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Abstract 

Volatile organic halocarbons (VOX) play an important role in atmospheric processes. However, 

biogeochemical release mechanisms from terrestrial environments are complex, not well understood in most 

parts and a clear view of their relative importance is lacking. Previously, the lithospheric VOX formation 

potential was subject of only few studies. 

In the first part of this thesis the development of a new method for the analysis of VOX from rocks and 

minerals is reported in order to investigate terrigenic VOX formation potential. The purge and trap GC-MS 

system was optimized for the analyses of halogenated volatile organic compounds having boiling points as 

low as -128 °C  for carbon tetrafluoride (CF4).  

The design of the U-shaped glass lined steel tube (GLT™) cold trap for sample preconcentration and the 

rapid desorption via resistant heating transferred the desorbed analytes directly onto the GC column via a 

deactivated capillary column retention gap made sample re-focussing unnecessary. Furthermore, a special 

air-tight grinding device was developed in which samples ranging from soft halite (hardness 2, Moh’s scale) 

to hard quartz (hardness 7) are effectively ground to average diameters of 1000 nm or below, thereby 

releasing gases from fluid inclusions of minerals. The gases are then purged from the grinding chamber with 

a He carrier gas flow.  

In the second part of this work, the newly developed method is applied to a set of various mineral and rock 

samples including fluorite, quartz and halite. The analytical results from GC-MS prove the presence of a 

wide spectrum of volatile compounds from FIs trapped in various minerals. SF6 and CF4 were released from 

fluorites. Methyl bromide, dichloroethene and dichloroethane were detected in quartz samples from the 

Archean Yilgarn craton in Australia. Methyl chloride (MeCl) has been detected from almost all samples, 

including halites, fluorites, quartz and dolerites. Initial heating experiments with halites using purge-and-

trap GC-MS as well as pyrolysis-GC-MS demonstrated the important role of temperature in MeCl and VOX 

formation. 

Finally, in the last part of this dissertation a case study on one possible formation pathway for the volatile 

compounds MeCl and dimethylsulfide (DMS), via thermolytic degradation of the amino acid derivative 

methyl methionine is investigated. A fast response of MeCl and dimethylsulfide emission upon heating of 

freeze-dried samples at 40 °C was observed and made this a plausible abiotic volatile formation mechanism. 

Besides the mechanistic studies with methyl methionine and structurally related substances, the emission of 

MeCl and DMS from fluid inclusions, soil samples of terrestrial salt lakes and air sampled immediately 

above the salt lake surfaces indicated the relevance of this formation pathway for hypersaline environments. 

 

 



 

 

 

 

Zusammenfassung 

Flüchtige organische Halogenkohlenwasserstoffe (VOX) spielen eine wichtige Rolle in chemischen 

Prozessen der Atmosphäre. Allerdings sind die biogeochemischen Mechanismen die zu diesen Prozessen 

beitragen komplex, und oftmals fehlt ein klares Verständnis von Bildungswegen und deren Auswirkungen. 

Das lithosphärische VOX-Bildungspotential wurde bisher in nur wenigen Studien angedeutet. 

Der erste Teil der vorliegenden Arbeit dokumentiert die Entwicklung einer neuen Methode zur Analyse von 

VOX aus Mineralen und Gesteinen. Das Purge-and-Trap GC-MS-System wurde für die Analyse 

halogenierter flüchtiger Verbindungen mit Siedepunkten bis zu -128°C (Kohlenstofftetrafluorid) optimiert. 

Das Design der U-förmigen, innen mit Glas beschichteten, Anreicherungsprobenschleife und der schnelle 

Desorptionsschritt mittels Widerstandsheizung, der die Analyten über ein ‚Retention-Gap‘ direkt auf die 

GC-Säule transferiert, ersparte eine Re-Fokussierung auf der Säule. Außerdem wurde ein spezielles 

Mahlgefäß entworfen, dass dazu diente, Proben von weichen Haliten (Moh’s Härte 2) bis zu harten Quarzen 

(Moh’s Härte 7) effektiv auf eine Durchschnittskorngröße von 1000 nm oder darunter zu mahlen und 

dadurch Gase aus den Fluideinschlüssen der Minerale freizusetzen. Die Gase werden dann mit dem He 

Trägergas aus dem Mahlbecher transportiert.  

Im zweiten Teil dieser Arbeit, wurde die entwickelte Methode zur Analyse eines Probensatzes verschiedener 

Minerale und Gesteine, mit u.a. Fluorit, Quarz und Halit eingesetzt. Die analytischen Ergebnisse der GC-

MS zeigten, dass eine große Bandbreiten an flüchtigen organischen Verbindungen in den Fluideinschlüssen 

der Minerale vorhanden ist. SF6 und CF4 wurden aus Fluoriten freigesetzt. Methylbromid, Dichlorethen und 

Dichlorethan wurden aus Quarzen des archaischen Yilgarn Kratons in Australien detektiert. Methylchlorid 

(MeCl) wurden in fast allen Proben nachgewiesen, inklusive den Haliten, Fluoriten, Quarzen und Doleriten. 

Erste Heizversuche mit GC-MS und Pyrolyse-GC-MS zeigten, dass die Temperatur eine wichtige Rolle in 

der MeCl und VOX-Bildung spielt. 

Schließlich wird im letzten Teil der Arbeit eine Fallstudie zu einem möglichen VOX-

Bildungsmechanismus, dem thermolytischen Abbau des Aminosäurederivats Methylmethionin zu MeCl 

und Dimethylsulfid (DMS), vorgestellt.  Ein schneller Anstieg von MeCl und DMS Emission war zuvor  

beim Heizen auf 40°C von gefriergetrockneten Bodenproben beobachtet worden und ließ dieses daher einen 

plausiblen Bildungsweg erscheinen. Neben den mechanistischen Studien mit Methylmethionin und 

strukturell verwandten Substanzen, deuteten Emissionen von MeCl und DMS auch aus Fluideinschlüssen 

und Boden- sowie Luftproben von terrestrischen Salzseen die Relevanz dieses thermolytischen 

Bildungswegen für hypersaline Milieus an. 
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1.1. Introduction and Objectives 

 

1.1.1. General remarks 

In the 1823 German Yearbook of Chemistry and Physics, author J.L.G. Meinecke formulated the 

following:  

 

„Die oberflächliche Atmosphäre wird erst thätig durch die Erde, wozu sie gehört und der sie als 

geringer Körper anhängt.“ (The superficial atmosphere comes to act through the earth, to which 

it belongs and to which it is attached as a minor body.) 

 

In his article the professor, in the language of his time, flamboyantly speculates over emissions 

from the earth interior influencing meteorological phenomena (lightning), causing periodically 

occurring unhealthy steams (malaria) and considering the presence of ‘atmospheric air’ in geologic 

matrices as an explanation for the formation of organic life (fossils). Nevertheless, his approach of 

focusing on the lithosphere and lithospheric processes and his strive to fathom their impact on 

atmospheric processes is probably more up to date now than ever. 

Although the atmosphere (5.13*1018 kg) on a weight basis is small compared to the rest of the earth 

(total 5.97*1024 kg; continental crust 22.5*1021 kg, oceanic crust 4.6*1021 kg), its composition and 

reactions are of pivotal importance to life on earth, such as the protection of organisms from 

ultraviolet light or a balanced heat budget at favourable temperatures (Warneck and Williams, 

2012).  However, the atmosphere derived primarily from thermal outgassing at the beginning of 

earth history. Earth’s influence on atmosphere and climate is most apparent in volcanic eruptions, 

ejecting large aerosol particles and SO2, forming secondary aerosols. 

Since the discovery of the ozone hole over Antarctica in the 70ies, intensive atmospheric research 

has shown that mainly man-made volatile aliphatic hydrocarbons (chlorofluorocarbons and halons) 

take a significant part in atmospheric ozone destruction. Naturally produced methyl chloride and 

methyl bromide were recognized also as important precursors for the ozone depleting chloro- and 

bromo-species (Molina and Rowland, 1974). Halogenated species can also be powerful greenhouse 

gases, especially the fluorinated ones with CF4 having by far the longest lifetime of 50,000 years 

(IPCC, 2013). In the past large amounts of fluorinated gases were emitted by industrial processes. 

The amounts of chlorofluorocarbons (CFCs) released were reduced since a phase-out management 
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plan of these substances was universally ratified in the Montreal protocol in 1987. An understanding 

of the natural formation of volatile organic halocarbons (VOX) was developed in recent years and 

is still subject of ongoing studies. Schöler and Keppler (2003) subdivide their abiotic formation 

within terrestrial environments into three groups: biomass burning (methylhalides), early diagenetic 

processes in soils and sediments (VOX, haloacetic acids) and volcanic activity (VOX). Halogenated 

volatile organohalogens formed in the lithosphere received little attention and accordingly the 

number of studies concerned with naturally halogenated organics from rocks and minerals is limited.  

Naturally produced halogen compounds were the central subject of the DFG research unit 763, 

Natural Halogenation Processes in the Environment - Atmosphere and Soil. The lithosphere is part 

of the environmental compartment of the pedosphere, the soil, where it interacts with the 

atmosphere, hydrosphere and biosphere. This Ph.D. thesis has been supported in parts by the 

research unit. 

Today, a geogenic formation of VOX has been evident from hydrologic studies and measurements 

of volcanic emissions, including a handful of studies from rocks and minerals. However, we are far 

from an in-depth understanding of their geogenic occurrence, processes of their formation and 

contributions to atmospheric processes.  

Therefore, the viewpoint of this thesis focusses on the occurrence and formation of VOX in the 

lithosphere. 

 

1.1.2. Thesis objectives 

Aim of this dissertation was to investigate additional groups of rocks and minerals for their VOX-

formation potential. Minerals are known to host fluid inclusions (FI) that trap liquids, gases and 

solids. Additionally, rocks and minerals offer an extremely wide spectrum of diagenetic conditions 

such as temperature, pressure and salinity of the mineral forming fluid. In view of this multitude of 

possible formation conditions during diagenesis and metamorphosis, this work intends to contribute 

to an improved estimation on the atmospheric input from this compartment. Furthermore, we strive 

to provide a stronger scientific basis for halogenation reactions in the lithosphere with respect to 

volatile organohalogen generation.  

In order to  conduct a sample screening of the VOX content of FIs in a divers set of minerals and 

rocks, a method suitable for the detection of low boiling point compounds had to be developed. 

Observations on halites during the subsequent sample screening brought forward the in-depth 
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investigation of one possible formation pathway of methyl chloride (MeCl) and dimethylsulfide 

(DMS) via an amino acid derivative as precursor. 

 

1.1.3. Structure of thesis 

According to the study objectives, this thesis is subdivided into three chapters. Chapter 2 describes 

the method development to investigate VOX from FIs of rocks and minerals. Chapter 3 

summarizes results of the screening of rocks and minerals for their VOX content and Chapter 4 

contains a case study on MeCl and DMS and documents the investigation of one potential 

formation pathway. Each chapter has a preceding introductory section summarizing relevant 

literature data allowing the reader to understand and comprehend the respective context without 

the need of the other chapters. Chapter 5 comprises an overall summary and conclusions. 

This introductory Chapter 1 will now discuss briefly aspects of general importance to the subject 

of the study. Terms of fluid inclusion research and VOX will be defined. A literature review on 

organic matter in the geosphere in general as well as in fluid inclusions in particular follows. 

Known geogenic VOX occurrence will be summarized and the behavior of halogens in rocks and 

magma is outlined. Finally, possible geogenic halogenation reaction pathways will be discussed. 
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1.2. Investigation of fluid inclusions 

 

Fluid inclusion analyses are a widely used geochemical tool to determine thermobaric and chemical 

evolution of geologic systems. 

Most naturally grown crystals contain inclusions of other minerals, melts, fluids and gases, which 

were originally present at the mineral surfaces during crystal growth and then included. The term 

“fluid” of “fluid inclusion” (FI) does not imply that their contents are liquid but rather refers to the 

fluid captured, from which the mineral formed.   

Thus, FIs are important archives and their investigation allows to gather information on original 

fluid composition. Several generations of FIs can be present and for probably most FI analysis 

performed by geologists, it is crucial to differentiate between primary, secondary and 

pseudosecondary FIs. 

 

 

 

Figure 1.1: Schematic representation of the formation of primary, secondary and 

pseudosecondary fluid inclusions during crystal growth (adapted from Bodnar, 2003). 

 

 

Primary FIs that are encapsulated droplets of the solutions from which the mineral crystallized, e.g. 

in hydrothermally formed minerals like quartz and fluorites. They commonly occur isolated, in 

small clusters or parallel to crystal faces and are often characterized by ‘negative crystal shapes’, 

result of re-crystallizations to reducing the surface energy. Observations on their density and 
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compositions allow to conclude on the trapping conditions. Secondary FIs do not reflect the 

conditions of mineral formation. If the crystal fractures upon tectonic stress, a new fluid can cause 

the crack to anneal, while including another generation of FIs. Those secondary FIs commonly 

occur along paths tracing the annealed crack and often cutting across growth zones of the mineral. 

Some cracks however are already formed during crystal growth and thus their time of formation is 

equivalent to primary inclusions but their appearance resembles more those of secondary FIs, thus 

they are termed pseudo-secondary FIs (Figure 1.1).   

In prepared thick sections (100 to 300 μm thickness) of minerals or rocks FIs can be observed with 

a regular polarization microscope as their size typically ranges from 5 to 100 μm (Markl, 2004). 

Figure 2 shows an example of a multi-phase inclusion in quartz. The exsolution into liquid and gas 

and in some cases precipitation of multiple daughter crystals, such as halite, sylvite or barite, upon 

cooling of an originally homogeneous fluid trapped at high temperatures is a common 

phenomenon.   

FI microthermometry is performed on selected chips of thick sections and is based on the phase 

changes occurring within the FIs during heating and cooling. Employing a heating/freezing stage 

the reverse process can be observed. When heating the FI the solids melt and the vapor bubble 

shrinks until it finally disappears at the temperature of homogenization. This temperature 

represents the minimum trapping temperature and gives an indication of the bulk density of FI. The 

temperature of melting is defined as the temperature at which the last (usually ice-) crystal melts 

under reversed equilibrium conditions. It provides information on the chemical composition and 

the salinities of the mostly aqueous solutions can be calculated as NaCl-equivalents (Roedder, 

1962).  When the approximate compositions are known, e.g. if it is a CH4-H2O or NaCl-H2O 

mixture, and the temperature of homogenization known, diagrams of the corresponding isochores 

can be used to determine density and trapping temperature. 

Also observed via microthermometry is the thermal decripitation upon heating. This process is 

irreversible as the FIs are destroyed once the internal pressure surpasses the confiding 

pressure/lithostatic pressure of the host mineral. Besides the internal pressure of the FIs, parameters 

controlling their decrepitation are the size of FIs and mineral hardness and cleavage. Quartz is more 

likely to preserve unaltered FIs than softer minerals.  
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Figure 1.2: Photomicrograph (reprinted from van den Kerkhof and Hein, 2001; with 

permission from Elsevier) of a multi-phase FI in a smoky quartz containing a large CO2 

vapor bubble (V), surrounded by a saturated liquid phase (L) and three daughter minerals 

(S1, S2, S3). 

 

 

Even for halites, experimental studies have shown that leakage and deformation of FIs is not a 

common phenomenon in halites and that predominantly larger FIs were affected under influence 

of high geothermal gradients (Wilcox, 1968). 

Conclusions on thermobaric history, however, always have to be made with care. 

Gas-rich FIs are preserved better than inclusion with a large volume fraction of H2O as their 

pressure rises less steep upon increasing temperature. 

Raman spectroscopy is another helpful tool in order to observe phase changes of solid, liquid or 

gaseous components but also to identify polyatomic ions in solutions. 

Cathodoluminescence is used in FI research to observe micro textures such as dislocations, 

microcracks and secondary crystallizations which allow to make conclusions on interactions 

between FI and host mineral (van den Kerkhof and Hein, 2001). 

Vitrinite reflectance is a common tool conjointly used with fluid inclusion study to obtain 

geobarimetric data (Barker et al., 1998; Barker and Pawlewicz, 1986). Fluorescence of natural  

hydrocarbon FIs is used in micro-spectrometry to retrieve information on crude oil chemistry 

(Stasiuk and Snowdon, 1997). 

Standard textbooks on fluid inclusion research include the volumes by Roedder (1984), Goldstein 

and Reynolds (1994) and Samson et al. (2003).  

More detail on the chemical composition of FIs and their study is provided in Chapter 2.1. 
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1.3. Organic matter in the lithosphere 

 

Gas-liquid inclusions can be found in all types of rock. Aside permanent inorganic gases (e.g. N2, 

Ar, CO2, O2) they often contain methane and its homologues (Roedder, 1984; R. H. Goldstein, 

2001). Their precursors are usually considered to be of biotic marine or terrestrial origin and 

incorporated and alterated during diagenesis and catagenesis. A few concepts of the abiotic origin 

of methane and higher-order hydrocarbons also exist and will be outlined following a short 

summary on basic terms of organic matter precursor and transformations in sedimentary 

environments. 

Diagenesis is the term for rock forming processes following the deposition of sediments. Usually, 

sediments are overlain or buried and subsequently exposed to increased pressures and 

temperatures, which entail organic transformations including soil formation, bioturbation and 

bacterial action, mechanical reworking, reduction of pore spaces, loss of water, dissolution-

precipitation reactions, cementation and recrystallization. The threshold to metamorphosis is 

surpassed with the formation of new minerals starting at around 150-200°C (Markl, 2004). 

Depending on depositional environment, be it fluvial, lacustrine or marine, associated organic 

matter (OM) of the sediment is exposed to diagenesis and catagenesis. Catagenesis follows 

diagenesis and this term is used specifically with reference to OM decomposition. Catagenesis is 

characterized by thermal bond-breaking and alteration of OM sometimes starting at temperatures 

as low as 60°C, but generally this stage is reached at 100°C (Killops and Killops, 2009). In early 

diagenesis, all OM is subject to microbial degradation to from humic substances. Initially, low 

molecular weight peptides, carbohydrates and amino acids, which are water soluble, can be 

assimilated by the decomposer communities. Heterotrophic, thermophilic microbes prevail also at 

elevated temperatures. Extracellular enzymes of fungi and bacteria can hydrolyze insoluble 

proteins and polysaccharides, making higher molecular weight compounds available. The 

resistance towards microbial degradation increases from proteins to carbohydrates (forming 

hexoses and pentoses) to lipids to lignin. The chemical residues from microbial degradation 

undergo condensation reactions, often between sugars and amino acids. The series of to date still 

incompletely understood reactions are also known as Maillard reactions (Killops and Killops, 2009; 

Sposito, 1989) results in highly complex organic residue, also called geopolymers (Killops and 

Killops, 2009). These dark colored organic residues are called humin in soils, brown coal in coal 
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mires and kerogen in marine and lacustrine sediments. The precursors to the geopolymers are also 

called humic substances. As opposed to the generally accepted polymeric concept, they are 

currently also looked at as supramolecules: an assembly of diverse, relatively low molecular weight 

components. Instead of covalent bonds, these dynamic associations are thought to be stabilized by 

hydrophobic and hydrogen bonds, which are also responsible for the apparent large size (Sutton 

and Sposito, 2005; Piccolo, 2002). Thus, the exact structure of humic substance is still unknown 

and as the starting materials from which they are forming can differ considerably, the structure of 

humic substance also depends on location.  

To understand involved reaction mechanisms, model compounds have to be employed. The 

quinones, and especially dihydroxbenzene catechol, are examples for common models of the 

aromatic fractions of humic substances (see Figure 1.3).  

To visualize possible reactions during catagenesis, Figure 1.3 presents the degradation processes 

for a model vanilloid unit of lignin during coalification. Originally, lignin is produced in the cell 

walls of plant and some algae via the oxidative coupling of substituted hydroxypropenyl-phenols 

(p-coumaryl), where they are bound covalently to hemicelluloses and provide structural strength 

for plant growth (Leary, 1980; Vanholme et al. 2010). 

With a share of 30% of organic carbon in the biosphere lignin represents the second-most common 

organic polymer after cellulose (Boerjan et al., 2003) and contributes significantly to humin and 

brown coal formation but contribute only trace amounts to marine kerogen formation. 

 

 

Figure 1.3: Coalification reactions at the example of the vanilloid unit of lignin. Catechol unit 

in green (after Killops et al. 2004; Hatcher and Clifford, 1997). 
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The first steps from lignin to lignite are partly mediated by microbial enzymatic attack. Where the 

β-O-4 ether group is cleaved and phenolic OH groups form, contributing to an increased catechol 

content, which reaches highest concentrations in lignite. Demethylation and subsequent reductions 

of hydroxyl groups are increasingly pyrolytically mediated. In the rank stage of bituminous coal, 

condensation has led to an increase in aromaticity through cyclization and aromatization of side 

chains. This step also disrupts the morphological structure of wood or plant previously still 

retained. During the bituminous coal stage, methane, carbon dioxide and water are regarded the 

main volatile products. Methane and carbon dioxide production increase further towards anthracite 

formation. Finally, carbohydrates are eliminated and oxygen content decreases, while inherited 

metal ions seem to be largely retained during peatification and coalification. (Killops and Killops, 

2009). 

Overall, the observed geochemical changes upon burial are defunctionalization of the carboxyl-, 

carbonyl- and methoxy- functional groups coupling with an increase of cross linking in the residual 

mature kerogen. By cleavage of lignin side chains, gaseous and liquids hydrocarbons are produced 

in low amounts, mostly CH4, C4H8 and C14 liquid hydrocarbons (Salmon et al., 2009). 

In order to establish a basis for potential halogenation reactions as will be discussed in section 1.5, 

it is useful to have a closer look at the reactions generating hydrocarbons. During catagenesis 

hydrocarbon generation is attributed to two types of reactions: Firstly, n-alkane distribution 

patterns are best explained by free-radical chain reactions and secondly, randomly positioned single 

methyl branches on alkenes in oils suggests rearrangement of carbocations formed from alkenes 

(Kissin, 1987; Kissin, 1998). 

As starting reaction a free radical is formed according to 

 

(1) Initiator → R• 

 

where R• is an alkyl radical of the formula CnH2n+1
• formed during hydrocarbon generation. Once 

the radicals with its extremely reactive unpaired electrons are formed the chain-reaction is initiated. 

The propagation of the chain-reaction can proceed via various reaction schemes such as chain 

reaction propagation: 

 

(2) R• + CH3-(CH2)x-CH2-(CH2)y-CH3 → R-H + CH3-(CH2)x-C
•H-(CH2)y-CH3 
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β-scission:  

 

(3) CH3-(CH2)x-C
•H-CH2-CH2-(CH2)y-CH3 → CH3-(CH2)x-CH=CH2 + C•H2-(CH2)y-CH3 

 

Radical isomerization: 

 

(4) CH3-(CH2)x-CH2-(CH2)y-C
•H2 → CH3-(CH2)x-C

•H-(CH2)y-CH3 

 

Radical transfer: 

 

(5) CH3-(CH2)x-C
•H-(CH2)y-CH3 + CH3-(CH2)m-CH2-(CH2)n-CH3 →  

                             CH3-(CH2)x-CH2-(CH2)y-CH3 + CH3-(CH2)m-C•H-(CH2)n -CH3 

 

The chain-reaction is terminated when the chain reaction is quenched by interaction with another 

radical via recombination 

 

(6) R1• + R2• → R1-R2 

 

or disproportionation 

 

(7) R1-H• + R2• → R1 + R2-H 

 

resulting in pairing of the electrons (Killops and Killops 2009). 

Thermal cracking in industrial processes also proceeds via radical chain reactions (Gray and 

McCaffrey, 2002) and the catalyzing characteristics for radical formation of the elements such as 

iron or nickel (e.g. Greensfelder et al., 1949), or solid acid catalysts such as montmorillonite in 

industrial applications has long been recognized and employed (Kissin, 1998). 

Radical reactions facilitated by e.g. iron, manganese, copper, other transition metal or mineral clay 

catalysts are also important in early diagenetic stages of organic matter decomposition and new 
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compound formation (Schöler and Keppler, 2003; Huber et al., 2009; Keppler, 2000). Of special 

importance in soils is the formation of hydroxyl radicals (•OH) via the Haber-Weiss-reaction,  

 

(8) Fe2+ +H2O2 → Fe3+ + OH- + •OH 

 

with the net reaction resulting in a hydroxyl radical (Haber and Weiss, 1932) that can further react 

with (adsorbed) organic compounds and also trigger chain reactions (Neyens and Baeyens 2003). 

When Fe3+ is reduced by H2O2 to Fe2+ an iron catalytic Fenton-like reaction cycle has evolved. 

Under suitable conditions auto-oxidation of Fe2+ reducing O2 to the superoxide O2-• radical can 

follow suite (Barb et al., 1951). See also section 1.8.2 on Fenton chemistry. 

The second type of reaction of hydrocarbon generation is the formation of carbocations formed 

from alkenes, a process that accounts for the occurrence of single methyl branches in oil. An alkane 

and an α-alkene are the result of hydrogen transfer after cleaving off an alkyl chain. Subsequently, 

the α-alkene can produce a range of methyl-substituted alkanes by acid catalysis,  

 

(9) H+ + CH2=CH-CH2CH2-R → CH3-C
+H-CH2-CH2-R 

 

yielding the carbocation that in the following can be involved in various rearrangement reactions 

as summarized in Figure 1.4 (Killops and Killops, 2009).  

 

 

Figure 1.4: Hydrocarbon-generation reactions for methyl-branched alkane formation after 

carbocation is formed (see equation 9) (after Killops and Killops, 2009).  
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Figure 1.5: The composition of C-containing fluid evolved from a humic (top) and sapropelic 

(bottom) source as a function of temperature (adapted from Giggenbach (1997) and Killops 

and Killops, 2009). For temperatures >150 °C compositions are shown as free vapour phase 

(dashed lines) as well as dissolved in aqueous liquid (solid lines) in equilibrium with crustal 

rock. The diagenesis-catagenesis boundary is variable and can be placed between 50 and 100 

°C. 

 

 

With regard to the role of light hydrocarbons, especially that of methane, as precursor in VOX 

formation, an overview of favorable hydrocarbon formation is given in Figure 1.5.  

While initial methane production is high due to microbial activity, increased burial and 

temperatures lead to large amounts of CO2 being formed as a result of decarboxylation of (humic) 

kerogens with a maximum at 100 °C. Subsequent temperature increase promotes cracking of 

kerogen or secondary cracking of higher hydrocarbons, peaking at 150 °C (Giggenbach, 1997). At 

even higher temperatures the CH4 and CO2 content is increasingly controlled by an approaching 



1. Introduction and Literature Review 

 

 

14 

equilibrium with the host rock, e.g. the fayalite-magentite-quartz buffer.  Conversely, redox 

potentials as reflected by CH4 and CO2 contents are closely controlled by interaction with Fe(II) 

and Fe(III) (Giggenbach, 1997). 

Methane is predominantly produced by microbial fermentation during diagenesis and upon rising 

temperature as a result of oil cracking (wet gas stage of catagenesis). Early diagenetic sulfate rich 

(marine) settings are dominated by methyl type fermentation, e.g. acetate fermentation. 

 

(10) CH3COOH → CH4 + CO2 

 

Once sulfate reducing bacteria have exhausted available labile carbon, a sulfate reducing 

environment has formed and methanogenesis proceeds via carbonate reduction  

 

(11) CO2 + 4H2 → CH4 + 2H2O 

 

This second methanogenic pathway is favored as methanogenic substrates such as acetate are 

depleted, and bicarbonate is available (Abrams, 2005). Both pathways (10) and (11) result in 

different isotopic signatures. Together with the ratio of ethane (thermogenic) to ethene (bacterial) 

the methane isotopic ratio is used to estimate the thermogenic influence on hydrocarbon origin 

(Abrams, 2005). 

A divergence from the typical thermogenic methane to ethane and propane ratio smaller than 100 

when derived from organic matter indicates also an abiotic origin of methane (Fiebig et al., 2009). 

One possible abiotic formation pathway for methane is of the Fischer-Tropsch type 

 

(12) CO2 + [2+(m/2n)]H2 ↔ (1/n)CnHm + 2H2O 

 

for example at hydrothermal vent as discovered at the East Pacific Rise (Welhan, 1988) and in 

other crustal fluids in which methane has been discovered. Enrichment of 13C in methane is typical 

for isotopic equilibrium at temperatures > 500°C within the host rock and corresponding isotopic 

signatures are consistent with the concept of methane formation within the rock prior to 

hydrothermal extraction (Welhan, 1988). These reduction reactions of the type in equation (12) are 

thought to occur during magma cooling and in hydrothermal systems during water–rock 
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interactions (Sherwood Lollar et al., 2002). Sherwood Lollars (2002) isotopic studies on light 

hydrocarbons C1-C4 in field samples were in favor of a polymerization starting methane precursor 

to form higher hydrocarbons.  

A second possible reaction is the selective abiotic reduction of CO2,  

 

(13) CO2+ 4H2 ↔ CH4 + 2H2O  

 

known as Sabatier’s reaction, originally involving nickel as catalyst (Fiebig et al., 2009). This type 

of reaction was also reported from the Lost City hydrothermal field,  

 

(14) HCO3
- + 4H2 → CH4 + OH- + 2H2O  

 

where serpentinization of ultramafic rock provides the hydrogen required for the reaction (Russell 

et al., 2010). Thus, a third abiotic methane production pathway, also a first step in abiogenesis, 

independent from a sedimentary organic matter source can be considered next to the classical 

division of hydrocarbon/methane formation into bacteriogenesis and thermogenesis (Figure 1.6). 

 

Figure 1.6: Schematic summary of diagenetic, catagenetic and metagenesic (dry gas) stages 

of decomposition and accordingly hydrocarbon generation. Processes leading to CH4 

evolution are emphasized in light orange. Asterisk indicates reference to Althoff et al. (2014). 
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Most recently, an abiotic methanogenetic pathway under ambient temperature and pressure as well 

as oxidizing conditions has been described by Althoff et al. (2014) where iron (II/III), hydrogen 

peroxide and ascorbic acid are employed as reagents, to convert S-methyl groups of organosulfur 

compounds into methane. The precursor for this reaction is supplied by biota. Due to low 

concentrations of total organic matter in ancient rocks, the breakdown of hydrocarbons during 

metamorphosis and loss over time, extractable oil or organic matter from these source rocks, e.g. 

from early Precambrian, are uncommon.  However, in some cases the OM was preserved within 

FIs for billions of years providing biomarkers and insights into timing and conditions of entrapment 

or addressing questions of abiotic organic matter formation (see next section 1.4). 

 

 

1.4. Organic matter in fluid inclusions 

 

The previous section has presented the various sources for hydrocarbons in the geosphere and 

discussed some of their formation mechanisms. In section 1.2, it was stated that FIs occur in most 

naturally grown crystals and that they contain entrapments of other minerals, melts, fluids and 

gasses present at the mineral surfaces during crystal growth. Consequentially, FIs can also 

represent archives for organic matter e.g. in the form of hydrocarbons, biomarkers (organic 

compounds, also hydrocarbons, from which biological origin can be inferred) and other organic 

matter compounds present in the initial fluid. 

FI analysis of oil and natural gas bearing FIs has become an important tool in petroleum exploration 

to investigate porosity evolution, thermal history, source regimes and migration pathway and 

mechanisms, product type and quality. C1-C13, BTEX (benzene, toluene, ethylbenzene and 

xylenes) and organic acids are determined from FIs in relation to oil and gas exploration. Ore 

geologists evaluate the role of organic matter in terms of transport and deposition of metals in 

sedimentary basins (Etminan and Hoffmann, 1989). In order to illustrate the diversity of 

hydrocarbons in FIs, Table 1.1 contains a list of low molecular weight hydrocarbon functional 

group fragments, as used for identification of their MS spectra. Complementary, Figure 1.7 shows 

a chromatogram of higher molecular weight n-alkanes and n-alkan-ols present in oils. A list of 

aliphatic and aromatic hydrocarbons observed in FIs determined with our GC-MS system (Chapter 

2) is provided in the attachment (Table 6.10).  
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Table 1.1: Major chemical constituents of low molecular weight (C1-C12) volatile compounds 

present in oil fluid inclusions and extracted by online crushing from cuttings samples (from 

Jorge et al., 2011; based on Barclay et al., 2000). 

 

 

 
Figure 1.7: Example total ion chromatogram from GC-MS analysis of non-volatile 

compounds after dichloromethane extraction from crushed FIs (from McCollumn et al., 

2006; with permission of American Chemical Society). Closed circles are n-alkanes, open 

circles are n-alkanols. Numbers indicate the carbon chain length. Low molecular weight 

hydrocarbons have partially been lost during evaporation in sample preconcentration. 

Isotopic signature data in that study suggested a possible abiotic formation.  
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OM in FIs could potentially reflect ambient life. When rocks are heated to 200°C to 300°C most 

large biomolecules are destroyed, while alkanes and aromatic compounds prevail. As pointed out 

with reference to impact events by Parnell et al. (2006) biomolecules have a higher chance of 

survival when trapped in a FI. 

Stability of complex aromatic hydrocarbons within fluid inclusions at temperatures up to 300 °C is 

evident (Dutkiewicz et.al., 2003). Therefore, preservation of hydrocarbons in fluid inclusions in 

crystalline rocks should be possible.  

Parallel to the discussion on the origin of methane in section 1.3, hydrocarbons in FIs of igneous 

rock can be attributed to thermal decomposition from organic matter of overlying sedimentary 

source rocks. Examples are the a widespread occurrence of bitumen in basement rocks in 

Scandinavia (Munz, 2001), gas-condensate inclusions with alkane homologues up to C15 in the 

crystalline basement in South Norway (Munz, 2001) and numerous complex hydrocarbons in 

granite plutons in the British Isles (Parnell et al., 2006). More extensive lists of hydrocarbon 

occurrences associated with igneous rocks can be found in Schutter (2003) and Potter and 

Konnerup-Madsen (2003).  Ketone isomer formation was attributed to flash pyrolysis of kerogen 

during the intrusion of dolerite into overlying strata, which was recognized as the first and oldest 

phase of hydrocarbon migration in 1280 Ma sill within the Mesoproterozoic Roper Group in the 

Roper Superbasin, Australia (Dutkiewicz et al., 2004). In the same formation, the occurrence of 

the biomarkers monomethylalkanes, pentacyclic terpanes chiefly comprising hopanes and 

diahopanes, and minor amounts of steranes and diasteranes was attributed to input from 

cyanobacterial organic matter and a minor contributions from eukaryotes derived from overlying 

Proterozoic source rock (Dutkiewicz et al., 2004).  

In contrast, there are several examples for hydrocarbons from FIs in crystalline rocks where an 

abiotic formation mechanism was indicated. 

Sherwood Lollar et al. (1993 and 2006), showed that deep subsurface fluids in Canadian and 

Fennoscandian (Precambrian)  shield rocks are dominated by reduced gases such as CH4 and up to 

30 vol%. 13C-enriched CH4 supports an abiotic gas formation. Other studies explained the 

hydrocarbons within FIs by an abiotic origin, including hydrocarbon gas inclusions in Ilimaussaq 

igneous complex in southern Greenland (Konnerup-Madsen et al., 1979; Potter and Konnerup-

Madsen, 2003), methane-bearing fluid inclusions in alkaline igneous intrusions of the Kola igneous 

province (Potter et al., 1998) methane and higher hydrocarbons in granite and dolerite intrusions 
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at Siljan, Sweden (Jeffrey and Kaplan, 1988), hydrocarbon inclusions containing saturated and 

unsaturated aliphatics in pegmatite quartz in granite at Strange Lake, Canada  (Salvi and Williams-

Jones, 1997) methane and higher hydrocarbons in fractures in crystalline rocks of the Canadian 

shield (Sherwood Lollar et al., 2002). 

In summary, FIs archive organic matter of the initial fluid, be it of biotic or abiotic origin. The 

amount of fluid inclusion studies on a wide range of different organic matter compound is huge. 

The occurrence of hydrocarbons within FIs of rocks of sedimentary and diagenetic systems is 

obvious. Little is known about halogenated organic species (see also section 1.5). 

Hydrocarbons observed are suitable to serve as precursors for potential halogenation reactions. 

Investigations on halogenated organic compounds from FIs are not part of standard (petrological, 

industrial) FI analysis and will be included in the preceding section 1.5 and are also part of the 

introduction to Chapter 2. 

 

 

1.5. VOC, VOX and naturally produced organohalogens  

 

For the term volatile organic compounds, abbreviated VOC, numerous definitions are in use. In 

this work, VOC is used as the general term for the group of organic chemicals with low boiling 

points, i.e. compounds that are gaseous at standard temperature and pressure. Numerous 

compounds fall in this category and they can be naturally produced or man-made. They are likewise 

as ubiquitous as they are varied and can be sulfurated, nitrated or halogenated.  

VOSC, abbreviated for volatile organic sulfur compounds, contains at least one sulfur atom and 

this group is an important agent in aerosol formation via oxidation to acidic H2SO4, impacting 

cloud condensation, local climate and the radiation budget (Charlson et al., 1992). VOSC are partly 

subject of Chapter 4 and Table 1.3 provides an overview of these compounds observed in rocks 

and minerals.  

VOX, volatile organic halocarbons, is used as a more specific term for the sub-group of the VOCs 

bearing at least one halogen, which can be fluorine, chlorine, bromine or iodine. Halons, a group 

of low boiling-point hydrocarbons with at least one hydrogen substituted by a halogen, belong to 

this group. Also included in the term VOX are the renowned CFCs (chlorofluorocarbons) and 

HCFS (hydrofluorcarbons). Popular for their stability and low boiling points CFCs were used 
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amongst others as refrigerants, propellants and fire extinguishing agents. Their extraordinary 

longevity in the atmosphere, where they are enriched over time and act as greenhouse gases and 

participate in catalytic ozone depletion lead to their banning for industrial applications in the 

Montreal protocol 1989. Today, atmospheric CFC mixing ratios are constant or even decrease 

again as a result of this international agreement (UNEP, 2009). Many VOX, naturally produced or 

man-made, are of significance due to their role in ozone-depletion as a source for halogen radicals 

or as greenhouse gases within the earth’s atmosphere. Chlorinated and brominated species are 

predominantly involved in catalytic ozone depletion. Already at low concentrations they influence 

radiation budget and climate. Examples are naturally produced CH3Cl, CH3Br for stratospheric 

ozone depletion or SF6 as the most potent greenhouse gas with a global warming potential 23.500-

times that of CO2 (IPCC, 2013).  

Today, nearly 5000 naturally produced organohalogen compounds were isolated and identified 

(Gribble, 2010). Natural organohalogens refer to all classes of chemical compounds naturally 

produced that bear a halogen in their structure. Most compounds are chlorinated or brominated but 

a few also carry one or more iodine and fluorine atom. They are produced by living organisms such 

as terrestrial plants, fungi, lichens, bacteria insects, some higher animals and humans or are formed 

during natural abiotic processes such as volcanoes eruptions, forest fires and other geothermal 

processes (Gribble, 2003). Many of the naturally produced VOX, have been recognized and studied 

since the 1980s. MeCl and MeBr are known to have significant natural sources. Not all compounds 

of the group of natural organohalogens are volatiles and most identified organic halogen 

compounds were found in the marine environment (Ballschmiter, 2003; Moore, 2003; Gribble, 

2010).  

 

 

Table 1.2: Halide concentrations (mg/kg) in different environmental compartments 

(Gribble, 2009).  

 

 

  

Halide Oceans Sedimentary 

rocks

Fungi Wood pulp Plants

Cl- 19,000 10-320 - 70-2100 200-10,000

Br- 65 1.0-3.0 100 - -

I- 0.05 0.3 - - -

F- 1.4 270-740 - - -
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Table 1.2 shows the distribution of halides in the environment, which is reflecting the distribution 

of organohalogens occurring in nature. The relative importance of fluorinated compounds for 

geologic environments is emphasized. 

The most recent comprehensive overview on naturally produced organohalogens is available in 

the volume by Gribble (2010). 

 

 

1.6. Geogenic organohalogens 

 

The studies on natural formation of organohalogens in terrestrial environments mainly involve 

biotic activity. In the pedosphere, the dominating terrestrial environmental compartment, studies 

on abiotic organohalogen formation is not trivial due to the complexity of the system. It is the 

chemically reactive uppermost part of the lithosphere that interacts with the atmosphere, 

hydrosphere and biosphere. As soil microorganisms are omnipresent, direct flux measurements 

cannot differentiate between abiotic and biotic organohalogen production. Studies with model 

compounds have played a vital role in the revelation of abiotic organohalogen forming reaction 

mechanisms prevalent in soils (Schöler and Keppler, 2003; Huber et al., 2009).  

In the terrestrial environment abiotic formation during diagenetic processes have been subdivided 

in three groups by Schöler and Keppler (2003), mainly referring to processes at ambient pressures 

and temperatures: (1) biomass burning, producing methylhalides, (2) early diagenetic processes in 

soils and sediments, producing VOX, halogenated acetic acids and total organic halogen and (3) 

volcanoes, accounting for a variety of VOX. The importance of hypersaline salt lakes in the 

emission of chlorinated volatiles has only recently been discovered (Weissflog et al., 2005; Kotte 

et al., 2012; Krause 2014) and the contribution of abiotic reactions in this context is still subject of 

study. With the exception of soils and volcanic emissions lithospheric organohalogens have 

received comparatively little attention.  

Although, providing potential precursor material, i.e. organic matter and halide as well as transition 

metals and surfaces for catalytic reactions, as well as a broad range of potentially suitable reaction 

parameters concerning temperatures and pressures, there are only few studies dealing with VOX 

from rocks and minerals. This is most likely owing to ‘fluid inclusionists’ that traditionally have 

petrological study objectives and conversely with environmental and organic chemists, that 
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apparently do not often perceive rocks as accessible environments. Gases are also known to slowly 

migrate from the earth interior or gas reservoirs and degas to the atmosphere along mineral grain 

boundaries; a process known as molecular diffusion or diffusive loss (e.g. Schloemer and Krooss, 

2004). Effectively, VOX can be found predominantly within FIs of rocks and minerals that on the 

one hand archive the composition of the mineral forming fluid and on the other hand can become 

reaction vessels for secondary reactions. 

Despite the fact that fluorine ranks 13th in order of abundance of the elements of the earth‘s crust, 

naturally occurring organofluorine compounds are comparatively rare (Banks et al., 1994). 

Presence of these compounds in the atmosphere and hydrosphere are mainly attributed to 

anthropogenic sources and a natural origin of compounds such as CCl2F2 and CCl3F, has only in 

recent years been recognized. Their emission rates compared to anthropogenic sources is very low 

(Gribble, 2009; Harnisch et al., 2000) but due to their chemical inertness their enrichment in 

atmosphere or hydrosphere is likely. Same is true for the observation of tetrafluoromethane from 

FIs in natural fluorites and granites. The occurrence of halogenated VOX in FIs of rocks and 

minerals are summarized in Tables 1.3. Table 1.4 also reviews the available quantitative data on 

VOX and the perfluorated compounds NF3, SF6 and CF4 from FIs and compares them to 

atmospheric and volcanic gas concentrations. Additional tables of VOC and VOSC can be found 

in the appendix, Tables 6.10 and 6.11, respectively. 

An interesting example for the emission of chlorinated species from sediments is the study of 

Weissflog et al. (2005), who reported the release of halogenated C1/C2 compounds as 

trichloroethene, tetrachloroethene and dichloromethane, tetrachloromethane and trichloromethane 

which were formed in surface sediment of salt lakes. Although they attributed the organohalogen 

occurrence to microbial activity, especially of archaic halobacteria, it appears plausible that these 

compounds when entrapped in FIs could also become archived in geologic salt deposits – and be 

released upon mining. Large amounts of an average 1.6 million t of mineral salts are distributed as 

de-icing salts on the roads every winter in Germany alone (Statista, 2014) releasing the entrapped 

gases. 

Volcanoes are a major source of stratospheric hydrogen fluoride and hydrogen chloride and also 

significant amounts of methane. Stoiber et al. (1971) were the first to report the presence of 

organofluorine compounds, including some CFCs, in the volcanic gases from the fumaroles of the 

Santiaguito volcano in Guatemala. Additional to over 30 organic compounds tetrafluoroethylene, 
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hexafluoropropene, chlorodifluoromethane, chlorotrifluoroethylene, dichlorofluoromethane, 

trichlorofluoromethane, and 1,1,2-trichloro-1,2,2-trifluoroethane have been identified in that study. 

In solfataric gases of the Kamchatka volcanoes on the Siberian peninsula Isidorov et al. (1990, 

1991) have identified dichlorodifluoromethane and reported dimethyl difluorosilane and at one 

vent concentrations of these organofluorines exceeded background levels by 400 times. Over 300 

organohalogen compounds from volcanoes have been observed, predominantly fluoro- and 

chlorinated but also a few brominated ones. Jordan et al. (2000), reviewed the various studies. 

Generally, the studies agree that halogenated methanes are the predominant molecules emitted by 

volcanoes. However, in some samples of lava gas, chloroethyne, chloroethene and chlorobenzene 

showed comparable concentration levels as methyl chloride (Jordan et al., 2000). 

The set of organic halocarbons produced by volcanoes thus include (poly-)fluorinated volatiles, but 

their concentrations are often at or below concentrations of ambient air (see also Table 1.4).  

In the hydrosphere, SF6 and other CFCs are of special relevance, since they are employed in dating 

young groundwater. Data obtained can be used to determine recharge rates of aquifers, to calibrate 

models of groundwater flow, evaluate contamination potential or determine remediation times and 

to obtain information on microbial or geochemical processes rates in aquifers (Busenberg and 

Plummer, 2008). Erratically high SF6 values threw off a reasonable data interpretation and 

suggested a terrigenic source, for groundwater from fractured silicic igneous rocks, from some 

carbonate aquifers, from some hot springs, and groundwater from volcanic areas (Busenberg and 

Plummer, 2010; Koh et al., 2007). 

Upon combustion of natural gas, 15% to 100% of the ambient levels of CF4 have been reported 

from measurement of the exhaust gas (Harnisch and Eisenhauer, 1998). 

Also, the sources for evenly distributed concentrations of 200 ng/L trifluoroacetic acid (TFA) 

throughout the world‘s oceans have yet to be identified (Frank et al., 2002) with Harnisch et al. 

(2000) suggesting the hypothesis that accessory fluorite in granites might be responsible. 

Input of geogenic VOX to the atmosphere may take place via weathering, crustal degassing, 

diffusion, volcanic activity, mining and oil drilling operations, combustion of natural gas and oil 

and the use of road salt but the contributions from each segment is not further constrained.  
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Table 1.3: VOX from minerals. The term ‘grinding’ under treatment implies that these 

compounds were detected with the system presented in Chapter 2. 
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Table 1.4: Literature data on VOX, NF3, SF6 and CF4 concentrations extracted from rocks 

and minerals in comparison to atmospheric and volcanic gas concentrations. 

 

 

 

 

 

1.7. Behaviour of halogens in rocks and magma 

 

From Table 1.5 it can be deduced, that in many cases fluorination is likely to dominate the 

halogenation processes in the lithosphere, due to the abundance of fluoride. However, amounts of 

organofluorines observed are relatively small. Table 1.5 shows that the bond dissociation energies 

from hydrogen and carbon for the hydrogen halides increase drastically from iodine to fluorine. 

Iodine forms radicals most easily, whereas for example the HF in volcanic gases is extremely stable 

and even at 1000°C no direct fluorination of hydrocarbons is likely to occur (Jordan et al., 2000). 
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compound name g/mol °C pmol/mol nmol/mol pg gas/g rock

carbon tetrafluoride CF4 88.01 -128 75a
- 1-61000c

nitrogen trifluoride NF3 71 -129.1 0.5a
- ac

sulfur hexafluoride SF6 146.06 -64 5.5a
- 0.2-30000c

chlorotrifluoromethane CClF3 104.46 -81 3a
- 0.5-460c

trifluoromethane CHF3 70.01 -82 ~4a
- ac

dichlorodifluoromethane CCl2F2 120.91 -29.8 535a 0.11-160b 0.6-1200c

trichlorofluoromethane CCl3F 137.37 23.7 255a 0.03-78.9b ac

dichloromethane CH2Cl2 84.93 39-40 25a 0.01-70b ad

methyl chloride CH3Cl 119.38 -24.2 528a 0.61-200b 500-161000e

methyl bromide CH3Br 94.93 3.6 10a 0.01-218b 0-12600e

1-chlorobutane C4H9Cl 92.57 78 - - 0-50900e

a Warneck and Williams, 2013
b Jordan, 2003
c Harnisch, 2000; Harnisch and Eisenhauer, 1998
d Isidorov, 1998
e Svenson, 2009



1. Introduction and Literature Review 

 

 

26 

In general, organohalogen compounds are chemically outermost stable (see Table 1.5) and this 

stability also explains the chemical inertness that raised concerns on CFC production. 

Of all elements fluorine is the element of highest electronegativity, making it extremely reactive. 

The F2 molecule is one of the strongest oxidants, therefore, when found in nature it is mostly bound 

in compounds, predominantly in halides. Even water is oxidized by F2 to form hydrofluoric acid 

and oxygen. 

The long suspected occurrence of molecular fluorine in antozonite, a variety of fluorite also known 

as stinkspar, has only recently scientifically been confirmed using NMR (nuclear magnetic 

resonance spectroscopy) (Schmedt auf der Günne et al., 2012), see also section 1.8.6 on 

radiochemical reactions. Fluorspar (CaF2) besides fluorapatite (Ca5F(PO4)3) and cryolite (Na3AlF6) 

are the economically most important fluoride minerals. Chloride is found in sea water and brines 

and in sedimentary halite (NaCl) and sylvite (KCl). 

 

 

Table 1.5: Parameters influencing halogenation reactions for the different halogens and their 

distribution in geologic environments. 

 

  
 

F Cl Br I

atomic massa 18.998 35.453 79.904 126.904

electronegativity (Pauling)a 4 3 2.8 2.7

ionic radius (pm)a 1.33 1.81 1.96 2.2

C-X bond length C-X (pm)a 134 176 193 213

C-X bond dissociation enegy (kJ/mol) a 536 397 280 209

H-X bond dissociation enegy (kJ/mol) a 569.9 431.6 366.3 298.4

X-X bond dissociation enegy (kJ/mol) a 156.9 242.6 193.9 152.5

concentration (mg/kg)

basaltb 50-300 50-200 0.050-2.5 0.004-0.011

andesitesb 240-640 1000-1800 - -

rhyolitesb 400-640 600-1900 - -

sedimentary rocks (as halide)b 270-740 10-320 1.0-3.0 0.3

continental crust averagec 585 145 2.4 0.45

Fluid/melt partitioning coefficientsb <<1 8.0-10 3.7-17.5 104

0.003-0.7 0.02-6 n/a n/a
a Lide, 2004
b Jordan, 2000
c Gribble, 2009

Hydrogen halide concentrtaion in           

volcanic gas (vol%)b
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Due to the similar ionic radii of  O2 (140 pm), OH (132 pm) and fluoride (133 pm) (Lide, 2005), 

fluoride is a frequent isomorphic substituent in minerals such as amphiboles, mica and apatite 

(Wedepohl, 1995) and is readily soluble in silicate melts, up to more than 10 wt% (Carroll and 

Webster, 1994), so that is relatively enriched to a co-existing gas phase. The crystal lattices formed 

during early magmatic differentiation do not, with the exception of apatite, offer spaces for the 

incorporation of fluoride ions. Therefore residual magmas are often enriched in fluoride. Fluoride 

that cannot be incorporated in the crystalline phase accumulates in hydrothermal fluids, from where 

it is either deposited as fluorite or continues to react with the surrounding rock (Wedepohl. 1995).  

The dominating volcanic gases HCl and HF that are also major sources for atmospheric HF and 

HCl (Jordan et al., 2000), are dissolved in magma according to Holloway (1981) in analogy to 

water: 

 

(15) HF(gas) + O2-
(melt) ↔ F–

(melt) + OH–
(melt) 

 

(16) HCl(gas) + O2-
(melt) ↔ Cl–

 (melt) + OH–
(melt) 

 

Like water, fluoride also depresses the melting temperature and decreases the density of a silicate 

melt (e.g. Holtz et al., 1993; Baker and Vaillancourt 1995; Webster et al., 1987). Infinite solubility 

of water in a F-, B-, and P-rich melt at shallow intrusion depth with T ≥ 720 °C has been reported 

by Thomas et al. (2000). Their work and the studies of Veksler et al. (2004) and Dolejš and Baker 

(2007b) demonstrated that silicate, alkali-rich melts with high volatile content (H, F, Cl or B) 

coexist with a hydrothermal fluid down to low temperatures, e.g. 540 °C at 1 kbar before granite 

crystallization begins (Dolejš and Baker, 2004). Köhler et al. (2008) assumed that this effect of 

high fluoride concentration may have caused the extraordinary high abundance of fluoride in 

Ivigtut cryolite and fluorite with the melt still existent at 400–450 °C.  

Contrary to fluoride, the larger ionic radii and smaller electronegativities of the heavier halides Cl- 

and Br- do not substitute significantly for oxygen in minerals or silicate melts (Aiuppa et al., 2009). 

The resulting low solubility of chloride in silicate melts also leads to an enrichment of chloride in 

aqueous fluids (Carroll and Webster, 1994) up to an alkali chloride concentration of 70% (Roedder, 

1984). Thus, in volcanic systems fluoride and chloride behave differently and this can be seen in 

measurements of volcanic gases and melt compositions, see Figure 1.8. A detailed recent review 
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of data on halogens in volcanic matrix glasses and silicate melts was published by (Aiuppa et al., 

2009) and is recommended for further reading.   

In magmatic systems, as well as in early diagenetic environments, the formation of organohalogens 

depends not only on the available precursor compounds methane and halogen or halide. It is also 

greatly influenced by the presence of catalytically active transition metal compounds (Schöler and 

Keppler, 2003; Jordan et al., 2000).  

It is therefore good to bear in mind, that fluids-rock permeation and interactions can chemically 

alter volcanic and adjacent host rocks (Reed, 1997). In turn, fluid composition can be altered and 

in some cases this entails dissolution, transport and precipitation of metals including the transition 

metals Sn, W, Mo, Cu, Au, Ag, Pt, Hg, Zn, the metallic members of the carbon family Sn and Pb 

and others (Vigneresse, 2009). Halogens influence the speciation and solubilities of ore metals in 

magmatic vapors, aqueous liquids and brines. Chloride is sufficiently abundant and acts as the 

dominant anion in metal-bearing hydrothermal ore-forming solutions (Seward and Barnes, 1997). 

Complex formation of chloride as a ligand in metal-ore-bearing hydrothermal systems with Na, K, 

Sr, Li, Rb, Cu, Zn, Sn, U in hydrothermal fluids or fluoride containing complex formation with Li, 

Rb, Cs, Be, Nb, Sn, U, some rare earth elements and other metals was reported based on 

experimental and modeling data. Extreme enrichment of alkali-fluorides can be achieved in 

magmatic-hydrothermal fluids during final magma differentiation in granites, according to melt 

and fluid inclusion composition (Aiuppa et al., 2009).  
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Figure 1.8: Schematic diagram of halogen behavior in mantle melt (a), during crystallization 

and melt inclusion entrapment in a volcanic magma chamber (b), through vesiculation and 

initiation of eruption (c) and the injection to the atmosphere. Mineral abbreviations: 

Ap=apatite, Cpx=clinopyroxene, Ol=olivine, Opx=orthopyroxene, Grt= garnet, 

Am=amphibole, Phl=phlogopite (modified from Aiuppa et al., 2009; with permission from 

Elsevier). 

 

 

 

 

1.8. Halogenation reactions in geologic matrices 

 

After having set the stage it is now time to gain more insight into the halogenation of hydrocarbons 

that might occur in terrestrial environments and geologic matrices. While for soils and sediments 

several studies on reaction mechanisms exist, and the natural occurrence of these reactions has 

been confirmed, most studies on halogenation pathways thought to proceed in geologic matrices 

are practically non-existent. The number of studies concerned with natural fluorinated organics 

from rocks and minerals is limited and the debate on corresponding formation pathways is largely 

dominated by speculation.  
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In this section, we will first have a look at halogenation reactions of relevance as known from the 

chemical industry and will then proceed from early diagenetic environments, to volcanic activity, 

to deep burial and metamorphic conditions. The different possible halogenation reactions, that will 

be presented briefly, will mostly have to be validated experimentally in the future to evaluate their 

pertinence to the respective geologic setting.  

Figure 1.9 gives an overview of early diagenetic and lithospheric environments and processes that 

actually or potentially form VOX. 

 

 

 

 

 

Figure 1.9: Conceptual overview of abiotic volatile organohalogen formation in the 

terrestrial environment. Green indicates environmental segments from which the 

occurrence of VOX has been confirmed.  
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1.8.1. Relevant halogenation reactions  

Due to the reactivity of molecular F2 fluorinated hydrocarbons can directly be produced via the 

free radical reaction 

 

(17) CH4 + 4F2 → CF4 + 4HF 

 

Fluorine can replace hydrogen in any linear or cyclic organic molecule. The replacement of the C-

H (417 kJ/mol in CH4) with C-F bonds (486 kJ/mol in CF4), makes them shorter and stronger 

(Siegemund et al., 2000). Due to the violence of the reaction, it must be carefully controlled in the 

laboratory usually by diluting with inert gas. 

This reaction would spontaneously occur in the lithospheric context whenever F2 and CH4 are 

present, such as in FIs of fluorites. 

SF6 is directly synthesized from its elements. 

Commercial production of CFC involves nucleophilic substitution of alkyl chlorides with hydrogen 

fluoride in the liquid phase and in the presence of a catalyst, typically Sb(III)Cl3. This reaction 

dates back to the reaction first described by Swarts in 1892, which was later improved for industrial 

purposes (Weaver, 1984, Siegemund et al., 2000). For example CCl2F2 is synthesized via 

 

(18) CCl4 + 2HF → CCl2F2 +2HCl 

 

under addition of Sb(III)Cl3, with pressure rising to 0.03 kbar after 2h for 24h in a steam-heated 

autoclave (Siegemund et al., 2000; Okazoe, 2009). The regenerative use of the catalyst is based on 

oxidizing fluorination reactions as in equation (17) with metal fluorides such as Ag(II)F2 or CoF3: 

 

(19) CH4 + 2CoF3 → CH3F + HF + 2CoF2 

 

and the spent metal fluoride is regenerated with elemental fluorine 

 

(20) 2CoF2 + F2 → 2CoF3 

 

allowing for cyclic industrial production (Siegemund et al., 2000). 
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In a geologic setting several conditions would have to coincide: elevated temperature and pressures, 

abundance of HF (also HCl), methane and transition metals. Halogen-fluorine exchange, such as 

 

(21) CH3Cl + HF → CH3F + HCl 

 

implies previous chlorination of methane. Hydrothermal ore forming magmas and brines with 

fluid-rock interactions/greisenation might just offer the right conditions for reactions of types (18) 

to (21). Biosynthetically produced organohalogen compounds, especially organochlorine, could 

also provide precursors for fluorination. 

Next to the aforementioned substitution reactions, the electrophilic addition of fluorine, HF, or 

reactive nonmetal fluorides to unsaturated bonds is a known reaction mechanism. This reaction is 

also applicable to the other halogen reactions and proceeds via an intermediate halonium ion: 

 

(22) RCH=CHR' + X2 → RCHX-CHXR' 

 

Volcanic activity is known to produce thermodynamically unstable alkenes and alkynes and they 

can also be a result of thermogenesis of organic matter, where this reaction type could apply.  

Industrial production of organochlorine compounds relies almost entirely on chlorination of 

methane in thermal, photochemical or catalytic reactions. Although in principal the net reaction is 

the same as for fluorine (17)   

 

(23) CH4 + Cl2 → CH3Cl + HCl 

 

Thermal initiation of the radical chain reaction with T= 300–350 °C is used for the 

monochlorination. In more detail the chain reaction proceeds as follows:  

 

(24) Cl2 → 2 Cl•  

 

(25) CH4 + Cl• →CH3
• + HCl 

 

(26) CH3
• +Cl2 → CH3Cl + Cl• 
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(27) 2 Cl• + M → Cl2 + M 

 

with (24) initiation of the chain reaction, (25) and (26) chain propagation and (27) chain termination 

via recombination with M = walls, impurities or O2 (Rossberg et al., 2000). As has been shown in 

reactions (1) through (7) initial radical formation could also be started during catagenetic 

hydrocarbon formation.  

A potential source for elemental chlorine in geologic settings could be the reaction in heated acidic 

brines: 

 

(28) 2 NaCl + 2H2SO4 + MnO2 → Na2SO4 + MnSO4 + 2 H2O + Cl2 

 

Depending on pH, chlorine in aqueous solution exists as molecular chlorine, hypochlorous acid 

or hypochloride  

 

(29) Cl2 + H2O  HOCl + Cl- + H+  OCl- + Cl- + 2H+ 

 

while acidic conditions generate Cl2, alkaline conditions favor hypochloride in this reaction 

(Barcellos da Rosa, 2003).  

Conditions of thermal generation of Cl-radicals together with methane are easily achived in 

volcanic environments and upon subduction/burial along the geothermal gradient (≈ 30°C/km) 

together with increasing lithostatic pressures. Early chain reaction termination in such a complex 

geologic setting might hinder this reaction type to proceed to significant yields. Within halite or 

sylvinite deposits this reaction type might be of special importance.  

A photochemical Cl-radical formation is potentially applicable to hypersaline salt pan 

environments (see also section 1.8.2.). Hydothermal ore-forming vein deposits could conceivably 

represent catalytic reactions.  

Based on these assumptions methyl chloride could exist in a variety of minerals and geological 

settings. 

  



1. Introduction and Literature Review 

 

 

34 

1.8.2. VOX forming halogenation reactions in soils 

The total iron concentrations in soils range from <1% to <20% with a median concentration of  

around 3% (Loeppert and Inskeep, 1996). Iron in soils exits predominantly in the ferric (III) and 

ferrous (II) oxidation state, as iron(III) oxide minerals (hematite, goethite, lepidocrocite, 

magnetite(III/II), maghemite and ferrihydrite), as structural components in layer silicates, or as iron 

(II) in primary or secondary minerals such as pyroxenes, amphiboles, pyrite and siderite. The 

concentration of soluble Fe in the aqueous phase is controlled by pH, redox potential, the 

concentration of organic complexing ligands, the solublities of the mineral iron phases and the 

kinetics of their dissolution and precipitation (Loeppert and Inskeep 1996).  

The Haber-Weiss-reaction (8) together with the so-called Fenton-like reaction, in which Fe3+ is 

reduced by hydrogen peroxide to ferrous iron  

 

(30) Fe3+ + H2O2 → Fe2+ + •OOH + H+ 

 

completes a catalytic iron cycle (Barb et al., 1951). The free radicals generated participate in 

secondary reactions.  

Beside iron, other transition metals follow this reaction scheme to produce oxidizing agents with 

increasing reactivity in the following order: Ni2+ < Mn2+ < Fe3+ < Co2+ < Cr3+ < Cu2+ at 

circumneutral pH (Strlič et al., 2003).  

The formation of terminal halogenated n-alkanes (Keppler et al., 2000, Krause, 2014), chloroethene 

(Keppler et al., 2002), chloroethyne (Keppler et al., 2006) and trihalomethanes (Huber et al., 2009) 

based on Fenton chemistry has been reported from model reactions and soil samples and generally 

correlate to higher iron contents in these studies.  

Reactive halogen species (RHS) can be formed in hypersaline environments via Fenton reaction or 

photochemically. Krause (2014) put forward a concept for the possible production and interaction 

of RHS in organic matter halogenation in salt pans, which is summarized in Figure 1.10.  

Aside from Fenton chemistry, photochemical reactions may play an important role for RHS 

production within surface sediments of salt lakes. Krause (2014) provided initial field data 

confirming the occurrence of Cl2, as well as de VOX like chloromethane, dichloromethane, 

trichloromethane. The de-novo formation of these compounds supported the validity of parts of the 

assumed reaction pathway.  
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Figure 1.10.: Photochemical and Fenton-like reactions are proposed to interact in this 

scheme for VOX evolution in salt lake environments developed by Krause (2014). Aside the 

photochemical initiated auto-catalytic production of the superoxide radical anion, RHS 

with X=Cl, Br or I) is also produced in the reaction with photochemical activated of FeX2+ 

(Figure from Krause, 2014). 

 

 

 

 

Another halogen formation procedure under ambient pressure and temperature and oxidative 

conditions of soils might be based on the activation of the C-H bond. Possible activation 

mechanisms involve a two-step procedure in which a cation from a soluble metal salt binds weakly 

to the C-H bond under equilibrium and successively is inserted between the C-H bond (Bergman, 

2007). Oxidative additions in which a halogen is added to the C-H via activated solid metallic 

materials (heterogeneous catalysts) might have some significance for lithospheric environments. 

In biochemistry, several enzymes contain complexes of iron with a double bond to oxygen. In 

reaction with the C-H moiety they could yield a carbocation and an intermediate iron complex 

containing the hydroxyl group. If the hydroxyl transfers back or the iron complex oxidizes back it 

could continue reactions in a catalytic cycle (Bergman, 2007).  
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1.8.3. Volcanic VOX formation 

Volcanoes produce a variety of volatile organohalogens mostly aliphatic chlorinated and/or 

fluorinated alkanes, alkenes and alkynes but also cyclic and aromatic halogenated compounds with 

methane and ethane derivatives being the predominant halogenation products. 

Isidorov (1990) has proposed a set of reactions to account for the formation of chloro- and 

chlorofluoroalkanes:  

 

(31) CO + 3H2 → CH4 +H2O 

 

(32) CO2 + 4H2 → CH4 + 2H2O 

 

(33) 2 CH4 + 6HCl → 2 CHCl3 + 6H2 

 

(34) CHCl3 + HCl → CCl4 + H2 

 

(35) CHCl3 + HF → CHFCl2 + HCl 

 

(36) 2 CCl4 + 3HF → CFCl3 + CF2Cl2+3HCl 

 

Halogen distribution in fluids and melts (section 1.6) are in agreement with the abundance of HF 

and HCl for these reactions. Stoiber et al. (1971) suggested a thermogenic origin of methane form 

subducted sediments replacing (31) and (32). All reaction products have been measured from 

volcanic gas. Reaction (36) corresponds to the nucleophilic substitution (equation 18) used in the 

industrial manufacture of CFC. The presence of catalytic transition metal-halides is important. 

However, Jordan et al. (2000) points out that the formation of organohalogens cannot proceed 

under magmatic equilibrium conditions since the compounds would not be thermodynamically 

stable. The discrepancy between measured and thermodynamic considerations could be resolved 

by considering the occurrence of hydrocarbons for halogenation reactions above magmatic 

equilibrium levels generated at shallow depth from basement sedimentary rocks. Large observed 

variability in concentration at one sampling location and the occurrence of the great variety of 

unstable short-chain organohalogens indicates a non-selective cracking producing 
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thermodynamically unstable reaction intermediates. Figure 1.11 shows a reaction sequence 

forming organohalogens during volcanic activity. 

 

 

 
 

Figure 1.11: Reactions involved in volcanogenic organohalogen formation (adapted from 

Jordan et al., 2003). 

 

 

 

1.8.4. Hydrothermal VOX formation 

At submarine hydrothermal vents conditions are suitable for Fisher-Tropsch synthesis. Low 

temperature Fischer-Tropsch (LTFT) synthesis employs 219-260 °C and high temperature Fischer-

Tropsch is carried out at 310-340 °C (Lamprecht et al., 2007). One can speculate that in a system 

of hydrothermal vents, with plenty of dissolved metals and in the presence of Cl- from seawater, 

the catalysis from CO and H2 over catalytic iron or copper as in LTFT to from saturated straight-

chain hydrocarbons could also yield methyl chloride. However, no experimental data are available. 
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Other hydrothermal systems develop where tectonic activity causes strike/slip faults. As Schreiber 

et al. (2012) summarized, they offer reactive regimes characterized by periodically changing 

pressure and temperature conditions, varying pH values, clay minerals and a large number of 

metallic catalysts as well as supercritical and subcritical gases and high-salinity waters that are 

present. In the presented model for the origin of life in these systems, halogenations reactions could 

occur. Piezoelectric currents in mineralizing quartz veins could contribute to electrochemical 

production of halogenation agents. Again, no data are available but the model of Schreiber et al. 

(2012) might be referred to for the design of experiments on halogenation reactions in hydrothermal 

conditions.  

 

1.8.6. Radiochemical halogenation/reactions with molecular fluorine 

Kranz 1966, who investigated gases of hydrothermal fluorite samples from Wölsendorf, was the 

first to suggest radiochemical polymerization in the synthesis of simple organic molecule, 

including fluorinated derivatives.  

Harnisch and Eisenhauer (1998) also proposed that the decay of uranium U238 and thorium Th234 

provides α-particles for the necessary activation energy of SF6 formation. 

Isomorphic substitution in fluorite (Ca2F4) with CaUO4 (oxidizing conditions) or UO2 could be a 

source. Radionuclides are abundant in crystalline rock surrounding hydrothermal or accessory 

fluorites. 

The impact of α-particles from radioactive products on the crystal lattice, called the atomic recoil, 

creates a momentum which can be high enough to disrupt the material. A vacancy (Schottky) 

defect can be formed in the crystal lattice. Frenkel and impurity defects result in cluster formation 

(Klein et al., 2002). Resulting clusters of Ca ions are known to cause blue and violet colors in 

fluorite. The presence of molecular F2 has now been confirmed from 19F-NMR spectra of fluorite 

from Wölsendorf, Bavaria (Schmedt auf der Günne et al., 2012). The typical fluorine smell 

observed upon crushing dark violet colored fluorite varieties can now be with confidence related 

to the occurrence of natural fluorine, which is to date a unique observation in nature. Schmedt von 

der Günne et al. (2012) also provided evidence, that the F2 was produced naturally: the observed 

amounts of up to 0.46±0.06 mg F2 g
-1 fluorite were in agreement with the amount expected from 

the sample’s uranium content and age of 200 to 300 Ma. 

http://en.wikipedia.org/wiki/Vacancy_defect
http://en.wikipedia.org/wiki/Vacancy_defect
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Figure 1.12 visualizes F2 generation via radioactive decay in a fluorite crystal structure, which can 

then react with hydrocarbons in fluid inclusions or circulating hydrothermal fluids. In its molecular 

state F2 is probably retained in structural cavities. It would thereby be isolated from the many 

reaction partners, and upon exposure to water or hydrocarbons would react quickly due to its high 

electronegativity.  

 

 

 

 
 

Figure 1.12: Schematic visualization of possible defect and molecular fluorine formation in 

the fluorite crystal structure caused by radioactive decay of neighboring radionuclides (based 

on the reports by Harnisch and Eisenhauer (1998) and Schmedt von der Günne et al. (2012)). 

  

 

 



 

40 

 

 

2 

____________________________________________________ 

Method Development 

 

A New Purge and Trap Headspace Technique to Analyse Low Volatile Compounds from 

Fluid Inclusions of Rocks and Minerals 

 

____________________________________________________ 

 

 
 

 

Published in: 

Mulder, Ines, Stefan G. Huber, Torsten Krause, Cornelius Zetzsch, Karsten Kotte, Stefan Dultz, 

and Heinz F. Schöler. 2013. “A New Purge and Trap Headspace Technique to Analyze Low 

Volatile Compounds from Fluid Inclusions of Rocks and Minerals.” Chemical Geology 358 (0): 

148–55. doi:http://dx.doi.org/10.1016/j.chemgeo.2013.09.00



2. Method Development 

 

41 

2.1. Introduction 

 

Volatile organic compounds (VOC) released from fluid inclusions (FI) of rocks and minerals, 

especially the halogenated volatiles (VOX), are of pivotal importance for stratospheric and 

tropospheric chemistry. Currently there are discrepancies in the fundamental understanding of the 

sources and sinks for these compounds in the atmosphere. Here, we describe briefly the 

fundamental objectives of FI research, which provides a historical context in addition to the 

environmental focus of our application. It also compares previous methods in the area of FI and 

environmental research regarding the detection of VOX. 

Fluid inclusions can be gaseous, liquid or solid and are present in practically all terrestrial minerals. 

They are formed either during crystal growth or later on in the minerals life along annealing cracks 

in the presence of fluid phases (Samson et al., 2003). The FI are only infrequently larger than 1 mm, 

in most samples their size ranges from 1 to 100 µm. The very small size fraction of FIs usually 

outnumbers all inclusions larger than 10 µm at least by a factor of 10 (Roedder, 1984). Current FI 

research spans a wide array of topics: phase relations and thermodynamic properties include the 

study of complex brines. Laser Raman techniques are increasingly employed in the investigation 

of mixed water/gas systems and with special emphasis on the analysis of single inclusions. Also, 

FI provide evidence about the character of early geological processes, are used in the study of 

modern (sub)-volcanic processes and supply information on ore formation. Frezzotti and van den 

Kerkhof (2007) summarized that about 20 % of published work on inclusions dealt with the use of 

melt inclusions to study the highly complex relationship between magma and fluids during 

crystallization. Bulk analysis of volatiles in FI, are predominantly concerned with the detection of 

O2, CO2, SO2, N2, H2, H2S, HCl, HF, He, Ar, CH4 and heavier hydrocarbons, which can be found 

in the literature as summarized by Salvi and Williams-Jones (2003). Typical contents of these 

compounds are reported to be in the ppb to ppm mass range, i.e. ng to µg per gram of mineral.  

Mass spectrometric (MS) methods were mainly applied in noble gas analysis and detection of sulfur 

bearing compounds whereas gas chromatography (GC) was particularly used for the separation of 

hydrocarbons, as well as H2 and N2 (Salvi and Williams-Jones, 2003). Plessen and Lüders (2012) 

and Lüders et al. (2012) report the measurement of gas isotopic compositions of fluid inclusion 

gases (N2, CH4, CO2) from 0.2 to 1 g of sample chips crushed with an on-line piston crusher 

followed by GC, an elemental analyzer and continuous-flow isotope ratio MS. The most recent 
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developments are in the application of laser ablation GC-MS, focusing on higher molecular weight 

hydrocarbons from single blue or yellow fluorescing FIs, and co-occurring molecular composition 

in order to gain insights on thermal maturity, paleo-oil charges and oil migration (Greenwood et 

al., 1998; Volk et al., 2010; Zhang et al., 2012). Zhang et al. (2012) summarized the GC-MS based 

procedures in this sector as follows: (1) offline mechanical crushing of (sedimentary) material in 

organic solvent to release hydrocarbons into solution and subsequent injection; (2) use of purpose-

designed injectors that crush samples online via thermal decrepitation; (3) laser opening of selected 

inclusions with on- and offline GC-MS analysis.  

Online crushing stages are employed before MS detection for the analysis of noble gases or stable 

isotope ratios. Principally, they consist of stainless steel cylinders with grains or cut cuboids of 

rock that are manually pounded several hundred times by a moveable piston (or ball) via a handheld 

magnet. For example, applications in the study of FIs from speleothems have been used to 

reconstruct paleoclimate (Dennis et al., 2001; Kluge et al., 2008) or in cosmochemistry (Scarsi, 

2000). Less frequently, an alternative method is reported in which the sample is squeezed using a 

vice to release contained gases while in a copper tube under vacuum (Harmon et al., 1979; 

Scheidegger et al., 2006). Isidorov et al. (1993) detected chlorine and sulfur containing compounds 

from halite and sylvinite mining emissions which they also partly measured after dissolution of the 

salt crystals by GC-MS headspace analysis. Most recently, Svensen et al. (2009) reported the 

extraction of CHCl3, CHBr3 and 1-chloro- and 1-bromobutanes from halites using GC-MS and a 

heating procedure at 225 °C as well as a crushing procedure, but little details were reported on the 

latter one. 

For the analysis of VOX, most expertise has been accumulated in atmospheric research. Advanced 

GC-MS systems with multiple traps and columns have been developed (Bahlmann et al., 2011; 

Miller et al., 2008; Sive et al., 2005). Crucial development was the employment of effective sample 

preconcentration traps. The low boiling point analytes of interest from air samples of up to several 

liters have to be enriched in order to detect their trace level amounts mostly in the ppt-range (mole 

fractions).  

Little is known on the geogenic origin of CF4 and SF6. The largest scientific community that has 

recognized and measured their natural occurrence is environmental physicists, who used CF4 and 

SF6 as age tracers in groundwater. Assumption of the underlying method was that both compounds 

are of purely anthropogenic origin and have gradually increased and partitioned into younger 
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groundwater since their industrial production in the 1950s. However, natural disturbances have 

been noted and reported, first by Busenberg and Plummer (2000). Literature on the topic is still 

scarce but the occurrence of SF6 from basaltic aquifers (Koh et al., 2007), from granitic alluvium 

of the Mojave Desert (2008) and sedimentary aquifers of the North China Plain (von Rohden et al., 

2010) have been reported, putting restrictions on the groundwater dating if SF6 is taken as a tracer. 

Deeds et al. (2008) also mentioned CF4 as of terrigenic origin and stated that fluxes of CF4 and SF6 

when extrapolated from their measurements to a global scale could be consistent with the fluxes 

required to sustain the preindustrial atmospheric abundances of CF4 and SF6. 

Busenberg and Plummer (2010) presented results on a new groundwater dating method using the 

environmental tracers SF5CF3, CClF3 (CFC-13), SF6, and CCl2F2 (CFC-12). However, Harnisch et 

al. (2000) reported values of up to 1200 pg g-1 CCl2F2 released from fluid inclusions in fluorites 

and Jordan et al. (2000) reported detection of this compound from volcanic gas samples. An 

extensive screening of geologic materials has simply not taken place yet, so maybe even these 

newly developed methods encounter limitations in some natural environments where there is a 

terrigenic source of these compounds. 

The studies of Harnisch and Eisenhauer (1998) and Harnisch (2000) are ground-breaking in VOX 

analysis from FIs of rocks and minerals. Harnisch and Eisenhauer (1998) demonstrated that CF4 

and SF6 are commonly present in natural fluorites and granites, and the publication by Harnisch et 

al. (2000) provided a detailed description of their grinding procedure. They were using a grinding 

device emulating a “peppermill”-design in which samples were ground from 5 mm down to around 

100 µm diameter and released gases were transported directly onto the preconcentration sample 

loop by using a vacuum. After desorption, analytes were separated using a packed column and 

detected with by MS. By using this technique they were able to detect CF4, CF2Cl2, CFCl3 and SF6 

from a number of natural samples and additionally CF3Cl, CHF3 and NF3 from one fluorite sample. 

Levels of CF4 were determined to be up to 5600 pg g-1 and those of SF6 reached 340 pg g-1. On the 

one hand, their measurements, although in good agreement with old results from Kranz (1966), 

have apparently not been replicated by other groups or expanded to a larger set of samples. On the 

other hand, their papers are cited quite frequently, whenever authors acknowledge a natural origin 

in discussions on the atmospheric concentration of the corresponding compounds (e.g. Mühle et 

al., 2010).  
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In order to contribute to a larger scientific basis for natural background estimates of VOX, the 

major goal of this work was to develop a simple, inexpensive and robust method to detect VOX 

and organosulfur compounds from FIs. Objectives were to develop a grinding device that crushes 

mineral samples to a specific final grain size, to install a cooling trap that is capable of 

concentrating released gases with particularly low boiling points (as low as -128 °C) prior to 

measurement and to assure high analytical performance of the GC-MS system by protecting it from 

mineral particles.  

In this paper, we first describe an alternative purge-and trap GC-MS method to analyze the 

chemical composition of VOX from FIs using an adapted dynamic headspace approach that 

accommodates all types of minerals and rocks across the entire Moh’s scale of hardness while 

maintaining high sensitivity.  

 

 

2. Experimental Section 

 

2.1. Grinding device 

In order to analyze the volatile organohalogen and organosulfur compounds of FI using GC-MS 

the first step was to develop a grinding device that was able to crush and release the target gases 

from the rocks and minerals. Our approach was to create a purgeable grinding container mimicking 

a dynamic headspace vial, and at the same time, incorporate already existing infrastructure of our 

laboratory. The resulting grinding device consisted of a 80 mL tempered steel grinding bowl 

(Fritsch, Idar-Oberstein, Germany) equipped with a lid and a Viton seal ring. The lid was chosen 

in stainless steel and we constructed two brass orifices on top, which could be sealed by 

conventional crimp caps (diameter 8.4 mm) with Sil/PTFE septa (thickness 1.5 mm).  

After inserting the sample and five tempered steel grinding balls (diameter 15 mm) to the bottom 

bowl the crimp cap sealed lid was pressed via a clamping plate onto the bowl. The Viton seal 

allowed for an air-tight closure. The whole fixture with grinding vessel and sample then fits into a 

regular planetary mill (Fritsch, Pulverisette 5).  

In order to effectively grind samples, materials needed an initial particle size below 3 mm 

(preferentially between 2 and 3 mm), otherwise larger particles were not sufficiently ground to 

appropriate sizes. 
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Corresponding to the hardness of the minerals under investigation the grinding times were adjusted 

accordingly. Initially, tests were performed with quartz (Moh’s hardness 7) and fluorite (hardness 

4) samples for which grinding times, grinding intensities in revolutions per minute (rpm), amount 

of sample and amount of grinding balls were varied. The particle sizes of subsequently obtained 

fine powders were analyzed from suspensions of 50 mg 100 mL-1 in deionized water using a 

ZetaPals (Brookhaven Instruments, Holtsville, NY) in multiple angle particle sizing mode. For the 

particle size determination, commercial quartz gravel (Quarzkies Natur, MK-Handel, Düren, 

Germany) of grain size 2 to 3.15 mm and of a fluorite of same grain size from the mine 

Marienschacht nearby Wölsendorf, Bavaria,Germany, were used. The particle size distribution was 

determined in the range from, 0.5 to 5000 nm. From the data of triplicate measurements mean 

values were calculated and found to be < 15 %. For easily soluble salt minerals, such as halite, this 

particle size determination was not carried out. Halite showed a ductile behavior upon intensive 

grinding with “smearing out” along the rim of the grinding bowls and clogging of the orifices. 

Therefore, we based the selection of grinding conditions observations made during the grinding 

procedure.  

After setting the basic grinding conditions, temperature evolution during grinding operation was 

determined for quartz and fluorite. After different grinding times, the lid was taken off quickly and 

temperatures were determined instantaneously by an infrared thermometer (Voltcraft, IR 1200-50). 

Additionally, temperatures on the outer surface of the grinding vessel were recorded. Temperatures 

were recorded in triplicate from each 10 g of a commercially available Dead Sea salt (August 

Töpfer & Co. KG, Hamburg, Germany) was utilized. 

 

2.2. Analytical system 

The MAGNUM™ GC-MS system (Finnigan MAT, San Jose, CA) consists of three main 

components: the gas chromatograph (GC, Varian Model 3400), the ion-trap mass spectrometer 

(MS, Finnigan MAT, ITS40) and the data processing system and software (Saturn 5.4, Saturn 

2000). Additionally, we employed a custom built temperature control unit (Newig GmbH, 

Ronnenberg, Germany) that was originally developed by Nolting et al. (1988) and also described 

more recently by Siekmann (2008) as well as the self-constructed inlet system comprising the 

sample preconcentration tube that bridged the GC injection port. All gas carrying components of 
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the setup consisted of 1/8-inch stainless steel tubing and 2 mm outer diameter Swagelok® 

compression fittings. Figure 1 provides a schematic of the analytical system. 

 

2.2.1. Purge and trap unit 

The regulation of the ultra high purity He carrier gas flow affects the measurement reproducibility. 

Helium flow is controlled by two 3-way solenoid valves (valve 1 and 2), two 2-way solenoid valves 

(valve 3 and 4) and one manual 2-way needle valve. Solenoid valves were obtained from Kuhnke 

AG, Malente, Germany (Micro-Solenoid Valves type 65). The first four valves are controlled by 

the external event relays of the GC computer. Under standby as well as desorption conditions, 

equivalent to a non-purge sequence, valves 1 and 2 are directly connected to each other and valve 

3 is closed as represented by the solid lines in Figure 1. This means that the sample loop, i.e. the 

grinding vessel and connecting lines, are not purged by He, but instead the cooling trap made of 

glass lined tubing (GLT™) and GC columns are constantly flushed with He at a rate of 2.0 mL 

min-1.  

Analysis of a ground sample is started by piercing two stainless steel needles as inlet and outlet 

through the septa of the crimp caps on the grinding vessel. We used 16 gauge, point style hubless 

needles of custom length (10 cm; Hamilton Bonaduz AG, Bonaduz, Switzerland). To avoid rupture 

and leakage at the thin Sil/PTFE septa employed, it is advisable to pre-pierce them with a thin 

needle before punching through with the 16 gauge needle. The cooling trap consists of a 215 mm 

long piece of GLT™ (SGE Analytical Science, Melbourne, Australia), which is bent in the middle 

to form a U-shaped section of the tube. This U-shaped part of the tube is installed above a Dewar 

vessel (80 ml, KGW Isotherm, Karlsruhe, Germany), and is submerged in liquid nitrogen during 

sample preconcentration. Liquid nitrogen was added manually before each measurement. A 

thermocouple connected to a temperature controllerwas attached to the submergible part of the 

GLT™ using PTFE-tape. The temperature control device monitors the temperature of the trap. 

During the sample preconcentration step valve 1 and 2 switches so that the He purges the grinding 

vessel (dotted lines, Figure 1). At the same time, valve 3 is opened to permit a high purge flow 

controlled by the flow controller (GFC17, Analyt-MTC), additionally to the existing flow through 

the GC column. Volatile compounds from the grinding vessel are purged for 6 min with a He flow 

at 10 mL min-1, as regulated by the flow controller and enriched on the pre-cooled trap (-196 °C).  
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Figure 2.1: Schematic of the analytical system. The sample is attached by piercing through 

the sealing septa and sample is purged by the He carrier gas flow. Grinding of mineral 

samples is realized offline in a conventional planetary mill. The sample trap temperature is 

controlled via a thermocouple by the temperature control device. The thermocouple is 

attached at the deepest point of the U-shaped sample loop, but this is omitted in the scheme 

for simplicity. The resistance heating is attached to the GLTTM sample loop via copper clamps 

symbolized by the black squares and also regulated by the temperature control device. 

 

 

An important aspect of this step in the process is the intercalated particle filter (Swagelok® Series 

F, mesh size 0.5 µm) that prevents fine mineral dust particles from entering the delicate GC-MS 

system. The sintered filter element should be exchanged every 20 to 30 measurements. Optionally, 

the scheme shows a (magnesium perchlorate) water trap. This has to be installed when measuring 

with a standard headspace technique (water vapour phase) or other sample requiring a moisture 

control system and is added here to demonstrate the versatility of the experimental setup. After 
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sample preconcentration is finished valve 4 is opened for 10 s and allows pressurized air to dissipate 

the liquid nitrogen from the Dewar vessel. A resistance heating that is controlled by the temperature 

control device is directly attached onto the GLT™ with two copper clamps, symbolized by the 

small black boxes in Figure 2.1. After liquid nitrogen is blown off, heating from -196 °C up to 200 

°C is accomplished within 30 s and this temperature is held for 2 min. The optimum heating rate is 

regulated by the temperature control device, permitting on the one hand a fast desorption of the 

volatile compounds, but preventing the thermal decomposition of the trapped compounds. During 

the desorption sequence, valves 1, 2 and 3 switch back into the standby conditions as described 

above. While the measurement is running, the sampling line with the filter element was cleaned by 

opening the manual valve to allow He backflush. 

 

2.2.2. GC-MS 

After desorption the sample is transferred by the carrier gas flow through a 15 cm long retention 

gap (0.53 mm diameter fused silica capillary column, deactivated) perpendicular to the GLT™ 

directly onto the GC columns. A graphite ferrule is used for the connection between retention gap 

and GLT™, whereas a retention gap and two capillary columns were installed in series using quartz 

Press-Fit®-connectors (Mega s.n.c, Legnano, Italy). The first capillary column employed is a DB-

624, ID 0.53 mm, df 3 µm, 30 m. The second capillary column is a BP-5, ID 0.32 mm, df 1µm, 

60 m. Due to the choice and length of chromatographic columns in combination with the cold trap 

design, no further sample refocusing on the column or GC oven cooling was needed to achieve 

good retention of very low boiling point compounds such as CF4 or SF6. 

The GC oven was programmed at 35 °C for 22 min, 35 °C to 150 °C at 5.5 °C/min, 150 °C are held 

5 min, 150 °C to 210 °C at 30 °C/min, hold 10 min (Figure 2.2). The MS detector was operated at 

170 °C with electron ionization of 70 kV. Signals were acquired between 11 – 50 min in scan mode 

for masses from 49-132 m/z at a scan rate of 0.17 s. Signal response and chromatographic 

performance of a reference gas mix (Crystal Mixture, Air Liquide) was controlled daily and 

electron multiplier voltage adjusted if necessary.  

In order to achieve best analyte recoveries, the purge flow speed and time were varied and the 

measurement conditions were set for both, the grinding vessel and a 20 mL empty standard 

headspace vial.  
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Isobutene, 1,3-butadiene, cis-2-butene and trans-2-butene were contained in a mixed calibration 

standard (15 ppm in N2, Crystal Mixture, Air Liquide). For optimization of purge flow and time 

2.8 ng CF4 (99.9 %, Sigma-Aldrich) and 0.7 ng of Crystal components were employed.  

Calibration was performed subsequently according to optimum conditions using pure gas 

standards. The following chemicals were used: chloromethane (99.5 %, Sigma-Adrich), sulfur 

hexafluoride (5.0, Linde AG), carbon tetrafluoride (99.9 %, Sigma-Aldrich). Pure gases were 

diluted via injection into Erlenmeyer flasks, on top of which a thread for closure with screw caps 

and Sil/PTFE septum was mounted. Calibrations were performed at 25 °C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: GC oven program and MS detection. (A) indicates the duration of the sample 

pre-concentration and (B) the desorption steps. 
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The solvent EPA 624 calibration mix 1 (Sigma-Aldrich) was used to determine retention times 

while the water trap was installed. Before samples were measured, mineral material was washed 3 

times with bidistilled water or ethanol (p.a., Sigma Aldrich) and then evacuated at pressures below 

10-4 mbar for at least 24 h in order to remove contaminants adsorbed to the mineral surfaces. 

 

2.2.3. Measurement of samples 

 A 10 g mineral sample was measured in the closed grinding device before and after grinding. 

Samples were ground corresponding to their specific grinding conditions, e.g. 15 min at 400 rpm, 

10 min at 400 or 5 min at 200 rpm for quartz, fluorite or halite, respectively. Sample results 

presented later on originate from a purple-green banded hydrothermal fluorite from the mine 

Marienschacht, Wölsendorf, Germany, and a halite from a recent salt crust of the salt pan Lake 

Kasin, South Russia.  

 

 

 

 

2.3. Results and discussion 

 

2.3.1. Grinding procedure 

Compared to previous crushing stages in FI analysis, our grinding is used in offline MS detection 

because of the need for chromatography and detection of trace amounts of volatiles. Hence, bulk 

released VOC composition is determined rather than the release of individual fluid inclusions. 

Crushing yielded mean average diameters of 1000 and 740 nm for quartz and fluorite, respectively. 

Response of particle size to selected grinding treatments is depicted in Figure 2.3. Quartz showed 

no further decrease of particle sizes after 15 min grinding time at 400 rpm, which was then chosen 

as the standard grinding condition for quartz and similar materials, such as granites. Fluorite 

summation curves of particle distribution clustered for the 10, 15 and 20 minutes grinding time at 

400 rpm. Longer grinding times did not yield smaller particles, which is typically observed 

(Jefferson et al., 1997; Kano et al., 2000) with final grain sizes apparently depending on the choice 

of grinding method and the properties of ground material (Kumar et al., 2006).  
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Figure 2.3: Particle size distributions obtained at grinding conditions using each 5 grinding 

balls and 10 g of sample. A) cumulative percentage curves for quartz and B) for fluorite at 

different grinding conditions. The legend indicates quartz (Q) and fluorite (F), grinding 

intensities in rpm (300 or 400) and grinding times (min). 
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Figure 2.4: Temperature development inside the grinding vessel after different grinding 

times for quartz and halite.  

 

 

 

Therefore, 400 rpm and 10 min were chosen as the standard grinding condition for fluorite and 

minerals of similar hardness, such as calcite or dolomite. Our grinding device avoids the tedious 

manual work done in the use of a crushing stage and ball. Also the cleaning of the grinding vessel 

is relatively easy as compared to the “peppermill”-design (Harnisch et al., 2000).  

At the same time the whole analytical setup only needed minor adjustments in order to accomplish 

the detection of volatiles from FIs and can be easily adjusted for a variety of other applications. 

The observation of temperature development within the grinding device during grinding was 

crucial in order to evaluate the potential risk of de-novo volatile compound formation. As seen in 

Figure 2.4, the interior temperature of the grinding chamber with sample and balls did not exceed 

ΔT = 10 K for the quartz. However, an apparent plateau appeared to be reached. This can be 

explained by the high heat conductance of the tempered steel of 47 W m-1 K-1 (at 20 °C).  
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After 15 min the maximum temperature difference on the outside of the vessel amounted to Δ 5 K. 

This means that heat had been transported away from the grinding vessel’s interior, heating up the 

whole steel container. For the halite sample, the obtained curve in Figure 2.5 shows a similar 

behavior, but temperatures on the outside of the vessel essentially remained constant, likely 

because of the higher deformation and plastic behavior of the salt. Energy input during grinding 

was lower as halite was only ground at 200 rpm (quartz at 400 rpm). After 5 min of grinding the 

temperature increase was less than half for the halites as compared to the quartz.  

When calculating the energies released during impacts and friction of balls with sample and walls, 

time of heat conductance was considered to yield a linear energy development over time. The 

energies were calculated approximately based on the equation,  

 

(37) Q = m ∙ cp ∙ ΔT 

 

with Q being the heat energy (kJ/J), m the total mass of ground material, grinding balls and factored 

in the heated material of the grinding vessel, cp the respective specific heat capacities (kJ /(kg K) 

and ΔT the temperature difference (K). The calculated thermal energies released during grinding 

were 7.62 ± 0.47 kJ for quartz after 15 min and 0.87 ± 0.24 kJ for halite after 5 min. A larger error 

for the calculations for the halite crystal is probably due to its ductile behavior with energies being 

partly converted into deformation. Bond energies are for example 347 kJ/mol for C-C, 414 kJ/mol 

for C-H and 485 kJ/mol for C-F bonds (Mortimer, 2001). Although the values for the released 

energies can only be understood as approximations, they demonstrate that the energies developed 

within the grinding vessel are insufficient to break and form new covalent bonds. The grinding 

process should therefore not contribute to additional amounts of volatile compounds measured, 

thus we assume that the compounds measured after grinding are released directly from the fluid 

inclusions of the materials. 

 

2.3.2. Chromatographic optimization 

Results from the optimized measurement conditions are shown in Figure 2.5. First, the purge flow 

rate as regulated by the flow controller downstream of valve 3 (Figure 2.1) was varied for both the 

grinding vessel (a) as well as a regular empty 20 mL headspace vial (c) and purge flow as mL min-

1 is plotted on the x-axis. The purge time was held constant at 6 min. The bars of the diagram in 



2. Method Development 

 

54 

Figure 5 show the response of each compound that was added in equal amounts each time. After 6 

min with a purge flow of 10 mL min-1 CF4 was recovered with highest intensities from the grinding 

vessel even though under these conditions the volume of the grinding vessel was not purged 

completely. Apparently, even at trapping temperatures of -196 °C the adsorption of low boiling 

compounds is not absolute but can be optimized by adjustment of the purge flow. Recoveries for 

butenes were generally higher from the 20 mL headspace vial than from the grinding vessel. This 

may be caused by the different purge volumes and geometries of the purged containers and by the 

different boiling points of the calibrated substances. 

As we were striving to optimize the system for the lower boiling compounds and butenes did not 

show significant increase with higher purge rates, the purge rate was set at 10 mL min-1. When 

varying the purge times it was remarkable that with 4 min signals for all five compounds were too 

low to be detected. After 6 min highest values were observed for CF4, but recoveries for butenes 

between 6 and 10 min remained nearly constant from the grinding vessel (b). When looking at the 

headspace vial (d), clearly best results were achieved for the butenes after 6 min whereas CF4 was 

not recovered at all, except for near detection limit amounts after 4 and 8 min.  
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Figure 2.5: Chromatographic recoveries of 5 standards at different purge flow speeds and 

purge times. Results from grinding vessel are on top (A1 and A2) and from headspace vial in 

the middel (B1 and B2). Plots C1 and C2 show the difference between grinding vessel and 

purge time (A minus B). Purge flow speed was varied with a constant purge time set at 6 min 

(left). Subsequently, the purge flow speed was held constant at 10 mL min-1 and purge times 

varied (right). 
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In general, purge time did not have such a distinct effect as purge speeds. However, best results 

were achieved after 6 min already. Hereupon, sample measurements were performed with 6 min 

purge time and 10 mL min-1 carrier gas flow. Detection limits with these conditions for the observed 

compounds are below 0.5 ng. The system installed at the University of Bayreuth employing a 

similar sample preconcentration applied to aerosol smog chamber experiments  

reached detection limits of 70 ppt for n-butanes and other higher molecular weight hydrocarbons 

(Siekmann, 2008). 

The two capillary columns combined with the specificity of the MS detection sufficiently resolved 

most compounds of interest. Prior to this work, only CF4 and SF6 were quantified in our set of 

fluorite and granite samples. Table 2.1 lists the analytes that have been detected from standard and 

sample measurements with the current system.  

The use of the Viton (fluoropolymer) seal ring between grinding bowl and crimp cap lid was not 

found to additionally augment our samples with CHF3 as was reported previously in the literature 

(Miller et al., 2008). Also grinding and analysis of FIs did not necessarily need to be performed 

under inert gas conditions as the concentrations of compounds released from mineral material by 

far exceed atmospheric concentrations. The 60 mL aliquot enriched from the grinding vial during 

the purge-and-trap sequence did not suffice for the detection of atmospheric volatile compounds 

as observed in blank measurements.  

Two examples of the chromatograms after mineral grinding are shown in Figure 2.6. The 

Wölsendorf-fluorite shows peaks for CF4 and SF6 corresponding to 26.3 and 3.4 ng/g, respectively. 

This shows the effectiveness of the system to trap these low boiling point compounds. While 

Isidorov (1993) and Svensen et al. (2009) also reported the measurement of chloromethane after 

dissolution or heating of halite samples, this is the first time that the release of chloromethane after 

grinding can be reported. Its observation from fluorite is novel but in both cases its occurrence is 

conceivable as chlorine as chloride in brines and methane in gases of fluid inclusions are commonly 

observed. 
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Table 2.1: Selected analytes detectable with the purge and trap system from calibation 

standards, their boiling points and target qualifier ion masses. Release of carbon 

tetrafluoride, sulfur hexafluoride, methyl chloride and methyl bromide from FIs can be 

accounted for thus far. 

 

Figure 2.6: Examples of reconstructed ion chromatograms (RIC) obtained from fluorite 

(blue) and halite (green) samples after grinding. Blank measurement in red. Samples 

originate from mine Marienschacht, Wölsendorf, Germany (fluorite), and from a recent salt 

crust of the salt pan Lake Kasin, South Russia (halite).  
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carbon tetrafluoride -128 69, 50

sulfur hexafluoride -64 127

methyl chloride -24 49,50,52

chloroethene -14 62, 64

methyl bromide 4 79, 94, 96

chloroethane 12,3 49, 64, 66

trichlorofluoromethane 24 66, 101, 103

1,1-dichlorethene 31,7 61, 96, 98

methylene chloride 40 49, 84, 86

trans-1,2-dichloroethene 48,7 61, 96, 98

1,1-dichloroethane 57,4 63, 65

chloroform 61 83, 85

1,1,1-trichloroethane 74 61, 97, 99

carbon tetrachloride 77 117, 119

benzene 80 77, 78

1,2-dichloroethane 83,5 62, 64

trichloroethene 87 95, 130, 132

1,2-dichloropropane 96 62, 63, 76

bromdichloromethane 90 83, 85, 129
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2.4. Conclusions 

 

Our GC-MS system together with the newly developed mineral grinding device allows for new 

compounds of interest in fluid inclusion research and at the same time maintains the high sensitivity 

of GC-MS measurements. Volatile compounds detected started at the very low boiling point of 

carbon tetrafluoride up to bromodichloromethane (Table 1), spanning a range of over 200 °C. The 

cold trap design constructed of the GLT™ column without further adsorbent material and installed 

directly before the GC columns made this possible. We report here for the first time the release of 

CH3Cl from halites and fluorite following this grinding procedure as compared to previous mineral 

dissolution or heating experiments. 

Mineral grinding as compared to the previous “Peppermill”-method by Harnisch et al. (2000) has 

been improved by a factor of 100, concerning final grain sizes. This also entailed a reduction of 

sample amount required. Initial measurements of mineral samples with this new system showed 

that it is able to reproduce SF6 and CF4 released from the FI as reported in previous studies by 

Harnisch et al. (Harnisch and Eisenhauer, 1998; Harnisch et al., 2000). 

The adapted dynamic headspace approach accommodates not only all types of minerals and rocks 

but is still highly versatile. Conventional headspace applications are still feasible by inserting the 

water trap and since analytes are trapped prior to the GC column, the cold trap could easily be used 

with different GC configurations or different analytical techniques. 

An expanding dataset based upon this method will help to gain new insights into the formation 

process of VOX found in FIs and their release to the environment upon weathering.  
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3.1. Introduction  

 

In order to apply the newly developed method, a set of various mineral and rock samples was 

assembled. This set includes, fluorites, halites, gypsum as well as quartz, granites, dolerite and 

basalt.  

Quartz (SiO2) belongs to the tectosilicates and has a Mohs’ hardness of 7. It is the second most 

common mineral of the continental crust after feldspar. If quartz crystallizes below 573°C trigonal 

α-quartz is formed. At higher temperatures and pressures it changes its structure to hexagonal β-

quartz. Quartz accounts for 30 wt% in granites and due to its mechanical and chemical stability it 

persists as detrital grains and is major constituent of many sediments (Langmuir, 1997). It is also 

present in many igneous and metamorphic rocks and the most common gangue mineral in 

hydrothermal veins, oftentimes as essentially the only mineral. In sandstone and its metamorphic 

equivalent quartzite is the major component. Chert and flint are hydrothermal quartz deposited on 

the sea floor or in limestone. Quartz varieties are numerous including gemstone, amethyst, citrine, 

smoky quartz rose quartz, chalcedony and agate to name a few. Milky quartz may be the most 

common quartz variety owing its milky white color due to minute FIs (Klein et al., 2002). 

Basalts are the most important vulcanites as they build up the entire ocean floor. They are formed 

from molten mantle material and have a temperature of 1000 to 1300°C upon their extrusion. This 

temperature and the low SiO2-content lead to melts of low viscosity which is why basaltic 

volcanoes are less explosive. Main constituents of basalt are glass and the microcrystalline 

matrices, plagioclase and augite. Minor mineral constitutes are olivine, orthopyroxene, ilmenite, 

magnetite, apatite and biotite (Markl, 2004). Dolerite is a rock-type chemically equivalent to basalt 

but of medium-grained texture. They are dominated by the minerals plagioclase and pyroxene but 

they can also contain olivine or quartz. They are typical found within dykes or as sills.  

Fluorite, CaF2, crystallizes in the cubic crystal system and is of Mohs’ hardness 4. It appears on 

various colours most commonly violet, blue, creamy yellow and green. It is a common and widely 

distributed mineral usually found in hydrothermal veins where CaF2 precipitates first from acid 

solutions due to their low solubility (Klein, et al. 2002). But it also occurs in pneumatolytic deposits 

(e.g. accessory in granites), in pyrometasomatic rock (e.g. magmatic intrusions or skarn), in 

carbonatites and sedimentary from salt and fluorine-rich solutions (e.g. in dry lakebeds). Fluorites 

are frequently associated with lead-zinc bearing ores (Mississippi-Valley-Type) or with partly large 
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crystals together with quartz, calcite and barite as filling in veins. They are also common in vugs 

of dolomite and limestone. A renowned variety of fluorite is antozonite, historically known as 

stinkspar or fetid fluorite. Type locality for this dark violet or even black fluorite is Wölsendorf, 

Bavaria. These fluorites are rich in radioactive U238 which decays into β-emitting daughter 

nuclides. Experimentally, it was shown that radiation caused artificial calcium fluoride to turn 

violet by splitting into clusters of calcium ions and bubbles of fluorine gas. In 2012, Schmedt auf 

der Günne at al. (2012) finally proved that the stinky smell released from the stinkspar of 

Wölsendorf is indeed caused by F2. These fluorites are the only known natural place on Earth where 

elemental fluorine exists. 

Halite, cubic crystals of NaCl with Mohs’ hardness 2, is another representative of the mineral 

groups of halogenides. It occurs predominantly as evaporite and can be of marine or non-marine 

origin. The common model for its marine deposition is its formation in shallow coastal basins 

closed off or restricted by a topographical barrier toward the open see and with restricted inflow of 

freshwater. Halite can occur in association with sylvite, and other Na-K-Mg-halogenides or sulfates 

like gypsum. Halite crusts from modern saline pans, referred to as playa, sahbkas, salt flats or salt 

pans, usually form in restricted drainage basins and under dry climatic conditions. They have 

undergone repeated episodes of flooding and desiccation resulting in characteristic syndepositional 

features such as dissolution textures and cements. Mud beds can contain displaced halite crystals. 

During diagenetic processes upon burial pore spaces are reduces via cementation and usually 

completely filled at burial depth of approximately 45 m (Casas and Lowenstein, 1989). The Salar 

de Uyuni in Bolivia is the largest contemporary salt pan covering an area of more than 10000 m2.  

Burial of thick beds of evaporite lead to the formation of salt domes or diapirs where the less dense 

salts rise up vertically into the overlying sediment strata. Rock salts are mined from salt domes and 

bedded deposits that are widely distributed throughout the world. The soft (Mohs’ hardness 1.5-2) 

evaporate mineral gypsum CaSO4·2H2O (monoklin) together with the harder anhydrite CaSO4 

(orthorhombic, Mohs’ hardness 4) is by far the most abundant mineral in natural deposits. This is 

because they are less-soluble and precipitate early during evaporation (Klein et al., 2002).  

For this study, halite and gypsum samples were partly sampled during field campaigns to salt pans 

around the world. Other samples were obtained from third parties; either from mineral collectors or 

those samples were taken in the context of different research endeavours.  
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Major hypothesis for this work were that minerals contain volatile organohalogens in their FIs and 

that types and amounts of volatile compounds including organohalogens depend on the conditions 

during mineral formation. It is also expected that evaporites from salt pans can serve as source for 

organohalogens in soils, water and air as well as capture and archive gases trapped during mineral 

formation in the surroundings of their deposition. 

The sample screening presented here was oriented mainly on routine environmental analysis. We 

did not seek to apply thermodynamic considerations of formation of rocks and minerals as is mostly 

the case in FI research but rather focused on the potential of VOC formation within geologic 

matrices. Formation time of inclusions during crystal growth (primary, secondary or pseudo-

secondary) was thus neglected. The screening of samples also includes data on anion content, 

organic carbon content and x-ray diffraction data of samples.  

Objective of the sample screening was to provide novel data on the chemical composition of fluid 

inclusions. A large number of samples was intended in order to allow for systematic observations 

among and between sample groups. This chapter also points out technical problems and discusses 

how to solve them. 

 

 

3.2. Materials and Methods 

 

3.2.1. Samples and their treatment  

After breaking up solid crusts with a spade using stainless steel putty knives or by grabbing loosly 

assembled crystals with laboratory gloves from salt pan surfaces in South Russia, Southwest 

Australia, Bolivia, Mauretania, Namibia and South Africa, samples were collected into low density 

polyethylene (LDPE) plastic bags with zip locks. The samples were predominantly halites and 

gypsum minerals, thus soft materials. Other halite samples from drill cores or mines were provided 

by colleagues. Their crystals were usually up to 5 mm thick but often formed aggregates or crusts 

(see Figure 3.1). The samples were carefully broken down with a porcelain mortar and pestle. The 

final grain size ranged between 1 and 3 mm. The highly water soluble halides were immersed in 

ethanol (Supelco, 98%) within a glass beaker and covered with a watch glass. The vessel was then 

placed in an ultrasonic bath for 1 min. The washing solution was then decanted and the washing 

step was repeated three times or until the leftover supernatant was colourless. The cleaned minerals 
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were left in an open container overnight in a fume hood so that the employed ethanol could 

evaporate.  

The fluorite used in this study were received from a private mineral collector and originated from 

the Wölsendofer fluorspar region of Upper Palatinate, Germany. Granites, a schist and a limestone 

stem from the Cambay river basin in North Gujarat, India, sampled by M. Wieser, Institute of 

Environmental Physics, University of Heidelberg. Dolerite sills and a synthetic Mid Ocean Ridge 

basalt (MORB) sample were provided by B. Black, Massachusetts Institute Technology and S. 

Dultz, University of Hannover, respectively. 

These samples were first crushed into pieces of about 5 cm thickness using a large hammer. In the 

following, the samples were ground to yield grain sizes >3.15 mm using a jaw crusher followed by 

the vibrating cup mill. The size fraction of 2 to 3.15 mm was separated from the smaller particles. 

These materials of very low solubility were filled in a glass beaker, covered with ultrapure water 

(≥18 MΩ-cm, from a Purelab UHQ System, ELGA LabWater) and sonicated in an ultrasonic bath 

for 1 min. The washing water was then decanted and the washing step was repeated three times or 

until the leftover supernatant was colourless. The washed minerals were left in an open container 

in a desiccator to dry overnight. The hydrothermal quartz samples were provided by a campaign of 

U. Schreiber, University of Duisburg-Essen. They were sampled on the Archaean Yilgarn craton 

of Western Australia. Those designated SM were sampled at the 1.6 Ga old impact-generated 

quartz veins of the Shoemaker-Crater. Samples designated MU stem from hydrothermal quartz 

boulders from a 2.7 to 3 billion years old conglomerate near Murchison (Western Australia). 

Samples from Mesozoic hydrothermal quartz veins from High Taunus in Germany are designated 

HTV and were sampled by T. Kirnbauer, University of Bochum, and U. Schreiber (see above). The 

samples were partly prepared in external laboratories: samples were broken down with hammer 

and jaw crusher to a size of 3 to 5 mm. Approximately 100 g of material was then submerged in 

100 mL HCl (14%) overnight. The acid was discarded the following day and the samples were 

covered with 100 mL bidestilled water. After the water was discarded the sample was subsequently 

rinsed 5 times with 40 mL bidestilled water. Samples were then washed three times with at least 

20 mL ethanol and dried in an oven at 40 °C. This set of samples included a blind quartz sample 

which underwent the same treatment. Upon arrival they were subject to the same evacuation 

procedure as all samples and as outlined in the following.  
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In order to measure compounds released from the FIs of the minerals, we sought to minimize the 

amount of semivolatile gases adsorbed onto mineral surfaces. These adsorbed gases were removed 

within an ultra-high vacuum which also completely dried the samples, which was indispensable 

for GC-MS analysis. For this purpose a stainless steel cylinder was specially designed (see 

appendix Figure 6.1). Up to 6 samples could be places on a rack and into the cylinder. The lid was 

than screwed on tight along the flange. 

 

 

 

Figure 3.1: Impressions of samples and their processing. A and B shows the sampling of 

sample H45Bol on the Salar de Uyuni, Bolivia (pictures by K. Kotte). The orange colour 

indicates microbial activity and is caused by β-carotine as is typically produced i.e. by the 

halophilic microalgae Dunaliella salina. Pictures C to F illustrate the diversity within the set 

of halite samples. Pictures C to E are samples from salt pans: C is sample H45LD from 

Australia, D from Lake Elton in Russia, E from Botswana. F is a rock salt from a Siberian 

drilled core (provided by Sevensen) with its blue colour stemming from structural defects in 

the crystal structure. G to I show sample F1PS as received and prepared before and after 

grinding. 
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The lid was equipped with a stainless steel bellows valve which was attached to a high vacuum 

pumping station (for construction drawings of pumping station see appendix). After a pre-vacuum 

of < 5 *10-2 mbar was reached the tubomolecular pump evacuating to < 3*10-3 mbar (limit of probe 

head) was started and ran for 24 h. After sample evacuation is completed the system is vented 

slowly with ambient air. The samples were taken out of the pumping station to be stored in a 

desiccator and kept away from the laboratories to avoid re-contamination.   

Table 6.1 in the appendix contains a complete list of samples with information on characteristic 

sample features and sampling locations. 

 

3.2.2. GC-MS   

Volatile compounds from FIs were determined via GC-MS. First, the volatile compounds are 

separated chromatographically before entering the MS. The detection is induced by the ionization 

of incoming molecules via electrons with a kinetic energy of 70 eV. Thereby, compounds are 

broken down into smaller ionized fragments. The fragments then undergo a mass selection inside 

the ion trap. Time resolved mass distribution is obtained. 

The analytical method and its development were described in detail in Chapter 2. However, some 

of the data presented here were obtained using the original analytical set-up first employed. Figure 

3.2 depicts the original system together with the revised cold-trap design.  

In short, after mineral samples were ground and the grinding chamber attached via stainless steel 

needles the released volatile compounds were carried out by a He purge gas stream onto the cold-

trap. Here the analytes condense while the carrier gas and other permanent gases were vented to 

the atmosphere. The original cool trap consisted of a lying brass cylinder traversed by a 20 cm long 

glass lined tubing (GLT). Valves connected to the temperature control device allowed for a 

dynamic cooling of the trap to below -190 °C in a liquid nitrogen steam. If the temperature of the 

GLT dropped below a certain set point valves opened again to fill in new liquid nitrogen. 

Problematic with this cold-trap design was the high liquid nitrogen consumption. Another 

disadvantage was the fluctuating temperatures, which were not favourable for the retention of 

highly volatile compounds. For the revised cold-trap a GLT was bent to U-shape so that it could 

be cooled statically submerged in a 80 mL Dewar vessel filled with liquid N2. Pressurized air blew 

off the liquid N2 before resistive heating facilitated sample desorption. Valve controlled, the 
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enriched VOCs were transported with the carrier gas stream via the 15 cm long GLT directly onto 

the capillary columns within the GC oven and detected in the ion trap MS.  

Another substantial difference between the two experimental set-ups was the choice of the GC 

oven program. Figure 3.3 shows both temperature programs in comparison.     

Originally, a GC oven cooling was installed to ensure proper separation of VOCs with very low 

boiling points. This cooling consumed a lot of additional liquid N2. With the more efficient second 

cold-trap and the experience of the first measurements the later GC oven program started 

isothermal at 35°C for 22.5 min. Together with a replacement for the old BPX5 capillary column 

with a new one this program was found sufficient to separate most of the occurring volatiles. In 

Table 3.1 the influence of the two different experimental set-ups on retention time of analytes are 

listed. Note that the low boiling point analyte CF4 at -128°C showed at first several peaks in a range 

of retention time. This was most likely due to the fluctuations occurring during the sample 

concentration as controlled by the temperature control device. Although the peaks for CF4 and SF6 

were close together in the updated set-up, their identification and quantification was unproblematic. 

Another major advantage was the reduction of time needed for one measurement as can be seen in 

Table 3.1. Retention times and mass spectra were used to identify analytes of samples and those of 

commercial standards. If no standards were available the mass spectra were compared to the 

National Institute of Technology (NIST) mainlib database under consideration of respective 

retention times and estimated boiling points.  

External multipoint calibration for all analytes was difficult due to lack of suitable gaseous 

calibration standards. Injections of a methanol based standards with known concentrations into the 

grinding chamber or the 20 mL headspace were used in parts but are in principle not the optimal 

option for this system. The absence of water, necessary to mimic conditions applied during 

measurements, enhanced the error and the MeOH interfered with the chromatography on a short 

term and lead to column-bleeding after several measurements. The use of diluted pure gases 

eventually served as standards for major analytes. The 1,3-butadiene peak of a gaseous 

hydrocarbon standard “crystal gas mix” (Air Liquid) served as a daily standard. 

An interesting series of experiments, also referred to later on, was part of a bachelor thesis (Bugla, 

2010).  2.5 g of samples are heated in a headspace vial for 24 h at 150 °C before measuring VOCs 

with the GC-MS. For more details on the GC-MS measurement and grinding procedure please refer 

to Chapter 2. 
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Figure 3.2: The original analytical set-up consisted of (1) the mineral grinding chamber, (2) 

a temperature control device, (3) the cylindrical cryo-trap with a liquid N2-inlet, (4) the gas 

chromatograph equipped with two capillary columns and (5) an ion trap mass spectrometer 

(picture of ion trap design taken from Varian, ITS 40 Operation Manual). The revised set-

up employed a different design of cold trap (6). The U-shaped glass lined tubing was 

submerged in liquid N2 during cooling. Pressurized air blew off the liquid N2 before resistive 

heating facilitated sample desorption.  

 

 

 

 

 

Figure 3.3: GC oven temperature programs for the “old” set-up (left) and the revised set-up 

with static cooling of the GLT trap (right). 
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Table 3.1: Selected analytes and their retention times under the old (retention time 1) and the 

updated experimental conditions (retention time 2). Retention times for 2-Butene marked 

with asterisk is a mean retention time value as isomers were not differentiated due to a lack 

of standards.  

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3. Ion chromatography 

All halite samples were analyzed for Cl-, Br- and SO4
2- via ion chromatography (ICS-1100, 

Dionex). This liquid chromatography method is used to separate and quantify ionic compounds 

mostly from inorganic salts.  

As the mobile phase, an eluent consisting of a 4.5 mM Na2CO3/ 0.8 mM NaHCO3 mixture is used 

at a flow rate of 1 mL/min. Samples are injected via the autosampler (AS90, Dionex) and pass 

through the guard column (AG23, Dionex) before separation. The analytical column (AS23, 

Dionex) employed as the stationary phase consists of a macroporous polymer, which has 

alkyl/alkanol quaternary ammonium ions as functional groups. The counter-ions (carbonate anion) 

from the mobile phase occupying the quaternary ammonium ions can be replaced with ions from 

the liquid sample. Depending on affinity to the stationary functional group carbonate anions are 

replaced by anions from the sample. The stronger their ionic binding to the stationary phase the 

longer sample anions are retained.  

Before detection with a conductivity detector the signal is enhanced by passing through a self-

generating suppressor which continuously provides H+. In this suppression step, the sample 

counter-ions are replaced by H+ forming highly dissociative acids with the sample anions resulting 

 

    

boiling 

point 

target ions retention 

time 1 

retention 

time 2 

    °C amu min min 

carbon tetrafluoride -128 69, 50 10.5-12.5 14.8 

sulfur hexasfluoride -64 127 13.5 15.2 

carboylsulfide -50 60 27.3 16.3 

methylchloride -23.8 49, 50, 52 31.7 17.5 

2-butene (trans) 0.88 50, 52, 55, 56 33.1* 18.0 

2-butene (cis) 3.72 50, 52, 55, 57 33.1* 18.4 

methylbromide 38 79,94,96 37.6 19.7 

benzene   80.1 77, 78 53.1 39.1 
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in an increased conductivity and better signal. At the same time, the eluent Na2CO3 is transferred 

into the weak acid H2CO3 which is hardly conductive, reducing the background.   

The analytical system was operated with the software Chromeleon 6.80. 

Usually, the sample is an aqueous solution e.g. of a soil sample. As our samples completely 

dissolved and contained high Cl--concentrations we used a dissolution rate of 1:3333 

(sample/water). This was necessary to protect the the stationary column and prevent Cl- overload.  

 

3.2.4. Carbon content 

Carbon content of a set of halite samples was determined using a LECO SC-144DR, with a 

detection limit of 50 ppm. Samples are combusted in the analyzer at 1400 °C in an oxygen current. 

The evolving CO2 is then detected in an IR cell and carbon content output is given in percent taking 

into account the weight of the combusted sample. The set of samples analyzed comprised all 

samples from H1Elt to H27Gor as well as two gypsum samples G1Bas and G2Bas. Here, we used 

0.5 g of halite sample for each measurement. A few samples were measured after they were ground 

and measured with GC-MS. Due to the scarcity of material and the destructive nature of this 

analytical technique several samples were also determined after they have been used for non-

destructive total elemental analysis. Most samples were determined using crystals no larger than 5 

mm thickness. As a control CaCO3 was run every 10th to 15th measurement. As the samples 

consisted of halite crystals only, no inorganic carbonate contributed to the carbon contents 

determined with the analyzer. All carbon determined from this measurement is assumed to stem 

from organic matter in the sample.  

 

3.2.5. Major and trace elements (XRF) 

Major and trace elements of a selected set of samples were quantified via energy-dispersive XRF-

spectrometry (x-ray fluorescence), a non-destructive method. From a glow filament (cathode) 

electrons are accelerated through a vacuum towards the primary target (anode). Upon electron 

impact the anode emits x-rays which then pass through an analyzer-crystal yielding monochromatic 

Kα-radiation. This monochromatic radiation is subsequently used to excite the sample elements. 

Fluorescence emissions are element specific. The detector measures the energies of the x-ray quanta 

and correlates them to wavelength after 2-point calibration.  
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The two instruments used here were custom made by Andrey Cheburkin and each was used for a 

different element range. For elements from Al to Mn a Co X-ray source (17 V, 1 mA) with a HPGe-

detector called TITAN was employed. The second instrument consisted of a Mo X-ray source (37 V, 

5 mA) and a Si(Li)-detector and recorded elements from Fe to Y (Z 26-39) as well as Pb (Z 82). It 

is described under the name EMMA (Cheburkin et al., 1997). 

Powdered samples were filled to approximately 0.5 cm thickness onto a thin-film (Chemplex) in a 

sample holder. XRF measurements were conducted over 10 min for statistical certainty.  

To verify calibration performance certified reference materials (CRMs) as external standards were 

used depending on sample matrix. A list of available CRM is given by Krause (2014). However, 

no CRM was available for halite matrices. A carbonate rock standard was the closest representative 

of the halite matrix and thus results from salt samples have to be seen as semi-quantitative. Lower 

limits of detection reside in the lower ppm range. 

One objective of the XRF measurements was to investigate if samples are contaminated by the 

abrasion during the grinding procedure. Therefore some samples were also ground with an agate 

mortar and pestle and vibration cup mill as indicated in the results section. 

 

3.2.6. X-ray diffraction 

X-ray diffraction (XRD) relies on the principle of the diffraction of an incoming x-ray at the crystal 

lattice. Each mineral causes, depending on its lattice parameters and chemical composition, a 

unique diffraction pattern as a function of the incident angle of the x-ray beam. Minerals can thus 

be identified and characterized by these characteristic intensity maxima. Braggs-equation explains 

the relationship of the incident angle of the x-ray beam θ to the diffracting planes of the crystal 

lattice 

2 d sin θ = n λ, 

 

where d is the spacing between diffracting planes, θ is the incident angle, n any integer, and λ is 

the wavelength of the beam.  

For samples we used this method to test their mineralogical purity and to identify mineral mixtures 

qualitatively and quantitatively. Sample powders were mounted onto the sample holder and were 

then analyzed using a Bragg-Brentano powder-diffractometer with secondary-beam 
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monochomator (Philips XPert PW3020). The resulting peaks counts were registered between 10 

and 70 on the 2-theta scale. 

Data were plotted and evaluated using the Diffrac Plus EVA 13 (Bruker-AXS). If more than one 

mineral phase was present quantifications were carried out by the FPM Evaluation function of the 

program. 

Not each individual samples was measured but rather samples representative for each sample type 

or sample location. If samples were visibly significantly different per location more than one 

sample was chosen for XRD. 

 

3.2.7. Py-GC-MS 

Pyrolysis is the thermal decomposition of materials. Commonly, data from Py-GC-MS are used as 

fingerprint to prove material identity or the identification of individual fragments can help to obtain 

structural information of larger molecules which are cleaved into smaller fragments. 

GC-MS results from salt samples heated to 150 °C had shown a remarkable increase in emitted 

VOX (see results section). Therefore a sub section was analyzed by C. McRoberts at Queens 

University in Belfast, Ireland. The set of six untreated samples comprised H6Kas, H3Elt, H26Bas 

(Russia), H13Douwe (Mauretania), H42LD (Australia) and H27Gor (mine Gorleben, Germany).  

A preliminary pyrolysis gas chromatography  (Py-GC-MS) study showed that the supplied MeCl 

production was greatest for sample H3Elt out of the set of samples provided.  Therefore this sample 

was used to investigate MeCl release at different pyrolysis temperatures. 

Py-GC-MS was carried out using a CDS 5200 series pyrolyser in direct mode linked to an Agilent 

Technologies 5975 GC-MS system. Of each sample 6-7 mg were accurately weighed on a 

microbalance and pyrolysed at either 300 °C, 500 °C or 700 °C at a ramp rate of 20 °C/ms for 20 

seconds. The pyrolysis products were separated on a Varian CP7550 PoraPLOT Q (12.5 m x 0.32 

mm x 10 µm) capillary column with a split ratio of 50:1. The column was initially held at 30 °C 

for 1 min and then ramped at 10 °C/min to 200 °C with a constant flow rate of 3.0 mL/min. The 

MS was operated in the selected ion monitoring mode monitoring ions m/z 50 and 52 for 

chloromethane. The peak for chloromethane had a retention time of 2.9 min. Analytical grade NaCl 

was run as sample control. 
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3.3. Results and Discussion 

 

3.3.1. Sample treatment and technical problems 

As the results presented were obtained throughout the ongoing method development and 

improvements of the system were undertaken along the way, frequent calibrations were necessary. 

Also, as the initial calibration of the methanol based EPA 624 standard in the absence of water 

proved to be detrimental to the capillary column the use of gaseous standards was inevitable. Same 

was true for initial trials with hexafluorobenzene as a daily correction factor. Initially, pure gases 

for CF4, SF6 and MeCl were used and diluted in a three steps via Erlenmeyer flask for calibration. 

MeCl dilutions were also applied partly for the daily correction factor. The handling was 

problematic due to frequent clogging of the syringe and in the case of the heavy SF6 improper 

mixing. Also, these standards had to be prepared new every day. Own preparation of calibration 

standards in Helium filled Tedlar bags were not successful due to Helium loss through the walls of 

the bags. The use of 0.66 ng of the crystal gas standard and the 1,3-butadiene peak area as a daily 

correction factor was implemented successfully in advanced stages of the method development. 

Figure 3.3 shows two blank chromatograms under conditions of high sensitivity of the electron 

multiplier and without air leaks. The red line shows a typical measurements from the empty 

grinding vessel with a norflurane peak from the Viton seal ring and a peak with m/z= 49 and 50 at 

20 minutes of unknown origin. The later peaks in the chromatogram were usually caused by the 

capillary column upon heating. The 20 minutes peak could be a compound like 1,3-butadiyne for 

example or a similar unsaturated hydrocarbon. A potential source for such a compound could be 

chemical ionizations of contaminants within the ion trap. Chemical ionization was a problem 

especially observed for the low boiling point compounds resulting in mass shifts by one unit. This 

occurred predominantly after a suite of samples, especially when salts were measured, which 

seemed to compromise the cleanliness of the ion trap. In an attempt to minimize signals in the blank 

measurement a 30 x 30 x 30 cm small glove box made from polymethyl methacrylate (Plexiglas) 

was built, in which the grinding chamber could be filled and closed under inert gas. However, as 

shown in the green chromatogram of Figure 3.3, the glue used in the construction of the box caused 

large chlorobutadiene and a multitude of other contamination peaks within an otherwise blank 

measurement. In general, working with samples in ambient air was sufficient for the experiments. 

Xenon, a compound occurring at concentrations of 87 ppb in the atmosphere, was recognized as a 
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sign of air leak at the grinding chamber during the purge step. Under air-tight measurement 

conditions the Xe concentration was below limit of detection in the grinding vessel. 

Contamination through abrasion within the chamber during grinding is discussed in section 3.3.5 

of this chapter.  

 

 

 

Figure 3.3: Blank chromatogram of the grinding chamber prepared under ambient air (red) 

and in the argon glove box (green). 

 

3.3.2. GC-MS 

Complete tables of results of VOC from mineral and rock samples can be found in the appendix, 

Tables 6.2 to 6.7. Those tables are subdivided by sample type and by time of measurement as to 

account for the different stages of method development. The results presented in Table 6.3 and 

Table 6.4a were obtained as part of the bachelor theses by Bugla, (2010) and Ubl (2011).  

Figure 3.4 presents an overview of results of this sample screening. Although the number of 

measurements per sample group differed substantially, the samples were subdivided into the groups 

of halites, quartz, fluorites and volcanic glasses. Disregarding the amounts detected, occurrences 

of each VOC was counted and normalized by number of samples measured. Not included in Figure 

3.4 are granites, gypsum and each one sample of schist, limestone and MORB. For the schist 

(G03MW), limestone (G04MW) and MORB no compound were detected. Only one out of the two 
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granite samples (G01MW) had a CF4 content of 169 ng/kg. Two gypsum samples were measured 

and their VOC content resembled that of the halite samples. As the gypsum sample was taken at 

Lake Baskunchak, a close similarity to sample H26Bas is obvious, with VOCs present at slightly 

lower concentrations. 

For all other samples Figure 3.4 reveals the occurrence of a multitude of compounds for halites and 

gypsum, whereas the compound diversity of fluorites and volcanic glass samples was lower. 

Clearly, the first conclusion is that the set of samples for the latter two need to be extended. 

Secondly, MeCl, carbonylsulfide (COS) and benzene were present in all sample groups. While 

small peaks of COS and benzene were also commonly observed in the control runs of the unground 

sample, MeCl was only detected after samples were ground, excluding the possibility that is a 

contaminant from the system. In fluorites and mafic rock (basalt/dolerite) however, the amounts 

detected were low. Surprisingly, the concentrations of MeCl in the quartz samples were partly as 

high as in the halites with 2.7 ng/g for sample MU4 and 1.5 ng/g for sample HTV115 (Figure 3.5). 

Also the fluorite sample F4PS with a value of 60 ng/kg (ppt) falls in the range of observed 

concentrations for many salts. While MeCl from halites has been previously reported in the 

literature (Isidorov, 1993; Svensen et al., 2009), this is a novel observation made for the fluorite 

and quartz samples. Similarly stunning is the occurrence of methyl bromide of up to 10 ng/g in 

quartz samples (Figure 3.5). Samples MU4 and HTV115 are special with regard to the diversity of 

compounds discovered after grinding. MU4 contained 2.7 ng/g of MeCl, 10 ng/g MeBr, 0.8 ng/g 

1,1-dichloroethane and also showed peaks for carbon disulfide and trans-1,2-dichloroethane. 

Results for HTV115 were even more diverse: 1.5 ng/g MeCl, 7.5 ng/g MeBr, 0.5 ng/g 

vinylchloride, 0.3 ng/g but(adi)enes (consisting of isobutene, 1,3 butadiene, cis/trans-2-butene) and 

showed large peaks for carbon disulfide, carbonylsulfide, trans-1,2-dichloroethene and 2-

chlorobutane (see table 5.7). This multitude of hydrocarbons and sulfurated and halogenated 

compounds indicate that conditions for their formation within the earth crust are favorable in parts.  

Although the results from sample HTV 115 are impressive the true origin of these compounds is 

unclear. It is possible that the compounds trapped stem from Corg-rich metasediments. In contrast, 

sample MU4 was sampled at a 2.7 to 3 billion years old conglomerate of the Yilgarn craton near 

Murchison (Western Australia). In this case, the analyzed quartz samples were formed in 

hydrothermal veins in early stages of the evolution of life and could have contributed in pre-biotic 

organic chemistry. 
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In contrast, almost no organic compounds have been detected inside FIs from impact-generated 

quartz veins of the Shoemaker-Crater (between 1.0 and 1.6 Ga). The absence of the compounds 

can be interpreted in agreement with the model put forward by Schreiber et al. (2012). It states that 

the prerequisites for the geochemical formation of organic molecules are a suitable carbon source 

(e.g. carbon dioxide), varying P/T conditions and catalysts. Pre-biotic organic molecules were 

earliest markers for a chemical evolution that have been formed in tectonic faults of Archaean 

cratons. According to the postulated model, rising hydrothermal fluids such as mineral-rich water 

and supercritical carbon dioxide in deep faults with contacts to the upper earth mantle offer 

conditions which allow for reactions similar to the Fischer-Tropsch synthesis. As the impact-

induced hydrothermal system of the Shoemaker-Crater had no connection to the Earth’s mantle, 

there was no contact to rising volcanic fluids. The results from FIs encapsulating hydrothermal 

fluids during the growth of these quartzes conserve the chemical composition predominating during 

the formation and distinguish them from other quartz samples.  

When comparing halites and quartz samples in Figure 3.4 another observation that can be made is 

that the halites are dominated by hydrocarbons while quartz, mostly due to the inclusion within the 

two samples discussed above, exhibit a relatively larger fraction of halogenated compounds. Halite 

samples were predominantly sampled at surface sites, while the hydrothermal quartz samples 

underwent elevated temperature and pressure conditions. But with the omnipresence of alkanes, 

alkenes and maybe even alkynes (no verification by a standard yet) halites contain abundant 

precursor material that could be readily halogenated. Isidorov et al.  (1993) detected chlorine and 

sulfur containing compounds from halite and sylvinite mining emissions which they also partly 

measured after dissolution of the salt crystals by GC-MS headspace analysis. Most recently, 

Svensen et al. (2009) reported the extraction of CHCl3, CHBr3 and 1-chloro- and 1-bromobutanes 

from halites using GC-MS and a heating procedure at 225 °C as well as a crushing procedure, but 

little details were reported on the latter one. Samples H23Sib and H24Sib correspond to samples 

194/3 and 194/4 reported by Svensen et al. (2009) and can directly be compared. Svenson et al. 

also reported benzene from the crushed sample at room temperature for both samples and also 

found methyl chloride, methyl bromide and chlorobutane in sample 119/4. The values for MeCl 

and MeBr for sample 194/4 were about 100-fold larger than our values but they heated to 275 °C 

as compared to 150 °C in the case of H24Sib.  
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Figure 3.4.: Relative frequencies of VOC occurrence per sample group. The rest 6% of the 

halite samples comprise dichloromethane, n-hexane, 2-chlorbutane, 2,3-pentadiene, vinyl 

chloride and methyl bromide. N=35, inclusive data of Bugla (2010).  
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Figure 3.5: Selected VOC concentrations per gram of sample.  
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Figure 3.6: CF4 and SF6 concentrations of fluorite, granite and quartz samples (based on data 

by Ubl, 2011). 

 

The tendency of increased VOX release upon heat for methyl chloride, methyl bromide and 

chlorobutane can be confirmed not only for the samples from Siberia but for all halite samples in 

general. The top right in Figure 3.5 shows that MeCl release after heating was partly more than 

100-fold higher compared to the grinding procedure. Additionally, we found an increased 

formation of isobutene, bromomethane and trichloromethane upon heating as illustrated by the 

chromatograms of sample H6Kas in Figure 3.7., Beerling et al. (2007), modelled large amounts of 

total MeCl and MeBr of 63.6 and 0.8 Tg degassed during the intrusion of the Siberian Trap basalts 

into Permian salt beds. A MeCl/MeBr ratio of the same order of magnitude was observed for many 

halite samples.  

As summarized by Wignall (2007), the discovery of mutated palynomorphs in end-Permian rocks 

led to the hypothesis that an O3 depletion and increased terrestrial incidence of harmful ultraviolet-

B (λ=315–280 nm) radiation might be responsible for the Permian-Triassic extinction event. The 

hypothetical synthesis and release of massive quantities of volatiles, especially organohalogens, in 

the Siberian Large Igneous province (SLIP) could have triggered O3 depletion and allowed an 

increased terrestrial incidence of harmful UVB radiation is now a popular notion confirmed by 

many (Aarnes et al. 2011; Tang et al. 2013; Black et al. 2014). Also our results agree and strengthen 

this hypothesis as well as chlorination of hydrocarbons upon heating within salts as the general 

mechanism. 
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Figure 3.7: Chromatograms of sample H6Kas after heating (a) and after grinding (b). 

 

Data of Svenson et al. (2007) on butanes and benzene, apparently common to FIs in salts, imply 

that these compounds are broken down upon heat and provide active organic matter (OM) 

precursor. Organic radicals could be formed upon heating and further oxidized to carbocations that 

are then subject to nucleophilic attack by gaseous chloride. Krieger (2014) confirms the widespread 

occurrence of methane, butane, benzene, toluene as well as chloromethane and carbon disulfide in 

halites. Furthermore, chlorobenzene and trichlormethane are added to the list of VOX observed in 

FIs of halite. Dimethylsulfide (DMS) and methanethiol were also found. 

Another interesting set of samples related to the SLIP were samples P01BB, P02BB and P03BB 

provided by B. Black (Massachusetts Institute of Technology, USA). They measured S, F and Cl 

concentrations of dolerite sills, mafic tuffs, lava flows and picrites sampled in Siberia and based 

on their results estimated magmatic degassing from the SLIP to be ~6300–7800 Gt sulfur, ~3400–

8700 Gt chlorine, and ~7100–13,600 Gt fluorine. The samples provided correspond to samples 

R06-07 and R06-09 presented in their publication (Black et al., 2012). For samples P01BB-P03BB 

sulfur, chlorine and fluorine concentrations of the melt inclusions corresponded to 0.13, 0.94 and 

0.3 wt%, respectively. The question arose, if their elevated halogen content could contribute to 

VOX formation preserved also in gaseous FIs within the samples. Figure 3.4 and Table 5.2 indeed 

show peaks for methyl chloride, furthermore high carbonylsulfides and carbon disulfide peaks 
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which are in agreement with the occurrence of sulfur within the dolerite sill. However, no 

fluorinated compounds were detected. Unfortunately, restricting the FI data were analytical 

problems at the time of measurement. Measurement of sample R06-09 failed completely and the 

absence of e.g. SF6 and CF4 in R06-07 (=P01BB-P03BB) is doubtful. 

The results for the Wölsendorf-fluorite F4PS showed peaks for CF4 and SF6 up to 19.1 and 2.1 

ng/g, respectively. Lower values for the same sample were detected in August 2008 (Table 6.4), 

but these values might be underestimated due to an unidentified problem with leakage by the time. 

Our values lie within the range of observed quantities for CF4 (0.002-61 ng /g and SF6 (0-30 ng/g) 

from fluorite samples by Harnisch et al. (1998, 2000). We could not confirm the occurrence of 

CF2Cl2 and CFCl3. In the sample from Wölsendorf Harnisch et al. (2000) also identified CF3Cl, 

CHF3 and NF3. Possibilities why we did not detect those substances might be that they were present 

at quantities below detection limit in our sample. In principle our system setup should be able to 

retain them but separation might not be sufficient. We did, however, detect the presence of MeCl 

with 6 to 6170 pg/g in F4PS which was not reported previously. Halogenation reactions of organic 

precursor material (predominantly as methane homologue alkanes) may facilitate subsequent 

fluorination by fluoride-derived F-, HF or elemental F2 possibly also via nucleophilic substitution 

as is one of the basic reaction mechanism of organoflourine compounds synthesis in industrial 

process (Dolbier, 2005; Schmedt auf der Günne et al., 2012). The occurrence of fluorinated 

compounds in Wölsendorf fluorites is also consistent with early results by Kranz (1966), who used 

mass spectrometry. His ion fragments of m/z 50 and 69 should correspond to the ions CF2
+ and 

CF3
+ from CF4. The fragment with m/z 127 should correspond to SF5

+ from SF6. There is a large 

natural variation within the set of samples, indicating that FIs are not evenly distributed. The 

inhomogeneity is reflected in the reported values that differ by a factor of 100 as well as by our 

data presented in Figure 3.6. A larger abundance of CF4 compared to SF6 was confirmed by our 

analyses. Results for sample F4PS, which was quantified in August 2011 (Table 6.4a), November 

2011 (Table 6.4b) and August 2012 (Table 6.7) showed a low reproducibility owed to natural 

variance within the sample. Harnisch et al. (1998) argued, that SF6 and CF4 are formed mainly 

within fluorites and that granites contain only those amounts of these compounds that are 

contributed by the accessory fluorite (<0.1 wt%) present in these rocks. Our results on granite 

G01MW and G02MW, appear to agree with this hypothesis. However, we detected an amount of 

17 pg/g SF6 in a pure quartz sample. Although its exact sampling location is unknown, the Fichtel 
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Mountains, as part of the Bohemian Massif, began in the Precambrian and underwent the Variscan 

Orogeny. Possible processes which could have led to the capturing of SF6 include, folding, high 

pressures and temperatures, circulating brines and partial melting. Speculating, that Fichtel 

Mountain’s granite was the original source of this compound it must have been trapped when 

hydrothermal quartz precipitated. Accordingly, CF4, which is more volatile and less soluble in 

water (Cosgrove and Walkley, 1981) as well as in n-alkanes (Hesse et al. 1996) may have degassed 

to the atmosphere and was thus not conserved in the FIs of the quartz. 

Only two granite samples (G01MW and G02MW) were measured (Table 6.4a) though 

measurement conditions were not ideal (unidentified air leak). Together with samples G03MW and 

G04MW this set of samples was assembled during an investigation of elevated SF6 in groundwater 

of the Cambay Basins, Northern Gujarat, India (Wieser, 2010). The use of SF6 as tracer was 

problematic for their study on paleo climate, as SF6 concentrations in groundwater were found to 

be abnormally high in some wells. A natural origin of SF6 appeared to prevent the use of this tracer 

as a dating tool. A similar restriction on SF6 groundwater dating was reported from the North China 

Plain (von Rohden et al., 2010) and the Odenwald region (Friedrich, 2007). Furthermore, high 

terrigenic concentrations of SF6 have been measured in water from fractured silicic igneous rocks, 

carbonate aquifers, hot springs and from basaltic aquifers (Busenberg and Plummer, 2000; Koh et 

al., 2007). Kranz (1966) originally proposed the hypothesis of a radiogenic formation mechanism. 

Decay of uranium U238 and thorium Th234 was speculated to provide α-particles for the necessary 

activation energy of SF6 formation. A correlation between terrigenic Radon and SF6 was tested and 

obtained a first order linear correlation in crystalline rocks of the Odenwald (Friedrich et al., 2013). 

These authors found, that SF6 was highly variable and not uniformly distributed throughout the 

crystalline study area, maybe hinting to the importance of fluorite accumulations in locally 

occurring hydrothermal veins. An understanding of the formation pathways is still subject to 

speculation. For more details on possible formation pathways please refer to Chapter 1. 

Our data were not sufficient to contribute to an investigation of this problem. More samples and 

measurements are needed to allow for systematic observations together with a better 

characterization of the lithological facies.  

Furthermore, other fluorine containing minerals such as tourmaline, apatite, biotite and topaz 

remain uninvestigated. 
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Finally, Table 3.2 presents results of exemplary calculations to estimate and compare the amounts 

of four selected compounds released by chemical weathering from fluorites and quartz of the 

continental crust to the atmosphere. Based on the mass of the continental crust of 2.09*1023 g 

(Yanagi, 2011) and a weathering rate for the continental crust of 9*109 t/a (Liu and Rudnick, 2011) 

contents of CF4, SF6 from granitic and sedimentary fluorites as well as MeCl and MeBr from 

granitic quartz were estimated. 21% of the continental crust were assumed granitic (Harnisch and 

Eisenhauer, 1998), there of 30% quartz (Langmuir, 1997).  

 

 

Table 3.2: Comparison of reservoirs and source strengths. Data on fluorite and quartz from 

the continental crust. Tropospheric data were taken, if not indicated otherwise, from 

Warneck and Williams (2012). 

 

 

 

For the fluorite, Koritnig's (1951) data were used according to which granites contain 850 μg/g 

fluorine, with 45% of fluorine as fluorite, and sediments contain 300 μg/g fluorine, with 75% of 

fluorine as fluorite. Sediments made up 8% of the crust in the calculations. Amounts of 

hydrothermal fluorites and quartzes were neglected due to lack of corresponding literature values. 

All values were based on conservative and low values and thus results are systematically 

underestimated. This was intended due to estimative nature and poor experimental constraints on 

calculations. 

Table 3.2. shows that the continental crust’s reservoirs of SF6 and CF4 from accessory fluorites in 

granites is larger by a factor of 6000 to 8000 than the tropospheric reservoir, indicating a large 

emission potential from crust to atmosphere. The mass of atmospheric methyl bromide is about 

CF4 SF6 CH3Cl CH3Br

concentration in mineral pg/g 500 50 30 20

mass content continental crust Tg 8485 848 509 339

mass content troposphere Tg 0.96 0.14 4.4 0.14

chemical weathering of continantal crust Gg/a 0.0365 0.0037 0.0022 0.0015

total sources (tropospheric budgets) Gg/a 15§ 5-8#
1700-1300 53.9-174*

tropospheric residence times a 500000 3200 1 0.7

*Warwick et al., 2006

# Maiss and Levin,1994

§ Ehhalt et al., 2001

fluorite ______quartz_______



3. Sample Screening 

 

    83 

200 times lower than the crustal quartz reservoir and the difference for methyl chloride was only 

about 100-fold. Although the compound reservoir of the crust is magnitudes larger than the 

atmospheric reservoir the source strength, i.e. the annual atmospheric release, to assess the 

emission potential of the crustal reservoirs, is more closely approximated by comparing the 

amounts released via chemical weathering from the crust to the reported known annual atmospheric 

emissions. The amount of SF6 released by chemical weathering is 1000-times lower than that 

released by all other sources and that of CF4 differed by a factor of about 500. Although now, that 

the emission potential of the continental crust is put into perspective, the tropospheric residence 

times indicate, that especially the budgets for SF6 and CF4 could be impacted due to their 

accumulation over time. Continuous diffusive loss of the compounds from the crust has not been 

considered so far. Values presented here rely on a prudent but also rather poorly constrained 

estimate. Furthermore, halites were left out of the equation. We know from the discussion above 

that MeCl is almost ubiquitously present in halites and that MeCl and MeBr are formed upon 

heating. Due to quick dissolution of surficial halite deposits, e.g. by sudden rain events, MeCl 

emissions probably impact local tropospheric loads. This aspect will also be a subject of Chapter 

4.   

In summary, results of GC-MS analysis revealed the presence of halogenated (chlorinated, 

brominated and even fluorinated) and sulfurated volatile compounds in FIs of most mineral and 

rock samples. Unsaturated n-alkyl chains and cyclic hydrocarbons, partly chloro- or brominated, 

were present in halites, hydrothermal quartz samples and fluorites. Carbon disulfide was the most 

commonly observed sulfurated compound, next to carbonyl sulfide. Halogenation reactions, 

especially the chlorination of methane, are widespread mechanisms in geologic matrices.  

Except for the group of halites, more data are needed on each sample group. The halites will be the 

focus of the sample screening discussed in the following.  In future investigations, special attention 

should also be given to carbonates and apatite, which were not studied by any group yet. 

 

3.3.3. Ion Chromatography (IC) 

Chloride values were very high as expected. In pure NaCl samples chloride should constitute 61 

wt% and the values detected in the samples ranged from 48 to 61 wt% (for a complete list of results 

for Cl-, Br- and SO4
2-- values see Table 6.8). As the chloride content was high and at the upper 

limits of detection these values are probably not reliable. XRD results, where available gave 
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indications of the mineral purity of samples and carbon analysis showed low contents of below 1%. 

It is not plausible to assume that the missing 13% (e.g. H3Elt) of the sample consisted of other 

mineral and organic matter. Although calibration of chloride was performed with the highest 

standard corresponding to the high Cl- content of samples, the separation columns were not made 

for such excessive amounts but rather trace amounts.  

Due to the high dilutions necessary to protect the chromatographic column bromide values which 

were detected in trace amounts in the order of ng/g, showed high relative standard deviations of 

almost 10 % on average. The detected amounts ranged from zero (for several samples) to 1,2 mg/g 

(H20Sib). Sulfate was present in all samples and ranged from 0.14 mg/g (H16SP) to 77.44 mg/ g 

(H4 Elt). Bromide and sulfate were well suited to characterize the samples by location. No bromide 

was detected in samples from the Miocene salt deposits in Poland, samples from Lake Kasin in 

Russia and from Salar de Uyuni in Bolivia whereas South Russian halites of Lake Elton showed 

values between 130 and 290 ng/g Br-, the very diverse salt lakes of South West Australia spanned 

a wide range from 30 to 270 ng/g Br- and Siberian drill core samples showed remarkably high 

values of between 240 and 1197 ng/g Br-. Highest sulfate contents were determined for Lake Elton 

samples and most of Siberian samples had a comparatively low sulfate content. With sulfate present 

and potassium and magnesium cations absent in the system thenardite, an anhydrous sodium sulfate 

mineral (Na2SO4), which occurs in arid evaporite environments could potentially be present 

according to the Jänecke diagram (Jänecke, 1918). However, XRD did not confirm the presence of 

this mineral phase as sulfate concentrations were too low (Table 6.8).  

Figure 3.8 compares bromide results of our halite samples with data taken from Warren (2006). 

Overall, the observed values for bromide correspond well to literature data. Especially, the low 

values for the Bolivia samples (Warren, 2006; Risacher, 2000) are in good agreement with our 

observations. The values for our Siberian Permian halite are much higher than the values for the 

basal halite of Zechstein 2. However, the high values observed in our samples are not unique as the 

data on the Saline valley of California show. Values above 250 ppm in halite can be considered 

very high. As chloride is preferentially removed over bromide from an evaporating brine, only a 

small fraction of bromide is partitioned out into the halite crystal lattice. Thus, a large fraction of 

the bromide measured could stem from brines trapped in FIs. Bromide incorporated in the crystal 

structure increases with increasing temperature of the parent brine and speed of crystallization 

(Warren, 2006). Traditionally, bromide contents (or partition coefficients between crystal and 
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brine) of halite are used as an indicator for the source of the brine (Fisher, 1987; Risacher, 2000). 

Halite from a normal marine feed should contain from 50 to a maximum of 270 ppm bromide; 

halites formed in freshwater should contain around 500 ppm; recycled and re-crystallized halites, 

especially when freshwater-influenced should have bromide contents of 20 ppm or less. The degree 

of bromide spread values observed in our as well as literature data shows that it cannot always 

serve as a reliable indicator of the parent brine source. Variables such as differing salinity, dilutions, 

recrystallizations and back reactions in both marine and non-marine settings influence the Br- 

content (Warren, 2006).  

Correlations of bromide concentrations with MeCl and MeBr values from the GC-MS were tested. 

The best fit of a linear regression was obtained by bromide versus MeBr evolved after heating for 

24 h at 150 °C which showed a clear positive correlation (Figure 3.9). After grinding, only from 

the blue rock salt sample H20Sib MeBr could be detected. The bromide contents therefore may 

give an indication for the MeBr formation potential upon exposure to heat. Conversely, the 

occurrence of MeBr from FIs in halite after grinding probably indicates, that the sample has been 

exposed to elevated temperatures upon burial and may provide an estimate on the initial bromide 

concentration present in the halite. 

The regression coefficient of bromide versus MeCl after grinding (not shown) and heating was 

low. Similar correlations for chloride with MeCl and MeBr were not observed, most likely to 

problematic chloride analysis. Also the omnipresence of chloride suggests that the presence of 

suitable organic precursor would likely be the controlling parameter in MeCl-formation. 
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Figure 3.8: Comparison of bromide concentrations in halite. In grey own samples; in black 

data from Warren (2006). 

 

 

 

 

 

 

 

Figure 3.9: Correlation between bromide and MeCl (left) and MeBr (right) release after 

heating to 150 °C. 
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3.3.4. Carbon content 

A complete table of results from the halite and gypsum samples that have been analyzed for carbon 

can be found in the appendix (Table 6.9). All samples show, as expected, a low organic carbon 

(Corg) content which was below 1% for all samples, and below 0.1% for most of the halites. It 

ranged from 0.1 mg/g (H12SND, G1Bas) to 9.0 mg/g (H18Boht) with a relatively high average 

concentration of 1.1 mg organic carbon per gram of sample as compared to reported values on rock 

salt 0.1 to 0.4 mg/g carbon (Grice et al. 1998; M. L. Bordenave and Durand 1993). The Corg values 

for more than half of our samples, however, falls in that range. A few extreme values of 9 mg/g 

(H18Boht) and around 5 mg/g (H14SP, H21Sib) were observed. In the case of H19Boht, this 

elevated value was likely caused by carbon from trona (Na3(CO3)(HCO3)·2H2O) that was detected 

with XRD (see Section 3.3.6.).  

The analysis confirmed the abundance of organic carbon in the crystalline samples.  The form in 

which the carbon occurs within the samples can be manifold and depend on deposition conditions: 

various microorganisms, detrital decaying plant and larger animal remains as well as humic 

substances or migrating crude oils with multitude of complex carbon containing compounds (see 

also Chapter 1). Methyl chloride, a VOX, detected in almost all halite samples, did not show an 

obvious correlation with the organic carbon content. After excluding the samples with Corg values 

> 1 mg/g from the correlation a trend of higher MeCl release after grinding with higher Corg 

concentrations is perceivable (Figure 3.9). For other compounds no such trend was observed. 

Benzene, which was present in many samples, is shown as another sample for a non-existing 

correlation. 

 

 

Figure 3.9: Correlation between Corg content and methyl chloride and benzene in FIs. 
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3.3.5. Major and trace elements (XRF) 

Data obtained from XRF analysis are given in two tables. Table 3.3 contains results from a diverse 

set of samples including fluorites, granites, schist (G03MW), limestone (G04MW), quartz and 

gypsum. These samples were partly ground in different ways, i.e. manually with an agate mortar 

and pestle, in the grinding chamber or with the vibrating cup mill. Br content of all samples was 

below the detection limit of about 0.5 ppm, therefore it is omitted in table 3.3. Elevated levels of 

arsenic in F4PS are in good agreement with AsH3 observation during GC-MS measurements.  

Table 3.4 summarizes results for halite samples analyzed with XRF. Here, samples did not contain 

Pb, Ti, Cr, As or Ni. The elements Ga, S, Y, Si, Ca and Cl were also measured but values are not 

included in the tables. Their monitoring does not provide additional insights within this context, 

although Ti, Ga or Si could be of interest in further studies on potential catalytic reactions of 

organohalogen formation. 

One objective of the XRF measurements was to investigate if samples are contaminated by the 

abrasion during the grinding procedure. Iron content of samples listed in Table 3.3 show a wide 

distribution with concentrations up to 9 wt % for sample G04MW. However, the difference in iron 

concentration between planetary mill ground and other grinding techniques is in the per mille range. 

Hence, abrasion of iron was not significantly determined for these samples. In contrast, after 

grinding within the tempered steel grinding vessel values for nickel significantly increased from 

zero to between 6.6 and 47.3 ppm, the latter being the extreme value for the quartz sample Q01PS. 

Apparently, Ni from the grinding chamber walls is abraded depending on the hardness of the 

minerals. As such, only gypsum samples contained low concentrations of Ni while halite contained 

no additional Ni after grinding in the grinding chamber (Table 3.4). Sample G03MW was the only 

sample containing high concentrations of Ni of around 46 ppm prior to grinding in the grinding 

vessel. A similar trend of increased trace amounts upon grinding can be observed for the elements 

Cu, Zn as well as Cr and Mn. Although the grinding chamber consists of hard tempered steel the 

grinding procedure for hard minerals clearly shows abrasion and iron is probably also abraded in 

corresponding trace amounts. The use of a highly durable zirconium oxide grinding chamber could 

possibly reduce the abrasion when hard minerals are ground.  

Almost all halite salt samples contain traces of Br, Rb, Sr, K and Ca, whereas Mg, Zn and Cu are 

less ubiquitous. Sr and Rb are also present in all samples of Table 3.3. These elements can replace 

calcium in the crystal structure but a direct correlation to the calcium content of the samples is not 
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clear. Bromine concentrations, likely occurring as inorganic bromide, correlate to MeBr as observed 

with IC. However, XRF-bromine data deviate in parts substantially from bromide concentrations 

from IC measurements. Bromide partitions preferentially into the brine, i.e. depends also on FI 

distribution and natural samples show a high heterogeneity. Additionally, IC measurements had a 

high standard deviation of around 10% mostly due to the necessary dilutions. XRF data are single 

data points with unknown standard deviation. Therefore, IC data on bromide were preferred. 

Another interesting element was copper, which was found with 15 ppm in only one Siberian rock 

salt. Interesting aspect, because this sample H21Sib showed the highest iron concentration within 

the halite samples as well as dichloroethane release after grinding in the GC-MS measurement. 

Additionally, after heating H21Sib bromomethane and chlorobutane were found. The question 

arises, whether these elements play an important role in catalyzing geogenic halogenation reactions. 

Overall, XRF data, especially for the halite samples, demonstrate the heterogeneity of these natural 

samples.  

 

3.3.6. Results XRD 

Generally, results of XRD confirmed mineral identity as expected. Gypsum, halite and fluorite 

crystals were usually crystallographically pure or showed only minor traces of admixed quartz. 

Table 3.5 shows those samples, which had more than one mineral phase present or SiO2 as the 

second phase exceeded 5wt%. The quantification was semi-quantitative. 

Approximately 4 % of a Siberian drilled core sample were calcite. Halite and sylvite were jointly 

present in the drill core samples H19salt, H22Sib and H20bluesalt. Siberian halite-sylvite 

paragenesis dominates the sampling location. Trona was present in only one sample from a 

terrestrial salt pan of Botswana. Salt pans of Africa are known for elevated bicarbonate contents 

(Goudie and Cooke 1984) and trona has also been observed in Kenyan and Lybian locations. 

Although a great variety of salt efflorescent minerals has been observed worldwide, Na+ is clearly 

the predominating cation on salt pans and Cl- the predominating anion, followed by SO4
2- and HCO3

-

/CO3
2- (Goudie and Cooke 1984). In general our sample mineralogy of salt samples appears to fit 

well into the worldwide picture. 

XRD has been found a suitable method to confide in mineral identity but is of even more importance 

when mineral mixtures or mineral soils with microcrystalline composition are studied.  
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Table 3.3: Major and trace elements of fluorites, granites, schist (G03MW), limestone 

(G04MW), quartz and gypsum as analyzed with XRF after ac = manual grinding with agate 

mortar and pestle, gr = grinding in tempered steel grinding vessel for GC-MS analysis, vc = 

grinding in vibrating cup mill (stainless steel). Checkmark=no quantification. 

 

 

 

 

 

Fe Ni Cu Zn As Rb Sr Pb K Cr Mn

sample ID w% ppm ppm ppm ppm ppm ppm ppm w% ppm ppm

LLD 0.001 2 1.5 1 1 0.7 0.7 0.5 0.005 2 1.5

F1PS ac 0.42 - - 15 2 22.3 68.4 70.5 - - -

F1PS gr 0.65 16.8 17.6 27 5 26.2 83.9 62.1 - - -

F1PS cm 0.50 - 26.8 41 0 61.5 60.4 63.0 - - -

F2PS ac 0.41 - - - 1 0.3 42.1 21.0 - - -

F2PS gr 0.50 6.7 - - 1 3.3 40.1 9.3 - - -

F2PS cm 0.41 - - - 2 0.3 42.2 11.2 - - -

F3PS ac 0.41 - - - - 1.5 34.0 5.5 - - -

F3PS gr 0.51 9.6 - - - 1.2 38.4 10.2 - - -

F3PS cm 0.43 - - - - 0.7 34.7 9.0 - - -

F4PS ac 0.45 - 124.0 49 53 - 127.0 558.0 - - -

F4PS gr 0.49 6.6 93.9 43 45 2.2 155.0 913.0 - - -

F4PS cm 1.02 - 99.6 93 49 - 154.0 674.0 - - -

G01MW gr 2.84 35.8 17.4 64 - 272.0 48.1 34.4 2.8 389 384

G01MW cm 1.33 - 5.4 29 - 206.0 46.2 32.3 4.0 69 1035

G02MW gr 2.05 35.7 19.3 89 - 452.0 17.2 53.8 2.5 407 330

G02MW cm 3.36 - 5.1 60 - 162.0 157.0 25.4 2.8 30 770

G03MW gr 8.96 74.4 159.0 104 - 25.0 382.0 - 0.7 132 1650

G03MW cm 8.38 46.2 146.0 91 3 27.7 420.0 - 0.4 51 1182

G04MW gr 0.50 11.5 8.6 13 - 5.2 271.0 - - - a

G04MW cm 0.47 - 6.6 13 - 2.1 240.0 - - - a

Q1PS gr 1.42 46.7 23.8 12 2 3.5 18.3 2.0 0.2 671 172

Q1PS cm 0.47 - 5.8 10 1 3.9 8.2 8.8 0.2 90 190

G1Bas gr 0.56 3.0 - 11 n.a. 9.7 216.7 2.8 0.3 131 48

G2Bas gr 0.46 - - - n.a. - 189.7 - - - 9
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Table 3.4: Major and trace elements via XRF analysis for halite samples. 

 

 

 

 

Table 3.5: XRD evaluations of minerals with more than one phase present. 

 

 

Fe Cu Zn Br Rb Sr K Mn Ca

sample ID w% ppm ppm ppm ppm ppm w% ppm w%

LLD 0.001 1.5 1 0.5 0.7 0.7 0.005 1.5 0.002

H1Elt 0.40 - 11 435.1 5.9 30.0 0.4 9.9 0.41

H2Elt 0.40 - 9 119.9 1.2 2.5 0.3 7.6 -

H4Elt 0.40 - 9 83.0 0.8 18.2 0.2 4.1 -

H5Elt 0.43 - 11 179.0 3.5 69.1 0.2 22.8 0.84

H6Kas 0.41 - 8 17.9 - 52.0 0.2 16.6 0.36

H7Kas 0.40 - 8 7.1 - 14.5 0.2 20.5 0.12

H8SND 0.41 - 8 21.3 - 77.4 0.2 - 0.4

H9SND 0.46 - 10 7.4 1.0 94.6 0.2 16.9 0.59

H10SND 0.41 - 10 11.2 - 22.3 0.2 - 0.05

H11SND 0.43 - 8 48.3 0.3 126.0 0.2 - 0.59

H12SND 0.41 - 10 20.1 - 146.1 0.2 - 0.41

H13Doue 0.41 - 8 86.4 1.3 30.3 0.2 - 0.02

H14SP 0.41 - 10 118.9 2.4 10.1 0.2 - -

H15SP 0.41 - 8 51.4 0.5 2.9 0.2 - -

H16SP 0.43 - 9 53.9 0.9 8.8 0.2 - -

H17WBSR 0.40 - - 210.0 2.0 155.4 0.2 - 0.04

H18Boht 0.40 - - 98.5 1.6 - 0.2 - -

H19salt 0.41 - - 1396.8 42.7 24.9 2.5 - 0.09

H20Sib 0.40 - - 1293.3 27.9 6.7 2.4 - -

H21Sib 0.57 15 - 403.6 5.6 14.4 0.2 - 1.54

H22Sib 0.40 - - 886.7 19.4 46.8 1.7 - 0.17

H23Sib 0.40 - - 279.0 2.3 4.4 0.2 - -

H24Sib 0.40 - - 346.1 4.7 1.9 0.2 - -

H25Sib 0.40 - - 492.2 7.1 4.7 0.2 - -

H27Gor 0.40 - - 208.3 3.0 63.4 0.2 - -
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3.3.7. Pyrolysis-GC-MS (Py-GC-MS) 

GC-MS results from salt samples have shown a remarkable increase in emitted halogenated 

volatiles upon heating to 150 °C. The selected samples sent to be analyzed by Py-GC-MS were all 

characterized by MeCl release also after grinding. Samples H3Elt and sample H13Douwe had 

shown MeCl contents of 2.3 and 0.5 ng / g, respectively. Preliminary runs with Py-GC/MS yielded 

greatest MeCl production for sample H3Elt and this sample was utilised to investigate CH3Cl 

release at different pyrolysis temperatures. However, sensitivity was a problem as only 6 to 7 mg 

were used for each run. The final temperature of 800 °C was chosen because NaCl can partly 

volatilize at higher temperatures (Zimm and Mayer, 1944). Analytical grade NaCl was used as a 

control yielding no CH3Cl (Figure 3.10). In contrast to the analytical grade fine powder, H3Elt was 

ground or otherwise processed before Py-GC-MS. On the one hand, MeCl releases from H3Elt 

could be attributed to FI decrepitation caused by internal pressure increase with greatest releases 

between 300 and 500 °C.  

 

Figure 3.10: GC-MS chromatograms showing ions m/z 50 and 52, for sample H3Elt and 

analytical grade NaCl at pyrolysis of 300 °C. Note scales are different. 

 

 

 

Table 3.6: Normalized peak area for CH3Cl (ion current m/z 50) for sample H3Elt at different 

pyrolysis temperatures. 
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On the other hand, the temperature window of 300 to 500 °C could also indicate ideal thermal 

production conditions for de-novo MeCl formation. With the observations made previously (see 

Figure 3.6 and 3.7) the second case appears more likely, but a calibration for these data in order to 

compare values of MeCl released are not available. Aside from MeCl, four other substances were 

observed in the chromatogram. While these analytes remain unknown their fragments of 50 and 52 

m/z upon electron ionization point to 2-butene and benzene, but this cannot be confirmed as higher 

mass fragments have not been recorded in this study.  

MeCl release was observed at all pyrolysis temperatures for sample H3Elt. Although MeCl 

production was not quantified it is possible to compare the mass normalized areas of the peaks to 

determine the relative amount formed (Table 3.6). MeCl production at 500 °C was 4-fold that of 

300 °C. No increase was found upon pyrolysis at 700 °C which suggests that the carbon substrate 

and thus the CH3 source, was utilized completely by 500 °C.  

The Py-GC-MS tests mark only a beginning of possible experiments. More Pyrolysis-GC-MS 

results also to higher temperatures of 1200°C would be of interest to explore the impacts of igneous 

intrusions into adjacent rock salt beds. In order to be able to differentiate between adsorbed 

gases/humidity and decrepitating upon heating as well as identification of released fluids 

termogravimetric-GC-MS might offer an alternative for better temperature resolved data. The data 

here presented demonstrate, that Py-GC-MS would be a good tool to narrow down optimal 

thermolytic MeCl formation conditions in FIs of halites with suitable experimental setups.   

 

 

3.4. Conclusions 

 

The analytical results from GC-MS prove the presence of a wide spectrum of volatile compounds 

from FIs trapped in various minerals. 

MeCl was found to be an almost omnipresent compound occurring in quartz, fluorites, halites and 

dolerites. Initial heating experiments with halites using purge-and-trap GC-MS as well as Py-GC-

MS demonstrated the important role of temperature in MeCl and VOX formation and aspects of 

this will be spotlighted further in Chapter 4. 

The customized purge-and-trap GC-MS system for specialized FI analysis confirms the presence 

of SF6 and CF4 in fluorites. A better understanding of their formation in geological matrices would 
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improve the assessments of their role played in the atmospheric and hydrologic sector, i.e. in 

limitations to groundwater dating or balancing the atmospheric budgets. 

Methyl bromide, dichloroethene and dichloroethane from quartz samples of the Archean Yilgarn 

craton in Australia give first insights into synthetic processes occurring in rising hydrothermal 

fluids in the upper crust. Vinyl chloride was found in a hydrothermal quartz from High Taunus. 

Assuming an abiotic genesis, these organic molecules are hypothesized to be involved in the 

formation of early prebiotic organic molecules. Generally, the differences of compounds trapped 

during the growth of these quartzes, conserving the chemical composition of the given fluid 

medium can provide information on the respective formation conditions. 

IC analysis was a useful tool for halites but soluble minerals require a different setup. XRF is a 

more convenient tool for major and trace elemental analysis, when ionic speciation can be 

neglected. Bromide content of halites may be a potential indicator for the formation potential of 

MeBr.  

The GC-MS technique here presented has been shown effective and yielded interesting results. 

However, continuing analytical and technical problems constricted the measurement of further 

samples. Except for the larger group of investigated halites, sample numbers were too low to allow 

for systematic observations among and between sample groups. Analytical problems have to be 

overcome. The use of a highly durable zirconium oxide grinding chamber and gaseous halocarbon 

standard mix are recommended to enhance analytical performance.  

Based on these findings, future laboratory experiments can be designed in order to gain more 

insights on the formation mechanisms involved.  

This sample screening can only mark the beginning and a realm of volatile compounds formed 

during geological processes archived in FIs waits to be discovered.   
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Case study 

 

Thermolytic degradation of methyl methionine and implications for its role in DMS and 

MeCl formation in hypersaline environments 

 

____________________________________________________ 
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4.1. Introduction 

 

Volatile organic halocarbons (VOX) and volatile organosulfur compounds (VOSC) occur both 

naturally and man-made and play an important role in photochemical processes of the lower 

atmosphere and information on the geogenic origin of these compounds will help to understand 

their global budgets and fluxes. A helpful tool to get a lead on possible geogenic VOX and VOSC 

formation is the study of gaseous composition of fluid inclusions (FIs) in rocks and minerals. These 

inclusions archive the conditions present at their formation. However, investigations concerned 

with the occurrence of VOX in fluid inclusions of rocks and minerals are scarce (Harnisch and 

Eisenhauer 1998, Svensen et al. 2009) and a more detailed overview can be found in chapter 3. 

VOSC from FIs of minerals except for sulfur dioxide, have not yet been reported. 

Methyl chloride (MeCl) with an annual atmospheric burden of 4 to 5 Tg is the most abundant 

natural halocarbon in the atmosphere. It plays a significant role in chlorine-catalysed ozone 

destruction in the stratosphere (Keppler et al., 2005; Montzka et al., 2003). In 2000, Rhew et al., 

found that salt marshes, even though they constitute less than 0.1% of the global surface area, may 

contribute about 10% of the total MeCl and methyl bromide (MeBr) fluxes to the atmosphere. 

However, mechanisms of MeCl formation from these systems were not subject of these studies. A 

thermolytic production of MeCl from the methoxy group of plant pectin is known (Derendorp et 

al., 2012; Keppler et al., 2008). 

Dimethylsulfide (DMS) is the major natural, mainly marine, source of organic sulfur in the 

atmosphere and contributes to both the tropospheric burden of sulfur as well as cloud formation 

via oxidation to acidic aerosols (Kloster et al. 2006). It is also known to act as an info-chemical for 

a wide range of organisms including mammals. Microorganisms that cycle DMS are widely 

distributed and were found in all kinds of environment: oxic and anoxic marine, freshwater and 

terrestrial habitats (Schäfer et al., 2010). Despite the importance of DMS that has been unearthed 

by many studies since the early 1970s, the understanding of the biochemistry, genetics, and ecology 

of DMS-degrading microorganisms is still limited. In marine and freshwater locations the 

occurrence of DMS is well documented and is attributed to several formation pathways including 

the degradation of the tertiary sulfonium compound dimethylsulfonium propionic acid (DMSP) 

and the metabolism of methionine (MET). These two processed are often linked. The main source 

for DMS from the ocean surface is DMSP which is formed from MET via hydrolysis within 
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phytoplankton (Sievert et al., 2007). Other known bacterial pathways of DMS formation include 

the bacterial methylation of thiols, especially in anaerobic sediments and the reduction of 

dimethylsulfoxide (DMSO) in marine and coastal environments (Kinsela et al., 2007). DMS is also 

produced during decay of algal mats and is a product of biotic methionine decomposition (Segal 

and Starkey, 1969; Zinder and Brock, 1978). Also other methylated sulfur compounds have been 

detected in a wide variety of environments like the atmosphere, soils, sewage sludge, salt marsh 

sediments and waters. In fact, in anoxic salt marsh sediments and anaerobic sediment volatile 

methylated sulfur compounds (DMS, DMDS, methanethiol (MSH)) have been found to be 

produced methanogenic from methionine (Kiene et al. 1986, Kiene and Visscher 1987). Despite 

the focus on DMS in many studies since the early 1970s, often dominated by aspects of its 

biological fate and questions of methylated sulfur compound metabolism, not all sources have been 

identified. Specifically, terrestrial DMS formation is not well understood. According to Watts et 

al. (2000) the mass budget of DMS is not balanced and more sources are needed. 

MET, as one of two sulfur containing amino acids, could potentially serve as a precursor for MeCl 

and DMS in terrestrial salt pans. Of special interest is its derivative methylmethionine (MeMET) 

since it is widely distributed in nature (Bentley and Chasteen, 2004). This compound could 

potentially explain emissions of MeCl, which were observed from sediments of salt marshes as 

well as salt crystals. MeMET would contribute the necessary methyl-group for its formation.  

Goals of this chapter is to present new data on VOCs released from salt samples from around the 

world and to put these into perspective of emissions from soil samples from a survey of salt lake 

sediments of SW Australia. Furthermore, we seek to contribute to a deeper understanding of the 

thermolytic degradation of MeMET and its role in the release of MeCl and VOSC from hypersaline 

environments. The investigation on the thermolytic formation pathways of these compounds and 

an extended scientific background on additional sources can help to refine regional atmospheric 

sulfur budgets as well as to the understanding of abiotic MeCl formation. 
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4.2. Materials and Methods 

 

4.2.1. Chemicals 

The following chemicals were used: EPA 624 calibration mix B (analytical standard; Supelco), 

sulfur mix (analytical standard; Spectrum Quality Standards), chloromethane (99.5%, Sigma-

Aldrich), potassium chloride (99.5%; Merck), sodium hydroxide (99%; Aldrich), DL-methionine 

methylsulfonium chloride (= MeMET, 99%; Sigma), trimethylsulfonium bromide (97%, Aldrich), 

DL-methionine (99%, Fluka), trimethylsulfoxonium chloride (98%; Aldrich), dimethylsulfone 

(98%; Aldrich), DL-methionine sulfone (99%, Aldrich), DL-methionine sulfoxide (≥99%), H2O2 

(30 %; Sigma-Aldrich), iron(II)-sulfate heptahydrate (99 %, Sigma-Aldrich), iron(III) sulfate (99 

%; Fe 21-23%; Riedel-de Haën), reagent grade sodium chloride (Baker). Type I ultrapure water 

(≥18 MΩ-cm) from a Purelab UHQ System by ELGA LabWater was used in all experiments. 

 

4.2.2. Soil and salt samples 

Soil and salt samples were sampled during campaigns of DFG research unit 763 to South Russia, 

Southwest Australia and Mauretania. The salt lakes taken in Australia are distributed in an area of 

about 120000 km² which is part of the Avon River catchment. The formation of salt lakes in this 

area was promoted by secondary salinization following deforestation (McFarlane and George, 

1992). 

South Russian salt lakes were sampled in the districts Volgograd Oblast and Astrakhan Oblast, in 

the northern steppe of the Caspian depression. Characteristically, they are outcrops of Permian salt 

domes. 

The halite from Mauretania was sampled by Stefan Huber, Institute of Earth Sciences, University 

of Heidelberg, at the salt pan depression of Sebkha Te-n-Dghâmcha, 100 km north of 

Nouakchott/Mauretania. 

Additionally, two halite samples from Miocene evaporites in Wieliczka and Bochnia Mines, 

Poland, were included. The sample of halite from Wieliczka (H29WG) was derived from the Upper 

Spiza Salts (Gruszczyn Gallery). The halite sample from Bochnia (H28Lkt) stems from a bed of 

crystal salts (Lichtenfeltz Gallery). 

Properties and exact location of soil and salt samples are given in Table 4. 1. 
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10 g of salt samples were ground for 5 minutes at 200 rpm in the specifically designed grinding 

device that fits into a planetary mill (Fritsch, Pulverisette 5) and the released gases were 

subsequently analyzed using a gas chromatograph (GC, Varian, Model 3400) and an ion-trap mass 

spectrometer (MS, Finnigan MAT, ITS40). The capillary columns employed in the GC were a DB-

624, ID 0.53 mm, df 3 μm, 30 m directly connected to BP-5, ID 0.32 mm, df 1 μm, 60 m. For more 

details on the dynamic injection and preconcentration by the customized purge and trap system as 

well as the grinding procedure please refer to Chapter 2. 

For VOC detection from soil or sediment samples a Varian gas chromatograph GC 3400 linked to 

a Varian Saturn 4D with electron impact ionization and ion trap mass spectrometer was used. The 

GC was equipped with a DB-5, 60 m, ID 0.32mm, df 1 μm capillary column. With this system the 

measured samples compounds with boiling points of -24 °C to 200 °C. Before analysis 1 g of 

freeze-dried and ground sample was transferred to a 20 mL air-tight headspace glass vial. The 

samples were shaken at 500 rpm for 24 h in the dark at 40 °C before measurement with the GC-

MS system. 

 

Table 1: Major anion and organic carbon content of halite and soil samples. The selected 

soil samples were chosen from a large set according to their relatively high organic matter 

content.  

  

halite samples

sample ID samling location geographical position Cl- Br-
SO4

2- Corg

g/kg mg/kg g/kg wt%

H29WG Wieliczka salt mine N49°59'05.52" E020°03'23.94" 612.9 30-80[60] 2.9 n/a

H28Lkt Bochnia salt mine N49°58'13.0" E020°25'54.7" 508.9 20-37[61] 3.6 n/a

LD42 Lake Dune*, Australia S33°04'58.58" E119°38'18.13" 583.2 97.7 4.5 n/a

H2Elt Lake Elton, Russia N49°08'59.28" E046°47'18.12" 549.8 220.1 18.1 0.09

H6Kas Lake Kasin, Russia N47°36'09.66'' E047°27'07.14'' 573.7 0.0 3.1 0.13

H8SND Sebkah N'Dramcha, Mauretania N18°53'23.6''                     W15°39'42.9'' 533.6 30.0 8.5 0.06

soil samples

profile depth sample ID geographical position Cl- Br-
SO4

2- Corg

cm g/kg mg/kg g/kg wt%

0-2 Lake Springfield*, Australia S32°27'42.41" E119° 9'58.32" 172.7 309.6 38.5 2.12

0-2 Lake Orr*, Australia S34°14'50.84" E118°10'07.76" 139.6 156.5 38.9 1.47

3,5-6 Lake Dune*, Australia S33°04'58.58" E119°38'18.13" 83.2 118.6 35.0 2.24

0-2 Lake Hatter Hill*, Australia S33°05'56.69" E119°50'33.27" 258.9 595.1 58.9 4.01

0-2 Lake Kasin, Russia N47°36'09.66" E047°27'07.14" 30.3 0.0 6.4 0.32

*no official sample site name
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4.2.3. Air samples 

Air samples were taken in Australia accompanying soil sampling at the sites of Lake Dune and 

Lake Orr by T. Krause und H.-F. Schöler from the Institute of Earth Sciences, University of 

Heidelberg. Air was sampled about 3 cm above the surface taken with a membrane pump (KNF 

Neubauer, Freiburg, Germany) with a flow of 36 L min-1. The air was pressurized into a stainless 

steel canister with a volume of 2 L and up to 2 bar. The canisters are electropolished on the inside 

and have a bellow-seal valve (Swagelok SS-4H-C1). Before sampling the canisters, they were 

evacuated to <10-3 mbar. Canister samples were analyzed by T. Sattler (Institute of Earth Sciences, 

University of Heidelberg) with Elliot Atlas at the Department of Atmospheric Sciences, University 

of Miami, Florida, USA, using a multi-detector GC/MS/FID/ECD instrument  (Agilent 7890 

GC/5973 MSD) interfaced to a Markes Unity II Thermal Desorption Unit that included a CIA 

Advantage canister interface.  A 0.8 L sample was introduced to the system at 80 sccm after an 

initial flush of 160 sccm.  The sample flow was metered by a mass flow controller.  The sample 

was enriched on an adsorbent trap (Markes UT17O3P-2S, Ozone precursor trap) held at -37°C. 

Prior to adsorption on the trap, the  air sample was dried by passing through a 15’’ x ¼’’ stainless 

steel trap held at -18 ± 1 °C, with additional drying in a 24‘‘ x .05‘‘ Nafion drier (MD-050-24-FS-

2; Perma Pure, Toms  River, NJ). To inject the sample, the tube was desorbed from the trap at 

300°C using a backflush flow. The sample was split onto 2 analytical columns: 1) DB-624 ID 

0.2mm, df 1.12µm, 20m which was directed to the MS and ECD detectors, and 2) Al2O3-PLOT 

column ID 0.25mm, df 5µm, 30m which was directed to the FID.  The temperature programm of 

the GC started at -20°C and was heated after 3 min to 200°C with a rate of 10°C min-1, 200°C was 

held for 4 min. A 1 m section of GS GASPRO column (0.32mm) was added to facilitate separation 

of ethyne from a co-eluting compound. The total sample flow was split approximately 2/3 to the 

FID column (525 sccm), and 1/3 to the MS/ECD (275 sccm). The effluent of the MS column was 

connected to a capillary splitter (Agilent G3183B). Approximately 70% of the sample (192 sccm) 

was sent to the MS, with 30% of the sample (83 sccm) directed to the ECD. Quantitation of MeCl 

and DMS concentrations of the samples was done by comparison to a working whole air standard 

that was calibrated against known mixtures, either directly or by dynamic dilutions.  
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4.2.4. Studies with MeMET and model substances 

MeMET, as methionine methylsulfonium chloride, was employed to study the temperature 

dependence of its MeCl and DMS release at 30, 40, 50, 60 and 70 °C. Methionine, its derivatives 

and structurally related compounds, namely methionine sulfone (MET sulfone), methionine 

sulfoxide (MET sulfoxide), trimethylsulfoxonium chloride, trimethylsulfonium bromide, 

dimethylsulfoxid (DMSO) and dimethylsulfone (DMSO2) were tested at 40 °C. 

For each experiment 0.1 mmol of dry substance was shaken in a 20 mL air-tight headspace glass 

vials for 1 h in the dark at the defined temperature and then connected via two stainless steel needles 

to the GC/MS system as used for the soil samples. 

For calibrations appropriate dilutions of the EPA 624 calibration mix B in 10 mL ultrapure water 

were used in the same 20 mL headspace vials. 

All GC/MS measurements were done at least in triplicates. 

 

 

4.2.5. Amino acids from soils 

From three different soil samples (Elton II, T3-1 Usbekistan and Lake Hatter Hill) extracts of 4, 16 

or 32 g of sample in 20 mL water were prepared by shaking for 20 min at 200 mot/min on an orbital 

shaker (brand model) in 50 mL Falcon tubes. Samples were then centrifuged for 15 min at 400 

rpm. The supernatant was decanted and filtered with a 0.45 µmL syringe filter. The samples were 

sent to be analyzed for free amino acids by ion exchange chromatography with on-line 

derivatization with standard ninhydrin method and UV spectroscopy (amino acid analyzer S 4300 

Sykam,  Fürstenfeldbruck, column: LCA K07/Li Sykam, Fürstenfeldbruck) by Dr. Uwe 

Schwarzenbolz in Prof. Henles Group, Department of Chemistry and Food Chemistry at 

Technische Universität Dresden. 
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4.3. Results and Discussion 

 

4.3.1. Volatile compounds from salts, soil and air samples 

This first section discusses the results obtained as part of the DFG Research Unit 763, which was 

concerned with natural halogenation processes in the environment. Volatile organic carbon (VOC) 

composition trapped in fluid inclusions of halite crystals deposited in recent salt pans or emitted 

from soil samples were analyzed using modified GC-MS set-ups.  

The results of FI analysis are shown in Figure 4.1. The example chromatograms show an array of 

identified volatile compounds including various hydrocarbons, MeCl and in some cases DMS. 

They also represent typical observations made in a diverse set of halite samples from recent salt 

pans of Australia (H42LD), Mauretania (H8SND) and South Russia (H2Elt). The studied salt 

crystals were formed in the solutions of the salt lake environments, sometimes within hours. The 

FIs in these recent crystals studied are primary FIs formed during crystal growth. Generally, the 

size of FIs in most samples ranges from 1 to 100 μm. The very small size fraction of FIs usually 

outnumbers all inclusions larger than 10 μm at least by a factor of 10 (Roedder, 1984). The 

abundance of FIs in our salt samples was also evident by their milky appearance. These FIs 

represent trapped gases that were present in the salt forming solution during crystal growth. The 

chromatograms of samples H28Lkt and H29WG, however, display results for halites sampled at 

two mines in Poland. Here, primary FIs formed within the salt crystals during the Badenian Salinity 

Crisis (Middle Miocene 16.4-13.0 Ma) and then underwent burial, subduction and folding 

(Andreyeve-Grigorovich et al., 2003). Radiometric age of the salt formations in Wieliczka and 

Bochnia was established to be 13.60 +/- 0.07 Ma (Leeuw et al., 2010). Further generations of FIs 

may have been included, e.g. from circulating brines. Furthermore, alterations of the FIs by 

temperature and pressure may have taken place but cannot be distinguished here. Interestingly, 

while almost all samples from halites contained MeCl, with concentrations between 0.05 ng/g to 

0.6 ng/g, high signals for DMS were recorded only for the two samples of Badenian halite. The 

DMS peak of sample H29WG corresponds to about 0.54 ng/g. Based on Bąbel et al. (2004) the 

Badenian evaporite basin of the northern Carpathian foredeep may have consisted of several 

interconnected or temporarily disconnected sub-basins topographically separated from the ocean 

according to the salina basin model. Therefore, mechanisms of salt crystal formation for samples 

H28Lkt and H29WG are thought to resemble those of the recent salt crystals of this study. 
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In order to investigate possible mechanism of MeCl and DMS formation, results from FI studies 

are now compared to VOC observed in a large set of soil samples of the multifarious hypersaline 

lakes of SW Australia (Krause, 2014). Figure 4.2. shows MeCl along with VOSCs detected after 

wet incubation at 40 °C for 24 h.  Next to DMS various VOSCs were observed, such as carbon 

disulfide, thiophene and methylthiophene. The observation of thiophene and methylthiophene from 

soils is novel, while emissions of its homologue furanoic compounds from soils (Huber et al., 2010) 

and hypersaline environments (Krause et al., 2013) are well known. Carbon disulfide and dimethyl 

disulfide (DMDS) were found with highest concentration with average concentrations of 115 ng/g 

and 100 ng/g, respectively. DMS was also present but less frequently observed. The predominance 

of DMDS as organosulfur compound next to carbon disulfide is surprising. Literature generally 

presents biogenic sources for VOSC emissions from soils clearly dominated by DMS and only with 

traces or minor amounts of DMDS (Yang et al., 1998; Warneck, 2000; Lomans et al., 1997). Sulfur 

compound concentrations in the Australian soil samples were high and their occurrence is in good 

agreement with the reducing redox milieu of the salt lakes.  

Compounds that were not identified but are likely to be present under these conditions are carbonyl 

sulfide, sulfur dioxide and H2S. Furthermore, methylated sulfoselenides were detected in some 

samples (not shown here). MeCl occurred frequently with an average concentration of 5 ng/g, 

which falls in the range of VOSC. The MeCl yields from soils are more than 50-fold higher 

compared to MeCl yields from halites. This can be explained with a higher organic matter content 

in soils. Rhew et al. (2000) have found large MeCl fluxes from salt marshes of up to 

570 µmol/(m2 day). Based on a 24h production time under moist condition and elevated summer 

temperatures leading to topsoil temperatures of up to 55 °C (Kotte et al., 2012), a soil density of 

1.3 g/cm3 and 1 cm soil depth, our data are extrapolated to a MeCl production rate of 

650 µmol/(m2 day) and would support those high fluxes.  

The monitoring of concentrations of MeCl and DMS in air samples at Lake Dune and Lake Orr at 

the day of sampling is shown in Figure 4.3. Their values show differing quantities per site as well 

as over time. In the case of Lake Dune, highest values coincide with the highest temperatures of 

the day. For Lake Orr MeCl values are overall higher than at Lake Dune, however, only four 

measurements are available. MeCl in air samples was between 200 to 380 pmol/mol, which is less 

than the global atmospheric mixing ratio of 528 pmol/mol (Warneck and Williams, 2012). As local 

background concentrations most likely do not correspond to the global values, these MeCl values 



4. Case Study: Thermolysis of MeMET yielding MeCl and DMS 

 

 

   104 

locally could still mean that MeCl is emitted from soils. MeCl formation processes appear to be 

depending very much on local environmental conditions. 

DMS values ranged from 30 to almost 100 pmol/mol, with Lake Orr showing high values between 

80 and 100 pmol/mol. All DMS values observed fall in the range of global atmospheric mixing 

ratio reported between 20 and 150 pmol/mol.  

 

 

 

Figure 4.1: Chromatograms of five halite samples after grinding for 5 min at 200rpm in a 

steel vessel. The areas in the boxes show enlargements of the MeCl (left) and DMS (right) 

peaks including their observed mass spectra. MeCl was present at differing amounts in all 

five samples. While samples H28Lkt and H29WG displayed significant peaks for DMS the 

other samples did not contain DMS; the mass spectra of small observed peaks of the other 

samples did not fit that of DMS. Most other peaks in the chromatograms stem from short-

chain alkanes, alkenes and further hydrocarbons.  
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Figure 4.2: Results of sample screening for VOC from SW Australian salt lake soil samples 

(from Krause, 2014). 

 

Figure 4.3: Diurnal variation of MeCl and DMS in sampled air on two different sampling 

sites and dates along with the logged air temperature.   
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However, local concentrations vary considerably depending upon environmental conditions such 

as availability of plant and animal dead matter, geochemical profile and weather.  Overall, the 

locally confirmed presence of MeCl and DMS in air as well as soils and salt crystal samples gave 

rise to the question of a possible common formation mechanism of these compounds. 

The observed compounds from salt lake soils, crystals and air are consistent with other emissions 

reported in literature, but those are commonly linked to microbial and plant activity such as the 

algae dunaliella salina, spartina alterniflora, halobacterium and other microorganisms (Rinnan et 

al., 2014; Attieh et al., 1995; Steudler and Peterson, 1984). Also, in the studied Australian salt lakes 

the fluctuating presence of water enables growth of aquatic plants and microorganisms. Plant 

residue, dead insects or larger animals were commonly observed at the sampling sites. This is 

important with regard to volatile sulfur emissions since living organisms produce the proposed 

precursor material.  

The freeze-dried soil samples in our study were incubated in the dark before measurement. Within 

24 h the volatile compounds were newly formed suggesting an abiotic mechanism involving the 

degradation of organic material. As fluid inclusion of salt crystals contained similar compounds 

we suppose that a similar mechanism may be responsible within the inclusions or that the FIs 

represent the situation of the solutions at the time of crystal formation. The presence of halophilic 

microorganisms even on ancient rock salt was reported (Denner et al., 1994; Stan-Lotter et al., 

2002) and their amino acids could contribute to the needed precursor material for abiotic 

degradation reactions. The actual production of MeCl, DMS and other gases by these organisms 

within the salt cannot be excluded as a third formation pathway. In general, only few organisms 

are tolerant of the extreme conditions of hypersaline environments. However, due to lack of 

enemies and competitors these mostly very simple communities can flourish and produce up to 8-

12 g m-2 d-1 carbon (Schidlowski, 1988).  

In our trial for the presence of amino acid in soil only one of the prepared samples yielded sufficient 

signals. The chromatogram from Lake Hatter Hill (4 g of sample) is shown on top in Figure 4.4. 

For better comparison, the chromatogram of the smallest amino acid standard of 2,5 nmol) is shown 

on the bottom. The sample contains about 4,6 µmol/L lysine corresponding to 3,4 µg/g lysine in 

the soil. Ornithin was present at similar concentrations. All other amino acids were either below 

the detection limit of 4 µmol/L or peaks were not resolved due to high salt content. Methionine 

elutes at 36-38 min and the peak is clearly visible in the standard. Salt predominantly influences 
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peak resolution in the front part of the chromatogram and should not influence amino acid detection 

in general once amounts are high enough. However, no MET was found in the soil extract. In 

principle, this is not a surprise given the relatively high detection limit and the small amounts of 

free amino acid in soils ranging from 0.1 to 50 µmol/kg (Jones et al., 2002). 

Werdin-Pfisterer et al. (2009) summarized amino acid contents from different soils and methionine, 

if present, only represented 0,1 to 2.3 % of the total free amino acids detected. Also, the soils where 

MET was present were organic rich surface soils. The trial showed that amino acids could be 

detected in a soil sample, but high salt concentrations give rise to analytical problems. The detection 

of amino acids as free amino acids from soil extracts is described by Jones et al. (2002) and Martens 

and Loeffelmann (2003) but detection limits for free amino acids from soils are relatively high, 

between  0.5 and 50 µmol/kg. Therefore, MET is assumed to be present in salt pan environments 

due to the decay of algal mats, microbial communities, decaying insects and larger animals as well 

as leaves and other plant litter transported by wind. 

 

 

Figure 4.4: Chromatogram from Lake Hatter Hill soil (top) and the 2.5 nmol amino acid 

standard (bottom). The sample contains about 4.6 µmol/L lysine (Uwe Schwarzenbolz, TU 

Dresden). 
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An amino acid derivative of interest is MeMET since it could serve as a precursor for both MeCl 

and DMS. We therefore decided to investigate the thermolytic degradation of MeMET to 

corroborate our assumption.  

 

4.3.2. Temperature dependence of MeCl and DMS release from methionine methylsulfonium 

chloride  

Figure 4.5 summarizes the results obtained after incubating pure methyl methionine chloride. The 

temperature interval from 30 to 70 °C was chosen as to include environmentally still relevant 

temperatures. Own observation confirmed that during the day salt and sediment surfaces of salt 

lakes can reach or exceed 50 °C. The top two diagrams show an exponential increase of MeCl and 

DMS with temperature. At temperatures above 60 °C small amounts of dimethyldisulfide (DMDS) 

were also observed. The temperature dependence observed for DMS was noted in an earlier study 

by Fall et al. (1988) who found a linear DMS increase between 5 and 35 °C from alfalfa and corn 

plants. Although this observation could correspond to the more linear regression at lower 

temperatures in our studies their reaction could also have been biotically mediated. Compared to 

DMS, there are more thermolytic data on MeCl formation available. Methyl halide production from 

plants is a known phenomenon and besides the enzyme-mediated reaction by methyl transferases 

from S-adenoyslmethionine (Attieh et al., 1995) and abiotic release of MeCl from senescent or 

dead plant material in the temperature range 30-350 °C has been demonstrated (Hamilton et al., 

2003). Hamilton et al. (2003) hypothesised that pectin as a plant structural component carrying 

methoxy groups could act as the methyl donor, which was confirmed by Keppler et al. (2008). In 

studies on the abiotic methyl halide production from vegetation temperature and halide content 

have been found to be the most crucial parameters (Hamilton et al., 2003; Keppler et al., 2008; 

Keppleret al., 2000; Keppler et al., 2005). Wishkerman et al. (2008) demonstrated an exponential 

increase of chloro- and bromomethane from saltwort material in the temperature range from 25 to 

50 °C. While in the vicinity of salt pans halophytes are usually prolific, pectin as a precursor on 

the salt pans is not available due to lack of plant growth. The widespread presence of MeMET from 

microbial communities or algal mats however appears plausible. Additionally, these systems often 

fluctuate seasonally between wet and dry conditions and sufficiently hot temperatures as required 

for thermolysis.  
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Arrhenius plots for both DMS and MeCl (Figure 4.5, bottom) gives the logarithm of the kinetic 

constant, approximated by ng h-1 in this case, against the inverse temperature. Straight lines were 

obtained here as is typical for a single rate-limited thermally activated process. The rearrangement 

Arrhenius equation to fit the plot is 

 

(38) Ln k = -EA / RT – ln a 

 

The activation energy (EA) can now directly be determined from the slope of the Arrhenius plot 

(Atkins and de Paula 2008), in this case the calculated EA for MeCl is 110.16 kJ/mol and  

63.5 kJ/mol for DMS. These values are comparable to the data of Derendorp et al. (2012) whose 

EA values for leave litter heated to temperatures between 30 and 50 °C ranged depending on plant 

species from 80 kJ/mol to 119 kJ/mol. The lower EA for DMS means that this compound forms 

more readily than MeCl, which is in good agreement with the larger yields observed for DMS. The 

observed relationship of rising DMS from MeMET could potentially serve as an explanation for 

the DMS values obtained from the fluid inclusions of the mined salt and not from the recent salt 

samples (Figure 4.1). Assuming that those salts have been exposed to elevated temperatures during 

burial DMS could have been formed thermolytically.  

Some observations reported in the literature may also be linked to a thermolytic production:  

Organic soils showed an increased DMS production upon rising temperatures as compared to soils 

with low humus content (Staubes et al., 1989). The observed diurnal patterns of DMS emissions 

(Warneck, 2000) may partly be explained by the coinciding temperature variation and the 

associated MeMET breakdown. 
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Figure 4.5: Exponential increase of MeCl and DMS release upon heating of 0.1 mmol 

MeMET at different temperatures for 1h. Arrhenius plots (bottom) for both compounds 

serve as basis for activation energy calculations.  
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4.3.3. Model substances and postulated reaction pathways for thermolytic DMS and MeCl 

generation 

A set of structurally related compounds to MeMET was exposed to 40 °C for 1 h in order to gain 

further insights into the mechanism of DMS and MeCl formation under environmentally relevant 

conditions. Results obtained are summarized in Table 4.2. At 40 °C MeMET and 

trimethylsulfonium already serve as effective MeCl/MeBr and DMS sources. While MET, 

methionine sulfone and dimethylsulfone did not yield significant amounts of either compound, 

methionine sulfoxide surprisingly showed an elevated DMDS release and minor amounts of DMS. 

The release of mathanethiol by methionine sulfoxide was also observed in the measurements, but 

was not quantified and is therefore not shown in the table. Trimethylsulfoxonium chloride showed 

highest MeCl but no DMS emissions. Initial tests with supplementation of NaCl or KBr indicate 

that higher temperatures (above 55 °C) would be needed to produce DMS and MeCl from MET. 

Note that all three compounds emitting significant MeCl or DMS amounts carry a positive charge 

on the sulfur atom lowering the activation energy for a C-S bond splitting.  

From the 2 methyl groups at the sulfur moiety of MeMET either one DMS or two MeCl could be 

formed in the thermolytic reaction. 

A possible explanation might be found in the reaction mechanism. If DMS is the leaving group, 

the remaining alkyl chain (polar homoserin) can form an α-amino-γ-butyrolactone ring (Yang and 

Hoffman 1984; Althoff, 2012), as can be induced from Figure 4.6. Alternatively, the remaining 

alkyl chain can rearrange to aminocylcopropane carboxylic acid (ACC) which is also linked to 

methionine via the ethylene biosynthesis in the Yang cycle (Yang and Hoffman, 1984).  

When looking at the emission of MeMET, it can be argued that the DMS formation is 

thermodynamically favored over MeCl, which is in good agreement with the activation energies 

calculated from the Arrhenius plots above. Similarly, from trimethylsulfonium bromide once DMS 

is split off, MeBr would be the natural remainder. However, yields of DMS and MeBr are not 

equimolar indicating that the leaving methyl groups participate also in other reactions. Zinder and 

Brock (1978) have observed that the terminal S-methyl group of methionine was converted to CH4, 

CO2 and H2S.   

The formation of DMS has also been observed from the bacterial reduction of dimethylsulfoxide 

(DMSO) by a variety of microorganisms in marine (Simo et al., 2000) and coastal environments 

(Kiene and Capone, 1988; López and Duarte, 2004). 
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Table 2: MeCl, DMS and DMDS emissions of MeMET, MET and structurally related 

compounds after incubating 0.1 mmol of each substance in the dark at 40°C for 1h.  

 

 

 

 

Figure 4.6: Postulated reaction pathways for the thermolytic degradation of methyl 

methionine and related compounds at 40°C. Compounds employed as educts are grey-

shaded. Those are from right to left MeMET, trimethylsulfoxonium, DMSO and 

METsulfoxide. The methanethiol formed from METsulfoxide was measured but not 

quantified. Dashed lines are in doubt.  
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When testing the potential of DMSO for thermolytic decomposition small amounts of DMS and 

DMDS were observed, but it is questionable whether they indeed stem from DMSO decomposition 

or whether they represent measured impurities. In general, DMSO under oxic conditions is more 

likely a reaction product. It is also the remainder after MeCl was emitted from 

trimethylsulfoxonium chloride and probably a dead end product to further reactions in this context.  

According to Janssen et al. (2013), the formation mechanism of DMDS has not yet been 

investigated. However, an enzymatic mechanism for the opposite direction from DMDS to MSH 

was presented by Smith and Kelly (1988) and they propose that DMDS formation is at least partly 

a result of oxidation of MSH to DMDS. Our detection of MSH, although not quantified, appears 

to be of importance. Also, the enzymatic formation of DMDS from methionine via MSH was 

documented by several authors (Ruiz-Herrera and Starkey, 1970; Challenger and Charlton, 1987). 

Already Challenger and Charlton (1987) discussed the fission of the methyl thiol group from α-

keto-methionine, confirming the observation of this study. An abiotic removal of a methyl thiol 

group of MET sulfoxide followed by oxidation of MSH to DMDS is conceivable. DMDS can be 

produced by the oxidation of MSH involving iodine or elemental sulfur according to the following 

reactions: 

 

(39) 2 CH3SH + I2 → CH3SSCH3 + 2 HI  

(40) 2 CH3SH + S → CH3SSCH3 + H2S 

Although these reactions are not likely from the here employed pure substances, they may be more 

important in natural systems. Höckendorf et al. (2012) conducted experiments with gas-phase 

hydrated radical anions involving DMDS and MSH. They found that, this reaction has 

 

(41) CH3SSCH3 + H• → CH3SH +CH3S
•   

an exothermic reaction enthalpy of -94 kJ mol−1. We suppose that upon oxidative stress and energy 

input via heating, this reaction might proceed in reverse. A hint of thermolytic DMDS production 

in nature was the observation that it was the major reduced sulfur-containing gas emitted from 

bushfires in Australia (Meinardi et al., 2003). 
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4.3.4. VOX and VSOC released from soils under experimental conditions of thermolytic 

study  

Results from model compounds and the temperature dependence study confirmed that MeMET as 

well as trimethylsulfoxonium chloride and methionine sulfoxide served as effective precursors for 

the formation of MeCl and DMS. Additionally DMDS was observed from MET sulfoxide. The 

oxic conditions applied to our study of the model reactions would represent dried up salt lakes and 

salt pans that are heated up during the day. Selection criteria for the set of soil samples in the 

experiment described here was that they were sampled along with a salt crust, whose crystals had 

been analyzed and that MeCl and possibly DMS had been detected from the FIs in the salt crystal 

survey. The soil survey data as already presented in Figure 4.2 were performed from 1 g of freeze-

dried soil in 10 mL of ultrapure water for 24 h. Now, 1 g of the five freeze-dried samples was 

exposed at 40 °C for 1 h without water in order to compare results from natural samples to our 

model reaction studies. Figure 4.7 shows the release of MeCl from all samples. Small amounts of 

DMS or DMDS were observed in only three samples. The measurements were then repeated with 

10 mL water added to simulate conditions similar to a rainfall event. Even though the reaction time 

was again only 1 h, small amounts of DMS or DMDS were now detected in all samples. The sudden 

occurrence of CS2 was remarkable as well as the high amounts detected exceeding those of DMS. 

To the contrary, results from soils and atmospheric measurements consistently showed higher DMS 

than CS2 values (Warneck 2000). 

Comparing the 24 h measurements (Figure 4.2), data from the literature and results obtained after 

1 h, indicate that the CS2 production may recede over time. The formation of CS2 appears to be 

kinetically favored and based on our results we would expect rain-events after a dry period to cause 

short term spikes in the CS2 concentrations. Staubes et al. (1989) reported that low humus and high 

moisture contents increased CS2 and decreased DMS emissions released from soils and noted an 

increased release of both compounds in German soils after a thunderstorm event.  

The effect on MeCl was less clear. While for three of the samples the MeCl release remained 

constant, Lake Springfield emitted slightly reduced amounts and emissions from the Lake Dune 

sample more than tripled. In principle, thermolytic processes have been confirmed to take place 

under dry conditions in the dry soil experiments as well as from the MeMET and model substance 

thermolysis. While the observed results for MeCl exceed DMS emission under dry conditions by 

far, these cannot be attributed to a sole thermolytic source in complex soils.  
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Figure 6: Comparison of MeCl and VOSC emissions of 1 g surface soil sample after 

incubation under dry (a, left) and wet conditions (b, right). 

 

 

However, it was clearly demonstrated that thermolytic reactions take place even though the organic 

matter content of these soils is low. 

When water is added, only 1 h of incubation is sufficient to produce MeCl and VOSC emissions 

that already fall in the concentration range observed after 24 h. Hence, an abiotic formation of these 

compounds appears likely.  

In hypersaline environments, biotic precursor material is produced when conditions are favorable. 

Upon desiccation abiotic thermolytic emissions prevail and immediately after rainfall on 

previously dried-out land, abiotic aqueous reactions prevail. A re-wetting and drying-out cycle is 

typical for SW Australian salt lakes. Kotte et al.(Kotte et al., 2012) have reported high emissions 

of MeCl and MeBr from dry samples of similar environments in South Russia and Namibia. But 

also areas of regressing (salt) lakes such as the Aral Sea could contribute to thermolytic emissions. 

Hall et al. (2012) found elevated N2O and CH4 after amending Atacama Desert soils with water 

and organic carbon which was not conclusively linked to microbial production showing the 
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importance of abiotic reactions in soils. The abundance of abiotic mechanisms in hypersaline 

environments is also supported by our study, whereas data on the biogeochemical capacity of arid 

and hypersaline soils are scarce (Ruecker et al., 2014).  

 

 

4.4. Conclusions 

 

In this chapter, findings from field sampling campaigns with mechanistic studies of MeMET 

degradation were combined.  

DMS and MeCl emissions were found to increase exponentially upon heating of MeMET and 

related compounds. At 40 °C. MeMET, trimethylsulfonium bromide and trimethylsulfoxonium 

chloride thermolytically formed MeCl and DMS under dry conditions at temperatures commonly 

measured on salt pan surfaces. Furthermore, MET sulfoxide has been shown to emit methanethiol 

and DMDS under these conditions.  

Dry soils were clearly found to emit MeCl thermolytically despite their low organic matter content. 

DMS was also measured from natural samples. Together with data from model compounds a 

formation of these substances via temperature controlled MeMET decomposition appears 

plausible. However, the MeCl/DMS ratio from soils suggests other sources. Data from FIs of 

halites also support the hypothesis that temperature plays a crucial role in MeCl and DMS 

production. The abiotic production mechanism here proposed goes hand in hand with biotic activity 

during favorable conditions which provide the precursor material. Isotopic signatures might help 

to identify the exact source of the abiotically produced VOC in natural systems in the future. The 

occurrence of DMDS should be investigated further.  

The new insights gained should help to get a clearer view on the relative importance on different 

formation mechanisms and to refine atmospheric VOSC and VOX budgets. In light of increasing 

desertification, anthropogenic salinization and the accompanying extension of salt lakes and salt 

lake influenced soils around the globe an understanding of these terrestrial sources for atmospheric 

chlorine and VSOC becomes even more important. 
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5.0 Summary and Conclusions 

 

While the understanding and handling of the anthropogenic influence on Earth’s climate is a 

challenge for science and society, the study of geogenic emissions as part of natural VOC emission 

sources is necessary to comprehend natural processes and their role for atmospheric chemistry. In 

this regard, the main goal of the work presented in this dissertation was the investigation of rocks 

and minerals for their VOX-formation potential. A central requirement was the development of a 

suitable method to release and detect VOX from FIs of the minerals under study (Chapter 2).  

Major features of the newly developed purge and trap method are the purgeable grinding chamber 

to release gases from minerals and the efficient liquid N2 cold trap for sample pre-concentration 

before GC-MS analysis.  

The tempered steel grinding chamber effectuated the combination of mechanical grinding in a 

commercial planetary mill with the advantages of a headspace vial, i.e. via pierceable septa, for 

purge and trap sample preconcentration. The grinding procedures could be adapted according to 

the mineral’s hardness and relatively low amounts of 10 g sample material produced sufficient 

amounts of measureable VOX, also due to an efficient grinding down to a final grain size of 1 µm 

(quartz).  

The second essential feature of the method was the cold trap constructed of a glass lined tubing 

(™) without further adsorbent material and installed directly before the GC columns and MS 

detector. This in effect, made the detection of VOX released after grinding feasible. Volatile 

compounds detected ranged from the very low boiling point of carbon tetrafluoride up to 

bromodichloromethane, spanning a temperature range of over 200 °C.  

Major advantages of this adapted dynamic headspace design is that it accommodates all types of 

minerals and rocks, while remaining versatile concerning analytical technique. Conventional 

headspace applications are still feasible with the GC-MS in use by inserting a water trap. Since 

analytes are trapped prior to the GC column, the experimental set-up could be used with different 

GC configurations or different analytical instrumentation, such as FID or IRMS. 

Subsequent to the method development, the sample screening (Chapter 3) pursued the objective of 

expanding the data set on VOX released from FIs and deepen the scientific understanding of their 

natural abiotic formation pathways. A wide array of volatiles from various minerals could be 

documented. The presence of SF6 and CF4 in fluorites was confirmed, which is important with 
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regard to the role they play in the atmospheric and hydrologic sector as they may pose limitations 

to groundwater dating or balancing the atmospheric budgets.  

Methyl bromide, dichloroethene and dichloroethane from quartz samples of the Archean Yilgarn 

craton in Australia give first insights into synthetic processes occurring in rising hydrothermal 

fluids in the upper crust. Vinyl chloride was found in a hydrothermal quartz from High Taunus. 

Assuming an abiotic genesis, these organic molecules are hypothesized to be involved in the 

formation of early prebiotic organic molecules.  

Generally, the differences of compounds trapped during mineral growth can provide information 

on the respective formation conditions but sample sizes were too low to allow for systematic 

observations. Formation pathway of the aforementioned compounds in geological matrices remains 

subject of speculation and more research is needed. Improvements to the method in the future 

should include the use of a highly durable zirconium oxide grinding chamber and gaseous 

halocarbon standard mix to enhance analytical performance.  

MeCl was found to be an almost omnipresent compound occurring in quartz, fluorites, halites and 

dolerites. Initial heating experiments with halites using purge-and-trap GC-MS as well as Py-GC-

MS demonstrated the important role of temperature in MeCl and VOX.  

In halites MeCl release was in some cases accompanied by DMS. This observation when combined 

with observations made in associated environmental compartments lead the way to mechanistic 

studies on MeCl and DMS formation from MeMET as a precursor material (Chapter 4). 

Hypersaline soil samples when incubated in headspace vials showed MeCl release and an array of 

VOSC including DMS and dimethyldisulfide (DMDS). MeCl and DMS were also present in air 

sampled immediately above the salt lake surfaces. An abiotic mechanism for their formation 

appeared conceivable due to the fast response of emission upon heating of freeze-dried samples at 

40 °C.  

The hypothesis that MeMET could serve as a precursor for both MeCl and DMS formation was 

confirmed. Based on the thermolytic degradation of MeMET the activation energies for MeCl and 

DMS are reported from their Arrhenius plots. The lower activation energy calculated for DMS 

means that this compound forms more readily than MeCl, which is in good agreement with the 

larger yields observed for DMS. This observation might also explain DMS values obtained from 

the fluid inclusions of the mined salt and not from the recent salt samples considering their exposure 

to elevated temperatures during burial where the DMS could have been formed thermolytically.  
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Structurally related substances to MeMET were analysed and methionine sulfoxide remarkably 

showed an elevated DMDS release and minor amounts of DMS and MeSH by methionine sulfoxide 

was also observed in the measurements. Finally, soil samples were tested again under thermolytic 

conditions of the model substances and the thermolytic processes appear to play an important role 

in salt lake environments during drying processes. The emerged abiotic production mechanism can 

only be understood in consecution of biotic activity during favorable environmental conditions 

providing the precursor material.  

Hypersaline environments will likely gain more and more importance in their contributions to 

atmospheric VOSC and VOX budgets considering increasing desertification and anthropogenic 

salinization and thermolytic MeMET degradation is a plausible way to comprehend increased 

MeCl and DMS emissions under these conditions.  

In summary, we implemented a customized purge-and-trap GC-MS system for specialized FI 

analysis confirming the presence VOX and VOC in a variety of minerals. The thermolytic 

degradation of the precursor MeMET to MeCl and DMS from MeMET was identified as one 

possible natural abiotic formation pathway. More data are needed to gain further insight into 

geogenic VOX formation as the analytical system is further improved.  

This work demonstrates the potential of the method as new research topics emerged in the process 

of development. FI analysis via purge-and-trap GC-MS system presents a new tool to help deepen 

our understanding of the role of geospheric processes e.g. on aspects of the origin of life, trace gas 

dating of ground waters and balancing the atmospheric VOX budget. Isotopic studies could 

contribute significantly to future research. 

With these developments and observations made the door was opened to future investigations in a 

still largely unexplored scientific terrain.
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Table 6.1 –part 1/3: List of available samples. 

 

 

sample # other # source location Lithological remarks

F1PS - 1 unknown; bandend green-violet with alterated granite n/a n/a

F2PS - 1 Mine Hermine, Lissenthan, 

Germany

banded green-white, sawn specimen N49°26'24.778'' E12°6'53.948''

F3PS - 1 Mine Hermine, Lissenthan, 

Germany

banded green-white, untreated N49°26'24.778'' E12°6'53.948''

F4PS - 1 Wölsendorf, Marienschacht, 

Germany

banded cream, green, dark blue to violet color N49°24'25.421'' E12°10'53.841''

Q1PS - 1 Fichtelgebirge, Germany bulky mass of small crystals n/a n/a

G01MW R01 2 Cambay Basin, Eklara, 

India

granite, outcrop N 23°44'55.74" E 72°48'56.52"

G02MW R02 2 Cambay Basin, Recharge, 

India

granite, outcrop N 23°49'58.20" E 72°58'40.98"

G03MW R03* 2 Cambay Basin, Gozharia, 

India

schist from local debris N 23°29'28.32" E 72°34'5.09"

G04MW R03 2 Cambay Basin, India limestone from local debris N 23°54'30.72" E 73° 4'46.44"

H1Elt Elton 3 Lake Elton single crystals 2-3 mm in aggregates of up to 5 cm thickness N49° 8' 59.28" E46° 47' 18.12"

H2Elt Elton II 3 Lake Elton 2-3mm single crystals skimmed under 10 cm of lake water N49° 8' 59.28" E46° 47' 18.12"

H3Elt Elton III 3 Lake Elton similar to H1Elt with visible dispersed oragnic matter N49° 8' 59.28" E46° 47' 18.12"

H4Elt Elton III Kruste 3 Lake Elton crust with thickness of of 1-4 cm on layer of organic matter N49° 8' 59.28" E46° 47' 18.12"

H5Elt Elton III Kruste OM 3 Lake Elton crust with thickness of of 1-4 cm N49° 8' 59.28" E46° 47' 18.12"

H6Kas Kasin I 3 Lake Kasin single crystals up to 3 mm and aggregates of up to 3 cm 

thickness

N47° 36' 9.66" E47° 27' 7.14"

H7Kas Kasin I Kruste (1-3cm) 3 Lake Kasin crust with thickness of 1-3 cm N47° 36' 9.66" E47° 27' 7.14"

G1Bas Gips Bas II-1 (Rosen) 3 Lake Bakuntschak lense shaped N48° 14' 25.86" E48° 49' 30.9"

G2Bas Gips Bas II-2 (Streifen) 3 Lake Bakuntschak elongated bars N48° 14' 25.92" E48° 49' 30.96"

H26Bas Bas III 3 Lake Bakuntschak crust with dissolution patterns and single crystal shapes in 

aggregate up to 4mm

N48° 14' 37.98" E46° 49' 51.78"

H8SND Sebkah Te-n-Dghamcha 4 Sebkah N'Drancha XIV cauliflour-shaped efflorescence N 18°51´03.1´´                         W 15°39´01.8´´

H9SND Sebkah Te-n-Dghamcha 4 Sebkah N'Drancha VI crust of fine grained salt crystals, undulated surface, brown 

organic matter on bottom side

N 18°53´23.6´´                      W 15°39´42.9´´

H10SND Sebkah Te-n-Dghamcha 4 Sebkah N'Drancha VIII aggregates of 1 mm large crystals, slight rose-tint N 18°51´14.7´´ W 15°38´23.3´´

H11SND Sebkah Te-n-Dghamcha 4 Sebkah N'Drancha IX crust of fine-grained halite crystals, thin organic matter at 

bottom, fine gypsum needles interspersed

N 18°51´10.2´´                         W 15°38´23.7´´

GPS-coordinates
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Table 6.1 – part 2/3: List of available samples.  

 

sample # other # source location Lithological remarks

H12SND Sebkah Te-n-Dghamcha 4 Sebkah N'Drancha X crust of fine-grained crstals N 18°51´0.71´´                        W 15°38´29.0´´

H13Doue Douemina I 4 Douemina I inhomogenous, with crustal aggregates of 4mm large 

crysatals, some aggregated dark from organic matter, white, 

bornw, rose and transparent

N 19°52´22.7´´                         W 16°14´03.2´´

H14SP Sua Pan I 4 Sua Pan I pieces of thin crust (up to 0.5mm) S20° 27' 12" E25° 55' 36"

H15SP Sua Pan 3 Ia 4 Sua Pan 3 Ia pieces of thin crust (up to 0.5mm) S20° 28' 57.18" E26° 3' 41.4"

H16SP Sua Pan 3 Ib 4 Sua Pan 3 Ib crust thickness of 0,5-1 cm with ormatter at bottom side S20° 28' 57.18" E26° 3' 41.4"

H17WBSR WBSR I 4 Walvis Bay salt refinery refinery salt from evaporation pond S23° 1' 52.38" E14° 26' 38.52"

H18Boht Bohtash 4 Bohtash, Botswana spherical aggregates of 3 cm diameter, pink n/a n/a

H19Sib "salt" 5 Sibiria, Oblast Irkutsk, 

Russia

rock salt,  unspecified borehole n/a n/a

H20Sib "blue salt" 5 Sibiria, Oblast Irkutsk, 

Russia

intensive blue color n/a n/a

H21Sib 194/7 5 Sibiria, Oblast Irkutsk, 

Russia

rock salt, borehole 194 n/a n/a

H22Sib 194/24 5 Sibiria, Oblast Irkutsk, 

Russia

rock salt, borehole 194 n/a n/a

H23Sib 194/3 5 Sibiria, Oblast Irkutsk, 

Russia

rock salt, reported in Svensen et al. 2009, borehole 194 n/a n/a

H24Sib 194/4 5 Sibiria, Oblast Irkutsk, 

Russia

rock salt, reported in Svensen et al. 2009, borehole 194 n/a n/a

H25Sib 215/4 5 Sibiria, Oblast Irkutsk, 

Russia

rock salt,  borehole 215 n/a n/a

H27Gor - 6 Schacht Gorleben rock salt from around 600 m below surface, orange color N53° 1' 35.292" E11° 21' 1.364"

P01BB R06-09 7 Bratsk, Sibiria dolerite, magnetic grain fraction N56° 16' 57.698" E101° 54' 

59.393"

P02BB R06-09 7 Bratsk, Sibiria dolerite, slightly magnetic grain fraction N56° 16' 57.698" E101° 54' 

59.393"

P03BB R06-09 7 Bratsk, Sibiria dolerite, coarse rock fragments N56° 16' 57.698" E101° 54' 

59.393"

MORB - 8 synthetic Mid Ocean Ridge Basalt, synthesis according to appended 

protocol

- -

H28Lht Lht-2 9 Bochnia Mine, poland rock salt N49°58'13.0" E20°25'54.7"

H29WG WG-3 9 Wieliczka Mine, Poland rock salt N49° 59' 5.52" E20° 3' 23.94"

H30WG WG-5 9 Wieliczka Mine, Poland rock salt N49° 59' 5.52" E20° 3' 23.94"

H31WG WG-6 9 Wieliczka Mine, Poland rock salt N49° 59' 5.52" E20° 3' 23.94"

H37LSF LSF 10 Lake Springfield,  Australia salt crust S32°27'42.41" E119° 9'58.32"

GPS-coordinates
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Table 6.1 – part 3/3: List of available samples.  

 

 

sample # other # source location Lithological remarks

H38LW LW 10 Lake Whurr, Australia salt crust S33° 2'35.23" E119° 0'31.75"

H40LM LM 10 Lake Magic Australia salt crust S32°25'58.69" E118°54'19.30"

H41LK Lk1a 10 Lake King Australia salt crust S33° 5'20.44" E119°37'7.72"

H42LD LD3 10 Lake Dune Australia salt crust S33° 4'58.58" E119°38'18.13"

H43LO LO2 10 Lake Orr, Australia salt crust S34°14'50.84" E118°10'7.76"

H44Bol SLT Spec-Jira, 0-2cm 

Kruste, 18.05.2011

11 Jirira, Salar de Uyuni, 

Bolivia

salt crust S19°52'6.20" W67°33'40.40"

H45Bol CO/o1-ENT, 0-2cm 

Kruste, 19.05.2011

11 Salar de Coipasa, salt crust S19°32'35.05" W68° 3'50.81"

HTV114 HTU114 12,13 Michelbach, Taunus, 

Germany

quartz veins with Pb-Zn-Cu ores, ages postvariscic (270-

130Ma), homogenisation temperture 90-180°C, reported in 

Kirnbauer et al., 2012

N50°12'37.286316 E8°2'11.757624

HTV115 HTU115 12,13 Naurod, Taunus, Germany giant quartz veins, ages postvariscic (270-130Ma), 

homogenisation temperture 110-170°C, reported in Kirnbauer 

et al., 2012

N50°9'28.4004 E8°2'15.5436

HTV116 HTU116 12,13 Usingen, Taunus, Germany giant quartz veins, ages postvariscic (270-130Ma), 

homogenisation temperture 110-170°C, reported in Kirnbauer 

et al., 2012

N50°20'53.172564 E8°33'39.113532

SM5 SM5 12 Schoemaker Crater, 

Australia

hydrothermal quartz S25°51'28.08" E120°57'26.834"

SM6 SM6 12 Schoemaker Crater, 

Australia

hydrothermal quartz S25°51'17.582" E120°57'26.96" 

SM7 SM7 12 Schoemaker Crater, 

Australia

hydrothermal quartz S25° 51'16.697" E120°57'26.748" 

MU2 MU2 12 Muchison, Australia hydrothermal quartz S26° 52'9.995" E115°56'51.173" 

MU4 MU4 12 Muchison, Australia hydrothermal quartz N26° 52'14.79"  E115°56'50.154"

MU7 MU7 12 Muchison, Australia hydrothermal quartz N26°50'20.454" E115°56'27.748" 

1 = private collector Günther Schönlein, Bamberg 7 = provided by Benjamin Black, Massachusetts Institute of Technology, Cambridge, USA

2 = sampling campaingn, Martin Wieser, University of Heidelberg 8 = provideed by Stefan Dultz, University of Heidelberg

3 = own sampling campaingn, University of Heidelberg, DFG project 763 9 = provided by Marek Dulinski/Krzysztof Bukowski, AGH University of Science and Technology, Krakow

4 = sampling campaingn Stefan Huber, University of Heidelberg, DFG project 763 10 = sampling campaingn Torsten Krause/HF Schöler, University of Heidelberg, DFG project 763

5 = sampling campaign Henrik Svenson, University of Oslo, Norway 11 = sampling campaingn,  Kasten Kotte, University of Heidelberg, DFG project 763

6 = own sample, private collection 12 = sampling campaigns by Ulrich Schreiber, Universität Duisburg-Essen

13 = sampling campaigns by Thomas Kirnbauer, Universität Bochum

GPS-coordinates
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Table 6.2: Volatile compounds from mixed mineral and rock samples 12/2009-08/2010. 
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MORB 300rpm 10 min - - - - - - - - - decfuorbutane?

P01BB 8.49 g - - 454549 - - - - 33439 62481 Xenon peak in control

P02BB - - 71621 565 - - - - 28417 Xenon peak in control

P03BB - - 327982 4190 - - 247750 170973 56309 Xenon peak in control

F1PS 10 min 1209 - - - - - - - - decfluorbutane?

F4PS 15 g 20610 2568 - 5012 - - - - - arsine?

halite Kasin 15 g - - - 31674 117605 9801 - - -

relative peak intensity (kCounts)
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Table 6.3: Volatile compounds from halites and gypsum samples 04/2010, after grinding or heating to 150°C and in unground 

control (if detected). (Part of Bugla’s BSc. thesis.) 
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ground heated ground heated ground heated heated ground heated ground heated heated ground heated heated ground heated control ground heated

ng kcounts kcounts

H1Elt 0.5 - 12.9 - - 15.0 - - 0.9 - - - - - - - - 3.9 - 5.8

H2Elt - - 2.6 195.7 - 6.0 - - 6.9 - - 13.1 - - 2.6 - - 4.6 4.4 5.7

H3Elt 0.2 1.1 22.1 4.8 - 29.0 4.5 - - - - - - 6.3 - - - 4.6 - 8.2

H4Elt - 0.6 5.2 320.5 0.3 4.6 - - 0.3 - - - - - 2.2 - - 4.3 - 7.5

H5Elt - 4.0 3.5 0.4 - 15.5 - - 0.4 - - 0.3 - 9.1 4.9 - 0.2 - - 11.7

H26Bas 2.8 - 33.6 17.3 9.3 11.5 - - - - - - - - 8.3 - - 4.3 6.7 4.7

H6Kas 1.9 0.3 20.3 137.4 4.7 3.9 - - 0.4 - 0.3 - - 5.4 - - - - 8.8 5.5

H7Kas 0.3 0.1 3.5 - 1.4 0.0 - - - - - - - - - - - 4.1 5.1 4.5

H8SND 0.5 1.0 5.5 200.3 0.6 13.5 5.3 - 1.2 - - 0.9 - 5.5 17.5 - - 4.7 5.0 57.9

H9SND - - 3.2 16.2 - 0.0 - - - - - - - 5.3 1.4 - - 4.4 4.4 4.8

H10SND 0.6 - 3.1 - 1.2 0.4 - - 0.1 - - 0.2 - - - - - 3.9 4.5 4.6

H11SND 0.6 - 3.0 - 3.1 3.4 - - - - - - - - - - - 5.6 4.8 4.7

H12SND 0.3 0.1 - 56.3 0.8 1.9 - - 0.7 - - 1.5 - 5.0 3.1 - - 3.4 3.5 8.2

H13Doue - 0.8 4.9 260.8 4.0 17.6 - - 2.5 - 0.5 4.5 - 8.3 2.8 - - 4.2 6.7 5.8

H14SP - 0.4 - 8.1 0.0 15.4 4.8 - - - - - - - - - - 4.0 4.5 6.6

H15SP 0.2 0.3 3.5 2.0 3.2 9.5 - - - - - - - - - - - 4.0 4.5 6.4

H16SP - - - 6.4 0.0 25.0 5.6 - - - - - - - - - - - 3.9 7.2

H17WBSR - 0.2 3.0 297.1 0.0 12.5 4.6 - 4.1 - - 0.4 - 5.6 6.0 - - 4.5 3.9 14.8

H18Boht 0.1 - 3.1 - 2.0 1.1 - - - - - - - - - - - 3.8 4.3 4.9

H19salt - - - 65.8 0.0 1.0 - - 3.0 - - 0.5 - 5.4 - - - - - 4.7

H20Sib 0.9 - 14347.2 156.6 2.1 1.9 9.5 4.4 7.8 - - 1.6 42.3 88.9 0.7 5.3 - - 4.0 5.1

H21Sib 4.0 10.1 8.3 - 0.0 0.5 - - 1.7 40.0 1.1 4.0 - 5.5 1.8 - - - 4.6 4.8

H22Sib 1.9 0.7 13.9 65.0 1.9 13.0 - - 4.9 9.5 - 0.9 - - 8.5 - - 3.9 4.8 5.9

H23Sib 1.6 - 2.8 - 0.5 0.5 - - - - 44.5 - - - - - - 4.1 3.8 948.2

H24Sib 1.0 0.5 5.1 13.5 1.1 - - - 1.8 10.0 0.1 0.6 - 10.5 - - - 4.1 5.2 5.1

H25Sib 0.3 2.4 - 78.2 0.2 1.6 - - 1.8 - - 1.1 - 5.2 - - 0.2 3.9 3.7 5.0

H27Gor 0.1 0.6 3.8 103.5 1.3 3.0 - - 3.1 - - 0.5 - 5.7 1.0 - - 4.2 4.5 5.3

G1Bas 0.2 0.2 4.7 30.7 2.0 23.5 - - - - - - - - 0.6 - - - 4.3 5.5

G2Bas - 0.1 - 73.2 - 36.3 8.2 - - - - - - - - - - - - 5.9

* small amounts partly found in unground sample
# values above 50 ng outside of calibation
§ originally 2-butene assumed but later data w ith calibation standard suggest that isobutene is more likely

kcounts ng# kcounts kcounts kcounts ng ng ng
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Table 6.4a: Volatile compounds from granites, fluorites and quartz 08/2011 (Marcus Ubl, 

BSc. thesis). 

 

 

 

 

Table 6.4b: Volatile compounds from fluorite and halite 11/2011. 
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ng ng kcounts

F1PS - 64.27 - a - hydrocarbons

F2PS 0.17 2.89 16365 a - benzene

F3PS 0.29 4.01 6958 - -

F4PS 1.31 9.62 7511 a - hydrocarbons?

G01MS - 1.69 7547 a -

G02-ungewaschen - - 27591 - a

G03MS - - 6803 - a

G04MS - - 12623 - a

Q01PS* 0.17 - 14298 a -

H22 - - 3519 - a
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ng ng kcounts ng kcounts kcounts 

F4PS 190.5 19.8 5817 61.7 - - recorded only till 22.5 min

H7Kas - - 6589 62.9 289466 61855 recorded only till 22.5 min, 

various hydrocarbons
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Table 6.5: Results from halites 01/2012. 
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kcounts ng ng ng ng kcounts ng kcounts kcounts kcounts ng kcounts kcounts kcounts kcounts kcounts

1167 0.13 - 0.81 0.98 30334 2.31 17103 55338 - 0.28 3734 105030 144023 2675 90751

H2Elt 0.75 - 0.26 0.35 11702 - 13843 22946 1254 - 4045 - 170118 - 39265

8SND 647 0.18 - 0.45 0.48 3855 - 8935 14921 - - - 187312 95131 - 20532 carbon tetrachloride

H16SP 1066 0.06 - 0.22 - 4141 - 18561 3989 - - - 28803 - - 14302 dichloromethane 

H26Bas 12282 2.59 0.03 0.06 1.24 - - - - 28454 - 35327 - - 11980 67688 bromobutane, 1-

chloropentene 

thiophene?

H28Lkt 1793 0.03 - 0.60 0.39 5291 - 3036 3630 - 3.26 - - 25382 6026 45871 methyl cyclohexane

H29WG 2202 0.24 - 1.16 0.60 9790 - 17881 19556 - 5.37 - - 13 - 102014 strong dichloromethane 

H37LSF 1420 0.02 - 1.70 2.21 - - 37675 28408 - - - 58487 374973 - 88434 carbon tetrachloride

H38lw 8912 0.10 - 0.91 0.81 24440 - 36174 72014 - - - 84793 274631 - 29516 carbon tetrachloride

H40LM 0 0.01 - 0.59 1.30 26116 - 33116 8347 - - - 91209 100857 - 37155 carbon tetrachloride

H41LK 374 0.01 - 0.69 0.50 3 - 1 - - - - 11039 145882 - 50530

H42LD 817 0.04 - 1.51 1.53 12415 - 16477 25819 11620 - - - 223966 - 17235 2,3-pentadiene

H43LO 0 0.03 - 0.41 0.25 36418 - 19451 8658 - - - 12071 221734 - 65398 2.4-hexadiene 

H44Bol 323 0.02 - - - 25410 - 19068 17783 - - - 3202 - - 1155

H45Bol 0 0.03 - - - 19518 - 22823 34336 - - - 1789 - - 20031
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Table 6.6: Results from mixed samples 05-08/2012. 
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ng ng kcounts ng ng ng ng kcounts ng kcounts kcounts kcounts kcounts kcounts kcounts

F4PS 3.17 21.12 13445 0.60 - - - - - - 24305 - - - 13500 chromatographic quality low

quartz gravel - - 7776 0.04 1.588666 0.72 6.08 44865 2.46 - - 17499 38668 1000 107970 thiophene?42min

G1Bas - - 2055 0.04 1.116419 0.12 4.26 2063 - 3883 - - - - 17968 2,3-pentadiene, methyl 

cyclohexane, methylated 

alkane/alkene?

comment
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Table 6.7: Results from quartz 05-08/2012.  
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comment

kcounts kcounts ng ng ng ng ng ng ng kcounts kcounts ng kcounts ng kcounts

HTV114 - - 0.05 - - - - - - 58379 - - - - 17437 dichlormethane

HTV 115 123473 93541 15.08 5.11 0.24 0.62 0.68 1.14 74.51 213033 66896 - 46497 - 304426

1-chlorobutene, 

bromoethane, 

bromochlormethane

HTV116 1711 462 - - - - 0.09 - - 32471 - - - - -

SM5 481 - 0.31 - - - - - - 26223 - - - - 165915

SM6 17809 - 0.19 - - - - - - 56302 - - - - 119484

1-brombutane in 

control

SM7 - - - - - - - - - 35287 - - - - 226515

1-brombutane in 

control

MU2 5440 - - - - - - - - - - - - - 461445

1- brombutane in 

control

MU4 - 10619 26.80 - - - - - 99.62 305561 6085 8.44 - 0.03 4647314

1-bromobutane, 

toluene

MU7 - - - - - - - - - - - - - - 283132
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Table 6.8: Anion concentrations of halite samples. 

 

  

H1Elt 0.54 ± 0.01 290.8 ± 51.1 19.41 ± 0.06

H2Elt 0.55 ± 0.01 220.2 ± 5.9 18.05 ± 0.54

H3Elt 0.48 ± 0.01 317.8 ± 11.5 47.05 ± 0.73

H4Elt 0.48 ± 0.00 150.2 ± 37.5 77.44 ± 0.60

H5Elt 0.55 ± 0.00 131.2 ± 30.9 17.29 ± 0.17

H6Kas 0.57 ± 0.04 0.0 ± 0.0 3.06 ± 0.16

H7Kas 0.60 ± 0.01 0.0 ± 0.0 2.34 ± 0.02

H26Bas 0.59 ± 0.00 0.0 ± 0.0 10.89 ± 0.15

H8SND 0.53 ± 0.00 30.7 ± 43.4 8.51 ± 0.40

H9SND 0.59 ± 0.00 0.0 ± 0.0 15.34 ± 0.42

H10SND 0.61 ± 0.00 0.0 ± 0.0 3.01 ± 0.07

H11SND 0.60 ± 0.00 0.0 ± 0.0 9.24 ± 0.13

H12SND 0.60 ± 0.01 0.0 ± 0.0 9.64 ± 0.24

H13Doue 0.59 ± 0.00 148.0 ± 59.4 3.61 ± 0.02

H14SP 0.58 ± 0.00 83.3 ± 0.5 3.51 ± 0.02

H15SP 0.61 ± 0.01 46.5 ± 65.8 0.28 ± 0.01

H16SP 0.61 ± 0.01 0.0 ± 0.0 0.14 ± 0.02

H17WBSR 0.60 ± 0.00 202.7 ± 30.6 3.12 ± 0.04

H18Boht 0.56 ± 0.01 40.3 ± 57.0 1.21 ± 0.02

H19Sib 0.59 ± 0.00 965.0 ± 25.9 1.48 ± 0.00

H20Sib 0.56 ± 0.00 1197.3 ± 33.5 0.39 ± 0.06

H21Sib 0.57 ± 0.01 335.0 ± 20.3 0.34 ± 0.02

H22Sib 0.59 ± 0.00 743.5 ± 16.3 9.70 ± 0.13

H23Sib 0.60 ± 0.00 237.8 ± 28.5 1.86 ± 0.00

H24Sib 0.61 ± 0.00 261.0 ± 16.0 1.60 ± 0.08

H25Sib 0.60 ± 0.00 415.0 ± 33.0 1.96 ± 0.02

H27Gor 0.61 ± 0.00 193.5 ± 3.5 4.49 ± 0.00

H28LKT 0.51 ± 0.01 0.0 ± 0.0 3.56 ± 0.00

H29WG 0.61 ± 0.01 0.0 ± 0.0 2.92 ± 0.04

H30WG 0.58 ± 0.00 0.0 ± 0.0 6.28 ± 0.26

H31WG 0.57 ± 0.00 0.0 ± 0.0 1.85 ± 0.10

H32WG 0.59 ± 0.01 0.0 ± 0.0 0.94 ± 0.03

H33BZ 0.44 ± 0.01 0.0 ± 0.0 4.91 ± 0.04

H34BZ 0.53 ± 0.00 0.0 ± 0.0 1.23 ± 0.01

H35BZ 0.59 ± 0.01 0.0 ± 0.0 0.24 ± 0.03

H36BZ 0.28 ± 0.01 0.0 ± 0.0 9.94 ± 0.16

H44Bol 0.60 ± 0.01 0.0 ± 0.0 3.44 ± 0.08

H45Bol 0.59 ± 0.00 0.0 ± 0.0 10.15 ± 0.30

H46Bol 0.60 ± 0.01 0.0 ± 0.0 1.28 ± 0.04

H37LSF 0.52 ± 0.01 202.8 ± 17.2 16.68 ± 0.17

H38LW 0.51 ± 0.01 267.2 ± 10.1 24.29 ± 0.47

H39LSB 0.58 ± 0.00 192.8 ± 29.9 4.71 ± 0.00

H40LM 0.54 ± 0.01 134.7 ± 11.8 9.75 ± 0.08

H41LK 0.56 ± 0.01 139.5 ± 16.7 9.17 ± 0.25

H42LD 0.58 ± 0.01 97.7 ± 4.2 4.47 ± 0.06

H43LO 0.59 ± 0.01 119.7 ± 4.7 7.39 ± 0.12

H47LST 0.58 ± 0.01 135.3 ± 27.1 5.13 ± 0.14

H48LHH 0.59 ± 0.01 98.6 ± 12.8 12.08 ± 1.01

H49LD 0.58 ± 0.01 29.2 ± 25.3 4.65 ± 0.44

H50LO 0.59 ± 0.01 57.8 ± 50.1 10.38 ± 0.16

 SO4
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Br-
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Table 6.9: Organic carbon concentrations of halite samples. 

 

  

sample ID

H1Elt x 0.46 ± 0.12

H2Elt 0.38 ± 0.22

H3Elt  x 0.56 ± 0.04

H4Elt   0.36 ± 0.12

H5Elt 0.46 ± 0.02

H6Kas untreated 0.36 ± 0.17

H7Kas 0.24 ± 0.05

H8SND x 0.19 ± 0.01

H9SND x 0.46 ± 0.07

H10SND 0.11 ± 0.03

H11SND x 0.16 ± 0.11

H12SND x 0.09 ± 0.06

H13Doue 0.14 ± 0.02

H14SP 5.26 ± 0.27

H15SP x 0.80 ± 0.09

H16SP 1.27 ± 0.57

H17WBSR 0.74 ± 0.20

H18Boht 9.00 ± 0.08

H19Sib 0.42 ± 0.09

H20Sib 0.22 ± 0.09

H21Sib 5.57 ± 0.04

H22Sib 0.27 ± 0.13

H23Sib 2.47 ± 3.34

H24Sib 0.20 ± 0.08

H25Sib 0.24 ± 0.05

H27Gor 0.21 ± 0.02

G1Bas 0.09 ± 0.00

G2Bas 0.25 ± 0.08

mg/g

organic carbon
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Table 6.10: Examples of 

aliphatic and aromatic 

hydrocarbons from FIs. 

‘Grinding’ as a treatment 

implies that these 

measurements were 

performed with the system 

as presented in Chapter 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

compound 

name

formula structure martix treatentment reference

methane CH4

CH4

halite grinding e.g. Goldstein, 

2001; see section 

1.4 

ethane C2H6 halite grinding Krieger, 2014

ethene C2H4
halite grinding Krieger, 2014

propane C3H8S halite grinding Krieger, 2014

propene C3H6 halite grinding Krieger, 2014

butane C4H10 halite crushing, 

heating

Sevensen et al., 

2009

isobutane C4H10
halite grinding Krieger, 2014

1-butene C4H8
halite grinding Krieger, 2014

cis-2-butene C4H8 halite grinding Krieger, 2014

trans-2-

butene
C4H8 halite grinding Krieger, 2014

2-butyn C4H6 halite grinding Krieger, 2014

1-butene-3-

yne
C4H4 halite grinding Krieger, 2014

1,3-

butadiene
C4H6 halite grinding Krieger, 2014

2-

methylbuta-

1,3-diene

C5H8 halite grinding Krieger, 2014

2,2-

dimethylbut

ane

C6H14 halite grinding Krieger, 2014

3-methyl-1,4-

pentadiene
C6H10 halite grinding Krieger, 2014

3-methyl-1-

pentene
C6H12 halite grinding Krieger, 2014

methylcyclo

pentane
C6H12 halite, 

dolerite 

sill

grinding Dutkiewicz et al., 

2004 ; Krieger 

2014

3-

methylpenta

ne

C6H14
halite grinding Krieger, 2014

2,2-

dimethylpen

tane

C7H16 halite grinding Krieger, 2014

cyclohexane C5H12 halite grinding Krieger, 2014

methylcyclo

hexane
C7H14

halite grinding Krieger, 2014

3-

methylhexa

ne

C7H16 halite grinding Krieger, 2014

3,5-

dimethylhep

tane

C9H20
halite grinding Krieger, 2014

benzene C6H6 halite, 

dolerite 

sill

crushing, 

heating

Sevensen et al., 

2009; Dutkiewicz 

et al., 2004
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Table 6.11: VOSC from minerals. The term ‘grinding’ under treatment implies that 

these compounds were detected with the system presented in Chapter 2. 

 

 

 

 

 

 

 

 

Synthesis of MORB glass  

A basaltic glass was synthesized representing a chemical composition of average primitive 

MOR basalt. Pure analyzed oxides (MgO, MnO, FeO, Al2O3, TiO2 and SiO2) and carbonates 

(Na2CO3, K2CO3, CaCO3) were molten in a Pt crucible at 1500°C, cooled on air, ground and 

molten again. The chemical composition was determined by  electron microprobe analysis on 

a polished surface using a Cameca microprobe (SX100) with 15 kV accelerating voltage, 5 nA 

beam current and a defocused beam with 10-30 µm in diameter. The normalized composition 

of the starting material is 49.67 % SiO2, 0.87 %  TiO2, 16.08 % Al2O3, 8.64 % FeO, 0.15 % 

MnO, 9.78 % MgO, 12.45 % CaO, 2.28 % Na2O and  0.08 % K2O. 

 

(source: Stefan Dultz – personal communication) 
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Figure 6.1: Stainless steel cylinder used to evacuate cleaned mineral samples before GC-

MS analysis. 
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Figure 6.2: Construction drawing of moveable rack for gas mixing station/sample 

evacuation station. 
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Figure 6.3: Construction scheme of sample evacuation/gas mixing station. 
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Figure 6.4: Construction drawings of aluminum heating block for water trap. 
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