all measurements is denoted by O = ∪x{X
k}. Similarly, let the variable r range over

the preparations s, t, ... ∈ S of the system. An operational theory is then given by a set

of 
onditional probabilities of the out
omes for the various basi
 and joint measurements

in the various preparations:

p(Xk|x ∧ r) for all k ∈ Kx, x ∈ M and r ∈ S (2)

whi
h add up to 1 if we sum up for k.

Measurements whi
h are not jointly measurable are not to be 
on�ated with disturbing

measurements. Consider the following example. In the army one performs two tests:

shooting test (a) and tightrope walking (b). The two tests are jointly measurable; soldiers


an well walk on a thin rope and shoot in the meanwhile. However, their performan
e

in shooting is heavily in�uen
ed by whether they are walking on a rope or not while

shooting. Thus, two simultaneous measurements a and b are 
alled non-disturbing if

p(Ai|a ∧ b ∧ r) = p(Ai|a ∧ r) for all i ∈ I and r ∈ S (3)

p(Bj |a ∧ b ∧ r) = p(Bj |b ∧ r) for all j ∈ J and r ∈ S (4)

For spa
elike separated measurements no-disturban
e is equivalent to no-signaling.

A non-disturbing operational theory 
an be 
hara
terized in the following 
ompa
t

way. First note that there is a natural partial ordering on the measurements of an op-

erational theory whi
h expresses �how joint� the measurements are. a ∧ b is �more joint�

than a or b. Call the set of basi
 measurements {a, b, ...} the basis of a measurement x,

if x = a ∧ b ∧ .... Now, for two measurements x, y ∈ M let x > y if the basis of x is


ontained in or equal to the basis of y. Using this partial ordering, an operational theory

is non-disturbing if:

p(Xk|x ∧ r) = p(Xk|y ∧ r) for all k ∈ Kx, r ∈ S and x, y ∈ M su
h that x > y (5)

8



Denote by Mm
the set of maximally joint measurements, that is, the set of measure-

ments x for whi
h there is no other measurement y su
h that x > y. For a non-disturbing

operational theory it is enough to spe
ify the 
onditional probabilities (2) for all x ∈ Mm
;

all other 
onditional probabilities will then be set by (5).

3 Ontologi
al models

The role of an ontologi
al model

10

(hidden variable model) is to a

ount for the 
onditional

probabilities of an operational theory in terms of underlying realisti
 entities 
alled onti


states (hidden variables, elements of reality, beables). An ontologi
al model de�nes the

preparations of the system in terms of distributions over the onti
 states and spe
i�es the

response of the system to the di�erent measurements in the di�erent onti
 states in terms

of the so-
alled response fun
tions. The ontologi
al model is su

essful if the 
onditional

probabilities of the operational theory 
an be re
overed in terms of these distributions

and response fun
tions.

Mathemati
ally, the provision of an ontologi
al model starts with the spe
i�
ation the

set Λ of onti
 states and a variable λ running over Λ. To make things simple we assume

that Λ is 
ountable.

11

Next, we asso
iate with ea
h preparation a probability distribution

over the onti
 states:

p(λ|r) for all r ∈ S (6)

and to ea
h measurement and onti
 state a set of response fun
tions that is, a set of


onditional probabilities

p(Xk|x ∧ λ) for all k ∈ Kx, x ∈ M and λ ∈ Λ (7)

again with the obvious normalization.

One 
an also impose two natural s
reening-o� 
onditions expressing the independen
e

of the preparations, measurements and onti
 states. The �rst s
reening-o� 
ondition,


alled no-
onspira
y, requires that the probability distributions do not depend 
ausally,

and hen
e probabilisti
ally, on the measurements performed on the system:

p(λ|r) = p(λ|r ∧ x) for all x ∈ M and r ∈ S (8)

The se
ond s
reening-o� 
ondition, 
alled λ-su�
ien
y, requires that the response fun
-

tions do not depend on the preparations in whi
h the onti
 states are featuring:

p(Xk|x ∧ λ) = p(Xk|x ∧ λ ∧ r) for all k ∈ Kx, x ∈ M, λ ∈ Λ and r ∈ S (9)

10

Cf. Spekkens (2005).

11

But nothing hinges on the 
ardinality of Λ.
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By means of (8)-(9) and using the theorem of total probability one obtains:

p(Xk|x ∧ r) =
∑

λ

p(Xk|x ∧ λ ∧ r) p(λ|r ∧ x)

=
∑

λ

p(Xk|x ∧ λ) p(λ|r) for all k ∈ Kx, x ∈ M and r ∈ S (10)

That is, one re
overs the operational theory from the ontologi
al model in terms of the

probability distributions and response fun
tions.

An onti
 state λ with respe
t to a measurement x is 
alled value-de�nite if

p(Xk|x ∧ λ) ∈ {0, 1} for all k ∈ Kx (11)

otherwise it is 
alled probabilisti
. Re
all that one and same λ 
an be value-de�nite for

the one measurement and probabilisti
 for the other. An ontologi
al model is 
alled

value-de�nite if (11) holds for all x ∈ Mm
; otherwise it is 
alled probabilisti
.

4 Non
ontextuality

Ontologi
al models, both value-de�nite and probabilisti
, trivially exist for an operational

theory if no further 
onstraints are put on them. But now require that the ontologi
al

model is non
ontextual.

An ontologi
al model is (simultaneous) non
ontextual if every onti
 state determines the

probability of the out
omes of every measurement independently of what other measure-

ments are simultaneously performed; otherwise is 
ontextual.

(Simultaneous) non
ontextuality 
an be formally expressed as follows:

p(Xk|x ∧ λ) = p(Xk|y ∧ λ) for all k ∈ Kx, λ ∈ Λ and x, y ∈ M su
h that x > y(12)

In other words, ea
h onti
 state uniquely determines the probability of all out
omes of a

given measurement irrespe
tive of what other measurements are 
o-measured. A spe
i�



onsequen
e of (12) is that the 
onditional probabilities of all basi
 measurements will be

�xed irrespe
tive of what other measurements they are 
o-measured with.

Observe, that non
ontextuality

12

(12) is almost the same requirement as no-disturban
e

(5), ex
ept that the latter is required for the preparations while the former is required

for the onti
 states. Consequently, non
ontextuality provides a neat explanation for why

an operational theory is non-disturbing: if an ontologi
al model for an operational theory

satis�es non
ontextuality (12) (and also no-
onspira
y (8) and λ-su�
ien
y (9)), then the

12

From now on, I drop the quali�er �simultaneous� but the term �non
ontextuality� will 
ontinue to

mean �simultaneous non
ontextuality� as de�ned in (12).
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operational theory will satisfy no-disturban
e (5). Hen
e, the assumption of non
ontex-

tuality is a kind of inferen
e to the best explanation for the non-disturbing 
hara
ter of

an operational theory.

Some notes are in pla
e here. (i) Non
ontextuality (12) is a generalization of Shimony's

(1986) parameter independen
e for situations when the simultaneous measurements are

not ne
essarily spa
elike separated.

(ii) If a value-de�nite ontologi
al model is non
ontextual, then (11) will hold for all

x ∈ M (and not just for x ∈ Mm
).

(iii) Non
ontextuality of an ontologi
al model does not generally imply fa
torization:

p(Xk ∧ Y l|x ∧ y ∧ λ) = p(Xk|x ∧ λ) p(Y l|y ∧ λ) for all k ∈ Kx, l ∈ Ly, λ ∈ Λ

and x, y, x ∧ y ∈ M (13)

But it does if the ontologi
al model is value-de�nite.

(iv) Non
ontextuality as de�ned in (12) resembles to the 
on
ept of non
ontextuality

of Simon et al. (2001) but di�ers from that of Spekkens (2005) and other operationalists.

Below I will refer to this latter 
on
ept as �Spekkens' 
ondition.�

5 Quantum me
hani
al representation

On the minimal interpretation QM is an operational theory whi
h provides 
onditional

probabilities for the out
omes of di�erent measurements in di�erent states. Thus, the

empiri
al 
ontent of QM 
ould be expressed simply by listing the various 
onditional

probabilities. However, in the standard formalism these 
onditional probabilities get

represented in a linear algebrai
 fashion. The physi
al system is asso
iated with a Hilbert

spa
e; ea
h state r ∈ S is represented by a density operator ρ̂r; ea
h measurement x ∈ M

by a self-adjoint operator x̂; and the out
omeXk
of x by the orthogonal spe
tral proje
tion

P̂

k

x of x̂ with eigenvalue Xk
. The representation is 
onne
ted to experien
e by the Born

rule:

Tr(ρ̂rP̂
k

x) = p(Xk|x ∧ r) for all k ∈ Kx, x ∈ M and r ∈ S (14)

where Tr is the tra
e fun
tion.

Now, if a and b are 
omeasurable, then a ∧ b gets represented in QM by 
ommuting

operators â and b̂. But if â and b̂ are 
ommuting, then a and b will turn out to be

non-disturbing:

p(Ai|a ∧ b ∧ r) =
∑

j

p(Ai ∧Bj |a ∧ b ∧ r) =

∑

j

Tr(ρ̂rP̂
i

aP̂
j

b) = Tr(ρ̂rP̂
i

a) = p(Ai|a ∧ r) for all i ∈ I and r ∈ S

11



and similarly for p(Bj|a ∧ b ∧ r). Thus, the quantum me
hani
al representation of joint

measurements implies that QM 
annot represent 
omeasurable but disturbing measure-

ments. In other words, only non-disturbing operational theories 
an have a quantum

me
hani
al representation.

Being an operational theory, one 
an sear
h for an ontologi
al model for QM. The

KS arguments are intending to rule out su
h an ontologi
al model if it is both value-

de�nite and non
ontextual.

13

In the following se
tions I pi
k a spe
ial KS theorem, the

Peres-Mermin square (Peres, 1990; Mermin, 1992) and investigate whether it 
an be

given a unique realization, that is, an operational theory 
omposed of 9 simultaneous

measurements whi
h does not admit a value-de�nite, non
ontextual ontologi
al model.

6 An example: the Peres-Mermin square

Consider the following 3×3 matrix of self-adjoint operators:

â ≡ σ̂3 ⊗ 1̂ b̂ ≡ 1̂⊗ σ̂3 ĉ ≡ σ̂3 ⊗ σ̂3

d̂ ≡ 1̂⊗ σ̂1 ê ≡ σ̂1 ⊗ 1̂ f̂ ≡ σ̂1 ⊗ σ̂1

ĝ ≡ σ̂3 ⊗ σ̂1 ĥ ≡ σ̂1 ⊗ σ̂3 î ≡ σ̂2 ⊗ σ̂2

where σ̂1, σ̂2 and σ̂3 are the Pauli operators and 1̂ is the unit operator on the two

dimensional 
omplex Hilbert spa
e. The operators in the matrix are arranged in su
h

a way that two operators are 
ommuting if and only if they are in the same row or in

the same 
olumn. Ea
h operator in the matrix has two eigenvalues, ±1. Denote the

spe
tral proje
tions of the operators â, b̂, ĉ, ... asso
iated with the eigenvalues ±1 by

P̂

±

a , P̂
±

b , P̂
±

c , ..., respe
tively. Let the variables x̂, ŷ, and ẑ range over the operators of

the Peres-Mermin square. Denote the spe
tral proje
tions of x̂, ŷ, and ẑ by P̂

j

x, P̂
k

y , and

P̂

l

z (j, k, l = ±1), respe
tively. The set of states S is represented by the set of density

operators on the two dimensional 
omplex Hilbert spa
e (whi
h also in
lude the 
ommon

eigenstates for ea
h subset of mutually 
ommuting operators).

The quantum probabilities for the spe
tral proje
tions of the three verti
al and three

horizontal 
ommuting triples of operators are given by the tra
e formula:

Tr(ρ̂rP̂
±

x P̂
±

y P̂
±

z ) for all ρr density operators (15)

Now, it turns out that these quantum probabilities are non-zero only for 
ertain 
ombi-

nations of spe
tral proje
tions for a given 
ommuting triple (irrespe
tive of the quantum

13

The restri
tion to value-de�niteness is dropped in 
ertain arguments (Mazurek et al. 2016), but here

non
ontextuality is de�ned as measurement non
ontextuality á la Spekkens (2005) and not as (12).

12



state). More spe
i�
ally, for the third verti
al triple ({ĉ, f̂ , î}) the quantum probabili-

ties are non-zero only for those 
ombinations of proje
tions for whi
h the produ
t of the

asso
iated eigenvalues is −1. For the other �ve triples this produ
t must be +1. That is,

Tr(ρ̂rP̂
j

xP̂
k

yP̂
l

z) 6= 0 only if

{

j · k · l = −1 if {x̂, ŷ, ẑ} = {ĉ, f̂ , î}
j · k · l = +1 otherwise

(16)

Note that these admissible 
ombinations of eigenvalues are also asso
iated with the four


ommon eigenstates of the triplet in question.

Now, these admissible 
ombinations of eigenvalues provide a 
onstraint on the value

assignments that is, on the fun
tions sending ea
h of the nine operators of the Peres-

Mermin square to one of their eigenvalues, that is, to ±1. The 
onstraint is that the

produ
t of the numbers in ea
h row and 
olumn should be +1, ex
ept for the third


olumn where it should be −1. It is easy to see that no su
h value assignment exists.

But does this no-go result prove that QM does not admit a non
ontextual value-

de�nite ontologi
al model? Not until the Peres-Mermin square is given a unique physi
al

realization.

7 An operational theory realizing the Peres-Mermin

square

Consider an operational theory with 9 basi
 measurements:

a b c

d e f

g h i

The 3×3matrix in whi
h the measurements are arranged is to express now 
omeasurability

relations: measurements are simultaneously measurable if and only if they are in the same

row or in the same 
olumn.

Ea
h measurement 
an have two out
omes, A±, B±, C±, ... = ±1. Let the variables

x, y and z range over the basi
 measurements M b
. Denote the out
omes of x, y and z

by Xj, Y k
and Z l (j, k, l = ±1), respe
tively. Let the 
onditional probability of the 6

di�erent maximally joint measurements be:

p(X± ∧ Y ± ∧ Z± | x ∧ y ∧ z ∧ r) for all r ∈ S (17)

Suppose furthermore that the 
ondition probabilities of all other non-maximally joint

measurements 
an be obtained from (17) by marginalization. Thus, (17) 
hara
terizes a

non-disturbing operational theory.

13



Now, suppose that the operational theory (17) is a physi
al realization of the Peres-

Mermin square in the sense that the quantum probabilities (15) in the Peres-Mermin

square represent just the 
onditional probabilities (17) via the Born rule (14). That is,

Tr(ρ̂rP̂
j

xP̂
k

yP̂
l

z) = p(Xj ∧ Y k ∧ Z l|x ∧ y ∧ z ∧ r) for all r ∈ S (18)

Note that (18) is well-de�ned sin
e the operators on the left hand side are mutually


ommuting if and only if the represented measurements on the right hand side are 
omea-

surable. Also note that the operational theory (17) is a unique realization of the Peres-

Mermin square, sin
e every operator is asso
iated with a di�erent measurement. As we

saw in the Introdu
tion, only unique realizations 
an de
ide on the status of non
ontex-

tuality in QM. (In Se
tion 11 we will see what non-unique realizations 
an do.)

From (16) and (18) it follows that the support of the probability distributions over

the out
omes that is, the set of possible out
omes for ea
h maximally joint measurement

x ∧ y ∧ z and ea
h preparation r ∈ S is the following:

p(Xj ∧ Y k ∧ Z l | x ∧ y ∧ z ∧ r) 6= 0 only if

{

j · k · l = −1 if {x, y, z} = {c, f, i}
j · k · l = +1 otherwise

(19)

that is, the 
onditional probability is non-zero only for su
h joint out
omes whi
h 
ontain

an odd number of +1s and an even number of −1s in ea
h row and 
olumn, ex
ept for

the last 
olumn where the number of +1s is even and the number of −1s is odd.
Does the operational theory (17) have a non
ontextual value-de�nite ontologi
al model?

Assume (
ontrary to fa
t) that there is su
h a model with response fun
tions:

14

p(X± ∧ Y ± ∧ Z± | x ∧ y ∧ z ∧ λ) for all λ ∈ Λ (20)

Being non
ontextual and value-de�nite, the response fun
tions are fa
torizing:

p(X± ∧ Y ± ∧ Z± | x ∧ y ∧ z ∧ λ) = p(X± | x ∧ λ) p(Y ± | y ∧ λ) p(Z± | z ∧ λ) (21)

for all λ ∈ Λ. Thus, the ontologi
al model 
an be 
hara
terized by the extremal 
onditional

probabilities:

p(X± | x ∧ λ) ∈ {0, 1} for all x ∈ M b
and λ ∈ Λ (22)

However, the support (19) of the operational theory restri
ts the possible extremal


onditional probabilities. Namely, for any three simultaneous measurements x, y and z

in M b
and λ ∈ Λ one requires that

p(Xj | x ∧ λ) p(Y k | y ∧ λ) p(Z l | z ∧ λ) = 1 only if

{

j · k · l = −1 if {x, y, z} = {c, f, i}
j · k · l = +1 otherwise

(23)

14

Note that for this argument we don't need the probability distributions p(λ|r).
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otherwise there 
ould be some onti
 states whi
h, if prepared (that is, p(λ|r) 6= 0 for some

r ∈ S), would render at least one 
onditional probability in (17) non-zero outside the

support (19).

However, it is easy to see that there is no su
h a set of 
onditional probabilities (22)

whi
h satis�es (23). This is due to the impossibility to �ll in a 3×3 matrix with ±1s su
h
that the produ
t of the numbers in ea
h row and 
olumn is +1, ex
ept for the last 
olumn

where it is −1. Consequently, the operational theory (17) does not have a non
ontextual

value-de�nite ontologi
al model.

Let me brie�y re�e
t on the question of experimental testability of the above operational

theory. Suppose that in a real experiment the support equation (19) 
annot be sharply

validated but only up to a fra
tion 1 − ǫ of all runs. How small ǫ should be so that

a non
ontextual value-de�nite ontologi
al model for the operational theory 
an still be

ruled out?

Suppose a 
ontrario that the ontologi
al model is non
ontextual and it 
onforms to

the measurement statisti
s as mu
h as possible, that is, for all λ ∈ Λ only one of the six


onstraints (23) is violated. (For example some λ assigns +1 to all 9 measurements, vio-

lating thus the 
onstraint of the third 
olumn but respe
ting all the other �ve, et
.) Sin
e

there are six di�erent triply joint measurements (of the three rows and three 
olumns),

hen
e�modulo some 
onspira
y�there is a 1/6 probability for any λ that a 
ertain joint

measurement will pi
k just that triple for whi
h (23) is violated. Sin
e ea
h su
h measure-

ment will 
ontribute to the violation of (19), (19) will be violated in a fra
tion of 1/6 of

all runs. Consequently, if in a real experiment ǫ is smaller than 1/6, then the experiment

will rule out a non
ontextual value-de�nite ontologi
al model for the operational theory.

This argument is a spe
ial 
ase of a general argument provided by Simon et al. (2001)

and Larsson (2002) in the defense of the KS arguments against the so-
alled �nite pre-


ision loophole argument of Meyer (1999), and Clifton and Kent (2000). As Barrett and

Kent (2004, Se
tion 4.3) ni
ely point out, the �nite pre
ision loophole is e�e
tive only if

non
ontextuality is de�ned in terms of operators on a Hilbert spa
e and not operationally

in terms of measurements�in short, only if KS arguments are understood as KS theorems.

Thus, the �nite pre
ision loophole arguments do not nullify the KS arguments based on

the above operational theory.

8 Do spin measurements realize the Peres-Mermin square?

The only question that remains is thus whether there exists an operational theory physi-


ally realizing the Peres-Mermin square?

The �rst idea that 
omes to mind is the standard spin measurements. Suppose that

the operator σ̂i ⊗ σ̂j (i, j = 1, 2, 3) represents the measurement that �rst we perform

two spin measurements by two Stern-Gerla
h magnets on a pair of spin-

1

2
parti
les in

dire
tions

~i and ~j, respe
tively (

~i,~j ∈ {~x, ~y, ~z}; ~x, ~y and ~z are mutually perpendi
ular);
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and se
ond we 
he
k whether the out
omes of the measurements on the opposite wings

are the same (+1) or not (−1). Denote this 
omposite measurement, symboli
ally, by

(si ∧ sj)
±
. Furthermore, let σ̂i ⊗ 1̂ (i = 1, 2, 3) and 1̂⊗ σ̂j (j = 1, 2, 3) represent that we

perform the spin measurement only on the left and right parti
le, respe
tively. Denote

these singular spin measurements, symboli
ally, by si ∧ 1 and 1 ∧ sj, respe
tively. Then,

the measurements realizing uniquely the Peres-Mermin square read as follows:

a ≡ s3 ∧ 1 b ≡ 1 ∧ s3 c ≡ (s3 ∧ s3)
±

d ≡ 1 ∧ s1 e ≡ s1 ∧ 1 f ≡ (s1 ∧ s1)
±

g ≡ (s3 ∧ s1)
± h ≡ (s1 ∧ s3)

± i ≡ (s2 ∧ s2)
±

Unfortunately, however, only four of the six 
ommuting subsets of operators represent

simultaneous measurements: the �rst two rows and the �rst two 
olumns. Measurements

in the third row and in the third 
olumn are, however, not 
omeasurable. For example,

the measurements c, f and i in the third 
olumn, that is, the spin measurements in

dire
tions ~z−~z, ~x−~x, and ~y−~y 
annot be simultaneously performed: one 
annot turn the

Stern-Gerla
h magnets in dire
tions ~z−~z, ~x−~x, and ~y−~y at the same time. Consequently,

although the left hand side of (18) exists, the right hand side is ill-de�ned for the third


olumn and also for the third row. The quantum probabilities

Tr(ρ̂r P̂
±

c P̂
±

f P̂
±

i )

Tr(ρ̂r P̂
±

g P̂
±

h P̂
±

i )


annot be interpreted as 
onditional probabilities

p(C± ∧ F± ∧ I± | c ∧ f ∧ i ∧ r)

p(G± ∧H± ∧ I± | g ∧ h ∧ i ∧ r)

and hen
e neither their support is de�ned. So one does not have the 
onstraint

p(C i | c ∧ λ) p(F j | f ∧ λ) p(Ik | i ∧ λ) = 1 only if j · k · l = −1 (24)

p(Gi | c ∧ λ) p(Hj | f ∧ λ) p(Ik | i ∧ λ) = 1 only if j · k · l = 1 (25)

for the onti
 states in the third 
olumn and third row and hen
e 
annot arrive at the


ontradi
tion outlined above. The whole argumentation 
ollapses. In short, the standard

spin measurement does not realize the Peres-Mermin square in form of an operational

theory (17), and 
onsequently does not provide a physi
al realization for a quantum

me
hani
al s
enario for whi
h a non
ontextual value-de�nite ontologi
al model 
ould be

ruled out.

Obviously, the standard realization of the above operators in terms of spin measure-

ments is not the only possible physi
al realization. One may well 
ome up with another

16



unique realization on whi
h the measurements are 
omeasurable if and only if the rep-

resenting operators are 
ommuting. However, I know of no su
h realization. And the

burden of proof is on those who 
laim that the above arrangement of operators ex
lude

a non
ontextual value-de�nite ontologi
al model for QM. An uninterpreted formalism


annot prove anything about the outer world.

15

Perhaps it is worth re�e
ting for a moment on the relation of 
ommutativity and 
omeasur-

ability (see Park and Margenau, 1968). Comeasurability is used in two di�erent meanings

in quantum physi
s. First, two measurements are 
alled 
omeasurable (
ompatible, si-

multaneously measurable) if, performing them one after another, the �rst measurement

does not alter the out
ome statisti
s of the se
ond one. Obviously, this usage of the term

�simultaneous� is metaphori
 and has no bearing on the KS arguments.

The other meaning is the one we use throughout this paper: two measurement are


omeasurable if they 
an physi
ally be performed at the same time on the same system.

Note, however, that this notion of 
omeasurability and the notion of 
ommutativity are

not synonym expressions. From the simple fa
t that two measurements are represented

by 
ommuting operators it does not follow that the measurements are simultaneously

performable. Comeasurability is a physi
al question whi
h 
annot be simply read o�

from their representation. Simultaneous measurements get represented in QM by 
om-

muting operators. But the 
onverse is not true. Not all 
ommuting operators represent

simultaneous measurements. Consider the following three pairs of 
ommuting operators:

[

Ŝ
2

1
, Ŝ

2

2

]

= 0

[σ̂1 ⊗ σ̂3 , σ̂3 ⊗ σ̂1] = 0

[σ̂1 ⊗ σ̂1 ⊗ σ̂1 , σ̂2 ⊗ σ̂2 ⊗ σ̂1] = 0

where Ŝ1, Ŝ2 and σ̂1, σ̂2 are spin-1 and spin-

1

2
operators, respe
tively. Ea
h pair is fea-

turing in one or other of a renowned KS argument: the �rst pair in the original Ko
hen-

Spe
ker (1967) argument; the se
ond in Peres' (1990) and Mermin's (1992) version and

also in Cabello's (1997) version; and the third in the GHZ (1989) version of the argu-

ment. However, none of them 
an be interpreted as operators representing simultaneous

spin measurements on pairs or triples of spin-1 or spin-

1

2
parti
les. But in the absen
e

of a unique realization of a KS graph where 
ommuting operators represent simultaneous

measurements, the no-go results do not prove that QM does not admit a non
ontextual

value-de�nite ontologi
al model.

How then the above KS arguments work?

15

But one might respond: why not to measure c, f and i simultaneously by one single �global� mea-

surement (Re
k et al., 1994)? We return to this question in Se
tion 11.

17



9 Three types of Ko
hen-Spe
ker arguments

To see the problem more 
learly, it is worth introdu
ing the following 
ategorization. Sup-

pose we are given a unique realization, that is, a KS graph and an asso
iated operational

theory realizing the operators on the graph in a one-to-one manner. Now, one 
an 
ast the

KS arguments into three types a

ording to the number of subsets of mutually 
ommuting

operators (operators on a hyperedge) whi
h do not represent simultaneous measurements

in the asso
iated operational theory:

Arguments of type I: where all 
ommuting subsets represent simultaneous measure-

ments;

Arguments of type II: where all but one 
ommuting subset represent simultaneous

measurements;

Arguments of type III: where there is more than one 
ommuting subset not repre-

senting simultaneous measurements.

As it will turn out soon, there is a huge di�eren
e in the e�
a
y of the three types of

arguments.

It is only KS arguments of type I whi
h provide a state-independent (algebrai
) proof

for quantum 
ontextuality, sin
e for these arguments FUNC 
an be physi
ally justi�ed

by the probability distribution of the joint out
omes of simultaneous measurements. Un-

fortunately, I am not aware of any argument of type I. In other words, I am not aware

of any unique realization of any KS graph where all 
ommuting subsets of operators

would represent simultaneous measurements. Consequently, I am also not aware of any

state-independent argument proving quantum 
ontextuality.

KS arguments of type II do exist but they provide only a state-dependent proof for

quantum 
ontextuality. An example for su
h an arguments is the GHZ argument. I return

to this argument in the next se
tion.

Finally, KS arguments of type III abound. The Peres-Mermin square with the stan-

dard spin realization is one example: the number of 
ommuting subsets not representing

simultaneous measurements is two, the three operators in the third row and the three

operators in the third 
olumn. Another example for arguments of type III is the original

KS graph with 117 verti
es with the standard spin realization. Here none of the 
ommut-

ing subsets represents simultaneous measurements sin
e the spin measurements for three

orthogonal dire
tions 
annot be simultaneously performed. In se
tion 11, I will argue

that arguments of type III are in
on
lusive in proving quantum 
ontextuality. To get a


ontradi
tion, they need to �ip to a non-unique (hyperedge-based) realization and invoke

Spekkens' 
ondition. However, by abandoning Spekkens' 
ondition the 
ontradi
tion 
an

be avoided.
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10 Ko
hen-Spe
ker arguments of type II

Let us see �rst the KS arguments of type II. A prototype of su
h arguments is the GHZ

argument. The GHZ graph (pentagram) reads as follows:

σ̂2 ⊗ 1̂⊗ 1̂

σ̂1 ⊗ σ̂1 ⊗ σ̂1 σ̂2 ⊗ σ̂2 ⊗ σ̂1 σ̂2 ⊗ σ̂1 ⊗ σ̂2 σ̂1 ⊗ σ̂2 ⊗ σ̂2

1̂⊗ 1̂⊗ σ̂1 1̂⊗ 1̂⊗ σ̂2

σ̂1 ⊗ 1̂⊗ 1̂

1̂⊗ σ̂2 ⊗ 1̂ 1̂⊗ σ̂1 ⊗ 1̂

On the standard spin realization of the GHZ graph, all but one subsets of the mutu-

ally 
ommuting operators 
an be interpreted as representing simultaneous measurements.

Measurements represented by 
ommuting operators on four of the �ve edges of the GHZ

pentagram are 
omeasurable sin
e they are performed on three spa
elike separated sub-

systems. But the measurements represented by the operators on the �fth, horizontal edge

are not 
omeasurable.

How does then the KS argument work in the GHZ 
ase?

The tri
k to 
ir
umvent the problem of non-
omeasurability is to prepare the system

in one of the 
ommon eigenstates of the measurements on the horizontal edge.

16

The

out
ome for ea
h measurement on the horizontal edge will then be �xed even if the

measurements are not 
omeasurable. The produ
t of the possible out
omes of the four

di�erent measurements will turn out to be −1 in ea
h 
ommon eigenstate. Now, the

measurements on the other four lines of the GHZ pentagram are 
omeasurable, and the

produ
t of their possible joint out
omes in all states (among them in the above 
ommon

eigenstates) will be +1. This means that ea
h onti
 state in the support of these 
ommon

eigenstates needs to assigns ±1 to the individual measurements su
h that the produ
t

of these numbers is +1 in ea
h line, ex
ept in the horizontal line where it is −1. Su
h

value assignment, however, is impossible, whi
h rules out a non
ontextual value-de�nite

ontologi
al model for the GHZ s
enario.

More generally, KS arguments of type II where all but one set of 
ommuting operators

represent simultaneous measurements are all state-dependent arguments. One needs to

prepare the system in one of the 
ommon eigenstates of the non-
omeasurable measure-

ments to �
ompensate� the failure of 
omeasurability of these measurements. By doing

16

See (1) for how an eigenstate for a measurement is de�ned.
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so one obtains the same 
onstraint on the response fun
tions (ne
essary for deriving the


ontradi
tion) as one would obtain if the measurements were 
omeasurable. But note

that these argument of type II 
annot be transformed into a state-independent argument.

They work only if the system is prepared in one of the 
ommon eigenstates of the operators

representing non-
omeasurable measurements.

11 Ko
hen-Spe
ker arguments of type III

Finally, let us turn to the KS arguments of type III that is, to arguments where there is

more than one 
ommuting subset not representing simultaneous measurements. Here the

strategy outlined in the previous se
tion does not work. Even if one prepares the system in

a 
ommon eigenstate of a set of operators representing non-
omeasurable measurements,

there remains at least one other set of non-
omeasurable measurements for whi
h the joint

out
omes are not known. This blo
ks the KS argument sin
e the 
onstraint on the onti


state 
oming from this very set of measurements will be missing.

One might however raise the question: Why not simply repla
e a 
ommuting subset not

representing simultaneous measurements by one single measurement and apply 
ertain

fun
tions on the result? Then the 
omeasurability problem would be solved.

Well, it is indeed a mathemati
al fa
t that for any �nite set {âi} of mutually 
ommut-

ing operators there exists an operator b̂ and a set of fun
tions {fi} su
h that âi = fi(b̂)
(Halmos, 1958). Note, however, that from this mathemati
al fa
t it does not follow that

there also is a physi
al measurement b represented by the operator b̂. The existen
e of

su
h a measurement is a physi
al question whi
h does not automati
ally follow from the

existen
e of the operator b̂.

But now suppose that in a KS argument of type III we repla
e every subset of non-


omeasurable measurements {ai} realizing {âi} by one single measurement b su
h that

the fun
tions {fi(b)} also realize {âi}. Will it turn the argument of type III into an

argument of type I?

No, it will not. Repla
ing non-
omeasurable measurements by fun
tions of one single

measurement renders the realization hyperedge-based. But then we fa
e the following

problem: To test non
ontextuality, we need to provide a unique realization of the KS graph

and guarantee that all subsets of mutually 
ommuting operators represent simultaneous

measurements. However, as Lemma in the Introdu
tion shows, su
h a realization 
annot

be hyperedge-based. So we need to give up the uniqueness of the realization, that is,

we need to asso
iate at least one operator with more than one measurement. These

measurements will be physi
ally di�erent but will be represented by the same operator.

Operationally this means that they have the same distribution of out
omes in every

quantum state. To get the no-go result, however, one needs to assume more: namely

that they have the same distribution of out
omes in every onti
 state, or in other words,

they have the same set of response fun
tions. This assumption, however, is an extra
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assumption, di�erent from non
ontextuality. By abandoned it the KS argument 
an be

blo
ked.

To sum up, KS arguments of type III do not prove quantum 
ontextuality sin
e FUNC


annot be physi
ally justi�ed for at least one set mutually 
ommuting operators in the

argument. Repla
ing non-
omeasurable measurements by fun
tions of one single mea-

surement does not solve the problem either sin
e either we sti
k to unique realization

but then some hyperedges will not represent simultaneous measurements; or we swit
h to

non-unique realization but then we need to use an extra assumption in the argument. To

this assumption we turn in the next se
tion.

12 Spekkens' 
ondition

Rob Spekkens (2005) introdu
ed a 
onstraint on ontologi
al models and 
alled it measure-

ment non
ontextuality.

17

He took it to be a generalization of the quantum me
hani
al

non
ontextuality for operational theories. I share Spekkens' view that his requirement

plays an important role in the KS arguments but, as explained in the Introdu
tion, I 
on-

test that it expresses non
ontextuality.

18

Hen
e, I will refer to Spekkens' non
ontextuality

simply as Spekkens' 
ondition:

If the probability of an out
ome of a measurement is the same as the probability of an

out
ome of another measurement in every preparation, then the probability of the out
omes

for the two measurements should also be the same in all onti
 states.

Formally, if for some x, y ∈ M , k ∈ Kx, and l ∈ Ly

p(Xk|x ∧ r) = p(Y l|y ∧ r) for all r ∈ S (26)

then

p(Xk|x ∧ λ) = p(Y l|y ∧ λ) for all λ ∈ Λ (27)

Now, Spekkens' 
ondition gives rise to a line of 
ounterfa
tual reasoning. If we measure

x in a 
ertain run of the experiment and obtain the out
ome Xk
, then, if the ontologi
al

model is value-de�nite with respe
t to x and y, we 
an 
on
lude based upon Spekkens'


ondition that had we measured y, we would have obtained Y l
. But note that Spekkens'


ondition is not an assumption about possible worlds but a restri
tion on the ontologi
al

models for an operational theory.

Spekkens' 
ondition, similarly to non
ontextuality (12), is also a kind of inferen
e to

the best explanation: if (27) and also no-
onspira
y (8) and λ-su�
ien
y (9) hold for an

17

See also (Liang et al., 2011), (Leifer, 2014) and (Krishna et al., 2017).

18

For a 
riti
ism of Spekkens operational de�nition of measurement non
ontextuality�based on a


riti
ism of operationalism�see (Hermens 2011).
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ontologi
al model, then we obtain a neat explanation why (26) holds. The explanandum

in the 
ase of non
ontextuality is no-disturban
e, in the 
ase of Spekkens' 
ondition it is

the statisti
al mat
h between out
omes of di�erent measurements.

Note that Spekkens' 
ondition (26)-(27) is logi
ally independent from 
ontextuality

(12). Spekkens' 
ondition does not rely on simultaneous measurability, while 
ontextual-

ity does. If there are no simultaneous measurements in an operational theory, then ea
h

ontologi
al model will be non
ontextual sin
e (12) is ful�lled va
uously. Still, the model


an violate Spekkens' 
ondition (26)-(27) if there are measurements yielding 
ertain out-


omes with the same probability in every state and di�ering in their response fun
tions.

Conversely, if premise (26) is not satis�ed in an operational theory, then Spekkens' 
on-

dition is ful�lled va
uously. But if the theory is disturbing, the ontologi
al model 
an

still be 
ontextual. In a non-disturbing operational theory, however, (26) holds for all x

and y su
h that x > y. Consequently, if Spekkens' 
ondition holds, non
ontextuality will

also hold. In short, in a non-disturbing operational theory (like QM) Spekkens' 
ondition

implies non
ontextuality.

It is instru
tive to see what an ontologi
al model whi
h violates Spekkens' 
ondition

look like. If (26) holds in an operational theory but (27) does not, then the distributions

of onti
 states representing the preparations 
annot be arbitrary. Thus the violation of

Spekkens' 
ondition puts a 
onstraint on the possible distributions of onti
 states: one


annot pi
k arbitrarily from onti
 states when preparing the system. Preparations must

be 
omposed from the underlying onti
 states a

ording to a 
ertain pattern whi
h is

sensitive to how the onti
 states respond to 
ertain measurements. But note that it is not

an a priori truth that any probability distribution of onti
 states represents a physi
ally

possible preparation. There may well be many physi
al reasons whi
h restri
t the possible

preparations of a system and Spekkens' 
ondition is only one among those.

As we saw in the previous se
tion, Spekkens' 
ondition plays a 
ru
ial role in non-

unique KS arguments. In these arguments 
ertain operators of the KS graph will be

realized by two di�erent measurements. The two di�erent measurements, however�

being represented by the same operator�will have the same out
ome statisti
s. But this

is exa
tly the ante
edent (26) of Spekkens' 
ondition. The role of Spekkens' 
ondition is

to ensure the 
onsequent (27), that is, to ensure that the response fun
tions of the two

di�erent measurements are perfe
tly 
orrelated. By this assumption the no-go result 
an

be derived. Thus, non-unique KS arguments heavily rely on Spekkens' 
ondition.

19

19

There are ex
eptions, however. In 
ertain KS arguments the 
onstraint (27) is not obtained via

Spekkens' 
ondition but through some other (often 
ounterfa
tual) reasonings. In Lapkiewi
z et al.

(2011), for example, an experiment is devised to prove the violation of the Klya
hko-Can-Bini
io§lu-

Shumovsky inequality (2008). To get the 
on
lusion (�to 
lose the pentagram�), however, the authors

needed to assume that the response of system on two not simultaneous measurements (A1 and A
′

1
in the

paper) are perfe
tly 
orrelated. This is just a 
onstraint of type (27).
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13 A simple toy model

Before 
on
luding, it is worth re�e
ting on
e more on the di�eren
e between non
ontextu-

ality and Spekkens' 
ondition (the �rst and se
ond interpretations of non
ontextuality, as

we 
alled them in the Introdu
tion) and illustrating this di�eren
e on a simple toy model.

Suppose we �ll a box with balls and perform two sorts of basi
 measurements: we pull

a ball from the box and 
he
k its 
olor or its size. The possible out
omes for the 
olor

measurement are bla
k and white; for the size measurement the out
omes are big and

small. Repeating the measurement many times we get long-run relative frequen
ies for

the various measurement out
omes. The two measurements are 
omeasurable, hen
e also

the probability distribution over the joint out
omes 
an be determined. Suppose further-

more that our operational theory is (i) non-disturbing and (ii) it satis�es the ante
edent

of the Spekkens' 
ondition: for every preparation, that is, for every �lling up the box with

balls, the probability of pulling a bla
k ball upon 
olor measurement is the same as the

probability of pulling a big ball upon size measurement.

We would like to 
onstru
t an ontologi
al model for our operational theory. The

model is non
ontextual if, given an onti
 state, the probability of all four measurement

out
omes is independent of whether we produ
e it by a basi
 or a joint measurement.

The model satis�es Spekkens' 
ondition if, given an onti
 state, the probability of the

out
ome bla
k/white upon 
olor measurement is the same as the probability of the out-


ome big/small upon size measurement.

An ontologi
al model whi
h is both non
ontextual and also satis�es Spekkens' 
ondi-

tion is the following: there are just two types of balls in the box: one type is bla
k and

big, the other type is white and small. Upon measuring the 
olor of the �rst type of ball

we get invariable the out
ome bla
k independently of whether we 
o-measure the size or

not (and similarly for the other out
omes). This model neatly explains the above two

probabilisti
 fa
ts, (i) and (ii), of the operational theory.

But there are ontologi
al models in whi
h one of the two requirements is violated.

An example of a model satisfying non
ontextuality but not Spekkens' 
ondition is the

following: there are now four types of balls in the box: bla
k and big; bla
k and small;

white and big; white and small. However, (for some physi
al reason) we 
an prepare the

box only in su
h a way that there is exa
tly as many bla
k and small balls in the box as

there are white and big balls. Consequently, although Spekkens' 
ondition is violated, we

get as often bla
k balls upon 
olor measurement as big balls upon size measurement.

For an ontologi
al model violating non
ontextuality but not Spekkens' 
ondition we

need to 
hange our non-disturbing operational theory into a disturbing one.

20

Thus,

suppose that there are again two types of balls in the box: bla
k and big; white and small.

Performing a basi
 measurement (
olor, size) these onti
 state invariably provide the


orresponding out
ome. However, for joint measurements (
olor and size) the out
omes

20

Sin
e, as we saw in the previous se
tion, in non-disturbing operational theories Spekkens' 
ondition

implies non
ontextuality.
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�ip: for the onti
 state bla
k and big, for example, the out
ome for the joint measurement

will be white and small. The model is 
ontextual but satis�es Spekkens' 
ondition: the

probability of getting a bla
k ball upon 
olor measurement is the same as the probability of

getting a big ball upon size measurement in ea
h preparation�both equal to the relative

frequen
y of bla
k and big balls in that preparation.

As the toy models attest, non
ontextuality and Spekkens' 
ondition are di�erent and

logi
ally independent assumptions.

14 Con
lusions

In the paper I have argued that a KS argument 
an rule out a non
ontextual value-

de�nite ontologi
al model for QM in a state-independent way only if the KS graph on

whi
h the argument is based is (i) given a unique realization su
h that (ii) mutually


ommuting operators represent simultaneous measurements. If one abandons (i), then�

sin
e some operators will be realized by multiple measurements�one needs to assume

Spekkens' 
ondition. By giving up Spekkens' 
ondition, however, the no-go result 
an be

blo
ked. If one abandons (ii), the 
onstraint FUNC on the value assignments 
annot be

physi
ally justi�ed. All in all, if non
ontextuality is interpreted as the robustness of a

system's response to a measurement against other simultaneous measurements, then KS

arguments 
annot provide an algebrai
 for proof quantum 
ontextuality.

It is important to note that the main thrust of this negative 
laim was not to 
hallenge

the view that QM does not admit a non
ontextual value-de�nite ontologi
al model. It

does not. State-dependent arguments (like the GHZ argument) provide a perfe
t proof to

this e�e
t. The aim of the paper was to 
hallenge the view that KS arguments 
an prove

this fa
t in a purely algebrai
 way based ex
lusively on measurements and not states (and

in this sense the KS arguments would be stronger than the state-dependent Bell-type

arguments).

But how do we know whether 
ommuting operators represent simultaneous measure-

ments or not? Well, the formalism of QM does not give us a de�nite answer. One 
annot

avoid going ba
k and see what kind of measurements the operators are representing. A

spe
ial way to ensure 
omeasurability (in a somewhat extended meaning) is to perform

the measurements on two or more subsystems of a physi
al system. These subsystems are

typi
ally spa
elike separated parts of a bigger system. In the 
ase of spa
elike separated

measurements non
ontextuality (12) amounts to a lo
ality requirement, 
alled parameter

independen
e: measurements performed on a subsystem 
annot in�uen
e the response

fun
tions of another measurement on a spa
elike separated other subsystem.

Non
ontextuality as parameter independen
e plays a 
ru
ial role in the Bell-type ar-

guments. In these arguments simultaneous measurability is guaranteed by spa
elike sepa-

ration. KS arguments, however, are not designed spe
i�
ally against lo
ality but against

non
ontextuality in general. Therefore, it would be interesting to see whether there exist
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su
h KS arguments in whi
h simultaneous measurability is not guaranteed by spa
elike

separation. Obviously, the most ba�ing form of 
ontextuality is nonlo
ality. But it

would be instru
tive to see whether there are other �softer� versions of 
ontextuality with

no appeal to lo
ality. To un
over su
h 
ontextuality, one should �nd a family of simul-

taneous measurements whi
h are performed on the same system (and not on spa
elike

separated subsystems) and formulate a KS argument based on these measurements. The


omeasurability of these measurements should then be justi�ed by expli
itly identifying

experimental pro
edures whi
h 
an be performed on the same system at the same time,

like measuring length and width of a table. Su
h 
omeasurability would then not appeal

to lo
ality but would be justi�ed by the detailed physi
al des
ription of the measurement

pro
esses. Can we 
ome up with a KS argument where 
omeasurability is grounded in

su
h a way? Does there exist a �genuine� KS argument with no appeal to lo
ality? I don't

know the answer.

A similarly open question 
on
erns the la
k of KS arguments of type I, where all

sets of 
ommuting operators represent simultaneous measurements (whether realized by

spa
elike separation or not). Why are there no arguments providing a state-independent

proof for quantum 
ontextuality? Is there a theoreti
al reason for their non-existen
e; or

are they simply not found be
ause they are not looked hard enough (partly due to the

negligen
e of the di�eren
e between 
ommutativity and 
omeasurability)? Again, I have

no answer.
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