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Abstract

Elliptic modular forms of weight 2 and elliptic modular curves are strongly

related. In the rank-2 Drinfeld module situation, we have still modular curves

that can be described analytically through Drinfeld modular forms. In [GR96]

Gekeler and Reversat prove how the results of [Dri74] can be used to construct

the analytic uniformization of the elliptic curve attached to a given automorphic

form. In [Lon02] Longhi, building on ideas of Darmon, defines a multiplicative

integral that theoretically allows to find the corresponding Tate parameter. In

this thesis we develop and present a polynomial time algorithm to compute

the integral proposed by Longhi. Also we devised a method to find a rational

equation of the corresponding representative for the isogeny class.

Zusammenfassung

Elliptische Modulformen von Gewicht 2 und elliptische Modulkurven stehen in

enger Verbindung. Im Fall eines Drinfeld-Moduls von Rang 2 haben wir noch

Modulkurven, die durch Drifeldsche Modulformen analytisch beschrieben wer-

den können. Gekeler und Reversat [GR96] beweisen, wie die Ergebnisse von

[Dri74] genutzt werden können, um die analytische Uniformisierung der, einer

gegeben automorphen Form eingeordneten elliptischen Kurve, zu konstruieren.

Auf Darmons Ideen aufbauen definiert Lonhi [Lon02] ein multiplikatives Inte-

gral, das es erlaubt, den entsprechenden Tate-Parameter zu finden. In der vor-

liegenden Arbeit wird ein Polynomialzeitalgorithmus entwickelt und vorgestellt,

um das von Longhi vogeschlagene Integral zu berechnen. Ausserdem wird

eine Methode entwickelt, mit der eine rationale Gleichumg der entsprechen-

den Vertreter der Isogenieklasse gefunden werden kann.
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1. Introduction

The theory of modular forms and their relation to the arithmetic of elliptic curves is

a central subject in modern mathematics, where most diverse branches of mathematics

come together: complex analysis, algebraic geometry, representation theory, algebra and

number theory. One of the most exciting and widely mathematical discoveries is the proof,

by Andrew Wiles, of “Fermat last’s theorem”, its solution draws an incredible range of

modern mathematics, which is precisely the relation between modular forms and elliptic

curves.

There are a number of analogies between on the one hand, the integers Z and the rational

numbers Q and on the other hand, Fq[T ] and its field of fractions Fq(T ). Frequently a

problem posed in number fields or, in other words, in finite extensions of Q, admits an

analogous problem in function fields, and the other way around. For example, since the

appearance of Drinfeld’s work [Dri74], we know that all elliptic curves which are semistable

at the place ∞ are modular, that is, they appear as a factor of the Jacobian of a Drinfeld

modular curve. We are interested in number theory over function fields, particularly in

elliptic curves over Fq(T ).

In order to get a better idea of the function field case, it is worth to start with a short

description of the classical case, that is, over the rational numbers Q. Let f : H −→ C be

a cuspidal modular form of weight two for the Hecke congruence subgroup Γ0(N) which

is also a new eigenform with rational Hecke eigenvalues, we call it for short “a Q-rational

newform” of level N . From the Eichler-Shimura theory, with f one can associate an elliptic

curve E with conductor N and a morphism defined over Q form the modular curve X0(N)

to the elliptic curve E. Such an elliptic curve E is called a Weil curve.

On the other hand, since the 60’s (after the work of Shimura, Taniyama, and Weil) emerged
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1. Introduction

the conjecture that all elliptic curves over Q (up to isogeny) should be obtainable from

the Eichler-Shimura construction. The conjecture known as the Shimura-Taniyama-Weil

conjecture, is now a theorem called the modularity theorem [BCDT]. Basically it states

that there are canonical bijections between the sets of

1) Normalized Q-rational newforms f of level N with rational Hecke eigenvalues;

2) One dimensional isogeny factors of the new part of the Jacobian of the modular curve

X0(N);

3) Isogeny classes of elliptic curves E over Q with conductor N .

The previous correspondence yields an effective method to determine all elliptic curves E/Q

with a given conductor N , since the modular parametrization is explicitly and effectively

computable (c.f. [Cre97]). For tables and numerical results see ([Ibid., Ch. 4]).

For some applications it is convenient to consider other kind of parametrizations instead

of the modular one, for example the Shimura parametrization, introdued in [BC91] and

[BD98]. Let E be an elliptic curve of conductor N and suppose that N is square free and

factorizes as N = N−N+ where N− has a even number of factors. Then there exits a

parametrization of E by the Shimura curve XN−N+ (cf. §3.4), that is a non constant mor-

phism from the Jacobian of the Shimura curve to E. However the lack of q-expansions for

modular forms on non-split quaternion algebras, forces one to consider p-adic uniformiza-

tions of E by certain discrete arithmetic subgroups of SL2(Qp) at the primes p dividing

N−.

The modular forms considered here may be regarded as functions on oriented edges of

certain Bruhat-Tits tree T (cf. §3.4), called harmonic cocycles, which can be identified

with measures on P1(Qp). Using these measures Bertolini and Darmon are able to define

a multiplicative p-adic integral defined over P1(Qp), which theoretically gives rise to the

modular parametrization of the Tate curve attached to a given harmonic cocycle.

In [Gre06], Greenberg gives an algorithm, running in polynomial time, for evaluating this

p-adic integral up to a given precision. The key of his algorithm is a method devised by

Pollack and Stevens [PS11] for explicitly lifting standard modular symbols to overconver-

gent ones. Although Greenberg is able to compute with good accuracy the Tate parameter,

he does not give an explicit method to find an equation defided over Q for the elliptic curve

2



1. Introduction

as Cremona does. However in a recent preprint [GMS] Guitart et al, get p-adic approx-

imations to the algebraic invariants of the elliptic curve, allowing for the recovery of the

Weierstrass equation.

In the function field case, we want to describe a similar relationship between elliptic curves

and automorphic forms. Although this result was proved for more general global fields

(cf. [GR96]), we consider here the case where Q is replaced by the rational function field

K = Fq(T ).

The automorphic forms considered, may be regarded also as functions on the oriented

edges of the Bruhat-Tits tree for GL2(K∞), where K∞ is the completion of K at the place

∞ = 1/T . In analogy with the classical case, in [GR96] Gekeler and Reversat prove that

every elliptic curve E over Fq(T ) with conductor n∞, where n is an ideal of Fq[T ], is

isogenous to a factor of the Jacobian of the Drinfeld modular curve M0(n) or equivalently

E is a Weil curve. One can also establish a canonical bijection between the sets of:

1) Q rational new eigencocycles of level n with rational eigenvalues;

2) Isogeny factors of dimension one of the Jacobian of the Drinfeld modular curveM0(n);

3) K-isogeny classes of elliptic curves E/K with conductor n∞.

This modular parametrization is explicitly constructed using a Theta function, however,

this construction requires to calculate certain infinite product (cf. (2.6)), which makes

it computationally hard to find the Tate parameter. On the other hand, Longhi [Lon02]

working on function field analogues of Bertolini-Darmon [BD98], defines a multiplicative

integral over P1(K∞) and constructs a theta function in a different way as the one of

Gekeler and Reversat. This approach does not give either an explicit method to calculate

such integral.

In this thesis we develop an effective method to compute the multiplier of Gekeler’s theta

function using the integral proposed by Longhi. We are able to calculate the Tate parameter

q up to an accuracy of πM in running time O(M7) operations; this is the main result of

this thesis (c.f. Thm. B.2.1). In contrast to Greenberg‘s work, we go even further and find

the corresponding elliptic curve defined over Fq(T ) in the isogeny class of the Tate curve

corresponding to q. The importance of the these results, is that we now have a method to
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1. Introduction

construct, at least for small primes and polynomials N of small degree, tables as Cremona

does in the classical case.

We start with a harmonic cocycle ϕ as above, that is, a new eigencocycle of level n with

rational Hecke eigenvalues. From §3.1.1 we know that there is a measure µϕ on P1(K∞)

associated to ϕ. We use it, following Longhi, to define a multiplicative integral (3.9) which

is very similar to the one used by Greenberg in the p-adic uniformization.

Motivated by the work of Greenberg, Darmon and pollack, we develop an algorithm to

calculate our integral up to a given fixed precision ofM digits. A crucial tool in Greenberg’s

calculation is the logarithm, which allows him to pass from a multiplicative integral to an

additive one. In the function field case we had to replace the use of logarithm by a different

method which lead us to calculate several integrals of functions in the ring 1 + πFqJπ, tK

defined on O∞ (cf. (4.3)), instead of P(K∞) (cf. (4.1)). This idea and the concepts involved

were sketched to me by Prof. Böckle.

In order to calculate the integral we define a Hecke operator over certain set S (cf. (4.7))

of functions which are I∞-equivariant. We show that the integral over any edge of the

tree T can be regarded as an element of S and they are eigen-functions with eigenvalue 1.

The last property allows us to calculate the integral over all edges in T and functions on

1 + πFqJπ, tK modulo πM .

The calculation of the Hecke operator U∞ requires to work with the edges of the quotient

graph Γ0(N) \ GL2(K∞)/I∞, where N is a polynomial in Fq[T ] that generates the ideal

n, which is a covering of double the quotient GL2(A) \ GL2(K∞)/I∞. Since most of the

algorithms available in the literature are made to work with the vertices of the quotient

graph, we need to describe sets of representatives for the edges of the quotient graphs above

and implement algorithms that allow us to work with such as sets (c.f Appendix A). The

algorithms and the proofs that appear in the Appendices A and B, were made with the

help of Dr. Cerviño.

Once we have the Tate parameter q we proceed to find a representative of the elliptic

curve in the isogeny class defined over Fq(T ). Unfortunately the coefficients a4(q) and

a6(q) of the Tate curve ( 5.12) are not rational (cf. Example 5.7.4). So we need to find an

appropriate change of variables to transform the Tate curve into a rational model.

In the case of characteristic 2 and 3 a simple change of variables to transform the Tate

4



1. Introduction

curve was enough to find the rational model. In characteristic greater than 3 we need to

consider the Eisenstein form y2 = 4x3 − g2x − g3 of the curve. Following a suggestion of

Prof. Böckle, we prove that there are powers of g2 and g3 that are rational functions (cf.

Proposition 5.7.9). Hence after an appropriate change of variables we get a model defined

over the field Fp(T ). A direct consequence of this is that the Eisenstein series are algebraic

over Fq(T ).

This thesis is organized as follows:

In chapter 2 we give all the preliminaries from the article of Gekeler-Reversat [GR96],

which include a short introduction to graphs in §2.2. We give the basic definitions of the

Drinfeld upper half plane, Bruhat-Tits trees, ends, the reduction map, the quotient graph

and harmonic cocycles in sections §§2.3-2.9. In Section 2.5, where the ends of the tree T

are defined, we explain how they are identified with P1(K∞) (cf. Lemma 2.5.4) and how

each edge induces a partition of P1(K∞) into two disjoint open sets. Besides the definion

of the harmonic cocycles in §2.9 we show how they can be constructed using the homology

of the quotient graph (cf. Lemma 2.9.4).

The construction of Gekeler and Reversat of theta series is given in §2.10. Theorem 2.10.2

gives their main properties. There it is stated that the multiplier of the theta series induces

a symmetric bilinear pairing, this is used latter to find the integral with the minimal

valuation, which is precisely the Tate parameter. Theorem 2.10.4, mostly due to Van der

Put, gives the relation between theta functions and the harmonic cocycles. This relation

allows us latter to construct the theta series by means of a multiplicative integral. We

finish this chapter with the definition of the Hecke operator in §2.11 and the applications

to the Shimura-Taniyama-Weil uniformisation §2.12, which is the main result of [GR96].

In Chapter 3 the definition of Longhi’s multiplicative integral (cf. Def. 3.1) over any

compact X is given. In §3.1.1 we state the relation between harmonic cocycles and mea-

sures, which is a direct consequence of Lemma 2.5.4. In §3.1.2 we give the definition of

the multiplicative integral when X is P1(K∞) and the measure is the one induced from the

harmonic cocycle. The theta function as a multiplicative integral is the content of Theorem

3.2.1, which allows us to show that the multiplier of the theta function can be given as a

multiplicative integral (cf. (3.9)). This is the integral that we are interested in, since it

allows us to determine the Tate parameter. This chapter also includes two sections with

5



1. Introduction

the classical complex uniformisation in §3.3 and the p-adic uniformisation in §3.4 with a

short explanation of Greenberg’s algorithm.

In Chapter 4 we explain our algorithm to calculate the integral. This is the main theoretical

contribution of this thesis. In §4.2 we define FI , the set of fundamental functions. We show

in Lemma 4.2.1 that FI is a group and we define the action of the Iwahori subgroup on

it (cf. (4.6)). We introduce in §4.3 the Hecke operator U∞ and the set S (4.7) on which

the operator U∞ acts. The main results of this section are Lemma 4.3.7 and Proposition

4.3.8 in which we prove that the integrals regarded as elements of S are I∞-equivariant

and eigenfunctions of the operator U∞, respectively. At end of section §4.3 we explain how

to calculate the Table by applying the Hecke operator U∞. This section finishes with the

example 4.3.13 of how to apply the operator U∞.

As we already explained we need to transform our integral (3.9) into one of the form

(4.1) defined over O∞. In §4.4 we explain how to carry out this change of variables and we

perform carefully all the computations over all possible open sets arising from the partition

of the border P1(K∞).

Chapter 5 deals with the applications of our algorithm to calculate the integral (3.9). We

start this chapter with some definitions and results on elliptic curves, modular forms and

the Tate curve (cf. §§5.1-5.5). We explain in §5.6 how to calculate the Tate parameter.

This includes a calculation of the valuation of q and Theorem 5.6.1 which states that we

can compute the Tate parameter q up to accuracy πM in time O(M9).

In §5.7.1 we explain how to find the rational model for the Tate curve in characteristic 2

and 3 and write the corresponding algorithm and give some examples. Section §5.7.2 deals

with characteristic p > 3. We show first the rationality or certain powers of the Eisenstein

series g2 and g3 (cf. Proposition 5.7.9) over the field Fq(q). We also give the algorithm to

find curves in characteristic p > 3 and we give examples for p = 5, 7, 11 and 13.

In the appendices A and B we explain the implementations for algorithms to deal with

the quotient graph and the table respectively, as well as the running time for the main

algorithms and the proof of Theorem 5.6.1. Appendix C includes tables for some primes

and small degree of n.

Implementations of the algorithms described in this thesis, were done on the algebra system

Magma [BCP97] and are available upon request.
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2. Background

2.1 Notation

We recall some facts on the Drinfeld upper half plane, the Bruhat-Tits tree, harmonic co-

cycles and theta functions1. We fix throughout this work the following notation, assuming

the reader to be familiar with [GR96].

Fq = the finite field of characteristic p with q elements
A = Fq[T ]
K = Fq(T )
∞ = the fixed place of K of degree one corresponding to v1/T

val = the valuation v1/T

K∞ = Fq((π)), π = T−1

O∞ = Fq[[π]], the ∞-adic integers
C∞ = the completion of an algebraic closure of K∞
| · | = the multiplicative norm on C∞ that extents qval(·) : K → R>0.

2.2 Notions from graph theory

Definition 2.2.1. Let S be a non empty countable set.

(a) A (directed multi-)graph G is a pair (X(G),Y(G)) where X(G) is a (possibly infinite)

non-empty set and Y(G) is a subset of X(G)×X(G)× S such that

1. if e = (v, v′, s) lies in Y(G), then so does its opposite ē = (v′, v, s),

1The theta functions considered here are the rigid analytic functions defined in [GR96, §5]

7



2. Background

2. for any (v, v′) ∈ X(G) × X(G), the set {s ∈ S | (v, v′, s) ∈ Y(G)} is a finite set

whose cardinality is denoted by nv,v′ ,

3. for any v ∈ X(G), the set Nbs(v) := {v′ ∈ X(G) | (v, v′, s) ∈ Y(G) for some s ∈
S} is finite.

(b) A subgraph G′ ⊂ G is a graph G′ such that X(G′) ⊂ X(G) and Y(G′) ⊂ Y(G).

(c) Suppose X(G) = {v1, v2, ..., vm} is finite. Then (nvi,vj )16i,j6m is called the adjacency

matrix of G.

Notation 2.2.2. An element v ∈ X(G) is called a vertex and an element e ∈ Y(G) is called

an oriented edge. If the cardinality of S is one, we simply write (v, v′) instead of (v, v′, s).

Definition 2.2.3. (a) For each edge e = (v, v′, s) ∈ Y(G) we call o(e) := v the origin of

e and t(e) := v′ the target of e.

(b) Two vertices v, v′ are called adjacent, if {v, v′} = {o(e), t(e)} for some edge e.

Definition 2.2.4. An edge e with o(e) = t(e) is called a loop. A vertex v with #Nbs(v) = 1

is called terminal.

Definition 2.2.5. Assume G to be a graph.

(a) Let v, v′ ∈ X(G). A path ω from v to v′ is a finite subset {e1, . . . , ek} of Y(G) such

that t(ei) = o(ei+1) for all i = 1, . . . , k − 1 and o(e1) = v, t(ek) = v′.

(b) The length of a path ω is the number of edges contained in it.

(c) The distance from v to v′, denoted d(v, v′), is the minimal length among all paths

from v to v′ (or ∞ if no such path exists).

(d) A path {e1, . . . , ek} from v to v′ without backtracking, i.e., such that for no i we have

ei = ēi−1, is called a geodesic.

Note that the length of a geodesic need not be d(v, v′) but that d(v, v′) is attained for a

geodesic.

Example 2.2.6. Consider the set S = {∗} and the set of vertices

X(G) = {1, 2, ..., 16}.

8



2.2. Notions from graph theory

If the graph G is represented by

?>=<89:;6 GFED@ABC10 GFED@ABC14

?>=<89:;1

���������

❃❃
❃❃

❃❃
❃❃

❃

?>=<89:;4

✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

?>=<89:;2

���������

❃❃
❃❃

❃❃
❃❃

❃
?>=<89:;7 GFED@ABC11 GFED@ABC15

?>=<89:;5 ?>=<89:;9 GFED@ABC13

?>=<89:;3

���������

❃❃
❃❃

❃❃
❃❃

❃

?>=<89:;8 GFED@ABC12 GFED@ABC16 ,

then the set of edges is

{(1, 6), (1, 4), (2, 4), (2, 7), (2, 5), (3, 5), (3, 8), (6, 10), (4, 9),
(7, 11), (5, 9), (8, 12), (10, 14), (11, 15), (9, 13), (12, 16)};

here due to Definition 2.2.1 only one of (v, v′) (or (v′, v)) is written since either both are

elements of Y (G) or none.

A graph G is connected if for any two vertices v, v′ ∈ X(G) there is a path from v to v′. A

cycle of G is a geodesic from some vertex v to itself. Therefore a loop is a cycle of length

one. A graph G is cycle-free if it contains no cycles.

Definition 2.2.7. A graph G is called a tree if it is connected and cycle-free.

If G is a tree, then any two vertices of G are connected by a unique geodesic. Any subgraph

T ⊆ G which is a tree is called subtree. A maximal subtree in a graph G is a subtree which

is maximal under inclusion among all subtrees of G.
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2. Background

Definition 2.2.8. The degree of v ∈ X(G) is

deg(v) := #{e ∈ Y (G) | o(e) = v}.

Thus v is terminal precisely if deg(v) = 1. A graph G is called k-regular if for all vertices

v ∈ X(G) we have deg(v) = k.

A graph G is finite if #X(G) < ∞. Then also #Y(G) < ∞, since deg(v) is finite for all

v ∈ X(G). The diameter of a (finite) graph G is

diam(G) := max
v,v′∈X(G)

d(v, v′).

2.3 The Drinfeld upper half plane

The Drinfeld upper half plane is the set

Ω := P1(C∞) \ P1(K∞)

on which GL2(K∞) acts through fractional linear transformations by

γ〈z〉 := az + b

cz + d
,

where γ = ( a bc d ) ∈ GL2(K∞) and z ∈ Ω. This action is well defined since GL2(K∞)

preserves K∞. We define the boundary of Ω, denoted by ∂Ω, to be P1(K∞).

In order to define the algebra of rigid analytic functions on Ω, we consider the following sets

that form an admissible cover of Ω (cf. [FvdP81, Ch. II] for details). Define the imaginary

absolute value on Ω as the distance from K∞:

|z|i := inf {|z − x| | x ∈ K∞} .
Definition 2.3.1. Let z ∈ Ω and n ∈ N, a basic affinoid is a set of the form

An :=
{
z ∈ Ω| q−n 6 |z|i, |z| 6 qn

}
.

A function f : An → C∞ is holomorphic if it is the uniform limit of rational functions

without poles in An. The collection of such functions is denoted by OΩ(An). With the

norm

‖f‖An := sup {|f(z)| | z ∈ An} ,

the space OΩ(An) is a Banach algebra and OΩ(Ω) := lim←−OΩ(An) is a Fréchet space [FvdP81,

Ch. III].
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2.4. The Bruhat-Tits tree

2.4 The Bruhat-Tits tree

In this section we recall the definition of a graph T called the Bruhat-Tits tree of PGL2(K∞),

which is a basic combinatorial object for the arithmetic of K∞. For more details see [Ser03,

Ch. II].

A lattice in K2
∞ is a free O∞-submodule of rank 2. We say that two lattices L1 and L2 are

homothetic if L1 is a K×
∞-multiple of L2. Homothety is an equivalence relation. The set

of vertices X(T) of T consists of the homothety classes of O∞-lattices. Two vertices are

joined by an edge if and only if they can be represented by lattices L1, L2 such that there

are strict inclusions πL2  L1  L2. The set of oriented edges of T is denoted by Y (T).

Thus the vertices and edges of T may be described as follows:

X(T) = { Vertices of T } =
{

Classes [L1] of O∞-lattices L1

in K2
∞

}
,

Y (T) = { Oriented edges of T } =





Ordered pairs ([L1], [L2]) with representatives
L1, L2 such that L1 ⊂ L2 and
with πL2  L1  L2



 .

It is well known that the graph T is a connected regular tree of degree q + 1, where q is

the cardinality of the residue field of K∞ [Ser03, Ch. II. Thm. 1 ].

The group GL2(K∞) acts naturally on lattice classes by left multiplication (g, [L]) 7→ [gL].

This induces a transitive action on the vertices of T which preserves the incidence relations

πL2  L1  L2. In this way one obtain an action of GL2(K∞) on T.

For i ∈ Z let vi be the vertex [πiO∞ ⊕ O∞] of T. Since the vertex v0 = [O∞ ⊕ O∞] has

stabilizer K×
∞GL2(O∞) in GL2(K∞), we have the following

Proposition 2.4.1. There is a canonical bijection

GL2(K∞)/K×
∞GL2(O∞) −→ X(T)

γ ·K×
∞GL2(O∞) 7−→ γ[O∞ ⊕ O∞],

equivariant for the left action of GL2(K∞).
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2. Background

Definition 2.4.2. We define the Iwahori subgroup of GL2(K∞) as

I :=

{(
a b

c d

)
∈ GL2(O∞) such that c ≡ 0(mod π)

}
. (2.1)

Similarly, we label the edges ei (i ∈ Z) such that t(ei) = o(ei+1) = vi. Each edge is taken

by GL2(K∞) to e0 = (v−1, v0), so it follows that Y (T) ∼= GL2(K∞)/StabGL2(K∞)(e0). A

simple computation shows StabGL2(K∞)(e0) = K×
∞I.

Proposition 2.4.3. There is a canonical bijection

GL2(K∞)/K×
∞I −→ Y (T)

γ ·K×
∞I 7−→ (γ[π−1O∞ ⊕ O∞], γ[O∞ ⊕ O∞]),

equivariant for the left action of GL2(K∞).

From now on given a γ ∈ GL2(K∞) we denote its class in GL2(K∞)/K×
∞GL2(O∞) as

[γ]0 and its class in GL2(K∞)/K×
∞I as [γ]1. We may implicitly use by abuse of nota-

tion the bijections above and understand [γ]0 and [γ]1 as vertex and edge respectively.

The vertex v0 = [O∞ ⊕ O∞] is called the standard vertex, analogously the edge e0 =

([π−1O∞ ⊕O∞], [O∞ ⊕ O∞]) is called the standard edge.

The next two lemmas will help us to identify the vertices of the tree with explicitly given

matrices. Furthermore, they will show which matrices correspond to adjacent vertices in

the tree.

Lemma 2.4.4. Every class of GL2(K∞)/K×
∞GL2(O∞) has a unique representative of the

form (
πn u

0 1

)

with n ∈ Z and u ∈ K∞/π
nO∞.

One can find a constructive proof in [But12, Lemma 2.7]. We call this representative the

vertex normal form. In what follows we will denote the vertex represented by the matrix

in normal form
(
πk u
0 1

)
as [k, u].

12



2.5. Ends of the tree

Lemma 2.4.5. Consider the two matrices in vertex normal form

A :=

(
πn u

0 1

)
, B :=

(
πn+1 u+ aπn

0 1

)

with n ∈ Z, a ∈ Fq, u ∈ K∞/π
nO∞ and let L1 and L2 be the two lattices

L1 := AO 2
∞, L2 := BO 2

∞.

Then L1 ⊃ L2 and L1/L2
∼= Fq.

Recall that T is a regular tree of degree q+1. The previous lemma only displays q vertices

adjacent to [L1]. The remaining one is the class of
(
πn−1 u mod πn−1O∞

0 1

)
O 2

∞.

The subgroup I is not normal in GL2(K∞). Denoting by N the normalizer of I in

GL2(K∞), we have that N/IK∞ ∼= Z/2. As one can easily see, δ := ( 0 1
π 0 ) is a repre-

sentative of the non-trivial quotient class of N/I. Let γ ∈ GL2(K∞) such that [γ]1 = e,

then multiplication from the right with δ corresponds to the map

Y (T) −→ Y (T)

e 7−→ ē

that is [γδ]1 = ē.

There are two canonical projection maps from X(T) × X(T) × S to X(T), which induce

two maps from Y (T) to X(T). We choose the first projection map that associates to each

e its origin o(e), i.e.,

pr1 : Y (T) −→ X(T) (2.2)

e = (v, v′) 7−→ o(e) = v . (2.3)

This map is also compatible with multiplication by δ that is, pr1(δe) = o(δe) = t(e).

2.5 Ends of the tree

Before relating the Bruhat-Tits tree to the Drinfeld upper half plane, we need to define

the ends of the tree.

Let {e1, e2} the standard basis of K2
∞ as a column vector.
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2. Background

Definition 2.5.1. Let ([L0], [L1], ...) and ([L′
0], [L

′
1], ...) be two non-backtracking infinite

sequences of adjacent vertices. We say that they are equivalent if [Ln] = [L′
n+m] for some

m ∈ Z and all n large enough. An end of T is an equivalence class of such sequences. The

collection of ends of T is denoted by Ends(T).

From the elementary divisor theorem we obtain the following. (cf. [Bos09, Ch. 6] for

details).

Proposition 2.5.2. Let L and L′ be two lattices in K2
∞. Then there exists a O∞-basis

{e1, e2} of L and integers a, b such that {πae1, πbe2} is a O∞-basis of L′. The numbers a

and b are independent of the choice of the basis of L and L′.

Remark 2.5.3. i) If L′ ⊂ L then the numbers a and b from the previous proposition

are positive. Furthermore, we can find in the class [L′] a lattice L′′, namely L′′ =

L′π−min{a,b} such that if {f1, f2} is a basis of L then L′′ is generated by one of the fi

and the other one multiplied by a positive power of π.

ii) Given an end s there is a unique representative sequence starting with the lattice

L0 = O∞e1 ⊕ O∞e2, were ei is the standard basis of K2
∞.

Lemma 2.5.4. There is a canonical GL2(K∞)-equivariant bijection

φ : Ends(T)→ P1(K∞).

Proof. Given s ∈ Ends(T) represented by the sequence ([L0], [L1], ...) we can construct a

representing sequence of lattices

L0 ⊃ L1 ⊃ L2 ⊃ ...

such that Ln/Ln+1
∼= O∞/πO∞ for all n and πL0 does not contain any of the Ln’s, since

there is no backtracking. Therefore ∩nLn is a O∞-submodule of K2
∞ spanning a K∞-line.

For any n, by the Remark 2.5.3, there exists a basis {xn, yn} of L0 such that {xn, πnyn}
is a basis of Ln, analogously for Ln+1. Since Ln+1 ⊂ Ln we can write xn+1 in terms of

the basis of Ln, that is xn+1 = xnan + πnbnyn for some an, bn ∈ O∞ and an 6∈ πO∞.

Then xn+1 − xnan = πnbnyn and since an 6∈ πO∞ we may replace xn+1 by anxn+1 to get

xn+1 ≡ xn (mod πn). Continuing in this way, we can construct a Cauchy sequence (xn)n>1
which converges to a nonzero element x = ( x1x2 ) of ∩nLn ⊂ K2

∞.
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2.5. Ends of the tree

The bijection

φ : Ends(T)→ P(K2
∞) ∼= P1(K∞)

〈e1x1 + e2x2〉 7→ (x1 : x2)

is established by associating to the end s = ([Ln]) the line in K
2
∞ generated by ∩nLn, that

is φ(s) = O∞(e1x1 + e2x2), where {e1, e2} is the standard basis of K2
∞ as column vectors.

The map φ is surjective. Let l be a line in K2
∞ generated by x = ( x1x2 ), that is l =

O∞(x1e1 + x2e2). Define the sequence of lattices Ln = O∞x ⊕ πnyO∞ with y a vector in

K2
∞ linearly independent of x. Let s be ([Ln])n>1, clearly Ln+1 ⊂ Ln and φ(s) = l.

The map φ is injective. Let s and s′ be two ends and let {Ln} and {L′
n} be two sequences

of lattices representing s and s′, respectively, whose intersection generate the same line.

Then up to multiplication by an scalar ∩Ln = ∩L′
n = O∞x for some x ∈ K2

∞. Eliminating,

if necessary, the first terms of the sequences, one can assume that L0 = O∞x ⊕ O∞y and

L′
0 = O∞x⊕O∞y

′ . Since x ∈ Ln for all n and [L0 : Ln] = qn we have that Ln is generated

by {x, πny} and similarly L′
n is generated by {x, πny′}. Since πky′ = ax+ by for a, b ∈ O∞

for k large enough one finds that L′
k+m is generated by x and πmbw and therefore coincides

with Lj+m for some j, that is the ends ([Ln]) and ([L′
n]) are equal, hence φ is injective.

Finally, the map φ is equivariant. If ∩nLn is generated by the vector ( x1x2 ), for a γ = ( a bc d ) ∈
GL2(K∞) the generator of ∩γLn is γ ( x1x2 ) =

(
ax1+bx2
cx1+dx2

)
.

On the other hand GL2(K∞) acts on P1(K∞) by Möbius transformations, that is

γ(x1 : x2) = (ax1 + bx2 : cx1 + dx2) and the equivariance follows.

Remark 2.5.5. In [GR96] the elements of K2
∞ are taken as row vectors and the action

of GL2(K∞) on the lattices is given by right multiplication Lγ−1. So if ∩Ln is gener-

ated by the row vector (x1, x2) and γ = ( a bc d ) ∈ GL2(K∞) then ∩γLn is generated by

(x1d− x2c,−x1b+ x2a). Which does not correspond to γ(x1 : x2) = (ax1+bx2 : cx1+dx2).

In order to make the map φ compatible with the action of GL2(K∞), it needs to be com-

posed with the canonical map (x1 : x2) 7→ (−x2 : x1), that is the Möbius transformation

z 7→ −z−1 on P1(K∞) (cf. [GR96, §1.3.2]).

From the bijection in Lemma 2.5.4, we have in particular that

• the image of the semi-line whose vertices are represented by {[k, 0]}k<0 is
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2. Background

∞ = (1 : 0) ∈ P1(K∞). To see this note that the line represented by {[k, 0]}k<0 is

in the class of the sequence of lattices Lk whose basis are the columns of the matrix(
0 1
πk 0

)
.

• the semi-line whose vertices are represented by {[k, 0]}k>0 goes to

0 = (0 : 1) ∈ P1(K∞).

We will denote by A(0,∞) the “line” whose vertices are represented by {[k, 0]}k∈Z.

From the normalization the edge e0 may be identified with the compact open set Ue0 =

O∞ ⊂ P1(K∞) by considering the ends passing through e0. These are represented by

sequences of lattices whose basis are the columns of the matrix ( π
n u
0 1 ) with n > 1 and

u ∈ K∞/π
nO∞ with positive valuation. This extends by equivariance to an assignment of

a compact open subset of P1(K∞) to each oriented edge of the tree by

Uγe0 := γ〈O∞〉 ⊂ P1(K∞) ∀γ ∈ GL2(K∞). (2.4)

Since the action of GL2(K∞) on the disks of P1(K∞) is transitive, every disk of P1(K∞) is

the image of an edge on Y (T). We observe some essential properties of the assignment:

i) Given any oriented edge e, then for the opposite edge ē, the associated open set

satisfies Uē = P
1(K∞)− Ue.

ii) For any vertex v the set {Ue}, where e runs over all edges e with initial vertex v,

form a disjoint covering of P1(K∞).

iii) The sets {Ue} form a basis of compact open subsets of P1(K∞).

Given two vertices v and v′ on the tree, there is a unique oriented path ω from v to v′ joining

them. The open set associated to these two vertices is the union of all ends containing ω.

Given an edge e and a vertex v, we say that e points away from v if the unique path with

origin v and containing o(e) and t(e) contains e (and not ē).

Remark 2.5.6. The end ∞ defines an “orientation” of the tree T, that is a decomposition

of Y (T) = Y +(T) ∪̇ Y −(T), where an edge e = (v1, v2) belongs to Y +(T) if it points to ∞
and it is called positive and negative (e ∈ Y −(T)) otherwise. From this we get a section
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2.6. The reduction map

X(T)
∼=−→ Y +(T) →֒ Y (T)

v 7−→ e

such that o(e) = v and e is positive.

Note that multiplication by δ allows us to change from Y +(T) to Y −(T) and the other way

around. In terms of matrices, we have that the map e 7→ ē is given by [g]1 7→ [gδ]1 for a

g ∈ GL2(K∞). Then each edge e of Y (T) is uniquely represented by either
(
πk u
0 1

)
(if e is

positive) or
(
πk u
0 1

)
( 0 1
π 0 ) (if e is negative).

2.6 The reduction map

As constructed so far, the Bruhat-Tits tree T is a combinatorial object. Next we will

associate to it a geometrical object. For this, we identify each edge with a copy of the

real unit interval endowed with the usual topology. Then we glue edges according to the

relations on T using the quotient topology and we denote by T(R) this new tree and it is

called the geometrical realization of T . Let e be an edge of T(R) joining the vertices [L0]

and [L1], any point on e is determined by its barycentric coordinates, i.e., for t ∈ [0, 1] we

write x = (1 − t)[L0] + t[L1] to indicate that x is the point “at distance t from the vertex

[L0] in the direction of [L1]”. Denote by T(Q) the Q-points of the geometrical realization

of T defined as t ∈ [0, 1] ∩Q and also T(Z) to be the vertices of T.

The geometric realization of the tree T parametrizes norms on the two dimensional vector

space K2
∞, as is stated by Goldman and Iwahori [GI63], which allows us to define the

reduction map.

Definition 2.6.1. A real non-archimedean norm on K2
∞ is a map ν : K2

∞ → R which

satisfies

1. ν(x) > 0 and ν(x) = 0⇔ x = 0,

2. ν(ax) = |a|ν(x) for a ∈ K∞,

3. ν(x+ y) 6 max {ν(x), ν(y)} .
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2. Background

Given a lattice L on K2
∞, one can associate the norm

νL(x) := inf
{
|a| | a ∈ K×

∞, x ∈ aL
}
.

We say that two norms ν and ν ′ are similar if there is a constant t ∈ R such that ν = tν ′.

Moreover, the group GL2(K∞) acts on the space of norms by (γν)(x) := ν(γx) for all

γ ∈ GL2(K∞) (cf. [GR96, §1.4.2]).

Theorem 2.6.2 (Goldman-Iwahori). There is a canonical bijection compatible with the

right action of GL2(K∞)

{
Similarity classes of real non-archimedean norms ν on K2

∞
}
←→ T(R).

In particular,

{Classes of norms whose unit ball is an O∞-lattice} ←→ T(Z).

For z ∈ Ω we define the norm νz on K
2
∞ as follows:

νz : K
2
∞ −→ R≥0

(u, v) 7−→ νz((u, v)) := |uz + v|

and the reduction map is defined by

λ : Ω −→ T(R)

z 7−→ [νz].

Since |C×
∞| = qQ, it is not difficult to prove the following (cf. [Gek99]):

Proposition 2.6.3. One has a surjection λ : Ω։ T(Q).

The previous proposition yields the following well known properties of the reduction map:

• λ−1(vertex) = P1(C×
∞)− (q + 1) disjoint balls, in particular,

• λ−1(v0) = {z ∈ C×
∞ | |z| ≤ 1, |z − c| ≥ 1 ∀c ∈ Fq} .

We will refer to last set as the standard affinoid.

Remark 2.6.4. From the GL2(K∞)-equivariance of the reduction map we can in principle

find the fiber of any vertex and any edge on the tree from λ−1(v0) and λ
−1(e0).
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2.7. Drinfeld modular curves

2.7 Drinfeld modular curves

An arithmetic subgroup Γ of GL2(K∞) is a subgroup commensurable with Γ(1) := GL2(A)

(cf. [Gek97, §3.1]), i.e., such that Γ ∩ Γ(1) has finite index in both Γ and Γ(1). The main

examples are the principal congruence subgroups defined as follows.

Definition 2.7.1. Let N be any monic polynomial in A = Fq[T ] and consider the set

Γ(N) =

{
γ ∈ GL2(A)

∣∣∣∣ γ ≡
(

1 0

0 1

)
(mod N)

}
.

A subgroup of GL2(A) that contains Γ(N) is called a congruence subgroup. Special cases

are

Γ0(N) =

{
γ ∈ GL2(A)

∣∣∣∣ γ ≡
(
∗ ∗
0 ∗

)
(mod N)

}

and

Γ1(N) =

{
γ ∈ GL2(A)

∣∣∣∣ γ ≡
(

1 ∗
0 1

)
(mod N)

}
.

Most of the properties stated in this chapter for arithmetic subgroups Γ are proved for

Γ = Γ(1) in [Ser03] or in [Non01], and they can be proved for general arithmetic subgroups

as defined above.

Let Γ be a congruence subgroup, it acts on Ω by fractional linear transformations with

finite stabilizers. The quotient Γ \ Ω is a rigid analytic space over K∞. Moreover, it is

smooth of dimension one. In fact, the analytic curve Γ \ Ω can be shown to arise from an

algebraic curve (cf. [Gek86, Ch. V]).

Theorem 2.7.2 (Drinfeld). There exists a smooth irreducible affine algebraic curve YΓ

defined over C∞ such that Γ\Ω and the underlying analytic space are canonically isomorphic

as analytic spaces over C∞.

The curve YΓ can be compactified by adding the finite set of cusps Γ \ P1(K). We denote

this compactification by XΓ, that is

XΓ = Γ \ Ω ∪̇ Γ \ P1(K).

The curves XΓ will be referred to as Drinfeld modular curves. If Γ = Γ0(N) we write

X0(N) instead of XΓ.
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2. Background

2.8 The quotient graph

As already mentioned, the group GL2(K∞) acts on the tree. Since GL2(A) is discrete in

GL2(K∞), the stabilizers in GL2(A) of edges and vertices are finite. As is proved in [Ser03],

the quotient GL2(A) \ T is a “half line”. In particular, it is isomorphic to the subtree of T

whose vertices are represented by {[k, 0]}k>0.

As proved in [Non01] for Γ a congruence subgroup, the quotient Γ \ T is a connected

graph which is the union of a finite graph with a finite number of “half lines” attached to

it. These are in one-to-one correspondence with the cusps of the corresponding Drinfeld

modular curve and will be henceforth called cusps.

For a congruence subgroup Γ the quotient graph Γ \ T is a “ramified covering”

π : Γ \ T −→ GL2(A) \ T.

Given any edge e ∈ T, we will denote by ẽ its class on the quotient graph, analogously for

any vertex v its class in the quotient is denoted by ṽ. Also we say that a vertex in Γ \ T
has level i if its projection under the map π is Λi.

Observe that the figure below shows the quotient graph for Γ0(N) with N = T 3 over F2.
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2.9. Harmonic cocycles

is a covering of

Λ0 Λ1 Λ2 Λ3 · · ·

where Λn = [πnO∞ ⊕ O∞].

Denote by (Γ \ T)◦ the subgraph of Γ \ T obtained by removing all the edges starting at

level deg(N) and the vertices starting at level deg(N) + 1, (we know (cf. [Non01]) that at

level deg(N) there is no more identifications between edges).

2.9 Harmonic cocycles

In this section Γ will be a congruence subgroup.

Definition 2.9.1. Let G be an abelian group. A G-valued harmonic cocycle on the tree

T is a map ϕ : X(T) −→ G that satisfies

i) ϕ(ē) = −ϕ(e) for all e ∈ Y (T),

ii)
∑

t(e)=v ϕ(e) = 0 for all v ∈ X(T).

The group of harmonic cocycles on T with values in G is denoted by H(T, G). We denote

by H !(T, G)
Γ the subspace of H(T, G) that also satisfies the following conditions

iii) ϕ(γe) = ϕ(e) for all γ ∈ Γ,

iv) ϕ has compact support modulo Γ, i.e. modulo Γ, the set of edges were ϕ takes

non-zero values is finite.

We are interested in Z-valued harmonic cocycles. From the property iii) the elements of

H !(T,Z)
Γ may be regarded as invariant functions on the oriented edges of the quotient

graph Γ \ T. Let us denote by Γ̃ := Γ/(Γ∩Z(K∞)) and Γ̃t(ẽ) := StabΓ̃(t(e)) for some lift e

to T of ẽ, similarly we define Γ̃ẽ and the quantity m(ẽ) := [Γ̃t(ẽ) : Γ̃ẽ]. The condition ii) is

equivalent to the following sum condition (with multiplicities that count how many edges

of T are identified modulo Γ):

∑

t(ẽ)=ṽ

m(ẽ)ϕ(ẽ) = 0 for all ṽ ∈ X(Γ \ T). (2.5)
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Before constructing explicitly the space of harmonic cocycles, we need to recall definitions

of some further groups. First the maximal torsion-free abelian quotient of Γ, namely

Γ̄ := Γab/tor(Γab). Also Γf will denote the normal subgroup generated by elements of finite

order. This two groups are related by the following lemma, which holds for any congruence

subgroup [Non01].

Lemma 2.9.2. The groups Γ̄ and (Γ/Γf)
ab are isomorphic.

In [Ser03, Ch. I, Thm. 13] is proved that the group Γ/Γf is canonically identified with

the fundamental group of the graph Γ \ T, so Γ/Γf is free (cf. [Ser03, p. 43]). The group

Γ̄ is isomorphic to the homotopy group of the quotient graph, indeed we have the following:

Lemma 2.9.3. Let v be a vertex of T, there exists an isomorphism

i : Γ̄ → H1(Γ \ T,Z)
α 7−→ ψα,v

where ψα,v is given by

ψα,v(ẽ) := # {e ∈ (v, αv)| e ≡ ẽ (mod Γ)} −# {e ∈ (v, αv)| − e ≡ ẽ (mod Γ)}

and this map is independent of the vertex v, where (v, αv) denotes the path without back-

tracking from v to αv.

For a proof of this lemma see [Non01, Thm. 2.34]. Here we give a short explanation of the

meaning of the map ψα,v. Given any α ∈ Γ, the path on the tree T that goes from v to

αv is non back-tracking. However, its projection to the quotient graph is a cycle which in

general is not reduced. Given any ẽ in the cycle determined by v and αv, there are many

edges e ∈ T mapping to ẽ. So the map ψα,v counts how many edges of the path v, αv in T

have the image in the cycle.

Lemma 2.9.4. There exists an injective homomorphism

ι : H1(Γ \ T,Z) → H !(T,Z)
Γ

ψ 7−→ ϕ

defined by ϕ(e) := n(e)ψ(ẽ), where n(e) := #Z(Γ)−1#StabΓ(e).
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Finally, the following lemma connects the groups Γ̄ and H !(T,Z)
Γ.

Lemma 2.9.5. There is a canonical homomorphism

j : Γ̄ → H !(T,Z)
Γ

α 7−→ ϕα,v

where ϕα(e) := ϕα,v(e) =
1

#(Z∩Γ)
∑

γ∈Γ δ(e, α, v, γ) with v any fixed vertex and the function

δ(e, α, v, γ) given by:

δ(e, α, γ, v) =





1 if γ(e) ∈ (v, αv),

−1 if γ(e) ∈ (αv, v),

0 otherwise.

This homomorphism is independent of the choice of the vertex v.

The map j defined above is actually the composition of i and ι, so it is injective. We show

here the surjectivity of j (cf. [Non01, Cor. 2.37]) which will give us a way to construct

the space of harmonic cocycles. Here we will use the homology of the graph to construct

a basis of H !(T,Z)
Γ and then we get the surjectivity.

Let T be the maximal tree1 in (Γ \T)◦ and {ẽ1, ẽ2, ..., ẽg} be a set of representatives of the

edges of the tree (Γ \T)◦−T . It is proved in [Non01, Cor. 2.38] that the set {ẽ1, ẽ2, ..., ẽg}
consist of edges attached to vertices of level 0 of degree q+1 (cf. §.2.8 for the definition of

level).

Let ṽi = o(ẽi), w̃i = t(ẽi) the origin and target of ẽi, respectively. Then there exists a

unique geodesic c̃
′

i in the tree T joining w̃i and ṽi. In this way c̃
′

i gives rise to a closed path

ci in Γ \ T by composing ẽi and c̃
′

i.

Consider

ϕi : Y (Γ \ T) −→ T

defined as follows

1It exists since (Γ \ T)◦ is finite and connected.
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ϕi(ẽ) =





n(e) if ẽ appears in c̃i,

−n(e) if ¯̃e appears in c̃i,

0 otherwise.

From (2.5), we see that actually ϕi lifts to a function on H !(T,Z)
Γ and form a basis of

H !(T,Z)
Γ. Finally let ci = (ei,0, ei,1, ...ei,l) be a lift of c̃i, then there is a αi ∈ Γ such that

αio(ei,0) = t(ei,l) so we can find a α ∈ Γ such that j(α) ∈ H !(T,Z)
Γ.

In summary, to construct the space of harmonic cocycles for the graph Γ \ T, we need to

find the maximal subtree T of (Γ \ T)◦, also called maximal spanning tree. For this we

use the algorithm given in [Non01, §3] to find a set of representatives {ẽ1, ẽ2, ..., ẽg} of the
edges of the tree (Γ \ T)◦ − T . Finally we define for each i the ϕi as above.

2.10 Theta functions for arithmetic groups

Let Γ be an arithmetic subgroup of GL2(K∞).

Definition 2.10.1. A holomorphic theta function for Γ ⊂ GL2(K∞) is an invertible rigid

analytic function (u : Ω −→ C×
∞) ∈ OΩ(Ω)

× such that for each γ ∈ Γ, u satisfies the

functional equation

u(γz) = cu(γ)u(z)

for some constant cu(γ) ∈ C×
∞ independently of z.

The map cu : γ 7→ cu(γ) is a homomorphism from Γ to C×
∞ called the multiplier of u.

We denote by Θh(Γ) the space of holomorphic theta functions for Γ.

In [GR96, §5], the authors give a way to construct a holomorphic theta function for Γ as

follows. Let ω be fixed element of Ω and α ∈ Γ, put

θα(ω, z) :=
∏

γ∈Γ̃

z − γω
z − αγω . (2.6)

Theorem 2.10.2 ([GR96, Thm. 5.4.1]). The product θα(ω, z) converges to a holomorphic

theta function for Γ on Ω. The value of cα(γ) :=
θα(ω,γz)
θα(ω,z)

induces a group homomorphism

c̄ : Γ̄ −→ Hom(Γ̄, C×
∞) by α 7→ cα. Moreover, the map Γ̄× Γ̄ −→ C×

∞ defined by (α, β) 7→
cα(β) is a symmetric bilinear pairing.
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Corollary 2.10.3 ([GR96, Cor. 5.4.12]). The constant cα(β) lies in K
×
∞ ⊂ C×

∞.

In the next chapter we will see another way to construct theta functions by means of

certain multiplicative integrals.

2.10.1 Theta functions and harmonic cocycles

In this subsection we relate the theta function for an arithmetic group Γ and the Z-valued

harmonic cocycles by means of the following result due (mostly) to Van der Put [VdP82].

Theorem 2.10.4. The map

r : OΩ(Ω)
× −→ H !(T,Z), given by r(f)(e) := logq

‖f‖t(e)
‖f‖o(e)

is a continuous surjective group homomorphism with kernel C×
∞ where ‖·‖v is the spectral

norm on OΩ(λ
−1(v)) defined by

‖f‖v := sup
{
|f(z)| | z ∈ λ−1(v)

}

for v ∈ X(T).

The next result is a refinement of the previous one, since it relates theta functions to

Γ-invariant harmonic cocycles (cf. [GR96, Thm. 5.6.1]).

Theorem 2.10.5. Let α ∈ Γ be given then r(θα) = ϕα.

The map r yields a map

r̄ : Θh(Γ)/C
×
∞ −→ H !(T,Z)

Γ.

Let further

ū : Γ̄ −→ Θh(Γ)/C
×
∞

be the map induced from α 7→ θα, then we have the following:

Theorem 2.10.6 ([GR96, §6]). For α ∈ Γ with class ᾱ in Γ̄ we have that r̄(θα) = j(ᾱ).

In other words, the following diagram is commutative

Γ̄

ū
��

j

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙

Θh(Γ)/C
×
∞

r̄
// H !(T,Z)

Γ.

(2.7)
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From the theorem we see that we have two different constructions of Γ-invariant Z-valued

harmonic cocycles from α ∈ Γ:

i) using the function ϕα given in Lemma 2.9.5 and

ii) by evaluating the map r̄ in θα.

From now by abuse on notation, we will write r instead of r̄.

2.11 Hecke operators

There exist Hecke operators acting on each of the groups that appear in (2.7). For the

definition of the operators on Γ̄ and Θ(Γ)/C×
∞ see [GR96, §9.3], we will give an explicit

description of the operator on H !(T,Z)
Γ for the case Γ = Γ0(N).

Let m be a non zero ideal of Fq[T ]. We recall from the definition of the Bruhat-Tits tree

that the edges are given by classes of GL2(K∞)/K×
∞I. Hence functions on Y (T) can be

seen as functions on GL2(K∞) right invariant under I. For ϕ on GL2(K∞) we put

Tmϕ(α) :=
∑

γ∈Rm

ϕ(γα)

where

Rm =

{(
a b
c d

)
∈ GL2(A)

∣∣∣∣ a, d monic (ad) = m, gcd(a,N) = 1, deg b < deg d

}
.

(2.8)

The following properties of Tm are standard:

i) Tm : ϕ 7→ Tmϕ maps H !(T,Z)
Γ into itself,

ii) all Tm commute,

iii) if m and n are coprime, then Tmn = Tm ◦ Tn,

iv) if gcd(p, N) = 1 then Tpn+1 = Tpn ◦ Tp − qdeg pTpn−1 for p a prime ideal of A,
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v) if gcd(m, N) = 1 then Tm is hermitian with respect to the Peterson inner product

defined as follows:

(ϕ1, ϕ2)(e) =
∑

e∈Γ\T
ϕ1(e)ϕ2(e).

Hecke operators Tm with gcd(m, N) = 1 are called unramified. As in the classical case we

can also construct the space of new and old forms. Indeed suppose that M divides N . For

each monic divisor a of N/M we have an embedding ia,M : H !(T,Z)
Γ0(M) −→ H !(T,Z)

Γ0(N)

given by

ia,M(ϕ)(g) = ϕ(

(
a 0
0 1

)
g).

We set then (H !(T,Z)
Γ0(N)⊗Q)new to be the orthogonal complement in H !(T,Z)

Γ0(N)⊗Q
with respect to the Perterson inner product to the images of all the ia,M ⊗ Q, where M
runs through the proper divisors of N and through the divisors of N/M . We further put

Hnew
! (T,Z)Γ0(N) = H !(T,Z)

Γ0(N) ∩ (H !(T,Z)
Γ0(N) ⊗Q)new.

2.12 Application to the Shimura-Taniyama-Weil uniformization

In order to establish the analog of the classical Shimura-Taniyama-Weil, we need to explain

how Q-harmonic cocycles may be regarded as automorphic forms of a certain type. For a

deeper discussion of automorphic forms we refer the reader to [Gel75].

In what follows, A will be the adèle ring of K with ring of integers O and I the idèle group.

Having fixed the place ∞ of K, these rings decompose into a “finite” and an “infinite”

part
A = Af ×K∞
O = Of × O∞
I = If ×K×

∞.

We define an automorphic cusp form for an open subgroup K of GL2(O) to be a C-valued

function ϕ on Y (K) := GL2(K) \GL2(A)/K · Z(K∞).

Let S be a set of representatives for GL2(K) \GL2(Af)/Kf and define for x ∈ S

Γx := GL2(K) ∩ xKf x
−1.
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In [GR96, §4] the following isomorphism is shown:

GL2(K) \GL2(A)/Kf × Z(K∞) · I ∼=−→ ⊔
x∈S Γx \GL2(K∞)/Z(K∞) · I

=
⊔
x∈SX(Γx \ T).

We have the following theorem.

Theorem 2.12.1 (Drinfeld). Let K be an open subgroup of GL2(O) of the form K =

(Kf)×I and let F be a field of characteristic zero. Under the previous bijection the module

of harmonic cochains ⊕

x∈S
H !(T, F )

Γx

corresponds to the space Wsp(K, F ) of F -valued cuspidal automorphic forms ϕ on

G(K) \GL2(A)/Kf × Z(K∞) · I that transform like πsp under GL2(K∞).

Here πsp is the so-called special representation of GL2(K∞), i.e., the irreducible represen-

tation of GL2(K∞) on the space of locally constant F -valued functions on P1(K∞). For

more details see [GR96, §4.7].

So the space of harmonic cocycles has a natural interpretation as a space of automorphic

functions in the sense of Jacquet-Langlands [JL70].

Let E be an elliptic curve defined over K = Fq(T ) with conductor N∞, where N is an

ideal of A and assume E to have split multiplicative reduction at∞. By combining results

of Jacquet-Langlands [JL70], E corresponds to an automorphic eigenform ϕE in the new

part of H !(T,Z)
Γ0(N) with rational integral eigenvalues. The elliptic curve E is an isogeny

factor of the new part of the Jacobian of the Drinfeld modular curve X0(N). This is the

content of [GR96, §8.3].

Applying well known facts from the theory of automorphic forms there are canonical bi-

jections between the following three sets

i) K-isogeny classes of elliptic curves with conductor N∞,

ii) one-dimensional isogeny factors of Jnew0 (N),

iii) normalized Hecke eigenforms ϕ in Hnew
! (T,Z)Γ0(N) with rational eigenvalues.
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Thus one would like to have a procedure to construct an elliptic curve within the isogeny

class that corresponds to the newform ϕ.

Let ϕ ∈ Hnew
! (T, G)Γ0(N) be a Hecke eigenform with rational eigenvalues. We will construct

the elliptic curve Eϕ associated to it. By means of (2.7) we identify H !(T, G)
Γ0(N) with Γ̄.

Proposition 2.12.2 ([Gek95, Thm. 3.2]). Let ϕ ∈ j(Γ) be an harmonic cocycle, regarded

as the class of some element, also denoted by ϕ, of Γ. Put ∆ ⊂ K×
∞ for the subgroup

{cϕ(α)|α ∈ Γ} of K×
∞, where cϕ(α) is the multiplier associated to the theta function of Γ.

Then there exists q ∈ K×
∞ such that |q| < 1 and qZ = ∆.

For general A, the conclusion of Proposition 2.12.2 is that there exists q ∈ K×
∞ with |q| < 1

such that ∆ ⊇ qZ and the incluision is of finite index (cf. [GR96, Prop 9.5.1]).

Then the elliptic curve Eϕ associated with an automorphic Hecke eigenform, can be ana-

lytically recovered as a Tate curve (cf. Ch. 5, §5.5 for a definition) as Ean
ϕ (C∞) = C×

∞/q
Z.

It is shown in [Roq70, §3] that Eϕ may be described by means of an analytic equation

defined over a finite extension of K. However, this is not enough to recognize the isogeny

class of the elliptic curve Eϕ.

The aim of this thesis is calculate by means of a certain multiplicative integral the Tate

period q and then using the analytic equation of the Tate curve and an appropriate model

of an elliptic curve that by means of change of variables allows us to find the algebraic

equation of the elliptic curve Eϕ over K.
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3. Integration, Theta function and

uniformizations

3.1 Integration

As described in the previous chapter, Gekeler and Reversat develop in [GR96] the theory

of theta functions to construct an explicit analytic parametrization of an elliptic curve with

semi-stable reduction at the place ∞. However, their construction of the theta function

requires to compute the infinite product (2.6), which makes it computationally hard to

find the Tate parameter. In [Lon02], Longhi defines a multiplicative integral over P1(K∞)

which is a multiplicative version of Teiltebaum’s Poisson formula [Tei91], and uses this to

construct a theta function in a different way as the one of Gekeler-Reversat. Around the

same time Pal gives a similar construction in [Pál06]. In this section we briefly recall the

main facts of the machinery of integration along the lines of Longhi [Lon02].

Let X be a topological space such that its compact open subsets form a basis for the

topology.

Definition 3.1.1. A Z-valued function µ on compact-open subsets of X is a distribution

on X if µ(X) = 0 and if it is finitely additive, i.e., if, whenever A and B are disjoint

compact open sets of X , one has µ(A ∪ B) = µ(A) + µ(B). We denote the space of

Z-valued distributions by M(X,Z).

Definition 3.1.2. A measure on X is a bounded distribution, i.e., a distribution µ for

which there is a constant C satisfying |µ(U)| < C for all compact open U ⊂ X . We denote

the space of Z-valued measures on X by M0(X,Z).
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From now on, we assume that X is compact, so in particular Z-valued distributions on X

are measures.

Definition 3.1.3. Given a continuous function f : X → C×
∞, its multiplicative integral

with respect to the measure µ ∈M0(X,Z) is

∫
×
X

f(t) dµ(t) := lim−→
α

∏

U∈Cα

f(u)µ(U) (3.1)

where {Cα}α is the direct system of finite covers of X by compact open subsets U and u

is an arbitrary point in U.

Under the crucial assumption that X is compact, we have

Proposition 3.1.4 ([Lon02, Prop. 5]). The limit in (3.1) exists and is independent of the

choice of the u’s. Furthermore

∫
×
X

dµ : C(X,C×
∞)→ C×

∞ (3.2)

is a continuous homomorphism, where C(X,C×
∞) is the set of continuous functions from

C×
∞ to X.

3.1.1 Measures and harmonic cocycles

We know from Lemma 2.5.4 that the set of ends of the tree T is in 1-1 correspondence with

P1(K∞).

Proposition 3.1.5. The map

M0(X,Z) −→ H(T,Z)

µ 7−→ (e 7→ µ(Ue))

is an isomorphism of Z-modules.

Proof. Let e be an oriented edge of the tree T and let the open subset Ue of P1(K∞) be

defined as in Section 2.5. For every open compact subset U of P1(K∞) there is a finite set

YU of oriented edges such that U =
⋃̇
e∈YUUe. So, a ϕ in H(T,Z) defines a finite additive

measure µϕ ∈M0(X,Z) by putting µϕ(U) =
∑

e∈Y ϕ(e).
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Conversely given a Z-valued measure µ ∈ M0(X,Z) one defines the harmonic cocycle

ϕµ(e) := µ(Ue). From Ue
⋃̇
Ue = P

1(K∞) and µ(P1(K∞)) = 0 it follows that ϕ(e) = −ϕ(e).
Let now v be a vertex in T, then P1(K∞) is the disjoint union of Ue’s, where the union is

taken over the oriented edges starting at v. Again from the fact that µ(P1(K∞)) = 0 and

µ(U ∪V ) = µ(U)+µ(V ) if U ∩V = ∅ we get∑e ϕµ(e) = 0. We conclude that ϕµ is indeed

a harmonic cocycle.

3.1.2 The integral over ∂Ω

We are interested in the particular case where X = ∂Ω. In this case the computation of a

multiplicative integral can be accomplished as follows. Choose a vertex v ∈ X(T). Usually

the vertex v is taken to be v0 as we will do, and for each e ∈ Y (T) pointing away from v0,

define l(e) to be the distance between the origin o(e) of e and v0. Then according to the

definition of the integral (3.1) and the discussion in Subsection 3.1.1 we have that

∫

∂Ω

× f(t) dµϕ(t) = lim
n→∞

∏

l(e)=n

f(te)
µ(Ue) (3.3)

is independent of the choice of v0.

3.1.3 Change of variables

Note that the group GL2(K∞) acts naturally on the space M0(P
1(K∞),Z) by γ ∗ µ(U) :=

µ(γ−1U) for any µ ∈M0(P
1(K∞),Z) and U an open in P1(K∞). In the same way GL2(K∞)

acts on the space of harmonic cocycles H(T,Z) by (γ ∗ϕ)(e) := ϕ(γ−1e). As in the classical

case, we have the formula of change of variables formula given by

∫
×
γU

f d(γ ∗ µ) =
∫
×
U

(f ◦ γ) dµ

or equivalently

∫
×
γ−1U

(γ−1 ∗ f) d(γ−1 ∗ µ) =
∫
×
U

f dµ (3.4)

where (γ−1 ∗ f) (t) = (f ◦ γ)(t) = f(γ〈t〉).
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3.2 Theta function

As already observed in [Sch84], the machinery of integration on ∂Ω can be used to construct

an inverse of the Van der Put’s map r defined in the equation (2.10.4). In [Lon02], Longhi

uses the multiplicative integral to give a multiplicative version of Teitelbaums’s Poisson

formula [Tei91, Thm. 11] and then such an inverse of r. In the following paragraphs we will

describe the Poison formula stated by Longhi and then the integral that we are interested

in.

Theorem 3.2.1 ([Lon02, Thm. 6]). Let u ∈ OΩ(Ω), ϕ = r(u) and fix z0 ∈ Ω. Then for

z ∈ Ω

u(z) = u(z0)

∫

∂Ω

× z − t
z0 − t

dµϕ(t). (3.5)

We are now ready to prove

Proposition 3.2.2. The map r induces an isomorphism H !(T,Z)
Γ ∼= Θh(Γ)/C∞.

Proof. Given a u ∈ Θh(Γ)/C∞ then by Theorem 2.10.4 we have that r(u) is a harmonic

cocycle, Γ-invariant and cuspidal.

Conversely given a harmonic cocycle ϕ ∈ H !(T,Z)
Γ we denote by µϕ its corresponding

measure. Fix a z0 in Ω. Consider now the function

u(z) =

∫

∂Ω

× z − t
z0 − t

dµϕ(t). (3.6)

By Theorem 3.2.1 we know that u ∈ OΩ(Ω)
× . It remains to check that u(z) satisfies the

functional equation

u(γz) = cu(γ)u(z) (3.7)

for all γ ∈ Γ0(N) and some constant cu(γ) ∈ C×
∞.

It is a straightforward calculation to see that for γ = ( a bc d ) , the ratio

t−γz
t−γz0
γ−1t−z
γ−1t−z0

=
cz + d

cz0 + d
(3.8)
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does not depend on t. So we have

u(γz) =

∫

∂Ω

× t− γz
t− z0

dµϕ(t)

=

∫

∂Ω

× t− γz0
t− z0

dµϕ(t)

∫

∂Ω

× t− γz
t− γz0

dµϕ(t)

=

∫

∂Ω

× t− γz0
t− z0

dµϕ(t)

∫

∂Ω

×
(
cz + d

cz0 + d

)(
γ−1t− z
γ−1t− z0

)
dµϕ(t).

Using the fact that the integral is multiplicative and µϕ(∂Ω) = 0 we get that
∫

∂Ω

× cz0 + d

cz + d
dµϕ(t) = 1,

since it is constant on t. The functional equation follows taking

cu(γ) =

∫

∂Ω

× t− γz0
t− z0

dµϕ(t) (3.9)

which does not depends on z.

We recall the diagram (2.7) from Chapter 2.

Γ̄

ū
��

j

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙

Θh(Γ)/C
×
∞

r̄
//H !(T,Z)

Γ.

So given a harmonic cocycle ϕ ∈ H !(T,Z)
Γ and α ∈ Γ̄ so that j(α) = ϕ, we have that the

multiplier cu(γ) is actually cα(γ) defined in Theorem 2.10.2.

3.3 Complex uniformization

In this section we consider an elliptic curve E/Q with conductor N . We will briefly describe

how to parametrize the curve E over the complex field C. The main reference here is [Sil09,

Ch. VI].

Let Γ0(N) be the group of matrices in SL2(Z) which are upper triangular modulo N . It

acts as a discrete group by Möbius transformations on the Poincare upper half-plane

H := {z ∈ C | Im(z) > 0} .

35



3. Integration, Theta function and uniformizations

A cusp form of weight 2 for Γ0(N) is an analytic function f on H satisfying the relation

f(γ〈z〉) = (cz + d)2f(z) for all γ =

(
a b
c d

)
∈ Γ0(N), (3.10)

together with suitable growth conditions on the boundary of H. The invariance equation

(3.10) implies in particular that the function f is periodic of period 1 and thus f can be

written as a power series in q = e2πi with no constant term:

f(z) =
∞∑

n=1

anq
n.

The associated L-series is defined as L(f, s) :=
∑∞

n=1 ann
−s.

From the Eichler-Shimura theory given a cuspidal eigenform whose Fourier coefficients are

integers, there exists an elliptic curve Ef such that the two L-series coincide

L(f, s) = L(Ef , s).

Here L(Ef , s) is the L-series defined as the infinite Euler product

L(Ef , s) =
∏

p∤N

(
1− app−s + p1−2s

)−1
∏

p|N
(1− app−s)−1 :=

∑
ann

−s

with ap = #E(Fp) ([Dar04, §1.4]).

On the other hand, let E be an elliptic curve defined over Q of conductor N . Then there

exists a cuspidal Hecke eigenform of weight 2 for Γ0(N) such that the L functions coincide

L(f, s) = L(E, s)

and E is isogenous to the elliptic curve Ef obtained form Eichler-Shimura theory.

In summary, given an integer N > 1 and a cuspidal Hecke eigenform of weight 2, one

would like to have a procedure to construct an elliptic curve within the isogeny class that

correspond to the form f . Actually such as procedure exists and we will briefly give some

things related to it (a good reference here is [Cre97]).

Let X0(N) be the modular elliptic curve for cyclic N -isogenies. By the work of Wiles et.al.,

E is equipped with a non constant dominant morphism defined over Q, commonly referred

as the Weil parametrization attached to E:

ΦN : X0(N) −→ E
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3.3. Complex uniformization

mapping the cusp ∞ to the identity element of E. The complex uniformization of E(C)

provides a method for calculating the Weil parametrization. Namely, the compact Riemann

surface E(C) is isomorphic to C/Λ, where Λ is a lattice generated by the periods of a Néron

differential ω on E. Then we have the following commutative diagram

Γ \H∗

j

��

z0 7→
∫ z0
∞

fE(z)dz
// C/Λ

η

��

X0(N)(C)
ΦN

// E(C)

(3.11)

where η : C/Λ −→ E(C) is the complex analytic isomorphism described by the formula

η = (℘Λ : ℘′
Λ : 1) where ℘Λ is the Weierstrass ℘-function attached to Λ. Explicit formulas

for Λ and ℘Λ can be found in [Sil09].

In this case a good approximation of the integral
∫ τ
∞ fE(z)dz reduces to calculate a finite

sum which depends on the calculation of the an’s in the Fourier expansion of fE where fE

is the modular form attached to E.

Obtaining equations for the curves

The integrals
∫ z0
∞ fE(z)dz allow to compute periods ω1 and ω2 which generate the period

lattice Λf of the modular curve Ef = C/Λf . Letting τ = ω1/ω2, we may assume that

Im(τ) > 0 interchanging ω1 and ω2 if necessary. Set q = e2πiτ and define

c4 (q) =

(
2π

ω2

)4
(
1 + 240

∞∑

n=1

n3qn

1− qn

)
and

c6 (q) =

(
2π

ω2

)6
(
1− 504

∞∑

n=1

n5qn

1− qn

)
.

Then the following theorem is crucial in the calculation of the equation of the curve E (cf.

[Cre97, §2.14]).

Theorem 3.3.1 (Edixhoven). The quantities c4 and c6 defined above are in Z, so the

elliptic curve

y2 = 4x3 − c4x− c6
is defined over Z.
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3. Integration, Theta function and uniformizations

This theorem allows Cremona to find equations for all elliptic curves of conductor up to

130.000 [Cre97]. The series c4 and c6 converge extremely rapidly. Thus, assuming that

ω1 and ω2 are known to sufficient precision, Cremona can compute c4 and c6 also with

sufficient precision and thus he is able to recognize the corresponding exact integer values.

3.4 p-adic Uniformization

From the previous section, we have that any elliptic curve E/Q with conductor N is

equipped with a non constant parametrization

ΦN : X0(N) −→ E. (3.12)

However for some applications, like the calculation of Heegner points, (cf. [Dar04, Ch. 3-4])

it is convenient to enlarge the repertoire of modular parametrizations to include Shimura

curve parametrizations. For more details on the results stated here, the reader is referred

to [Dar04],[BC91],[Voi] and [Vig80].

Assume that the positive integer N is square free and N = N−N+ is a factorization of N

such that N− has an even number of prime factors. Let C be the indefinite quaternion

Q-algebra ramified precisely at the primes dividing N− and let S be an Eichler Z-order in

C of level N+. Fix an identification

ι∞ : C ⊗Q R ∼= M2(R).

Denote by ΓN−,N+ the image under ι∞ of the group of units in S of reduced norm 1.

Then ΓN−,N+ acts properly discontinuously on H with compact quotient XN−,N+(C). By

Shimura theory, the compact Riemann surface XN−N+(C) has a canonical model XN−,N+

over Q as in the classical case. This is done by interpreting XN−,N+ as a moduli space

for abelian surfaces over Q with endomorphism rings containing S, together with some

auxiliary level N+-structure (cf. [AB04]).

Let JN−,N− denote the Jacobian of XN−,N+ . By the modularity theorem for elliptic curves

defined over Q and the Jacquet-Langlands correspondence, there exists a surjective mor-

phism

ΦN−,N+ : JN−,N+ −→ E (3.13)

defined over Q (cf. [Dar04, Ch. 4]).

38



3.4. p-adic Uniformization

However, we do not dispose here of Fourier coefficients, since modular forms on non-split

quaternion algebras do not admit q-expansions, there is no known explicit formula for the

map ΦN−,N+. In order to handle with this issue, it is necessary to turn to the p-adic

uniformization. In this section we will succinctly explain how to use the uniformization

ΦN−,N+ to construct an explicit p-adic uniformization of E at the primes p dividing N−.

Let us assume N− > 1 and p be a prime dividing N−. Consider now the definite quaternion

algebra B ramified precisely at the infinity place together with the primes dividing N−/p

and let R be an Eichler Z-order in B of level pN+. Choose an identification

ιp : B⊗Q Qp −→M2(Qp).

Let Γ
(p)
N−,N+ ⊂ GL2(Qp) be the image under ιp of the group of units in R of reduced norm

1. In the remaining part of this section we will write Γ instead of Γ
(p)
N−,N+ .

Let p be a fixed prime and let N be a square-free integer that factorizes as pN−N+ such

that N− has an odd number of prime factors. Such a factorization is called an admissible

factorization.

We recall here some objects already defined in the function fields case, like the upper half

plane, the Bruhat Tits tree, distributions, measures, etc. These concepts are necessary to

define our p-adic integral.

Let Cp be a p-adic completion of an algebraic closure of Qp. As in Chapter 2, we define

the p-adic upper half plane to be

Hp := P
1(Cp)− P1(Qp)

with the action of GL2(Qp) by linear fractional transformations. Similarly as in Chapter

2, one has definitions of admissible covering by sets An and the space of rigid analytic

functions on Hp.

The group Γ acts onHp with compact quotient Γ\Hp, which is equipped with the structure

of a rigid analytic curve over Qp. It can be identified with an algebraic curve X
(p)
ΓN−,N+

over

Qp (cf. [GvdP80]).

The Bruhat Tits tree Tp of PGL2(Qp) is a connected p+1-regular tree with set of vertices

X(Tp) defined as classes of homothety Zp-lattices in Q
2
p. The set of edges Y (Tp) consists

of pair of vertices (v0, v1) represented by lattices λ1 and Λ2 such that pΛ2  Λ1  Λ2.
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3. Integration, Theta function and uniformizations

The corresponding identifications given by Propositions 2.4.1 and 2.4.3 are still valid for

vertices and edges, respectively.

Let Γ be as above. A Γ-invariant harmonic cocycle with values in an abelian group B is

a map ϕ : X(Tp) −→ B such that

1) ϕ(ē) = −ϕ(e) for all e ∈ Y (Tp),

2) For all v ∈ X(Tp) we have
∑

t(e)=v ϕ(e) = 0,

3) ϕ(γe) = ϕ(e) for all γ ∈ Γ.

Definition 3.4.1. Let f be a rigid analytic function of Hp with values in Cp, we say that

f is a rigid analytic modular form of weigh k on Γ \Hp if

f(γ〈τ〉) = (cτ + d)kf(τ)

for all γ = ( a bc d ) ∈ Γ and τ ∈ Hp.

The Cp-vector space of rigid analytic modular forms of weight k with respect to Γ is denoted

by Sk(Γ).

Definition 3.4.2. (Distribution and measure) A p-adic distribution on P1(Qp) is a finitely

addictive Cp-valued function µ on the compact open sets of P1(Qp) satisfying µ(P
1(Qp)) =

0. If µ is p-adically bounded then it is called a p-adic measure. The space of all measures

on P1(Qp) is denoted by Meas(P1(Qp),Cp).

As in the case of function fields, we have an action of GL2(Qp) on the space of measures

and on the space of harmonic cocycles (cf. §3.1.3 for the definition) and the corresponding

identification between the space of measures on P1(Qp) and the space of harmonic cocycles.

Let f be any continuous function on P1(Qp) then we define the integral of f with respect

to a measure µ on P1(Qp) as

∫

P1(Qp)

f(t) dµ(t) = lim−→
α

∑

U∈Cα

f(u)µ(U)

where the limit is taken over increasing fine covers {Cα}α of P1(Qp) by disjoint open

compact subsets U .
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3.4. p-adic Uniformization

Denote by Meas(P1(Qp),Cp)
Γ the space of all Γ-invariant measures on P1(Qp). There is a

well known theorem due to Schneider and Teitelbaum that gives the following isomorphism

(cf. [Dar04, Thm.5.9])

Meas(P1(Qp),Cp)
Γ ∼= S2(Γ).

We have that Meas(P1(Qp),Z)
Γ ⊂ Meas(P1(Qp),Cp)

Γ given by the Z-valued harmonic

cocycles. It thus, gives rise via the Scheneider-Teitelbaum isomorphism to an integral

structure S2(Γ)
Z ⊂ S2(Γ), it plays a role somewhat similar to that of modular forms with

integral Fourier coefficients in the theory of classical modular forms.

Fix an extension1 logp : C
×
p −→ C of the p-adic logarithm to all C×.

Definition 3.4.3. Let f be a rigid analytic modular form of weight two for Γ and µf be

the measure attached to it by the Scheneider-Teitelbaum isomorphism. Fix τ1, τ2 ∈ Hp.

The p-adic line integral attached to f(z)dz is defined to be

∫ τ2

τ1

f(z) dz :=

∫

P1(Qp)

logp

(
t− τ2
t− τ1

)
dµf(t). (3.14)

If we formally exponentiate the expression (3.14) we get the multiplicative line integral

∫
×
τ2

τ1

f(z) d(z) =

∫
×
P1(Qp)

t− τ2
t− τ1

dµf(t). (3.15)

This multiplicative integral is more canonical than its additive counterpart since it does

not depend on a choice of a branch of the p-adic logarithm. In fact one should define the

right hand side of (3.15) as in (3.1).

Let E be an elliptic curve over Q of conductor N , which admits an admissible factorization

as N−N+ with p dividing N− and let Γ ⊂ SL2(Qp) be the discrete subgroup arising from

this factorization as explained above. The rigid variety X
(p)
ΓN−,N+

and the curve XΓN−,N+

are connected by the following theorem due to Cerednik and Drinfeld.

Theorem 3.4.4. There is a canonical rigid analytic isomorphism

CD : X
(p)
ΓN−,N+

(Cp) −→ XΓN−,N+ (Cp).

1By imposing log
p
(wz) = log

p
(w) + log

p
(z) and setting log

p
(p) = 0.
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3. Integration, Theta function and uniformizations

The Cerednik-Drinfeld theorem together with the following isomorphisms ([GvdP80, Ch.

VI and VIII])

Div0(ΓN−,N+ \H) ∼= JN−,N+

Div0(Γ
(p)
N−,N+ \Hp) ∼= J

(p)
N−,N+,

gives rise to a map Div0(Γ
(p)
N−,N+ \ Hp) −→ JN−,N+(Cp) also denoted CD by abuse of

notation.

On the other hand, we can use the multiplicative integral (3.14) to define a p-adic Abel-

Jacobi map

ΦAJ : Div0(Γ
(p)
N−,N+ \Hp) −→ Hom(S2(Γ)

Z,C×
p ) ≃ C×

p

τ2 − τ1 7−→ (f 7→
∫
×τ2
τ1
f(z) dz)).

Let ΦTate : C
×
p −→ Eq(Cp) be the Tate parametrization of E (cf. [Sil94]). Assume that the

curve E is a strong Weil curve, if not replace it by an isogenous curve. Then we have the

following result

Proposition 3.4.5. The following diagram commutes

Div0(Γ
(p)

N−,N+ \Hp)

CD

��

ΦAJ
// C×

p

ΦTate

��

JN−,N+(Cp)
ΦN

// E(Cp).

For a discussion of this result, see [BD98]. Compare with the diagram (3.11).

Following the ideas of Pollack and Stevens [PS11], Greenberg [Gre06] is able to give an

algorithm, running in polynomial time, for evaluating the p-adic integral (3.15). In the

remaining of this chapter, we will briefly describe the method devised by Greenberg.

Let

Arig :=

{
v(x) =

∑

n>0

anx
n

∣∣∣∣ an ∈ Qq, an → 0 as n→∞
}
. (3.16)

Elements of Arig are rigid analytic functions on the closed unit disk in Cp which are defined

over Qp.

Definition 3.4.6. A rigid analytic distribution µ is an element of the continuous dual of

Arig. The space of rigid analytic distributions is denoted by Drig.
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3.4. p-adic Uniformization

There is no problem in defining the distribution in this way since it “restricts” to a distri-

bution as one of Definition 3.4.2 (cf. [Kob84, Ch. II, §3]).

Let µ ∈ Drig, v ∈ Arig and consider the integral
∫
Zp
v(x) dµ(x). According to [PS11] the

problem to compute it reduces to the calculation of the moments

µ(xn) =

∫

Zp

xn dµ(x) n > 0.

Then we say that µ is known to precision M > 1 if
∫
Zp
v(x) dµ(x) is known modulo pM+1−n

for n = 0, ...,M .

Definition 3.4.7. A map Φ : Γ \ GL2(Qp) → Drig that is Ip-equivariant (for Iwahori Ip

subgroup) under the right action is called a overconvergent modular form for Γ. The space

of overconvergent modular forms for Γ is denoted by M̃2(Γ).

In [PS11] Pollack and Stevens define a Hecke operator Up on the space M̃2(Γ). It is

also proved there that its U2
p -invariant subspace is Hecke-isomorphic to the space of rigid

analytic modular forms for Γ. Then, given a rigid analytic modular form f with rational

Hecke eigenvalues, one can find its corresponding Z-valued harmonic cocycle ϕf and the

measure µf with Upf = ±f (cf. [Gre06, §5]). In order to calculate the moments attached

to the distribution µf it is enough to calculate the values of the corresponding element

Φf ∈ M̃2(Γ) which can be computed up to precision M from ϕf (mod p) by iterating the

operator Up in time O(M).

We come back now to the calculation of the p-adic line integral. Denote by

J(τ2, τ1) =

∫
×
P1(Qp)

t− τ2
t− τ1

dµf .

Under some technical hypothesis, it is enough to compute log J(τ2, τ1). Write

log J(τ2, τ1) =
∑

a∈P1(Fp)
log Ja(τ2, τ1) where Ja(τ2, τ1) =

∫
×
ba

t− τ2
t− τ1

dµf (3.17)

and ba is the standard residue disk around a (cf. [Gre06, §8]) defined as

ba := {x ∈ Qp | |x− a| < 1/p}.

Note that ba = Ue after identifying P
1(Fp) with the edges with target v0.

These p+1 integrals can be calculated in polynomial time by evaluating certain moments

coming from the expansion of the function logarithm as a series (cf. [Gre06, Prop. 14]).
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3. Integration, Theta function and uniformizations

Remark 3.4.8. The use of the logarithm to calculate the p-adic multiplicative line integral

is crucial. We do not dispose of this function in the function field case and this is one of

the main difficulties we have to overcome.

Let N be an integer which admits a factorization N−N+ with a prime p dividing N− and

let f be a rigid analytic modular form for Γ
(p)
N−,N+ with rational Hecke eigenvalues. Define

the set Λf =

{∫
×
P1(Qp)

t−γτ1
t−τ1 dµf

∣∣∣∣ γ ∈ Γ

}
, which is discrete in C×

p . Set qf as the generator

of Λf . Then qf is the Tate parameter attached to the form f .

As in the complex case one would like to have a procedure to find the elliptic curve Ef

with coefficients in Q. Even though Greenberg managed to calculate with good accuracy

qf , it is not clear whether one can compute from it an equation for the elliptic curve Ef

with coefficients in Q as Cremona does.
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4. The Algorithm

4.1 Motivation

Let ϕ be an automorphic (eigen) newform for the congruence subgroup Γ0(N) with rational

Hecke eigenvalues. We saw in Chapter 2 that there exists an elliptic curve Eϕ semistable

at ∞ defined over K = Fq(T ) with conductor N∞. As in the cases of complex and p-adic

uniformization (§§ 3.3 and 3.4), one would like to have a procedure that allows to calculate

the elliptic curve Eϕ by giving explicit equations over K.

Over the complex numbers (cf. §3.3) we saw that there exists an efficient algorithm that

allows to calculate the Tate parameter and the periods with high accuracy and therefore

the calculation of the equations of the corresponding elliptic curve over Q (cf. [Cre97]). In

the p-adic case, although Greenberg ([Gre06]) devised an algorithm to calculated the Tate

parameter from the corresponding automorphic form by means of certain multiplicative

integral, it seems not known if one can compute from the Tate parameter an equation for

the corresponding elliptic curve.

In the function field case, to find the Tate parameter we need to calculate the multiplicative

integral (3.9). The problem of computing such integral up to an accuracy of M digits of

exact precision is a priori of exponential complexity. In this work we follow the ideas of

Darmon and Pollack ([DP06]) and Greenberg ([Gre06]) to develop an algorithm that allows

us to calculate the Tate parameter up to a given accuracy in polynomial time. In their

algorithm we have to replace the use of the logarithm by a different method, which leads

us to compute several integrals of the form

∫
×
O∞

(1 + at) dµϕ(t) (4.1)
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4. The Algorithm

for a ∈ πFq2 [[t]]. We calculate this integral by iterating a certain Hecke operator as in

Greenberg’s work.

In this chapter we will define the functions to be integrated, the above mentioned Hecke

operator, its properties and the algorithm that allows us to calculate the integral (3.9) up

to a priori given accuracy M .

In the function field case the coefficients of the Tate curve are not rational in general, as in

the complex case, however using some tools from the reduction of modular forms modulo

p and appropriate models for the elliptic curves, we manage to find equations for Eϕ over

K – this is done in the next chapter.

4.2 Elementary functions

Let I be the subset of N × N0 given by I := {(i, j) ∈ N × N0|j ≤ i}. Graphically, the

elements of I are the points with integral coordinates in the encircled area in

j

i .
M

line i=j

I

This set I has the properties:

• I is closed under coordinate-wise addition; we denote this by I + I ⊂ I.

• For any (i0, j0) ∈ I, the set I contains the set

I(i0,j0) := {(i
′

, j
′

)| i′ ≥ i0, j
′ ≤ j0 + i

′ − i0}. (4.2)
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j

i .
Mi0

j0

line i=j

I I
′′

b

Figure 4.1: The set I ′′

One associates to I the set

FI :=



1 +

∑

(i,j)∈I
aijπ

itj | aij ∈ Fq2



 . (4.3)

Elements of FI are called elementary functions in t. We may consider its elements as those

of the group (1 + πFq2 [[π, t]],×) for which each term has the π-power bigger or equal than

the t-power.

Lemma 4.2.1. The subset FI of (1 + πFq2 [[π, t]],×) is a subgroup.

Proof. We need to check that if f, g ∈ FI , fg ∈ FI and g
−1 ∈ FI .

For the first statement, consider f = 1 +
∑

(i,j)∈I aijπ
itj and g = 1 +

∑
(k,l)∈I bklπ

ktl with

aij and bkl ∈ Fq2. From the multiplication of series

fg = 1 +
∑

(r,s)∈N×N0




∑

(i,j)∈I, (k,l)∈I,
i+k=r, j+l=s

aijbkl


 πrts +

∑

(i,j)∈I
aijπ

itj +
∑

(k,l)∈I
bklπ

ktl

and since I + I ⊂ I we have that (r, s) ∈ I and then fg ∈ FI follows.
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For the second statement, we have that g is invertible in 1+ πFq2 [[π, t]]. We need to check

that g−1 ∈ FI . Let g
−1 = 1 +

∑
(i,j)∈N×N0

cijπ
itj , then gg−1 = 1 implies

∑

(k,l)∈I
bklπ

ktl +
∑

(i,j)∈N×N0

cijπ
itj +

∑

(i,j)∈N×N0, (k,l)∈I,
i+k=r, j+l=s

cijbklπ
rts = 0. (4.4)

Consider the set E := {(i, j) ∈ N× N0 \ I | cij 6= 0}.

We claim E to be empty. If it were not empty, as E ⊂ N × N0 has a lexicographic total

order, then there exists a (i0, j0) ∈ E minimal. From the equation (4.4) the coefficient of

πi0tj0 is 0 and from the left hand side this is

ci0j0 +
∑

(m,n)∈N×N0, (k,l)∈I,
m+k=i0, n+l=j0

bklcmn = 0. (4.5)

If some cmn 6= 0, then since k > 1, m < i0 which implies that (m,n) ∈ E, and contra-

dicts the minimality of (i0, j0). Hence (4.5) becomes ci0j0 and so (i0, j0) 6∈ E which is a

contradiction.

Now define

Γ0(∞) :=

{
γ =

(
a b
c d

)
∈M2(O∞)

∣∣∣∣ c ≡ 0 (mod π) , d ∈ O×
∞ and det(γ) ∈ O∞ \ {0}

}
.

Note that Γ0(∞) is not the Iwahori subgroup, it was defined to contain at least the Iwahori

subgroup and matrices of the form ( π a
0 1 ). However, Γ0(∞) is a semigroup since it is closed

under the usual multiplication. Namely, let

γ =

(
a b
c d

)
, γ1 =

(
a1 b1
c1 d1

)
∈ Γ0(∞) and γγ1 =

(
aa1 + cc1 ab1 + bd1
ca1 + dc1 cb1 + dd1

)

then ca1 + dc1 ≡ 0 (mod π) since c ≡ 0, c1 ≡ 0 (mod π). Also det(γγ1) ∈ O∞ \ {0}.
It remains to prove that cb1 + dd1 ∈ O×

∞ which is equivalent to val(cb1 + dd1) = 0 where

val = v1/T . From the properties of the valuation one sees that

val(cb1 + dd1) ≥ inf{val(cb1), val(dd1)}
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but val(dd1) = 0 and val(cb1) ≥ 1, therefore val(cb1 + dd1) = 0 which implies γγ1 ∈ Γ0(∞)

as desired.

The group FI is equipped with a left action of Γ0(∞) defined by

(κ ∗ f)(t) := f(κ−1〈t〉) for κ ∈ Γ0(∞) and f ∈ FI (4.6)

where 〈·〉 is the usual Moebious trasnformation.

Lemma 4.2.2. The action defined in (4.6) is well defined.

Proof. We need to check that for f ∈ FI and κ ∈ Γ0(∞) we have (κ ∗ f) ∈ FI .

Set f = 1 +
∑

(i,j)∈I aijπ
itj and κ−1 = ( a bc d ). Then from the definition of the action we

have (κ ∗ f)(t) = 1 +
∑

(i,j)∈I aijπ
i
(
at+b
ct+d

)j
. So (κ ∗ f)(t) ∈ FI if and only if for each term

πi
(
at+b
ct+d

)j
the exponents (i, j) ∈ I. Hence it is enough to check it for πitj, (i, j) ∈ I.

First it is convenient to write

at + b

ct+ d
= (at + b)

1

d
(
1− (−c

d
)t
)

= (a′t+ b′)
1

1− πc′t
where a′ = a

d
, b′ = b

d
and c′ = c

πd
.

Therefore

πi
(
at+ b

ct+ d

)j
= πi(a′t+ b′)j(1− πc′t)−j

= πi(a′t+ b′)j
∞∑

n=0

(−c′)n
(−j
n

)
(πt)n

= (a′t + b′)j
∞∑

n=0

(−c′)n
(−j
n

)
πi+ntn

=

j∑

k=0

(
j

k

)
(a′t)k(b′)j−k

∞∑

n=0

(−c′)n
(−i
n

)
πi+ntk

=

∞∑

n=0

(−c′)n
(
j

n

)
πi+ntn

(
j∑

k=0

(
j

k

)
(a′)ktk(b′)j−k

)

=

∞∑

n=0

(−c′)n
(
j

n

)
πi+n

(
j∑

k=0

(a′)ktk+n(b′)j−k

)
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=
∞∑

n=0

(
j∑

k=0

(a′)k(b′)j−k(−c′)n
(
j

n

))
πi+ntk+n,

finally if we take i′ = i + n and j′ = k + n we get the conditions given for the set I ′′ and

the lemma holds.

Remark 4.2.3. One can define FI for arbitrary subsets I ⊂ N×N0. It is a group whenever

I + I ⊂ I and is stable under the action of Γ0(∞) if I ⊂ I ′′.

4.3 A Hecke operator

Fix a positive integer M . We want to compute the integral (4.1) to a precision πM .

For a fixed k ≤M we define the multiplicative group

Uk,M :=

(
1 + πkFq2 [[π]]

1 + πM+1Fq2[[π]]

)
.

Note that if k′ ≤ k then Uk′,M ⊃ Uk,M .

An important and crucial property of FI is the following, which will be proved in the

Appendix 7.

Lemma 4.3.1. Given any function f ∈ FI and any integer M > 1, then there exists a

finite set of indices J ⊆ I and mijδ ∈ {1, 2, ..., p− 1} such that

f ≡
∏

(i,j)∈J
(1 + ξδπitj)mijδ (mod πM+1)

where ξ ∈ Fq2 is a primitive element for the extension over Fp, δ ∈ {0, ..., d − 1} with d

the degree of the extension Fq2 over Fp. The representation is unique modulo p powers of

fij = 1 + πitj, so the set

BM := {1 + ξδπitj |(i, j) ∈ FI , i ≤M, δ = 0, ..., d− 1}.

is a multiplicative pseudo basis.

Lemma 4.3.1 says that the representation is unique modulo p powers of fij = 1+ πitj , this

means that if fij is a factor of a function f with p| gcd(i, j), then the p-th roots of fij are

in BM and they give “other” representation of f .
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4.3. A Hecke operator

Remark 4.3.2. Let now fij = 1 + ξδπitj ∈ BM . From the definition of the integral
∫
×
O∞

(1 + ξδπitj) dµ (mod πM+1) = lim−→
l

∏

tl∈Ul⊂O∞

(1 + ξδπitjl )
µ(Ul) (mod πM+1),

we can interchange modulo with the integral since the powers in the product do not decrease,

in particular the integral is continuous with respect to the π-adic topology. We obtain that∫
×

O∞

(1 + ξδπitj) dµ (mod πM+1) ∈ Ui,M .

This leads us to define the following sets. For an integer k > 1 we consider

Ik := {(i, j) ∈ N× N0|i ≥ k}.

Note that by Remark 4.2.3 the set FI∩Ik is a group, moreover it is a subgroup of FI .

Remark 4.3.3. As in Lemma 4.2.2 one proves that κ ∗ FI∩Ik ⊂ FI∩Ik for all κ ∈ Γ0(∞).

Let us define also the set

Hom′(FI , U1,M) :=





F : FI −→ U1,M

∣∣∣∣ F is a group homomorphism
∣∣∣∣ s.t. F (FI∩Ik) ⊆ Uk,M , for all k ≥ 1




.

It is worth pointing out that the condition on F only makes sense for k ≤ M and

F (FI∩Ik) ⊆ Uk,M means that we evaluate in elements f ∈ FI such that val(f − 1) ≥ k and

its image under F has the property val(F (f) − 1) ≥ k. Since the group I acts on FI by

Moebius transformations and on Uk,M trivially, we may also define a left action of I on

Hom′(FI , U1,M) by

(κ ∗ F )(f) := F (κ−1 ∗ f) for κ ∈ I and f ∈ FI .

Lemma 4.3.4. The previous action is well defined.

Proof. Let κ1 and κ2 ∈ I then we have that

((κ1κ2) ∗ F )(f) = F ((κ−1
2 κ−1

1 ) ∗ f)
= F ((κ−1

2 ∗ (κ−1
1 ∗ f))

= (κ2 ∗ F )(κ−1
1 ∗ f)

= κ1 ∗ (κ2 ∗ F )(f).

Also, using Remark 4.3.3, κ maps Hom′(FI , U1,M) to itself. And so the lemma holds.
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Let Γ be a congruence subgroup of PGL2(K∞). Unless otherwise stated we will take Γ to

be Γ0(N) for some non zero ideal N ⊂ Fq[T ] and define the set

S(Γ, Hom
′

(FI , U1,M)) :=

{
φ : Γ \ PGL2(K∞) −→ Hom

′

(FI , U1,M)

∣∣∣∣ φ is I-equivariant

}
.

(4.7)

For simplicity of notation we will denote this set by S. The I-equivariance means that for

any γ ∈ PGL2(K∞) and κ ∈ I, we have

φ(Γγκ)(f)(t) = φ(Γγ)(κ ∗ f)(t).

Writing (κ ⋆ φ)(Γγ) := φ(Γγκ), we can also see I-equivariance as

(κ ⋆ φ)(Γγ)(f) = φ(Γγ)(κ ∗ f).

Remark 4.3.5. a) From Chapter 3 we have that the group GL2(K∞) acts on the space

M0(X,Z) so the integral
∫
×

O∞

f d(γ−1 ∗ µ) makes sense for any γ ∈ GL2(K∞) and

f ∈ FI .

b) The integral
∫
×

O∞

f d(γ−1 ∗ µ) (mod πM+1) lies in Hom
′

(FI , U1,M) (cf. 4.3.2) then

the map γ 7→
∫
×

O∞

d(γ−1 ∗ µ) (mod πM+1) is in S, so S is not empty.

c) From the I-equivariance we have that any F ∈ S is uniquely determined by its

values on any set of representatives (a “fundamental domain”) of the double class

Γ \ PGL2(K∞)/I, which is in canonical bijection with the edges of the quotient tree

Γ \ T.

From now on we write φ(γ) instead of φ(Γγ) .

The set S is endowed with an action of the Hecke operator

(U∞φ) (γ)(f(t)) :=
∏

a∈Fq

φ

(
γ

(
π a
0 1

))
f(πt+ a)

for f ∈ FI and γ ∈ Γ \ PGL2(K∞).

Lemma 4.3.6. The Hecke operator U∞ is well defined.
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4.3. A Hecke operator

Proof. We define τa = ( π a
0 1 ) with a ∈ Fq. Then for all a ∈ Fq we have IτaI =

∐
a′∈Fq τa′I, so

that for each a ∈ Fq and κ ∈ I we can find unique a′ ∈ Fq and κ′ ∈ I such that κτa = τa′κ
′.

Moreover for κ fixed and a variable, the map a′ 7−→ a is a bijection of Fq.

Let φ ∈ S, we need to check that U∞φ is in S, i.e., U∞φ is I-equivariant. Let γ ∈
Γ \ PGL2(K∞), f ∈ FI and κ ∈ I. Then applying the U∞ operator and using that φ is

I-equivariant we get

(κ ⋆ U∞φ) (γ)(f) = (U∞φ)(γκ)(f)

=
∏

a∈Fq

φ(γκτa)f(τa〈t〉)

=
∏

a∈Fq

φ(γτa′κ
′)f(τa〈t〉)

=
∏

a∈Fq

φ(γτa′)f(τaκ
′−1〈t〉)

=
∏

a∈Fq

φ(γτa′)f(κ
−1τa′〈t〉)

=
∏

a′∈Fq

φ(γτa′)(κ ∗ f)(τa′〈t〉)

= (U∞φ)(γ)(κ ∗ f).

We recall that any Γ-invariant harmonic cocycle ϕ gives rise to a measure µϕ onM0(P
1(O∞),Z)Γ

and conversely ϕ can be recovered from such a measure µ. From now on we will denote by

µϕ the measure associated to ϕ ∈ H !(T,Z)
Γ.

We have the following map

ϕ ∈ H !(T,Z)
Γ −→ S(Γ, Hom

′

(FI , U1,M))
ϕ 7−→ Φµϕ

defined by Φµϕ(γ) :=
∫
×

O∞

d(γ−1 ∗ µ).

Lemma 4.3.7. The map Φµϕ defined above is I-equivariant.

Proof. The map Φµϕ is well defined since it defines an homomorphism FI → U1,M (cf.

Remark 4.3.5 b)), then Φµϕ lies in Hom
′

.

Let γ ∈ Γ \ PGL2(K∞), f ∈ FI and κ ∈ I. We need to check the equality

Φµϕ(γκ)(f) = Φµϕ(γ)(κ ∗ f). (4.8)
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By the definition of the map and the change of variables formula we have

Φµϕ(γκ)(f) =

∫
×
O∞

f(t) d((γκ)−1 ∗ µ)(t)

=

∫
×
κ−1(κO∞)

κ−1 ∗ (κ ∗ f)(t) d(κ−1 ∗ (γ−1 ∗ µ))(t)

=

∫
×
κO∞

(κ ∗ f)(t) d(γ−1 ∗ µ)(t)

=

∫
×
O∞

(κ ∗ f)(t) d(γ−1 ∗ µ)(t)

= Φµϕ(γ)(κ ∗ f).

In the fourth equality we use the fact that κO∞ = O∞, it can be seen from the identification

of the openO∞ with the ends passing trough the edge e0 and the Iwahori subgroup stabilizes

the lattice class corresponding to e0.

A crucial property of the function Φµϕ is that it is an eigenfunction of the Hecke operator.

Proposition 4.3.8. The functions Φµϕ are eigenfunctions of U∞ with eigenvalues 1, i.e.

U∞Φµϕ = Φµϕ .

Proof. Let f be a function on FI and Φµϕ as defined above. Then by definition of U∞ we

have

(U∞Φµϕ)(f) =
∏

a∈Fq

Φµϕ(γτa)(τ
−1
a ∗ f)

=
∏

a∈Fq

∫
×
O∞

f(τa〈t〉) d((γτa)−1 ∗ µ)(t)

=
∏

a∈Fq

∫
×
τ−1
a (τaO∞)

(τ−1
a ∗ f)(t) d(τ−1

a ∗ γ−1 ∗ µ)(t)

=
∏

a∈Fq

∫
×
τa(O∞)

f(t) d(γ−1 ∗ µ)(t)

=
∏

a∈Fq

∫
×
a+πO∞

f(t) d(γ−1 ∗ µ)(t)

=

∫
×
∪̇a∈Fq (a+πO∞)

f(t) d(γ−1 ∗ µ)(t)

=

∫
×
O∞

f(t) d(γ−1 ∗ µ)(t)

= Φµϕ(f).
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4.3. A Hecke operator

The important thing to note here is that the set 1 + πFq2[[π]] can be seeing as the subset

FI0 of FI for I0 := N× {0}. The set FI0 is preserved under the action of I since the action

is trivial. Given any f ∈ Hom′

(FI , U1,M) we may restrict it to FI0 and therefore induce a

restriction map

Hom
′

(FI , U1,M)
res−→ Hom

′

(FI0, U1,M)

f 7−→ f |FI0
.

This map induces naturally another restriction map res*, which by abuse of notation will

be also denoted by res, between the following spaces

S(Γ, Hom
′

(FI , U1,M))
res−→ S(Γ, Hom

′

(FI0, U1,M)).

Finally consider the map Φ0,µϕ defined as follows

ϕ ∈ H !(T,Z)
Γ −→ S(Γ, Hom

′

(FI0, U1,M))
ϕ 7−→ Φ0,µϕ ,

where Φ0,µϕ(γ)(f) := f (γ−1∗µϕ)(O∞) mod πM+1, for f ∈ FI0.

The map is well defined since f ∈ FI0 is constant, and then its integral is actually

f γ
−1∗µϕ(O∞) = fϕ(γe0), where e0 is the standard edge.

These considerations lead us to

Lemma 4.3.9. The following diagram is commutative.

H !(T,Z)
Γ

Φµ∗

��

Φ0,µ∗

++❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲

S(Γ, Hom
′

(FI , U1,M))
res

// S(Γ, Hom
′

(FI0, U1,M)).

Proof. The proof is straightforward. We need to check that res ◦Φµϕ = Φ0,µϕ holds for all

ϕ ∈ H !(T,Z)
Γ.

In order to calculate res ◦Φµϕ , we need to evaluate
∫
×

O∞

f d(γ−1 ∗ µ)(t) for f ∈ FI0 and

since f is constant ∫
×
O∞

f d(γ−1 ∗ µ)(t) = f (γ−1∗µ)(O∞).

Taking modulo πM+1 this is precisely Φ0,µϕ(f).
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Now, we are ready to describe the algorithm that allows us to calculate the integral∫
×

O∞

f dµ(t) for f ∈ FI .

Suppose that we have φ ∈ S(Γ, Hom
′

(FI , U1,M)) such that it is an eigenfunction for the

Hecke operator U∞ with eigenvalue 1 and also that res ◦φ = φ0 (one candidate for φ is Φµϕ

for some Γ-invariant harmonic cocycle ϕ) and we want to evaluate φ at 1 + ξδπM tj ∈ BM .

Then for any γ ∈ Γ we have

(U∞φ) (γ)(1 + ξδπM tj) =
∏

a∈Fq

φ(γτa)(1 + ξδπM(a + πt)j)

=
∏

a∈Fq

φ0(γτa)(1 + πMξδaj). (4.9)

In particular, when φ is Φµϕ the last product equals

∏

a∈Fq

(1 + πMξδaj)ϕ(γτae0)).

We compute now

U∞(φ)(γ)(1 + ξδπM−1tj) =
∏

a∈Fq

φ(γτa)
(
1 + ξδπM−1(a + πt)j

)

=
∏

a∈Fq

φ(γτa)

(
1 + ξδπM−1

j∑

n=0

(
j

n

)
(πt)naj−n

)

=
∏

a∈Fq

φ(γτa)
(
1 + ξδπM−1(aj + jπtaj−1 + ... + πjtj)

)
.

=
∏

a∈Fq

φ(γτa)
(
(1 + ξδπM−1aj)(1 + ξδjaj−1πM t)(1 +O(πM+1))

)
.

From the previous calculation we see that the value of φ(γτa)(1+ ξ
δπM−1aj) is easy to cal-

culate since it does not depend on t. The calculation of the value of φ(γτa)(1+ξ
δπMaj−1jt)

reduces hence to the previous case (4.9). The above method can be continued inductively.

Summarizing, given any function f ∈ FI , M > 1 and ϕ ∈ H !(T,Z)
Γ, to calculate the

integral
∫
×

O∞

f dµϕ up to accuracy of M digits of exact precision, we decompose f as

f ≡
∏

fij∈BM

f
mij

ij (mod πM+1)

where fij = 1 + ξδπitj .
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4.3. A Hecke operator

So it is enough to know the value of the integral at the functions fij , that is the value of

Φµϕ(γ)(fij) for all fij ∈ BM and all γ ∈ Γ \PGL2(K∞). By Remark 4.3.5 we only need to

calculate this value for each fij ∈ BM and finitely many. Hence as a first step, we produce

tables with all the values for Φµϕ(γ)(fij). In the following lines we describe the algorithm

which computes such table.

Let us define an order relation on BM . We say that 1 + ξδπitj > 1 + ξδ
′

πi
′

tj
′

if and only if

their exponents satisfy one of the following two conditions:

1) If j > 0 and j′ > 0

1.1) i < i′ or

1.2) (i = i′ and j < j′) or

1.3) (i = i′ and j = j′ and δ′ 6 δ).

2) If j′ = 0

2.1) j > 0 or

2.2) (j = 0 and i < i′) or

2.3) (j = 0 and i = i′ and δ 6 δ′).

Note that we can induce a partition of the set BM in the following way. For a fixed δ we

define the following subset of BM

BM,δ := {f ∈ BM | f = 1 + ξδπitj} (4.10)

Clearly BM = ∪̇δ∈{0,...,d−1}BM,δ. Note also that we can identify the elements of BM,δ with
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the points with integer coordinates of the graph

j

i
M

line i=j

BM,δ

We will see later how to use this representation to explain the algorithm.

From the definition of the operator U∞, given a representative γ of a class in Γ\PGL2(K∞)/I,

if e is the edge in T corresponding to [γ]1, we have that γτa represents all the edges in T

with terminal o(e).

Remark 4.3.10. For γ and e as above we have that the classes of γτa for a ∈ Fq in the

quotient graph are identified, so we do not need to calculate the integral q times.

If we apply the operatorM times, then we move in the tree T distanceM from the starting

edge. So we need representatives for the quotient tree up to level M . Let us denote by R

such a set of representatives.

For each γ ∈ R we need to calculate the integral Φµϕ(γ)(fij) for all f ∈ BM . To each γ

we attach d “triangular matrices” Tγ,δ whose entries are the values of the integral at all

functions f of BM,δ, that is Tγ,δ[i, j] = Φµϕ(γ)(1 + ξδπitj) .

Observe that the constants corresponds to the points located over the i-axis of the graphic

representation of BM,δ . We start by filling the tables Tγ,δ with the value Φµϕ(γ)(f) for

f ∈ BM,δ constant for all δ ∈ {0, 1, ..., d− 1}.

First for γ ∈ R we calculate the value ϕ(γe0) and then Φµϕ(γ)(f) = fϕ(γe0). We store this

value at the corresponding place of Tγ,δ. That is at first stage all the values for functions
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4.3. A Hecke operator

over the axis i of BM,δ are known for all γ ∈ R and δ ∈ {0, 1, ..., d−1}, this corresponds to
the last file of the tables Tγ,δ, since we can identify the entries of the table with the points

of BM,δ.

Remark 4.3.11. When we apply the U∞ to Φµϕ evaluated at a representative γ we move

with τa to other representatives, so we need to fill the tables Tγ,δ simultaneously for a fixed

f ∈ BM and running over γ ∈ R.

We start with the smallest f ∈ BM and calculate Φµϕ(γ)(f), that is we start by filling the

table Tγ,δ by the upper right corner. Since the power of π and t is M , when we apply the

operator, it reduces immediately to constants. Whose values were already calculated.

Let suppose that fi0j0 = 1 + ξδπi0tj0 ∈ BM and we know the value of Φµϕ(γ)(gij) in all

gij ∈ BM with gij > fi0j0. We can interpret this situation with a graphic in the following

way

j

i
Mi0

j0 b

line i=j

BM,δ

(i0, j0)

were the shaded area1 represents the functions f ∈ BM,δ for which we know the value of

Φµϕ(γ)(f) and the dashed blue line represents the functions in BM,δ with exponent i0 in π

to be integrated.

Applying the U∞ operator to Φµϕ(γ)(fi0j0) we have

U∞(Φµϕ(γ)(fi0j0)) =
∏

a∈Fq

Φµϕ(γτa)(fi0j0(πt+ a)).

1Although is a discrete set we use solid color to understand better the method.
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Writing for every a ∈ Fq γτa = σaγ̃aκa with σa ∈ Γ, γ̃a ∈ R and κa ∈ I and using the

Iwahori equivariance of Φµϕ and the Γ-invariance we have

Φµϕ(γτa)(fi0j0(πt + a)) = Φµϕ(σaγ̃aκa)(fi0j0(πt+ a))

= Φµϕ(γ̃a)(fi0j0)(τaκ
−1
a 〈t〉)

= Φµϕ(γ̃a)(1 + ξδπi0(τaκ
−1
a 〈t〉)j0.

Now we need to decompose the function 1 + ξδπi0(τaκ
−1
a 〈t〉)j0 as a product of elements in

the pseudo-basis BM

1 + ξδπi0(τaκ
−1
a 〈t〉)j0 ≡

∏

fij∈BM

f
mij

ij (mod πM+1).

This decomposition has the property that each fij in it satisfies fij > fi0j0, moreover the

exponents of fij are in the set I
′′

(see figure 4.1), then we know its integral which is stored

in one of the tables corresponding to γ̃a.

Remark 4.3.12. At (i0, j0) need only values in the blue shaded area.

Example 4.3.13. Let N = T 3 over F2, in Chapter 2 §2.8 we showed the corresponding

graph. Let ϕ be the unique harmonic cocycle with rational Hecke eigenvalues (observe that

there is only one cycle in the quotient graph) and let γ =
(
0 1
1 T 2+T

)
∈ R be the representing

matrix of the edge e = (2, 5). Working with M = 7 and f = 1 + π3t2 ∈ B7, to calculate

Φµϕ(γ)(f) we apply the operator U∞.

U∞(Φµϕ(γ)(1 + π3t2)) =
∏

a∈F2

Φµϕ(γτa)(1 + π3(πt+ a)).

We need to decompose the matrices γτ0 and γτ1 as γaγ̃aκa, so we have

γτ0 =
(

0 1
1/T T 2+T

)

=
(
T 2+T+1 1

T 3 T+1

)(
T 2 T 3+T

T 4+T 3+T 2+1 T 5+T 4+T 2

)(
1/T 0

1/T 2 1/T

)

and the matrix γ̃0 =
(

T 2 T 3+T
T 4+T 3+T 2+1 T 5+T 4+T 2

)
is a representative for the edge (7, 2) and

κ0 =
(

1/T 0

1/T 2 1/T

)
=
(

1 0
1/T 1

) ( 1/T 0
0 1/T

)
.
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We can take κ0 to be
(

1 0
1/T 1

)
then

1 + π3(τ0κ
−1
0 〈t〉)2 = 1 + π5t2 + π7t4 + π9t6 + ...

≡ (1 + π5t2)(1 + π7t4) (mod π8).

Both functions (1 + π5t2) and (1+ π7t4) belong to B7,0 and are smaller than f = 1+ π3t2,

so its integral is stored in the table Tγ̃0,0, moreover they are Tγ̃0,0[5, 2] and Tγ̃0,0[7, 4],

respectively.

Analogously the matrix γτ1 may be decomposed as above, in this case we have that the

representative corresponds to the edge (4, 2) and κ1 =
(

1 0
1/T 1

)
, we have

1 + π3(τ1κ
−1
1 〈t〉)2 = 1 + π3 + π5t2 + π7t4 + π9t6...

≡ (1 + π3)(1 + π5t2)(1 + π7t4) (mod π8).

Again the values of (1+π3),(1+π5t2) and (1+π7t4) are Tγ̃1,0[3, 0], Tγ̃1,0[5, 2] and Tγ̃1,0[7, 4],

respectively.

4.4 The change of variables and calculation of the integral

In this section we will see that the calculation of the multiplier cα(γ) defined in Chapter 3,

reduces to integrate functions on FI . Recall that cα(γ) is defined by the following integral

∫

∂Ω

× t− γz0
t− z0

dµϕ(t) for z0 ∈ Ω. (4.11)

Using the partition induced from the ends, we will break up the domain of integration

in a finite union of disjoint open compacts and then by the change of variables formula,

transform each integral resulting from the partition, in one of the form
∫
×
O∞

f d(µ)(t)

for some f ∈ FI .

Before describing the change of variables (since the integral (4.11) does not depend on

the choice of z0) we will describe briefly in Subsection 4.4.1 a way to construct a suitable

z0 using the reduction map. After this, in Subsection 4.4.2, we construct explicitly the

partition of ∂Ω induced from a fixed edge e of the tree.
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4. The Algorithm

4.4.1 Choosing the z0

Let ξ be a generator of a normal basis of Fq2 over Fp, then ξ is in the standard affinoid

{z ∈ C| |z| ≤ 1 |z − c| ≥ 1 ∀c ∈ Fq}, i.e. it is a lifting of the standard vertex under the

reduction map, that is λ(ξ) = v0. So we may take z0 = ξ. Moreover, given any vertex v

on the tree T, we know that there is a γ ∈ GL2(K∞) such that γv0 = v, where v0 is the

standard edge. From the GL2(K∞)-invariance of the reduction map, we have that z = γz0

is a lifting of the vertex v under the reduction map .

It is straightforward to prove that given any vertex v and γ =
(
πk u
0 1

)
the normal form

representing v, lifting to Ω is just giving by applying γ to ξ as a Moebius transformation,

namely, z = ξπk + u, and so val(z) < k.

Let z and w be two different points in Ω such that λ(z) 6= λ(w) then we say that they are

consecutive if λ(z) and λ(w) are consecutive vertices in the tree.

4.4.2 The partition of the border

Let e be any edge of the tree, we know from (2.4) that it induces a partition of ∂Ω. In order

to construct explicitly such partition, it is convenient to write the vertices that determine

e in normal form. So without loss of generality we may assume that the vertices v and

v′ are represented by v = [k, u] and v′ = [k + 1, u + aπk] for a ∈ Fq, respectively. Also

suppose that v is closer than v1 to the “line” A(0,∞) in other words, the edge (v′, v)

points to infinity. We know from Lemma 2.4.5 that all the neighbors of v different from

v′ are given by [k + 1, u + aπk] for a ∈ Fq \ a0 and the neighbors of v′ are of the form

[k + 2, u+ a0π
k + bπk+1] with b ∈ Fq. Graphically we have the following

b b

b

b

b

b

b

b

b

b

b

q edges[k, u] [k + 1, u+ a0π
k]

[k + 2, u+ a0π
k + bπk+1][k + 1, u+ aπk]

[k, u mod πk−1
O∞]

...
...

q − 1
edges
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From the Lemma 2.5.4 we have that to a vertex v of the form [k, u] we attach the open

set u + πkO∞ which corresponds to the ends associated to edges e having v as terminal.

Therefore

u+ πkO∞ =
⋃

a∈Fq

(u+ aπk + πk+1O∞)

and one can easily observe

Lemma 4.4.1. Given two neighbor vertices [k, u] and [k + 1, u+ a0π
k+1] with

u ∈ O∞(mod πk) and k > 0 and a0 ∈ Fq, then
{
u+ aπk + πk+1O∞

}
a∈Fq,a6=a0 ∪̇

{
u+ a0π

k + bπk+1 + πk+2O∞
}
b∈Fq ∪̇P

1(K∞) \ u+ πkO∞

is the partition of ∂Ω induced from the identification given by then ends.

Finally, in this partition we can identify three kinds of open sets:

i) q − 1 of the form u+ aπk + πk+1O∞ a ∈ Fq, a 6= a0, which we denote by Wa.

ii) q of the form u+ a0π
k + bπk+1 + πk+2O∞, b ∈ Fq, which we denote by Wa0,b.

iii) One of the form P1(K∞) \ (u+ πkO∞) denoted by W∞.

4.4.3 The change of variables

Let ϕ ∈ H !(T, G)
Γ0(N), let µϕ be the corresponding measure associated to it and let α ∈ Γ

be a lifting of ϕ, that is, j(α) = ϕ. Consider also v0, v1, ..., vr to be a path in the tree which

is the lifting of a cycle c of the quotient tree Γ \ T. Then there exists a γ ∈ Γ such that

γv0 = vr and let z0, z1, ..., zr = γ(z0) be consecutive points on Ω above v0, v1, ..., vr. Since

the integral is multiplicative, we have

cα(γ) =

∫

∂Ω

× z0 − t
γz0 − t

dµϕ(t)

=

∫

∂Ω

×
r−1∏

i=0

zi − t
zi+1 − t

dµϕ(t)

=
r−1∏

i=0

∫

∂Ω

× zi − t
zi+1 − t

dµϕ(t).
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4. The Algorithm

Therefore, we will concentrate in how to calculate an integral of the form

∫

∂Ω

× zi − t
zi+1 − t

dµ(t).

Using the partition of the border from Lemma 4.4.1, we can break up the integral in 2q

integrals:

∫
×
∂Ω

f(t) dµ(t) =
∏

a∈Fq,a6=a0

∫
×
Wa

f(t) dµ(t)
∏

b∈Fq

∫
×
Wa0,b

f(t) dµ(t)

∫
×
W∞

f(t) dµ(t)

where f(t) = (zi − t)/(zi+1 − t).

Integrating over Wa

Consider the map

γ : O∞ −→Wa = u+ aπk + πk+1O∞

t 7−→ γ(t) = u+ aπk + tπk+1.

It is given by the invertible Moebius transformation
(
πk u+aπk+1

0 1

)
, and hence a bijection.

By abuse of notation we also write γ for this matrix. Note that the matrix γ represents

one of the neighbors of the vertex v.

By the previous lines, the inverse of the map γ is given by the inverse of the matrix γ

acting on Wa by Moebius transformations i.e.,

γ−1 : Wa −→ O∞

t 7−→ a + uπ−k + π−(k+1)t.
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4.4. The change of variables and calculation of the integral

We make now the change of variables,
∫
×
Wa

zi − t
zi+1 − t

dµ(t) =

∫
×
O∞

zi − γ(t)
zi+1 − γ(t)

d(γ−1 ∗ µ)(t)

=

∫
×
O∞

zi − (u+ aπk + tπk+1)

zi+1 − (u+ aπk + tπk+1)
d(γ−1 ∗ µ)(t)

=

∫
×
O∞

zi − u− aπk − tπk+1

zi+1 − u− aπk − tπk+1
d(γ−1 ∗ µ)(t)

=

∫
×
O∞

(zi − u− aπk)(1− tπk+1/(zi − u− aπk))
(zi+1 − u− aπk)(1− tπk+1/(zi+1 − u− aπk))

d(γ−1 ∗ µ)(t)

=

(
zi − u− aπk
zi+1 − u− aπk

)µ(γO∞)
∫
×

O∞

1− tπk+1

zi−u−aπk d(γ
−1 ∗ µ)(t)

∫
×

O∞

1− tπk+1

zi+1−u−aπk d(γ−1 ∗ µ)(t)
.

The quantity πk+1

(zi+1−u−aπk)
has positive valuation since val(zi) 6 k hence the function

1− πk+1

(zi−u−aπk)
t is an element of FI . Analogously, 1− πk+1

(zi+1−u−aπk)
t ∈ FI .

Integrating over W∞

We will write the corresponding change of variables as a composition of two maps. In order

to construct the first one, note that the following open sets are canonically isomorphic

πkO∞ −→ u+ πkO∞

t 7−→ u+ t,

u+ πkO∞ −→ πkO∞

t′ − u 7−→ t′

where u is thesame as in the case Wa. These two maps are preserved under complement

with respect to P1(K∞),

P1(K∞) \ πkO∞ −→ P1(K∞) \ (u+ πkO∞)

t 7−→ u+ t,
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4. The Algorithm

P1(K∞) \ (u+ πkO∞) −→ P1(K∞) \ πkO∞

t′ − u 7−→ t′.

For the second one, let us now consider a map from P1(K∞) \ πkO∞ as follows

P1(K∞) \ πkO∞ −→ O∞

t 7−→ πk−1/t.

This map is a bijection and is well defined since if t ∈ P1(K∞) \ πkO∞ then val(t) 6 k − 1

and val(πk−1/t) > 0. As a Moebius transformation the map is given by the matrix
(
0 πk−1

1 0

)

whose inverse is
(

0 1
πk−1 0

)
. So the inverse of the map above is

O∞ −→ P1(K∞) \ πkO∞

t 7−→ 1/tπ−(k−1).

Then we get the change of variables that we are interested in by composing the maps in

the diagram

W∞ −→ P1(K∞) \ πkO∞ −→ O∞

t 7−→ t− u 7−→ πk−1

t− u.

In summary we have that the change of variables is given by the following map

γ−1 : W∞ −→ O∞

t 7−→ πk−1

t− u

and its inverse given by

γ : O∞ −→W∞

t′ 7−→ πk−1

t′
+ u.
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4.4. The change of variables and calculation of the integral

Finally applying the formula of change of variables with γ =
(
u πk−1

1 0

)
, we have

∫
×
W∞

zi − t
zi+1 − t

dµ(t) =

∫
×
O∞

zi − γ(t)
zi+1 − γ(t)

d(γ−1 ∗ µ)(t)

=

∫
×
O∞

zi − (π
k−1

t
+ u)

zi+1 − (π
k−1

t
+ u)

d(γ−1 ∗ µ)(t)

=

∫
×
O∞

tzi − πk−1 − tu
tzi+1 − πk−1 − tu d(γ

−1 ∗ µ)(t)

=

∫
×
O∞

πk−1(1− t (zi−u)
πk−1 )

πk−1(1− t (zi+1−u)
πk−1 )

d(γ−1 ∗ µ)(t)

=

∫
×

O∞

(
1− zi−u

πk−1 t
)
d(γ−1 ∗ µ)(t)

∫
×

O∞

(
1− zi+1−u

πk−1 t
)
d(γ−1 ∗ µ)(t)

.

Again zi−u
πk−1 and zi+1−u

πk−1 have both positive valuation since val(zi − u) > k and

val(zi+1 − u) > k. Hence the functions 1− zi−u
πk−1 t and 1− zi+1−u

πk−1 t are in FI .

Integrating over Wa0,b

Consider the map

γ : O∞ −→Wa0,b

t 7−→ γ(t) = u+ a0π
k + bπk+1 + tπk+2.

This map is a change of variables, the proof is similar as the one for the open Wa. So

making the change of variable we have
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∫
×
Wa0,b

zi − t
zi+1 − t

dµ(t) =

∫
×
O∞

zi − γ(t)
zi+1 − γ(t)

d(γ−1 ∗ µ)(t)

=

∫
×
O∞

zi − (u+ a0π
k + bπk+1 + tπk+2)

zi+1 − (u+ a0πk + bπk+1 + tπk+2)
d(γ−1 ∗ µ)(t)

=

∫
×
O∞

zi − u− a0πk − bπk+1 − tπk+2

zi+1 − u− a0πk − bπk+1 − tπk+2
d(γ−1 ∗ µ)(t)

=

∫
×
O∞

(
zi − u− a0πk − bπk+1

) (
1− tπk+2

(zi−u−a0πk−bπk+1

)

(zi+1 − u− a0πk − bπk+1)
(
1− tπk+2

zi+1−u−a0πk−bπk+1

) d(γ−1 ∗ µ)(t)

=

(
zi − u− a0πk − bπk+1

zi+1 − u− a0πk − bπk+1

)µ(γO∞)
∫
×

O∞

1− tπk+2

zi−u−a0πk−bπk+1 d(γ
−1 ∗ µ)(t)

∫
×

O∞

1− tπk+2

zi+1−u−a0πk−bπk+1 d(γ−1 ∗ µ)(t)
.

The quantity πk+2

zi−u−a0πk−bπk+1 has positive valuation since val(zi) 6 k hence the function

1− πk+2

zi−u−a0πk−bπk+1 t is an element of FI . Analogously for 1− πk+2

zi+1−u−a0πk−bπk+1 t .

Remark 4.4.2. Note that the integral over the open sets Wa and Wa0,b have positive

valuation.

68



5. Applications and examples

In Chapter 4 we described an algorithm to compute the integrals needed to find the Tate

period. Here we describe how to obtain the Tate period explicitly from the integral and we

use it to obtain elliptic curves defined over Fq(T ) with the desired conductor. The chapter

is organized as follows, in §§1-5 we make a short review of the theory of elliptic curves,

supersingular curves, Eisenstein series, reduction modulo p of modular forms and the Tate

curve. In §6 we describe how to calculate the Tate parameter and in §7 we give algorithms

to obtain from the Tate parameter, the equations for elliptic curves over Fq(T ).

5.1 Elliptic curves

We recall some basic facts from the theory of elliptic curves. Proofs for most of the theorems

can be found in [Sil09].

Let K be a field, and let us consider projective curves in P2
K defined by

ZY 2 + a1ZXY + a3Z
2Y = X3 + a2ZX

2 + a4Z
2X + a6Z

3 (5.1)

with coefficients ai ∈ K. We may usually consider the corresponding affine curve for

(Z 6= 0, x := X/Z, y := Y/Z)

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (5.2)

The only missing point (0 : 1 : 0) is always smooth.

Definition 5.1.1. An elliptic curve over a field K is a smooth projective curve E given

by the equation (5.1).
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The equation (5.2) is called a (long) Weierstrass equation for E.

Let us define the quantities

b2 = a21 + 4a4,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b4,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

j = c34/∆.

Definition 5.1.2. Given a projective curve E over a field K as above, the quantity ∆ is

called the discriminant and in case ∆ 6= 0 the quantity j is called the j-invariant of E.

Observe that a projective curve defined by the equation (5.1) is not singular if and only if

its discriminant ∆ 6= 0. That is, a curve given by the equation (5.1) is an elliptic curve if

and only if ∆ 6= 0.

If the characteristic of K is not 2, then the change of variables y 7→ y− a1
2
x− a3

2
transforms

a Weierstrass equation in one of the form

y2 = x3 +
b2
4
x2 +

b4
4
x+

b6
4
.

If in addition the characteristic of K is not 3 then a further change of variables x 7→ x+ b2
12

gives the equation

y2 = x3 − c4
48
x− c6

864
.

Finally with the change of variables y 7→ y/2 the equation becomes

y2 = 4x3 − g2x− g3 (5.3)

with g2 = 108c4 and g3 = 216c6.

Remark 5.1.3. The last equation is not a Weierstrass equation since the coefficient of x3

is not 1. However, it is a convenient expression ( e.g. when one studies elliptic curves over

C). This form will be used later in this chapter.
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In summary, if the characteristic of K is not 2 or 3, we may and will assume that our

elliptic curve has Weierstrass equation of the form

E : y2 = x3 + Ax+B (5.4)

by considering the change of variables y 7→ 2y with A = −g2
4
and B = −g3

4
. This form is

called the (short) Weierstrass form. In the following we may simply say Weierstrass form,

for short or long equation.

In characteristic 2 the discriminant and the j-invariant of an elliptic curve in Weierstrass

form are given explicitly by

∆ = a61a6 + a51a3a4 + a41a2a
2
3 + a41a

2
4 + a43 + a32 + a33

and

j = a121 /∆.

Note that the discriminant and the j-invariant of an elliptic curve given by a short Weier-

strass equation are given by the formulas

∆ = −16(4A3 + 27B2)

and

j(E) = −172864A
3

∆
.

Two elliptic curves E and E ′ defined by the Weierstrass equations with variables x and y

and with variables x′ and y′, respectively, are isomorphic over K if and only if there exists

r, s, t, u ∈ K with u 6= 0 such that the change of variables

x = u2x′ + r,

y = u3y′ + su2x′ + t. (5.5)

The transformation in (5.5) is referred to as an admissible change of variables. Clearly, this

transformation is invertible and its inverse also defines an admissible change of variables

that transforms E ′ into E.

71



5. Applications and examples

Theorem 5.1.4. Let E and E ′ be two elliptic curves defined over an algebraically closed

field K. Then E is K-isomorpic to E ′ if and only if they have the same j-invariant.

If we apply to a Weierstrass equation the change of variables given by (5.5) the coefficients

of the new curve and its associated quantities (denoted with primes) are compiled in the

following list:

ua′1 = a1 + s2,

u2a′2 = a2 − sa1 + 3r − s2,
u3a′3 = a3 + ra1 + 2t,

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st,

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − rta1,
u2b′2 = b2 + 12r,

u4b′4 = b4 + rb2 + 6r2,

u6b′6 = b6 + 3rb6 + 3r2b4 + r3b2 + 3r4,

u4c′4 = c4,

u6c′6 = c6,

u12∆′ = ∆,

j′ = j.

The group law

The set of points E(K) on an elliptic curve has a natural structure of an abelian group.

The group law can be characterized in a number of equivalent ways. We characterize it by

the following two rules:

1) The point O = (0 : 1 : 0) is the identity of the group.

2) If a line L intersects E in three K-points P,Q,R ∈ E(K) (taking multiplicities into

account), then P +Q+R = O in the group law.

From these one can deduce
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a) The point −P is the third intersection point of the line through O and P .

b) Given P,Q ∈ E(K) not equal to O, the line through P and Q (if P = Q then take

the tangent line at P ) intersects E at P,Q and a third point R ∈ E(K). If R = O,

then P +Q = O; otherwise P +Q = −R where −R can be constructed as in a).

It is easy to see that, at least generically, the coordinates of P + Q can be expressed as

rational functions in the coordinates of P andQ. For example, if P = (x, y) andQ = (x′, y′)

are in the curve given by a Weierstrass form y2 = x3 + Ax+B, then

x(P +Q) =

(
y′ − y
x′ − x

)2

− x− x′

and

x(2P ) =
x4 − 2Ax2 − 8Bx+ A2

4x3 + 4Ax+ 4B
.

Singular curves

Let E be a cubic curve given by the equation (5.2) with discriminant ∆ = 0, then E has a

singular point (cf. [Sil09, Prop. 1.4 a)]). Actually one can easily show, that there is only

one singular point, let say P . Let c4 be the quantity associated to the Weierstrass equation

of E, there are two possibilities for the singularity at P :

1) If c4 6= 0 then P has two distinct tangent directions. In this case P is called a node.

2) If c4 = 0 then P has only a single tangent direction. In this case P is called a cusp.

Definition 5.1.5. Let E be a (possibly singular) cubic curve given by a Weierstrass equa-

tion (5.2). The non-singular part of E, denoted by Ens, is the curve with its singular point

removed. Similarly, if E is defined over K, then Ens(K) is the set of non-singular points

of E(K).

The set Ens(K) has a particularly simple structure described in the following proposition.

Proposition 5.1.6. Let E be a cubic curve given by a Weierstrass equation with discrim-

inant ∆ = 0 with E singular point P . Then the group law makes Ens(K) into an abelian

group.
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a) Suppose E has a node, and let

y = α1x+ β1 and y = α2x+ β2

be the two distinct tangent lines to E at P . Then the map

Ens(K̄) −→ K̄×

(x, y) 7−→ y − α1x− β1
y − α2x− β2

is an isomorphism (of abelian groups).

b) Suppose E has a cusp, and let

y = αx+ β

be the tangent line to E at P . Then the map

Ens(K̄) −→ K̄+

(x, y) 7−→ x− x(P )
y − αx− β

is an isomorphism.

Isogenies

We turn now to the definition of morphisms between elliptic curves.

Definition 5.1.7. Let E1 and E2 be two elliptic curves over K. Let L/K be a field

extension, an isogeny (over L) between E1 and E2 is a non-constant morphism φ : E1 −→
E2 defined over L that satisfies φ(O) = O. We say that two curves E1 and E2 are isogenous

if there exists an isogeny from E1 to E2.

Remark 5.1.8. If the extension L of K is not specified then we are assuming that the

isogeny is defined over the algebraic closure K̄ of K.

From the definition one can see that the relation of isogeny is an equivalence relation on

elliptic curves. We have also

Proposition 5.1.9. Every isogeny φ : E1 −→ E2 is a group homomorphism.
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The set of isogenies from E1 to E2 together with the zero map is denoted by Hom(E1, E2).

It is a group under addition. The group Hom(E,E) is a ring which we denote by End(E).

It is called the endomorphism ring of E. The operations in End(E) are given by

(φ+ ψ) (P ) = φ(P ) + ψ(P ) and (φψ)(P ) = φ(ψ(P )).

The invertible elements of End(E) form the automorphism group of E which is denoted

by Aut(E).

Theorem 5.1.10. a) Let E1 and E2 two elliptic curves over K, then the group of iso-

genies, defined over K̄, Hom(E1, E2) is a torsion free Z-module.

b) Let E be an elliptic curve over K, then the endomorphism ring End(E) is a (not

necessarily commutative) ring of characteristic 0 with non zero divisors.

c) Let E be an elliptic curve defined over a field K. Then the endomorphism ring of E

is one of the following

End(E) =





Z,

an order in a imaginary quadratic field,

a maximal order in a quaternion algebra.

The last case only happens if char(K) = p > 0.

Elliptic curves over finite fields

Let E be an elliptic curve defined over a finite field Fq with q = pn, p a prime. The

first important result dealing with elliptic curves over finite fields is the following fact

established by Lang and Weil [LW54].

Theorem 5.1.11. Any smooth cubic curve E defined over a finite field Fq has a Fq-rational

point.

The set of Fq-rational points of an elliptic curve defined over a finite field Fq is finite. Hasse’s

theorem on elliptic curves, also referred to as the Hasse bound, provides an estimate of the

number of points on an elliptic curve over a finite field.
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Theorem 5.1.12 (Hasse). Let E/Fq be an elliptic curve. Then

|#E(Fq)− (q + 1)| 6 2
√
q.

Definition 5.1.13. Let E be an elliptic curve defied over a finite field Fq. The Frobenious

endomorphism is given by

ΦE : E(Fq) −→ E(Fq)

(x, y) 7−→ (xq, yq).

The Frobenious endomorphism is strongly related with #E(Fq) by the following

Theorem 5.1.14. Let E be an elliptic defined over a finite field Fq and let #E(Fq) =

q + 1− a. Then the Frobenious endomorphism satisfies the equality

Φ2
E − aΦE + q = 0.

Definition 5.1.15. The quantity a from the theorem is called the Frobenious trace.

Elliptic curves over local fields

Let K be a complete local field with normalized valuation ν : K× −→ Z. Let R be the

ring of integers of K with maximal ideal p and residue field k = R/p. Let also ̟ be a

uniformizer for R, that is p = ̟R.

For a given elliptic curve over K with equation y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

the substitution (x, y) 7→ (u−2x, u−3y) leads to a new equation in which each coefficient ai

is replaced by uiai. If we choose u to be divisible by a sufficiently large power of ̟, we

obtain a Weierstrass equation with coefficients in R.

Definition 5.1.16. Let E/K be an elliptic curve defined by the affine Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (5.6)

with ai ∈ R. We say that (5.6) is a minimal Weierstrass equation for E if ν(∆) is minimal

among all Weierstrass equations defining E with coefficients in R.

The minimal Weierstrass equation always exists, since ν is discrete and we can choose

among all Weierstrass equations with coefficients in R, one that minimalizes ν(∆). If the
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equation for an elliptic curve is not minimal, there is a coordinate change giving a new

equation with discriminant ∆′ = u−12∆ ∈ R. Thus ν(∆) can only be changed by adding

or subtracting multiples of 12. Similarly we have c′4 = u−4c4 and c′6 = u−6c6 and by the

same argument ν(c4) and ν(c6) can only be changed by adding or subtracting a multiple

of 4 and 6, respectively. So we conclude:

1) If ai ∈ R and ν(∆) < 12, then the equation is minimal.

2) If ai ∈ R and ν(c4) < 4 (or ν(c6) < 6), then the equation is minimal.

Now we look at the “reduction modulo ̟”. Let us consider the natural reduction map

R −→ k = R/p. Let us denote by ãi ∈ k the reduction of ai modulo ̟ and by Ẽ the

equation obtained from E by reducing its coefficients modulo ̟, that is

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6.

The curve Ẽ is called the reduction modulo ̟. Note that Ẽ/k is an elliptic curve if ∆̃ 6= 0,

this occurs when ν(∆) = 0.

Definition 5.1.17. Let E/K be an elliptic curve and Ẽ its reduction modulo ̟. We say

that

a) E has good (or stable) reduction if Ẽ is non-singular (in which case Ẽ is an elliptic

curve).

b) E has multiplicative (or semi stable) reduction if Ẽ has a node. The reduction is

called split if the tangent directions are defined over k, otherwise is non-split.

c) E has additive (or unstable) reduction if Ẽ has a cusp.

Twists

Definition 5.1.18. Let E and E1 be two elliptic curves defined over a field K. We say

that E1 is a twist of E if E and E1 are isomorphic over an algebraic closure of K.

Remark 5.1.19. Two twists have the same j-invariant (cf. Theorem 5.1.4).
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Example 5.1.20. Let E be an elliptic curve defined over a finite field Fq given by the

Weierstrass equation

y2 = x3 + Ax+B.

Let β ∈ F×
q , then the elliptic curve

E1 : y
2 = x3 + β2Ax+ β3B

is a Fq-twist of E. Indeed, taking c ∈ Fq2 such that c =
√
β then (x, y) 7−→ (c4x, c6y) is an

isomorphism from E to E1 defined over Fq2 . This twist is called a quadratic twist.

5.2 Supersingular elliptic curves

Let K be a field of characteristic p > 0 and E/K an elliptic curve. As mentioned in

Section 5.1, the endomorphism ring of E is a torsion free Z-module of rank 1, 2 or 4.

Namely, Z, an order in an imaginary quadratic field or a maximal order in a quaternion

algebra, respectively.

Definition 5.2.1. Let E/K be an elliptic curve, we say that E is supersingular if its

endomorphism ring has rank 4.

There are further characterizations and interesting properties of supersingular elliptic

curves (cf. [Sil09, Ch. III]).

Examples

1) If K is a field of characteristic 2 then every elliptic curve with a Weierstrass equation

y2 + a3x = x3 + a4x+ a6

is supersingular ([Was08, p. 122]).

2) If K is a field of characteristic 3 then every elliptic curve of the form

y2 = x3 + a4x+ a6

is supersingular ([Was08, p. 122]).
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Supersingular elliptic curves will play an important role in our algorithm. We will need a

test to know whether or not a given elliptic curve is supersingular.

Proposition 5.2.2. Let E be an elliptic curve over Fq, where q is a power of the prime

number p and let a = q + 1 − #E(Fq). Then E is supersingular if and only if a ≡ 0

(mod p).

For a proof of the proposition see for example [Was08, Prop. 4.31]. An important invariant

in the theory of supersingular elliptic curves is the Hasse invariant which is defined as

follows.

Definition 5.2.3. Let E be an elliptic curve over Fq defined by the equation y2 = f(x),

where f is a polynomial in Fp[x] of degree 3. The Hasse invariant of E is defined to be

the coefficient of xp−1 in the expansion of f(x)
(p−1)

2 .

Remark 5.2.4. In the literature it is common to define the Hasse invariant in terms of

the differential associated to the elliptic curve (cf. [Kat77]).

Lemma 5.2.5. An elliptic curve E is supersingular if and only if its Hasse invariant is

zero.

5.3 Elliptic curves over C and Eisenstein series

In this section we follow very closely the book of Silverman [Sil09, Ch. VI].

Definition 5.3.1. Let Λ ⊂ C be a lattice, that is a discrete subgroup of C which contains

a R-basis for C. An elliptic function (relative to the lattice Λ) is a meromorphic function

f(z) on C which satisfies

f(z + ω) = f(z) for all z ∈ C and ω ∈ Λ.

The set of all elliptic functions for Λ forms a field, denoted by C(Λ).

Definition 5.3.2. Let Λ ⊂ C be a lattice. We define the Weierstrass ℘Λ-function (relative

to Λ) as

℘Λ(z) :=
1

z2
+

∑

ω∈Λ, ω 6=0

1

(z − ω)2 −
1

ω2
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and also the Eisenstein series (for Λ) of weight 2k as

G2k(Λ) =
∑

ω 6=0∈Λ
ω−2k.

It is customary to let g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).

The Eisenstein series are absolutely convergent for all integers k > 2 and the series defining

the Weierstrass ℘Λ-function converges absolutely and uniformly on every compact subset

of C− Λ (cf. [Sil09, Ch. VI, Thm. 3.1]).

The field C(Λ) is generated by the Weierstrass ℘Λ-function and its derivative. These

functions can be used to parametrize certain elliptic curve as we see in the following

theorem (cf. [Sil09, Ch. VI, Prop. 3.6]).

Theorem 5.3.3. Let Λ ∈ C be a lattice.

a) The functions ℘Λ(z) and ℘
′
Λ(z) generate C(Λ), that is, C(Λ) = C(℘Λ, ℘

′
Λ).

b) The Weierstrass ℘Λ-function and its derivative satisfy the identity

℘′
Λ(z)

2 = 4℘Λ(z)
3 − g2(Λ)℘Λ(z)− g3(Λ).

Further, the polynomial f(x) = 4x3− g2(Λ)− g3(Λ) has distinct roots, so its discrim-

inant

∆ = g2(Λ)
3 − 27g3(Λ)

2

is non-zero and therefore the equation

EΛ : y2 = 4x3 − g2(Λ)x− g3(Λ)

defines an elliptic curve over C.

c) The map

φΛ : C/Λ −→ EΛ(C) z 7→ (℘Λ(z), ℘
′
Λ(z))

is a complex analytic isomorphism of complex Lie groups.

d) Conversely, given an elliptic curve E/C, there exists a lattice Λ, unique up to homo-

thety, such that EΛ
∼= E.
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Let E1 and E2 be elliptic curves over C corresponding to lattices Λ1 and Λ2, respectively.

Then one can show that

Hom(E1, E2) ∼= {α ∈ C | αΛ1 ⊂ Λ2},

where the isogeny associated to α is given analytically by

C/Λ1 −→ C/Λ2, z 7−→ αz.

We recall that two lattices Λ1 and Λ2 are homothetic if there exists α ∈ C such that

Λ1 = αΛ2. Homothetic lattices correspond to isomorphic elliptic curves, so it is common

in practice to replace the lattice Λ := ω1Z+ ω2Z by Λτ := τZ+ Z with τ = ω1/ω2 ∈
H := {τ ∈ C | Im(τ) > 0}, which is homothetic to Λ. Then for the lattice Λτ the

definition of the Eisenstein series becomes

G2k(τ) := G2k(Λτ ) =
∑

m,n∈Z
(m,n)=1

1

(mτ + n)2k
.

On the other hand, the fact that the lattice Λ := ω1Z + ω2Z does not change when we

replace its basis {ω1, ω2} by {aω1 + bω2, cω1 + dω2} where a, b, c, d ∈ Z and ad − bc = 1

allows us to consider the modular group Γ = SL2(Z) and its action on H in order to study

isomorphism classes of elliptic curves.

Definition 5.3.4. Let k be an integer. A holomorphic function f : H −→ C is called a

modular form of weight k with respect to the modular group Γ = SL2(Z) if it satisfies the

following conditions:

1) f
(
aτ+b
cτ+d

)
= (cτ + d)kf(τ) for all ( a bc d ) ∈ Γ,

2) f has a Fourier expansion of the form

f(τ) =
∞∑

n=0

anq
n (5.7)

where q = e2πiτ .

A modular form with respect to Γ = SL2(Z) is a cusp form if it satisfies in (5.7) the further

condition that a0 = 0.
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Remark 5.3.5. For ( a bc d ) =
(−1 0

0 −1

)
we deduce

f(τ) = (−1)kf(τ).

So k must be even, otherwise f(τ) = 0. In other words, there is no non-zero modular forms

with respect to Γ = SL2(Z) of odd weight.

A typical example of modular forms is given by the Eisenstein series Gk(τ) defined above.

The coefficients of Gk(τ) can be explicitly calculated as arithmetic functions on n. Namely,

setting σk−1(n) =
∑

d|n d
k−1, we have the following proposition [Kob84, Ch. III, p. 110].

Proposition 5.3.6. Let k be an even integer greater than 2 and let τ ∈ H. Then the

modular form Gk(τ) has q-expansion

Gk(τ) = 2ζ(k)

(
1− 2k

Bk

∞∑

n=1

σk−1(n)q
n

)

where q = e2πiτ and the Bernoulli numbers Bk are defined by

x

ex − 1
=

∞∑

k=0

Bk
xk

k!
.

It is convenient to define the normalized Eisenstein series

Ek(τ) =
1

2ζ(k)
Gk(τ) = 1− 2k

Bk

∞∑

n=1

σk−1(n)q
n. (5.8)

The series Ek(τ) is defined in this way in order to have rational coefficients. We have for

example

E4(τ) = 1 + 240

∞∑

n=1

σ3(n)q
n,

E6(τ) = 1− 504

∞∑

n=1

σ5(n)q
n,

E8(τ) = 1 + 480
∞∑

n=1

σ7(n)q
n.

Let Mk(Γ) be the C-vector space of modular forms with respect to Γ = SL2(Z) of weight

k. We may use the standard notation Mk if the group Γ is clear from the context. It is

clear that

MkMl ⊂Mk+l,
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and so the direct sum ∞⊕

k=0

Mk

can be viewed as a graded algebra, whose structure is given by the next theorem.

Theorem 5.3.7. Put Q = E4 and R = E6. The functions Q and R are algebraically

independent and
∞⊕

k=0

Mk = C[Q,R].

One has for example

E8 = Q2, E10 = QR, E12 =
441Q3 + 250R2

691
,

E14 = Q2R and ∆ =
Q3 − R2

1728
.

Corollary 5.3.8. The dimension of Mk is given as follows:

dim(Mk) =




[ k
12
], if k ≡ 2 (mod 12)

[ k
12
] + 1, if k ≡ 0, 4, 6, 8, 10 (mod 12).

The dimension of Mk is then 1 for k = 0, 4, 6, 8, 10, with the basis 1, Q,R,Q2, QR, respec-

tively.

From Theorem 5.3.7 follows that for k even there exists a unique polynomial ϕk(X, Y ) ∈
C[X, Y ] (actually in Q[X, Y ]) such that

ϕk(P,Q) = Ek. (5.9)

One has for example

ϕ4(X, Y ) = X,

ϕ6(X, Y ) = Y,

ϕ8(X, Y ) = X2,

ϕ10(X, Y ) = XY,

ϕ12(X, Y ) =
441X3 + 250Y 2

691
,

ϕ14(X, Y ) = X2Y,
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ϕ16(X, Y ) =
X(1617X3 + 2000Y 2)

3617
.

5.4 Reduction modulo p of modular forms

In this section we closely closely the ideas introduced in [Ser73b]. Let p be a prime number

greater than 3 and let vp be the corresponding valuation of the field Q. We can now define

modular forms modulo p. Let us denote by o the local ring of Q at p, that is, the ring of

rational numbers with denominator prime to p, and let m its maximal ideal.

Definition 5.4.1. Let

f =
∑

n>0

anq
n ∈ Q[[q]]

be a formal power series with coefficients in Q. We say that f is p-integral if vp(an) > 0

(equivalently if an ∈ o) for all n .

Let ãn denote the image of an in Fp = o/m. Let f be a p-integral power series, then

f̃ =
∑

ãnq
n ∈ Fp[[q]]

is called the reduction of f modulo p.

For a fixed integer k, consider the following set

M̃k :=
{
f̃ | f is a modular form of weight k whose Fourier expansion is p-integral

}
.

Denote by M̃ the union of the M̃k, which is a sub-algebra of Fp[[q]] and call it the algebra

of modular forms modulo p.

Definition 5.4.2. A polynomial is called isobaric if all monomials appearing in the polyno-

mial have the same weight according to some given weight function on the indeterminates.

Let f be a modular form of weight k, we know from Theorem 5.3.7 that f may be written

as an isobaric polynomial in Q and R, that is

f =
∑

ca,bQ
aRb

for some finite set (a, b) such that 4a+ 6b = k, i.e., Q has weight 4 and R has weight 6.
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Note that by equation (5.8) the denominators of the Eisenstein series are bounded, so we

can normalize them to get integral coefficients and therefore p-integral for any prime p.

By Theorem 5.3.7 it follows that M̃k admits a Fp-basis of monomials Q̃aR̃b, that is, Q̃ and

R̃ generate the algebra M̃ . To describe the structure of M̃ we only need to determine the

ideal a ⊂ Fp[[X, Y ]] of relations between Q̃ and R̃, i.e., those polynomials F for which

F (Q̃, R̃) = 0. This is the content of the following (cf. [SD75, Thm. 2])

Theorem 5.4.3. Suppose that p > 3 is a prime. The ideal a is a principal ideal generated

by A−1 where A ∈ Fp[X, Y ] is the isobaric polynomial of weight p−1 such that A(Q̃, R̃) =

Ẽp−1. The polynomial A(X, Y ) has no repeated factor and M̃ is naturally isomorphic to

Fp[X, Y ]/(A− 1)

which has a natural Z/(p− 1)-grading.

Examples

• For p = 5 one has Ep−1 = E4 = Q, so A(X, Y ) = X . The ideal of relations among Q̃

and R̃ is generated by the relation Q̃ = 1. The algebra M̃ is isomorphic to F5[R̃].

• For p = 7 one has Ep−1 = E6 = R. Analogous to the previous case A(X, Y ) = Y and

M̃ = F7[Q̃].

• For p = 11 one has E10 = QR, the fundamental relation is Q̃R̃ = 1, so that A(X, Y ) =

XY .

• For p = 13 one has E12 ≡ 6Q3 − 5R2 (mod 12), the fundamental relation is

6Q̃3 − 5R̃2 = 1.

It is clear from Theorem 5.4.3 that A is a homogeneous polynomial of weight (p− 1)/2, if

X and Y have weight 2 and 3, respectively.

Proposition 5.4.4. Let A be the polynomial of Theorem 5.4.3.

1. There exists a homogeneous polynomial F such that A(X, Y ) = F (X3, Y 2)X iY j with

i, j ∈ {0, 1}.

2. The exponents i and j depend on the congruence of p− 1 modulo 12, namely
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a) i = j = 0 if and only if p ≡ 1 (mod 12).

b) i = 1 and j = 0 if and only if p ≡ 5 (mod 12).

c) i = 0 and j = 1 if and only if p ≡ 7 (mod 12).

d) i = 1 and j = 1 if and only if p ≡ 11 (mod 12).

Proof. Let A be the polynomial in Fp[X, Y ] that generates the algebra M̃ then the fact

that A(Q̃, R̃) = Ẽp and the graduation modulo p force A to be a pseudo-homogeneous

polynomial of degree (p− 1)/2 for X of weight 2 and Y of weight 3. Hence we can write

A as

A(X, Y ) = F (X3, Y 2)X iY j (5.10)

for i, j ∈ N and F a homogeneous polynomial of degree d. Then pseudo-degree (ps-deg) of

A is 6d+ 2i+ 3j where i ∈ {0, 1, 2} and j ∈ {0, 1}. We have six cases to consider.

1) If i = j = 0 then A(X, Y ) = F (X3, Y 2) and ps-deg(A) = 6d, but ps-deg(A) =

(p− 1)/2 therefore 6d = (p− 1)/2. That is p ≡ 1 (mod 12) and 2. a) follows.

2) If i = 1 and j = 0 we have A(X, Y ) = F (X3, Y 2)X then ps-deg(A) = 6d+ 2. From

ps-deg(A) = (p− 1)/2 it follows that 6d+ 2 = (p− 1)/2 and d = (p− 5)/12, since d

is an integer, p ≡ 5 (mod 12) and we have the assertion of 2. b).

3) If i = 0 and j = 1 we have A(X, Y ) = F (X3, Y 2)Y then ps-deg(A) = 6d + 3. In

view of ps-deg(A) = (p − 1)/2 we get d = (p − 7)/12 and thus p ≡ 7 (mod 12). So

we have the claim of 2. c).

4) If i = 1 and j = 1 we get A(X, Y ) = F (X3, Y 2)XY then ps-deg(A) = 6d + 5 as

above, this implies that p ≡ 11 (mod 12) and 2. d) follows.

5) If i = 2 and j = 0 we have A(X, Y ) = F (X3, Y 2)X2. Therefore ps-deg(A) = 6d+4 =

(p− 1)/2 implies that d = (p− 9)/12 that is 3|p which is impossible since p is prime.

6) If i = 2 and j = 1 we have A(X, Y ) = F (X3, Y 2)X2Y and then ps-deg(A) = 6d + 7

which implies 3|p and since p is prime, this case is impossible.
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Elliptic interpretation

Let p > 5 be a prime and E be an elliptic curve defined over K := Fp(Q,R) with equation

y2 = 4x3 − Q

12
x− R

216
(5.11)

with Q and R regarded as indeterminates (compare the equation with (5.3)). As a result

from the discussion in [SD75, pp. 21–24], the curve E has Hasse invariantH(E) = Ã(Q,R).

Upon specializing (Q,R) the Hasse invariant H vanishes if and only if the corresponding

elliptic curve is supersingular. In [Gor02] the author proves even more.

Proposition 5.4.5. [Gor02, Prop. 5.3] The Hasse invariant is a modular form over Fp

(of level) 1 and weight p − 1. Its q-expansion at the cusp is 1, hence H is equal to the

reduction of Ep−1 modulo p.

Corollary 5.4.6. The Hasse invariant does not have multiple factors.

5.5 The Tate Curve

General references for the theory of Tate’s analytic uniformization of elliptic curves are

[Lan87, Ch. 15] and [Sil94, Ch. V]. We refer to them for more details and for proofs of

cited results.

In the classical case, for the field of complex numbers, it is possible to represent the group

of points on an elliptic curve over C as the quotient of the additive group of C by a discrete

subgroup generated by two R-linearly independent periods ω1 and ω2. One can absorb one

of these periods passing from the additive group to the multiplicative group, by means of

the exponential function and obtain a representation of the group of points of the elliptic

curve as the quotient of the multiplicative group C× by a discrete subgroup generated

by one multiplicative period namely, t = e2πiτ , where τ = ω2/ω1. In C, the explicit

formulas giving this multiplicative representation are the well known Fourier expansions

of the Weierstrass functions ℘, the Eisenstein series, etc.

Let K denote a field which is complete with respect to a discrete valuation v, and whose

residue field is perfect of characteristic p > 0. Tate proved that the Fourier expansions of

the Weierstrass functions ℘, suitable normalized, yield universal identities among power
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series that can be used to obtain a multiplicative representation for the group of rational

points of certain elliptic curves over K (similar as in the classical case for the complex

field).

The following statements can be found in [Roq70, Ch. III, pp. 23–33].

Theorem 5.5.1 (Tate). Let K be a local field of arbitrary characteristic and let q ∈ K×

with 0 < |q| < 1. Then the field of meromorphic q-periodic functions on Gm,K is an

elliptic function field F (q), which means, finitely generated of transcendence degree 1 over

K. More precisely F (q) = K(℘, ℘′) with

℘(u) =
∑

n∈Z

qnu

(1− qnu)2
− 2s1 and ℘′(u) =

∑

n∈Z

q2nu2

(1− qnu)3
+ s1

where

sk =
∑

m>1

mkqm

1− qm
for k ∈ N.

The elliptic curve E(q) associated to the elliptic function field F (q) is given by the equation

℘′2 + ℘℘′ = ℘3 + a4(q)℘ + a6(q),

where a4(q) = −5s3 and a6(q) =
1
12
(5s3 + 7s5). Its j-invariant is

j(q) =
(1− 48a4(q))

3

∆
=

1

q
+R(q)

where

R(q) = 744 + 196884q+ ... ∈ Z[[q]] and
∆(q) = a4(q)

2 − a6(q)− 64a4(q)
2 + 72a4(q)a6(q)− 432a6(q)

2.

To every j ∈ K with |j| > 1 there is one and only one q ∈ K with 0 < |q| < 1 such that

j = j(q).

The classical well known product representation

∆(q) = q
∏

n≥1

(1− qn)24

holds also in the non-archimedean case for every characteristic.
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The Tate elliptic curve (relative to q) is the curve with the Weierstrass equation

Eq : y2 + xy = x3 + a4(q)x+ a6(q). (5.12)

Observe that since a6(q) =
∑

m>1
7m5+5m3

12
qm

1−qn and 7m5 ≡ 5m3(mod 12) ∀m ∈ Z, the
series a6(q) is also defined for p = 2 and p = 3.

Using the formulas above for the Weierstrass function and its derivative we obtain as in

the classical case the v-adic analytic uniformization

φ : K̄×/〈q〉 ∼=−→ Eq(K̄)

u 7−→
(
℘(u), ℘′(u)

)
.

(5.13)

If char(K) 6= 2, 3, we can use the function ℘ + 1
12

and its derivative ℘′ as the generators

of F (q) over K. It is immediately verified that their defining relation is in Weierstrass

normal form

℘′2 =

(
℘+

1

12

)3

− 1

4
g2

(
℘+

1

12

)
− 1

4
g3

where the coefficients g2 and g3 are given by the classical q-expansions

g2 =
1

12
+ 20s3 and g3 = −

1

216
+

7

3
s5.

We call the corresponding elliptic curve

EEis : y
2 = 4x3 − g2x− g3,

the curve in Eisenstein form. It is clear that it is isomorphic to the Tate curve (5.12). It

is a straightforward calculation to get the following relation between the coefficients of the

Tate curve and the curve in Eisenstein form

a4 := a4(q) =
g2
4
− 1

48
and a6 := a6(q) =

g3
4
+
g2
4
− 1

1728
.

Consider the Eisenstein form y2 = x3− g2
4
x− g3

4
, then the Hasse invariant H gives a relation

between the coefficients g2 and g3. Taking f(x) = x3− g2
4
x− g3

4
we can calculate H as the

coefficient of xp−1 in the expansion of f(x)
(p−1)

2 .
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One has for example

p = 5 =⇒ H5 = g2,

p = 7 =⇒ H7 = g3,

p = 11 =⇒ H11 = 11g2g3,

p = 13 =⇒ H13 = 8g23 + 6g32,

p = 17 =⇒ H17 = 8g42 + 10g2g
2
3,

p = 19 =⇒ H19 = 7g33 + 11g32g
2
3,

p = 23 =⇒ H23 = 13g42g3 + 9g2g
3
3,

p = 29 =⇒ H29 = 4g72 + 18g42g
2
3 + 8g2g

4
3,

p = 31 =⇒ H31 = 2g62g3 + g32g
3
3 + 27g53.

5.6 Obtaining the Tate parameter

Let N ∈ Fq[T ] be a polynomial of degree greater than 2 and ϕ ∈ Hnew
! (T,Z)Γ0(N) be a

harmonic cocycle with rational Hecke eigenvalues. From Section 2.12 we know that there

exists an elliptic curve Eϕ defined over Fq(T ) with conductor N∞ associated with ϕ.

This curve Eϕ can be constructed as a Tate curve, that is there exists q ∈ Fq((π)) with

0 < |q| < 1 such that Eϕ is in the isogeny class of

Eq : y2 + xy = x3 + a4(q)x+ a6(q).

From Proposition 2.12.2, we know that q is a generator of the multiplicative subgroup

{cϕ(α)|α ∈ Γ0(N)}

where cϕ(α) is the multiplicative integral

∫

∂Ω

× t− αz0
t− z0

dµϕ(t)

defined in (3.9).

Now the first question is how to find α ∈ Γ such that cϕ(α) = q. Let {c1, ...cg} be a basis

for the homology of the quotient graph Γ \ T. Let ωi be a path in the tree T without
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backtracking such that ωi is a lifting of the cycle ci. Since the origin v0,i and the terminal

v1,i of ωi are Γ-equivalent, there exists a αi ∈ Γ such that αiv0,i = v1,i. Consider the set

C = {α1, ..., αg} with αi as above, then from [Gek95, Cor. 3.19] we have that

val(q) = min{val(cϕ(αi)) | αi ∈ C}. (5.14)

Therefore, to obtain the Tate parameter we choose an integral with minimal valuation. In

the appendix we will describe a procedure to find the minimal valuation without explicitly

computing any integral. The algorithm to calculate the Tate parameter will be discussed

in the Appendix B (cf. Algorithm 10), which can be calculated in polynomial time.

Theorem 5.6.1. The Tate parameter q can be calculated up to accuracy πM in time

O(M7).

We will probe this result in the appendix B (cf. Theorem B.2.1). This running time is

strongly dominated by the running time for the algorithm to calculate the table. So after

explain how calculate our table, we explain how to find the Tate parameter and we give

the proof of this theorem.

5.7 Obtaining equations for the curves

Let N ∈ Fq[T ] be a polynomial with deg(N) > 3 and such that the space of new harmonic

cocycles with rational Hecke-eigenvalues has dimension h. There exits h different isogeny

classes of elliptic curves defined over Fq(T ) with conductor N∞.

For each one-dimensional rational eigenspace of Hnew
! (T,Z)Γ0(N) we need to find the Tate

parameter associated to the corresponding rational eigencocycle ϕ. For this we use our

algorithm to calculate the integral

∫

∂Ω

× t− αz0
t− z0

dµϕ(t)

for a suitable α obtained from (5.14).

Once we know the Tate parameter q up to accuracy πM for some fixed integer M > 1, we

need to compute the quantities s3 and s5 using the formula
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sk =
∑

m>1

mkqm

1− qm
=
∑

m>1

mkqm
∑

l>0

qml for k ∈ N. (5.15)

Then we find the coefficients of the Tate curve given by a4(q) = −s3 and a6(q) = 1
12
(5s3+

7s5). We carry out these calculations modulo πM+1 since we only know q up to accuracy

πM . Then the Tate equation is given by

Eq : y2 + xy = x3 + a4(q)x+ a6(q). (5.16)

However, in general, the quantities a4(q) and a6(q) are not rational and this analytic model

does not allow us directly to find the isogeny class of the elliptic curve that we are looking

for. In this section, we explain how to get equations defined over Fq(T ) by choosing suitable

models for the elliptic curves.

5.7.1 Elliptic curves in characteristic 2 and 3

We need to transform the Tate curve in one model defined over the rationals. For this we

carry out in each characteristic an admissible change of variables to transform the Tate

curve into a rational model depending only on one parameter.

In Characteristic 2

In this case we use the admissible change of variables

x 7−→ x,

y 7−→ y + x+ a4,

then the Tate curve (5.16) is transformed into

E : y2 + xy = x3 + A6

where the coefficients satisfy the relation A6 = a6 + a24. A direct calculation shows that E

has discriminant ∆ = A6 and j-invariant j = 1/A6.
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5.7. Obtaining equations for the curves

In Characteristic 3

An admissible change of variables in characteristic 3 is given by

x 7−→ x+ a4,

y 7−→ y + a4.

Then the Tate curve (5.16) is isomorphic to

E : y2 + xy = x3 + A6

where A6 = a6 + a34 − a24, which has discriminant ∆ = −A6 and j -invariant j = 1/A6.

In both cases, since the j-invariant of such elliptic curve is a rational function, it follows

that A6 is rational. So the elliptic curve is defined over Fq(T ).

The next proposition plays an important role in our algorithm (cf. [Sch01, Prop. 1.3]) in

the cases p = 2, 3.

Proposition 5.7.1. Suppose Fq is a finite field of characteristic 2 or 3. Let E be an

elliptic curve over K = Fq(T ) with non-constant j-invariant j(E). Write j(E) = f(T )
g(T )

with

relatively prime f(T ) and g(T ) in Fq[T ]. Then

a) the divisors of f(T ) are places of supersingular reduction, and

b) the divisors of g(T ) are places of bad reduction.

Proof. For a) we know that in characteristic 2 and 3, an elliptic curve is supersingular if

and only if the j-invariant is zero. So let p be a place that divides f(T ). Let Ẽ and j̃ the

reduction of E and j modulo p, respectively. As p divides f(T ) we have that j̃ = 0 so Ẽ

is a supersingular curve, that is p is a supersingular place.

Since j 6= 0 we can take the usual normal forms for characteristic 2 and 3 (cf. [Sil09,

Appendix A]) which have the advantage of describing an elliptic curve with an expression

for the j-invariant relatively easy to manage.

An elliptic curve in characteristic 2 can be given by the Weierstrass model

E : y2 + xy = x3 + a2x
2 + a6 (5.17)
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which has discriminant ∆ = a6 and j-invariant j = 1/a6.

On the other hand in characteristic 3 an elliptic curve can be given by the normal model

E : y2 = x3 + a2x
2 + a6 (5.18)

with discriminant ∆ = −a32a6 and j-invariant j = −a32/a6. Since the j-invariant of E is of

the form f(T )
g(T )

we can write the equations of (5.17) and (5.18) as

E : y2 + xy = x3 + a2x
2 +

g(T )

f(T )

and

E : y2 + xy = x3 + a2x
2 + 2a32

g(T )

f(T )
,

respectively. The model in characteristic 2 has discriminant g(T )
f(T )

and the one in character-

istic 3 has discriminant
a62g(T )

f(T )
.

Then for the proof of b), we can suppose without loss of generality that our elliptic curve

has in each characteristic one of these models. From Tate’s algorithm [Tat75] we know

that E has a model defined over Fq[T ] which is minimal at all finite places. This model is

also isomorphic to E and its discriminant is divisible by g(T ). Let p be a divisor of g(T ),

then p divides the discriminant, that is valp(∆) > 0. Hence p is a bad place of E.

A prime p is a place of supersingular reduction if and only if the curve Ẽ is supersin-

gular. By Proposition 5.2.2 Ẽ is supersingular if the corresponding Frobenious trace

t = q + 1 − #Ẽ(Fq) is 0 modulo p. But t is also an eigenvalue for the Hecke operator

Tp. Then if we are able to calculate from the harmonic cocycle a list of eigenvalues for

primes of small degree, it is possible to have some candidates that divide the polynomial

f(T ) of the proposition. On the other hand, what that polynomial g(T ) from last propo-

sition concerns, places of bad reduction can be taken from the conductor which is also

known. So we can use Proposition 5.7.1 to improve our approximation of A6 to a rational

function.

On the other hand, we know that val(j) = −val(q), therefore we have that deg(g) −
deg(f) = −val(q). Let us suppose that we have all the factors of f and g, so we can write

them as

f(T ) =
m∏

i=1

f tii and g(T ) =
n∏

j=1

g
rj
j (5.19)
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for ti and rj integers. Then we have

n∑

j=1

rj deg gj −
m∑

i=1

ti deg fi = val(A6).

So we can try some m-tuples and n-tuples of ti’s and rj ’s, respectively and take series

of A6 to get representation of A6 as a rational function. Although in our examples we

do not need to do this and in practice this is difficult to carry out since to calculate the

supersingular places using the Hecke operator takes time.

At this point we have completed the first phase of the computation with the approximation

of A6 to a rational function. Next we need to see whether the elliptic curve

y2 + xy = x3 + A6

has conductor N∞. The computation of the conductor is performed using any Computer

algebra system with this function available, in our case we use MAGMA.

If the conductor of E is not N∞ then we need to carry out an appropriated change of

variables to transform our elliptic curve into a form that allows us to find the right curve.

Remark 5.7.2. So far, in characteristic 2 this has not happened in any of the examples

known. That is, the model E : y2+xy = x3+A6 seems to give always the right conductor,so

the algorithm assumes this.

In the following lines we describe the algorithm that allows us to find a rational repre-

sentative in the isogeny class of the Tate curve in characteristic 2 and 3 with conductor

N∞.

Given a rational Hecke eigen function ϕ ∈ Hnew
! (T,Z)Γ0(N) where N is a polynomial with

deg(N) > 3, we want to find the elliptic curve associated with ϕ. The Algorithm 1 explains

the procedure to get E from the Tate period q.

Algorithm 1: Curve2or3

Input: The Tate parameter q up to accuracy of πM and the Hecke eigen-cocycle ϕ.
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Output: An elliptic curve in the isogeny class of the Tate curve associated to q or a

message “Accuracy too small, please increase M”.

1: Calculate the quantities s3 and s5 using the formula (5.15) and use them to calculate

the coefficients of the Tate curve a4 and a6 up to accuracy πM .

2: calculate the quantity A6:

• if characteristic of K is 2 then A6 = a6 + a24,

• if characteristic of K is 3 then A6 = a6 + a34 − a24.

3: use the algorithm of continued fractions to find the representation of A6 as a rational

function.

4: for all place f divisor of N do

5: if f does not divide numerator of A6 then

6: Return “Accuracy too small, please increase M”

7: end if

8: end for

9: define the elliptic curve E : y2 + xy = x3 + A6

10: calculate the conductor of E let say c

11: if c = N∞ then

12: Return E

13: end if

14: if characteristic K = 3 then

15: for all places fi | c and fi ∤ N , set u−2 = (
∏

fi
fi)

16: make the change of variables

x 7−→ u2x,

y 7−→ u3y + u2x

to transform E into En : y2 = x3 + a2x
2 + a6 where a2 = u−2 and a6 = A6u

−6

17: end if

18: Return E

Remark 5.7.3. The Algorithm 1 finishes in step 6 if the accuracy M is too small and

the series A6 does not converge to a rational function. In the other case it continues and
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returns the curve E in step 12 if it is no necessary to carry out the change of variables or

in step 18 after the change of variables.

If char K = 3 and j(E) 6= 0 we use the change of variables x 7→ u2x and y 7→ u3y+ u2x to

get the curve

En := y2 = x3 + a2x
2 + a6 ∆(En) = −a32a6, j(En) = −a32/a6

for u ∈ K× such that u−2 is divisible by all extra places appearing in the conductor of E. We

claim that En has conductor N∞. We cannot prove this, although we can give a heuristic

argument as follows. From the change of variables we have that ∆(En) = u−12∆(E), and

a2 = u−2 (cf. [Sil09, Table 1.2]). Since j(E) = 1/A6, by Proposition 5.7.1, the denominator

of A6 is divisible only by supersingular places and since we can not eliminate places of bad

reduction, we need u−12 to be the denominator of A6. We have observed in many examples

that the powers of the places that divide the denominator of A6 is 6.

Let Cond(En) be the conductor of En and p a place that divides u−12, we have that

valp(Cond(En)) = 0 since p does not divide ∆(En). Then valp(Cond(En)) = valp(Cond(ETate)),

where ETate is the Tate curve.

Example 5.7.4. Let N = T 3 ∈ F2[T ], from the quotient graph (see Figure 5.1), we can

see that the dimension of the space of harmonic cocycles is 1. Therefore, the dimension

of the space Hnew
! (T,Z)Γ0(N) is 1 and consequently there exists one Fq(T )-isogeny class of

elliptic curves with conductor T 3∞.

With a partition, as the one described in the previous chapter, using the Algorithm 6 we

calculate with accuracy up to M = 85 to find that

q = π4 + π36 + π68.

Then using the formulas for a4(q) and a6(q) we get

a4(q) = a6(q) = π4 + π8 + π16 + π16 + π32 + π64.

From the change of variables we have the relation A6 = a6 + a24, so

A6 = (π8 + π16 + π16 + π32 + π64) + (π4 + π8 + π16 + π16 + π32 + π64)

= π4

= 1/T 4.
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Figure 5.1: Quotient graph for N = T 3 over F2.

The desired elliptic curve is given by the equation E : y2+xy = x3+ 1
T 4 which has conductor

T 3∞, and split multiplicative reduction at ∞, as a routine application of Tate’s algorithm

[Tat75] shows.

Remark 5.7.5. In [Pap01] Papikian finds the elliptic curve y2 + Txy = x3 + T 2x which

is isomorphic to E after the change of variables

x 7−→ T 2x,

y 7−→ T 3y + T.

If q = 2, we can show using divisibility arguments and the definition of a4 and a6 that

a4 = a6 =
∑

n odd n61

qn

1− qn
.

Also from the change of variables, we have the relation a24 + a6 = A6 where A6 ∈ F2(T ).

In other words, a4 is a root of the polynomial F (X) = X2 + X + A6 ∈ F2(T )[X ]. It is

straightforward to check that if α is a root of F then 1 + α is the other root.
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Let us consider the rational function A6 = 1/T 4 = π4 and the polynomial F (X) = X2 +

X + A6 ∈ F2(T )[X ]. A direct calculation shows that α =
∑

n>2 π
2n is a root of F (X),

hence, it is equal to a4 since the other root of F (X) has valuation 0. On the other hand

the continued fraction expansion of α is the infinite periodic sequence

[1 + π−4; π−4, π−4, ...].

Then by the Lagrange theorem for continued fractions α /∈ F2(T ) and is quadratic over

F2(T ). In particular a4 and a6 are quadratic.

Once we know the rational function A6, we can use the formula for a4 and the polynomial

F (X) = X2 + X + A6 ∈ F2(T )[X ] to arbitrarily increase the accuracy of q. To do

this, suppose that one knows q up to accuracy M , then make q = q + bM+1π
M+1 where

bM+1 ∈ F2 is an indeterminate. Plug in q in the formula for a4 and use the polynomial

F (X) to find the value of bM+1. With this procedure we can easily to compute q to an

arbitrary high precision. For example:

q = π4 + π36 + π68 + π132 + π196 + π228 + π356 + π420 + π452 +O(π517).

Example 5.7.6. ConsiderN = T 3 over F3. In this case dimH1(Γ\T) = dimH !(T,Z)
Γ0(N) =

2 which is the number of new forms. In terms of the standard basis they are ϕ1 = (1, 1)

and ϕ2 = (1,−2). For each of them we obtain, using the Algorithm 6 (see Appendix B),

the following Tate parameters (working with an accuracy of M = 40)

q1 = 2π3 + 2π12 + π21 + 2π39,

q2 = π3 + 2π12 + 2π21 + π39.

Then applying the formulas for a4 and a6 we have for q1 up to accuracy M = 40

a4(q1) = 2π3 + 2π9 + 2π27,

a6(q1) = π3 + π6 + π9 + 2π12 + π18 + π27 + 2π30 + 2π36

and by the change of variables described above, we have A6 = a6 + a34 − a24 = π3, so the

corresponding rational elliptic curve is

E1 : y
2 + xy = x3 + 1/T 3.

It has conductor T 3∞ and split multiplicative reduction at ∞.
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Analogously, for q2 we have

a4(q2) = π3 + π9 + π27,

a6(q2) = 2π3 + π6 + 2π9 + 2π12 + π18 + 2π27 + 2π30 + 2π36.

Performing the same calculations as above, we obtain the elliptic curve

E2 : y
2 + xy = x3 + 2/T 3.

Remark 5.7.7. In [Sch01, Prop. 4.3], Schweizer found exactly the same elliptic curves,

using other tools.

Example 5.7.8. Consider now the polynomial N = (T +2)(T 2+T +2). This example has

a different flavor than the previous ones, since we do not get the curve immediately from

the change of variables as above (in this case we have to apply step 16.b) of Algorithm 1).

We need to make a further change of variables to find the curve with the right conductor.

In this case we have only one harmonic cocycle with rational eigenvalues, so it is also a

new form. Working with accuracy of M = 40 and using our algorithm of integration, we

find the Tate parameter

q = π4 + π5 + 2π7 + 2π9 + 2π10 + 2π11 + 2π14 + π15 + 2π17 + π18 +

π19 + π21 + 2π22 + 2π23 + π25 + π27 + 2π28 + 2π29 + 2π32 +

π33 + 2π34 + π35 + π36 + π37 + 2π38 + 2π39 + π40.

Plugging in this value in the formulas for a4 and a6 we have that

A6 = 2π4 + 2π5 + π7 + π9 + π10 + π11 + π14 + 2π15 + 2π16 + 2π18 +

2π19 + 2π20 + 2π23 + π24 + π25 + π27 + π28 + π29 + π32 + 2π33

+2π34 + 2π36 + 2π37 + 2π38.

Applying continuous fractions it converges to

A6 ∼
2T 8 + 2T 7 + 2T 5 + T 4 + T 3 + 2T 2 + 2

T 12 + 2T 9 + T 6

=
2(T + 2)4(T 2 + T + 2)2

T 6(T + 1)6
.

Then the elliptic curve

E : y2 + xy = x3 +
2(T + 2)4(T 2 + T + 2)2

T 6(T + 1)6
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has conductor T (T + 1)(T + 2)(T 2 + T + 2)∞, which is not N∞. We need to “get rid of”

the places T and T + 1. To do this, we change our model of the curve to the standard one

in characteristic 3,

Enorm : y2 = x3 + â2x
2 + â6.

So the admissible change of variables from E to Enorm is given by

x 7−→ u2x,

y 7−→ u3y + u2x.

With this change of variables we have that u2â2 = 1 and â6 = A6â
3
2. Also, from the

table given in [Sil09], we have that the discriminants of E and Enorm satisfy the relation

u12∆E = ∆Enorm . So to get rid of the places T and T + 1 we may take u = 1√
T (T+1)

,

therefore â2 = T (T + 1) and â6 =
2(T+2)4(T 2+T+2)2

T 3(T+1)3
. The new elliptic curve

Enorm : y2 = x3 + T (T + 1)x2 +
2(T + 2)4(T 2 + T + 2)2

T 3(T + 1)3

has the conductor (T + 2)(T 2 + T + 2) and split multiplicative reduction at ∞.

The following table gives some examples with the Tate parameter, the conductor N and

the rational function A6 in which we can see that the denominator has factors which are

powers of 6.
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Tate Parameter Conductor A6

2π5 + π6 + π7 + 2π11 + π12 + π13 + 2π20 + π21+
π22 + 2π23 + π24 + π25 + 2π29 + π30+

π31 + π32 + 2π33 + 2π34 + π35 + 2π36 + 2π37+
π38 + 2π39 + 2π40 +O(π41)

T (T + 2)(T 2 + 2T + 2) T 5(T 2+2T+2)
(T 2+1)6

π5 + 2π7 + π8 + 2π9 + π11 + 2π13 + π14 + 2π15+
π20 + 2π22 + 2π23 + 2π24 + 2π25 + π26 + 2π27+

π29 + 2π31 + 2π32 + 2π33 + 2π34 + 2π36 + π37+
π38 + π39 + π40 +O(π41)

T (T + 2)(T 2 + 2T + 2) (T+2)5(T 2+2T+2)
(T 2+T+2)6

π4 + 2π5 + π7 + 2π8 + 2π13 + π14 + π16 + 2π17+
2π22 + π23 + π25 + 2π26 + 2π28 + π29 +O(π36) T 2(T + 2) T (T+2)

(T+1)6

π4 + 2π5 + π7 + π9 + 2π10 + π11 + 2π14+
2π15 + π17 + π18 + 2π19 + 2π21 + 2π22 + π23+

2π25 + 2π27 + 2π28 + π29 + 2π32 + 2π33+
2π34 + 2π35 +O(π36)

(T + 1)2(T 2 + 2T + 2) (T+1)4(T 2+2T+2)2

T 6(T+2)6

π5 + 2π7 + π8 + 2π9 + π11 + 2π13 + π14 + 2π15+
π20 + 2π22 + 2π23 + 2π24 + 2π25 + π26 + 2π27+

π29 + 2π31 + 2π32 + 2π33 + 2π34 + 2π36+
π37 + π38 + π39 + π40 +O(π41)

(T + 2)(T 2 + 2T + 2) (T+2)5(T 2+2T+2)
(T 2+T+2)6

5.7.2 Elliptic curves over characteristic p > 3

In case char(K) 6= 2, 3 it is more complicated to make a change of variables from the Tate

curve to a model depending only on one parameter as the curve y2+xy = x3+A6, used in

characteristic 2 and 3. So we need to look for other model isomorphic to the Tate curve,

in which we can claim rationality.

Let p be a prime greater than 3. Recall the definition of the Eisenstein series E4 =

1 + 240s3(q) and E6 = 1 − 504s5(q) and define also their normalization as g2 =
1
12
E4 and

g3 = − 1
216
E6.

We consider now the following model for our elliptic curve

EEis : y
2 = 4x3 − g2x− g3 (5.20)
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with the admissible change of variables

x = x− 1

12
,

y = y − 1

2
x+

1

24
.

We can transform the Tate curve into the Eisenstein curve where the coefficients satisfy

the known relations

−g2 = a4 +
1

48

−g3 = a6 −
1

12
a4 +

1

864
.

From Theorem 5.4.3 we now deduce that there exists integers np and mp such that g
np

2 and

g
mp

3 are rational and these integers depend on the class of p modulo 12 as follows.

Proposition 5.7.9. Let p > 3 be a prime number and g2 and g3 the normalized Eisenstein

series defined as above. Then g
np

2 , g
mp

3 are in Fp(T ) where

(np, mp) =





(p−1
4
, p−1

6
) if p ≡ 1 (mod 12)

(p−1
4
, p−1

2
) if p ≡ 5 (mod 12)

(p−1
2
, p−1

6
) if p ≡ 7 (mod 12)

(p−1
2
, p−1

2
) if p ≡ 11 (mod 12).

Proof. From Theorem 5.4.3 we have that there exists a polynomial A(X, Y ) ∈ Fp[X, Y ]

such that A(Q̃, R̃) = Ẽp−1 = 1 where Q̃ and R̃ are the reduction of the series E4 and E6

modulo p, respectively. Since g2 and g3 are the normalized series of E4 and E6 it is enough

to prove the claims for Q̃ and R̃.

From Proposition 5.4.4 we have that A is a modular form of weight (p− 1)/2 and we can

write it as

A(X, Y ) = F (X3, Y 2)X iY j

where F is a homogeneous polynomial of degree d and A has pseudo degree 6d+2i+3j =

(p− 1)/2. The exponents i and j depend on the congruence of p− 1 modulo 12.

The elliptic curve (5.11) considered over Fp(Q̃, R̃) has discriminant ∆ = 1
1728

(Q̃3− R̃2) and

j-invariant j = 1728Q̃3

∆
. Since j is a rational function it is easy to see that Q̃3

R̃2
is a rational

function, that is, there exists a f ∈ Fp(T ) such that Q̃3

R̃2
= f .
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Let us write

A(X, Y ) =

d∑

l=0

X3lX2(d−l)X iY jαl (5.21)

for suitable αl ∈ Fp. In view of A(Q̃, R̃) = 1 and Q̃3 = fR̃2 we have that

A(Q̃, R̃) =

(
d∑

l=0

Q̃3lR̃2(d−l)αl

)
Q̃iR̃j (5.22)

=
d∑

l=0

f lR̃2lR̃2d+jR̃−2lQ̃iαl

=

d∑

l=0

f lR̃2d+jQ̃iαl

=

(
d∑

l=0

f lαl

)
R̃2d+jQ̃i

= 1.

On the other hand, we have also that

A(Q̃, R̃) =

(
d∑

l=0

Q̃3lR̃2(d−l)αl

)
Q̃iR̃j (5.23)

=
d∑

l=0

Q̃3lQ̃3d+if−(d−l)Q̃−3lR̃jαl

=
d∑

l=0

f−(d−l)Q̃3d+iR̃jαl

=

(
d∑

l=0

f−(d−l)αl

)
Q̃3d+iR̃j

= 1.

Then from (5.22) and (5.23) we have that R̃2d+jQ̃i and Q̃3d+iR̃j are rational functions for

i, j ∈ {0, 1}.

1. If p ≡ 1 (mod 12) then from Proposition 5.4.4 A(X, Y ) = F (X3, Y 2) that is, i =

j = 0 then A has pseudo degree 6d = (p − 1)/2 and we have that R̃2d and Q̃3d are

rational functions, hence R̃(p−1)/6 and Q̃(p−1)/4 are in Fp(T ).
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2. If p ≡ 5 (mod 12) we have in this case that A(X, Y ) = F (X3, Y 2)X with pseudo-

degree 6d + 2 = (p − 1)/2. Since R̃2d+jQ̃i and Q̃3d+iR̃j are rational functions then

for i = 1 and j = 0 we get R̃2dQ̃, Q̃3d+1 ∈ Fp(T ). Since 3d + 1 = (p − 1)/4,

Q̃(p−1)/4 ∈ Fp(T ). On the other hand, R̃6dQ̃3 is also rational, replacing Q̃3 by fR̃2

we get that R̃6d+2f ∈ Fp(T ) then R̃6d+2 = R̃(p−1)/2 is rational.

3. If p ≡ 7 (mod 12) then A(X, Y ) = F (X3, Y 2)Y . In this case A has pseudo-degree

6d+3 = (p−1)/2. We can proceed as above replacing i and j by 0 and 1, respectively.

We have that R̃2d+1 = R̃(p−1)/6 and Q̃3dR̃ are rationals. Also Q̃6dR̃2 =
(
Q̃3dR̃

)2
is

rational. Then since R̃2 = Q̃3f−1 we have that Q̃6d+3f−1 ∈ Fp(T ) which implies that

Q̃6d+3 = Q̃(p−1)/2 ∈ Fp(T ).

4. If p ≡ 11 (mod 12) then the polynomial A is A(X, Y ) = F (X3, Y 2)XY with pseudo-

degree 6d+5 = (p− 1)/2 and therefore R̃2d+1Q̃ and Q̃3d+1R̃ are in Fp(T ). In view of

and Q̃3 = fR̃2 we have that R̃6d+3R̃2f is rational. Then R̃6d+5 = R̃(p−1)/2 ∈ Fp(T ).
Analogously, Q̃6d+2Q̃3f−1 is rational, which implies that Q̃(p−1)/2 ∈ Fp(T ).

Let us suppose that we have g
np

2 = f(T )
g(T )

and g
mp

3 = r(T )
s(T )

for some polynomials f(T ), g(T ), r(T ),

s(T ) ∈ Fp[T ] (no necessarily monic cf. Example 5.7.15). Then we have that the curve EEis

(5.20) is

y2 = 4x3 − χnp

(
f(T )

g(T )

)1/np

x− ξmp

(
r(T )

s(T )

)1/mp

where χnp and ξmp are np-th and mp-th roots of the unity in Fp, respectively, note that

np, mp|p−1, so that χnp and χnp indeed lie in Fp. So the curve EEis is defined over a finite

extension of Fp(T ).

Let E be an elliptic curve over a field K of the form Y 2 = X3 + AX + C and u ∈ K then

the elliptic curve Eu : Y
2 = X3+u2AX+u3B is a twist of E. Taking u = 1/

√
A the curve

Eu is Y 2 = X3 +X + B
2√
A3
.

When E is EEis : y
2 = 4x3 − g2x− g3 we can carry out the twist as follows, let us suppose

that g
np

2 and g
mp

3 are as above, then taking u2 =
(
g(T )
f(T )

)1/np

we get

105



5. Applications and examples

y2 = 4x3 − u2ξnp

(
f(T )

g(T )

)1/np

x− u3χmp

(
r(T )

s(T )

)1/mp

 

y2 = 4x3 − ξnpx− χmp

(
r(T )

s(T )

)1/mp
(
g(T )

f(T )

)3/2np

.

Remark 5.7.10. This twisted elliptic curve may or not be defined over Fp(T ), because the

quantity
(
r(T )
s(T )

)1/mp
(
g(T )
f(T )

)3/2np

is not always rational. However, by reviewing examples,

heuristically we can say that after simplifications this expression becomes F (T )G(T )1/2 for

some rational functions F (T ) and G(T ). If G(T ) is not one, then we need to make another

twist by taking u = (G(T ))−1/2. The resulting elliptic curve has always the right conductor.
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Algorithm 2: Tateforp > 3

Input: The Tate parameter q up to accuracy of πM .

Output: An elliptic curve in the isogeny class of the Tate curve associated to q or a

message “Accuracy too small, please increase M”.

1: Calculate the quantities s3 and s5 using the formula (5.15) and use them to calculate

the coefficients of the Eisenstein curve g2 and g3 up to accuracy πM .

2: set the quantities np and mp as the exponents of g2 and g3, respectively. According to

Proposition 5.7.9

3: use the algorithm of continued fractions to find the representation of g
np

2 and g
mp

3 as a

rational functions. Let say g
np

2 = f(T )
g(T )

and g
mp

3 = r(T )
s(T )

.

4: define two list Lnp and Lmp which contain the np-th and mp-th roots of the unity in

Fp, respectively.

5: for ξnp ∈ Lnp do

6: for χmp ∈ Lmp do

7: define the elliptic curve

E : y2 = 4x3 − ξnpx− χmp

(
r(T )

s(T )

)1/mp
(
g(T )

f(T )

)3/2np

.

8: write
(
r(T )
s(T )

)1/mp
(
g(T )
f(T )

)3/2np

as F (T )G(T )1/2. ⊲ cf. Remark 5.7.10.

9: if G(T ) 6= 1 then

10: set u = (G(T ))−1/2 and define the twisted curve

E : y2 = 4x3 − ξnpG(T )
−1x− χmpF (T )G(T )

−1

11: end if

12: end for

13: end for

14: calculate the conductor of E let say c

15: if c = N∞ then

16: Return E

17: else

18: Return “Accuracy too small, please increase M ” ⊲ This message is printed if

after considering all possible elliptic curves we do not get the right conductor.
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19: end if

Remark 5.7.11. If the prime p is a large prime then the numbers np and mp are also big

then one needs high accuracy to get convergence, in this cases it is better to consider other

twist. Let u = g2
g3

then the twisted curve is

y2 = 4x3 − u2g2x− u3g3  y2 = 4x3 − g32
g23
x− g32

g23

since
g32
g23

is a rational function, the curve is defined over K. The j-invariant of y2 =

4x3 − Ax − A is j = 1728 A
A−27

. Solving for A shows that j ∈ K if and only if A ∈ K.

However the cost of this twist is that a lot of extra places may appear in the conductor,

which one has later to get rid of. One can see, for instance Example 5.7.12 that the present

form is not isogenous over K to the searched Weierstrass equation. It is only correct up

to some unspecified quadratic twist.

Example 5.7.12. In characteristic 5.

With p = 5 consider the polynomial N = T 2(T − 1). The dimension of the space of

harmonic cocycles is 4, then we have 4 isogeny classes. Let ϕ one of these harmonic

cocycles with rational Hecke eigenvalues. In characteristic 5, we have that E4 = 1 and

g2 = 3 and the Eisenstein form is

EEis : y
2 = 4x3 + 2x− g3.

Since p − 1 is divisible by 4 and not by 6 then we have that g
(p−1)/2
3 ∈ F5(T ). With an

accuracy of M = 70 we get the Tate parameter

q = π2 + 2π4 + π5 + 4π6 + 3π8 + π9 + 2π10 + 4π11 + 4π12 + 2π13 +

4π14 + 3π15 + π16 + 2π17 + 3π19 + 4π20 + π21 + 2π22 + 2π23 + 3π24 +

4π26 + 3π27 + 2π28 + 2π29 + 2π30 + 2π31 + 4π33 + 3π34 + π35 + 2π36 +

4π37 + π39 + 3π40 + 2π41 + 2π42 + π43 + 2π44 + 4π45 + 3π46 + 4π47 +

4π48 + 2π50 + π51 + 3π52 + π53 + 3π55 + 4π56 + 3π57 + 2π58 + 2π59 +

2π60 + 2π61 + 4π62 + π64 + 3π65 + 2π66 + 3π67 + 4π68 + 4π69 + 4π70 +O(π71).

Plugging in this value in the equation of g3 and applying the continuous fraction method

we have that the series g23 converges to the rational function T (T+2)2

(T+3)3
. Using Algorithm 2
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with F (T ) = T+2
T+3

and G(T ) = T
T+3

, the equation for the elliptic curve EEis is

y2 = 4x3 + 2x− g3  y2 = x3 + 2x− ξ2
T + 2

T + 3

√
T

T + 3

 y2 = x3 +
3T + 4

T
x+

4T + 3

T

which has conductor T 2(T −1)∞. To get the last equation we make a quadratic twist with

u =
√

T+3
T

and ξ2 = 4.

Remark 5.7.13. In [Sch11] is given the elliptic curve E1 : y
2 = x3 + 4T 2x2 + 4T 3x as a

representative of the isogeny class of EEis. They are isomorphic, namely the isomorphism

is given by

EEis −→ E1

(x, y) 7→ (T 2x+ 2T 2, T 3y).

Example 5.7.14. In characteristic 7.

Let us consider the polynomial N = T 3−2 over F7. In this case we have that the dimension

of the space of harmonic cocycles is 1 so there is only isogeny class. With an accuracy of

M = 60 we find the value of the Tate parameter is

q = 5π3 + 4π6 + p9 + 6π12 + 2π15 + p18 + p21 + 2π24

+p27 + 3π30 + 5π33 + 2π36 + 5π39 + 5π42 + 5π45 +

4π48 + 5π51 + 6π54 + 4π57 + 5π60 +O(π61).

When p = 7 we have that g3 = 6 and also from the considerations of the modular forms

modulo 7, we have that g32 is a rational function. With the value of q and the formula for

g2 we have that

g2 = 1 + 3π3 + 3π6 + π9 + 2π12 + 5π15 + 3π18 + 4π21 + 5π24 +

4π27 + π30 + 2π33 + 5π36 + 3π39 + 4π42 + 5π45 +

4π48 + π51 + 2π54 + 5π57 + 3π60 +O(π61)

and g32 converges to

(T 3 + 2)3T 3

(T 6 + 2T 3 + 2)2
.
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Then our model for the elliptic curve in the isogeny class is

y2 = 4x3 − g2x+ 1 y2 = x3 + ξ3
3

√
(T 3 + 2)3T 3

(T 6 + 2T 3 + 2)2
x+ 5

 y2 = x3 + T (T 3 + 2)x+ 5(T 6 + 2T 3 + 3).

We get the last equation by twisting with u = 3

√
T 6+2T 3+2
(T 3+2)3T 3 and using ξ3 = 1.

Example 5.7.15. In characteristic 11.

Consider the polynomial N = (T + 8)(T + 9)2 defined over F11, in this case there are 4

different isogeny classes, taking one the harmonic cocycles with rational Hecke eigenvalues

and with accuracy M = 40 we have the following Tate parameter

q = 4π + 6π2 + 4π3 + 2π4 + 4π5 + 10π6 + 9π8 + 9π9 + 10π10 + 8π11 +

7π12 + π13 + 7π14 + 10π15 + 10π16 + 2π17 + 9π18 + 6π19 + 9π20 + 6π21 +

6π22 + 7π24 + 8π25 + 3π26 + 2π27 + 4π28 + π29 + 4π30 + π31 + 4π32 +

4π33 + 9π34 + 9π35 + 8π36 + 6π37 + 3π38 + 10π39 + 4π40 +O(π41).

Using the relations of Serre and Swinnerton-Dyer, we have that g52 and g53 are rationals.

Plugging in the value of q in the formulas for g2 and g3 we have that

g52 = 1 + 4π + 9π2 + 8π3 + 8π4 + 2π5 + 9π6 + 7π7 + 9π9 + 6π10 +

3π11 + 5π12 + 3π13 + 10π14 + 10π15 + 8π16 + 3π17 + 6π18 +

3π20 + 2π21 + π22 + 9π23 + π24 + 7π25 + 7π26 + 10π27 + π28 +

2π29 + π31 + 8π32 + 4π33 + 3π34 + 4π35 + 6π36 + 6π37 + 7π38 +

4π39 + 8π40 +O(π41)

and

g53 = 10 + 4π + 4π2 + 6π4 + 2π5 + 6π6 + 5π7 + 7π8 + 8π9 + 4π10 +

6π11 + 8π12 + 8π13 + π15 + 4π16 + π17 + 10π18 + 3π19 + 5π20 +

8π21 + π22 + 5π23 + 5π24 + 2π26 + 8π27 + 2π28 + 9π29 + 6π30 +

10π31 + 5π32 + 2π33 + 10π34 + 10π35 + 4π37 + 5π38 + 4π39 + 7π40 +O(π41),

which converge to T 2+7T+4
T 2+3T+5

= (T+9)2

(T+7)2
and 10T 2+8T+6

T 2+7T+4
= 10(T+7)2

(T+9)2
, respectively. Taking u2 =

110



5.7. Obtaining equations for the curves

5

√(
T+7
T+9

)2
, ξ5 = 9 and 5

√
10 = 2, the elliptic curve we are looking for is

y2 = 4x3 − g2x− g3 =⇒ y2 = x3 − ξ5 5

√
(T + 9)2

(T + 7)2
x− 5

√
10(T + 7)2

(T + 9)2

=⇒ y2 = x3 − ξ5x− 2
5

√(
T + 7

T + 9

)2
5

√(
T + 7

T + 9

)3

=⇒ y2 = x3 + 6x+
T + 7

T + 9

which has conductor (T + 8)(T + 9)2∞.

The other three isogeny classes are given by

E2 : y
2 = x3 + 6(T 4 + 6T 2 + 6T + 8)x+ 10(T 2 + 2T + 6)(T 4 + 12T 3 + 6T + 9),

E3 : y
2 = x3 + 9(T 2 + 11T + 9)x2 + (T + 12)2(T 2 + 4T + 2),

E4 : y
2 = x3 + (T + 4)2x2 + (T + 2)(T + 6)(T + 10).

Example 5.7.16. In characteristic 13.

Consider the polynomial N = T 3 + 11 over F13. For this case there is only one harmonic

cocycle with rational Hecke eigenvalues and with accuracy ofM = 40 we have the following

Tate parameter

q = 2π3 + 8π6 + 9π9 + π12 + 6π15 + 12π18 + 9π21 + 4π24 + 3π27 +

2π30 + 7π33 + 7π36 + 7π39 +O(π41).

In this case we have that g32 and g
2
3 are in F13(T ), then using the value of q and the formulas

for g2 and g3 we have that

g32 = 1 + 10π3 + 2π6 + 6π9 + 6π12 + π15 + 7π18 + 11π21 + 3π24 +

7π27 + π30 + 12π36 +O(π41)

and

g23 = 1 + 12π3 + 5π6 + 2π9 + 2π12 + 9π15 + 11π18 + 8π21 + π24 + 11π27 +

9π30 + 4π36 +O(π41).
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Using continuous fractions we see that

g32  
T 3(T 3 + 3)3

(T 6 + 2T 3 + 9)(T 6 + 10T + 6)

and

g23  
(T 3 + 2)2(T 3 + 10)2

(T 6 + 2T 3 + 9)(T 6 + 10T + 6)
.

Using these values for g32 and g23, proceeding as in the examples above with

u2 = 3

√
(T 6+2T 3+9)(T 6+10T+6)

T 3(T 3+3)3
we have that

y2 = 4x3 − g2x− g3 =⇒ y2 = x3 − ξ3x− (T 3 + 2)(T 3 + 10) 2

√
1

T (T 3 + 3)

=⇒ y2 = x3 + 3T (T + 3)x+ 3(T 3 + 2)(T 3 + 10).

We get the equation using the twist described in Algorithm 2 with F (T ) = (T 3+2)(T 3+10)

and G(T ) = 1
T (T 3+3)

.
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In this appendix we shall provide the reader with some of the algorithms used in the thesis

to deal with quotient graphs. In §2 we give a set of representatives for the edges of the

quotient tree Γ0 \ T where Γ0 = GL2(A), and also give a routine, which we call decom, to

calculate classes in Γ0 \GL2(K∞)/I∞. In §3 we use the algorithm decom to lift a cycle in

the quotient graph Γ0(N) \T to a path in T. The algorithm decom gives a routine to solve

the following problem: given two matrices g1, g2 ∈ GL2(K∞) which are in the same class

in Γ0(N) \ GL2(K∞)/I∞, there exist γ ∈ Γ0(N) and κ ∈ I∞ such that g1 = γg2κ. The

algorithm that allows us to write such as decomposition is given in §4.

Also, we include a section that sets out the key definitions and results of computer arith-

metic, which we need to give the running time of the main algorithms that allows us to

calculate the Tate parameter.

A.1 Computational complexity of mathematical operations

The aim of this section is to give a brief summary of some fundamental definitions and

results concerning computer arithmetic, algorithms for arithmetic in finite fields and poly-

nomial rings. The intention is not to provide an implementation guide, instead, we state

some complexity results that will be used later in the appendices of this thesis. More

details of these subjects can be found in [vzGG13].

Since computers do not work on numbers but with data, so the very first issue is how to

feed numbers as a data into a computer. Data are stored in pieces called words. Current

machines use either 32 or 64-bit words; in this thesis we assume that we have a 64-bit

processor. Integers are represented as a sequence of binary words. We think of an algorithm
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as a sequence of word operations. The analysis of running time of an algorithm (or just

running time) quantifies the amount of time taken by the algorithm to run as a function

of the length of the string representing the input. We can think of the running time as the

number of statements executed by the program or as the length of time taken to run the

program on some standard computer. It is common to estimate their complexity in the

asymptotic sense, i.e., estimating the complexity function for arbitrarily large input, so we

introduce the following definition.

Definition A.1.1. Let f and g be two functions defined on some subset of the real num-

bers. One writes

f(x) = O(g(x)) as x→∞

if and only if there exists a positive real number C and a real number x0 such that

|f(x)| ≤ C|g(x)| for all x ≥ x0.

Let R be a commutative ring with 1. Operations like add or multiply may correspond to

many bit or word operations. As a general rule, we will consider the number of arithmetic

operations (additions and multiplications) in the ring R, (divisions, if R is a field) used

by an algorithm. The other operations such as index calculations or memory accesses,

tend to be of the same order of magnitude. These are usually performed with machine

instructions on single words (for example move a pointer in an array, etc), and their cost

becomes negligible when the arithmetic quantities are large. The next result can be found

in [vzGG13, Cor. 4.7].

Lemma A.1.2. Let q = pn with p a prime number and n > 1. One arithmetic opera-

tion, that is, addition, multiplication, or division, over Fq can be done using O(n2) word

operations, where n = ⌊log2(q)/64⌋+ 1.

Let R[x] be the polynomial ring with coefficients in R. The basic algorithms for addition,

subtraction, multiplication, and division of polynomials are quite straightforward adapta-

tions of the corresponding algorithms for integers. In fact, because of the lack of “carry

overs” these algorithms are actually much simpler in the polynomial case. We have the

following easy result.

Lemma A.1.3. Let f and g be arbitrary polynomials in R[x] of degree n and m, respec-

tively.
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1. We can compute f + g with O(n+m) operations in R.

2. We can compute fg with O(nm) operations in R.

3. If g 6= 0 and the leading coefficient of g is a unit in R, we can compute q, r ∈ R[x]
such that f = gq + r and deg(r) < deg(g) with O(deg(g) deg(q)) operations in R.

Remark A.1.4. Throughout the book [vzGG13], the authors discuss four algorithms to

do fast multiplication of polynomials, the classical one, Karatsuba ([ Ibid., §8.1]), Fast

Fourier Transform (FFT) ([ Ibid., §8.2]) and Shönhage & Strassen ([ Ibid., §8.3]. Due to

the variety of multiplication algorithms, we introduce the following definition.

Definition A.1.5. Let R be a commutative ring with 1. We call a functionM : N −→ R>0

a multiplication time for R[x] if polynomials in R[x] of degree lest than n can be multiplied

using at most M(n) operations in R.

The following table summarizes the multiplication times for the algorithms mentioned

above.

Algorithm M(n)

Classical 2n2

Karatsuba O(n1.59)

FFT O(n log(n))

Shönhage & Strassen O(n log(n) log(log(n)))

A.2 Representatives for the edges of Γ0 \ T

In the first part of this section, we recall some definitions, in order to fix the notation. We

define the Iwahori subgroup of GL2(K∞) as

I :=

{(
a b
c d

)
∈ GL2(O∞)

∣∣∣∣ c ≡ 0 (mod π)

}
. (A.1)

We denote by I∞ = IK×
∞. Analogously, K and K∞ denote the groups GL2(O∞) and

GL2(O∞)K×
∞, respectively.
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In the rest of this appendix, we denote by Γ0 the group GL2(A) and by Γ0(N) the subgroup

of Γ0 consisting of matrices which are upper triangular modulo N , where N is a polynomial

in A = Fq[T ].

The Bruhat-Tits tree for GL2(K∞) is denoted by T (cf. §2.4), while the quotients Γ0 \ T
and Γ0(N) \ T are denoted by G1 and GN , respectively. We use also the notation GN,M for

the quotient graph GN with the cusps up to level M .

The classes in GL2(K∞)/I∞ will be denoted by [·]1 and the classes in GL2(K∞)/K∞ by

[·]0. Also the classes of edges and vertices in the double quotient Γ0 \T are denoted by J·K1
and J·K0, respectively. In the case of the quotient graph by the subgroup Γ0(N) we add

the subindex N .

The edges and vertices of a graph G will be denoted by Y (G) and X(G), respectively.

Notation: Let H be a subgroup of a group G. We say that S = {s1, s2, ...} ⊆ G is a set

of representatives for the quotient H \ G if for all g ∈ G, there exist h ∈ H and a unique

si ∈ S such that g = hsi. Analogously for H1 and H2 subgroups of G, we say that S is a set

of representatives for the double quotient H1 \G/H2 if for all g ∈ G, there exist h1 ∈ H1,

h2 ∈ H2 and a unique si ∈ S such that g = h1sih2.

We know that G1 is isomorphic to the subgraph in T whose vertices are {[k, 0]}k>0 (cf.

Lemma 2.4.4 for the definition). The following theorem (cf. [Ser03, p. 87]) gives a set of

representatives for the vertices of G1.

Proposition A.2.1. A set of representatives for Γ0 \GL2(K∞)/K∞ is given by
{
Λn =

(
1 0

0 πn

)
for n > 0

}
.

That is, given g ∈ GL2(K∞) there exist a unique n > 0, γ ∈ Γ0 and α ∈ K∞ such that

g = γΛnα.

Notation: Let g ∈ GL2(K∞), we say that the vertex represented by g has “level” n if

g ∈ JΛnK0.

In [But07, Lemma 18] one can find a constructive proof of Proposition A.2.1. There, the

author explains how to decompose any g ∈ GL2(K∞) as g = γΛnα. So in this appendix

we assume that we already have an algorithm that allows us to write such decomposition.
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Before giving a set of representatives for the edges of G1 we need to define some functions

and sets that will be useful in this section. Let us define first the function origin as follows

o1 := Γ0 \GL2(K∞)/I∞ −→ Γ0 \GL2(K∞)/K∞ . (A.2)

JgK1 7−→ o1(JgK1) = JgK0

That is, given g ∈ GL2(K∞) we define the origin of the class Γ0gI∞ to be the vertex

represented by Γ0gK∞. The function o1 is surjective and is not injective. So it is important

to describe the fibers of classes in Γ0 \GL2(K∞)/K∞.

Let g ∈ GL2(K∞) then

o−1
1 (Γ0gK∞) = {Γ0hI∞ | Γ0hK∞ = Γ0gK∞} .

Let g1, g2 ∈ GL2(K∞) such that Γ0g1K∞ = Γ0g2K∞ and Γ0g1I∞ 6= Γ0g2I∞. That is, g1

and g2 represent different edges with the same origin, then g1 ∈ Γ0g2K∞ and g1 /∈ Γ0g2I∞.

Hence in order to understand how many classes there are in o−1
1 (Γ0gK∞) we need to

study the number of orbits of Γ0 in g2K∞/I∞, where Γ0 acts g2K∞/I∞ via left matrix

multiplication.

A straightforward calculation shows that there is a 1-1 correspondence between K∞/I∞ =

K/I and P1(Fq) given by

K/I −→ P1(Fq).

( a ∗
c ∗ ) I 7−→ (a (mod π) : c (mod π)).

Hence a set of representatives for K/I is

R =

{(
s 1
1 0

) ∣∣∣∣ s ∈ Fq
}⋃{(

1 0
0 1

)}
.

Proposition A.2.2. Let g ∈ GL2(K∞).

1. If g = I2 then #Γ0 \K∞/I∞ = 1. That is, Γ0 acts transitively on K∞/I∞.

2. If g /∈ JI2K1 then #Γ0 \ gK∞/I∞ = 2 and Γ0 \ gK∞/I∞ = {Γ0gI∞,Γ0gs1I∞} where

s1 = ( 0 1
1 0 ) .

117



A. Algorithms for the Quotient graph

Proof. 1. Let ( s 1
1 0 ) be an element of R, for a

(
α β
γ δ

)
∈ Γ0 we have

(
α β

γ δ

)(
s 1

1 0

)
=

(
αs+ β α

γs+ δ γ

)
. (A.3)

From (A.3) we see that I2 = ( 1 0
0 1 ) is an element of this orbit since ( 0 1

1 −s ) ∈ Γ0 and

( 0 1
1 −s ) (

s 1
1 0 ) = ( 1 0

0 1 ). Then the orbit of I2 intersect all orbits of ( s 1
1 0 ) for all s ∈ Fq.

Hence there exists only one orbit and #Γ0 \K∞/I∞ = 1.

2. If g /∈ JI2K, without loss of generality (Prop. A.2.1) we may consider g =
(
π−n 0
0 1

)
for

some n > 1, that is,

g =

(
1 0

0 πn

)(
π−n 0

0 π−n

)

= Λn

(
π−n 0

0 π−n

)
.

First note that for s, s′ ∈ Fq with s 6= s′ the orbits of ( s 1
1 0 ) and of ( s

′ 1
1 0 ) intersect

each other, indeed, let γ =
(
1 Tn(s′−s)
0 1

)
∈ Γ0, then γ verifies

(
1 T n(s′ − s)
0 1

)(
sT n T n

1 0

)
=

(
s′T n T n

1 0

)
.

On the other hand, for all s ∈ Fq the orbit of I2 does not intersect the orbit of ( s 1
1 0 ).

It is enough to prove that Γ0g
(n)
0 I∞ 6= Γ0g

(n)
0 ( 0 1

1 0 ) I∞. Suppose to the contrary that

they are equal, then we have

Γ0g
(n)
0 I∞ = Γ0g

(n)
0 s1I∞ ⇐⇒ s1 ∈ g(n)

−1

0 Γ0g
(n)
0 I∞

⇐⇒ g
(n)−1

0 Γ0g
(n)
0 ∩ I∞s1 6= ∅.

Let
(
α β
γ ρ

)
in Γ0 then we have

g
(n)−1

0

(
α β

γ ρ

)
g
(n)
0 =

(
α βT−n

γT n ρ

)
. (A.4)

On the other hand, for ( a bc d ) in I∞ we have
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A.2. Representatives for the edges of Γ0 \ T

(
a b

c d

)
s1 =

(
a b

c d

)(
0 1

1 0

)

=

(
b a

d c

)
. (A.5)

Then from equations (A.4) and (A.5) we have d = γT n. But d ∈ O∞ and val(γT n) >

n > 1 since n > 0, and we get a contradiction. The claim follows.

Remark A.2.3. From Proposition A.2.2 we have

a) The fiber o−1
1 (JI2K0) has only one element. That is, there is only one edge with origin

JI2K0.

b) If g 6= I2 there are exactly two edges with origin JgK0, namely, the class JgK1 and

Jgs1K1 where s1 = ( 0 1
1 0 ).

The following is a portion of the graph Γ0 \ T.

JΛ0K0 JΛ1K0 JΛ2K0 JΛ3K0 . . .

g
(0)
0 g

(1)
0 g

(2)
0 g

(3)
0

g
(−1)
0 g

(−2)
0 g

(−3)
0 g

(−4)
0

Corollary A.2.4. The set

RΓ0 =

{(
π−n 0

0 1

) ∣∣∣∣ n > 0

}
⋃
{(

0 πn

1 0

) ∣∣∣∣ n < 0

}
(A.6)

is a set of representatives for the edges of Γ0 \ T.

Let us denote the elements of RΓ0 by g
(n)
0 , i.e., g

(n)
0 =

(
π−n 0
0 1

)
for n > 0 and g

(n)
0 = ( 0 πn

1 0 )

for n < 0. Then given g ∈ GL2(K∞) there exist n ∈ Z, γ ∈ Γ0 and κ ∈ I∞ such that

g = γg
(n)
0 κ.

Proof. From Proposition A.2.1 we have that the matrix Λn = ( 1 0
0 πn ) for n > 0, is a

representative for the vertices of X(G1).

If n = 0 then Λ0 = g
(0)
0 is the unique element in o−1

1 (JI2K0).
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If n > 1 we have

g
(n)
0 =

(
1 0

0 πn

)(
π−n 0

0 π−n

)

= Λn

(
π−n 0

0 π−n

)
.

Also we have the equality

g
(−n)
0 =

(
1 0

0 πn

)(
0 1

1 0

)(
π−n 0

0 π−n

)

= Λns1

(
π−n 0

0 π−n

)
. (A.7)

Then, by Proposition A.2.2, g
(n)
0 and g

(−n)
0 are representatives for the two edges with origin

JΛnK0

Remark A.2.5. Given a g in GL2(K∞) we can use the algorithm from [But07] to decom-

pose g as g = γΛnα for some n > 0, γ ∈ Γ0 and α ∈ K∞. From Proposition A.2.2 we see

that g ∈ Jgn0 K1 if and only if α ∈ I∞.

We explain now how to decompose an element g ∈ GL2(K∞) as g = γg
(n)
0 κ for some n ∈ Z,

γ ∈ Γ0 and κ ∈ I∞.

Let us consider the class of g in Γ0 \GL2(K∞)/K∞ then

g = γΛmα

where γ ∈ Γ0, α ∈ K∞, Λm = ( 1 0
0 πm ) and m > 0. Write α = rι′ for ι ∈ I∞ and r ∈ R

as above (cf. A.2.2) and Λm = g
(m)
0 ( π

m 0
0 πm ). Then g = γg

(m)
0 rι for a unique m > 0 and

ι = ι′ ( π
m 0
0 πm ).

Case 1 If r = ( 1 0
0 1 ) then we are done.

Case 2 If m = 0, then g
(m)
0 = ( 1 0

0 1 ) and γr ∈ Γ0and we are done.
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Case 3 If m > 1 we may assume that r = ( s 1
1 0 ) for some s ∈ Fq. Then we have

γ

(
π−n 0
0 1

)(
s 1
1 0

)
ι = γ

(
π−n 0
0 1

)(
1 s
0 1

)(
0 1
1 0

)
ι

= γ

(
π−n 0
0 1

)(
1 s
0 1

)(
πn 0
0 1

)(
π−n 0
0 1

)(
0 1
1 0

)
ι

= γ

(
1 sT n

0 1

)(
0 π−n

1 0

)
ι

= γ

(
1 sT n

0 1

)
g
(−m)
0 ι

The previous discussion is easily transformed into an algorithm which allows us to find the

corresponding decomposition of g in the quotient Γ0 \GL2(K∞)/I∞.

Algorithm 3: decom

Input: A matrix g ∈ GL2(K∞).

Output: A list D = [n, γ, κ] such that g = γg
(n)
0 κ with γ ∈ Γ0 and κ ∈ I∞.

1: Write g as g = γΛnα for γ ∈ Γ0 and α ∈ K∞ ⊲ cf.[But07, Lemma 18]

2: if α ∈ I∞ then

3: define D = [n, γ, α]

4: else

5: if n = 0 then

6: search c ∈ Fq such that ( c 1
1 0 )α ∈ I∞

7: define D = [n, γ ( 0 1
1 −c ) , (

c 1
1 0 )α]

8: if n = 1 then

9: search c ∈ Fq such that ( c 1
1 0 )α ∈ I∞

10: define D = [−1, γ ( 0 1
1 −c ) , δ (

c 1
1 0 )αδ

−1]

11: end if

12: if n > 1 then

13: write g as gδ = γΛn−1α

14: define D = [−n, γ, δαδ−1
(
πn−1 0
0 πn−1

)
]

15: end if

16: end if

17: end if
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A. Algorithms for the Quotient graph

18: Return D

The function origin (A.2) allows us to define another function called terminus, as follows

t1 : Γ0 \GL2(K∞)/I∞ −→ Γ0 \GL2(K∞)/K∞

JgK1 7−→ t1(JgK1) = o1(JgδK1)

where the matrix δ is the non trivial element in the quotient class of N/I, with N is the

normalizer of I in GL2(K∞).

We conclude this section by giving some diagrams that are very useful to describe some of

the algorithms that are consequence of Algorithm 3. Let us consider first

GL2(K∞)/I∞ = Y (T)
o

//

prY
��

GL2(K∞)/K∞ = X(T)

prX
��

Γ0 \GL2(K∞)/I∞ = Y (G1) o1
// Γ0 \GL2(K∞)/K∞ = X(G1).

Where the maps prY and prX are the projections in the quotient graph of edges and

vertices, respectively. They are defined as follows

prY : GL2(K∞)/I∞ −→ Γ0 \GL2(K∞)/I∞

[g]1 7−→ JgK1

and

prX : GL2(K∞)/K∞ −→ Γ0 \GL2(K∞)/K∞ .

[g]0 7−→ JgK0

It is straightforward to verify that

prX(o([g]1)) = o1(prY ([g]1)). (A.8)

From §2.8 we have that the quotient graph by the congruence subgroup Γ0(N) for N ∈
Fq[T ], is a covering of the tree G1. The functions origin and terminus are also well defined

here

oN : Γ0(N) \GL2(K∞)/I∞ −→ Γ0(N) \GL2(K∞)/K∞

JgK1,N 7−→ JgK0,N
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and

tN(JgK1,N) = oN(JgδK1,N).

We also have well defined projection maps from T to Γ0(N) \ T as follows

GL2(K∞)/I∞ = Y (T)
o

//

prYN
��

GL2(K∞)/K∞ = X(T)

prXN

��

Γ0(N) \GL2(K∞)/I∞ = Y (Γ0(N) \ T) o1,N
// Γ0(N) \GL2(K∞)/K∞ = X(Γ0(N) \ T),

with the maps prYN and prXN
defined as

prYN : GL2(K∞)/I∞ −→ Γ0(N) \GL2(K∞)/I∞

[g]1 7−→ JgK1,N

and

prXN
: GL2(K∞)/K∞ −→ Γ0(N) \GL2(K∞)/K∞

[g]0 7−→ JgK0,N .

A set of representatives for Γ0(N) \GL2(K∞)/I∞

We can not define a canonical set of representatives for the double quotient

Γ0(N) \ GL2(K∞)/I∞. However, after fixing a set SN of representatives for Γ0(N) \ Γ0,

we may use the fact that Γ0(N) \ T is a covering of G1 to give a non-canonical set of

representatives for the edges of Γ0(N) \ T.

Since Γ0 is discrete in GL2(K∞), the stabilizers in Γ0 of edges or vertices are finite. More

specifically, define

B0 = GL2(Fq)

and for n > 1

Bn =

{(
a b
0 d

) ∣∣∣∣ a, c ∈ F×
q , b ∈ Fq[T ] with deg(f) 6 n

}
. (A.9)

Then for n > 0, Bn is the stabilizer in Γ0 of the vertex represented by Λn in T. Analogously

Bn∩Bn+1 is the stabilizer in Γ0 of the edge with origin [Λn]0 and terminal [Λn+1]0 (cf. [Ser03,
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Prop. 3, p. 87]). Note that Bn ∩ Bn+1 = Bn for n > 1 and B0 ∩ B1 is the set of upper

triangular matrices with entries in Fq.

Let SN = {s1, ..., sr} be a set of representatives for Γ0(N) \ Γ0. Then given γ ∈ Γ0 there

exits a β ∈ Γ0(N) and a unique si ∈ SN such that γ = βsi.

In [But07] there is a method to calculate SN (cf. [Ibid., Lemma 1.22]), actually we also

have the following correspondence (cf. [Ibid., Cor. 1.23]).

Proposition A.2.6. Let N ∈ Fq[T ]. Then Γ0(N) \ Γ0
∼= P1(Fq[T ]/N).

Once the set SN is fixed, every g ∈ GL2(K∞) can be written as

g = γg
(n)
0 κ γ ∈ Γ0 and κ ∈ I∞

= βsig
(n)
0 κ.

Therefore, given si, sj ∈ SN two matrices such that Jsig
(n)
0 K1,N = Jsjg

(n)
0 K1,N then there

exists b ∈ Bn such that sibs
−1
j ∈ Γ0(N). So, for each class in Γ0(N) \ GL2(K∞)/I∞

representing an edge e, we choose one representative se of SN and consider the subset

S̃N ⊂ SN consisting of a representative for each e ∈ GN,M . This set S̃N allows us to define

a set of representatives for Γ0(N) \GL2(K∞)/I∞ as

RN := {seg(n)0 | se ∈ S̃N and g
(n)
0 ∈ RΓ0}. (A.10)

A.3 Lifting cycles to T

The Algorithm 3 may be used to lift a cycle in Γ0(N)\T to a path in T without backtracking.

Let C = {ẽ0, ..., ẽh−1} be a cycle in GN such that t1,N(ẽh−1) = o1,N(ẽ0) and t1,N(ẽi) =

o1,N(ẽi+1). Then there exists a sequence of consecutive edges {e0, e1..., eh−1} in T such that

o(e0) is Γ0(N)-equivalent with t(eh−1) and prYN (ei) = ẽi for all i in {0, 1, ..., h− 1}.

It is enough to see how to lift two consecutive edges in the cycle C to two consecutive edges

on the tree T. Let us suppose that gi ∈ GL2(K∞) with JgiK1,N = ẽi and ei ∈ T is a lifting

of ẽi. We want to find a matrix gi+1 ∈ GL2(K∞) such that it lifts ẽi+1 to an edge ei+1 ∈ T

with t(ei) = o(ei+1).

Claim: The matrix gi+1 = giδτaδ for some a ∈ Fq were δ = ( 0 1
π 0 ) and τa = ( π a

0 1 ).
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We have that t([gi]1) = o([giδ]1) and multiplication by τa, gives on the tree T all the edges

whose terminal is the vertex o([giδ]1) (see figure, the blue edges corresponds to the wanted

path)

[gi]1[gi+1]1

τa

[giδ]1

[giδτa]1

q edges

that is o([giδ]1) = t([giδτa]1), by definition of the function origin and terminal we have

t([gi]1) = o([giδτaδ]1).

Hence the q edges with origin t(ei) are given by [giδτaδ]1 for all a ∈ Fq. So one of these

edges project to ẽi+1 or equivalently prYN ([giδτaδ]1) = ẽi+1, which proves the claim.

We can summarize the previous discussion with the following algorithm.

Algorithm 4: FindPath

Input: A list C = [g0, g1, ..., gr−1] of length r of matrices in GL2(K∞) representing a

cycle in Γ0(N) \ T, that is, tN(JgiK1,N ) = oN(Jgi+1K1,N) for all i ∈ {0, ...r − 2} and

tN(Jgr−1K1,N) = oN(Jg0K1,N).

Output: A list P = [h0, h1, ..., hr−1] of length r of matrices in GL2(K∞) representing a

path in T and such that o([h0]1) is Γ0(N)-equivalent to t([hr−1]1).

1: Make a list L with the elements of the finite field Fq

2: set P = [g0]

3: for i from 1 to r − 1 do

4: let n = #P and set gaux = P[n] ⊲ gaux is the last element of P

5: bool←false

6: k ← 1

7: while bool=false do

8: a← L[k]

9: set haux = gauxδτaδ
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10: if pr1,N([haux]1) = gi+1 then

11: bool ← true

12: end if

13: k ← k + 1

14: end while

15: append haux to P

16: end for

17: Return P

A.4 Finding the representative

In many algorithms, it is necessary to work with elements in GL2(K∞) which belong to the

same class in Γ0(N)\GL2(K∞)/I∞. So given two different matrices g1 and g2 in GL2(K∞)

such that Jg1K1,N = Jg2K1,N , we want to find γ ∈ Γ0(N) and κ ∈ I∞ such that g1 = γg2κ.

Using Algorithm 3 we can give an efficient method to write such decomposition. We present

first the following result as a trivial corollary of Proposition A.2.4. Nevertheless we give a

constructive proof which gives Algorithm FindTheRep.

Corollary A.4.1. Let g1, g2 ∈ GL2(K∞). Suppose that Jg1K1,N = Jg2K1,N . Then there is

an algorithm to find γ ∈ Γ0(N) and κ ∈ I∞ such that g1 = γg2κ.

Proof. Let g1, g2 ∈ GL2(K∞) be two matrices Γ0(N)-equivalent. Then g1 and g2 are in the

same class in GL2(A)\GL2(K∞)/I∞, therefore there exist s1, s2 ∈ GL2(A) and κ1, κ2 ∈ I∞

such that

g1 = s1g
(n)
0 κ1,

g2 = s2g
(n)
0 κ2

where g
(n)
0 is the representative for the quotient GL2(A)\GL(K∞)/I∞ described in Propo-

sition A.2.4.
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Since g1 and g2 are Γ0(N)-equivalent we have

Γ0(N)s1g
(n)
0 I∞ = Γ0(N)s2g

(n)
0 I∞ ⇐⇒ s1g

(n)
0 ∈ Γ0(N)s2g

(n)
0 I∞

⇐⇒ I2 ∈ s−1
1 Γ0(N)s2g

(n)
0 I∞(g

(n)
0 )−1

⇐⇒ s−1
1 Γ0(N)s2 ∩ g(n)0 I∞(g

(n)
0 )−1 6= ∅

⇐⇒ s−1
1 Γ0(N)s2 ∩

(
Γ0 ∩ g(n)0 I∞(g

(n)
0 )−1

)
6= ∅.

An easy calculation shows that

Γ0 ∩ g(n)0 I∞(g
(n)
0 )−1 = Bn,

where Bn is the set defined in (A.9). Then there exists a b ∈ Bn and γ ∈ Γ0(N) such that

s−1
1 γs2 = b. A direct calculation shows that setting

κ = κ−1
2 (g

(n)
0 )−1b−1g

(n)
0 κ1

satisfy g1 = γg2κ. We only need to verify that κ is an element of I∞. Indeed κ−1
2 and κ1

are in I∞, and since b ∈ g(n)0 I∞(g
(n)
0 )−1 we have (g

(n)
0 )−1b−1g

(n)
0 ∈ I∞.

Algorithm 5: FindTheRep

Input: Two matrices g1 and g2 in GL2(K∞) that are Γ0(N)-equivalent.

Output: Two Matrices γ ∈ Γ0(N) and κ ∈ I∞ such that g1 = γg2κ.

1: Use Algorithm 3 to write

g1 = s1g
(n)
0 κ1

g2 = s2g
(n)
0 κ2

2: calculate the stabilizer Bn

3: bool ← false

4: i← 1

5: while bool=false do

6: b← Bn[i]
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7: if s1bs
−1
2 ∈ Γ0(N) then

8: bool ← true

9: end if

10: i← i+ 1

11: end while

12: Return

γ = s1bs
−1
2 and

κ = κ−1
2 (g

(n)
0 )−1b−1g

(n)
0 κ1.
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B. Algorithms for the table

In this appendix we describe the main algorithms that we use in the calculation of the table

and the integral. The first section deals with the implementation of the Hecke operator U∞,

the algorithm that allows us to build up the table and the one that we use to decompose

functions in FI as a product of elements in the pseudo-basis BM .

In the second section we give the algorithm to calculate the valuation of the integral and

the one to lift a path in the tree T to a path in Ω. Finally we explain how to calculate the

Tate parameter and give a proof of Theorem 5.6.1.

B.1 Algorithms for the calculation of the table

The Hecke Operator U∞

We recall the definition of the Hecke operator

(U∞φ) (γ)(f(t)) :=
∏

a∈Fq

φ (γτa) f(πt+ a)

for φ ∈ S, f ∈ FI and γ ∈ Γ \ PGL2(K∞).

A crucial fact that helps us to calculate U∞ quickly is the I∞-equivariance. As we already

explained in Chapter 4, it is enough to calculate the values of U∞ in a set of representatives

RN of the edges of the quotient Γ0(N) \GL2(K∞)/I∞ up to some level M .

Therefore for each γrep ∈ RN

(U∞φ) (γrep)(1 + ξδπitj) :=
∏

a∈Fq

φ (γrepτa) (1 + ξδπi(πt+ a)j). (B.1)
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B. Algorithms for the table

From the definition of the operator U∞, we have that for each a ∈ Fq, we need to find the

edge of GN,M corresponding to γrepτa. However, we only know the values of φ in elements of

RN . Via Algorithm 5, we find the corresponding representative of γrepτa in RN as follows:

we consider γrepτa as an element of GL2(K∞)/I∞ and use the projection function prYN to

find ga ∈ GL2(K∞) such that

JgaK1 = JγrepτaK1

= Jγ̂repK1

for some γ̂rep ∈ RN . Then using Algorithm 5, we can find γ ∈ Γ0(N) and κ ∈ I∞ such that

γrepτa = γγ̂repκ.

Plugging in this in equation (B.4) we get

(U∞φ) (γrep)(1 + ξδπitj) =
∏

a∈Fq

φ (γrepτa) (1 + ξδπi(πt + a)j)

=
∏

a∈Fq

φ (γγ̂repκ) (1 + ξδπi(πt+ a)j)

=
∏

a∈Fq

φ (γ̂rep) (κ ∗ (1 + ξδπi(πt+ a)j)).

In the last equality we use the Γ0(N)-invariance of the function φ, Lemma 4.3.7 and the

action defined in (4.6). From the preceding discussion we see that for a fixed γrep ∈ RN in

order to evaluate φ(γrep)(fij) for fij ∈ BM we need to calculate γrepτa in many instances.

Remark B.1.1. We save time by precalculating the decomposition γrepτa = γγ̂repκ for all

a ∈ Fq and γrep ∈ RN . So for each γrep we store in the data structure of the quotient graph

GN,M the list [γrep, a, γ̂rep, κ] (called “signature”) to indicate that γrepτa = γγ̂repκ for all

a ∈ Fq.

Therefore the computation of the operator U∞ breaks up in two parts. The first one is

carried out with the quotient graph GN,M and consists in the elaboration of the list with

the signatures [γrep, a, γ̂rep, κ] and the second one takes place during the calculation of the

table and reduces to read the signatures from a list.

Observe that the calculation of the operator U∞ does not depend on the harmonic cocycle

explicitly.
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B.1. Algorithms for the calculation of the table

The table

Let ϕ ∈ Hnew
! (T,Z)Γ0(N), as we have seen in §3.1.1, the harmonic cocycle ϕ gives rise

to a measure µϕ on M0(P
1(O∞),Z)Γ. The objective of this subsection is explain how to

calculate the table that allows us to evaluate any integral of the form

∫
×
O∞

f dµϕ

for f ∈ FI with accuracy up to πM , where M is an integer > 1.

In §4.3 we explained already how to fill out this table, however, the construction given

there is slightly different from the actual implementation. Since this is the main algorithm

of the whole work, we think it is worthy to explain the actual implementation.

Let us recall some facts and definitions from §4.3. Let M > 1 be an integer, the associated

pseudo-basis is (cf. Lemma 4.3.1)

BM := {1 + ξδπitj |(i, j) ∈ FI , i ≤M, δ = 0, ..., d− 1}

with d the degree of the extension Fq2 over Fp.

A straightforward calculation shows that the cardinality of BM is

d

(
(M + 1)(M + 2)

2
− 1

)
=
d

2
(M2 + 3M).

For each γrep ∈ RN we want to calculate

Φµϕ(γrep)(1 + ξδπitj) =

∫
×
O∞

(1 + ξδπitj) d(γ−1
rep ∗ µϕ). (B.2)

As we discussed in §4.3, for each γrep ∈ RN and a fixed δ0 we have to calculate 1
2
(M2+3M)

integrals, hence to each γrep we attach d “triangular matrices” Tγrep,δ for varying δ) whose

entries are the integrals of the form (B.2) (for functions f of BM,δ (cf. (4.10)). For the

implementation we condense all these matrices in one matrix T of size #RN ×#BM .

First order the pseudo-basis BM increasingly, according to the order relation defined in

§4.3. Observe that the constants correspond to the functions of BM with j = 0. There are

exactly Md constants and their integrals are located in the first Md columns of the matrix
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B. Algorithms for the table

T. The algorithm consists of two stages. In the first stage we calculate the values of the

function Φµϕ(γrep) at the constants, this can be made very quickly using the formula

Φµϕ(γrep)(1 + ξδπi) =
(
1 + ξδπi

)ϕ(γrepe0)
. (B.3)

In the second stage, we calculate the value of the integral at the non-constant functions,

starting from the smallest one in BM . Note that we start with functions of the form

1 + ξδπM tj for δ ∈ {0, ..., d − 1} an j from 0 to M . In each case the resulting functions

after applying the U∞ operator factorize as a product of constants, and the value of the

integral is already known. After this is done for all representatives in RN , we proceed to

apply U∞ to functions of the form 1+ ξδπM−1tj, then the exponents of π increase in 1. So

the new factors appearing are either constants or of the form 1 + ξδπM tj . In each case we

know the integral.

Continuing in this fashion, we apply the U∞ operator to each element of BM as many times

as necessary, until we get the integral to the wanted precision (cf. §4.3).

Let us suppose that we want to calculate U∞(φ)(γrep)(1 + ξδπitj) and suppose that γrep

represents an edge of level l over a cusp of GN,M . Then by definition of the U∞ we have

(U∞φ) (γrep)(1 + ξδπitj) :=
∏

a∈Fq

φ (γrepτa) (1 + ξδπi(πt+ a)j). (B.4)

So after applying the operator U∞ we need to calculate over the edges given by γrepτa of

level l − 1 at a function f with valπ(t) = i+ 1. Observe that each time that we apply the

operator U∞ we move over the cusp in direction the compact part of GN,M . The integral is

1 if after applying successively the operator U∞ we are still over the cusp and the valuation

in π of the function is M , this happens if and only if

i+ l > deg(N) +M.

Remark B.1.2. We use the previous inequality to rule out in the calculation of the table

the functions and edges for which we know a priori that the integral is 1.
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B.1. Algorithms for the calculation of the table

Algorithm 6: TheTable

Input: The data structure GN,M corresponding to the quotient graph Γ0(N)\T up to level

M . A harmonic cocycle ϕ with rational Hecke eigenvalues. This is actually a list with

all the values of ϕ at the edges of GN,M .

Output: A matrix T with entries in 1 + πFq2JπK with all the values of the integrals of

functions in BM . (The entries of T are elements in 1 + πFq2JπK modulo πM).

1: Set RN to be the list of representatives of the edges of the graph Γ0(N)\T up to depth

M

2: initialize a matrix T of ones of size n×m, where n = #RN and m = #BM

3: for s from 1 to n do

4: for k from 1 to Md do ⊲ the constants are the last Md entries

5: T[s][k]← BM [k]ϕ(RN [s]e0) ⊲ Here we fill the entries corresponding to the

constants.

6: end for

7: end for

8: for s from 1 to n do

9: for k from Md+ 1 to m do

10: f ← BM [k]

11: set γrep ← RN [s]

12: set level(γrep) the level of the edge given by γrep ⊲ apply Algorithm 3

13: set ii = valπ(f − 1)

14: if ii+ level(γrep)− deg(N) < M then ⊲ cf. Remark B.1.2

15: set I ← 1

16: for a ∈ Fq do ⊲ we start to apply the U∞ operator

17: read from GN,M the signature [γrep, a, γ̂rep, κ]

18: s0 ← Position (RN , γ̂rep)

19: f ← f〈τaκ−1〉
20: set a list Lf with the factors of f ⊲ apply Algorithm 7

21: for l in Lf do

22: k0 ← Position (BM , l[1])

23: I ← I × T[s0][k0]l[2] ⊲ the value T[s0][k0] is known

24: end for
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B. Algorithms for the table

25: end for

26: T[s][k]← I

27: end if

28: end for

29: end for

30: Return T

Remark B.1.3. 1. Note that after filling the columns that correspond to the constants,

we continue filling the table T from the “left to the right”. In the step 16 we apply

the Hecke operator U∞. So if we are in the column j-th we only need values of the

integral already stored in other columns on the left.

2. We do not need to give in the input the integer M since the basis BM is stored in the

data structure of GN,M .

Let us suppose that there are h elements inHnew
! (T,Z)Γ0(N) with rational Hecke eigenvalues.

In this case there are h isogeny classes of the given conductor N∞. To find these classes

we need to calculate h integrals and therefore h tables. We save time if we make all the

tables simultaneously as follows.

Let us assume that H !(T,Z)
Γ0(N) has dimension g > h. Let B := {ψ1, ..., ψg} be its

standard basis as defined in §2.9. Let also {ϕ1, ..., ϕh} be the set of harmonic cocycles with

rational Hecke eigenvalues, then

ϕ =

g∑

j=1

cijψj for cij ∈ Z.

Since the integral is multiplicative, we have

cϕi
(γ) =

∫

∂Ω

× z0 − t
γz0 − t

dµϕi
(t)

=

g∏

j=1

(∫

∂Ω

× z0 − t
γz0 − t

dµψj
(t)

)cj
.

So we can make tables for all the ψ’s instead of calculate many tables for each harmonic

cocycle with rational Hecke eigenvalues. The reason is that for each entry of the table
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B.1. Algorithms for the calculation of the table

we need to calculate the operator U∞ and it does not depend on the harmonic cocycle

explicitly.

For the implementation we take Algorithm 6 we need to initialize g matrices of 1’s instead

of only one and modify the steps 3-7 to calculate the values for the integral at the constant

at all the elements in the standard basis instead of doing it only for ϕ.

Analysis for the algorithm TheTable

For the cost analysis of the algorithm to calculate the table, we need to consider separately

two loops. The first one is the loop to calculate the integral at the constants and the second

one is the part in which we apply the operator U∞.

Before starting with the analysis for the running time of Algorithm 6, we need a bound for

the number of edges of the quotient graph GN,M . We know that #GN,M = #CN +#SPN ,

where CN and SPN are the compact part and the cusps of GN,M , respectively.

Unfortunately there is no easy formula for the compact part. However we can use the fact

that the quotient graph GN,M is a covering of G1 to estimate the number of edges in the

compact part as #SN deg(N), where SN is a set of representatives for Γ0(N) \ Γ0. From

[Non01, p. 68] we have that if N =
∏s

i=1 f
ri
li

with fli a prime polynomial of degree li then

#SN =

s∏

i=1

qli(ri−1)(qli + 1)

and

#SPN = 2s +
κ(N)− 2s

q − 1

where κ(N) :=
∏s

i=1

(
qli⌊(ri−1)/2)⌋ + qli⌊ri/2)⌋

)
. Then #SN is a polynomial in q of degree

deg(N). A bound for #CN is 2sqdeg(N) deg(N) and for #SPN is qdeg(N)/22s. Therefore the

number of edges in G(N,M) is bounded by

2sqdeg(N) deg(N) + 2sMqdeg(N)/2. (B.5)

For the first loop (steps 3-7), note that we are exponentiating polynomials in π of the

form 1 + ξsπi for 1 6 i 6 M and this can be done via binomial expansion (1 + ξsπi)k =
∑k

l=0

(
k
l

)
(ξs)lπil and using the fact that we are working modulo πM+1, so that is suffices to
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B. Algorithms for the table

compute for l in the range 0, ..., M
i
is bounded by M/i. Summing over the two loops the

number of operations is bounded by

n
d−1∑

δ=0

M∑

i=1

M/i 6 ndM(1 + logM)

using that
∑M

i=1 1/i 6 1 + logM and where n = #GN,M . Hence the cost for all iterations

of the loop is

2sMd (1 + logM)
(
qdeg(N) deg(N) + 2sMqdeg(N)/2

)
. (B.6)

Examining the second loop shows that the number of operations inside it, depends on the

condition “if” (step 14) and the “for” loop in step 16. So we need to count the number of

edges in GN,M and functions in BM that satisfy the inequality i+level(γrep)−deg(N) < M .

Let us first to consider some particular cases. If i = M then the inequality becomes

level(γrep) < deg(N), then there are #CNMd edges and functions that verify the condition

in step 14.

If i =M−1 then we have level(γrep)−1 < deg(N), in this case there are (#CN+#SPN)(M−
1)d edges and functions that satisfy the inequality. We can see here that for i = M − k
the inequality becomes level(γrep)− k < deg(N) then there are (#CN + k#SPN)(M − k)d.
Therefore we can have that the number of edges and functions that verify the condition in

step 14 is

#CNMd + ...+ (#CN + k#SPN) (M − k)d+ ... + (#CN + (M − 1)#SPN )d.

A straightforward calculation shows that the last expression simplifies to

d

(
#CN

2
(M2 +M) +

#SPN

6
(M3 −M)

)
. (B.7)

The loop that starts in step 16 is executed q times and it includes the function to factorize

which has a cost of 5M4 (see the analysis for Algorithm 7). Hence the cost for all iterations

of the second loop is
(
5dqM4

(
#CN

2
(M2 +M) + #SPN

6
(M3 −M)

))
. Which is also a bound

for the cost of the algorithm, since the total of operations in the algorithm is the sum of

the costs in the two loops but the dominant cost of the algorithm is the second loop. We

may summarize the previous discussion in the following proposition.
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B.1. Algorithms for the calculation of the table

Proposition B.1.4. The Algorithm 6 can be performed using no more that

5

6
dM72sq

n
2
+1 +

5

2
2sdM6qn+1n+

1

2
d

(
5qn+12sn− 5

3
2sq

n
2
+1

)
M5

operations, where n is the degree of N .

Factorization

We now consider the problem of factorizing functions in FI . In Chapter 4 we stated the

following lemma, here we give a constructive straightforward proof that will lead us to the

algorithm of factorization.

Lemma B.1.5. Given any function f ∈ FI and any integer M > 1, then there exists a

finite set of indices J ⊆ I and mijδ ∈ {1, 2, ..., p− 1} such that

f ≡
∏

(i,j)∈J
(1 + ξδπitj)mijδ (mod πM+1)

where ξ ∈ Fq2 is a primitive element for the extension over Fp, δ ∈ {0, ..., d − 1} with d

the degree of the extension Fq2 over Fp. The representation is unique modulo p powers of

fijδ = 1 + ξδπitj, so the set

BM := {1 + ξδπitj |(i, j) ∈ FI , i ≤M, δ = 0, ..., d− 1}.

is what we call a multiplicative pseudo-basis.

Proof. For f =
∑

(i,j)∈I aijπ
itj ∈ Fq2JtKJπK we set

valπ(f) = min{i > 0| ∃j > 0 such that aij 6= 0}

(with min∅ = ∞) and for i > 0 we define f [πi] :=
∑

j aijt
j , furthermore for g ∈ Fq2JtK,

valt denotes the usual valuation in t.

Let f = 1 +
∑

(i,j) aijπ
itj in FI , let i0 = valπ(f − 1) and j0 = valt(f [π

i0]). Then we can

write f as

f = 1 + ai0j0π
i0tj0 +

∑

(i,j)6=(i0,j0)∈I
aijπ

itj .
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B. Algorithms for the table

Note that since
{
1, ξ, ξ2, ..., ξd−1

}
is a basis of Fq2 over Fp we have ai0j0 =

∑d−1
s=0 bsξ

s for

bs ∈ Fp. Using this, a straightforward calculation shows that

d−1∏

s=0

(1 + ξsπi0tj0)bs =

d−1∏

s=0

bs∑

k=0

(
bs
k

)
(ξs)k(πi0tj0)k (B.8)

=
d−1∏

s=0

(1 + ξsbsπ
i0tj0 +O(πi0+1))

= 1 +

(
d−1∑

s=0

bsξ
s

)
πi0tj0 +O(πi0+1)

≡ 1 + ai0j0π
i0tj0 (mod πi0+1).

Set fi0j0 =
∏d−1

s=0(1 + ξsπi0tj0)bs ∈ FI . Dividing f by fi0j0 and reducing modulo πM+1 we

get

f0 = f/fi0j0

= (fi0j0 + (f − fi0j0)/fi0j0)
= 1 + (f − fi0j0)f−1

i0j0

= 1 +
∑

j>j0

bi0jπ
i0tj +

∑

i>i0
j>j0

aijπ
itj

I.e., valπ(f0 − 1) > i0 and valt(f0[π
i0 ]) > j0. Note that the factors 1 + ξsπi0tj0 of fi0j0 are

elements of the pseudo-basis BM .

Continuing in this fashion, since the function f0 ∈ FI , we can construct a sequence fk ∈ FI

with (1 +M)valπ(fk − 1) + valt(fk[π
valπ(fk−1)]) strictly increasing and then the procedure

finishes after a finitely number of divisions since we are working modulo πM+1. Defining J

to be the set consisting of indices (ik, jk) such that ik = valπ(fk − 1) and jk = valt(fk[π
ik ])

coming from the step k, we have that

f ≡
∏

(i,j)∈J

∏

δ∈{0,...,d−1}
(1 + ξδπitj)mijδ (mod πM+1)

which follows by construction and equality (B.8).

Remark B.1.6. Note that the factorization of a function f ∈ BM is not unique. Let

fij = 1 + ξδπitj ∈ BM be a factor of a function f with q2| gcd(i, j) then it admit other

representation as a product of elements of BM , namely the q2-th roots of fij.

138



B.1. Algorithms for the calculation of the table

We conclude with Algorithm 7 which is basically a transcription of the proof of Lemma

B.1.5.

Algorithm 7: factorize

Input: A function f in FI and an integer M .

Output: A list L consisting of pairs [fij , eij] with fij ∈ BM , eij > 0 and (i, j) ∈ J ⊂ I

such that f ≡∏fij∈L f
fij
ij (mod πM+1).

1: Initialize L = [ ]

2: define faux = f (mod πM+1)

3: while faux 6= 1 do

4: i0 ← valπ(faux − 1)

5: j0 ← valt(coefficient(i0, faux − 1))

6: write faux = 1 + ai0j0π
i0tj0 +

∑
(i,j)6=(i0,j0)∈I aijπ

itj

7: write ai0j0 =
∑d−1

s=0 bsξ
s with bs ∈ Fp

8: set z = πi0tj0 ⊲ we change the variable since i0 and j0 are fixed

9: set fi0j0 =
∏d−1

s=0(1 + ξsz)bs ⊲ use the binomial expansion

10: compute g = f−1
i0j0

⊲ We make the change of variables again z by πi0tj0

11: faux ← fauxg

12: append to L all the pairs [1 + ξsπi0tj0, bs] from the factorization of fi0j0 (step 9)

13: end while

14: Return L

Analysis for the algorithm factorize

A closer look to the algorithm shows that in order to find the running time, it is enough

to find a bound for the number of iterations of the while-loop (step 3-step 13) in the worst

case, which occurs when the function f is divisible by all the elements of the pseudo-basis

BM . A straightforward calculation shows that #BM = d
2
(M2 + 3M).

Step 7 can be done in O(d) and its cost is negligible since d is constant and M is larger

than d. In step 9 we calculate the product fi0j0 =
∏d−1

s=0(1 + ξsπi0tj0)bs with 1 6 bs < p,
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therefore since πi0tj0 is fixed, we can make the substitution πi0tj0 by z, before to carry out

the exponentiation, then we get (1+ ξsz)bs so we can use the binomial expansion to obtain
∑bs

l=0

(
bs
l

)
(ξs)lzl. Since bs < p we have that this exponentiation can be performed in at

most p operations, we need to express (ξs)l in the basis 1, ..., ξd−1 over Fp. On the other

hand, after exponentiating we get d polynomials of degree at most p in the new variable z

and multiplying them cost at most (d− 1)pM because any partial product has at most M

terms. Hence the cost for the step 9 is pdM .

In step 10 we invert fi0j0, again using the auxiliary variable z = πi0tj0. Let e = ⌊M/i0⌋
then

g = f−1
i0j0

=

d−1∏

δ=0

(1 + ξδz)−bs

=

d−1∏

δ=0

e∑

l=0

(ξδ)l
(−bs

l

)
zl

≡
d−1∏

δ=0

(
e∑

l=0

(−ξδ)l
(
bs + l − 1

l

)
zl

)
(mod ze).

The cost to set up each factor is e, we then carry out d− 1 multiplications modulo ze, i.e.,

the cost here is (d− 1)(e+ 1)2. In total the cost is atmost d(e2 + 3e+ 1).

To compute fauxg, observe that faux has at most M2 terms and g has e+ 1 terms. So the

cost for the steps 7-13 is at most

dpM + d(e2 + 3e+ 1) + (e + 1)M2. (B.9)

We need to sum this over all (i, j) ∈ I to obtain the bound C for the number of operations.

C =
M∑

i=1

(
i∑

j=0

dpM + d

(
M2

i2
+

3M

i
+ 1

)
d+

(
M

i
+ 1

)
M2

)

=

M∑

i=1

(
i∑

j=0

(dpM + d+M2) +

(
M2d

i2
+

3Md

i
+
M3

i

))

=

M∑

i=1

(dpM + d+M2)(i+ 1) +

(
M2d

i2
+

3Md

i
+
M3

i

)
(i+ 1)

= (dpM + d+M2)
M2 + 3M

2
+

M∑

i=1

(
M2d

i2
+

3Md

i
+
M3

i

)
(i+ 1)
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We know from calculus that the harmonic series diverges and
∑M

i=1
1
i
< 1 + logN . Also

the series
∑∞

i=1
1
i2

= π2

6
, then

∑M
i=1

1
i2
< 2. Let us suppose also that dp < M and M > 6

then 4 + logM < M . Therefore we have

C <
3

2
M4 + dp

(
1

2
M3 +

3

2
M2

)
+

3

2
M3 +

13

2
dM2 + (1 + logM)(dM2 + 3dM +M3)

<
3

2
M4 +M

(
1

2
M3 +

3

2
M2

)
+

3

2
M3 +

13

2
dM2 + (1 + logM)(dM2 + 3dM +M3)

= 2M4 + (4 + logM)(M3 + dM2 + 3dM) +
5

2
dM2 − 15

2
dM

< 2M4 +M(M3 + dM2 + 3dM) +
5

2
dM2 − 15

2
dM

= 3M4 + d

(
M3 +

11

2
dM2 − 15

2
M

)

< 4M4 +
11

2
M3 − 15

2
M2 (since d < M)

< 5M4

Proposition B.1.7. Suppose that M > 6 and dp < M then a bound for the running time

of the Algorithm 7 is 5M4.

B.2 Algorithms for the calculation of the integral

Valuation of the integral

To obtain the Tate parameter associated to an harmonic cocycle ϕ we need to calculate

the integral

cϕ(γ) =

∫

∂Ω

× z0 − t
γz0 − t

dµϕ(t)

where γ is an element of Γ0(N) associated to a cycle c of the quotient graph Γ0(N) \ T
(see §4.4.3). As we mentioned in §5.6 if C = {c1, ...cg} is a basis for the homology of the

quotient graph Γ \ T then to each ci ∈ C there is associated a matrix γi ∈ Γ, let us call by

abuse of notation C the set of all γi’s. Then

val(q) = min{val(cϕ(γi)) | γi ∈ C}.
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B. Algorithms for the table

Let us consider a cycle c in the quotient tree and v0, v1, ..., vr be a path in T that lifts c.

This sequence of the vertices induces a sequence z0, ..., zr in Ω such that λ(zi) = vi, then

cϕ(γ) =

∫

∂Ω

× z0 − t
γz0 − t

dµϕ(t) (B.10)

=

∫

∂Ω

×
r−1∏

i=0

zi − t
zi+1 − t

dµϕ(t)

=

r−1∏

i=0

∫

∂Ω

× zi − t
zi+1 − t

dµϕ(t).

We can use this decomposition to know the valuation of the integral, namely,

val

(∫

∂Ω

× z0 − t
γz0 − t

dµϕ(t)

)
= val

(∫

∂Ω

×
r−1∏

i=0

zi − t
zi+1 − t

dµϕ(t)

)

= val

(
r−1∏

i=0

∫

∂Ω

× zi − t
zi+1 − t

dµϕ(t)

)

=
r−1∑

i=0

val

(∫

∂Ω

× zi − t
zi+1 − t

dµϕ(t)

)
. (B.11)

Therefore we need to calculate the valuation of

∫

∂Ω

× zi − t
zi+1 − t

dµϕ(t).

We have

val

(∫

∂Ω

× zi − t
zi+1 − t

dµϕ(t)

)
= val

(
lim−→
α

∏

U∈Cα

(
zi − t
zi+1 − t

)µϕ(U)
)

= lim−→
α

val

(
∏

U∈Cα

(
zi − t
zi+1 − t

)µϕ(U)
)

= lim−→
α

∑

U∈Cα

µϕ(U) val

(
zi − t
zi+1 − t

)
(B.12)

= lim−→
α

∑

U∈Cα

µϕ(U) (B.13)

= µ(Uei)

= ϕ(ei)
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B.2. Algorithms for the calculation of the integral

where ei is the edge with origin vi. The equality from (B.12) to (B.13) follows from the

fact that zi and zi+1 are the liftings of consecutive vertices and the point t belongs to one

of the open sets in the partition determined by ei, which implies val
(

zi−t
zi+1−t

)
= 1. Using

the last equality and the equation (B.11) we have that

val

(∫

∂Ω

× z0 − t
γz0 − t

dµϕ(t)

)
=
∑

ei

ϕ(ei)

where ei runs over the cycle c.

Summarizing we have that the valuation of the Tate parameter is given by

val(q) = min

{
∑

e∈ci

ϕ(e) | ci ∈ C

}
.

So to calculate the Tate parameter, we choose the γ that lifts the cycle with the minimal

valuation. One can obtain this result applying the equation (1.3) from [GEK97].

Lifting vertices to Ω

Let c be the cycle that gives the minimal valuation of the integral for a given harmonic

cocycle ϕ and let P = {w0, w1, ..., wr} be the lifting of the vertices of c to the tree T to

consecutive vertices and such that v0 and vr are Γ0(N)-equivalent. That is, there exists

γ ∈ Γ0(N) and α ∈ K∞ such that w0 = γwrα (they represent vertices not edges).

From the discussion above, we need an algorithm to find the sequence z0, ..., zr ∈ Ω. This

can be done using the GL2(K∞)-equivariance of the reduction map λ : Ω −→ T (cf. §2.6)
as follows.

Let v0 be standard vertex in T, we know that the standard affinoid is defined to be

λ−1(v0) =
{
z ∈ C×

∞ | |z| ≤ 1, |z − c| ≥ 1 ∀c ∈ Fq
}
.

Let ξ ∈ Fq2 \ Fq then ξ ∈ λ−1(v0).

Since the translates of the affinoid λ−1(v0) by GL2(K∞) cover Ω and two translates are

either identical, disjoint or intersect each other, we can get any affinoid by translating the

standard one. Equivalently, given a vertex v ∈ T with v 6= v0, to get a element in λ−1(v) it

is enough to find a g ∈ GL2(K∞) such that [v]0 = [gv0]0. Then we have that g〈ξ〉 ∈ λ−1(v).
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B. Algorithms for the table

There is no loss of generality in assuming that the matrices wi are in normal form. Let say

that w0 =
(
πk u
0 1

)
for some k > 0. Then we have that

z0 = πkξ + u ∈ λ−1(w0). (B.14)

Since we can go from wi to the next vertex wi+1 by multiplying by an appropriate ele-

ment gi ∈ GL2(K∞), we may define zi+1 = gi〈zi〉, i.e., the action of gi in zi by Möbious

transformations.

On the other hand, to calculate our integral we use the equality zr = γz0, however, on the

tree we have [vr]0 = [γv0]0, so the elements gi are required so, that its product is γ. The

following algorithm allows us to find the sequence of the gi’s with such property.

Algorithm 8: TransitionGammas

Input: A list P = [w0, w1, ..., wr] of matrices in GL2(K∞) representing consecutive vertices

in T and such that w0 and wr are Γ0(N)-equivalent.

Output: A list L consisting of matrices gi ∈ GL2(K∞) such that [giwi]0 = [wi+1]0 and

the product of the gi’s is in Γ0(N).

1: Write wr = γw0α with γ ∈ Γ0(N) and α ∈ K∞. (Use Algorithm 4)

2: make a loop to define the list

L = [w1w
−1
r γ, w2w

−1
1 , w3w

−1
2 , ..., wr−1w

−1
r−2, wrw

−1
r−1]

3: Return L

A direct calculation shows that the product of the elements in L is actually γ. Also the

condition

[giwi]0 = [wi+1]0

is verified. Using Algorithm 8 we can now lift the vertices of a given path to a sequence of

zi’s in Ω.

Algorithm 9: LiftToOmega
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B.2. Algorithms for the calculation of the integral

Input: A list P = [w0, w1, ..., wr] of matrices in GL2(K∞) representing consecutive vertices

and such that w0 and wr are Γ0(N)-equivalent.

Output: A list Z consisting of different elements in Ω lifting the vertices of P.

1: Use Algorithm 8 to produce the list S = [g0, g1, ..., gr−1]

2: initialize Z = [z0 = w0〈ξ〉] ⊲ We lift w0 as in (B.14)

3: for i from 2 to r do

4: append to Z the element gi−1〈Z[i− 1]〉 ⊲ 〈·〉 is the action by Möbius

transformation.

5: end for

6: Return Z

The integral

In Chapter 4 we saw how to carry out the change of variables, and we explained how we can

integrate over an edge e determined by the adjacent vertices v and v′. Using the partition

induced by Lemma 4.4.1, we can break up the integral
∫

∂Ω

× t− z
t− z′ dµϕ(t)

where z and z′ are liftings to Ω of v and v′, respectively. For the change of variables we

also supposed that v = [k, u] and v′ = [k+1, u+a0π
k] for some a0 ∈ Fq, respectively. From

Lemma 2.4.5 we have that all the neighbors of v different from v′ are given by [k+1, u+aπk]

for a ∈ Fq \ a0 and [k, u mod πk−1O∞], which is the only one that can not be obtained

form v multiplying by τa. The neighbors of v
′ are of the form [k+2, u+a0π

k+ bπk+1] with

b ∈ Fq.

Notation: All the neighbors of the vertices v and v′ different from [k, u mod πk−1O∞]

are called the neighbors of zero, while [k, u mod πk−1O∞] is called the neighbor of infinity.

Algorithm 10: IntegrateOverEdge

Input: An edge e in GN,M given by the vertices v = [k, u] and v′ = [k + 1, u + a0π
k]. A

pair [z, z′] of elements in Ω over o(e) and t(e), respectively. A harmonic cocycle ϕ. The
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B. Algorithms for the table

data structure GN,M of the quotient graph Γ0(N) \ T. The table T with the values of

the integral at the functions of BM .

Output: The integral ∫

∂Ω

× t− z
t− z′ dµϕ(t)

over the edge e. That is, using the partition of ∂Ω induced by e, up to precision πM .

1: Set a list L = [ ]

2: set a list N with all neighbors of zero ⊲ we have an auxiliary routine to do that

3: set h0 = [k, u mod πk−1O∞] ⊲ the neighbor of infinity

4: for all h ∈ N do

5: γ ← h ⊲ for the change of variable (cf. equation (3.4))

6: w ← h[1][2]

7: set fn = 1−
(
h[1][1]
z−w

)
t and fd = 1−

(
h[1][1]
z′−w

)
t ⊲ fn and fd are the numerator and

the denominator, respectively cf. §4.4.3
8: Cn = z − w and Cd = z′ − w ⊲ these are the constants

9: append to L the list [fn, fd, Cn, Cd, γ]

10: end for

11: set u = h0[1][2]

12: if k 6= 0 then

13: set fn = 1−
(
z−u
πk−1

)
t and fd = 1−

(
z′−u
πk−1

)
t

14: set γ =
(
T k−1 u
1 0

)

15: append to L the list [fn, fd, 1, 1, γ]

16: end if

17: if k = 0 then

18: set fn = 1− πzt and fd = 1− πz′t
19: set γ = ( 0 T

1 0 )

20: append to L the list [fn, fd, 1, 1, γ]

21: end if

22: I = 1 and C = 1

23: for l in L do

24: γ = l[5] and find γrep, the representative of the edge given by γ and write γ = βγrepκ

⊲ use Algorithm 5

25: set hn = l[1]〈κ−1〉 and hd = l[2]〈κ−1〉
26: define In to be the integral over O∞ of hn ⊲ use Algorithm 11
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B.2. Algorithms for the calculation of the integral

27: define Id to be the integral over O∞ of hd

28: I ← I ×
(
l[3]
l[4]

)ϕ(γrepe0)
In
Id

29: end for

30: Return I

In the previous algorithm, we use an auxiliary routine to calculate the integral of a function

f ∈ FI . The implementation is an easy routine and we only give the algorithm without

further explanation.

Algorithm 11: Integrate over O∞

Input: A function f ∈ BM . A matrix γrep a representative for the edges of GN,M . The

data structure GN,M of the quotient graph. The table T with the values of the integral

at the functions of BM .

Output: The integral of f over O∞ up to accuracy πM that is,

∫
×
O∞

f dµϕ. (B.15)

.

1: Set BM the pseudo basis for FI

2: Int= 1

3: set k to be the position in RN of γrep ⊲ The set RN is a list which is already stored in

the data structure of GN,M

4: run Algorithm 7 to set a list L of factors of f with multiplicities

5: for l in L do

6: set s to be the position in BM of l[2]

7: Int← Int× T[k][s]l[2]

8: end for

9: Return Int
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B. Algorithms for the table

Analysis for the algorithm Integrate over O∞

A similar analysis as in Algorithm 7 shows that the worst case occurs when the function f

factorizes as a product of all elements in BM , then the list L has d
2
(M2+3M) elements. So

we only need to calculate the cost of the step 7. Each entry of the table T is an element of

the ring 1+πFq2JπK and the exponent l[2] satisfies 1 6 l[2] 6 p−1 then using the powering

algorithm (cf. [Coh93, Algorithm 1.2.1]) and one of the algorithms for fast multiplication

allows to calculate the step 7 in O(log(p+1)M2) operations, therefore the running time of

the algorithm is O(M4).

Analysis for the algorithm IntegrateOverEdge

We ignore the cost for the steps 1-21 since most of them are assignments or operations

whose cost is O(1). Therefore we only consider the cost of the operations in the last loop.

In steps 26 and 27 we calculate the integral of the functions hn and hd, respectively, we

know that the running time for Algorithm 11 is O(M4). In step 28 we calculate three

products so we need to consider the analysis separately. Note that the constants l[3] and

l[4] do not depend on the size of M but on the path where we are integrating, so the cost

of calculating
(
l[3]
l[4]

)ϕ(γrepe0)
may be considered small (or even constant) compared with big

values ofM . The product I× In
Id

can be carried out using fast multiplication in time O(M),

since they are polynomials of degree at most M (cf. Remark A.1.4). Therefore, adding up

the costs for the steps 26, 27 and 28 we get that the algorithm takes time O(M4).

Theorem B.2.1. The Tate parameter q can be calculated up to accuracy πM in time

O(M7).

Proof. In order to find the Tate parameter we need to calculate the table an after the

integral using Algorithms 6 and 10, respectively. The dominant cost of Algorithm 6 gives

the running time for the calculation of q, which is O(M7).

Remark B.2.2. Most of the computer algebra systems use a combination of the fast al-

gorithms for multiplications or quotients of polynomials mentioned in Remark A.1.4 and

they take M(n) ∈ 63.43n logn log log n+O(n logn). However in most of the cases we can

not compute with M bigger than this constant, this is the reason we use for the analysis of

the complexity the classical algorithm for multiplication.
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C. Tables

C.1 Preliminaries

In this appendix we give some tables for the isogeny classes in characteristic 3 and 5 and

conductor of degrees three and four in each case. In characteristic 2 there are already

(using other methods) tables for conductor of small degree (cf. [Gek97],[Sch01],[Sch99]

and [Sch00]). Since applying the transformation T 7→ T + a for a in F×
q we can transform

any curve with bad reduction at the place T − a to have bad reduction at the place T ,

we only consider in the tables conductors which are divisible by T and the those that are

primes.

Each table have three columns, the first one is for the conductor, which is given by the

factors of a polynomial N in Fq[T ], we omit the ∞ place, since we know that it appears

in the conductor with exponent 1. The second column is for the corresponding elliptic

curve and the last one for the traces. All the traces have length 8, which correspond to

the first 8 prime polynomials relatively prime to N . We consider the list of primes ordered

lexicographically.

Remark C.1.1. 1. As we already mentioned there are no elliptic curves with split mul-

tiplicative reduction at ∞ with conducto N∞ and degree of N less than 2.

2. Over F3 and F5 there are not elliptic curves with prime conductor of degree 3.
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C.2 Table for degree 3 over F3

Table C.1: Isogeny classes for degree 3 over F3

Conductor Curve Trace

T,T 2+2 Y 2=X3+(T 2+2)X2+(2T 8+T 6+2T 4)/(T 6+2) [0,0,2,2,−8,−8,8,−4]

T,T+1,T+2 Y 2=X3+(T 2+2T+2)X2+(2T 4+2T 3+T 2+T )/(T 6+2T 3+2) [2,2,−6,−4,−4,4,4,−4]

Y 2=X3+(T 2+T+2)X2+(2T 4+T 3+T 2+2T )/(T 6+T 3+2) [2,−6,2,−4,−4,4,−4,4]

Y 2=X3+(T 2+1)X2+(2T 4+T 2)/(T 6+1) [−6,2,2,−4,−4,−4,4,4]

T 2,T+1 Y 2+XY=X3+(2T 3+2)/T 9 [−2,−2,−2,4,4,−8,4,−2]

Y 2=X3+(T 2+2T )X2+(2T 5+2T 4)/(T 3+2) [0,2,2,−2,4,4,−4,−8]

T 2,T+2 Y 2+XY=X3+(2T 3+1)/T 9 [−2,−2,4,−2,−8,4,4,4]

Y 2=X3+(T 2+T )X2+(2T 5+T 4)/(T 3+1) [0,2,−2,2,4,4,4,−4]

T 2+2T+2,T Y 2=X3+(T 2+1)X2+(T 7+2T 6+2T 5)/(T 6+1) [−1,−1,0,5,8,−7,8,−2]

T 2+T+2,T Y 2=X3+(T 2+1)X2+(2T 7+T 6+T 5)/(T 6+1) [−1,−1,0,5,−7,8,−7,−2]

C.3 Table for degree 4 over F3

Table C.2: Isogeny classes for degree 3 over F3

Conductor Curve Trace

T,T 3+2T 2+T+1 Y 2=X3+(T 2+2T+2)X2+(T 5+2T 4+T 3+T 2)/(T 6+2T 3+2) [−2,−1,−1,−1,0,−1,−4,−8]

T,T 3+2T 2+1 Y 2+XY=X3+(T 7+2T 6+T 4)/(T 12+T 9+T 3+1) [−3,−2,−2,−5,1,−5,−8,7]

T 2,T+1,T+2 Y 2+XY=X3+(2T 2+1)/T 6 [−2,−2,−2,4,4,−8,4,4]

T 2,T 2+1 Y 2+XY=X3+(2T 2+2)/T 6 [−2,−2,−2,−2,−2,−2,−2,4]

Y 2=X3+(T 2+T )X2+(2T 7+2T 5)/(T 3+1) [0,2,4,−4,4,−2,−2,8]

Y 2=X3+(T 2+2T )X2+(2T 7+2T 5)/(T 3+2) [2,0,−4,4,−2,4,−4,4]

T 4 Y 2+XY=X3+1/T 6 [−2,−2,−5,1,1,4,4,−2]

Y 2+XY=X3+2/T 6 [1,1,−2,1,1,7,7,4]

T 2,T 2+T+2 Y 2=X3+(T 2+2T )X2+(2T 2+2T+1)/(T 3+2) [−1,−3,2,−5,1,−2,−1,−2]

Y 2+XY=X3+(2T 6+2T 3+1)/T 9 [1,1,−2,1,7,−2,−5,10]

Y 2=X3+(T 2+T )X2+(2T 6+2T 5+T 4)/(T 3+1) [−3,−1,−4,−1,−5,−8,1,2]

Y 2=X3+(T 2+2T )X2+(2T 5+2T 4+T 3)/(T 3+2) [2,0,2,−2,−2,−2,8,−2]

T 2,(T+2)2 Y 2=X3+1)X2+2T/(T 3+2) [−2,4,−2,−2,4,−8,−8,4]

Y 2=X3+1)X2+(2T+1)/T 3 [−2,−2,4,−2,−8,4,4,4]

T 3,T+1 Y 2=X3+(T 2+2T )X2+(2T 4+T 3+2T 2)/(T 3+2) [−3,−1,−4,−2,−2,1,−1,7]

Y 2+XY=X3+(2T 6+T 3+2)/T 9 [1,−5,4,−2,−2,1,7,−5]

Y 2+XY=X3+(T 3+1)/T 9 [1,4,−5,−2,−2,10,−2,4]

Continued on next page
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Conductor Curve Trace

Y 2=X3+(T 2+2T )X2+(T 7+2T 6+T 5+T 4+2T 3+T 2)/(T 3+2) [3,−4,−1,−2,10,−2,2,4]

T 2,T 2+2T+2 Y 2=X3+(T 2+T )X2+(2T 5+T 4+T 3)/(T 3+1) [0,2,2,−2,−2,−2,4,8]

Y 2=X3+(T 2+2T )X2+(T 6+2T 5+2T 4)/(T 3+2) [−1,−3,−4,−1,−8,−5,−4,−2]

Y 2+XY=X3+(T 6+2T 3+2)/T 9 [1,1,−2,1,−2,7,4,−8]

Y 2=X3+(T 2+T )X2+(T 2+2T+2)/(T 3+1) [−3,−1,2,−5,−2,1,−8,−4]

Y 2=X3+(T 2+T )X2+(T 8+2T 7+2T 6)/(T 3+1) [3,−1,−4,1,4,1,−8,2]

T 2,(T+1)2 Y 2=X3+1)X2+2T/(T 3+1) [−2,4,−2,−2,−8,4,4,−2]

Y 2=X3+1)X2+(2T+2)/T 3 [−2,−2,−2,4,4,−8,4,−2]

T,T 3+2T+2 Y 2=X3+(T 2+2T+2)X2+(T 4+2T 2+2T )/(T 6+2T 3+2) [−2,−1,2,−1,−3,−7,1,1]

Y 2+XY=X3+(T 8+2T 6+2T 5)/(T 12+2T 9+2T 3+1) [−2,−3,−2,−5,1,7,−5,−5]

T 3,T+2 Y 2=X3+(T 2+T )X2+(T 4+T 3+T 2)/(T 3+1) [−3,−1,−2,−4,1,−2,−2,−10]

Y 2+XY=X3+(T 6+T 3+1)/T 9 [1,−5,−2,4,1,−2,−2,−2]

Y 2+XY=X3+(T 3+2)/T 9 [1,4,−2,−5,10,−2,7,−2]

Y 2=X3+(T 2+T )X2+(T 7+T 6+T 5+2T 4+2T 3+2T 2)/(T 3+1) [3,−4,−2,−1,−2,10,1,2]

T,T+1,T 2+2T+2 Y 2=X3+(T 2+T+2)X2+(2T 6+2T 5+2T 4+T 2)/(T 6+T 3+2) [−2,−4,0,−10,8,4,−4,−8]

Y 2+XY=X3+(2T 8+2T 6+2T 3+T 2)/(T 12+2T 9+2T 3+1) [0,−2,−2,−8,4,4,4,4]

Y 2=X3+(T 2+1)X2+2T 2(T+1)6(T 2+2T+2)/(T 6+1) [2,0,−4,2,8,−4,4,−8]

T,(T+2)3 Y 2=X3+(T 2+T )X2+2T 5/(T 4+2T 3+T+2) [3,2,1,−4,−2,1,−2,−1]

Y 2+XY=X3+2T 6/(T 9+2) [1,−2,−5,4,−2,1,10,7]

Y 2+XY=X3+(T 3/(T 9+2) [1,−2,4,−5,−2,10,1,−2]

T,(T+1)2,T+2 Y 2+XY=X3+(2T 2+T )/(T 6+2T 3+1) [−2,−2,−2,4,4,4,4,−8]

T,T 3+T 2+T+2 Y 2=X3+(T 2+T+2)X2+(2T 5+2T 4+2T 3+T 2)/(T 6+T 3+2) [−1,−2,−1,0,−1,−4,−1,7]

T,T 3+2T 2+2T+2 Y 2=X3+(T 2+2T+2)X2+(T 10+2T 9+2T 8+2T 7)/(T 6+2T 3+2) [1,2,−1,−1,0,8,−7,1]

T,T+2,T 2+1 Y 2=X3+(T 2+2T+2)X2+(2T 6+2T 5+T 4+2T 3+2T 2)/(T 6+2T 3+2) [−2,−4,0,−10,8,−8,4,−4]

Y 2+XY=X3+(2T 8+2T 7+T 6+2T 5+2T 4)/(T 12+T 9+T 3+1) [0,−2,−2,−8,4,4,4,4]

Y 2=X3+(T 2+T+2)X2+(2T 10+2T 9+T 8+2T 7+2T 6)/(T 6+T 3+2) [2,0,−4,2,8,−8,−4,4]

T,T+1,T 2+T+2 Y 2+XY=X3+(2T 4+T 3+T )/(T 12+2T 9+2T 3+1) [0,−2,−2,4,4,4,4,−8]

Y 2=X3+(T 2+1)X2+(2T 8+T 7+T 6+T 5+T 3+2T 2+2T )/(T 6+1) [2,0,−4,−4,−4,8,4,10]

Y 2=X3+(T 2+2T+2)X2+(2T 8+2T 6+T 4+2T 3)/(T 6+2T 3+2) [2,−4,0,−4,−4,−8,4,2]

T,T 3+2T+1 Y 2=X3+(T 2+T+2)X2+(T 4+2T 2+T )/(T 6+T 3+2) [−1,−2,2,−3,−1,−7,−8,−7]

Y 2+XY=X3+(T 8+2T 6+T 5)/(T 12+T 9+T 3+1) [−3,−2,−2,1,−5,7,−8,7]

T,T+2,T 2+T+2 Y 2=X3+(T 2+2T+2)X2+(2T 6+T 5+2T 4+T 2)/(T 6+2T 3+2) [−2,−4,0,8,−10,4,−2,−4]

Y 2+XY=X3+(2T 8+2T 6+T 3+T 2)/(T 12+T 9+T 3+1) [0,−2,−2,4,−8,4,−8,4]

Y 2=X3+(T 2+1)X2+2T 2(T+2)6(T 2+T+2)/(T 6+1) [2,0,−4,8,2,−4,10,4]

T,(T+1)3 Y 2=X3+(T 2+2T )X2+T 5/(T 4+T 3+2T+2) [3,2,−4,1,1,−2,−10,4]

Y 2+XY=X3+(T 3/(T 9+1) [1,−2,−5,4,10,−2,−2,−5]

Y 2+XY=X3+(T 6/(T 9+1) [1,−2,4,−5,1,−2,−2,4]

Y 2=X3+(T 2+2T )X2+T 8/(T 4+T 3+2T+2) [−3,2,−1,4,−2,10,2,7]

T,T 3+T 2+2T+1 Y 2=X3+(T 2+T+2)X2+(T 10+T 9+2T 8+T 7)/(T 6+T 3+2) [2,1,−1,0,−1,−7,8,4]

T,T+1,T 2+1 Y 2=X3+(T 2+T+2)X2+(2T 6+T 5+T 4+T 3+2T 2)/(T 6+T 3+2) [−2,0,−4,8,−10,−2,−4,4]
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Conductor Curve Trace

Y 2+XY=X3+(2T 8+T 7+T 6+T 5+2T 4)/(T 12+2T 9+2T 3+1) [0,−2,−2,4,−8,−8,4,4]

Y 2=X3+(T 2+2T+2)X2+(2T 10+T 9+T 8+T 7+2T 6)/(T 6+2T 3+2) [2,−4,0,8,2,10,4,−4]

T,T+2,T 2+2T+2 Y 2+XY=X3+(2T 4+2T 3+2T )/(T 12+T 9+T 3+1) [0,−2,−2,4,4,−8,4,4]

Y 2=X3+(T 2+1)X2+(2T 8+2T 7+T 6+2T 5+2T 3+2T 2+T )/(T 6+1) [2,0,−4,−4,−4,2,−8,4]

Y 2=X3+(T 2+T+2)X2+(2T 8+2T 6+T 4+T 3)/(T 6+T 3+2) [2,−4,0,−4,−4,10,8,4]

T,T+1,(T+2)2 Y 2+XY=X3+(2T 2+2T )/(T 6+T 3+1) [−2,−2,−2,4,4,4,−8,4]

C.4 Table for degree 3 over F5

Table C.3: Isogeny classes for degree 3 over F5

Conductor Curve Trace

T,T+2,T+3 Y 2=X3+(3T 4+3T 2+3)X+T 6+2T 5+T 4+2T 3+4T 2+2T+4 [−2,−2,−6,−6,10,2,2,−6]

Y 2=X3+(3T 4+2T 3+3T+2)X+T 6+4T 5+2T 4+T 3+3T 2+3T+3 [0,0,2,2,2,−4,8,2]

Y 2=X3+(3T 4+3T 3+2T+2)X+T 6+T 5+2T 4+4T 3+3T 2+2T+3 [0,0,2,2,−10,8,−4,2]

T,(T+1)2 Y 2=X3+(3T 4+T 3+4T+2)X+T 6+T 5+2T 4+3T 3+2T 2+4T+3 [3,−3,0,−4,−4,−7,2,8]

Y 2=X3+(3T 4+T 3+4T+2)X+T 6+2T 5+T+2 [−2,2,0,6,6,−2,2,−2]

Y 2=X3+(3T 4+2T 3+3T 2+2T+3)X+T 6+4T 5+T+4 [1,1,−4,−4,−4,1,6,−4]

Y 2=X3+(3T 4+4T 3+2T 2+4T+3)X+T 6+T 5+4T 4+T 2+4T+4 [−2,−2,2,2,2,10,−6,2]

T,(T+4)2 Y 2=X3+(3T 4+T 3+2T 2+T+3)X+T 6+2T 5+2T 4+T 3+3T+1 [2,−2,−2,2,2,6,2,−6]

Y 2=X3+(3T 4+3T 3+3T 2+3T+3)X+T 6+T 5+4T+4 [−4,1,1,−4,−4,6,−4,6]

Y 2=X3+(3T 4+4T 3+T+2)X+T 6+3T 5+4T+2 [0,2,−2,6,6,−8,−2,2]

Y 2=X3+(3T 4+4T 3+T+2)X+T 6+4T 5+2T 4+2T 3+2T 2+T+3 [0,−3,3,−4,−4,2,8,2]

T,T 2+2 Y 2=X3+(3T 4+T 2+2)X+T 6+T 2+3 [2,−2,−2,2,−6,2,−6,10]

T,T 2+T+2 Y 2=X3+(3T 4+4T 3+2T 2+3T+2)X+T 6+T 5+3T 4+T 3+3T+3 [0,0,−3,3,−10,8,−1,−1]

T,T+3,T+4 Y 2=X3+(3T 4+2T 3+T 2+4T+2)X+T 6+2T 5+3T 4+T 3+2T 2+T+2 [0,0,−4,2,8,−10,2,8]

Y 2=X3+(3T 4+3T 3+4T+3)X+T 6+4T 4+3T 3+T 2+3T+4 [−2,−2,2,10,2,10,−6,2]

Y 2=X3+(3T 4+4T 3+2T+3)X+T 6+T 5+3T 4+T+1 [0,0,8,−10,−4,2,2,−4]

T,T+1,T+2 Y 2=X3+(3T 4+T 3+3T+3)X+T 6+4T 5+3T 4+4T+1 [0,0,8,−10,2,8,2,2]

Y 2=X3+(3T 4+2T 3+T+3)X+T 6+4T 4+2T 3+T 2+2T+4 [−2,−2,2,10,−6,2,−6,−6]

Y 2=X3+(3T 4+3T 3+T 2+T+2)X+T 6+3T 5+3T 4+4T 3+2T 2+4T+2 [0,0,−4,2,2,−4,2,2]

T,T 2+4T+2 Y 2=X3+(3T 4+T 3+2T 2+2T+2)X+T 6+4T 5+3T 4+4T 3+2T+3 [3,−3,0,0,−10,8,8,−1]

T,T 2+3 Y 2=X3+(3T 4+4T 2+2)X+T 6+T 2+2 [−2,2,2,−2,−6,2,10,−6]

T,T+2,T+4 Y 2=X3+(3T 4+T 3+4T 2+3T+2)X+T 6+T 5+2T 4+2T 3+2T 2+3T+3 [0,0,2,−4,8,2,−4,2]

Y 2=X3+(3T 4+2T 3+4T+3)X+T 6+3T 5+2T 4+3T+4 [0,0,−10,8,−4,2,8,2]

Y 2=X3+(3T 4+4T 3+3T+3)X+T 6+T 4+T 3+T 2+4T+1 [−2,−2,10,2,2,−6,2,−6]

T,T 2+2T+3 Y 2=X3+(3T 4+3T 3+3T 2+4T+2)X+T 6+2T 5+2T 4+3T 3+T+2 [−3,0,3,0,8,−10,8,−1]

T,T 2+3T+3 Y 2=X3+(3T 4+2T 3+3T 2+T+2)X+T 6+3T 5+2T 4+2T 3+4T+2 [0,3,0,−3,8,−10,−1,−1]
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Conductor Curve Trace

T,T+1,T+3 Y 2=X3+(3T 4+T 3+2T+3)X+T 6+T 4+4T 3+T 2+T+1 [−2,−2,10,2,−6,−6,10,2]

Y 2=X3+(3T 4+3T 3+T+3)X+T 6+2T 5+2T 4+2T+4 [0,0,−10,8,2,2,2,−4]

Y 2=X3+(3T 4+4T 3+4T 2+2T+2)X+T 6+4T 5+2T 4+3T 3+2T 2+2T+3 [0,0,2,−4,2,2,−10,8]

T,T+1,T+4 Y 2=X3+(3T 4+2T 2+3)X+T 6+T 5+4T 4+4T 3+4T 2+T+1 [−2,−2,−6,−6,−6,2,2,10]

Y 2=X3+(3T 4+T 3+T+2)X+T 6+2T 5+3T 4+2T 3+3T 2+4T+2 [0,0,2,2,2,8,8,−10]

T,(T+3)2 Y 2=X3+(3T 4+T 3+2T 2+4T+3)X+T 6+2T 5+3T+1 [1,−4,1,−4,−4,1,−4,−4]

Y 2=X3+(3T 4+2T 3+3T 2+3T+3)X+T 6+3T 5+T 4+T 2+2T+1 [−2,2,−2,2,2,−2,2,2]

Y 2=X3+(3T 4+3T 3+3T+2)X+T 6+T 5+3T+3 [−2,0,2,6,6,4,−2,−2]

Y 2=X3+(3T 4+3T 3+3T+2)X+T 6+3T 5+3T 4+T 3+2T 2+2T+2 [3,0,−3,−4,−4,−1,8,8]

T,(T+2)2 Y 2=X3+(3T 4+2T 3+2T+2)X+T 6+4T 5+2T+3 [2,0,−2,6,6,4,2,2]

Y 2=X3+(3T 4+2T 3+2T+2)X+T 6+2T 5+3T 4+4T 3+2T 2+3T+2 [−3,0,3,−4,−4,−1,2,2]

Y 2=X3+(3T 4+3T 3+3T 2+2T+3)X+T 6+T 5+3T 4+2T 3+4T+4 [−2,2,−2,2,2,−2,−6,−6]

Y 2=X3+(3T 4+4T 3+2T 2+T+3)X+T 6+3T 5+2T+1 [1,−4,1,−4,−4,1,6,6]

T 2,T+1 Y 2=X3+(3T 4)X+T 6+2T 5 [−4,1,1,−4,1,1,6,−4]

Y 2=X3+(3T 4+T 3)X+T 6+2T 4 [0,−3,3,8,−1,−7,2,−4]

Y 2=X3+(3T 4+T 3)X+T 6+4T 5 [0,2,−2,−2,4,−2,2,6]

Y 2=X3+(3T 4+3T 3+3T 2)X+T 6+4T 4+T 3 [2,−2,−2,2,−2,10,−6,2]

T 2,T+2 Y 2=X3+(3T 4)X+T 6+4T 5 [1,1,−4,1,−4,−4,6,6]

Y 2=X3+(3T 4+T 3+2T 2)X+T 6+T 4+3T 3 [−2,−2,2,−2,2,2,6,−6]

Y 2=X3+(3T 4+2T 3)X+T 6+3T 4 [−3,3,0,−1,8,8,2,2]

Y 2=X3+(3T 4+2T 3)X+T 6+3T 5 [2,−2,0,4,−2,−2,−8,2]

T 2,T+3 Y 2=X3+(3T 4)X+T 6+T 5 [−4,1,1,1,−4,−4,−4,1]

Y 2=X3+(3T 4+3T 3)X+T 6+3T 4 [0,3,−3,−1,8,−4,−4,−1]

Y 2=X3+(3T 4+3T 3)X+T 6+2T 5 [0,−2,2,4,−2,6,6,4]

Y 2=X3+(3T 4+4T 3+2T 2)X+T 6+T 4+2T 3 [2,−2,−2,−2,2,2,2,−2]

T 2,T+4 Y 2=X3+(3T 4)X+T 6+3T 5 [1,1,−4,−4,1,6,1,6]

Y 2=X3+(3T 4+2T 3+3T 2)X+T 6+4T 4+4T 3 [−2,−2,2,2,−2,−6,−2,6]

Y 2=X3+(3T 4+4T 3)X+T 6+2T 4 [3,−3,0,8,−1,2,−1,2]

Y 2=X3+(3T 4+4T 3)X+T 6+T 5 [−2,2,0,−2,4,2,4,−8]

C.5 Table for non-primes of degree 4 over F5

Table C.4: Isogeny classes for non-primes of degree 4 over
F5

Conductor Curve Trace

T,T+1,T 2+4T+2 Y 2=X3+(3T 4+3T 2+T+2)X+T 6+2T 5+2T 4+T 3+4T+2 [0,3,3,−1,2,2,2,−7]

Y 2=X3+(3T 4+2T 3+2)X+T 6+T 5+T 4+T 3+2T 2+3T+2 [−2,−3,−1,7,−4,−8,2,−3]

Y 2=X3+(3T 4+2T 3+T 2+2T+2)X+T 6+T 5+4T 4+2T 3+4T 2+2T+3 [−2,−2,0,8,6,2,−8,4]
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Conductor Curve Trace

Y 2=X3+(3T 4+4T 3+T 2+3)X+T 6+2T 5+2T 4+3T 3+2T 2+4 [−4,−1,−3,−7,−6,2,−2,7]

T,T+4,T 2+2T+3 Y 2=X3+(3T 4+T 3+T 2+T+2)X+T 6+T 4+T 3+2T 2+4T+2 [−2,−2,−2,−6,2,−2,2,−6]

Y 2=X3+(3T 4+T 3+T 2+4T+3)X+T 6+3T 5+2T 4+2T 3+2T 2+2T+1 [−1,−2,−3,−2,−2,−2,1,1]

Y 2=X3+(3T 4+2T 3+4T 2+T+2)X+T 6+T 5+4T 2+4T+2 [2,1,3,1,1,−5,−2,−2]

T,(T+2)2,T+3 Y 2=X3+(3T 4+4T 2+3T+2)X+T 6+2T 4+4T 3+T+3 [−3,−1,6,−6,3,−8,−4,3]

Y 2=X3+(3T 4+4T 2+3T+2)X+T 6+4T 5+4T 3+2T 2+2T+2 [2,4,6,−6,−2,2,−4,−2]

Y 2=X3+(3T 4+T 3+4T+3)X+T 6+4T 4+2T 3+T 2+4 [2,2,2,2,−2,−2,−2,−6]

Y 2=X3+(3T 4+T 3+4T+3)X+T 6+2T 5+3T 4+2T 3+2T 2+2T+4 [−3,−3,2,2,−7,8,8,−1]

Y 2=X3+(3T 4+T 3+T 2+3T+2)X+T 6+T 5+2T 4+4T 3+T 2+2T+3 [4,0,−6,−6,6,−4,4,−6]

Y 2=X3+(3T 4+3T 3+T 2+2)X+T 6+3T 5+2T 3+4T 2+2 [1,3,−6,6,3,−4,−8,3]

Y 2=X3+(3T 4+3T 3+T 2+2)X+T 6+4T 5+T 4+3T 3+3T+3 [−4,−2,−6,6,−2,−4,2,−2]

Y 2=X3+(3T 4+3T 3+4T 2+T+2)X+T 6+T 5+2T 4+2T 3+4T 2+3T+2 [0,−4,−6,−6,−6,4,−4,−6]

Y 2=X3+(3T 4+4T 3+2T 2+T+3)X+T 6+T 5+2T 4+T 3+3T 2+T+4 [1,1,6,6,1,−4,−4,−9]

T,T 3+4T 2+T+2 Y 2=X3+(3T 4+T 3+T 2+T+3)X+T 6+3T 5+2T 2+3T+4 [0,0,0,3,−1,−1,−4,−7]

T,T+2,(T+4)2 Y 2=X3+,3T 4+3T 2+2T+2)X+T 6+2T 5+4T 4+4T 3+4T 2+3T+2 [2,2,−2,−2,−2,−6,6,−10]

Y 2=X3+(3T 4+3T 2+2T+2)X+T 6+4T 5+3T 4+T 3+T 2+2T+3 [−3,−3,−7,8,8,−1,−4,−10]

Y 2=X3+(3T 4+4T 2+3)X+T 6+3T 5+2T 4+3T 2+1 [0,4,6,−4,4,−6,4,6]

Y 2=X3+(3T 4+2T 3+T 2+T+3)X+T 6+2T 3+T 2+2T+4 [3,1,3,−4,−8,3,−8,−6]

Y 2=X3+(3T 4+2T 3+T 2+T+3)X+T 6+T 5+T 4+T 3+2T 2+3T+1 [−2,−4,−2,−4,2,−2,−8,4]

Y 2=X3+(3T 4+2T 3+4T 2+4T+2)X+T 6+3T 5+2T 4+3T 3+4T 2+4T+3 [−4,0,−6,4,−4,−6,−4,6]

Y 2=X3+(3T 4+3T 3+3T 2+3T+3)X+T 6+3T 5+2T 4+2T 3+2T 2+T+4 [1,1,1,−4,−4,−9,−4,6]

Y 2=X3+(3T 4+4T 3+T 2+2)X+T 6+T 5+4T 3+T 2+3 [4,2,−2,2,−4,−2,−2,4]

Y 2=X3+(3T 4+4T 3+T 2+2)X+T 6+2T 5+2T 4+2T 2+3 [−1,−3,3,−8,−4,3,8,−6]

T,T+1,T 2+2 Y 2=X3+(3T 4+2T 3+3T 2+4T+2)X+T 6+2T 5+T 4+T 3+4T+3 [1,2,3,−7,−8,9,−4,7]

Y 2=X3+(3T 4+2T 3+4T 2+3)X+T 6+T 5+3T 4+1 [−3,−4,−1,3,2,−3,−6,−7]

Y 2=X3+(3T 4+3T 3+3T 2+4T+3)X+T 6+3T 5+3T 4+3T+4 [−3,0,−3,−1,2,−1,2,−1]

Y 2=X3+(3T 4+4T 3+3T 2+3T+3)X+T 6+2T 5+T 4+T 2+4T+1 [0,2,2,6,2,−6,6,8]

T,T 3+2T 2+2T+2 Y 2=X3+(3T 4+4T 3+T 2+4T+3)X+T 6+3T 5+3T 4+3T+4 [3,0,0,0,−1,−1,−1,2]

T,T 3+3T 2+2T+2 Y 2=X3+(3T 4+4T 2+4T+3)X+T 6+3T 5+2T 4+3T+4 [−3,3,0,3,−1,8,2,−4]

Y 2=X3+(3T 4+T 3+3T 2+2T+3)X+T 6+3T 5+3T 4+2T 3+T+1 [−3,−3,0,−1,9,−4,2,−8]

Y 2=X3+(3T 4+T 3+3T 2+3T+3)X+T 6+3T 5+3T 4+3T 2+4T+1 [0,−2,−1,−4,−3,4,3,2]

Y 2=X3+(3T 4+4T 3+3T 2+2)X+T 6+3T 5+T 4+4T 3+3T 2+3 [−2,0,3,4,3,−2,−9,−8]

Y 2=X3+(3T 4+4T 3+3T 2+4T+3)X+T 6+4T 5+3T 4+4T 3+2T 2+3T+4 [−3,1,−4,−1,−3,−8,−6,8]

Y 2=X3+(3T 4+4T 3+4T 2+3T+2)X+T 6+2T 5+T 4+T 2+2T+2 [−1,1,−2,−3,−1,−2,6,−4]

T,T+3,T 2+3T+4 Y 2=X3+(3T 4+T 2+2T+2)X+T 6+2T 5+T 4+T 2+3T+2 [−2,0,−4,−2,−8,−8,4,−2]

Y 2=X3+(3T 4+T 3+3T 2+3T+3)X+T 6+T 5+T 4+2T 3+4T+1 [0,−2,−4,−8,4,−2,−8,4]

Y 2=X3+(3T 4+2T 3+3T+3)X+T 6+3T 5+T 4+4T 3+4T 2+3T+4 [2,−2,2,−2,−2,−6,6,6]

Y 2=X3+(3T 4+2T 3+3T 2+4T+3)X+T 6+T 5+3T 3+T 2+4T+1 [−4,−2,0,4,−8,−2,4,−8]

Y 2=X3+(3T 4+2T 3+4T 2+2)X+T 6+T 5+4T 4+4T 2+2 [4,0,2,−8,−2,4,−2,4]

Y 2=X3+(3T 4+3T 3+4T 2+T+3)X+T 6+4T 5+2T 4+2T 3+4T 2+2T+4 [2,2,−2,6,−6,6,−6,−2]

Y 2=X3+(3T 4+4T 3+2T 2+4T+2)X+T 6+2T 5+2T 3+4T 2+4T+3 [−2,−4,0,−2,4,4,−8,−2]

Continued on next page

154
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Conductor Curve Trace

Y 2=X3+(3T 4+4T 3+3T 2+4T+2)X+T 6+2T 5+4T 4+3T 3+4T+3 [0,4,2,4,−2,−8,−2,−8]

Y 2=X3+(3T 4+4T 3+4T 2+2T+3)X+T 6+T 4+3T 3+2T 2+4T+4 [−2,2,2,−6,6,−2,−2,−6]

T,T+1,T 2+T+2 Y 2=X3+(3T 4+T 3+T 2+2T+2)X+T 6+3T 5+2T 4+2T+3 [−1,−3,−2,1,1,3,−2,−2]

Y 2=X3+(3T 4+T 3+T 2+4T+3)X+T 6+3T 5+2T 4+3T 3+2T 2+2T+1 [−2,−3,−1,−2,−2,3,1,1]

Y 2=X3+(3T 4+T 3+4T 2+T+2)X+T 6+3T 5+3T 4+T 3+T 2+T+3 [2,2,2,2,−6,−6,2,−6]

T,T+2,T 2+T+1 Y 2=X3+(3T 4+2T 2+3T+2)X+T 6+T 4+2T 3+2T 2+4T+3 [−2,−2,0,−8,4,−6,−8,2]

Y 2=X3+(3T 4+3T 2+3T+3)X+T 6+4T 4+4T 3+T+4 [−3,−2,−1,−4,−3,1,2,−8]

Y 2=X3+(3T 4+T 3+3T 2+T+3)X+T 6+3T 5+3T 4+3T+1 [−1,−4,−3,−8,7,3,−2,2]

Y 2=X3+(3T 4+4T 3+4T 2+T+2)X+T 6+3T 5+3T 4+T 3+4T 2+4T+2 [3,0,3,−4,−7,−1,2,2]

T,T+4,T 2+3 Y 2=X3+(3T 4+4T 2+3T+3)X+T 6+3T 2+4T+1 [−1,−3,−4,3,−2,−6,−3,−7]

Y 2=X3+(3T 4+T 3+3T 2+2T+3)X+T 6+3T 5+2T 2+3T+4 [−3,−3,0,−1,2,2,−1,−1]

Y 2=X3+(3T 4+2T 3+3T 2+T+3)X+T 6+T 4+3T 3+2T 2+2T+4 [2,0,2,6,−8,6,−6,8]

Y 2=X3+(3T 4+4T 3+2T 2+2T+2)X+T 6+2T 5+3T 3+2T 2+T+2 [−3,−1,−2,−7,2,−4,9,7]

T,T 3+4T+2 Y 2=X3+(3T 4+3T 3+3)X+T 6+4T 5+T 4+4T 3+1 [−4,−1,0,−2,8,2,−2,−2]

T,T+2,T 2+4T+1 Y 2=X3+(3T 4+T 3+T 2+4T+2)X+T 6+3T 5+2T 2+T+2 [−3,0,−3,−7,−4,2,2,−1]

Y 2=X3+(3T 4+2T 3+3T 2+3)X+T 6+T 5+4T 3+T 2+4 [−1,−2,−3,−3,−4,−4,2,1]

Y 2=X3+(3T 4+3T 3+3T 2+2)X+T 6+2T 5+4T 4+T 3+2T 2+2 [0,2,2,4,−8,6,−8,−6]

Y 2=X3+(3T 4+4T 3+3T 2+4T+3)X+T 6+2T 5+3T 2+2T+1 [−3,−4,−1,7,−8,−6,−2,3]

T,T+1,T+3,T+4 Y 2=X3+(3T 4+4T 2+3T+3)X+T 6+T 5+4T 4+T 3+4T 2+4T+4 [2,−2,−6,−2,−6,2,−2,2]

Y 2=X3+(3T 4+T 3+3T 2+4T+2)X+T 6+T 4+4T+3 [2,−2,2,−6,−2,2,2,−6]

Y 2=X3+(3T 4+2T 3+4T 2+3)X+T 6+3T 5+4T 4+T 3+2T 2+1 [2,−6,−2,2,2,−6,−2,−2]

Y 2=X3+(3T 4+3T 3+2T 2+2T+3)X+T 6+T 4+T 3+4T 2+4 [2,2,2,2,−2,−2,−6,−2]

Y 2=X3+(3T 4+4T 3+2T 2+T+2)X+T 6+2T 5+2T 4+T 3+2T 2+2T+3 [−2,2,−2,−2,2,−2,2,2]

T,T 3+4T 2+4T+2 Y 2=X3+(3T 4+2T 2+4T+2)X+T 6+T 4+2T 3+2T 2+4T+2 [−4,0,−3,2,−2,3,5,−4]

Y 2=X3+(3T 4+T 3+3T 2+T+3)X+T 6+3T 5+3T 4+4T 3+2T 2+4T+4 [−1,1,−4,−3,−8,−3,−1,−2]

Y 2=X3+(3T 4+T 3+4T 2+3)X+T 6+3T 5+3T 2+3T+4 [3,3,0,−3,8,−1,−1,−4]

Y 2=X3+(3T 4+2T 3+3T 2+4T+3)X+T 6+T 5+3T 4+3T 2+2T+1 [−4,−2,−1,0,4,−3,−7,4]

Y 2=X3+(3T 4+3T 3+T 2+4T+2)X+T 6+4T 5+3T 4+3T 2+4T+3 [3,−1,2,1,−2,−1,7,2]

Y 2=X3+(3T 4+3T 3+3T 2+4T+3)X+T 6+4T 5+3T 3+3T 2+2T+1 [−1,−3,0,−3,−4,9,7,−6]

T,T+2,T 2+3T+4 Y 2=X3+(3T 4+T 3+3T 2+3T+2)X+T 6+3T 5+3T 4+2T+2 [−2,−3,−1,4,−5,1,−2,−5]

Y 2=X3+(3T 4+T 3+3T 2+4T+3)X+T 6+2T 5+4T 4+T 2+2T+4 [−2,−2,−2,6,6,2,−2,−2]

Y 2=X3+(3T 4+3T 3+2T 2+T+2)X+T 6+4T 5+4T 2+T+3 [1,3,2,−5,4,−2,−5,−2]

T,T+3,(T+4)2 Y 2=X3+,3T 4+4T 2+3)X+T 6+4T 5+2T 3+4T 2+4 [0,4,−4,6,4,−6,−6,−4]

Y 2=X3+(3T 4+4T 2+T+2)X+T 6+2T 4+4T 3+4T 2+T+3 [−4,−2,2,−2,−4,−2,−6,−8]

Y 2=X3+(3T 4+4T 2+T+2)X+T 6+4T 4+4T 2+4T+2 [1,3,−8,3,−4,3,−6,−8]

Y 2=X3+(3T 4+T 3+T 2+2T+3)X+T 6+3T 5+2T 4+T 2+4T+4 [−2,−4,−4,−2,2,−2,6,−2]

Y 2=X3+(3T 4+T 3+T 2+2T+3)X+T 6+3T 5+4T 4+3T 3+4 [3,1,−4,3,−8,3,6,8]

Y 2=X3+(3T 4+T 3+T 2+3T+2)X+T 6+4T 5+3T 3+T 2+3T+3 [4,0,4,−6,−4,6,−6,4]

Y 2=X3+(3T 4+3T 3+2T 2+2)X+T 6+T 5+4T 4+T 2+T+2 [−2,−2,−2,−2,−2,−2,2,6]

Y 2=X3+(3T 4+3T 3+2T 2+2)X+T 6+4T 5+2T 2+3 [3,3,8,−7,8,−7,2,−4]
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Conductor Curve Trace

Y 2=X3+(3T 4+3T 3+3T 2+3T+3)X+T 6+4T 5+3T 4+3T 3+3T 2+2T+4 [1,1,−4,1,−4,1,6,−4]

T,T 3+2T 2+3 Y 2=X3+(3T 4+3T+3)X+T 6+4T 3+T 2+4T+1 [−4,0,−1,−2,2,8,−2,−1]

T,T+1,T 2+2T+3 Y 2=X3+(3T 4+3T+2)X+T 6+4T 5+T 4+3T 3+3T 2+3T+3 [3,2,1,−4,7,−8,9,−7]

Y 2=X3+(3T 4+T 2+4T+3)X+T 6+3T 4+2T 3+3T 2+3T+4 [−1,−4,−3,−6,−7,2,−3,3]

Y 2=X3+(3T 4+3T 3+4T 2+3T+2)X+T 6+4T 5+T 4+4T 3+2T 2+3T+3 [2,2,0,6,8,2,−6,6]

Y 2=X3+(3T 4+4T 3+2T 2+2)X+T 6+3T 5+3T 4+2T 3+3T 2+2 [−3,0,−3,2,−1,2,−1,−1]

T,T+4,T 2+T+2 Y 2=X3+(3T 4+3T 2+4T+2)X+T 6+3T 5+2T 4+4T 3+T+2 [3,3,0,−1,2,−1,−1,−1]

Y 2=X3+(3T 4+T 3+T 2+3)X+T 6+3T 5+2T 4+2T 3+2T 2+4 [−3,−1,−4,−7,−6,3,−3,3]

Y 2=X3+(3T 4+3T 3+2)X+T 6+4T 5+T 4+4T 3+2T 2+2T+2 [−1,−3,−2,7,−4,1,9,−7]

Y 2=X3+(3T 4+3T 3+T 2+3T+2)X+T 6+4T 5+4T 4+3T 3+4T 2+3T+3 [0,−2,−2,8,6,−6,−6,6]

T,T 3+T 2+T+3 Y 2=X3+(3T 4+4T 3+T 2+4T+3)X+T 6+2T 5+2T 2+2T+4 [3,0,0,0,−1,−1,−1,2]

T,T+2,(T+3)2 Y 2=X3+,3T 4+4T 2+2T+2)X+T 6+2T 4+T 3+4T+3 [−1,−3,6,−6,3,−8,8,−6]

Y 2=X3+(3T 4+4T 2+2T+2)X+T 6+T 5+T 3+2T 2+3T+2 [4,2,6,−6,−2,−8,−2,4]

Y 2=X3+(3T 4+T 3+2T 2+4T+3)X+T 6+4T 5+2T 4+4T 3+3T 2+4T+4 [1,1,6,6,1,−4,−4,6]

Y 2=X3+(3T 4+2T 3+T 2+2)X+T 6+T 5+T 4+2T 3+2T+3 [−2,−4,−6,6,−2,−2,−8,4]

Y 2=X3+(3T 4+2T 3+T 2+2)X+T 6+2T 5+3T 3+4T 2+2 [3,1,−6,6,3,8,−8,−6]

Y 2=X3+(3T 4+2T 3+4T 2+4T+2)X+T 6+4T 5+2T 4+3T 3+4T 2+2T+2 [−4,0,−6,−6,6,4,−4,6]

Y 2=X3+(3T 4+4T 3+T+3)X+T 6+4T 4+3T 3+T 2+4 [2,2,2,2,−2,6,6,−10]

Y 2=X3+(3T 4+4T 3+T+3)X+T 6+3T 5+3T 4+3T 3+2T 2+3T+4 [−3,−3,2,2,−7,−4,−4,−10]

Y 2=X3+(3T 4+4T 3+T 2+2T+2)X+T 6+4T 5+2T 4+T 3+T 2+3T+3 [0,4,−6,−6,−6,−4,4,6]

T,T+1,T 2+3T+3 Y 2=X3+(3T 4+3T 3+4T 2+4T+2)X+T 6+4T 5+4T 2+T+2 [3,1,2,1,1,3,−2,4]

Y 2=X3+(3T 4+4T 3+T 2+T+3)X+T 6+2T 5+2T 4+3T 3+2T 2+3T+1 [−3,−2,−1,−2,−2,3,−5,−5]

Y 2=X3+(3T 4+4T 3+T 2+4T+2)X+T 6+T 4+4T 3+2T 2+T+2 [−2,−2,−2,−6,2,−6,−2,6]

T,(T+1)2,T+3 Y 2=X3+(3T 4+3T 2+3T+2)X+T 6+2T 5+3T 4+2T 2+2T+3 [2,2,−2,−2,2,2,−2,6]

Y 2=X3+(3T 4+3T 2+3T+2)X+T 6+T 5+3T 4+4T 3+T 2+3T+3 [−3,−3,−7,8,2,2,−7,−4]

Y 2=X3+(3T 4+4T 2+3)X+T 6+2T 5+2T 4+3T 2+1 [4,0,6,−4,−6,−6,−6,−4]

Y 2=X3+(3T 4+T 3+T 2+2)X+T 6+3T 5+2T 4+2T 2+3 [−3,−1,3,−8,6,−6,3,−8]

Y 2=X3+(3T 4+T 3+T 2+2)X+T 6+4T 5+T 3+T 2+3 [2,4,−2,2,6,−6,−2,−8]

Y 2=X3+(3T 4+2T 3+3T 2+2T+3)X+T 6+2T 5+2T 4+3T 3+2T 2+4T+4 [1,1,1,−4,6,6,1,−4]

Y 2=X3+(3T 4+3T 3+T 2+4T+3)X+T 6+3T 3+T 2+3T+4 [1,3,3,−4,−6,6,3,8]

Y 2=X3+(3T 4+3T 3+T 2+4T+3)X+T 6+4T 5+T 4+4T 3+2T 2+2T+1 [−4,−2,−2,−4,−6,6,−2,−2]

Y 2=X3+(3T 4+3T 3+4T 2+T+2)X+T 6+2T 5+2T 4+2T 3+4T 2+T+3 [0,−4,−6,4,−6,−6,6,4]

T,T 3+2T 2+2T+3 Y 2=X3+(3T 4+4T 2+T+3)X+T 6+2T 5+2T 4+2T+4 [3,0,3,−3,−1,8,−1,−7]

Y 2=X3+(3T 4+T 3+3T 2+2)X+T 6+2T 5+T 4+T 3+3T 2+3 [4,3,0,−2,3,−2,5,9]

Y 2=X3+(3T 4+T 3+3T 2+T+3)X+T 6+T 5+3T 4+T 3+2T 2+2T+4 [−1,−4,1,−3,−3,−8,−1,3]

Y 2=X3+(3T 4+T 3+4T 2+2T+2)X+T 6+3T 5+T 4+T 2+3T+2 [−3,−2,1,−1,−1,−2,7,1]

Y 2=X3+(3T 4+4T 3+3T 2+2T+3)X+T 6+2T 5+3T 4+3T 2+T+1 [−4,−1,−2,0,−3,4,−7,−9]

Y 2=X3+(3T 4+4T 3+3T 2+3T+3)X+T 6+2T 5+3T 4+3T 3+4T+1 [−1,0,−3,−3,9,−4,7,−1]

T,T 3+3T 2+2T+3 Y 2=X3+(3T 4+T 3+T 2+T+3)X+T 6+2T 5+3T 4+2T+4 [0,0,0,3,−1,−1,−4,8]

T,T+4,T 2+2 Y 2=X3+(3T 4+T 3+3T 2+2T+3)X+T 6+3T 5+T 4+T 2+T+1 [2,2,0,6,−8,−8,−6,4]

Y 2=X3+(3T 4+2T 3+3T 2+T+3)X+T 6+2T 5+3T 4+2T+4 [−3,0,−3,−1,2,−4,−1,−7]
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C.5. Table for non-primes of degree 4 over F5

Conductor Curve Trace

Y 2=X3+(3T 4+3T 3+3T 2+T+2)X+T 6+3T 5+T 4+4T 3+T+3 [3,2,1,−7,2,−4,1,−3]

Y 2=X3+(3T 4+3T 3+4T 2+3)X+T 6+4T 5+3T 4+1 [−1,−4,−3,3,−2,−8,3,7]

T,T+1,T 2+3 Y 2=X3+(3T 4+4T 2+2T+3)X+T 6+3T 2+T+1 [−4,−3,−1,3,2,3,−8,7]

Y 2=X3+(3T 4+T 3+2T 2+3T+2)X+T 6+3T 5+2T 3+2T 2+4T+2 [−2,−1,−3,−7,−8,1,−4,−3]

Y 2=X3+(3T 4+3T 3+3T 2+4T+3)X+T 6+T 4+2T 3+2T 2+3T+4 [2,0,2,6,2,−6,−8,4]

Y 2=X3+(3T 4+4T 3+3T 2+3T+3)X+T 6+2T 5+2T 2+2T+4 [0,−3,−3,−1,2,−1,−4,−7]

T,T+3,T 2+4T+1 Y 2=X3+(3T 4+2T 2+2T+2)X+T 6+T 4+3T 3+2T 2+T+3 [0,−2,−2,−8,4,6,8,6]

Y 2=X3+(3T 4+3T 2+2T+3)X+T 6+4T 4+T 3+4T+4 [−1,−2,−3,−4,−3,−4,7,−7]

Y 2=X3+(3T 4+T 3+4T 2+4T+2)X+T 6+2T 5+3T 4+4T 3+4T 2+T+2 [3,0,3,−4,−7,2,−1,−1]

Y 2=X3+(3T 4+4T 3+3T 2+4T+3)X+T 6+2T 5+3T 4+2T+1 [−3,−4,−1,−8,7,−6,−7,3]

T,T+4,T 2+4T+2 Y 2=X3+(3T 4+4T 3+T 2+T+3)X+T 6+2T 5+2T 4+2T 3+2T 2+3T+1 [−1,−3,−2,−2,−2,−2,−5,−5]

Y 2=X3+(3T 4+4T 3+T 2+3T+2)X+T 6+2T 5+2T 4+3T+3 [−2,−3,−1,1,1,−5,4,−2]

Y 2=X3+(3T 4+4T 3+4T 2+4T+2)X+T 6+2T 5+3T 4+4T 3+T 2+4T+3 [2,2,2,2,−6,−2,6,−2]

T,T+2,T 2+2T+4 Y 2=X3+(3T 4+T 2+3T+2)X+T 6+3T 5+T 4+T 2+2T+2 [−4,0,−2,−2,−8,4,−2,−2]

Y 2=X3+(3T 4+T 3+2T 2+T+2)X+T 6+3T 5+3T 3+4T 2+T+3 [0,−4,−2,−2,4,−8,−2,6]

Y 2=X3+(3T 4+T 3+3T 2+T+2)X+T 6+3T 5+4T 4+2T 3+T+3 [2,4,0,4,−2,4,6,−2]

Y 2=X3+(3T 4+T 3+4T 2+3T+3)X+T 6+T 4+2T 3+2T 2+T+4 [2,2,−2,−6,6,6,−6,2]

Y 2=X3+(3T 4+2T 3+4T 2+4T+3)X+T 6+T 5+2T 4+3T 3+4T 2+3T+4 [−2,2,2,6,−6,−2,2,−6]

Y 2=X3+(3T 4+3T 3+2T+3)X+T 6+T 5+T 3+T+4 [2,−2,2,−2,−2,−6,2,2]

Y 2=X3+(3T 4+3T 3+3T 2+T+3)X+T 6+4T 5+2T 3+T 2+T+1 [0,−2,−4,4,−8,−2,−2,6]

Y 2=X3+(3T 4+3T 3+4T 2+2)X+T 6+4T 5+4T 4+4T 2+2 [2,0,4,−8,−2,−8,−2,−2]

Y 2=X3+(3T 4+4T 3+3T 2+2T+3)X+T 6+4T 5+T 4+3T 3+T+1 [−4,−2,0,−8,4,−2,6,−2]

T,T 3+4T+3 Y 2=X3+(3T 4+2T 3+3)X+T 6+T 5+T 4+T 3+1 [−2,0,−1,−4,8,2,−9,4]

T,T 3+T 2+4T+3 Y 2=X3+(3T 4+2T 2+T+2)X+T 6+T 4+3T 3+2T 2+T+2 [2,−3,0,−4,−2,3,−9,−2]

Y 2=X3+(3T 4+2T 3+T 2+T+2)X+T 6+T 5+3T 4+3T 2+T+3 [1,2,−1,3,−2,−1,6,−8]

Y 2=X3+(3T 4+2T 3+3T 2+T+3)X+T 6+T 5+2T 3+3T 2+3T+1 [−3,0,−3,−1,−4,9,2,6]

Y 2=X3+(3T 4+3T 3+3T 2+T+3)X+T 6+4T 5+3T 4+3T 2+3T+1 [0,−1,−2,−4,4,−3,3,−2]

Y 2=X3+(3T 4+4T 3+3T 2+4T+3)X+T 6+2T 5+3T 4+T 3+2T 2+T+4 [−3,−4,1,−1,−8,−3,−6,−2]

Y 2=X3+(3T 4+4T 3+4T 2+3)X+T 6+2T 5+3T 2+2T+4 [−3,0,3,3,8,−1,2,−4]

T,T+1,T+2,T+4 Y 2=X3+(3T 4+4T 2+2T+3)X+T 6+T 5+T 4+3T 2+T+1 [2,−2,−6,2,−2,2,2,2]

Y 2=X3+(3T 4+T 3+2T 2+4T+2)X+T 6+3T 5+2T 4+4T 3+2T 2+3T+3 [−2,2,−2,−6,−6,2,−2,−2]

Y 2=X3+(3T 4+2T 3+2T 2+3T+3)X+T 6+T 4+4T 3+4T 2+4 [2,2,2,2,−2,−2,−6,−2]

Y 2=X3+(3T 4+3T 3+4T 2+3)X+T 6+T 5+T 4+4T 3+T 2+4T+4 [2,−6,−2,−2,2,−2,2,−6]

Y 2=X3+(3T 4+4T 3+3T 2+T+2)X+T 6+T 4+T+3 [2,−2,2,−2,2,−6,−2,2]

T,T+3,T 2+T+1 Y 2=X3+(3T 4+T 3+3T 2+T+3)X+T 6+3T 5+3T 2+3T+1 [−1,−4,−3,7,−8,3,−7,−3]

Y 2=X3+(3T 4+2T 3+3T 2+2)X+T 6+3T 5+4T 4+4T 3+2T 2+2 [2,2,0,4,−8,6,8,−6]

Y 2=X3+(3T 4+3T 3+3T 2+3)X+T 6+4T 5+T 3+T 2+4 [−3,−2,−1,−3,−4,−7,7,9]

Y 2=X3+(3T 4+4T 3+T 2+T+2)X+T 6+2T 5+2T 2+4T+2 [−3,0,−3,−7,−4,−1,−1,−1]

T,T+4,T 2+T+1 Y 2=X3+(3T 4+T 3+3T 2+3T+2)X+T 6+3T 5+4T 2+2T+2 [3,1,2,4,−5,−2,−5,−2]

Y 2=X3+(3T 4+2T 3+2T 2+2T+3)X+T 6+3T 5+2T 4+T 3+2T 2+3T+1 [−2,−2,−2,6,6,−6,−2,2]
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Conductor Curve Trace

Y 2=X3+(3T 4+2T 3+2T 2+4T+2)X+T 6+T 5+2T 4+4T+3 [−3,−2,−1,−5,4,1,−2,1]

T,T+2,T 2+4T+2 Y 2=X3+(3T 4+4T+2)X+T 6+3T 5+4T 4+4T 3+3T 2+T+2 [2,1,3,7,−4,−4,2,9]

Y 2=X3+(3T 4+4T 2+2T+3)X+T 6+2T 4+T 3+3T 2+T+1 [−4,−3,−1,−7,−6,−8,−2,−3]

Y 2=X3+(3T 4+T 3+T 2+4T+2)X+T 6+3T 5+4T 4+2T 3+2T 2+T+2 [2,0,2,8,6,−8,−8,−6]

Y 2=X3+(3T 4+3T 3+3T 2+2)X+T 6+T 5+2T 4+T 3+3T 2+3 [0,−3,−3,−1,2,−4,2,−1]

T,T+1,(T+3)2 Y 2=X3+,3T 4+T 2+3)X+T 6+3T 5+T 3+4T 2+1 [0,4,6,−4,6,−6,−6,4]

Y 2=X3+(3T 4+T 2+3T+2)X+T 6+T 4+4T 2+3T+3 [1,3,3,−8,−6,3,3,−4]

Y 2=X3+(3T 4+T 2+3T+2)X+T 6+3T 4+2T 3+4T 2+2T+2 [−4,−2,−2,2,4,−2,−2,−4]

Y 2=X3+(3T 4+T 3+2T 2+4T+3)X+T 6+3T 5+2T 4+4T 3+3T 2+4T+1 [1,1,1,−4,6,−9,1,−4]

Y 2=X3+(3T 4+T 3+3T 2+2)X+T 6+2T 5+T 4+T 2+2T+3 [−2,−2,−2,−2,−10,−6,−2,−2]

Y 2=X3+(3T 4+T 3+3T 2+2)X+T 6+3T 5+2T 2+2 [3,3,−7,8,−10,−1,−7,8]

Y 2=X3+(3T 4+2T 3+4T 2+T+3)X+T 6+T 5+T 4+4T 3+1 [3,1,3,−4,−6,3,3,−8]

Y 2=X3+(3T 4+2T 3+4T 2+T+3)X+T 6+T 5+3T 4+T 2+3T+1 [−2,−4,−2,−4,4,−2,−2,2]

Y 2=X3+(3T 4+2T 3+4T 2+4T+2)X+T 6+3T 5+4T 3+T 2+T+2 [4,0,−6,4,6,−6,6,−4]

T,T 3+4T 2+4 Y 2=X3+(3T 4+4T+3)X+T 6+2T 3+T 2+3T+4 [−1,−4,−2,0,8,2,−7,−2]

T,T 3+T+4 Y 2=X3+(3T 4+4T 3+3)X+T 6+2T 5+4T 4+3T 3+4 [−1,−2,−4,0,2,8,−7,1]

T,T 3+2T 2+T+4 Y 2=X3+(3T 4+3T 2+3T+2)X+T 6+4T 4+4T 3+2T 2+2T+3 [0,2,−4,−3,3,−2,2,−8]

Y 2=X3+(3T 4+T 3+2T 2+3T+3)X+T 6+3T 5+2T 4+3T 2+T+4 [−2,0,−4,−1,−3,4,8,2]

Y 2=X3+(3T 4+3T 3+T 2+3)X+T 6+4T 5+3T 2+4T+1 [3,−3,3,0,−1,8,−4,−4]

Y 2=X3+(3T 4+3T 3+2T 2+2T+3)X+T 6+4T 5+2T 4+3T 3+2T 2+2T+1 [1,−3,−1,−4,−3,−8,2,8]

Y 2=X3+(3T 4+4T 3+2T 2+3T+3)X+T 6+2T 5+T 3+3T 2+T+4 [−3,−3,−1,0,9,−4,−6,−8]

Y 2=X3+(3T 4+4T 3+4T 2+3T+2)X+T 6+2T 5+2T 4+3T 2+2T+2 [−1,1,3,2,−1,−2,−4,−4]

T,T+1,T 2+2T+4 Y 2=X3+(3T 4+T 3+2T 2+3)X+T 6+3T 5+3T 3+T 2+1 [−3,−1,−2,−4,−3,−8,1,−7]

Y 2=X3+(3T 4+2T 3+2T 2+3T+3)X+T 6+T 5+3T 2+T+4 [−1,−3,−4,−8,7,2,3,3]

Y 2=X3+(3T 4+3T 3+4T 2+3T+2)X+T 6+4T 5+2T 2+3T+3 [−3,−3,0,−4,−7,2,−1,−1]

Y 2=X3+(3T 4+4T 3+2T 2+2)X+T 6+T 5+T 4+2T 3+2T 2+3 [2,0,2,−8,4,2,−6,6]

T,T+2,T+3,T+4 Y 2=X3+(3T 4+T 2+T+3)X+T 6+2T 5+4T 4+3T 2+2T+4 [2,−6,−2,−2,2,−2,2,−6]

Y 2=X3+(3T 4+T 3+T 2+3)X+T 6+2T 5+4T 4+2T 3+T 2+3T+1 [2,−2,−6,−2,−6,2,−2,2]

Y 2=X3+(3T 4+2T 3+3T 2+2T+2)X+T 6+T 5+2T 4+3T 3+T 2+2T+3 [−2,−2,2,2,−2,−6,−6,2]

Y 2=X3+(3T 4+3T 3+2T 2+3T+2)X+T 6+4T 4+2T+2 [2,2,−2,2,2,2,−2,−2]

Y 2=X3+(3T 4+4T 3+3T 2+4T+3)X+T 6+4T 4+2T 3+4T 2+1 [2,2,2,−6,−2,−2,2,−2]

T,T+3,T 2+3T+3 Y 2=X3+(3T 4+3T 3+T 2+2T+2)X+T 6+4T 5+T 4+T 3+4T 2+4T+3 [2,2,2,−6,2,−6,2,6]

Y 2=X3+(3T 4+3T 3+4T 2+3T+3)X+T 6+4T 5+3T 4+T 3+2T 2+T+4 [−2,−1,−3,−2,−2,1,1,−5]

Y 2=X3+(3T 4+3T 3+4T 2+4T+2)X+T 6+4T 5+3T 4+T+2 [−1,−2,−3,1,1,−2,−2,4]

T,T+2,T 2+2 Y 2=X3+(3T 4+T 2+T+3)X+T 6+3T 2+2T+4 [−3,−1,−4,3,−7,−3,3,2]

Y 2=X3+(3T 4+T 3+2T 2+2T+3)X+T 6+4T 4+T 3+2T 2+T+1 [0,2,2,6,8,−6,−6,2]

Y 2=X3+(3T 4+2T 3+3T 2+4T+2)X+T 6+T 5+T 3+2T 2+3T+3 [−1,−3,−2,−7,7,9,1,−8]

Y 2=X3+(3T 4+3T 3+2T 2+4T+3)X+T 6+4T 5+2T 2+4T+1 [−3,−3,0,−1,−1,−1,−1,2]

T,T+4,T 2+4T+1 Y 2=X3+(3T 4+4T 2+4T+2)X+T 6+T 5+4T 4+T 2+4T+3 [0,−4,−2,−8,−2,6,−2,−2]

Y 2=X3+(3T 4+T 3+T+3)X+T 6+2T 5+3T 3+2T+1 [−2,2,2,−2,−2,−6,6,2]

Y 2=X3+(3T 4+T 3+T 2+2)X+T 6+3T 5+T 4+4T 2+3 [0,2,4,−2,−8,6,4,−2]
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Y 2=X3+(3T 4+T 3+2T 2+3T+3)X+T 6+3T 5+T 3+T 2+2T+4 [−2,0,−4,−8,4,−2,−8,−2]

Y 2=X3+(3T 4+2T 3+T 2+4T+3)X+T 6+4T 4+T 3+2T 2+2T+1 [2,2,−2,6,−6,2,−6,−6]

Y 2=X3+(3T 4+2T 3+2T 2+3T+2)X+T 6+T 5+T 4+T 3+2T+2 [4,2,0,−2,4,−2,−8,6]

Y 2=X3+(3T 4+2T 3+3T 2+3T+2)X+T 6+T 5+4T 3+4T 2+2T+2 [−4,0,−2,4,−2,−2,−2,−2]

Y 2=X3+(3T 4+3T 3+2T 2+T+3)X+T 6+3T 5+4T 4+4T 3+2T+4 [−2,−4,0,4,−8,−2,4,6]

Y 2=X3+(3T 4+4T 3+T 2+2T+3)X+T 6+2T 5+T 4+3T 3+3T+4 [2,−2,2,−6,6,2,−2,2]

T,T+1,T 2+3T+4 Y 2=X3+(3T 4+2T 2+T+3)X+T 6+T 4+3T 3+3T+1 [−1,−3,−2,−3,−4,−8,2,7]

Y 2=X3+(3T 4+3T 2+T+2)X+T 6+4T 4+4T 3+2T 2+2T+2 [0,−2,−2,4,−8,2,−8,8]

Y 2=X3+(3T 4+2T 3+T 2+2T+2)X+T 6+4T 5+2T 4+2T 3+4T 2+2T+3 [3,3,0,−7,−4,2,2,−1]

Y 2=X3+(3T 4+3T 3+2T 2+2T+3)X+T 6+4T 5+2T 4+4T+4 [−3,−1,−4,7,−8,2,−2,−7]

T,T+1,(T+2)2 Y 2=X3+,3T 4+T 2+3)X+T 6+4T 5+3T 4+3T 2+4 [0,4,−4,6,6,4,−6,−6]

Y 2=X3+(3T 4+2T 2+4T+2)X+T 6+2T 5+2T 4+2T 3+T 2+T+2 [−3,−3,8,−7,−10,−4,2,2]

Y 2=X3+(3T 4+2T 2+4T+2)X+T 6+T 5+T 4+3T 3+4T 2+4T+3 [2,2,−2,−2,−10,6,2,2]

Y 2=X3+(3T 4+T 3+T 2+3T+2)X+T 6+4T 5+3T 4+T 3+4T 2+2T+2 [−4,0,4,−6,6,−4,−6,−6]

Y 2=X3+(3T 4+T 3+4T 2+2T+3)X+T 6+4T 3+T 2+T+1 [3,1,−4,3,−6,−8,6,−6]

Y 2=X3+(3T 4+T 3+4T 2+2T+3)X+T 6+3T 5+4T 4+2T 3+2T 2+4T+4 [−2,−4,−4,−2,4,−8,6,−6]

Y 2=X3+(3T 4+2T 3+4T 2+2)X+T 6+3T 5+3T 3+T 2+2 [4,2,2,−2,4,−2,−6,6]

Y 2=X3+(3T 4+2T 3+4T 2+2)X+T 6+T 5+3T 4+2T 2+2 [−1,−3,−8,3,−6,8,−6,6]

Y 2=X3+(3T 4+4T 3+2T 2+T+3)X+T 6+4T 5+3T 4+4T 3+2T 2+3T+1 [1,1,−4,1,6,−4,6,6]

T,T 3+T 2+3T+4 Y 2=X3+(3T 4+2T 3+4T 2+3T+3)X+T 6+4T 5+2T 4+4T+1 [0,0,3,0,−1,−1,2,−7]

T,T+3,T 2+3 Y 2=X3+(3T 4+T 3+T 2+3)X+T 6+3T 5+2T 4+4 [−3,−1,−4,3,−7,−6,−8,−2]

Y 2=X3+(3T 4+T 3+2T 2+3T+2)X+T 6+T 5+4T 4+2T 3+2T+2 [1,3,2,−7,7,−4,−4,2]

Y 2=X3+(3T 4+2T 3+2T 2+T+3)X+T 6+T 5+4T 4+T 2+2T+4 [0,2,2,6,8,6,−8,−8]

Y 2=X3+(3T 4+4T 3+2T 2+3T+3)X+T 6+4T 5+2T 4+4T+1 [−3,−3,0,−1,−1,2,−4,2]

T,T 3+4T 2+3T+4 Y 2=X3+(3T 4+T 2+3T+3)X+T 6+4T 5+3T 4+4T+1 [3,3,−3,0,8,−1,−4,−4]

Y 2=X3+(3T 4+2T 3+T 2+T+2)X+T 6+T 5+4T 4+T 2+T+3 [1,−3,−1,−2,−2,−1,−4,2]

Y 2=X3+(3T 4+2T 3+2T 2+2)X+T 6+4T 5+4T 4+3T 3+3T 2+2 [0,4,−2,3,−2,3,2,−4]

Y 2=X3+(3T 4+2T 3+2T 2+3T+3)X+T 6+2T 5+2T 4+3T 3+2T 2+4T+1 [1,−1,−3,−4,−8,−3,2,−2]

Y 2=X3+(3T 4+3T 3+2T 2+T+3)X+T 6+4T 5+2T 4+3T 2+2T+4 [−2,−4,0,−1,4,−3,8,4]

Y 2=X3+(3T 4+3T 3+2T 2+4T+3)X+T 6+4T 5+2T 4+4T 3+3T+4 [−3,−1,−3,0,−4,9,−6,−6]

T,T+3,T 2+2T+3 Y 2=X3+(3T 4+2T 2+2T+2)X+T 6+T 5+3T 4+2T 3+2T+3 [0,3,3,2,−1,−4,−7,−1]

Y 2=X3+(3T 4+T 3+2)X+T 6+3T 5+4T 4+2T 3+2T 2+4T+3 [−2,−1,−3,−4,7,−4,−3,1]

Y 2=X3+(3T 4+T 3+4T 2+4T+2)X+T 6+3T 5+T 4+4T 3+4T 2+T+2 [−2,0,−2,6,8,−8,4,−6]

Y 2=X3+(3T 4+2T 3+4T 2+3)X+T 6+T 5+3T 4+T 3+2T 2+1 [−4,−3,−1,−6,−7,−8,7,3]

T,(T+1)2,T+4 Y 2=X3+(3T 4+T 2+T+2)X+T 6+2T 5+3T 3+2T 2+T+3 [4,2,−6,6,−2,−4,−8,−2]

Y 2=X3+(3T 4+T 2+T+2)X+T 6+3T 4+3T 3+3T+2 [−1,−3,−6,6,3,−4,−8,3]

Y 2=X3+(3T 4+2T 3+3T 2+2T+3)X+T 6+3T 5+3T 4+2T 3+3T 2+3T+1 [1,1,6,6,−9,−4,−4,1]

Y 2=X3+(3T 4+3T 3+3T+3)X+T 6+T 4+4T 3+T 2+1 [2,2,2,2,−6,−2,6,−2]

Y 2=X3+(3T 4+3T 3+3T+3)X+T 6+T 5+2T 4+4T 3+2T 2+T+1 [−3,−3,2,2,−1,8,−4,−7]

Y 2=X3+(3T 4+3T 3+4T 2+T+2)X+T 6+3T 5+3T 4+3T 3+T 2+T+2 [0,4,−6,−6,−6,4,−4,−6]

Y 2=X3+(3T 4+4T 3+T 2+2T+2)X+T 6+3T 5+3T 4+4T 3+4T 2+4T+3 [−4,0,−6,−6,−6,−4,4,6]
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Y 2=X3+(3T 4+4T 3+4T 2+2)X+T 6+2T 5+4T 4+T 3+4T+2 [−2,−4,6,−6,−2,2,−2,−2]

Y 2=X3+(3T 4+4T 3+4T 2+2)X+T 6+4T 5+4T 3+4T 2+3 [3,1,6,−6,3,−8,8,3]

T,T 3+2T 2+4T+4 Y 2=X3+(3T 4+3T 3+4T 2+2T+3)X+T 6+4T 5+2T 2+4T+1 [0,3,0,0,−1,−1,2,2]

T,T+2,T 2+T+2 Y 2=X3+(3T 4+T 3+T 2+2T+2)X+T 6+3T 5+4T 2+2T+3 [1,2,3,1,1,−2,−2,3]

Y 2=X3+(3T 4+3T 3+4T 2+2T+2)X+T 6+4T 4+2T 3+2T 2+2T+3 [−2,−2,−2,2,−6,−6,−2,−6]

Y 2=X3+(3T 4+3T 3+4T 2+3T+3)X+T 6+4T 5+3T 4+4T 3+2T 2+T+4 [−2,−1,−3,−2,−2,1,−5,3]

T 2,T+2,T+3 Y 2=X3+(3T 4)X+T 6+2T 4 [1,1,6,−9,1,−4,−4,6]

Y 2=X3+(3T 4+T 2)X+T 6+2T 2 [3,3,−10,−1,−7,8,−4,2]

Y 2=X3+(3T 4+T 2)X+T 6+T 5+T 4+2T 3 [−2,−2,−10,−6,−2,−2,6,2]

Y 2=X3+(3T 4+T 3+3T 2)X+T 6+4T 3 [0,4,6,−6,6,−4,−4,−6]

Y 2=X3+(3T 4+T 3+3T 2+2T )X+T 6+3T 5+T 4+2T 3+3T 2+2T [1,3,−6,3,3,−8,−8,−6]

Y 2=X3+(3T 4+T 3+3T 2+2T )X+T 6+3T 5+3T 4+4T 3+3T 2 [−4,−2,4,−2,−2,2,−8,−6]

Y 2=X3+(3T 4+4T 3+3T 2)X+T 6+T 3 [4,0,6,−6,−6,4,4,−6]

Y 2=X3+(3T 4+4T 3+3T 2+3T )X+T 6+2T 5+T 4+3T 3+3T 2+3T [3,1,−6,3,3,−4,8,6]

Y 2=X3+(3T 4+4T 3+3T 2+3T )X+T 6+2T 5+3T 4+T 3+3T 2 [−2,−4,4,−2,−2,−4,−2,6]

T 2,T 2+T+1 Y 2=X3+(3T 4+3T 2)X+T 6+4T 5+4T 4+T 3 [2,0,0,2,4,−4,−2,−8]

Y 2=X3+(3T 4+T 3+3T )X+T 6+3T 5+4T 4+T 3+2T [−2,−2,−1,−1,4,−4,7,2]

Y 2=X3+(3T 4+2T 3+3T 2)X+T 6+4T 5+T 4+4T 3 [−2,−2,2,−4,−8,8,−2,−4]

Y 2=X3+(3T 4+3T 3)X+T 6+4T 5+4T 4 [0,−2,−1,−3,4,−2,1,4]

Y 2=X3+(3T 4+3T 3+4T 2)X+T 6+4T 5+T 3 [−2,0,−4,0,2,2,−6,2]

T 2,(T+1)2 Y 2=X3+,3T 4+2T 2)X+T 6+3T 5+3T 3 [−3,−3,0,−4,4,−7,2,8]

Y 2=X3+(3T 4+2T 2)X+T 6+4T 5+2T 3 [2,2,0,6,−6,−2,2,−2]

Y 2=X3+(3T 4+T 3+3T 2)X+T 6+4T 4+2T 3+2T 2 [4,1,−1,−4,−1,1,6,−4]

Y 2=X3+(3T 4+T 3+3T 2)X+T 6+T 5+4T 4+4T 3 [−1,1,4,−4,4,1,6,−4]

Y 2=X3+(3T 4+2T 3+T )X+T 6+3T 5+2T 3+T 2+2T [0,−3,−3,8,1,−7,2,−4]

Y 2=X3+(3T 4+2T 3+T )X+T 6+2T 5+3T 3+4T 2 [0,2,2,−2,−4,−2,2,6]

Y 2=X3+(3T 4+3T 3)X+T 6+T 5 [3,−1,2,4,8,1,−4,−6]

Y 2=X3+(3T 4+3T 3)X+T 6+2T 5+T 4 [−2,−1,−3,−6,3,1,−4,4]

Y 2=X3+(3T 4+3T 3)X+T 6+4T 5+3T 4 [−2,4,2,−1,−7,1,−9,−1]

Y 2=X3+(3T 4+4T 3+4T 2+3T )X+T 6+T [2,−1,3,−6,−3,1,−4,4]

Y 2=X3+(3T 4+4T 3+4T 2+3T )X+T 6+4T 5+T 4+4T 3+T 2 [−3,−1,−2,4,−8,1,−4,−6]

Y 2=X3+(3T 4+4T 3+4T 2+3T )X+T 6+2T 5+3T 4+2T 3+3T 2+3T [2,4,−2,−1,7,1,−9,−1]

T 2,(T+4)2 Y 2=X3+,3T 4+2T 2)X+T 6+2T 5+2T 3 [0,−3,−3,−4,4,−2,−8,−2]

Y 2=X3+(3T 4+2T 2)X+T 6+T 5+3T 3 [0,2,2,6,−6,8,2,−2]

Y 2=X3+(3T 4+T 3+4T 2+2T )X+T 6+4T [3,−1,2,−6,−3,2,−7,−2]

Y 2=X3+(3T 4+T 3+4T 2+2T )X+T 6+T 5+T 4+T 3+T 2 [−2,−1,−3,4,−8,2,−2,−2]

Y 2=X3+(3T 4+T 3+4T 2+2T )X+T 6+3T 5+3T 4+3T 3+3T 2+2T [−2,4,2,−1,7,−3,−2,3]

Y 2=X3+(3T 4+2T 3)X+T 6+3T 5+T 4 [−3,−1,−2,−6,3,−2,7,2]

Y 2=X3+(3T 4+2T 3)X+T 6+T 5+3T 4 [2,4,−2,−1,−7,3,2,−3]

Y 2=X3+(3T 4+2T 3)X+T 6+4T 5 [2,−1,3,4,8,−2,2,2]

Y 2=X3+(3T 4+3T 3+4T )X+T 6+2T 5+3T 3+T 2+3T [−3,−3,0,8,1,−2,1,−2]
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Y 2=X3+(3T 4+3T 3+4T )X+T 6+3T 5+2T 3+4T 2 [2,2,0,−2,−4,−2,−4,8]

Y 2=X3+(3T 4+4T 3+3T 2)X+T 6+4T 4+3T 3+2T 2 [−1,1,4,−4,−1,−6,−1,−6]

Y 2=X3+(3T 4+4T 3+3T 2)X+T 6+4T 5+4T 4+T 3 [4,1,−1,−4,4,−6,4,−6]

T 2,T 2+4T+1 Y 2=X3+(3T 4+3T 2)X+T 6+T 5+4T 4+4T 3 [2,0,0,2,4,−4,6,8]

Y 2=X3+(3T 4+2T 3)X+T 6+T 5+4T 4 [−3,−1,−2,0,4,−2,3,−8]

Y 2=X3+(3T 4+2T 3+4T 2)X+T 6+T 5+4T 3 [0,−4,0,−2,2,2,2,−6]

Y 2=X3+(3T 4+3T 3+3T 2)X+T 6+T 5+T 4+T 3 [−4,2,−2,−2,−8,8,−10,4]

Y 2=X3+(3T 4+4T 3+2T )X+T 6+2T 5+4T 4+4T 3+3T [−1,−1,−2,−2,4,−4,−1,4]

T 2,T 2+2 Y 2=X3+(3T 4)X+T 6+4T 4 [−4,1,1,−4,−9,−4,6,1]

Y 2=X3+(3T 4+2T 2)X+T 6+3T 2 [0,−3,−3,0,−1,8,2,−7]

Y 2=X3+(3T 4+2T 2)X+T 6+3T 4 [0,2,2,0,−6,−2,2,−2]

Y 2=X3+(3T 4+2T 3)X+T 6+T 5+2T 4 [2,−1,3,0,3,−2,−8,−3]

Y 2=X3+(3T 4+3T 3)X+T 6+4T 5+2T 4 [0,3,−1,2,3,−4,6,9]

T 2,T 2+T+2 Y 2=X3+(3T 4+T 3+T )X+T 6+3T 5+4T 4+4T 2 [−3,1,−4,0,9,4,−3,−1]

Y 2=X3+(3T 4+T 3+2T 2)X+T 6+4T 4+2T 3 [3,1,−2,2,3,−8,−3,9]

Y 2=X3+(3T 4+T 3+3T 2)X+T 6+2T 5+2T 4+4T 3 [0,4,1,−1,6,4,−9,−9]

Y 2=X3+(3T 4+2T 3+2T 2)X+T 6+T 5+2T 4+2T 3 [−4,0,−1,−1,−6,−4,−1,1]

Y 2=X3+(3T 4+3T 3)X+T 6 [0,−2,−1,−3,−6,−2,−9,−1]

Y 2=X3+(3T 4+3T 3)X+T 6+4T 5+4T 4+3T 3 [0,−2,4,2,−6,−2,6,−6]

Y 2=X3+(3T 4+3T 3+3T 2)X+T 6+4T 5+4T 3 [1,−3,−2,−2,−3,8,5,7]

Y 2=X3+(3T 4+4T 3)X+T 6+4T 5 [3,−3,0,4,3,4,−3,−3]

T 2,T+3,T+4 Y 2=X3+(3T 4)X+T 6+2T 5+3T 4 [1,1,−4,1,−4,1,6,−4]

Y 2=X3+(3T 4+T 3+3T 2)X+T 6+2T 5+3T 4+T 3 [0,4,−4,−6,−4,6,6,4]

Y 2=X3+(3T 4+T 3+4T 2)X+T 6+2T 4+T 3+2T 2 [−3,−3,−4,−7,8,−7,−10,−4]

Y 2=X3+(3T 4+T 3+4T 2)X+T 6+2T 5+2T 4+4T 3 [2,2,6,−2,−2,−2,−10,6]

Y 2=X3+(3T 4+2T 3+2T )X+T 6+T 5+4T 4+T 2 [−2,−4,−2,−2,−4,−2,4,−8]

Y 2=X3+(3T 4+2T 3+2T )X+T 6+3T 5+4T 3+2T 2+3T [3,1,8,3,−4,3,−6,−8]

Y 2=X3+(3T 4+2T 3+2T 2)X+T 6+2T 5+3T 4+2T 3 [−4,0,4,6,4,−6,6,−4]

Y 2=X3+(3T 4+3T 3+4T 2+2T )X+T 6+T 5+3T 3+3T 2 [4,2,−8,−2,2,−2,4,−2]

Y 2=X3+(3T 4+3T 3+4T 2+2T )X+T 6+4T 5+3T 4+T 3+4T 2+4T [−1,−3,−8,3,−8,3,−6,8]

T 2,T+1,T+2 Y 2=X3+(3T 4)X+T 6+3T 5+3T 4 [1,1,−4,1,−9,−4,6,6]

Y 2=X3+(3T 4+2T 3+4T 2+3T )X+T 6+4T 5+2T 3+3T 2 [2,4,−8,−2,−2,−4,−6,6]

Y 2=X3+(3T 4+2T 3+4T 2+3T )X+T 6+T 5+3T 4+4T 3+4T 2+T [−3,−1,−8,3,3,−4,−6,6]

Y 2=X3+(3T 4+3T 3+3T )X+T 6+2T 5+T 3+2T 2+2T [1,3,8,3,3,−8,6,−6]

Y 2=X3+(3T 4+3T 3+3T )X+T 6+4T 5+4T 4+T 2 [−4,−2,−2,−2,−2,2,6,−6]

Y 2=X3+(3T 4+3T 3+2T 2)X+T 6+3T 5+3T 4+3T 3 [0,−4,4,6,−6,−4,−6,−6]

Y 2=X3+(3T 4+4T 3+3T 2)X+T 6+3T 5+3T 4+4T 3 [4,0,−4,−6,−6,4,−6,−6]

Y 2=X3+(3T 4+4T 3+4T 2)X+T 6+2T 4+4T 3+2T 2 [−3,−3,−4,−7,−1,8,2,2]

Y 2=X3+(3T 4+4T 3+4T 2)X+T 6+T 5+T 4 [2,2,6,−2,−6,−2,2,2]

T 2,T 2+4T+2 Y 2=X3+(3T 4+T 3)X+T 6+T 5 [4,0,−3,3,3,4,−2,2]

Y 2=X3+(3T 4+2T 3)X+T 6 [−3,−1,−2,0,−6,−2,−2,7]
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Conductor Curve Trace

Y 2=X3+(3T 4+2T 3)X+T 6+T 5+4T 4+2T 3 [2,4,−2,0,−6,−2,−2,2]

Y 2=X3+(3T 4+2T 3+3T 2)X+T 6+T 5+T 3 [−2,−2,−3,1,−3,8,4,−2]

Y 2=X3+(3T 4+3T 3+2T 2)X+T 6+4T 5+2T 4+3T 3 [−1,−1,0,−4,−6,−4,4,1]

Y 2=X3+(3T 4+4T 3+4T )X+T 6+2T 5+4T 4+4T 2 [0,−4,1,−3,9,4,−2,−2]

Y 2=X3+(3T 4+4T 3+2T 2)X+T 6+4T 4+3T 3 [2,−2,1,3,3,−8,−8,2]

Y 2=X3+(3T 4+4T 3+3T 2)X+T 6+3T 5+2T 4+T 3 [−1,1,4,0,6,4,4,−1]

T 2,T 2+3 Y 2=X3+(3T 4)X+T 6+T 4 [1,−4,−4,1,−9,−4,1,6]

Y 2=X3+(3T 4+3T 2)X+T 6+3T 2 [−3,0,0,−3,−1,−4,−7,2]

Y 2=X3+(3T 4+3T 2)X+T 6+2T 4 [2,0,0,2,−6,6,−2,2]

Y 2=X3+(3T 4+T 3)X+T 6+3T 5+3T 4 [−1,0,2,3,3,−2,−3,6]

Y 2=X3+(3T 4+4T 3)X+T 6+2T 5+3T 4 [3,2,0,−1,3,2,9,−8]

T 2,T+2,T+4 Y 2=X3+(3T 4)X+T 6+T 5+2T 4 [1,1,1,−4,−4,6,−4,−9]

Y 2=X3+(3T 4+T 3+4T )X+T 6+3T 5+T 4+T 2 [−4,−2,−2,−2,−8,4,2,−2]

Y 2=X3+(3T 4+T 3+4T )X+T 6+4T 5+3T 3+2T 2+4T [1,3,3,8,−8,−6,−8,3]

Y 2=X3+(3T 4+T 3+3T 2)X+T 6+T 5+2T 4+4T 3 [0,−4,6,4,−4,6,−4,−6]

Y 2=X3+(3T 4+3T 3+T 2)X+T 6+3T 4+2T 3+2T 2 [−3,−3,−7,−4,−4,−10,8,−1]

Y 2=X3+(3T 4+3T 3+T 2)X+T 6+T 5+3T 4+3T 3 [2,2,−2,6,6,−10,−2,−6]

Y 2=X3+(3T 4+3T 3+2T 2)X+T 6+T 5+2T 4+2T 3 [4,0,−6,−4,4,6,4,−6]

Y 2=X3+(3T 4+4T 3+T 2+4T )X+T 6+2T 5+2T 4+2T 3+4T 2+2T [−3,−1,3,−8,8,−6,−4,3]

Y 2=X3+(3T 4+4T 3+T 2+4T )X+T 6+3T 5+T 3+3T 2 [2,4,−2,−8,−2,4,−4,−2]

T 2,T 2+2T+3 Y 2=X3+(3T 4+T 3)X+T 6 [−1,0,−3,−2,−2,−6,−2,7]

Y 2=X3+(3T 4+T 3)X+T 6+3T 5+T 4+4T 3 [4,0,2,−2,−2,−6,−2,2]

Y 2=X3+(3T 4+T 3+2T 2)X+T 6+3T 5+2T 3 [−2,1,−2,−3,8,−3,−8,−9]

Y 2=X3+(3T 4+2T 3+3T )X+T 6+T 5+T 4+4T 2 [−4,−3,0,1,4,9,−8,−5]

Y 2=X3+(3T 4+2T 3+2T 2)X+T 6+4T 5+3T 4+2T 3 [1,0,−1,4,4,6,4,−1]

Y 2=X3+(3T 4+2T 3+3T 2)X+T 6+T 4+T 3 [−2,3,2,1,−8,3,4,−7]

Y 2=X3+(3T 4+3T 3)X+T 6+3T 5 [0,3,4,−3,4,3,−4,1]

Y 2=X3+(3T 4+4T 3+3T 2)X+T 6+2T 5+3T 4+T 3 [−1,−4,−1,0,−4,−6,4,9]

T 2,T 2+3T+3 Y 2=X3+(3T 4+T 3+3T 2)X+T 6+3T 5+3T 4+4T 3 [0,−1,−4,−1,−4,−6,−9,1]

Y 2=X3+(3T 4+2T 3)X+T 6+2T 5 [−3,4,3,0,4,3,−7,−3]

Y 2=X3+(3T 4+3T 3+2T )X+T 6+4T 5+T 4+4T 2 [1,0,−3,−4,4,9,1,−1]

Y 2=X3+(3T 4+3T 3+2T 2)X+T 6+T 5+3T 4+3T 3 [4,−1,0,1,4,6,−1,−9]

Y 2=X3+(3T 4+3T 3+3T 2)X+T 6+T 4+4T 3 [1,2,3,−2,−8,3,5,9]

Y 2=X3+(3T 4+4T 3)X+T 6 [−2,−3,0,−1,−2,−6,7,−1]

Y 2=X3+(3T 4+4T 3)X+T 6+2T 5+T 4+T 3 [−2,2,0,4,−2,−6,2,−6]

Y 2=X3+(3T 4+4T 3+2T 2)X+T 6+2T 5+3T 3 [−3,−2,1,−2,8,−3,−3,7]

T 2,T+1,T+3 Y 2=X3+(3T 4)X+T 6+4T 5+2T 4 [1,1,1,−4,6,6,1,−4]

Y 2=X3+(3T 4+T 3+T 2+T )X+T 6+2T 5+4T 3+3T 2 [4,2,−2,−8,6,−6,−2,2]

Y 2=X3+(3T 4+T 3+T 2+T )X+T 6+3T 5+2T 4+3T 3+4T 2+3T [−1,−3,3,−8,6,−6,3,−8]

Y 2=X3+(3T 4+2T 3+T 2)X+T 6+3T 4+3T 3+2T 2 [−3,−3,−7,−4,2,2,−7,8]

Y 2=X3+(3T 4+2T 3+T 2)X+T 6+3T 5+4T 4 [2,2,−2,6,2,2,−2,−2]
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C.5. Table for non-primes of degree 4 over F5

Conductor Curve Trace

Y 2=X3+(3T 4+2T 3+2T 2)X+T 6+4T 5+2T 4+3T 3 [0,4,−6,−4,−6,−6,6,−4]

Y 2=X3+(3T 4+4T 3+T )X+T 6+T 5+2T 3+2T 2+T [3,1,3,8,−6,6,3,−4]

Y 2=X3+(3T 4+4T 3+T )X+T 6+2T 5+T 4+T 2 [−2,−4,−2,−2,−6,6,−2,−4]

Y 2=X3+(3T 4+4T 3+3T 2)X+T 6+4T 5+2T 4+T 3 [−4,0,6,4,−6,−6,−6,4]

T 2,T+1,T+4 Y 2=X3+(3T 4)X+T 6+3T 4 [1,1,−9,6,6,−4,−4,1]

Y 2=X3+(3T 4+4T 2)X+T 6+2T 2 [3,3,−1,−10,2,−4,8,−7]

Y 2=X3+(3T 4+4T 2)X+T 6+2T 5+4T 4+T 3 [−2,−2,−6,−10,2,6,−2,−2]

Y 2=X3+(3T 4+2T 3+2T 2)X+T 6+2T 3 [0,4,−6,6,−6,4,−4,6]

Y 2=X3+(3T 4+2T 3+2T 2+T )X+T 6+T 5+2T 4+2T 3+3T 2 [−4,−2,−2,4,6,−2,2,−2]

Y 2=X3+(3T 4+2T 3+2T 2+T )X+T 6+T 5+4T 4+T 3+3T 2+4T [1,3,3,−6,6,8,−8,3]

Y 2=X3+(3T 4+3T 3+2T 2)X+T 6+3T 3 [4,0,−6,6,−6,−4,4,−6]

Y 2=X3+(3T 4+3T 3+2T 2+4T )X+T 6+4T 5+2T 4+3T 3+3T 2 [−2,−4,−2,4,−6,−8,−4,−2]

Y 2=X3+(3T 4+3T 3+2T 2+4T )X+T 6+4T 5+4T 4+4T 3+3T 2+T [3,1,3,−6,−6,−8,−4,3]

T 2,(T+3)2 Y 2=X3+,3T 4+3T 2)X+T 6+2T 5+4T 3 [2,0,2,−6,6,−4,−2,2]

Y 2=X3+(3T 4+3T 2)X+T 6+4T 5+T 3 [−3,0,−3,4,−4,1,8,−8]

Y 2=X3+(3T 4+T 3+2T )X+T 6+T 5+T 3+4T 2 [0,2,2,−4,−2,−6,6,−4]

Y 2=X3+(3T 4+T 3+2T )X+T 6+4T 5+4T 3+T 2+T [0,−3,−3,1,8,4,−4,1]

Y 2=X3+(3T 4+2T 3+T 2+T )X+T 6+3T [2,3,−1,−3,−6,8,4,−7]

Y 2=X3+(3T 4+2T 3+T 2+T )X+T 6+T 5+2T 4+4T 3+3T 2+4T [2,−2,4,7,−1,−7,−1,−2]

Y 2=X3+(3T 4+2T 3+T 2+T )X+T 6+2T 5+4T 4+3T 3+T 2 [−3,−2,−1,−8,4,3,−6,−2]

Y 2=X3+(3T 4+3T 3+2T 2)X+T 6+T 4+4T 3+2T 2 [4,−1,1,−1,−4,4,−4,−1]

Y 2=X3+(3T 4+3T 3+2T 2)X+T 6+3T 5+T 4+3T 3 [−1,4,1,4,−4,−1,−4,4]

Y 2=X3+(3T 4+4T 3)X+T 6+T 5+4T 4 [−2,−3,−1,3,−6,−8,4,7]

Y 2=X3+(3T 4+4T 3)X+T 6+2T 5+2T 4 [−2,2,4,−7,−1,7,−1,2]

Y 2=X3+(3T 4+4T 3)X+T 6+3T 5 [3,2,−1,8,4,−3,−6,2]

T 2,T 2+2T+4 Y 2=X3+(3T 4+2T 2)X+T 6+3T 5+T 4+3T 3 [0,2,2,0,−4,4,−2,2]

Y 2=X3+(3T 4+T 3)X+T 6+3T 5+T 4 [−1,0,−3,−2,−2,4,−2,7]

Y 2=X3+(3T 4+T 3+T 2)X+T 6+3T 5+3T 3 [−4,−2,0,0,2,2,6,−2]

Y 2=X3+(3T 4+2T 3+4T )X+T 6+T 5+T 4+3T 3+4T [−1,−2,−1,−2,−4,4,−4,−7]

Y 2=X3+(3T 4+4T 3+2T 2)X+T 6+3T 5+4T 4+2T 3 [2,−2,−4,−2,8,−8,2,2]

T 2,T 2+3T+4 Y 2=X3+(3T 4+2T 2)X+T 6+2T 5+T 4+2T 3 [0,2,2,0,−4,4,−2,−8]

Y 2=X3+(3T 4+T 3+2T 2)X+T 6+2T 5+4T 4+3T 3 [−2,−4,−2,2,8,−8,2,−4]

Y 2=X3+(3T 4+3T 3+T )X+T 6+4T 5+T 4+2T 3+T [−2,−1,−2,−1,−4,4,2,2]

Y 2=X3+(3T 4+4T 3)X+T 6+2T 5+T 4 [−2,−3,0,−1,−2,4,−8,4]

Y 2=X3+(3T 4+4T 3+T 2)X+T 6+2T 5+2T 3 [0,0,−2,−4,2,2,−2,2]

T 2,(T+2)2 Y 2=X3+,3T 4+3T 2)X+T 6+3T 5+T 3 [2,0,2,−6,6,−4,−2,2]

Y 2=X3+(3T 4+3T 2)X+T 6+T 5+4T 3 [−3,0,−3,4,−4,1,−2,2]

Y 2=X3+(3T 4+T 3)X+T 6+2T 5 [−1,2,3,8,4,−7,2,−4]

Y 2=X3+(3T 4+T 3)X+T 6+3T 5+2T 4 [4,2,−2,−7,−1,−2,−3,−9]

Y 2=X3+(3T 4+T 3)X+T 6+4T 5+4T 4 [−1,−3,−2,3,−6,−2,2,−4]

Y 2=X3+(3T 4+2T 3+2T 2)X+T 6+T 4+T 3+2T 2 [1,−1,4,−1,−4,4,−6,6]
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Conductor Curve Trace

Y 2=X3+(3T 4+2T 3+2T 2)X+T 6+2T 5+T 4+2T 3 [1,4,−1,4,−4,−1,−6,6]

Y 2=X3+(3T 4+3T 3+T 2+4T )X+T 6+2T [−1,3,2,−3,−6,2,−2,−4]

Y 2=X3+(3T 4+3T 3+T 2+4T )X+T 6+3T 5+4T 4+2T 3+T 2 [−1,−2,−3,−8,4,7,−2,−4]

Y 2=X3+(3T 4+3T 3+T 2+4T )X+T 6+4T 5+2T 4+T 3+3T 2+T [4,−2,2,7,−1,2,3,−9]

Y 2=X3+(3T 4+4T 3+3T )X+T 6+T 5+T 3+T 2+4T [−3,−3,0,1,8,−8,−2,2]

Y 2=X3+(3T 4+4T 3+3T )X+T 6+4T 5+4T 3+4T 2 [2,2,0,−4,−2,2,8,2]

T,T+1,T 2+4T+1 Y 2=X3+(3T 4+3T 3+2T 2+T+2)X+T 6+4T 5+2T 4+T+3 [−1,−2,−3,−5,4,3,−5,−2]

Y 2=X3+(3T 4+3T 3+2T 2+3T+3)X+T 6+T 5+T 4+T 2+T+1 [−2,−2,−2,6,6,−6,−2,−6]

Y 2=X3+(3T 4+4T 3+3T 2+2T+2)X+T 6+2T 5+4T 2+3T+2 [2,1,3,4,−5,3,−2,1]

T,T 3+T 2+1 Y 2=X3+(3T 4+T+3)X+T 6+3T 3+T 2+2T+4 [0,−2,−4,−1,8,2,2,4]

T,(T+2)2,T+4 Y 2=X3+(3T 4+T 2+3)X+T 6+2T 5+4T 3+4T 2+1 [4,0,6,−4,−4,−6,4,−6]

Y 2=X3+(3T 4+T 2+2T+2)X+T 6+T 4+4T 2+2T+3 [3,1,3,−8,−8,−6,8,6]

Y 2=X3+(3T 4+T 2+2T+2)X+T 6+3T 4+3T 3+4T 2+3T+2 [−2,−4,−2,2,−8,−6,−2,6]

Y 2=X3+(3T 4+3T 3+4T 2+T+2)X+T 6+2T 5+T 3+T 2+4T+2 [0,4,−6,4,4,−6,−4,−6]

Y 2=X3+(3T 4+3T 3+4T 2+4T+3)X+T 6+4T 5+T 4+T 3+1 [1,3,3,−4,8,6,−8,−6]

Y 2=X3+(3T 4+3T 3+4T 2+4T+3)X+T 6+4T 5+3T 4+T 2+2T+1 [−4,−2,−2,−4,−2,6,−8,−6]

Y 2=X3+(3T 4+4T 3+2T 2+T+3)X+T 6+2T 5+2T 4+T 3+3T 2+T+1 [1,1,1,−4,−4,6,−4,6]

Y 2=X3+(3T 4+4T 3+3T 2+2)X+T 6+T 5+T 4+T 3+2T 2+2 [−2,−2,−2,−2,6,2,6,2]

Y 2=X3+(3T 4+4T 3+3T 2+2)X+T 6+2T 5+2T 2+2 [3,3,−7,8,−4,2,−4,2]

T,T+3,T 2+T+2 Y 2=X3+(3T 4+T+2)X+T 6+2T 5+4T 4+T 3+3T 2+4T+2 [3,1,2,7,−4,−7,−3,1]

Y 2=X3+(3T 4+4T 2+3T+3)X+T 6+2T 4+4T 3+3T 2+4T+1 [−1,−3,−4,−7,−6,3,7,3]

Y 2=X3+(3T 4+2T 3+3T 2+2)X+T 6+4T 5+2T 4+4T 3+3T 2+3 [−3,−3,0,−1,2,−1,−7,−1]

Y 2=X3+(3T 4+4T 3+T 2+T+2)X+T 6+2T 5+4T 4+3T 3+2T 2+4T+2 [2,0,2,8,6,6,4,−6]

T,T 3+T+1 Y 2=X3+(3T 4+T 3+3)X+T 6+3T 5+4T 4+2T 3+4 [0,−4,−2,−1,2,8,2,−1]

T,T+1,T+2,T+3 Y 2=X3+(3T 4+T 2+4T+3)X+T 6+2T 5+T 4+3T 3+4T 2+3T+1 [2,−6,−2,2,2,−6,−2,−2]

Y 2=X3+(3T 4+T 3+3T 2+T+3)X+T 6+4T 4+3T 3+4T 2+1 [2,2,2,−6,−2,−2,2,−2]

Y 2=X3+(3T 4+2T 3+2T 2+2T+2)X+T 6+4T 4+3T+2 [2,2,−2,−2,−6,−2,−6,2]

Y 2=X3+(3T 4+3T 3+3T 2+3T+2)X+T 6+4T 5+2T 4+2T 3+T 2+3T+3 [−2,−2,2,−2,2,2,−2,−6]

Y 2=X3+(3T 4+4T 3+T 2+3)X+T 6+T 5+T 4+3T 3+2T 2+4 [2,−2,−6,2,−2,2,2,2]

T,T+4,T 2+3T+4 Y 2=X3+(3T 4+T 3+2T 2+2)X+T 6+4T 5+T 4+3T 3+2T 2+3 [2,0,2,−8,4,−6,8,−8]

Y 2=X3+(3T 4+2T 3+4T 2+2T+2)X+T 6+T 5+2T 2+2T+3 [0,−3,−3,−4,−7,−1,−1,2]

Y 2=X3+(3T 4+3T 3+2T 2+2T+3)X+T 6+4T 5+3T 2+4T+4 [−4,−3,−1,−8,7,−3,−7,−2]

Y 2=X3+(3T 4+4T 3+2T 2+3)X+T 6+2T 5+2T 3+T 2+1 [−2,−1,−3,−4,−3,9,7,2]

T,T 3+3T 2+T+1 Y 2=X3+(3T 4+3T 2+2T+2)X+T 6+4T 4+T 3+2T 2+3T+3 [−3,−4,2,0,3,−2,−2,9]

Y 2=X3+(3T 4+T 3+2T 2+2T+3)X+T 6+3T 5+4T 3+3T 2+4T+4 [0,−1,−3,−3,9,−4,−2,−1]

Y 2=X3+(3T 4+T 3+4T 2+2T+2)X+T 6+3T 5+2T 4+3T 2+3T+2 [2,3,1,−1,−1,−2,2,1]

Y 2=X3+(3T 4+2T 3+T 2+3)X+T 6+T 5+3T 2+T+1 [0,3,−3,3,−1,8,8,−7]

Y 2=X3+(3T 4+2T 3+2T 2+3T+3)X+T 6+T 5+2T 4+2T 3+2T 2+3T+1 [−4,−1,−3,1,−3,−8,2,3]

Y 2=X3+(3T 4+4T 3+2T 2+2T+3)X+T 6+2T 5+2T 4+3T 2+4T+4 [−1,−4,0,−2,−3,4,−4,−9]

T,T+4,T 2+2T+4 Y 2=X3+(3T 4+2T 2+4T+3)X+T 6+T 4+2T 3+2T+1 [−2,−3,−1,−3,−4,9,−7,1]

Y 2=X3+(3T 4+3T 2+4T+2)X+T 6+4T 4+T 3+2T 2+3T+2 [−2,−2,0,4,−8,−6,6,−6]
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C.5. Table for non-primes of degree 4 over F5

Conductor Curve Trace

Y 2=X3+(3T 4+2T 3+2T 2+3T+3)X+T 6+T 5+2T 4+T+4 [−4,−1,−3,7,−8,−3,3,3]

Y 2=X3+(3T 4+3T 3+T 2+3T+2)X+T 6+T 5+2T 4+3T 3+4T 2+3T+3 [0,3,3,−7,−4,−1,−1,−1]

T,T+1,T 2+T+1 Y 2=X3+(3T 4+4T 2+T+2)X+T 6+4T 5+4T 4+T 2+T+3 [−2,−4,0,−8,−2,−2,4,−8]

Y 2=X3+(3T 4+T 3+T 2+3T+3)X+T 6+3T 5+T 4+2T 3+2T+4 [2,−2,2,−6,6,−6,−6,6]

Y 2=X3+(3T 4+2T 3+2T 2+4T+3)X+T 6+2T 5+4T 4+T 3+3T+4 [0,−4,−2,4,−8,−2,−8,−2]

Y 2=X3+(3T 4+3T 3+T 2+T+3)X+T 6+4T 4+4T 3+2T 2+3T+1 [−2,2,2,6,−6,2,−2,−2]

Y 2=X3+(3T 4+3T 3+2T 2+2T+2)X+T 6+4T 5+T 4+4T 3+3T+2 [0,2,4,−2,4,−2,−2,−8]

Y 2=X3+(3T 4+3T 3+3T 2+2T+2)X+T 6+4T 5+T 3+4T 2+3T+2 [−2,0,−4,4,−2,6,−8,4]

Y 2=X3+(3T 4+4T 3+4T+3)X+T 6+T 5+4T 4+2T 3+4T 2+T+1 [2,2,−2,−2,−2,2,6,−6]

Y 2=X3+(3T 4+4T 3+T 2+2)X+T 6+2T 5+T 4+4T 2+3 [4,2,0,−2,−8,−2,−2,4]

Y 2=X3+(3T 4+4T 3+2T 2+2T+3)X+T 6+2T 5+4T 3+T 2+3T+4 [−4,0,−2,−8,4,6,4,−2]

T,T+3,T 2+2 Y 2=X3+(3T 4+T 2+4T+3)X+T 6+3T 2+3T+4 [−4,−1,−3,3,7,−8,−6,−2]

Y 2=X3+(3T 4+2T 3+2T 2+T+3)X+T 6+T 5+2T 2+T+1 [0,−3,−3,−1,−7,−4,2,2]

Y 2=X3+(3T 4+3T 3+3T 2+T+2)X+T 6+4T 5+4T 3+2T 2+2T+3 [−2,−3,−1,−7,−3,−4,−4,2]

Y 2=X3+(3T 4+4T 3+2T 2+3T+3)X+T 6+4T 4+4T 3+2T 2+4T+1 [2,2,0,6,4,−8,6,−8]

T,T+2,T 2+2T+3 Y 2=X3+(3T 4+2T 3+T 2+3T+2)X+T 6+T 5+T 4+4T 3+4T 2+T+3 [2,2,2,−6,2,6,−2,−6]

Y 2=X3+(3T 4+2T 3+4T 2+T+2)X+T 6+T 5+3T 4+4T+2 [−3,−2,−1,1,1,−5,−2,3]

Y 2=X3+(3T 4+2T 3+4T 2+2T+3)X+T 6+T 5+3T 4+4T 3+2T 2+4T+4 [−3,−1,−2,−2,−2,4,−5,3]

T,(T+3)2,T+4 Y 2=X3+(3T 4+T 2+3)X+T 6+T 5+3T 4+3T 2+4 [4,0,−4,6,−4,−6,−6,4]

Y 2=X3+(3T 4+2T 2+T+2)X+T 6+3T 5+2T 4+3T 3+T 2+4T+2 [−3,−3,8,−7,−4,−7,−1,8]

Y 2=X3+(3T 4+2T 2+T+2)X+T 6+T 5+2T 4+2T 2+T+2 [2,2,−2,−2,6,−2,−6,−2]

Y 2=X3+(3T 4+T 3+2T 2+4T+3)X+T 6+T 5+3T 4+T 3+2T 2+2T+1 [1,1,−4,1,−4,1,−9,−4]

Y 2=X3+(3T 4+3T 3+4T 2+2)X+T 6+2T 5+2T 3+T 2+2 [2,4,2,−2,−8,−2,−2,−4]

Y 2=X3+(3T 4+3T 3+4T 2+2)X+T 6+4T 5+3T 4+2T 2+2 [−3,−1,−8,3,−8,3,3,−4]

Y 2=X3+(3T 4+4T 3+T 2+2T+2)X+T 6+T 5+3T 4+4T 3+4T 2+3T+2 [0,−4,4,−6,4,6,−6,−4]

Y 2=X3+(3T 4+4T 3+4T 2+3T+3)X+T 6+T 3+T 2+4T+1 [1,3,−4,3,8,3,3,−8]

Y 2=X3+(3T 4+4T 3+4T 2+3T+3)X+T 6+2T 5+4T 4+3T 3+2T 2+T+4 [−4,−2,−4,−2,−2,−2,−2,2]

T,T 3+T 2+3T+1 Y 2=X3+(3T 4+T 2+2T+3)X+T 6+T 5+3T 4+T+1 [0,−3,3,3,8,−1,8,−4]

Y 2=X3+(3T 4+2T 3+2T 2+T+3)X+T 6+T 5+2T 4+T 3+2T+4 [0,−3,−1,−3,−4,9,−2,6]

Y 2=X3+(3T 4+2T 3+2T 2+4T+3)X+T 6+T 5+2T 4+3T 2+3T+4 [−1,0,−4,−2,4,−3,−4,−2]

Y 2=X3+(3T 4+3T 3+T 2+4T+2)X+T 6+4T 5+4T 4+T 2+4T+3 [−2,−1,−3,1,−2,−1,2,−8]

Y 2=X3+(3T 4+3T 3+2T 2+2)X+T 6+T 5+4T 4+2T 3+3T 2+2 [3,−2,4,0,−2,3,−2,−2]

Y 2=X3+(3T 4+3T 3+2T 2+2T+3)X+T 6+3T 5+2T 4+2T 3+2T 2+T+1 [−4,−3,−1,1,−8,−3,2,−2]

T,T+2,T 2+3 Y 2=X3+(3T 4+T 3+2T 2+2T+3)X+T 6+T 5+2T 4+T+1 [0,−3,−3,−1,−7,−1,−1,2]

Y 2=X3+(3T 4+3T 3+2T 2+4T+3)X+T 6+4T 5+4T 4+T 2+3T+4 [2,2,0,6,4,−6,−6,2]

Y 2=X3+(3T 4+4T 3+T 2+3)X+T 6+2T 5+2T 4+4 [−4,−1,−3,3,7,3,−3,2]

Y 2=X3+(3T 4+4T 3+2T 2+2T+2)X+T 6+4T 5+4T 4+3T 3+3T+2 [2,3,1,−7,−3,1,9,−8]

T,T 3+4T 2+3T+1 Y 2=X3+(3T 4+3T 3+4T 2+2T+3)X+T 6+T 5+2T 4+T+1 [0,3,0,0,−1,−1,2,2]

T,T+2,T 2+3T+3 Y 2=X3+(3T 4+2T 2+3T+2)X+T 6+4T 5+3T 4+3T 3+3T+3 [3,3,0,2,−1,−1,−1,2]

Y 2=X3+(3T 4+3T 3+4T 2+3)X+T 6+4T 5+3T 4+4T 3+2T 2+1 [−1,−3,−4,−6,−7,3,−3,−2]

Y 2=X3+(3T 4+4T 3+2)X+T 6+2T 5+4T 4+3T 3+2T 2+T+3 [−3,−1,−2,−4,7,−7,9,2]
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C. Tables

Conductor Curve Trace

Y 2=X3+(3T 4+4T 3+4T 2+T+2)X+T 6+2T 5+T 4+T 3+4T 2+4T+2 [−2,0,−2,6,8,6,−6,−8]

T,T+3,T 2+4T+2 Y 2=X3+(3T 4+2T 3+4T 2+2T+3)X+T 6+T 5+3T 4+T 3+2T 2+4T+4 [−3,−1,−2,−2,−2,4,−5,1]

Y 2=X3+(3T 4+2T 3+4T 2+3T+2)X+T 6+4T 4+3T 3+2T 2+3T+3 [−2,−2,−2,2,−6,6,6,2]

Y 2=X3+(3T 4+4T 3+T 2+3T+2)X+T 6+2T 5+4T 2+3T+3 [3,2,1,1,1,−5,4,−2]

T,T 3+3T 2+4T+1 Y 2=X3+(3T 4+2T 3+4T 2+3T+3)X+T 6+T 5+2T 2+T+1 [0,0,3,0,−1,−1,2,8]

T,T+1,(T+4)2 Y 2=X3+,3T 4+T 2+4T+2)X+T 6+3T 5+2T 3+2T 2+4T+3 [2,4,−6,6,4,−2,2,−2]

Y 2=X3+(3T 4+T 2+4T+2)X+T 6+3T 4+2T 3+2T+2 [−3,−1,−6,6,−6,8,−8,3]

Y 2=X3+(3T 4+T 3+T 2+3T+2)X+T 6+2T 5+3T 4+T 3+4T 2+T+3 [0,−4,−6,−6,6,−4,4,−6]

Y 2=X3+(3T 4+T 3+4T 2+2)X+T 6+T 5+T 3+4T 2+3 [1,3,6,−6,−6,−8,−4,3]

Y 2=X3+(3T 4+T 3+4T 2+2)X+T 6+3T 5+4T 4+4T 3+T+2 [−4,−2,6,−6,4,−8,−4,−2]

Y 2=X3+(3T 4+2T 3+2T+3)X+T 6+T 4+T 3+T 2+1 [2,2,2,2,−10,6,−2,−2]

Y 2=X3+(3T 4+2T 3+2T+3)X+T 6+4T 5+2T 4+T 3+2T 2+4T+1 [−3,−3,2,2,−10,−4,8,−7]

Y 2=X3+(3T 4+2T 3+4T 2+4T+2)X+T 6+2T 5+3T 4+2T 3+T 2+4T+2 [4,0,−6,−6,6,4,−4,6]

Y 2=X3+(3T 4+3T 3+3T 2+3T+3)X+T 6+2T 5+3T 4+3T 3+3T 2+2T+1 [1,1,6,6,6,−4,−4,1]

T,T+3,T 2+2T+4 Y 2=X3+(3T 4+2T 3+2T 2+4T+2)X+T 6+T 5+4T 2+4T+3 [2,3,1,−5,4,1,1,−2]

Y 2=X3+(3T 4+4T 3+3T 2+T+3)X+T 6+T 5+3T 4+3T 3+2T 2+T+4 [−2,−2,−2,6,6,2,−6,−6]

Y 2=X3+(3T 4+4T 3+3T 2+2T+2)X+T 6+2T 5+3T 4+3T+2 [−1,−3,−2,4,−5,−2,−2,1]

T,T+4,T 2+3T+3 Y 2=X3+(3T 4+2T+2)X+T 6+T 5+T 4+2T 3+3T 2+2T+3 [1,2,3,−4,7,1,−3,2]

Y 2=X3+(3T 4+T 2+T+3)X+T 6+3T 4+3T 3+3T 2+2T+4 [−3,−4,−1,−6,−7,3,7,−2]

Y 2=X3+(3T 4+T 3+2T 2+2)X+T 6+2T 5+3T 4+3T 3+3T 2+2 [−3,0,−3,2,−1,−1,−7,2]

Y 2=X3+(3T 4+2T 3+4T 2+2T+2)X+T 6+T 5+T 4+T 3+2T 2+2T+3 [0,2,2,6,8,−6,4,−8]

T,T 3+3T 2+2 Y 2=X3+(3T 4+2T+3)X+T 6+T 3+T 2+T+1 [−2,−1,0,−4,2,8,−9,1]

T,(T+1)2,T+2 Y 2=X3+(3T 4+4T 2+3)X+T 6+T 5+3T 3+4T 2+4 [4,0,−4,6,−6,4,−6,6]

Y 2=X3+(3T 4+4T 2+4T+2)X+T 6+2T 4+T 3+4T 2+4T+3 [−2,−4,2,−2,6,−2,−2,4]

Y 2=X3+(3T 4+4T 2+4T+2)X+T 6+4T 4+4T 2+T+2 [3,1,−8,3,6,8,3,−6]

Y 2=X3+(3T 4+2T 3+2T 2+2)X+T 6+T 5+2T 2+3 [3,3,8,−7,2,−4,−1,−10]

Y 2=X3+(3T 4+2T 3+2T 2+2)X+T 6+3T 5+4T 4+2T 3+2T 2+3 [−2,−2,−2,−2,2,6,−6,−10]

Y 2=X3+(3T 4+2T 3+3T 2+2T+3)X+T 6+T 5+3T 4+2T 3+3T 2+3T+4 [1,1,−4,1,6,−4,−9,6]

Y 2=X3+(3T 4+4T 3+T 2+2T+2)X+T 6+T 5+2T 3+T 2+2T+3 [0,4,4,−6,−6,−4,−6,6]

Y 2=X3+(3T 4+4T 3+T 2+3T+3)X+T 6+2T 5+2T 4+T 2+T+4 [−4,−2,−4,−2,−6,−8,−2,4]

Y 2=X3+(3T 4+4T 3+T 2+3T+3)X+T 6+2T 5+4T 4+2T 3+4 [1,3,−4,3,−6,−8,3,−6]

C.6 Table for primes of degree 4 over F5

Table C.5: Isogeny classes for primes of degree 4 over F5

Conductor Curve Trace

T 4+2T 3+4T 2+3T+3 Y 2=X3+(3T 4+T 3+2T 2+4T )X+T 6+3T 5+3T 2+T+1 [0,0,0,4,0,−2,6,−6]

T 4+4T 3+T 2+4T+3 Y 2=X3+(3T 4+2T 3+3T 2+2T )X+T 6+T 5+3T 2+2T+4 [0,4,0,0,0,6,−2,−2]
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C.6. Table for primes of degree 4 over F5

Conductor Curve Trace

T 4+2 Y 2=X3+(3T 4+2)X+T 6+3T 2 [4,0,0,0,0,−6,−6,−2]

T 4+T 2+2 Y 2=X3+(3T 4+3T 2)X+T 6+4T 4+4T 2+3 [0,2,0,0,2,−6,6,6]

Y 2=X3+(3T 4+2T 3+4T 2+2T )X+T 6+T 5+3T 4+T 3+3T 2+2 [0,1,−2,−2,−3,6,−3,3]

Y 2=X3+(3T 4+3T 3+4T 2+3T )X+T 6+4T 5+3T 4+4T 3+3T 2+2 [0,−3,−2,−2,1,6,−3,3]

T 4+2T 3+T 2+2 Y 2=X3+(3T 4+T 3+3T 2+2)X+T 6+3T 5+3T 4+T 3+3T 2+3T [4,4,−2,0,−2,−2,−2,−10]

T 4+3T 3+T 2+2 Y 2=X3+(3T 4+4T 3+3T 2+2)X+T 6+2T 5+3T 4+4T 3+3T 2+2T [4,−2,0,−2,4,−2,−2,6]

T 4+4T 2+2 Y 2=X3+(3T 4+2T 2)X+T 6+T 4+4T 2+2 [0,0,2,2,0,6,−6,−2]

Y 2=X3+(3T 4+T 3+T 2+4T )X+T 6+3T 5+2T 4+2T 3+3T 2+3 [0,−2,−3,1,−2,−3,6,4]

Y 2=X3+(3T 4+4T 3+T 2+T )X+T 6+2T 5+2T 4+3T 3+3T 2+3 [0,−2,1,−3,−2,−3,6,−4]

T 4+T 3+4T 2+2 Y 2=X3+(3T 4+3T 3+2T 2+2)X+T 6+4T 5+2T 4+2T 3+3T 2+4T [4,−2,−2,4,0,−2,−2,−2]

T 4+4T 3+4T 2+2 Y 2=X3+(3T 4+2T 3+2T 2+2)X+T 6+T 5+2T 4+3T 3+3T 2+T [4,0,4,−2,−2,−2,−2,2]

T 4+3T 3+T+2 Y 2=X3+(3T 4+T 3+3T 2+3T+4)X+T 6+3T 5+3T 4+T 2+2T+1 [−2,−3,0,1,−2,3,−4,−7]

Y 2=X3+(3T 4+2T 3+4T 2+T+4)X+T 6+T 5+3T 4+3T 3+4T 2+3T+1 [−2,1,0,−3,−2,3,4,1]

Y 2=X3+(3T 4+4T 3+3T )X+T 6+2T 5+4T 4+2T 3+T+2 [0,2,0,2,0,6,−2,2]

T 4+4T 3+2T+2 Y 2=X3+(3T 4+T 3+T 2+2T+4)X+T 6+3T 5+2T 4+T 3+4T 2+4T+4 [−2,0,−2,1,−3,4,3,4]

Y 2=X3+(3T 4+2T 3+T )X+T 6+T 5+T 4+4T 3+3T+3 [0,0,0,2,2,−2,6,−2]

Y 2=X3+(3T 4+3T 3+2T 2+T+4)X+T 6+4T 5+2T 4+T 2+T+4 [−2,0,−2,−3,1,−4,3,−4]

T 4+T 3+3T+2 Y 2=X3+(3T 4+2T 3+2T 2+4T+4)X+T 6+T 5+2T 4+T 2+4T+4 [−2,1,−3,−2,0,−4,3,4]

Y 2=X3+(3T 4+3T 3+4T )X+T 6+4T 5+T 4+T 3+2T+3 [0,2,2,0,0,−2,6,−2]

Y 2=X3+(3T 4+4T 3+T 2+3T+4)X+T 6+2T 5+2T 4+4T 3+4T 2+T+4 [−2,−3,1,−2,0,4,3,−4]

T 4+2T 3+4T+2 Y 2=X3+(3T 4+T 3+2T )X+T 6+3T 5+4T 4+3T 3+4T+2 [0,0,2,0,2,6,−2,−6]

Y 2=X3+(3T 4+3T 3+4T 2+4T+4)X+T 6+4T 5+3T 4+2T 3+4T 2+2T+1 [−2,−2,−3,0,1,3,4,6]

Y 2=X3+(3T 4+4T 3+3T 2+2T+4)X+T 6+2T 5+3T 4+T 2+3T+1 [−2,−2,1,0,−3,3,−4,6]

T 4+T 3+T 2+T+4 Y 2=X3+(3T 4+3T 3+3T 2+3T+1)X+T 6+4T 5+2T 2+3 [2,2,2,2,−4,−2,6,−2]

T 4+4T 3+2T 2+T+4 Y 2=X3+(3T 4+T 2+2T+3)X+T 6+3T 4+T 3+3T 2+T+2 [1,0,−3,−2,−2,−7,4,3]

Y 2=X3+(3T 4+2T 3+T 2+3T+1)X+T 6+T 5+4T 4+T 3+3T 2+2 [2,0,2,0,0,2,−2,6]

Y 2=X3+(3T 4+4T 3+3T 2+3T+1)X+T 6+2T 5+3T 4+3T 3+4T 2+2T+1 [−3,0,1,−2,−2,1,−4,3]

T 4+2T 3+2T 2+T+1 Y 2=X3+(3T 4+T 3+T 2+3T+4)X+T 6+3T 5+2T 4+4T 3+4T 2+1 [−2,−2,4,0,4,2,6,−6]

T 4+2T 3+3T 2+2T+4 Y 2=X3+(3T 4+4T 2+4T+3)X+T 6+2T 4+2T 3+3T 2+3T+3 [1,−3,−2,0,−2,4,−7,−3]

Y 2=X3+(3T 4+T 3+4T 2+T+1)X+T 6+3T 5+T 4+2T 3+3T 2+3 [2,2,0,0,0,−2,2,6]

Y 2=X3+(3T 4+2T 3+2T 2+T+1)X+T 6+T 5+2T 4+T 3+4T 2+T+4 [−3,1,−2,0,−2,−4,1,−3]

T 4+3T 3+4T 2+2T+4 Y 2=X3+(3T 4+4T 3+2T 2+T+1)X+T 6+2T 5+2T 2+2 [2,2,−4,2,2,6,−2,−2]

T 4+T 3+3T 2+2T+1 Y 2=X3+(3T 4+3T 3+4T 2+T+4)X+T 6+4T 5+3T 4+3T 3+4T 2+4 [−2,4,4,−2,0,6,2,6]

T 4+3T 3+3T 2+3T+4 Y 2=X3+(3T 4+4T 2+T+3)X+T 6+2T 4+3T 3+3T 2+2T+3 [1,−2,0,−2,−3,4,−7,4]

Y 2=X3+(3T 4+3T 3+2T 2+4T+1)X+T 6+4T 5+2T 4+4T 3+4T 2+4T+4 [−3,−2,0,−2,1,−4,1,−4]

Y 2=X3+(3T 4+4T 3+4T 2+4T+1)X+T 6+2T 5+T 4+3T 3+3T 2+3 [2,0,0,0,2,−2,2,−2]

T 4+2T 3+4T 2+3T+4 Y 2=X3+(3T 4+T 3+2T 2+4T+1)X+T 6+3T 5+2T 2+2 [2,2,2,−4,2,6,−2,−10]

T 4+4T 3+T 2+4T+4 Y 2=X3+(3T 4+2T 3+3T 2+2T+1)X+T 6+T 5+2T 2+3 [2,−4,2,2,2,−2,6,6]

T 4+T 3+2T 2+4T+4 Y 2=X3+(3T 4+T 2+3T+3)X+T 6+3T 4+4T 3+3T 2+4T+2 [1,−2,−2,−3,0,−7,4,1]

Y 2=X3+(3T 4+T 3+3T 2+2T+1)X+T 6+3T 5+3T 4+2T 3+4T 2+3T+1 [−3,−2,−2,1,0,1,−4,−7]

Continued on next page
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Conductor Curve Trace

Y 2=X3+(3T 4+3T 3+T 2+2T+1)X+T 6+4T 5+4T 4+4T 3+3T 2+2 [2,0,0,2,0,2,−2,2]

T 4+4T 3+3T 2+3T+1 Y 2=X3+(3T 4+2T 3+4T 2+4T+4)X+T 6+T 5+3T 4+2T 3+4T 2+4 [−2,0,−2,4,4,6,2,−2]

T 4+3 Y 2=X3+(3T 4+3)X+T 6+2T 2 [−4,2,2,2,2,−10,−10,6]

T 4+2T 2+3 Y 2=X3+(3T 4+T 2)X+T 6+3T 4+T 2+4 [0,−2,4,4,−2,−10,−6,−2]

T 4+3T 2+3 Y 2=X3+(3T 4+4T 2)X+T 6+2T 4+T 2+1 [0,4,−2,−2,4,−6,−10,2]

T 4+3T 3+2T 2+4T+1 Y 2=X3+(3T 4+4T 3+T 2+2T+4)X+T 6+2T 5+2T 4+T 3+4T 2+1 [−2,4,0,4,−2,2,6,−2]

T 4+T 3+T 2+T+3 Y 2=X3+(3T 4+3T 3+3T 2+3T )X+T 6+4T 5+3T 2+3T+4 [0,0,0,0,4,6,−2,6]

T 4+3T 3+4T 2+2T+3 Y 2=X3+(3T 4+4T 3+2T 2+T )X+T 6+2T 5+3T 2+4T+1 [0,0,4,0,0,−2,6,6]

C.7 Table for primes of degree 5 over F5

Table C.6: Isogeny classes for primes of degree 5 over F5

Conductor Curve Trace

T 5+2T 4+3T 2+3T Y 2=X3+(3T 4+2T 3+4T 2+T+3X)+T 6+T 5+3T 4+3T 3+T 2+3T+1 [−1,−2,0,1,−2,−4,−1,−2]

T 5+T 4+2T+2 Y 2=X3+(3T 4+4T 3+4T+3X)+T 6+2T 5+4T 4+2T 3+4T 2+T+2 [1,−3,2,−2,−2,−2,−4,7]

T 5+3T 4+2T+2 Y 2=X3+(3T 4+2T 2X)+T 6+T 5+3T 4+2T 3+T 2+4T+4 [0,0,−3,−3,0,−4,−1,8]

T 5+4T 4+2T+2 Y 2=X3+(3T 4+T 3+3T 2+3T+1X)+T 6+3T 5+3T 4+3T 3+T 2+4T [2,−4,0,2,−6,−6,−8,2]

T 5+2T 4+T 3+2T 2+1 Y 2=X3+(3T 4+4T 3+3T 2+4T+1X)+T 6+2T 5+3T 4+T 3+T 2+2T+4 [−3,−2,−3,−3,0,−6,2,−2]

T 5+T 4+T 3+2T+2 Y 2=X3+(3T 4+T 3+2T 2+T+3X)+T 6+3T 5+T 3+T 2+2T [−4,−3,−2,−2,0,2,2,1]

T 5+2T 3+2T+2 Y 2=X3+(3T 4+4T 3+3T 2+3T+1X)+T 6+2T 5+3T 4+T 3+2T 2+T [2,0,−2,−2,6,−4,−2,−6]

T 5+T 4+2T 3+2T+2 Y 2=X3+(3T 4+2T 3+2T 2+4T+3X)+T 6+T 5+2T 4+3T 2+T+2 [1,−1,0,−2,−1,7,−4,−2]

T 5+3T 4+3T 3+3T 2+3T Y 2=X3+(3T 4+3T 3+3T 2+4T+3X)+T 6+4T 5+4T 4+3T 3+3T 2+2T+1 [4,2,0,2,−4,−6,2,2]

T 5+4T 4+2T 3+2T+2 Y 2=X3+(3T 4+4T 3X)+T 6+2T 5+4T 4+3T 3+T 2+T+2 [0,3,−3,0,−1,8,−6,−3]
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of Lecture Notes in Mathematics. Springer, Berlin, 1980. 38

[Voi] John Voight. The arithmetic of quaternion algebras. In Preparation. 38

[Was08] Lawrence C. Washington. Elliptic curves. Discrete Mathematics and its Appli-

cations (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second edition,

2008. Number theory and cryptography. 78, 79

174


	Nomenclature
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Notions from graph theory
	2.3 The Drinfeld upper half plane
	2.4 The Bruhat-Tits tree
	2.5 Ends of the tree
	2.6 The reduction map
	2.7 Drinfeld modular curves
	2.8 The quotient graph
	2.9 Harmonic cocycles
	2.10 Theta functions for arithmetic groups
	2.10.1 Theta functions and harmonic cocycles

	2.11 Hecke operators
	2.12 Application to the Shimura-Taniyama-Weil uniformization

	3 Integration, Theta function and uniformizations
	3.1 Integration
	3.1.1 Measures and harmonic cocycles
	3.1.2 The integral over 
	3.1.3 Change of variables

	3.2 Theta function
	3.3 Complex uniformization
	3.4 p-adic Uniformization

	4 The Algorithm
	4.1 Motivation
	4.2 Elementary functions
	4.3 A Hecke operator
	4.4 The change of variables and calculation of the integral
	4.4.1 Choosing the z0
	4.4.2 The partition of the border
	4.4.3 The change of variables


	5 Applications and examples
	5.1 Elliptic curves
	5.2 Supersingular elliptic curves
	5.3 Elliptic curves over C and Eisenstein series
	5.4 Reduction modulo p of modular forms
	5.5 The Tate Curve
	5.6 Obtaining the Tate parameter
	5.7 Obtaining equations for the curves
	5.7.1 Elliptic curves in characteristic 2 and 3
	5.7.2 Elliptic curves over characteristic p>3


	A Algorithms for the Quotient graph
	A.1 Computational complexity of mathematical operations
	A.2 Representatives for the edges of 0 T
	A.3 Lifting cycles to T
	A.4 Finding the representative

	B Algorithms for the table
	B.1 Algorithms for the calculation of the table
	B.2 Algorithms for the calculation of the integral

	C Tables
	C.1 Preliminaries
	C.2 Table for degree 3 over F3
	C.3 Table for degree 4 over F3
	C.4 Table for degree 3 over F5
	C.5 Table for non-primes of degree 4 over F5
	C.6 Table for primes of degree 4 over F5
	C.7 Table for primes of degree 5 over F5

	References


 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Wo: nach der aktuellen Seite
     Anzahl der Seiten: 1
     Seitengröße: identisch wie Seite 1
      

        
     Blanks
     Always
     1
     1
     1
     690
     325
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsPage
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Wo: nach der aktuellen Seite
     Anzahl der Seiten: 1
     Seitengröße: identisch wie Seite 1
      

        
     Blanks
     Always
     1
     1
     1
     690
     325
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsPage
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Wo: nach der aktuellen Seite
     Anzahl der Seiten: 1
     Seitengröße: identisch wie Seite 1
      

        
     Blanks
     Always
     1
     1
     1
     690
     325
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsPage
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Wo: nach der aktuellen Seite
     Anzahl der Seiten: 1
     Seitengröße: identisch wie Seite 1
      

        
     Blanks
     Always
     1
     1
     1
     690
     325
    
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsPage
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

 HistoryList_V1
 qi2base



