Acute megakaryocytic leukemia (AMKL) with t(1;22)(p13; q13) is a distinct category of myeloid leukemia by WHO classification and mainly reported in infants and young children. Accurate diagnosis of this type of AMKL can be difficult, because a subset of patients have a bone marrow (BM) blast percentage of less than 20% due to BM fibrosis. Therefore, it is possible that past studies have underestimated this type of AMKL. We present here the case of a 4-month-old female AMKL patient who was diagnosed by presence of the RBM15-MKL1 (OTT-MAL) fusion transcript by RT-PCR. In addition, we monitored RBM15-MKL1 fusion at several time points as a marker of minimal residual disease (MRD), and found that it was continuously negative after the first induction chemotherapy even by nested RT-PCR. Detection of the RBM15-MKL1 fusion transcript thus seems to be useful for accurate diagnosis of AMKL with t(1;22)(p13; q13). We recommend that the RBM15-MKL1 fusion transcript be analyzed for all suspected AMKL in infants and young children. Furthermore, monitoring of MRD using this fusion transcript would be useful in treatment of AMKL with t(1;22)(p13; q13).

Key words: AMKL, infant, RBM15-MKL1, OTT-MAL

Infant acute megakaryoblastic leukemia (AMKL) with t(1;22)(p13; q13) is a distinctive myeloid malignancy by WHO classification, representing < 1% of all acute myeloid leukemia (AML) cases [1]. The prognosis of all AMKL is usually worse than that of other AML types, except for Down syndrome (DS)-related AMKL with GATA1 mutation, but AMKL with t(1;22)(p13; q13) appears to be uncertain. Some studies have found that AMKL patients with t(1;22)(p13; q13) respond well to intensive AML chemotherapy and achieve long disease-free survival [1, 2]. Furthermore, the disease is mainly reported in infants and young children, and most cases occur in the first 6 months of life (median, 4 months) [1]. However, the diagnosis of AMKL can be difficult, because a subset of patients have a bone marrow (BM) blast percentage of less than 20% due to difficulties with BM aspiration secondary to fibrosis.
On the other hand, this translocation also generates the fusion of the RNA-binding motif protein-15 (RBMI5) (also known as OTT) and megakaryocyte leukemia-1 (MKLI) (also known as MAL) genes [3]. The resulting fusion gene modulates HOX-induced differentiation and extracellular signaling pathways [4].

In addition, the detection of minimal residual disease (MRD) is important for leukemia treatment, and is generally achieved using either flow cytometry [5] or detection of the RBM15-MKLI fusion transcript by reverse transcription polymerase chain reaction (RT-PCR) [6].

We present here the case of a 4-month-old female with a low blast count in BM aspirate because of fibrosis. RBM15-MKLI fusion was only detected by RT-PCR in the first diagnostic BM sample, it was not detected after the first induction chemotherapy even by the nested RT-PCR method. Further, the fusion transcript was not detected at about 2 years after the first induction chemotherapy. We will discuss the clinical outcome of this rare case of infant AMKL and the usefulness of this fusion gene as a marker of MRD.

Materials and Methods

Total RNA was extracted from BM mononucleated cells at the first diagnosis, after the first induction chemotherapy, after the second chemotherapy, at the end of chemotherapy and at 12 months after the end of chemotherapy. RNAs were reverse-transcribed to cDNA with a cDNA Synthesis Kit (Amersham Bioscience, Tokyo, Japan). Polymerase chain reaction (PCR) was performed using the primer pair of RBM15-S1, which was located in RBM15 exon 1 (GenBank accession no. NM_022768.4), and MKL-AS2, which was located in MKL1 exon 5 (GenBank accession no. NM_020831.3) as described previously [7]. We amplified a control gene (B2M) to check the mRNA integrity [7]. The PCR product was directly sequenced using an ABI 310 sequencer (Applied Biosystems, Tokyo, Japan). As a further analysis, we also performed a nested RT-PCR using the inner primer pair of OTT-TEL inner F (5’-cttcatgcctcccaacct-3’) and OTT-TEL inner R (5’-tcaagctctcttcg-3’).

Patient. A 4-month-old female baby was admitted to the hospital because of insufficient gain of body weight and poor sucking with hepatosplenomegaly. She was delivered at 39 weeks gestation, and her birth weight and height were 3,026 g and 47.0 cm. There were no complications at birth and no typical family history. Laboratory data showed anemia and thrombocytopenia with a low blast count (Table 1). A total of 4 BM aspirations were performed because of “dry tap” aspirate. BM biopsy revealed severe BM fibrosis with small round blasts resembling lymphoblasts (Fig. 1A, 1B). There was no evidence of cytomegalovirus infection. The tentative diagnosis was infant AML (FAB classification, M7). She received a first induction chemotherapy based on the Japanese AML05 protocol (VP16, cytarabine, and anthracycline) with a 2/3 reduced dose and achieved a complete remission (CR). After the CR, she received an additional 4 courses of chemotherapy and was discharged from the hospital. She was healthy at 1.5 year after the end of chemotherapy.

Table 1 Laboratory data at admission to the hospital

<table>
<thead>
<tr>
<th>WBC (×106/ml)</th>
<th>8,200</th>
<th>T.Bil (mg/dl)</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelo (%)</td>
<td>1</td>
<td>AST (IU/L)</td>
<td>31</td>
</tr>
<tr>
<td>St (%)</td>
<td>3</td>
<td>ALT (IU/L)</td>
<td>15</td>
</tr>
<tr>
<td>Seg (%)</td>
<td>6</td>
<td>LDH (IU/L)</td>
<td>519</td>
</tr>
<tr>
<td>Eos (%)</td>
<td>2</td>
<td>BUN (mg/dl)</td>
<td>6.4</td>
</tr>
<tr>
<td>Bas (%)</td>
<td>1</td>
<td>Cr (mg/dl)</td>
<td>0.21</td>
</tr>
<tr>
<td>Mon (%)</td>
<td>3</td>
<td>CRP (mg/dl)</td>
<td>0.05</td>
</tr>
<tr>
<td>Lymph (%)</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blast (%)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBC (×109/ml)</td>
<td>164</td>
<td>BM aspiration</td>
<td></td>
</tr>
<tr>
<td>Hb (g/dl)</td>
<td>4.5</td>
<td>NCC (×106/ml)</td>
<td>38</td>
</tr>
<tr>
<td>Hct (%)</td>
<td>14.2</td>
<td>Mkk (×106/ml)</td>
<td>15</td>
</tr>
<tr>
<td>Plt (×106/ml)</td>
<td>9</td>
<td>Blast (%)</td>
<td>7.2</td>
</tr>
<tr>
<td>Ret (%)</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

RBMI5-MKLI fusion was detected in only the first diagnostic sample by RT-PCR (Fig. 2A). The fusion of exon 1 of RBM15 to exon 5 of MKLI was confirmed by direct sequencing (Fig. 2B). This fusion gene was not completely detected after the first induction chemotherapy, even by a nested RT-PCR at 18 months after the end of chemotherapy.

Discussion

AMKL with t(1;22)(p13;q13) is rarely reported, represented <1% of all AML but occurred with
higher incidence in the pediatric population and accounts for about 70% of AMKL in infants [2]. However, in the AML99 study performed in Japan from 2000–2002, only 3 patients were diagnosed as having AMKL with t(1;22)(p13;q13) among 11 non-Down AMKL patients. Accurate diagnosis appeared to be difficult because of the difficulty of accurately detecting this karyotypic abnormality. Ballerini et al. also reported that the real frequency of OTT-MAL (RB15-MKL1) recombination events may be underestimated at least in children with AMKL [13]. Therefore, we strongly recommend that an RT-PCR
assay for the RBM15-MKL1 fusion transcript be performed for all infants and young children with AMKL. However, the unavailability of BM mononucleated cells remains a problem due to BM fibrosis in AMKL. Therefore, if we could perform this analysis using RNA extracted from paraffin-embedded specimens, that would be a major step forward. However, we estimate that the RNA extracted from paraffin-embedded specimens would be shortened and show degradation. We will investigate possible solutions in a future study.

In addition, we do not know the exact prognosis of this rare type of AMKL due to the relative dearth of previous reports [8-11]. Older studies have reported a poor prognosis [9, 10], but more recent reports have described a relatively good prognosis compared to other types of AMKL [1, 2, 11]. In the AML99 study, 2 of 3 previous cases also survived more than 5 years with complete remission. A further large study including accurate diagnosis of this type of AMKL using the RBM15-MKL1 fusion transcript will be needed.

In addition, it remains unknown what other molecular events may be associated with the RBM15-MKL1 fusion transcript in AMKL with t(1; 22) (p13; q13). Hama et al. reported that there was no mutation in several established AML-related genes, such as GATA1, JAK3, JAK2, TP53, NRAS, ASXL1, FLT3, IDH1/2, DNMT3A, RUNX1 and CBL, in 3 cases of AMKL with t(1; 22) (p13; q13) [8]. They also reported that there was no mutation in other types of nonDS-AMKL, except for one GATA1 mutation, and thus it remains uncertain what other molecular events may take place in these AMKL patients.

In general, hematological CR means that the bone marrow blast percentage is <5%. On the other hand, molecular CR means that a single blast having a specific fusion transcript is present in less than one of 10^5 or 10^6 normal cells. Therefore, patients sometimes show hematological CR but can not achieve molecular CR after induction chemotherapy. Naturally, molecular CR is a better response to chemotherapy than a hematological response. Recently, MRD detection has become very important in AML therapy, including hematopoietic stem cell transplantation (HSCT). To detect an early relapse after HSCT, MRD monitoring is needed. However about 40% of AML patients do not have a specific MRD fusion transcript, such as RBM15-MKL1, RUNX1-RUNX1T1 (AML1-MTG8), CBF β-MYH11, etc. The Wilms’ tumor 1 (WT1) is overexpressed in >70–80% of patients with AML and thus can be useful for minimal residual disease (MRD) monitoring [12]. In the recent AML99 study, the residual level of MRD after the first induction chemotherapy was correlated with the prognosis of AML patients [12]. In this case, the molecular remission seems to be quite deep, because the nested RT-PCR could not detect RBM15-MKL1 fusion after the first induction chemotherapy. We therefore recommend that screening for this fusion transcript be conducted for all infants and young children with AMKL upon first diagnosis. In addition, a future study in which MRD is monitored in bone marrow and peripheral blood to compare the clinical outcomes is warranted. We conclude that detection of the RBM15-MKL1 fusion transcript is effective for the accurate diagnosis of AMKL as well as a useful marker for MRD.

Acknowledgments. We thank all the medical staff who participated in the patient care. This work was supported in part by a Grant-in-Aid for Cancer Research and a grant for Clinical Cancer Research and Research on Children and Families from the Ministry of Health, Labor and Welfare of Japan.

References

6. Doubek M, Palasek I, Pospisil Z, Borsky M, Klabusay M,


