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Zusammenfassung

In der vorliegenden Arbeit werden mathematische Modelle angewendet, um Erken-
ntnisse tiber die Aktivierung des JAK/STAT1 Signalweges und iiber die Regulation
von Zellzyklusentscheidungen im Neuroblastom zu gewinnen.

Die Familie der STAT Transkriptionsfaktoren spielt eine wichtige Rolle in der an-
tiviralen Antwort der Zelle. In mehreren Tumoren findet man eine Dysregula-
tion des JAK/STAT1 Signaliibertragungsweges. Um die Funktionsweise und die
Architektur dieses Signalweges weitreichender zu verstehen, wird ein auf Raten-
gleichungen basierendes, mathematisches Modell aufgestellt und an experimentelle
Daten angepasst. Die Simulationen zeigen, dass die Aktivierung des Signalweges
zeitlich eng an den Rezeptorstimulus gekoppelt ist und durch eine Kombination
von schnellem intrazelluldren Transport und kurzen Aufenthaltszeiten der STAT1
Molekiile im Nukleus aufrechterhalten wird. Die Affinitdt der STAT1-Dimerisierung
hat einen signifikanten Einfluss auf die Effizienz und die Antwortcharakteristik des
Signalweges. Dies deutet darauf hin, dass die Protein Wechselwirkungen im Laufe
der Evolution stets so eingeschriankt waren, dass die Funktionalitit des Signalweges
sichergestellt war. Ferner wird gezeigt, dass die Aktivierung des Signalweges robust
unter Anderung des nuklearen Exports von STAT1 ist. Die spezifische Architek-
tur des JAK/STAT1 Signalweges unterdriickt kleine Stimuli und erlaubt sowohl
effiziente Aktivierung, als auch ein schnelles Abschalten des Signalweges.

Das Neuroblastom ist der haufigste extrakranielle, solide Tumor im Kindesalter.
Der Krankheitsverlauf reicht von spontaner Tumorriickbildung bis hin zur Entwick-
lung von aggressiven, therapieresistenten Tumoren. Eine Amplifikation des MYCN
Onkogen ist mit einer schlechten klinischen Prognose assoziiert und bewirkt sowohl
starke Proliferation, als auch verminderte Reaktion auf DNS-Schaden in Neurob-
lastomzellen. Mittels mathematischer Modelle der regulatorischen Netzwerke von
p53-MDM2 und E2F1-pRB wird die Wirkungsweise von MYCN auf die Zellzyk-
lusentscheidungen untersucht. Aufgrund der Vernetzung des p53-MDM2 Modules
zeigt der p53-MDM2 Gleichgewichtszustand ein universelles Verhalten, welches mehrere
qualitativ unterschiedliche Kinetiken beschreiben kann. Es zeigt sich, dass es plau-
sibel ist, dass alleine die MYCN-Deregulation fiir den gestérten G1-S Ubergang
verantwortlich ist. Sowohl in Simulationen, als auch im Experiment, kann das Bi-
furkationsdiagramm des G1-S Uberganges genutzt werden, um Eigenschaften dieses
Uberganges abzulesen. In Zellen mit erhéhten MYCN und CDK4 Konzentratio-
nen wird eine Verschiebung des G1-S ﬂberganges zu niedrigen Stimuli beobachtet
und das Modell verbleibt auch nach DNS-Schaden in einem aktivierten, prolifera-
tiven Zustand. Weiterhin wird gezeigt, dass mittels des Konzeptes von Steady-Age-
Verteilungen FACS-Daten von Zellzyklusverteilungen in Neuroblastomzellen analysiert
werden konnen. Diese Analyse ergibt, dass die Uberexpression von MYCN in SH-
EP Zellen eine Verkiirzung der G1-Phase bewirkt. Das vorgestellte Konzept kann
in Zukunft als Standardmethode der Auswertung solcher Daten dienen.



Summary

We utilized the framework of mathematical modeling to gain insights into two dis-
tinct biological systems, the JAK/STAT1 signal transduction pathway and the reg-
ulation of cell cycle decisions in neuroblastoma.

The family of JAK/STAT signaling pathways plays a key role in immunity. In
several tumors dysregulation of the JAK/STAT1 pathways is observed. To inves-
tigate the functionality of this signal transduction pathway and eventually under-
stand basic building principles, we establish a databased mathematical model of the
JAK/STAT1 pathway by means of kinetic rate equations. We showed that pathway
activation is coupled tightly to the receptor stimulus at the cost of signal strength.
The nuclear signal is sustained by a combination of fast translocation rates and short
nuclear residence times of activated STAT1 protein molecules. Model simulations
reveal that STAT1 dimerization kinetics have a strong impact on both efficiency
of signaling and response kinetics, implying that protein-protein interactions are
evolutionary constrained to ensure network functionality. Measurements of STAT1
transport mutants validated the mathematical model and showed that STAT1 ac-
tivation is robust against enhanced nuclear export. By the kinetic design of the
pathway input noise is suppressed, the pathway can be efficiently activated and
rapid relaxation after stimulus withdrawal is ensured.

Neuroblastoma is the most common extracranial solid tumor of infants and children.
Its course of illness varies between spontaneous regression and malignant, aggressive
progression. Amplification of the MYCN oncogene is predictive for poor clinical
outcome in neuroblastoma. MYCN-amplified cells proliferate strongly and exhibit
impaired cell cycle arrest. To rationalize the impact of MYCN on the regulatory
networks, governing cell cycle progression and DNA damage response, we established
mathematical models of the regulatory modules, p53-MDM2 and E2F1-pRB, by
means of mass action kinetics. The inherent regulation in the p53-MDM2 module
leads to an universal form of the p53-MDM2 steady state and can account for several
qualitatively different behaviors upon p53 activation. We show that it is plausible
that the weak G1 arrest in the MYCN-overexpressing cells is due to a MYCN-
induced protein level imbalance in the p53-MDM2 module. Furthermore we argue
that the bifurcation diagram of the G1-S transition model can both theoretically as
well as experimentally be used as an output to analyze the restriction point behavior
in neuroblastoma. It shows that for cells with relatively high MYCN level and an
enhanced CDK4 signal the bistable region is shifted to low stimuli and the model
stays in an activated state even under DNA damage. A mathematical framework
is provided, which potentially can serve as a future standard method to extract
underlying cell cycle parameters from combined FACS-measured cell cycle phase
distributions and cell growth rate measurements. Analysis of measurements in the
SH-EP neuroblastoma cell line showed that conditionally upregulated MY CN mainly
changes the length of the G1 phase.

vi



1 Materials and Methods

In this chapter the used algorithms are introduced and the experimental procedures
are given. For numerical calculations mostly the software MathWorks MATLAB
and Mathematica from Wolfram Research were used.

1.1 Fitting with Levenberg Marquard algorithm and
simulated annealing

Dependent on the problem appropriate fitting algorithms were implemented to deter-
mine the underlying parameter sets. The mathematical model of the JAK/STAT1
pathway was quite well defined by measurements of relevant parameters. There
were just six remaining parameters to be determined by fitting and already the lo-
cal Levenberg Marquard algorithm [74, 86] gave good results. To verify the global
minimum and to get confidence intervals for the parameters a Markov chain Monte
Carlo method is used additionally (see next section). The relevant parameters for
the mathematical models in the second part of the work are mostly unknown. Thus,
the amount of data is quite low for the number of free parameters. So that the fit-
ting was carried out by either manual qualitative fitting or by a simulated annealing
algorithm [62].

1.1.1 Markov chain Monte Carlo

To calculate confidence intervals we used a Markov chain Monte Carlo method [93]
implementing the Metropolis-Hastings algorithm [92, 52, 109] with a normal proposal
distribution. It is tuned such, that the acceptance rate for every step is around one
third which is empirical a good value to get a fast convergence. We let the chain run
for at least 210 steps to account for the burn-in time. The actual chain consisted of
4.5-10% steps from which for the statistics every tenth point was taken to eliminate
correlations. The convergence could be seen by eye and at the fact that the mean
x?2 of the points in the chain did not get smaller.
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1.2 Gillespie simulation

A stochastic simulation of the model was performed by implementing the Gillespie
algorithm [43] in C++ to test for stochastic effects and keep track of the times the
molecules took for various processes. For example we were interested in how long it
takes until an imported phospho-STAT1 molecule is dephophorylated in the nucleus.
For every state s in the nucleus we defined at every time step t; in the algorithm a
matrix M7 with a row for every molecule in the state. For bookkeeping we needed
one entry for the time at which the molecule was imported into the nucleus and
one entry for the time it entered the state. At every transition leaving the state s
a molecule was drawn randomly from M and the time in the state could be read
out. From this we got statistics over the times spent in the states. For example
we could deduce for every STAT1 getting dephosphorylated in the nucleus the time
spent in the nucleus before. By also keeping track of the history of every molecule
it was possible to access the time a STAT1 protein took from time point of import
as phospho dimer to the time getting back into the cytoplasm. As time step for the
Gillespie algorithm 0.1 minute was taken.

1.3 Bifurcation analysis

The bifurcation analysis was carried out by using AUTO-07p a fortran based soft-
ware to numerically calculate bifurcation diagrams and continuations for ordinary
differential equation systems. To plot the results, the visualization tool XPPaut was
used. After export from XPPaut and import into mathematica for the noncomplex
model of E2F1-pRB interaction a comparison to the semi-analytical solution was
possible.

1.4 Experimental setup JAK/STAT1 pathway

As far as not stated otherwise all experiments investigating the JAK/STAT1 path-
way were performed by our collaborator Thomas Meyer, Universitdt Gottingen.

1.4.1 Cell culture

HeLa and U3A cells were cultured at 37 °C in a humidified 5% CO2 atmosphere in D-
MEM supplemented with 10% fetal calf serum (Gibco), 1% penicillin/streptavidin
and 1% amphotericin. Cells grown on poly-L-lysine-coated glass coverslips were
transiently transfected with Lipofectamine plus (Gibco) and twenty-four hours later
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stimulated with 5 ng/ml human IFN-vy (Biomol). In some experiments cells were
additionally incubated with 500 nM staurosporine (Sigma), 10 ng/ml leptomycin B
(LMB, Sigma), or a combination of 0.8 mM sodium vanadate and 0.2 mM H3Os.

1.4.2 Generating the wNLS, sNLS and NES cell line

A STAT1 import mutant with substitutions of two lysines in position 410 and 413
to glutamic acids was used as a exclusively cytoplasmic STAT1 mutant, ANLS [94].
The STAT1-NES mutant was cloned by ligating a PCR fragment amplified from
pGST-STAT1367-427-GFP [94] into the BamHI-Notl restriction sites of pSTAT1-
GFP. The resulting plasmid pSTAT1-NES-GFP coded for a transferable NES activ-
ity containing amino acids 367-427 of STAT1 situated between the cDNAs for wild-
type STAT1 and GFP. Upon stimulation with IFN-~v, the total amount of nuclear
STAT1-NES remained much below the accumulation achieved in the wild-type. This
is not due to a phosphorylation defect, as STAT1-NES becomes strongly tyrosine-
phosphorylated. Nuclear accumulation upon IFN-v stimulation was restored in the
STAT1-NES mutant when nuclear export was blocked by the simultaneous addi-
tion of LMB. These findings showed that although phosphorylated STAT1-NES was
imported into the nucleus, the presence of the heterotopic export signal prevented
sufficient nuclear buildup. To demonstrate that the lack of nuclear accumulation
of total STAT1-NES in the absence of LMB is due to rapid export of the mutant
protein, we stimulated the cells with IFN-v and at the same time blocked dephospho-
rylation by adding vanadate. Under this condition, phospho-STAT1-NES again did
not accumulate in the nucleus whereas STAT1-WT did. The additional inhibition
of nuclear export by LMB rescued the defective nuclear accumulation of STAT1-
NES. Taken together, these data demonstrate that phospho-STAT1-NES enters the
nucleus, but cannot be retained there due to its rapid export as a phosphopro-
tein. Plasmids coding for STAT1 import mutants (STAT1-wNLS, STAT1-sNLS and
STAT1-LSN) were generated by phosphorylating annealed oligonucleotides in a T4
polynucleotide kinase reaction and subsequently cloning them into the BamHI site of
pSTATI1-GFP, which is situated between the cDNAs for STAT1 and GFP. pSTAT1-
wNLS coded for a mutated NLS derived from the large T antigen of SV40 virus
(PKKKAKVE; mutation underlined) and pSTAT1-sNLS for a tandem arrangement
of the wild-type SV40 NLS (PKKKRKVE), while in pSTAT1-LSN the sequence was
permuted (PKEAKVKK). wNLS and sNLS were chosen by assaying the subcellular
STAT1 distribution using fluorescence microscopy.

1.4.3 Fluorescence microscopy

For direct microscopical examination the cells were fixed in 3.7% paraformaldehyde
in phosphate-buffered saline (PBS) and subsequently, the nuclei were stained with
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5 mg/ml Hoechst 33258 (Sigma). Fluorescence microscopy was performed using a
Zeiss Axioplan microscope (Zeiss) equipped with appropriated fluorescence filters.

1.4.4 Western blotting

Phospho-STAT1 was detected in cell lysates by means of immunoblotting using a
polyclonal antibody specific for phospho-STAT1-Tyr701 (New England Biolabs) fol-
lowed by incubation with a horseradish peroxidase-conjugated secondary antibody.
After stripping off bound antibodies, the blots were reexposed to the polyclonal
STAT1-specific antibody C-24 (Santa Cruz), as described in [94]. The intensities
of the band signals were densitometrically measured using the enhanced chemilumi-
nescence reaction and specific phosphorylation levels were calculated by determining
the ratio of phospho-STAT1 to STATT.

1.4.5 Reverse transcriptase-PCR

The transcriptional activities were assessed by means of reverse transcriptase (rt)-
PCR. Similar cell numbers of transfected U3A cells expressing either wild-type or
mutant STAT1 were stimulated with IFN-v for the indicated times. Gene-specific
primers for six endogenous STAT1 target genes as well as for statl and gapdh were
used to amplify the generated cDNAs, as has been described [94]. The relative
expression of a transcript was normalized to the expression of gapdh as determined
for each sample.

1.5 Experimental setup Neuroblastoma

The experiments with the neuroblastoma cells were either performed by the au-
thor, the master student Elena Cristiano or members of the Frank Westermann lab
(department tumor genetics, DKFZ Heidelberg).

1.5.1 Caell culture

Cell lines were cultivated in D-MEM supplemented with 100 U/ml Penicillin/Strepto-
mycin, 0,2% Amphotericin B, and 10% FCS at 37 °C, in 5% COy atmosphere in a
humidified cell culture incubator. Cell culture medium was substituted every 3-4
days, and cells were split at ratio 1:5 when they reached subconfluent density. Ad-
herent cells were removed from the substratum by versenization. Visual observation
of cell morphology was conducted under the Zeiss Axiovert microscope, equipped
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with phase contrast and bright field optics. The SH-EP T21IN cell line condition-
ally expressing a MYCN transgene under the control of a tetracycline-repressible
element [80] and the IMR5-75 C2 cell line [141] conditionally expressing MYCN
siRNA also under the control of tetracycline [157] were incubated at least 24 hours
before treatment either with tetracyclin (1 mg/ml) solved in ethanol or with just
ethanol to induce or knock down MYCN. Treatment to induce DNA damage was
done with doxorubicin 0.1 pg/ml. Treatment to target MDM2 and CDK4 was done
with Nutlin-3 and/or CDK4 inhibitors [15] at concentrations of 0.1, 1 or 10 M in
culture medium.

1.5.2 Colony formation in soft agar

Cells were suspended in 3 ml of RPMI-1640 medium 10% PCS containing 0.35%
agar and layered above a 3-ml base layer of 0.5% agar in the same medium in 5-cm
tissue culture dishes. Cells were fed once a week with 0.5% agar in medium, and
visible colonies (>0.2 mm) were counted after incubation for several days.

1.5.3 Quantitaive real time RT-PCR

All quantitaive real time RT-PCRs (qRT-PCR) were performed on an ABI PRISM
7700 Sequence Detection System (Applied Biosystems) using the standard curve
method for quantification (user bulletin no. 2, ABI PRISM 7700 SDS). To determine
mRNA expression of genes, SYBRgreen based qRT-PCR was performed using cDNA
as template. To prevent amplification from contaminating genomic DNA, primer
sequences were selected allowing intron spanning amplification. PCR reactions were
run as duplicates for each sample and as triplicates for determination of standard
curves. For normalization, the expression level of the target gene was divided by the
geometric mean of expression levels of the house keeping genes [56].

1.5.4 Western blot

For preparation of total protein samples, cells were harvested by versenization (for
analysis of cells induced with cytotoxic agent, both floating and adherent cells were
collected), washed with ice cold PBS buffer supplemented with ImM PMSF, and
resuspended in ice-cold protein extraction buffer. To digest high molecular weight
genomic DNA, samples were treated with benzonase for 30 minutes at 37 °C. In-
soluble proteins and membranes were removed from the samples by centrifugation
at 8000x for 5 minutes. Total amount of protein in the resulting samples was de-
termined by the method of Bradford [9] using protein assay kit. Prior to loading
onto a gel, the samples were mixed with 2x Laemmli sample buffer and boiled for
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5 minutes. Routine SDS-PAGE was peformed in reducing conditions (samples were
treated with 2-ME or DTT) on 10-20% gradient mini gels in Tris-glycine buffer sys-
tem (by Laemmli). Gradient gels were prepared with the Multi Cast Unit and the
Gradient former (BioRad), according to the suppliers’ protocol. To prepare eight
separating gels, 25 ml of the light (10% PAA) and heavy (20% PAA) gel solutions
were made. The light gel solution was filled in the mixing chamber of the gradient
former, and the heavy gel solution was poured into the reservoir chamber. First,
the bottom valve of the multi cast chamber was opened, allowing the 10% PAA to
fill the glass sandwiches to approximately 5 mm heights. Then the gradient for-
mer interconnecting valve was opened, allowing the heavy gel solution to flow into
the mixing chamber. Resulting discontinues PAA gradient was filled in the glass
sandwiches under the layer of 10% PAA. Resulting 10-20% PAA gradient gels were
overlaid with HoO-saturated isobutyl alcohol and allowed to polymerize for 2 hours.
Approximately 20-40 pg of total protein in 1x Laemmli sample buffer were loaded
into each slot. For monitoring of the separation and determination of protein size,
the Prestained BenchMark and the biotinylated protein ladders were used. Protein
separation was performed at 45 mA per gel with constant current for approximately
1 hour. Proteins, separated by SDS-PAGE, were electro transferred onto retentive
membranes using the tank method. Proteins were transferred onto 0.2 pm nitro-
cellulose membranes. Electro transfer was performed at 4 °C in 1x transfer buffer
for 3 hours at 150V /450 mA or overnight at lower current. After the transfer, the
efficiency of the transfer and equal loading were verified, if necessary, by reversible
staining of the membranes with Ponceau S. The membranes were incubated with
1x Ponceau S for 5 minutes at RT with slight agitation, then rinsed several times
with 5% acetic acid, until desirable contrast of stained protein bands was achieved.
Prior to immunodetection, the stain was removed by several washings in HyO. In
standard immunodetection of proteins blotted onto nitrocellulose membranes, the
membranes were first blocked for 1 hour with unspecific proteins (5% fat-free milk
powder) to prevent antibody binding to the membrane. The primary antibody was
added in a concentration of 1-10 pug/ml in an aqueous solution containing 5% fat-free
milk powder and incubation was performed at 4 °C over night. After rinsing with
PBS (3 times for 5 minutes), the membranes were incubated for 30 minutes with
a secondary HRP-conjugated antibody, diluted 1:5000 in 5% fat free milk powder
solution. After final washing with PBS (3 times for 5 minutes), protein bands were
detected by chemiluminescence, using the BM Chemiluminescence kit.

1.5.5 Generating the SH-EP T21N p21mCherrry cells

We used a plasmid containing the p21 promoter fused to the fluorophore mCherry,
a nuclear localization signal (NLS) and a PEST sequence to shorten the mCherry
half live (received from Alexander Lower, The Berlin Institute for Medical Systems
Biology, plasmid map see appendix A.5) to generate a clone of the conditionally
MYCN expressing SH-EP T21IN cell line for single cell live microscopy. SH-EP
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T21N cells were transfected at 30% confluency with 3.5 ug of DNA (Qiagen effectene
transfection kit). The polyclonal positive population was selected with 7.5 pug/ml
blasticidin and seeded in 96 well plates at the concentration of 0.5 cells, 1 cell and 2
cells per well. After one week, the wells containing colonies from single clones were
selected and the cells were expanded. The clones expressing the mCherry construct
were preselected by eye (inverted fluorescent microscope Olympus CKX41). The
second round of selection was based on: growth rate and responsiveness to DNA
damage. Only the clones that showed the same growth rate as SH-EP T21N cells
and showed inducible fluorescence upon DNA damage (performed with 0.1 pg/ml
of doxorubicin) were selected.

1.5.6 Fluorescent single cell live microscopy

SH-EP T21N p21mCherry cells were grown in p-ibidi plates (35 mm) up to ~ 20%
confluency. The expression of mCherry at the single cell level was measured with
a Nikon BioStation IM at constant temperature of 37 °C with 5% of CO2. Cells
were monitored for 72 hours and the images were analyzed manually with ImageJ
in combination with an automated tracking algorithm [50]. MATLAB was used to
calculate statistics of the division time distribution and for visualization.

1.5.7 FACS

Cells were collected for cell cycle analysis in 2.1% citric acid/0.5% Tween 20 and
stained with 50 pg/ml DAPI dissolved in phosphate buffer (0.4 M NayHPO,4, pH
8.0). Approximately 50,000-100,000 cells were analyzed per run on a Galaxy Pro
Flow Cytometer (Partec) using the Multicycle software (Phoenix Flow Systems). To
evaluate apoptosis, cells were labeled with Nicoletti stain [105], and approximately
5,000-10,000 cells were analyzed on a FACS Calibur (Becton Dickinson) using the
Cell Quest software (Becton Dickinson). Measurements were acquired in F1-2 in
logarithmic mode. The number of apoptotic cells was calculated by setting the gate
to over the first three decades (100 to 103).
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2 Introduction JAK-STAT1 pathway

For nearly every cell it is of utmost importance to react appropriately to their en-
vironment ranging from environmental factors like nutrition levels to intercellular
communication via cytokines. Often the appropriate reaction of the cell includes
activation of genes. This function is carried out by several signal transduction path-
ways that transport the information into the nucleus.

2.1 The JAK/STAT pathway

The JAK/STAT pathway is a highly conserved signaling pathway mediated by cy-
tosolic tyrosine kinases, the Janus kinases (JAK), and signal transducers and ac-
tivators of transcription (STAT) proteins. The Interferon/STAT pathway is a ma-
jor player in antiviral defense; moreover aberration in STAT pathways have been
implicated in many types of cancer [13, 70, 131, 14]. The STAT family consist of
seven members with heterogeneous functions [24, 75, 107] ( STAT1, STAT2, STATS3,
STAT4, STAT5A, STAT5B, STATG6). Despite many similarities within the STAT
family members, STAT1 is best characterized with respect to the molecular events
triggered by the activation of the pathway and can serve as a model system for
canonical STAT signal transduction.

2.2 Activation of the STAT1 pathway

In an unstimulated cell STAT1 is both present in the cytoplasm and can enter the
nucleus by shuttling through nuclear pores and CRM1-mediated energy dependent
nuclear export [84, 83, 150]. The activation of the STAT1 pathway from receptor
binding of the ligand to activation of transcription comprises many steps. Upon
binding of IFN-v to its associated receptor the receptor chains dimerize leading
to autophosphorylation of the receptor chain-bound JAKs. This encompasses the
JAK-mediated tyrosine phosphorylation of STAT1 binding sites at the receptor chain
enabling the binding of the src homology 2 domain (SH2) of the STAT1 protein [126].
The bound STAT1 is targeted by another JAK-mediated tyrosine phosphorylation
at residue Thr 701. The phosphorylated STAT1 (phospho-STAT1) can (after disso-
ciation from the receptor chain) bind to another phospho-STAT1 protein and form a
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2. Introduction JAK-STAT1 pathway

homodimer via the cross interaction of the phosphorylated Tyr701 from one STAT1
with the SH2 domain of the other STAT1 (SH2 dimer). There is a second con-
formational different STAT1 homodimer which is bound by N-terminal interactions
(N-terminal dimer). The formation of the N-terminal dimer seems to be indepen-
dent of STAT1 phosphorylation. Interestingly, the phospho-STAT1 is not able to
shuttle via the nuclear pore complex or CRM1-mediated between cytoplasm and nu-
cleus [95]. However the SH2-dimer are imported into the nucleus in association with
importin-a5 and importin-g [124, 35, 102]. In the nucleus the SH2-dimers can bind
to cognate regulatory DNA sequences, IFN-gamma-activated sites (GAS) [28]) and
unspecifically to DNA [120, 126, 163] and activate transcription. The DNA binding
is enhanced by interaction between DNA-bound STAT1 dimers. Both in the cyto-
plasm and in the nucleus phospho-STAT1 is targeted by yet unknown phosphatases
[51, 140, 139, 97]. By binding to the SH2 domain, the Tyr 701 phosphorylation is
saved from dephosphorylation.

2.3 STAT1 interactions

In addition to the activation of STAT1 by JAK there are several additional regula-
tions modulating the activation of the STAT1 pathway. STAT1 protein is targeted
by several further posttranslational modifications such as serine phosphorylation
[27, 65, 148] and sumotylation [29, 143, 127, 168]. STAT1 not only forms homod-
imers but also heterodimerizes with STAT2, which activate different target genes as
compared to STAT1 homodimers. Furthermore STAT1 is involved in NF B signaling
(having a proapoptotic effect) [66]. By stimulation of the JAK/STAT1 pathway also
a negative feedback is activated. STAT1 mediates SOCS1 gene expression (mem-
ber of suppressor of cytokine signaling proteins) [25, 46] which suppresses STAT1
activation. SOCS]1 inhibits the catalytic activity of JAK by direct interaction and
by targeting proteins (e.g. receptor and JAKSs) for proteosomal degradation [33].
Further inhibitors of STAT1 activity have been identified including PTAS (protein
inhibitor of activated STAT) and SLIM (STAT interacting LIM protein). Both
PIAS1 and PIASy interact with activated STAT1 upon cytokine treatment. PIAS1
binds to tyrosine phosphorylated dimeric STAT1 and it has been proposed that it
is suppressing the DNA-binding activity of STAT1 [77]. SLIM (STAT interacting
LIM protein) was identified as a ubiquitin E3 ligase for STAT1 [137].
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3 Mathematical model of the
JAK/STAT1 pathway

In this chapter the mathematical model of the JAK-STAT1 pathway and the cor-
responding biochemical reactions involved in the model are introduced. The differ-
ential equations are given and the model parameters are estimated. Many of the
relevant parameters were already directly or indirectly measured. The remaining six
parameters were determined by fitting the model to a data set containing STAT1
phosphorylation kinetics and intracellular STAT1 distributions.

3.1 Network model and comprised reactions

We established a mathematical model of the JAK/STAT1 pathway accounting for
the processes involved in the subcellular localization, the activation and deactiva-
tion of the STAT1 protein including receptor binding and DNA binding (figure
3.1). The total number of STAT1 molecules per cell were estimated from Western
blot-measured pancellular STAT1 concentration ciot = 40 nM. An approximate cell
diameter of 20 pm and assuming spherical shape of the cells yield ~ 10> STAT1 pro-
tein molecules per cell. Due to the high number of proteins, the reactions involved
could be simulated deterministically. This was indeed shown by a comparison of the
deterministic solution with the solution of a stochastic simulation (see section 4.2).

The processes depicted in figure 3.1 were formulated in terms of dynamical equation
using mass action kinetics. The investigated processes were simulated by ordinary
differential equations, assuming the intracellular diffusion to be much faster than
the timescale of the reactions [76]. The resulting 19 kinetic rate equations are given
in the appendix (section A.1).

3.1.1 Compartment volumes and STAT1 nucleo-cytoplasmic shuttling

In an unstimulated cell, both the nucleus and the cytoplasm are accessible for the
latent STAT1 through the nuclear pore. Additionally STAT1 is actively transported
into the cytoplasm by the CRM1 protein [36, 37]. Differences in compartment
volumes play an important role modeling transport processes. Clearly the resulting
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A Stat1

/Tyr701
~8H2-pocket
N-terminus

cytoplasm

-+—— phosphorylation
-+—— dephosphorylation
-«—— dimerization

)\ 7 cytoplasm

i
?«——*BA !G!@!@
= e ] ] s | s
. B \?r_’ Bn*_ ! °_, !@! nucleus
>N LAY

nucleus

Figure 3.1: Pathway design of the JAK/STAT1 pathway. (A) Network model for
STAT1 translocation in unstimulated cells. Latent STAT1 can shuttle in between nu-
cleus and cytoplasm both as monomer and N-terminal dimer. The N-terminal dimer
is formed with the two STAT1 in an antiparallel alignment. CRM1 denotes energy-
dependent nuclear export via CRM1. (B) Network model for interferon-y (IFN-v)
stimulated STAT1 signal transduction depicting nuclear import and export of latent
STAT1, activation of IFN-vy receptor/JAK complexes, STAT1 binding to activated
IFN-v receptor/JAK complexes, tyrosine phosphorylation (red arrows), dimerization
of STAT1 via phosphotyrosine/SH2 interactions (STAT1 aligns parallel in the SH2
dimer) and N-terminal interactions (blue arrows), nuclear import of phospho-STAT1
via importins, specific (GAS) and unspecific binding of phospho-STAT1 dimers to DNA
and cytoplasmic and nuclear dephosphorylation (green arrows).

concentration change due to the flow of a particular protein entering or leaving
a certain compartment, depends on the compartment volume. Consequently, the
compartment volumes enter the rate equations for the transport processes. As the
number of STAT1 molecules is assumed to be conserved on the relevant time scales
it follows
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where Vi and Veyy are the volume of the compartments (nucleus and cytoplasm)
and Shuc, Seyt are the corresponding STAT1 concentrations. The differential equa-
tions for the nucleo-cytoplasmic transport with rates k12 and k13 then reads

at Snuc = p (kl?)Scyt - klZSnuc)
at Scyt = _k13scyt + leSnuc,

where p enters, as the concentration is not a conserved quantity in the sense that
Secyt+Snuc # const. and the concentration flow is dependent on the reference volume.
By analyzing z-stacks of microscopy images of U3A cells the ratio of cytoplasmic to
nuclear volume p was estimated to p = 3. This is in line with recently published
data [101]. Measuring the ratio X of STAT1 concentration in the compartments at
steady state
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yields the transport rates and the concentrations in the respective compartments at
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3. Mathematical model of the JAK/STAT1 pathway

with ¢y the pancellular STAT1 concentration. We estimated the half-time from
microinjection measurements , where fluorescent STAT1 was microinjected into the
different cell compartments and the corresponding dynamics of redistribution could
be monitored with the help of specific antibodies [83]. The time course of redis-
tribution and its half-time could be estimated to ¢,/ ~ 0.4 min (Thomas Meyer,
private correspondence). Western blot measurements of fractionated resting cells
showed a ratio of nuclear to cytoplasmic STAT1 of X = 3/7. Inserting this into
equation 3.1 gives the rate for energy independent nuclear import ki3 = 0.2 min~*
and the sum of the rate for energy independent nuclear export and the rate for
CRM1 mediated nuclear export ki = ki2a + k12p = 0.5 min~'. The rates of ty-
rosine phosphorylation and dephosphorylation were assessed by means of Western
blotting, demonstrating a maximal phospho-STAT1 fraction of 30-35% in both HeLa
cells and STAT1-reconstituted U3A cells under standard stimulation with 5 ng/ml
interferon-y (IFN-v) [156].

3.1.2 Receptor kinetics and STAT1 phosphorylation

The activation of the IFN-y bound receptors by JAK mediated phosphorylation is
incorporated in the model as one reversible reaction with rate constants k1 and ko,
where the concentration of JAK is assumed to be constant. Also receptor deacti-
vating processes like internalization are included by a receptor degradation reaction
(rate constant k3). We used an estimate for the total number of IFN-v bound
receptors (104 receptors) and fitted the rate constants (section 3.2). The JAK phos-
phorylated tyrosine residues at the receptor are binding sites for the STAT1 protein
and we modeled the STAT1 phosphorylation at the receptor via reversible binding
of STAT1 to the receptor and a one step, unidirectional phosphorylation reaction of
the bound STAT1 which was also fitted (k5). The binding rates of STAT1 to the
activated IFN receptor/JAK complex (k4, k—4) have been measured by surface plas-
mon resonance [47]. However, to correctly reproduce the phosphorylation kinetics,
we had to use a two-fold higher on-rate k4 = 1.6 - 1072 min~! nM~!. This maybe
due to experimental errors or STAT1 dimerization.

3.1.3 Dimerization

STAT1 forms two conformationally different homo dimers either via SH2 domain
interaction or by N-terminal binding. Using sedimentation experiments with ultra
speed centrifuges the affinity as well as the rates of dimer formation were mea-
sured in vitro [156]. The result for the dissociation constant of SH2 binding was
the same as the result for the dissociation constant of N-terminal binding (both 50
nM). Unfortunately implementing the measured binding rates it was not possible
to reproduce the observed kinetics. Due to the proposed network, dimerization is
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3.1. Network model and comprised reactions

a prerequisite for nuclear import and dissociation of the dimer is necessary before
dephosphorylation in the nucleus. Thus, the dimerization dynamics are limiting the
pathway activation and deactivation times. To fit the measured phosphorylation and
dephosphorylation kinetics, we had to increase both dimerization rate constants kg
and ki14; and dimer dissociation rate constants k_g and k_14 by a factor of 20, leav-
ing the dissociation constant fixed. This yielded a mean half-life for the dimers of
approximately one minute. There are several possible explanation for this discrep-
ancy. On one hand the rates were measured in vitro and might well differ from the
in vivo rates. Furthermore, the range of the measured rates are at the border of the
measuring range of the method which might result in an inaccuracy in the values.
In addition it might indicate a different network topology (see section 4.6).

3.1.4 STAT1 dephosphorylation

The tyrosine phosphorylation of STAT1 at residue Tyr 701 is targeted by yet un-
known phosphatases both in the nucleus and in the cytoplasm. The phosphorylation
of the STAT1 in the SH2-dimer conformation seems to be stable and not prone to de-
phosphorylation [91] whereas the N-terminal dimer probably can be targeted [156].
The rate constants of the dephosphorylation in the cytoplasm (k7) and in the nucleus
(k11) are not known and determined by the fitting procedure (section 3.2).

3.1.5 DNA binding

STAT1 binds DNA both specifically at gamma interferon activation sites (GAS) and
unspecifically. The strength of specific binding to the GAS sites with rate constants
kg and k_g has been determined previously [151, 163]. Therefore the rate constants
were set to kg = 0.06 min~'nM™! and k_g = 0.05 min~'. The exact number of
GAS sites is not known and we estimated it to be 3000 which is around 1/30 of the
total amount of STAT1. However, an exact definition and estimate of the number
of GAS sites is not available. The unspecific binding to DNA (rate constants kg
and k_j9) was estimated by FRAP measurements ([95] and [5]) to be very unstable
kio = 2 min~! and k_1p = 5 min~!. Due to the high number of unspecific binding
sites the concentration of unspecific binding sites is relatively independent of bound
STAT1 and we included the concentration in the rate constant k15. We did not
account for the possibility of the STAT1 dimers to form tetramers [151, 156]. The
tetramerization stabilizes binding of STAT1 to DNA and is included in the DNA
binding parameters.
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3. Mathematical model of the JAK/STAT1 pathway

3.2 Fitting of the remaining parameters

There were no estimates for the following rates: receptor activation/ inactivation/
internalization, STAT1 phosphorylation at the receptor, STAT1 dephosphorylation
in the cytoplasm and STAT1 dephosphorylation in the nucleus (ki, k2, ks, ks, k7
and k11). To determine these remaining parameters the model was fit using the
Levenberg-Marquardt Algorithm (section 3.2) simultaneously to time course mea-
surements of phosphorylation and dephosphorylation (figure 3.2); and intracellular
distributions of STAT1 under resting and stimulated conditions (figure 3.3). The
time courses were measured both in STAT wild-type (STAT-WT) cells and in cells
expressing mutated STAT1 which is bound to the cytoplasm, STAT-ANLS, (see
section 1.4).
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Figure 3.2: (A) The phosphorylation kinetics both for STAT1-WT and STATI-

ANLS after IFN-v stimulation. (B) The dephosphorylation kinetic for STAT1-WT
and STAT1-ANLS. After 45 minutes of IFN-v stimulation cells were treated with a ki-
nase inhibitor (at 0 minutes). Time course of protein levels was determined by Western
blotting and used to determine the model parameters with a fitting algorithm (simu-
lation with the best-fit values: black curve for STAT1-WT and red dashed curve for
STAT-ANLS).

To quantify the uncertainty of the best-fit parameter values a Markov chain Monte
Carlo (see section 1.1.1) simulation was performed. The chain converged well, which
is indicated by the smooth distribution of all the fitted parameters (figure 3.4). The
widths of the distributions are a measure of how well the respective parameters are
determined by the data (under the assumption of the model). The calculation of 95%
confidence intervals showed that all parameters except one have reasonable small
uncertainties and are thus well determined by the data. The STAT1 phosphorylation
at the receptor and its subsequent dissociation described by the rate k5 can not be
deduced from the given data. The best-fit value of ks is very high (29 min~!) and
the exact value does not play a role for the investigated activation because the time
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Figure 3.3: Intracellular distribution was measured (black bars) for (A) STAT1 in
unstimulated cells, (B) STAT1 in stimulated cells (after 45 minutes of IFN-v treatment)
and (C) phospho-STAT1 in stimulated cells (after 45 min of IFN-v treatment) and used
in combination with the time course data (figure 3.2) to fit the model (best-fit result
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scale of the other involved processes is much lower. The result of the Markov chain
Monte Carlo simulation shows that just a lower limit of 2 min~! for the rate k;
could be deduced from the data. The opposite is true for the deactivation rate of
the IFN receptor/JAK complex k3 which does not seem to play an important role in
the activation and has to be sufficiently small. The values of the fitted parameters
with confidence intervals are given in table 3.1.

Reaction Para. Value [95% confidence]
Activation IFN receptor/JAK complex k1 0.056 [0.049;0.069] min~*
Deactivation IFN receptor/JAK complex ko 1.9 [0;17] - 1073 min~!
Receptor degradation ks 0.017 [0.015;0.018] min~*
STAT1 phosphorylation & dissociation ks 29 [> 2] min~!
Dephosphorylation in the cytoplasm ke 0.023 [0.021;0.025] min~!
Dephosphorylation in the nucleus k11 0.29 [0.24;0.37] min~!

Table 3.1: The values of the best-fit parameters determined by simultaneously fitting
the model to the STAT1 distributions, STAT1 phosphorylation kinetics and STAT1
dephosphorylation kinetics. In brackets the 95% confidence intervals determined by the

Markov chain Monte Carlo simulation are given.
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Figure 3.4: The resulting parameter value distributions from the Markov chain Monte
Carlo simulation showed that the chain had converged. For the parameter ks just a
lower limit could be determined from the data. To fit the data the rate ko has to
be sufficiently small, indicating that the dephosphorylation of the receptor tyrosine is
weak. All other parameter value distributions show reasonable small widths.
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4 Design of the JAK/STAT1 pathway

In this chapter the mathematical model of the JAK/STAT1 pathway is validated by
further measurements and used to extract properties of the pathway not accessible
by experimental techniques.

4.1 Activation is controlled by a futile dephosphorylation
cycle

For the activation of STAT1 dependent genes the SH2 dimers of phosphorylated
STAT1 have to be transported into the nucleus. Interestingly, even under stim-
ulated conditions the majority of STAT1 molecules are found in the cytoplasm.
However, the concentration of phospho-STAT1 in the nucleus which determines the
transcriptional response is much higher than in the cytoplasm due to the smaller
nuclear volume (figure 4.1 A).
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Figure 4.1: (A) The nuclear concentration of the phospho-STAT1 after 45 minutes of
IFN-v stimulation is much higher than the cytoplasmic phospho-STAT1 concentration
due to the concentrating effect of the small nuclear volume. (B) For a decreasing
nucleus size under constant total STAT1 concentration the concentration of phospho-
STAT1 increases linearly with p for sufficiently high p.
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4. Design of the JAK/STAT1 pathway

Keeping the high ratio of cytoplasmic volume to nuclear volume p = Veyt/Viue = 3
in the investigated cells in mind, we used the mathematical model to analyze the
influence of p on the pathway activation. Assuming a fixed total STAT1 concen-
tration in the cell and applying a constant IFN-+v stimulus the phospho-STAT1 in
steady state was calculated as function of p (figure 4.1 B). The total amount of
nuclear phospho-STAT1 becomes nearly independent of p for p > 0.8 and the con-
centration of nuclear phospho-STAT1 increases linearly with p in this range. The
smaller nucleus is concentrating the phospho-STAT1 and thereby increasing the
transcriptional response. This renders the signal transduction more efficient. The
phosphorylation and dephosphorylation of the STAT1 molecules combined with the
nucleo-cytoplasmic shuttling introduces a cycling process. The STAT1 pathway ac-
tivation consists of two signaling cycles. Phosphorylation and dephosphorylation
in the cytoplasmic compartment form an apparently futile cycle. Whereas subse-
quent phosphorylation, nuclear import, DNA binding, nuclear dephosphorylation
and export form the functional cycle of gene activation (figure 4.2). The entry of

phosphorylation

dimerization

cytoplasm

dephosphorylation import

nucleus

DNA-binding

dephosphorylation dimerization

Figure 4.2: The topology of the STAT1 activation pathway is build of two cycles. One
"futile’ cycle of STAT1 phosphorylation and subsequent cytoplasmic dephosphorylation
and of a ’functional’ cycle including STAT1 nuclear import and nuclear gene activation.
The ’futile’ cycle controls the STAT1 flow and can suppress low stimuli activation by
the competition of cytoplasmic dephosphorylation with STAT1 homodimerization.

phospho-STAT1 into the functional cycle is dependent on the cytoplasmic-nuclear
volume ratio. The cytoplasmic ’futile’ cycle controls the signal amplitude for al-
ready moderate p > 1.5. The pathway activation is determined by the balance
of cytoplasmic dephosphorylation ('futile’ cycle) and dimerization with nuclear im-
port. Consequently, because dephosphorylation competes with the dimerization for
the phospho-STAT1 a signal is just transmitted into the nucleus if it is strong enough
that the dimerization of the phospho-STAT1 overcomes the cytoplasmic dephospho-
rylation signal.
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4.2. Pathway activation is sustained by fast phosphorylation and
translocation rate constants and tightly follows the receptor signal

4.2 Pathway activation is sustained by fast phosphorylation
and translocation rate constants and tightly follows the
receptor signal

We define the response time ¢,(s) to a stimulus s as the expectation time that the
nuclear phospho-STAT1 bound to GAS sites Dg(s) reaches its maximum Dg**(s)

fa(s) = ;[/(ng(s) ~ Ds(s.4)) -t dt. (4.1)

Accordingly the relaxation time t4 is defined as the expectation time to reach the
resting state (Dg = 0) after withdrawal of the stimulus

fals) = K//Ds(s,t) 4 dt. (4.2)
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Figure 4.3: To quantify the pathway behavior we used the response time to a stimulus,
the resulting amplitude and the relaxation time after stimulus withdrawal of phospho-
STAT1 bound to GAS sites as characteristics.

For a simulation with a standard stimulus of 5 ng/ml IFN-v (see section 1.4) the
response time and the relaxation time are 7 minutes and 35 minutes respectively,
showing that the signal in the nucleus is tightly coupled to the receptor activation.
Especially the information of receptor activation is translated fast into a transcrip-
tional signal indicated by the fast response time. To understand in more detail the
mechanisms of signal progression and persistence, we were interested in the residence
time of the STAT1 molecules in the different activated states. Especially we wanted
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4. Design of the JAK/STAT1 pathway

to know, how long the activated STAT1 stays in the nucleus before its dephosphory-
lation and subsequent reimport into the cytoplasm. Experimentally this is difficult
to address, so we used the mathematical model and the given parameter set to cal-
culate the residence times. One possibility is to deduce the mean residence time of
phospho-STAT1 in the nucleus from the deterministic solution. Due to the nonlin-
ear equations, this is not an exact estimation but serves as a good approximation
(see appendix A.2). To get more exact residence times, we performed a stochas-
tic simulation of the differential equation system using the Gillespie algorithm (see
section 1.2) and the given parameters. One side result of this calculation is, that
the system did not show any stochastic effects (figure 4.4), justifying the use of the
deterministic solution of the ordinary differential equation system. Furthermore,
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Figure 4.4: The resulting protein kinetics from the stochastic simulation of the path-
way activation are very close to the result of the simulation of the deterministic solution
even for the relatively low occupied states of DNA bound STAT1.

by bookkeeping of the single molecules throughout the simulation we can access
the residence times of STAT1 molecules in the cellular compartments in the active
(phosphorylated) and inactive (dephosphorylated) state and calculate the mean as
well as its statistics. The mean time after phospho-STAT1 gets dephosphorylated in
the nucleus after import was 12.3 min with 5 and 95 percentile 1.1 minutes and 14.7
minutes, respectively. The mean residence time of phospho-STAT1 in the nucleus
until its reimport into the cytoplasm was 13.1 minutes with 5 and 95 percentiles
1.6 minutes and 48.4 minutes, respectively. This shows that the duration of STAT1
pathway activation, which is in the range of 3 hours, is achieved by a combination of
short nuclear residence times of phospho-STAT1 and dynamic STAT1 translocation.
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4.3. STAT1 dimerization suppresses noise and increases pathway
activation at the cost of responsiveness

4.3 STAT1 dimerization suppresses noise and increases
pathway activation at the cost of responsiveness

In this section we investigate the role of STAT1 dimerization for the signal trans-
duction pathway. The necessity of STAT1 dimerization for pathway activation
(phosphorylated monomeric STAT1 is restricted to the cytoplasm) is an conspicu-
ous property of the JAK/STAT1. The formation of transcriptionally active STAT1
SH2-dimers which can be imported into the nucleus is quadratically dependent on
available monomeric phospho-STAT1 concentration. To investigate the impact of
this nonlinearity in the system, we construct a hypothetical linear model by omit-
ting the quadratic term in the dimer formation and compare the behavior of the
hypotheical linear model to the model incorporating the correct dimerization term.
Due to the linear dependence of the STAT1 dimer formation on the phospho-STAT1
monomers, the dose response curve of this hypothetical model (figure 4.5) shows
an increased sensitivity for low stimulus activation. In contrast the original model
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Figure 4.5: (A) The response curve to a stimulus of the model with the correct
dimerization term (quadratic) is more sigmoidal and suppresses activation at lower
stimuli than the response curve of a model with a hypothetical linear term (linear). (B)
The relative amplification gain is increased by the quadratic dimerization term, because
the probability of homo dimerization growth quadratically with the concentration of
monomeric, cytoplasmic phospho-STAT1.

shows a more sigmoidal curve. To test this property experimentally, the pathway
response at 40 minutes after stimulation was measured for several IFN~ concentra-
tions. Though the fitting of the model was performed with data just at one IFN-vy
concentration the simulated dose response curve for different IFN-+ concentrations
agrees quantitatively with the data (figure 4.6). However, the data point at the high-
est IFN-v concentration of 50 ng/ml disagrees with the modeled curve and indicates
a decrease or at least a flattening of phospho-STAT1 for higher stimuli. Conclusively,
the quadratic dependence of pathway activation on the signal input, functions as a
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Figure 4.6: The mathematical model predicts quantitatively the response for stimuli
with different IFN-+ concentrations. The data point for the highest IFN- concentration
indicates some yet not known effect.

noise suppressing mechanism. Furthermore, the quadratic dependence of pathway
activation on the concentration of phospho-monomers increases the ability of the
pathway to amplify relative changes in the stimulus. This can be quantified by
calculating the gain (relative sensitivity) A

~ Aoutput  input

output  Ainput’

The gain of the original model is higher than the gain of the hypothetical linear
model (figure 4.5). We conjecture that stronger dimer formation, being necessary
both for STAT1 nuclear import and DNA binding, would be beneficial for path-
way activation. Varying the measured dissociation constant Kg = 50 nM for dimer
formation [156] over a range of 0-150 nM indeed shows, that the amplitude is in-
creasing with stronger binding of the STAT1 monomers (figure 4.7 A). However,
simulating pathway activation and subsequent stimulus removal shows that with
stronger dimerization the relaxation rate (inverse of the relaxation time in equation
4.2) increases (figure 4.7 B) meaning that the pathway activation persists without
signal input. Thus, strong dimerization both enhances efficient pathway activation
and reduces pathway responsiveness. Therefore, the affinity must be such that a
trade-off between both is achieved. There is no obvious function of the N-terminal
STAT1 dimers but changing the affinity of N-terminal dimerization shows its influ-
ence on pathway activation and responsiveness. Either omitting N-terminal binding
or increasing its affinity shows, that the N-terminal dimer formation also suppresses
low signal activation by buffering the phospho-STAT1. On the other hand, a very
high affinity would clearly decrease the activation amplitude strongly (figure 4.8).
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4.4. Sensitivity analysis shows that in the model network topology a
trade off between efficiency and sensitivity must be realized
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Figure 4.7: (A) The strength of pathway activation is increased with stronger dimer
binding (lower dissociation constant Ky) whereas (B) the pathway responsiveness is
reduced (indicated by a lower relaxation rate). The measured dissociation constant
(yellow region) realizes a trade-off between this two effects.
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Figure 4.8: The formation of the transcriptional nonactive N-terminal dimers buffers
low stimulus activation at the cost of reduced amplitude.

4.4 Sensitivity analysis shows that in the model network
topology a trade off between efficiency and sensitivity
must be realized

In section 4.3 we show, that the dissociation constant of the dimer formation exerts
a big influence on both the amplitude and the response kinetics of the pathway.
To systematically analyze the effect of all the network parameters on the pathway
response, we calculated control coefficients by means of a sensitivity analysis. The
control coefficient ¢ of a measure x with respect to a parameter p is
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We are interested in the impact of the different parameters on the effectiveness and
the timing of the pathway response. Therefore the signal strength and the time
the pathway takes to respond to a change in signal input were taken as measures
of interest x;. To quantify the signal strength we chose the concentration of GAS
site bound phospho-STAT1 Dg(t) at steady state for a constant stimulation. To
measure the timing of the pathway activation the time for the signal pathway to
respond to a stimulus (response time) and the time to go back into the resting
state after the stimulus is withdrawn (relaxation time) were calculated as defined in
equations 4.2 and 4.1 (see also figure 4.3). Both the phosphorylation of STAT1 at
the plasma membrane (determined by the number of active IFN receptors and the
association rate constant) and its binding to GAS sites (determined by the number
of accessible sites as well as the respective binding and dissociation rate constant)
exert strong control on the response amplitude (figure 4.9). However, amplitude

control of amplitude
1 08060402 0-0.2-04-06
I 1 1 1 1 1 1 1
#GAS-sites

active receptors
binding receptor

dissociation SH2-dimers
binding GAS-sites |
[ 1] unbinding GAS-sites
SH2-dimerization [
] cyto. dephospho

) - [T] N-terminal dimerization
dissociation

N-terminal di
erminal dimers [ nuc. dephospho

nuc. export [
[] nuc. import
nuc. import p-Stat1 ]

phosphorylation

unbinding receptor

Figure 4.9: Control on the signal amplitude.

control is distributed over many processes in the network. In particular, we note
that the stability of the phospho-dimers, the dephosphorylation rate constant in
the cytoplasm and the cytoplasmic to nuclear volume ratio all have an appreciable
impact on the response amplitude. A qualitatively similar picture is obtained for
the response time to an IFN-v stimulus (figure 4.10). The relaxation time after
withdrawal of the stimulus is strongly controlled by the parameters of specific DNA
binding (number of accessible GAS sites, binding and dissociation rate constant
of STAT1 to the GAS sites) and the dissociation rate constant of the phospho-
dimers (figure 4.10). The dephosphorylation in the cytoplasm has moderate control,
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Figure 4.10: (A) Control on the response time (B) on and the relaxation time.

while the contribution of all other steps is considerably smaller. Thus, the rate of
inactivation of the STAT1 pathway is mainly determined by the dissociation rate
constant of the phospho-STAT1 dimers from the DNA and the dissociation rate
constant of the phospho-dimers themselves. These two processes limit the access
of the phosphatases to the activated STAT1. Many parameters exerting a strong
control on the relaxation time also have a major impact on the signal strength,
leading to a positive correlation between changes in signal duration and amplitude. It
appears as if the pathway has to operate remote from an optimal signal transmission
to account for a reasonable short deactivation time after stimulus withdrawal.

4.5 Perturbing STAT1 transport leads to suboptimal signal
transduction

To rationalize, how the STAT1 transport influences the pathway characteristics, we
investigated how the pathway behavior is changed under perturbed STAT1 trans-
port. Both in the mathematical model and experimentally we investigated the im-
pact of STAT1 transport alterations. For this, several STAT1 mutants with changed
transport properties were cloned and experimentally tested. The mutants were de-
signed by our collaborators (according to section 1.4).
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4. Design of the JAK/STAT1 pathway

4.5.1 Enhanced nuclear import: wNLS and sNLS mutant

By adding a nuclear localization sequence (NLS) to the STAT1 protein, the path-
way could be tested with an enhanced nuclear STAT1 import. We investigated two
mutants, one with a weak nuclear localization enhancement (wNLS) and one with
a strong enhancement (sNLS). In contrast to the wild-type STATI1, displaying a
nearly pan-cellular resting distribution, STAT1-wNLS and STAT1-sNLS showed a
preferentially nuclear localization. As a control, a mutant with an added permuted,
nonfunctional NLS sequence was tested, which exhibited the same resting distri-
bution as wild-type STAT1. To simulate the STAT1-wNLS and the STAT1-sNLS
in the model 0.2 min~" and 2 min~! were added to the import rate constant (ks,
k13). Upon stimulation with IFN-+, both in the model simulation as well as in the
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Figure 4.11: (A) With increasing strength of the nuclear localization sequence of
the STAT1 mutant the measured amplitude of STAT1 phosphorylation after stimula-
tion is decreasing due to the missing latent STAT1 in the cytoplasm. Blocking STAT1
phosphorylation by the kinase inhibitor staurosporine shows a direct drop of the phos-
phorylation level (dotted lines). (B) The model simulations reproduce the measured
behavior and can be used to quantify the influence of the added NLS as the kinetics
can be reproduced by enhancing the nuclear import of the latent STAT1 alone.

experiments the wNLS and LSN mutants (added mutated, nonfunctional NLS se-
quence) accumulate in the nucleus to the same degree as wild-type STAT1, while the
already strong nuclear accumulation of the sNLS mutant is not further augmented
by IFN-v treatment. However, the phosphorylation level is decreased in the wNLS
and sNLS mutants with enhanced nuclear import according to the strength of the
additional NLS (figure 4.11 A). The model reproduces the measured behavior well
(figure 4.11 B). Even the sNLS mutant, which appears to be fully nuclear already
in resting cells, became phosphorylated. This observation implies that, like the
wild-type, both NLS mutant proteins cycle between the cytoplasm and the nucleus
and thus have access to the IFN-~ receptor/JAK complex at the plasma membrane.
Application of the kinase inhibitor staurosporine caused a rapid decline of STAT1
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phosphorylation, showing that the maintenance of phosphorylation requires contin-
uous JAK activity. To test whether the phenotype of the STAT1-NLS mutants is
due to enhanced import of latent STAT1 and/or the phospho-protein, we simulated
separate increments of the import rate constants of the two subspecies. Accelerated
import of latent STAT1 alone yields the same behavior (figure 4.11 A & B), whereas
the wild-type behavior is fully retained when just the import of phospho-STAT1
is accelerated. Taken together, this shows that the phosphorylation rate can be
strongly regulated by the velocity of nuclear import of latent STAT1. This is the
case because the rapid nuclear import of latent STAT1 competes with its activation
by the JAK.

4.5.2 Enhanced nuclear export: NES mutant

To enhance nuclear export, a STAT1 mutant (STAT1-NES) was generated by adding
the STAT1-specific nuclear export signal (NES) sequence and tested thoroughly
(section 1.4). This mutant shows a cytoplasmic localization in the unstimulated
state. To model this mutant we added a nuclear export term with rate constant
kngs for all nuclear STAT1 species not bound to DNA. It seemed unlikely that the
added NES is regulated by phosphorylation and/or dimerization. The strength of
the added nuclear export can be calculated from the measured cytoplasmic to nuclear
distribution of STAT1-NES in resting cells Xxgs = 1/4 and the latent nuclear export
rate constant and nuclear import rate constant (kj2 and k13). This yields

kngs = XI(I]%S - k13 — k12 = 0.32 min~ L.

Note that with our definitions of the rate constants p enters the differential equations
for the nuclear concentration change. So for all nuclear species we can write

Ot Shuc ~ —p kNES Shuc-

Simulation with the given parameter set and the added NES reaction gave a pre-
diction for the activation kinetics (phospho-STAT1 after IFN-v treatment) and the
dephosphorylation kinetics (staurosporin treatment after 45 minutes of IFN-v stim-
ulation) of the NES mutant. The predicted curves agree quantitatively with the
measured time courses (figure 4.12). The time course showed that STAT1-NES had
a higher and more prolonged phosphorylation in response to an IFN-~ stimulus (40-
50 % of total STAT1 is phosphorylated) than the wild-type protein (30-40 % of
total STAT1 is phosphorylated). A similarly enhanced phosphorylation was also ob-
served for the STAT1-NLS mutant. Indicating, that the high STAT1 concentration
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Figure 4.12: (A) The measured phosphorylation kinetics of STAT1-NES under IFN-vy
stimulation. (B) The measured dephosphorylation kinetics of STAT1-NES. To measure
the dephosphorylation, after 45 minutes of IFN-v stimulation cells were treated with a
kinase inhibitor (at 0 minutes). Both, phosphorylation and dephosphorylation kinet-
ics of STAT1-NES are quantitatively predicted by the mathematical model simulation
(black lines).

in the cytoplasm and with that a strong JAK activity combined with comparatively
weak phosphatase activity, is the main cause for the observed hyperphosphorylation.
Interestingly, the model predicts that the concentration of phospho-STAT1 in the
nucleus after IFN-v stimulation in the STAT1-NES mutant is very similar to the
STAT1-WT (figure 4.13). Assuming, that the level of phospho-STAT1 is directly
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Figure 4.13: The simulation shows a very similar concentration of nuclear phospho-
STAT1 for the wild-type STAT1 (dashed red curve) and the STAT1-NES mutant
(dashed black curve).

related to transciptional activity we tested this prediction by comparing expression
kinetics of six STAT1 target genes after IFN-v stimulation in STAT1-NES cells to
STAT1-WT cells. Indeed we did not find any significant differences (figure 4.14,
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rt-PCR carried out by Andreas Begitt, Queen’s Medical Centre Nottingham). The
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Figure 4.14: The transcriptional activation of two genes ((A) LMP-2 and (B) MIG-1)
in the wild-type STAT1 cells (black curve) and in the cells with STAT1-NES (dotted
blue curve) is very similar. Four further genes show the same result (see appendix A.3).

concentration flow of STAT1 after IFN-vy stimulation is bigger for the STAT1-NES
compared to the STAT1-WT. The wild-type like nuclear phospho-STAT1 concen-
tration in the STAT1-NES mutant can be explained by a compensation of the ad-
ditional nuclear export of phospho-STAT1 decreasing the nuclear phospho-STAT1
concentration due to the NES and the hyperphosphorylation increasing the nuclear
phospho-STAT1 concentration. Moreover, the model of the NES mutant also re-
produces the weaker phosphorylation observed in the presence of LMB (Leptomycin
B a nuclear export blocker), which blocks active nuclear export (figure 4.15). The
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Figure 4.15: Phosphorylation of the STAT1-NES is reduced upon treatment with the
export blocker LMB (A) measured and (B) simulated.

model indicates that LMB reduces STAT1-NES phosphorylation through two effects:
first the nuclear retention subjects the phospho-dimer to the nuclear phosphatases

33



4. Design of the JAK/STAT1 pathway

rather than the lower-activity cytoplasmic phosphatases; and second the decreased
export rate of unphosphorylated STAT1-NES retards its rephosphorylation. Thus,
the mathematical model reproduces the phenotype of the STAT1-NES quantitatively
simply by implementing a rate for the added nuclear export of STAT1 with strength
determined by the measurements of the cytoplasmic to nuclear STAT1 distribution
in unstimulated cells. Remarkably, the transcriptional response of the STAT1 path-
way is robust against an enhancement of the STAT1 nuclear export rate, including
the unphysiological export of the phospho-protein.

4.6 Dimer transitions

It is still unclear whether changing from an N-terminal bound to a SH2 bound
STAT1 dimer requires the dissociation of the two STAT1 monomers [156] or if al-
ternatively there exists a direct transition between the two dimer states [91] (figure
4.16). Regarding the proposed mechanism for a direct transition, we implemented
an alternative model allowing a change of dimer conformers without dissociation
into monomers (nondissociation model from here on) , which was compared to the
mathematical model we established lacking the direct transition (dissociation model
from here on). For the nondissociation model, we additionally included two free

N-terminal dimer

direct transition between

®
dimer states
monomer / N
ie iﬁ, iég,i SH2-dimer . .
. . o (target for importin-mediated

e 0
nuclear import)

Figure 4.16: It is a ongoing debate if there exists a direct transition from the N-
terminal dimer to the SH2 dimer (indicated by red arrows).

parameters (on- and off-rate constant for the direct transition between dimer con-
formations). With this additional parameters we fitted the nondissociation model
to the data (section 3.2). Table 4.1 shows the best-fit parameter values. The model
yielded a very similar fitting performance compared to the dissociation model (mi-
nor change in the Akaike information criterion [3], meaning a better description of
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Reaction value
Activation IFN receptor/Jak complex 0.06 min~!
Deactivation IFN receptor/Jak complex 0.02 min~!
Receptor degradation 0.01 min~!
Stat1l phosphorylation & dissociation 120 min~!
Dephosphorylation in the cytoplasm 0.024 min—!
Dephosphorylation in the nucleus 4.5 min~!

Transition N-terminal dimer to phospho-tyrosine/SH2 dimer 0.6 min~*

Transition phospho-tyrosine/SH2 dimer to N-terminal dimer 0.08 min~!

Table 4.1: Best-fit parameters for the nondissociation model

the data on the cost of more free parameters). Thus, it is not possible to deduce
the existence or nonexistence of the direct dimer transition step by a comparison
of the model performance from the presented data. In the dissociation model the
direct transition between the dimer conformations is on the same timescale as the
dissociation of the dimers into monomers (red and black arrows, figure 4.16). The
direct transition shifts the equilibrium to the parallel dimer, which is subjected to
importin-mediated nuclear import. In the dissociation model the rate-limiting pro-
cess for nuclear import of phospho-STAT1 is the formation of the parallel dimer.
We experienced that the measured pathway dynamics could only be simulated in
this model by using enhanced dimerization rate constants. Because the direct tran-
sition in the nondissociation model allows the formation of parallel dimers from
phosphorylated N-terminal dimers, the nondissociation model is capable of repro-
ducing the data also with the in vitro measured on and off rates for STAT1 dimer
formation (half-life for dimers ~ 30 minutes as compared to ~ 1 minute with en-
hanced rate constants). Note that this is only achieved with a high transition rate
between the two dimer states (~ 103 min~!) and a strong nuclear phosphatase ac-
tivity (30 min~!). Comparing the dose response curves of the STAT1 mutants for
different IFN-v concentrations of the dissociation and the nondissociation model
with the measured responses the nondissociation model performs better in explain-
ing the STAT1-ANLS dose response curve (figure 4.17).
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Figure 4.17: (A) The prediction of the nondissociation model of the dose response
curves of STAT1-WT,-ANLS and -NES is slightly better than (B) the prediction of the
original, dissociation model. Especially, this is evident for the dose response cureve of
the STAT1-ANLS.
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JAK/STAT1 pathway

We established a mathematical model of the JAK/STAT1 pathway based on mass
action kinetics. With adequate kinetic measurement and quantifications of nucleo-
cytoplasmic STAT1 distributions all unknown model parameters could be well de-
termined, which is shown by small confidence intervals. We utilized the mathemat-
ical model to predict both, dose response curves as well as the behavior of STAT1
transport mutants correctly. Furthermore in contrast to many previous models
[135, 130, 64] we could infer design principles of the network topology.

Just ~ 30% of the STAT1 molecules are found to be phosphorylated at maximal
pathway stimulation for a standard IFN-v stimulus. The nuclear concentration of
the phospho-STAT1 under stimulating condition is quite high, though. It was nec-
essary to include the ratio of compartment volumes, which is significantly different
from one, into the pathway description to correctly reproduce the observed behavior
and to quantitatively estimate the model parameters. These considerations should
be made for every model, where transport processes play an important role and
was repeatedly omitted in previous models [135, 121]. A small nuclear volume is
concentrating the inflowing phospho-STAT1. Thereby the nuclear phospho-STAT1
is dependent on the cytoplasmic to nuclear volume ratio p. To experimentally in-
vestigate if the JAK/STAT1 pathway functions similarly in other cell lines, or if
a modification of the model or the model parameter has to be made might give
further insights into the design of the JAK/STAT1 pathway. Is the pathway tuned
differently in cells with another ratio of cytoplasmic to nuclear volume? For exam-
ples in t-lymphocytes with p equal or even less than one, the JAK/STAT pathway
plays an important role [114]. It would be interesting if the missing concentrating
effect of the nucleus is somehow compensated. This could be realized by increased
number of receptors, increased sensitivity of the target gene promoters or various
other mechanisms.

We show that the homo dimerization of STAT1 via SH2 Tyr701 interaction is a key
element of the JAK/STAT1 pathway activation in matters of shaping the response.
By its nonlinear nature, dimerization suppresses noise and low stimuli activation.
Furthermore the dimerization increases the relative signal amplification of the path-
way. In general these two effects can be a benefit for all self interacting proteins
(e.g. clustering of receptors [10, 167, 133] or p53 protein oligomerization [115, 60]).
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By exploiting the mathematical description of the pathway we were able to deduce
the mean time a phospho-STAT1 molecule resides in the nucleus until it is reim-
ported into the cytoplasm (after preceding dephosphorylation) and available for
reactivation. This time turned out to be rather short (~ 10 min) compared to the
duration of pathway activation (~ 200 min). Conclusively, the pathway activation is
sustained by a combination of short nuclear residence times of phospho-STAT1 and
fast dynamic STAT1 translocation. A network sensitivity analysis showed, that for
many parameter values a trade off between signal strength and pathway responsive-
ness must be realized. This is especially evident in the dimerization affinity. On one
hand a strong bound SH2 dimer increases the signal amplitude, but on the other
hand it takes a long time to dissociate and thereby prolongs pathway activation
despite signal removal. The model indicates that the measured dimer dissociation
constant lies in an optimal range, where the amplitude is reasonably high and the
responsiveness is fast. This trade off is an inherent property of all biologic binding
reactions, simply because stable binding goes with long half-lifes. This can just be
circumvented by energy dependent enzymatic reactions. In summary the nuclear
residence time of phospho-STAT1, the response time and the relaxation time show
that the network is tuned such that the level of nuclear activated STAT1 is tightly
coupled to the receptor activation time course. The design of the pathway seems to
be optimized in respect to fast signal transduction without too much loss of signal
strength.

The model was fitted with data of the pathway response at an IFN-v concentration
of 5 ng/ml. Nevertheless, the model is able to predict quantitatively measured
dose response curves for IFN-y concentrations. Only for the highest concentration
of 50 ng/ml IFN- ~ the experiment showed a decrease in the pathway activation.
The decline of phospho-STAT1 with increasing stimulus could not be explained by
the model. If this is not an experimental artifact it might indicate a reaction or
a player, not included into the network model, which becomes important for the
pathway response at high IFN-v. There are many possibilities for such a player like
PIAS, SOCS and cross talk with other pathways.

The underlying mechanism of STAT1 dimerization is mostly understood, but there is
an ongoing debate of the timescale of this process and if a direct transition between
the conformational different dimers (N-terminal dimer and SH2 dimer) is possible
[91, 156]. In line with our collaborators we did not include a direct transition into the
model. The mathematical model indicates, that the dimer formation is rather fast
(half-life in the order of one minute). It was also possible to fit the data with a model
allowing for a direct transition of the dimer states and a slower dimerization with a
similar AIC. Thus, it is not possible to deduce the existence or non existence of the
reaction by the fitted data. Interestingly, the dose response curves of the STAT1
mutants were predicted best by the model which incorporates fast dimerization and
a direct transition.
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The model could be verified by testing several predictions with additional mea-
surements. Besides the dose response curve for different stimuli the simulation of
the STAT1 transport mutants (wNLS, sNLS, LSN) qualitatively agreed with the
measurements. The STAT1 phosphorylation kinetics of the STAT1 NES mutant
are predicted correctly. Furthermore, the model predicted a compensation of the
hyper phosphorylation due to more available latent STAT1 in the cytoplasm and
the additional nuclear export of phospho-STAT1. This compensation results in the
same concentration of phospho-STAT1 in the nucleus in the simulations for STAT1-
WT and STAT1-NES. Indeed mRNA measurements of six STAT1 target genes after
stimulation did not show any differences between STAT1-WT and STAT1-NES. This
findings are in line with the prediction. However, the response of the target genes
is modulated by the detailed mechanism of their gene activation, thus a separate
measurement of nuclear phospho-STAT1, in both the wild-type cells and in the cells
with STAT1-NES, would be necessary to clearly verify the prediction. The nuclear
retention of STAT1 is a special property of the STAT1 molecule. The phospho-
STAT1-NES is not any longer confined in the nucleus and the pathway response
of the STAT1-NES mutant shows that function of the pathway is not dependent
on nuclear retention of STAT1. However, this comes at the cost of higher STAT1
phosphorylation level and a slightly slower pathway response time. Arguably the
nuclear retention of STAT1 increases the efficiency of the pathway activation.

In the future it would be of interest to extent the modeled network to the effect
of PTAS and SOCS and interaction with other STAT members such as STAT2 to
increase the scope of the model. In many of our measured phosphorylation time
courses a small dip (decrease and then again increase) is observed after the maxi-
mum. This effect is also observed in the data presented in [135, 82]. This might hint
to a more complex regulation of receptor activation or another protein involved in
STAT1 activation.
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6 Introduction Neuroblastoma

Cancer is beyond the most frequent and severe diseases of modern society. Due to
its complex and heterogeneous nature much is still unknown. Because of the young
age of the patients, embryonic tumors show a relatively low number of mutations.
One hope is to use the low complexity of these embryonic tumors, to learn more
about the mechanisms of cancer development and possible therapies.

6.1 Neuroblastoma

Neuroblastoma is a pediatric tumor of the sympathetic nervous system and respon-
sible for 8-10% of all childhood malignancies [20]. It is the most common extra
cranial solid tumor occurring in childhood. The primary tumor often arises in the
adrenal gland from neural progenitor cells but also with occurrence in the whole
sympathetic nervous system [160].

What is special about neuroblastoma is that the progression of the disease is very
diverse. On one hand the rate of spontaneous regression, where the tumor van-
ishes even without treatment is 10-100 fold higher compared to other known similar
events in human tumors [111]. On the other hand there are patients were the neu-
roblastoma is of a highly aggressive type and does not response to several treatment
options, with relapse after treatment, resistance to chemotherapy and low survival
rate [87]. To improve treatment by adapting the patients care according to the type
of neuroblastoma and to increase therapy success, it is important to understand
better the differences of this two types of neuroblastoma and how they arise.

To classify patients and tumor spread an international neuroblastoma staging system
was established [11] dividing the patients into stages from I to IV with the special
stage IVs. IVs is unique in neuroblastoma and consists of neuroblastoma diagnosed
in patients younger than one year with limited dissemination of the tumor cells to
skin liver or bone marrow and shows a high rate of spontaneous regression. Sev-
eral known markers, such as age at diagnosis, DNA index, histology and structural
chromosomal alterations are associated with the patients outcome in neuroblastoma.
One of the prognostic factors which is related closely to the cellular mechanism of the
disease is the copy number of the oncogene MYCN found in the neuroblastoma cells
[123, 12]. Patients with MYCN-amplified neuroblastoma (incidence rate ~ 20%)
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show a very low survival rate despite multiple treatment [96].

6.2 The MYCN oncogene

MYCN belongs to the MYC family of proto-oncogenes, which encode for transcrip-
tion factors of the basic-helix-loop-helix-zipper (bHLHZ) class. The observed effect
of MYC ranges from enhanced proliferation, suppressed differentiation, angiogenesis
and genomic instability [1, 112] to enhanced apoptosis sensitivity in MY CN-amplified
cells [38, 159]. One of the major goal of this work is to rationalize the impact of
aberrant MYCN protein levels in neuroblastoma on the cell guarding regulatory
network of p53 and on the E2F1-pRB cell cycle control axis.

6.3 Neuroblastoma and the p53 pathway

The p53 protein, encoded by the TP53 gene, is a key protein for the cell to se-
cure genetic integrity. Overcoming these save mechanisms of the p53 pathway is a
hallmark of cancer and with mutated p53 found in roughly 50% of all human tu-
mor cells [152] it is the most commonly mutated tumor suppressor gene. p53 has
a major role in regulating many important cell decisions as apoptosis, differentia-
tion, inhibition of angiogenisis and metastasis as well as DNA repair and cell cycle
arrest [78]. p53 regulation gets input from many different pathways and has been
studied extensively. The main regulation of p53 itself happens via posttranslation
modifications [67]. As in unstressed cells p53 has a short half life of 20 minutes, so
the p53 protein level is relatively low. In response to stress signals pb3 is stabilized
and forms transcriptional active tetramers [132]. There are many p53 target genes
ranging from proteins inducing cell cylce arrest (e.g. p21) to apoptosis inducing
genes (e.g. PUMA, BAX1) and its own antagonist MDM2 [90].

Surprisingly, the frequency of p53 mutation in neuroblastoma is very low (2%) [142].
However, in tumor samples taken after relapse of the tumor the mutation rate is
significantly higher [16, 18]. The mechanisms which renders the p53 pathway in the
wild type p53 neuroblastoma cells disfunctional and what role MYCN might play
are unknown. It was reported that besides many target genes, MYCN activates
transcription of both p53 and MDM?2 in neuroblastoma [129, 21].
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6.4 Cell cycle regulation and the pRB-E2F1 axis in
neuroblastoma

The cell cycle consists of several distinct phases (G1, S, G2 and M phase). To
monitor its environmental condition and also to control if every step in the division
process is correctly finished, the cell has evolved several check points. At the end of
the G1 phase there is a check point where the cell decides if it commits to cell division
dependent on several parameters including growth factor signaling. If the cell crosses
this so called restriction point (R-point) cell division becomes independent of growth
factor level and subsequent removal of growth factors does not disrupt the execution
of cell division [108, 166]. It was shown that this switch-like passage of the R-point
coincide with upregulation of the E2F1 protein, which shows bistable behavior in
embryonic fibroblasts[161, 164].

Entry into the cell cycle is regulated by the transcription factors E2F1, -2 and -3a
and its repressors the pocket proteins pRB (the retinoblastoma tumor suppressor),
pl07 and p130. The pRB-E2F pathway is associated with the regulation of DNA
replication initiation and plays a critical role in cell proliferation [103, 154, 4]. The
importance of the pRB-E2F pathway is further evidenced by the finding that it is
deregulated in almost all cancer cells [104]. E2F1 is a key component of the pRB
pathway and can activate cell cycle progression and passage from G1 phase to S
phase. In a hypophosphorylated state pRB can bind to E2F1 and represses its
transcriptional activity. Upon phosphorylation of pRB by CDKs (cyclin dependent
kinases), which are active in complex with D- and E-type cyclins, E2F1 is released
and activates target genes associated with cell cycle progression.

It is observed, that several neuroblastoma cell lines have a fraction of cells in G1
phase which after DNA damage induction do not arrest. Especially in MYCN-
amplified cell lines an impaired G1 arrest is observed [17]. This cells do not arresting
in G1 after chemotherapy and potentially accumulate further genomic instabilities by
committing to cell division despite DNA damage giving rise to additional malignant
transformations. This might be a possible reason for the enrichment of p53 mutations
in relapsed neuroblastoma [16, 18]. Consequently, to understand and eventually
target this impaired G1 arrest might be highly valuable.
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7 Modeling of the p53-MDM2 core
module in neuroblastoma

In this chapter we investigate the MYCN related dysfunction of the DNA damage
response in neuroblastoma cells. A noncomplex model of the p53-MDM?2 core mod-
ule is established which shows an universal steady state change under p53 activation
governing the DNA damage response. The model is capable of reproducing protein
level differences in several neuroblastoma cell lines. Interestingly, the model can also
qualitatively reproduce measured responses to DNA damage and MDM2 inhibition
in two subclones of the conditionally M YCN expressing neuroblastoma SH-EP T21N
cells. Data from the MYCN-amplified cell line, IMR5-75, indicates, that for high
MYCN levels the perturbation of the pRB-E2F1 axis becomes relevant.

7.1 A simple model of the p53-MDM2 core module shows a
universal steady state in phase space and can produce
various pb53 responses

We investigated the MYCN-dependent p53 response in the neuroblastoma cells.
Upon DNA damage p53, one prominent factor in determining the cell response, is
activated. This is thought to be conducted by stabilizing p53 via post-translational
modifications and subsequent forming of transcriptional active p53 tetramers [67].
p5H3 activates its own antagonist MDM2, a E3 ligase, that targets p53 for proteo-
somal degradation [54]. This forms a negative feedback loop on p53 (figure 7.1 A).
The possible behavior of such a negative feedback loop can be very diverse and vary
from oscillations to homeostatic behavior. We establish a simple model with the
most important interactions to analyze the possible responses of this p53-MDM?2
core module. We include two states of p53 in the model, one is inactive as a tran-
scription factor (concentration of inactive p53 xi(t)) and one is active (concentration
of active p53 x,(t)). The rate constants of activation and inactivation are ko, and
Eofr, respectively. The induction of MDM2 y(t) by p53 is modeled by introducing
a hill function with hill coefficient of 4 to account for the postranslational modi-
fications, the tetramerization and the DNA binding. Furthermore we allowed for
basal production and degradation of p53 (rate constant vy and dx) and MDM2 (rate
constant vy and dy). We assumed that the activation of p53 stabilizes the protein
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Figure 7.1: (A) The negative feedback loop of p53. By posttranslational modifica-
tions pb3 is activated and can form transcriptional active tetramers. One target gene
of p53 is MDM2. The E3 ligase MDM2 tags p53 for proteosomal degradation. (B)
The p53-MDM2 core module. MYCN induces both p53 and MDM2 and inhibits the
pb3-mediated transcriptional activation of p21. Additionally the interactions of p53-
activating DNA damage and Nutlin-3, which inhibits the binding of MDM2 and p53,
are depicted.

and with that prevents its degradation. The resulting system of ordinary differential
equations then reads

O xi(t) = Ux — Oyx y(t) xi(t) — kon xi(t) + kot xa(t) — Ok !Ti(t)
Orxa(t) = konwi(t) — kog Ta(t)

za(t) 1
&) oo )

8,5 y(t) = Uy + 'ny |:_M
xy a

To parametrize the change of p53 and MDM2 on a change in p53 activity (e.g. DNA
damage) the fraction of active p53 A is introduced

a(t) _ Ta(t)
xa(t) + xi(t) x(t)

za(t) = Az(t) A zi(t) = (1 =N z(),

with concentration of total p53 x(t) = za(t) + xi(t).
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7.1. A simple model of the p53-MDM2 core module shows a universal
steady state in phase space and can produce various p53 responses

7.1.1 The simple model of the p53-MDM2 core module does not
exhibit an oscillatory regime

For the fraction of active p53 A holds

Under quasi-steady state assumption for the p53 activation the equations 7.1 be-
comes

(L= N a(t) = ve—py(t) (1= N a(t) — o (1— N a(t)

Ax(t) 1t
o] oo, (72)

@M”::W+W4K+m
Xy

To analyze the steady state of the system we solve 0y x = 0 A 3, y = 0, where the
arguments are omitted to indicate the concentration of the proteins at steady state,
x = z(t — 00), y := y(t — o0). By solving the upper equations for y we get

=0 (1=
R SR G Y
y - ”y+”xy{mr
3y by | Ky + A

This system can be solved graphically by plotting the right hand sides against x for
a chosen parameter set (figure 7.2). Then the intersection of the two curves gives
the steady state of the system. The trajectories into the steady state from the initial
conditions can be visualized by additionally drawing the vector (Opx(t),dwy(t)) at
sample points. An oscillatory regime of the system is then indicated by closed circles
of these trajectories. For this very simple model no oscillatory region in parameter
space could be found but spiral shaped trajectories exist.
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Figure 7.2: The steady state can be determined graphically (the intersection point
of the two curves). The vector of the derivatives gives the direction of the trajectories
in the phase space (arrows). If the arrows formed cycles this would correspond to a
oscillatory regime.

7.1.2 The model shows an unique behavior in phase space and the

impact on total p53 is parameter dependent

We wanted to investigate the steady states of the differential equation system 7.1
under change of active p53 fraction A. Thus, we simulated the system for varying
A. The simulation showed that the steady state exhibits a universal behavior which
can be seen plotting the A\ dependence of the solutions in phase space (figure 7.3).
With increasing A there are four regions of the graph with the following regimes

1.

50

p53 T, MDM2 —

For small A, the total amount of p53 increases due to its own activation, but
in a regime, where MDM2 is not sensitive to activated p53. Thus, the negative
feedback is not affecting the p53 concentration.

p53 |, MDM2 7
p53 is activated and induces MDMZ2. This leads to an increase of MDM?2 and
via the negative feedback to a decrease in total p53 concentration.

p53 —, MDM2 7
p53 is activated further and induces MDM2. But the p53 stabilization by
activation is compensated by the increasing degradation by MDM2.

p53 7, MDM2 —
For large (close to one) A the pb3-mediated MDM2 induction is saturated, and
the active pb3 is increasing.



7.1. A simple model of the p53-MDM2 core module shows a universal
steady state in phase space and can produce various p53 responses
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Figure 7.3: (A) Steady state of p53 and MDM2 as function of A\. The curve is s-shaped
(the region where p53 is increasing for small A is very small). (B) p53 as function of .
The increase for small A is here visible. (C) MDM2 as function of A, which is always

growing monotonically.

This gives a S-shaped curve in phase space (p53 on the x-axis and MDM?2 on the
y-axis) or, dependent on the parameters, any curve in between (with less inflection
points). If the negative coupling of MDM2 and p53 is very weak or zero, both
proteins are just growing monotonically with increasing pb3 activation. It is widely
believed that the activation of p53 causes a stabilization and that lead to increasing
levels of p53 [155]. However, simulating trajectories under change of p53 activation
A showed that even this simple model can produce several qualitatively different
p53 responses (figure 7.4). So total p53 can either increase, stay constant or even
decrease after activation. MDM?2 can show a sustained or a transient increase.
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Figure 7.4: (A) Steady state of p53 and MDM2 as function of A with three different
trajectories (1, 2, 3). (B) Possible corresponding responses of total p53 as function
of time can increase, stay constant or even decrease (3,2 and 1, respectively). (C) We
found both increasing MDM2 or transiently increasing MDM2 for the three trajectories.

7.2 An extended model of the p53-MDM2 core module
reproduces MYCN induced differences in protein levels

between different NB cell lines

We extended the model of the p53-MDM2 core module to account for the influence
of MYCN and the regulation of the p21 protein (figure 7.1 B) and compared the
model simulation with measured protein levels in different cell lines. Additionally, we
included a Michaelis Menten term for the p53 degradation via MDMZ2, because the
data indicated a nonlinear dependency. The equation system 7.1 with this extension

then becomes
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7.2. An extended model of the p53-MDM2 core module reproduces
MYCN induced differences in protein levels between different NB cell
lines

Orzi(t) = vx+nem(t) — dyx
Orza(t) = konxi(t) — kot a(t)

4
Dy(t) = wvy+nym(t) + vey [M] — Sy y(t)

xa(t) :|4 1 . y(t)
Ky +2a(t) | m(t)/Kn,+1 7" Ky, +y(t)

O z(t) = v+ vy [ z(t) — 6, z(1).

p21 concentration is denoted by z(¢) and MYCN concentration by m(t). We allowed
for basal and p53-mediated production of p21 (rate constants v, and vy,, respec-
tively) and for basal and MDM2-induced degradation of p21 (rate constants ¢, and
dyz, respectively). MYCN m(t) is inducing both inactive p53 x;i(t) and MDM2 y(t)
with rate constants n; and no, respectively. MYCN also inhibits the p53-mediated
p21 production which is modeled by multiplying the suppressing factor

1
m(t)/Kn, +1’

which goes to one for m(t) < K, and to zero for m(t) > K,,. We measured
the protein levels of MYCN, pb53, MDM2 and p21 in six neuroblastoma cell lines
(three MYCN-amplified: SK-BE(2)C, Kelly, IMR5-75; two MYCN-nonamplified:
SY5Y, SH-EP and one conditionally MYCN expressing cell line: SH-EP T21N) and
asked the question whether simply the different MYCN levels and the status of
p53 (mutated or wild type) can account for the observed differences. Therefore, we
simulated the steady state for different cell lines with the model using the measured
MYCN levels as input for m(t) and setting the translation activity of p53 (rate
constants vyxy and vy,) to zero for the simulation in the SK-BE(2)C cells with mutated
p53 [61, 45]. For some reason the p53 in the SH-EP cells showed a stronger activity
(strong MDM2 and p21 expression). Thus, we introduced an additional factor for
this cell line increasing the induction capacity of p53 (rate constants vy, and vy,).
With this we could find a parameter set reproducing the measured protein levels
for the different cell lines (figure 7.5). It remains unclear, what biological process
can account for the higher activity of p53 in the SH-EP cells. The homozygous
deletion of the p14ARF gene could be excluded as reason for the high MDM2 and
p21 levels in the SH-EP cells, because both a clone with conditionally p1428F knock
in and model simulations with an added state for p142RF did show a reduced MDM2
level with increasing p14*RF. Note, that the level of p53 for the SK-BE(2)C cells is
overestimated by the model. One possible explanation for this is a lower stability
of the mutated p53. In summary, it remains plausible that the main reason for
differences in protein level between this neuroblastoma cell lines is mainly attributed
to their differences in MYCN protein level.
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Figure 7.5: (A) Measurement of MYCN protein levels in six neuroblastoma cell lines
(©-®) with MYCN amplification (© SK-BE(2)C, ® Kelly, ® IMR5-75), with wild-
type MYCN (® SY5Y, ® SH-EP) and with conditionally expressing MYCN (® SH-EP
T21N) (black bars). The MYCN level was used as input for the model (blue bars).
(B) Measured (black bars) and simulated (blue bars) p53 level in the cell lines. (C)
Measured (black bars) and simulated (blue bars) MDM2 level in the cell lines. p53 in
the SK-BE(2)C cell line is mutated, so that the MDM2 level for @ is just determined
by basal production and degradation of MDM2. The measured MDM2 and p21 level
in the two SH-EP cell lines (® and @) is very high compared to the relatively low p53
level. To reproduce the protein levels the p53 activity in the SH-EP cells had to be
increased in the simulations. (D) Measured (black bars) and simulated (blue bars) p21
level in the cell lines.

7.3 An extended p53-MDM2 core module qualitatively fits
various measurements of responses to perturbations in
neuroblastoma cell lines

To investigate the MYCN dependent response of the p53-MDM2 core module and
to test our model we used time course data measured upon treatment in neurob-
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measurements of responses to perturbations in neuroblastoma cell lines

lastoma cell lines. Cell culture experiments with two known chemotherapeutics
affecting the pb3 response were conducted. The agent doxorubicin is widely used
in cancer treatment including neuroblastoma [39, 58]. It induces DNA damage by
intercalating DNA and affects cell cycle arrest and apoptosis. The second agent,
Nutlin-3, is a small molecule inhibitor and suppresses the binding of MDM2 to p53.
It induces p53 in neuroblastoma cells and suppresses tumor growth [146, 144, 145].
Responses to Nutlin-3 and doxorubicin were measured in two different subclones of
the conditionally MYCN expressing SH-EP T21N cell line and in the IMR5-75 cell
line. In the following sections. we show, that the results in the SH-EP T21N cell
lines showed a slightly different behavior and especially the p21 response varied.
Notably, the mathematical model could reproduce both measurements qualitatively
with different parameter sets.

7.3.1 DNA damage response of the SH-EP T21N cell line

Response to doxorubicin treatment of the SH-EP T21N cells was measured with
and without MYCN induction (MYCN-on and MYCN-off, respectively) and the
mathematical model including p53-MDM2 interactions, p21 and MYCN regulation
was qualitatively fitted to the data (figure 7.6). Surprisingly, the measured level of
p53 did not increase after DNA damage but stayed constant or decreased, whereas
MDM2 was transiently upregulated. The model showed, that this behavior can be
produced by a compensatory effect of increasing active p53 level and enhanced degra-
dation of inactive p53. Measured protein levels of both p53 and MDM2 were higher
in the MYCN-on cells compared to the MYCN-off cells. p21 protein levels showed
a very opposing behavior. In the MYCN-off cells p21 was upregulated and could
potentially induce cell cycle arrest. But in the cells with high MYCN expression,
p21 was downregulated after DNA damage, indicating an impaired cell cycle arrest.
The mathematical model qualitatively reproduced the kinetics for MYCN-off and
MYCN-on conditions just changing the MYCN input levels. Thus, it is plausible,
that the weak G1 arrest in the MYCN-on SH-EP cells is due to a MYCN induced
protein level imbalance in the p53-MDM2 module, where the negative control of
MYCN on the p53 mediated p21 activation and the increase of MDM2 is dominant
over the effect of the MYCN-induced p53 protein increase.
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Figure 7.6: The measured proteins in the SH-EP T21N cells after doxorubicin treat-
ment at 0 hours (left column) for MYCN-off (black dots) and MYCN-on (red dots)
condition are qualitatively fitted by the corresponding model simulations (right col-
umn) with MYCN-off (black line) and MYCN-on (red dashed line) values. (A) The
measured pb3 level stayed constant or even decreased after doxorubicin treatment for
MYCN-off and MYCN-on, respectively. The model qualitatively reproduces this behav-
ior which can be attributed to the compensation of the increase in active p53 and the
simultaneous increased degradation of inactive p53. (B) MDM2 measurements showed
a transient increase which was much stronger if MYCN was overexpressed. The model
capture the MYCN dependent differences and also showed a slight decrease at later
time points, but it was not possible to generate such a strongly transient activation
like the one measured. (C) The measured p21 levels for the MYCN-off cells and the
MY CN-on cells showed opposing behavior. This could be qualitatively reproduced with
the model simulations.
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7.3.2 Response to DNA damage and MDM?2 inhibition in the SH-EP
T21N p21mCherry cell line on mRNA level

A second measurement with the SH-EP T21N p21mCherry cell line was conducted
where we measured the mRNA level in MY CN-off cells of MDM2, p21 and of PUMA
(an apoptosis related BCL-2 family protein which is a direct p53 target [165, 100])
after treatment with doxorubicin or Nutlin-3 by qRT-PCR (figure 7.7 A-C). We
observed an induction of mRNA upon treatment for all three players MDM2, PUMA
and p21. The measured increase of mRNA after Nutlin-3 treatment was higher than
the increase after doxorubicin treatment. Remarkably, the level of MDM2 mRNA
showed a decrease ~ 15 hours after doxorubicin treatment which is not shared by
any other measured curve. At the last time point the p21 mRNA level measured
in the Nutlin-3-treated cells is the only one decreasing. To adapt the model to
the measurements we added states for the mRNA concentrations of p21, p53 and
MDM2 and a variable for the PUMA mRNA concentration. The PUMA mRNA
concentration w(t) is dependent on active p53 x,(t) and we included basal production
and degradation (rate constant vy, and dy, respectively)

a(t) 47 w
(t)] S u(t).

at ’U)(t) = Uw + VUxw [I(M

The model equations and the best-fit parameters are given in the appendix (sec-
tion A.6). The model was fitted to the mRNA data using a simulated annealing
algorithm. It is capable of fitting the mRNA curves except for MDM?2 for the dox-
orubicin treatment. The transiently downregulation of MDM2 mRNA after the first
peak at ~ 15 hours is not captured by the model (figure 7.7 A-C). The only pro-
cess included in the model, which could account for this would be a decrease of
p53 which contradicts with the increasing p21 level and the constant PUMA level.
Furthermore, the model predicted correctly the measured response of p21 mRNA
in the MYCN-on cells by enhancing the concentration of MYCN in the simulation
(figure 7.7 D).

7.3.3 p53-MDM2 core module response upon DNA damage in the
IMRb-75 cell line is insensitive to conditional MYCN knock down

We wanted to investigate, if the p53-MDMZ2 core module can also account for the
DNA damage response in the IMR5-75 cell line, which harbors a MYCN amplifica-
tion. We used a clone of the IMR5-75 cell line expressing a tetracyclin repressor-
controlled MYCN siRNA to conditionally knock down MYCN. Interestingly, the
response of the proteins p53 and MDM2 after doxorubicin treatment do not differ
much under the two MYCN conditions (with induced siRNA and without) despite
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Figure 7.7: The measured mRNA levels in the SH-EP T21N p21mCherry cells after
doxorubicin treatment at 0 hours (black dots) and Nutlin-3 treatment at 0 hours (blue
dots) with the best-fit simulation of the mathematical model (black line for doxorubicin
and blue line for Nutlin-3). For all players the induction after Nutlin-3 treatment
is stronger compared to doxorubicin treatment. (A) It is not clear why the MDM2
level is decreasing after ~ 15 hours. (B) PUMA mRNA level is described well by the
model. (C) At the last timepoint p21 mRNA level for the cells treated with Nutlin-3
decreases. This is neither shared by another curve nor can the model reproduce this
observation. (D) The model correctly predicts the response of p21 mRNA in MYCN-on
cells to treatment with doxorubicin or Nutlin-3, which induces p21 mRNA less strongly
compared to the MYCN-off cells in (C).

a MYCN knock down efficiency of ~ 38% (see appendix figure A.3). Just the p21
induction changes but is unexpectedly less pronounced after MYCN knock down (fig-
ure 7.8 and Western blots appendix section A.4). The p53-MDM2 module response
seems to be insensitive to a change in MYCN concentration in the IMR5-75 cell line.
This may be attributed to differences in genetic and epigenetic context of the IMR5-
75 and the SH-EP cell line. Another reason for the differences in cell cycle behavior
might also be attributed to the high MYCN levels reached in the IMR5-75 cells
under both conditions, which can result in a saturation effect of MYCN-mediated
p53 and MDM2 induction. We already showed that the mathematical model of
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Figure 7.8: Measured protein levels in the IMR5-75 cells under MY CN-off (black dots)
and MYCN-on (red dots) conditions did not show a big difference in protein levels after
doxorubicin treatment at 0 hours for (A) p53 and (B) MDM2, whereas (C) the p21
response seemed to be decreased by MYCN knock down.

the pb3-MDM2 core module is capable of reproducing the trajectories observed in
the IMR5-75 cells (figure 7.4) and the increased p21 response might be due to the
inhibition of the activation of the p21 promoter by MYCN. However it is found,
that for high levels of MYCN the set of target genes changes and genes related to
the cell cycle control become targets [122, 159, 6]. For example, the level of CDK4
decreases after knock down of MYCN in the IMR5-75 cells (Frank Westermann,
private correspondence). For this reason we investigate the pRB-E2F1 axis and its
interaction with MYCN in chapter 8.
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8 Cell cycle model for the G1-S transition

In this chapter we introduce a mathematical model for the G1-S transition. As recent
findings suggest, there is a distinct difference between the regulation of commitment
to G1-S transition and the preceeding gene activation program [34]. Thus, we model
the crossing of the restriction point (R-point) by investigating the regulation of the
core module of E2F1-pRB regulation. The resulting bifurcation diagram can be
used as a read out to analyze the effects of MYCN and protein inhibitors on the
R-point theoretically and maybe in the future also experimentally. A linear model,
incorporating the basic pRB-E2F1 regulation, remarkably shows bistability in spite
of its noncomplexity and the absence of nonlinear terms. To account for the relevant
player in neuroblastoma we extended this model and simulate the effect of network
perturbations by Nutlin-3 and CDK4i treatment.

8.1 Modeling of pRB phosphorylation

Two prominent regulators of the passage from G1 to S phase (figure 8.1 A) are E2F1
and its repressor pRB (the Retinoblastoma protein) [59, 32]. The pRB-E2F1 com-
plex recruits HDAC (histone deacetylase), where the DNA exhibits E2F1 binding
sites and by histone modifications the transcription is suppressed [136]. By activity
of CDKs pRB is phosphorylated and E2F1 target genes are activated [63]. pRB phos-
phorylation directly affects the binding affinity of E2F1 and hyperphosphorylation of
pRB leads to the dissociation of the pRB-E2F1 complex [118]. The unbound E2F1
can then recruit HAT (histone acetyltransferase) proteins and activate the promoters
by histone acetylation [138, 69] (figure 8.1 B). pRB is phosphorylated by the CDK4
CCN D (cyclin dependent kinase 4 and cyclin D) complex at Ser795 and the CDK2
CCNE (cyclin dependent kinase 2 and cyclin E) complex at Thr826 [23, 49, 134].
Thus, we model the inactivation of pRB as a sequential phosphorylation at two
sites independent of pRB E2F1 binding, taking the time dependent concentration of
pRB R(t), mono-phophorylated pRB R, (t) and double-phosphorylated pRB Ry, (t)
as model states. The first phosphorylation is mediated by the CDK2 CCND complex
and for the start assumed to be constant. The second phosphorylation is conducted
by the CDK2-CCNE complex and modeled as linearly dependent on the CCNE con-
centration C(t) (figure 8.2 A), starting with the assumption that CDK2 is relatively
constant and present in excess. Experiments in neuroblastoma cell lines indicated
that the total amount of pRB is constant on the relevant timescale Ry (t) = const.
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Figure 8.1: (A) At the G1-S transition the cell crosses the R-point and initiates cell
division independently from external growth factors. The E2F1 protein is one major
regulator at this point of the cell cycle and was shown to be part of a bistable switch.
(B) The E2F1 pRB complex recruits HDAC and the E2F1 target genes are inactivated.
pRB hyperphosphorylation leads to dissociation of the E2F1 pRB complex and allows
HAT to bind and to activate the promoter by histon acetylation. The active E2F1

exerts a positive feedback on its own activation by several channels (e.g. autoinduction
by E2F1, induction of SKP2, induction of CCNE).
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Figure 8.2: (A) pRB phosphorylation is modeled as two sequential steps, with the
dissociation constants for mono and double phosphorylation Ky; and Kpa, respectively.
The second phosphorylation is dependent on the CCNE concentration C(¢). (B) pRB
binding regulates the promoter activity.

Assuming, that the pRB phosphorylation is independent of its binding to E2F1
we get for the steady states (steady state is indicated by omitting the argument
R(t — o) = R)

1 1
R, = o1 R = Kot (Rtot — Rp — Rpp)
1
R = — (CR
pPp Kp2 P
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bistability

where K1 and K2 are the dissociation constants for the first and the second phos-
phorylation step, respectively. This yields the concentration of double-phosphorylated
pRB R, just dependent on the CCNE concentration C' and the constants Ry, Kp1
and Ko

CRtot
C+ Kpy+ Kpi Kpo'

RPP(C7 Rtothpvip ) = (81)

8.2 A noncomplex model of the pRB-E2F1 regulation
exhibits bistability

We wanted to investigate if a model incorporating just the most prominent inter-
actions can account for the behavior of E2F1 at the G1-S transition. To model
the transcriptional activity of E2F1 at the G1-S transition we considered a simple
regulatory model of promoter activation. The model consists of two states that
describe the E2F1 regulated promoter activities. Promoters can be either inactive
when both E2F1 and pRB ar bound PR(t) or active being bound only by E2F1 P(t)
(figure 8.2 B). The binding of pRB to the E2F1 promoter complex is dependent on
its phosphorylation (double-phophorylated pRB cannot bind). The amount of pRB
binding in steady state is given by the dissociation constant Ky of its binding to the
E2F1 promoter complex and the amount of free (not double-phosphorylated) pRB
Rfree

where the total number of promoters Py is set constant. Combining the three
equations by inserting the second and the third line into the first, we get the equation
for the steady state of the active promoters P

1
Ptot_P:Ki-P (Rtot_(Ptot_P)_Rpp)‘ (82)
R

Note that Rpp is dependent on the CCNE concentration (equation 8.1). So the
explicit solution for P reads
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8. Cell cycle model for the G1-S transition

CRtot
C+ Kpg + Klepg

(14 Kp1)Kp2Riot )2
C + KpQ + Klep2

2P = —KR+ Piot — Riot +

+\/4KRPtot + <KR — Piot + (8.3)

To implement the positive feedback via E2F1-induced CCNE transcription we model
the CCNE concentration C(t) as being dependent on the active promoters P(t)

0 C(t) =vP(t) — 6C(t) (8.4)
where v is the strength of CCNE induction and § is the basal degradation rate
constant of CCNE.

Interestingly, this simple model already exhibits bistability for a certain parameter
space (figure 8.3). This means 9,C(t) has two stable roots. To calculate the bistable

80
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Figure 8.3: Bifurcation diagram: the non-complex model exhibits bistability. Here
the bistability parameter is Ko the dissociation constant of the pRB phosphorylation
via cyclin E. The other parameters in arbitrary units are Pyt = 1, Riot = 10 and
Kgr =0.05, Kp;y =1; v =150 and 6 = 2.

regime we can now use the expression for P from equation 8.3, inserting this into
the equation for CCNE (equation 8.4) and solve for 9%2P(C) = 0. Unfortunately
this is analytically not feasible. However, it is possible to understand qualitatively
by what mechanism the bistability of the system arises. 9;C' has two stable roots, if
the promoters as function of C' (P(C)) behaves sigmoidal. P(C) is the combination
of the functions P(Rpp) and Rpp(C) (figure 8.4 A & B). Thus, to get a sigmoidal
behavior the amount of active promoters has to be sensitive to the concentration of
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Figure 8.4: (A) Double-phosphorylated pRB Ry, as function of the CCNE concen-
tration C' combined with (B) the active promoters P as function on the concentration
of double-phosphorylated pRB R,,. Is P highly sensitive on R, and in this ’sensitiv-
ity range’ also R,,(C) not too flat (C) P(C) can be sigmoidal. (D) For a sigmoidal
shape of P(C), there can exist two stable roots of 9;C, which means that the system is
bistable. Both curves were simulated with the following parameter values in arbitrary
units: total promoter concentration P, = 1, total pRB concentration R, = 10 and
dissociation constant of pRB binding to the E2F1 promoter complex Kr = 0.05; disso-
ciation constants of pRB phosphorylation K, = Kp2 = 1, induction rate constant of
CCNE by the active promoters v = 150 and degradation rate constant of CCNE § = 2.

phophorylated pRB and with that to the CCNE concentration. If the pRB binding
to the E2f1 promoter complex is very stong and the amount of pRB is higher than
the number of binding sites

Riot > Piot
Kr < Riot — Pot

the promoters are mostly inactive (bound pRB) for a wide range of pRB phos-
phorylation. Just if the phosphorylation is strong enough to deplete the pRB so
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8. Cell cycle model for the G1-S transition

strongly that the available unphosphorylated pRB is of the order of the promoters
Riree ~ Piot the active promoters increase steeply with the pRB phosphorylation.
If also Rpp(C) is tuned accordingly (not too sharp) P(Rpp) becomes sigmoidal and
0¢C' has two roots (figure 8.4 C & D). Conclusively, if strong binding of pRB to the
E2F1 promoter complex is combined with a strong abundance of pRB this linear
system can have a highly sensitive response to concentration changes, which in this
case generates bistability (figure 8.3).

8.3 E2F1 regulation in the model

To rationalize the regulatory impact free E2F1 has on the system behavior we in-
clude the concentration of E2F1 E(t) and its regulation into the model (figure 8.5).
We show that in a certain range the model does not change and that E2F1 autoac-
tivation enhances the bistable regime. We distinguish three promotor states: naked

A B  pgnR

N <— M=-—
m
By

E P “ER

Figure 8.5: (A) E2F1 regulation is introduced into the mathematical model with
basal production and degradation. (B) Additionally E2F1 can bind to the promoter P
and to pRB R or mono-phosphorylated pRB I, both in solution and at the promoter
PER.

promoter P(t), E2F1 promoter complex PE(t) and pRB bound E2F1 promoter com-
plex PER(t). pRB can bind with E2F1 both at the promoter and in solution. The
steady state equations are
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8.3. E2F1 regulation in the model

PER — FRPERfree
1

ER = FRERfree
1

PE = —FEP
Ky

Ree = Ryt — PER— ER— Ry,

P, = P+ PE+ PER, (8.5)

with Kp the dissociation constant for E2F1 binding at the promoter (E 4+ P «
PE). First we want to model E2F1 without regulation to investigate the effect of
E2F1 binding to the promoter has on the system. Thus, we included basal E2F1
production (rate constant vg) and degradation (rate constant Jg)

Oy E(t) = vg — 0 E(t) + binding reactions to pRB and promoter.

Assuming that E2F1 is not degraded while bound by either pRB or DNA we get for
the steady state of unbound E2F1

VE

FE=—
o)

Inserting this into the steady state equations 8.5 we get

1
EFR= ———— (Riot — PER— R
1 + KRéE/VE ( tot Pp) )
which yields
1
PER = Py — (1+ B) PE,

with
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8. Cell cycle model for the G1-S transition

1
1-4 = ——M—
1+VE/(KR5E)
p - Ko
VE

Combining these two equations yields an expression for the active promoters (here
PE) similar to equation 8.2 for the active promoters in the model not considering
E2F1 explicitly (in this case P) .

1
Pt — (14 B) PE = Tn (1—A) P (Riot — (Poot —(1+B)PE) — Rpp) . (8.6)
1
model without E2F1 regulation : Py — P = 7 P (Riot — (Piot — P) — Rpp)
R

Let K3 be the value of the dissociation constant in the first model and Py be the
concentration of the promoters. If for the dissociation constant for pRB binding Kg
and the promoter concentration P,y in equation 8.6 holds

1

Ki = —(1—A

Po= -4
oKy = Ki- &
OE

Py = Ptt)t(l—i_B)’

then equation 8.6 and 8.2 become identical for B <« 1 . This means for excess of
E2F1 Kg < E the model including E2F1 explicitly can be mapped to the model
with just the two state E2F1 promoter complex. Consequently, for a large E2F1
pool the concentration change due to promoter or pRB binding can be neglected
and the system is described by the simpler model.

Including E2F dependency on active promoters 0;E(t) = vg + vpg PE(t) — dgE(t)
enhances the positive feedback and enlarges the region where bifurcation occurs
(figure 8.6).
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Figure 8.6: For increased autoactivation of E2F1 (rate constant vpg) the region were
the system is bistable is enlarged due to the additional positive feedback loop.

8.4 Additional feedback: CDK2/CCNE, SKP2 and p27
regulation increase the bistable behavior

Another positive feedback loop of E2F1 is via SKP2 which is a transcriptional target
of E2F1 (figure8.7) and has been found to be upregulated in many tumors [7] and
in neuroblastoma [98, 158]. SKP2 acts as a E3 ligase on phosphorylated p27 [19],
which inhibits CDK2 activity by binding to the CDK2 CCNE complex. Thus, p27
degradation activates CDK2 CCNE complexes by freeing them from the inhibitory
p27 binding. Activ CDK2 in turn can phosphorylate p27 which marks it as a target

GRAe

—_—
CDK2 <— CDK2
cyclin E cyclin E

inactive active

mitotic signals MYCN
®\/>D K4/ \/CDK2
cyclinD cyclinE £®

N, .o, |
1 A CDK2
—

E2F — E2F E2F SKP2

N -

Figure 8.7: Network model of the E2F1 pRB regulation and the feedback loop via
SKP2. SKP2 tags p27 for proteosomal degradation and with that activates CDK2
CCNE complex. For this previous p27 phosphorylation is necessary which is in turn
mediated by CDK2.

for SKP2. By this a positive feedback loop is formed. To include the SKP2 relevant
regulation we implemented the mentioned processes in our model. The differential
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8. Cell cycle model for the G1-S transition

equation system for the additional CDK2 regulation via SKP2 s(t) (figure 8.8) reads

Drw(t) = v—kew(t) Cr(t) + le Co(t) — ky w(t) Cr(t) + by wy (t) — 8 w(t)
Orwp(t) = —kewp(t) Ce(t) + 1 CL(t) + kp w(t) Ce(t) — (Ip + 6 + 6" s(t)) wp(t)
9 Ci(t) = —kew(t)Ce(t) +1c Co(t) — ke wp(t) Ci(t) + 1 Gy (1)

X Cp(t) = kew(t) Ce(t) — I Op(t) — kp Ou(t) Ce(t) + 1, Cp (1)
O Cy(t) = kewp(t) Ce(t) — 1 CP(t) + kp O (t) Ci(t) — 1, CP (1)

with the concentration of unbound p27 unphosphorylated w(t), phosphorylated
wp(t) and total wiet(t); concentration of free CDK2 Ck(t), bound with unphos-
phorylated p27 Cy,(t), bound with phosphorylated p27 C}(t) and total Ciot. The

g g

T cf T SKP2

:

—»,0274_ P27—>¢

rol

P

Figure 8.8: We modeled CDK2 CCNE complex-mediated p27 phosphorylation and
subsequent SKP2-dependent degradation, CDK2 CCNE complex binding to p27 (both
to phosphorylated and unphosphorylated) and allowed for p27 phosphorylation while
bound to a CDK2 CCNE complex.

autoactivation of CDK2 via p27 phosphorylation produces a high sensitivity of the
free CDK2 on the concentration of SKP2 (figure 8.9). This enhances the bistable be-
havior of the system by sensitizing the E2F1 response to input signals (e.g. stronger
pRB phosphorylation by growth factor induced CCND) and strengthen the positive
feedback of E2F1 via CDK2 and CCNE. The model is bistable in a wide parameter
range and can be utilized to rationalize the effect of network perturbations.
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8.5. Cell cycle arrest induction by a combination of Nutlin-3 and CDK4i
is synergistic but strongly impaired by amplified MYCN
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Figure 8.9: The positive feedback that the active CDK2 CCNE complex exerts on its
own activation leads to a high sensitivity of the CDK2 CCNE complex to the SKP2
concentration (modeled as a change in the SKP2-mediated p27 degradation rate con-
stant d*). On the one hand the SKP2 concentration is E2F1 dependent and on the
other hand more active CDK2 CCNE complex increases pRB phosphorylation. Thus,
this high sensitivity can potentially enforce the bistable behavior.

8.5 Cell cycle arrest induction by a combination of Nutlin-3
and CDKJ4i is synergistic but strongly impaired by
amplified MYCN

Using the derived mathematical model we next simulated different perturbations of
the network to investigate its impact on the R-point behavior. To model the specific
treatments we included a term for CDK4 level and a term for p21 level in the equa-
tion for pRB phosphorylation. The full equation system with the used parameter
values is given in the appendix (section A.7). The MYCN gene amplification leads
to an increase in CDK4 level as MYCN is a transcription factor for CDK4 [6]. In-
creasing the level of CDK4 in the model shifts the bifurcation curve to the right and
lessens the region of bistability (figure 8.10). Conclusively, the MY CN-on cells would
need less or even no growth signals to commit to cell cycle progression, correspond-
ing to strong proliferation and uncontrolled G1-S transition. This growth factor
independence is in line with experiments, where cells are synchronized by growth
factor starvation. In these experiments MY CN-amplified cells such as IMR5-75 cells
do not arrest (Frank Westermann, private correspondence).

Experiments with the small molecule inhibitor Nutlin-3 and a CDK4 inhibitor
(CDK4i) in conditionally MYCN expressing IMR5-75 cells showed that a treatment
with both inhibitors exhibited a synergistic inhibitory effect on cell growth [157].
Here CDK4i treatment was modeled by reducing the CDK4 level to 20%. The
Nutlin-3 treatment is inducing p21 protein by inhibiting the interaction of MDM?2
and pbH3 (see section 7). CDK2-CCNE complexes are inactivated by binding to this
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Figure 8.10: (A) The bifurcation diagram for a simulation with low MYCN level.
The E2F1 activity is measured by the fraction of the promoter in the state where just
E2F1 is bound (PE). (B) The bistable region is shifted to lower serum concentrations
(corresponding to lower concentration of growth factors) for a simulation with high
MYCN levels.

p21 and thereby further pRB phosphorylation is suppressed. To investigate how
the system behaves under change of p21 or CDK4 levels we plotted the bifurcation
points as function of p21 and CDK4 concentrations (figure 8.11 A). For high CDK4
levels and low p21 levels bistability is lost and just the high steady state exists.
This would mean growth factor independent proliferation. For low MYCN levels
and high p21 levels just the lower steady state exists, corresponding to G1 cell cycle
arrest. In between, near the diagonal lies the bistable region. Conclusively, from
a malignant state (high CDK4, low p21) it is most effective to reach the bistable
region or the lower steady state by simultaneously reducing CDK4 (e.g. by CDK4i)
and increasing p21 (e.g. Nutlin treatment). However, by analyzing the change of
the bifurcation points under Nutlin-3 and CDK4i the simulations showed that the
effect of Nutlin-3 and CDK4i in the MYCN-amplified cells is significantly reduced
compared to the MYCN-nonamplified cells. Treatment of MY CN-off cells just with
Nutlin-3 is much more effective than treatment of MY CN-on cells with a combination
of Nutlin-3 and CDK4i. We plotted the change of the value of the first bifurcation
point (the point, after which just the steady state with high E2F1 exists) for the
simulations with Nutlin and CDK4i at MYCN-on and MYCN-off conditions (figure
8.11 B). Simulation of the Nutlin-3 treatment in MY CN-nonamplified cells strongly
shifted the bifurcation point to the right corresponding to cell cycle arrest despite
growth factor access. Increasing the MYCN level in the model reduces the simu-
lated effect of both Nutlin-3 and CDKA4i significantly. In an exemplary simulation
the combination of both inhibitor could just compensate for the MYCN effect and
restore the 'wild type’ behavior without inducing additional cell cycle arrest (figure
8.11 B). In summary, the bifurcation diagram of the mathematical model could be
used to rationalize MY CN-dependent treatment effects on the system. Although the
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Figure 8.11: (A) The bistable regime as function of MYCN and p21 has a diagonal
shape. Consequently combined counteracting of MYCN effect and induction of p21 is
most effective. (B) The simulated value of the bifurcation point as function of serum
shows that simulated treatment of MYCN-off cells just with Nutlin-3 is much more
effective than treatment of MYCN-on cells with a combination of Nutlin-3 and CDK4i.
The MYCN-on cells upon combined treatment just reach the simulated value for the
bifurcation point of the untreated MY CN-off cells.

model only consists of few interactions, treatments that do not directly affect these

players can be modeled by considering the downstream effects of the treatments.
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9 Age structured cell cycle model

In this chapter a phenomenological model of the cell cycle is introduced. It is
shown that by calculation of underlying steady age distributions, cell phase lengths
and apoptosis probabilities can be deduced from DNA content FACS measurements
in combination with additional information as the cell groth rate using only few
assumptions.

9.1 Steady age distributions for the cell cycle

We describe a growing cell population with number of cells n;(a, t) in dependence of
time ¢ and age a in a certain phase ¢ based on the McKendrick-van Foerster equation
[89, 153]. For simplicity we start by considering just one phase (total cell cycle).
n(a,t) should fulfill

Oin(a,t) + dgnla,t) = —k(a)n(a,t), (9.1)

were the age dependent rate k(a) accounts for cells leaving the system (e.g. mitosis,
cell death, senescence). If a cell divides at age a and leaves the system, two new’
cells enter with age zero. Let cells divide with rate k(a) then one of the boundary
conditions is

n(0,t) = 2/Ooon(a,t) k(a) da.

Assuming that the population is growing exponentially and that all cells divide at
some time, there exist a steady age distribution s(a) and a constant A such that

n(a,t) = Ny s(a) e, (9.2)

/0003<a) da = 1.

The second boundary condition, demanding that the population is in steady age at
time zero with initial number of cells Ny reads

with the normalization

n(a,0) = Ny s(a).
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9. Age structured cell cycle model

Inserting equation 9.2 into equation 9.1 gives a differential equation for the steady
age distribution

O s(a) = — (k(a) + \) s(a)

with solution

9.2 Steady age distribution for multiple phases

The extension of the model for describing the cell cycle with multiple phases is quite
straight forward by considering the number of cells n;(a,t) at time ¢ with age a in
phase i. Because every phase gets input from the previous phase and the first phase
of the cell cycle get two cells for every cell leaving the last phase of the cell cycle,
we introduce as index set for the phases a cyclic set I = {1,2,..., D} with number
of elements D equal to the number of cell cycle phases to be described (for a cyclic
set addition is defined as addition modulo the cardinal number so that D 4+ 1 = 1).
Then we can generalize equation 9.1 and its boundary conditions to

Oni(a,t) + 0gni(a,t) = —ki(a)n(a,t)

ni+1(0,t) = €¢+1/0 ni(a,t) k;i(a) da

ni(a,O) == NO,i si(a), (94)

withi € I, & =2 fori =1 and & = 1 else and steady age distributions of the phases
si(a). Similarly to the one phase model equation 9.3 the steady age distributions
s;(a) in a multi phase model are given by

si(a) = si(O)exp{—)\a— /Oak:i(a*)da*}

5:(0) = [/Oooexp{—)\a—/oaki(a*)da*}da]1.
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Combining this, we get

ni+1(0,t) = Noit1esi11(0)
= No;eMsi(0) & / e~ A Joki(a™) da” . (4) da. (9.5)
0

By dividing the equation by the total number of initial cells Ny we get an equation
system for the fraction of cells in a certain phase
e — No,i
(2 NO )

dependent on the rates k;(a) and the rate of cell growth A. Instead of the age
dependent rate k(a) usually the distributions of transition times are measured. Thus,
we want to use probability density functions (pdfs) instead of the age dependent
rates. Fortunately it is possible to calculate the age dependent rates directly from
the pdf. The transition rate k(a) is defined via

da n(a,t)’

Let 7(a) be the pdf for the transition (in units of one over time) then the derivative
is

dn(a,t)
da

by definition and the amount of cells at age a left is

= —m(a)n(0,t — a)

n(a,t) = <1 - /OaTr(a*) da*> n(0,t — a) = (1 — x((a))) n(0,t — a),

with the cumulative probability distribution (cdf) x(m(a)). Inserting this into the
definition of k(a) yields
k(a) dn(a,t) 1 m(a)n(0,t —a) m(a)
a) = — = = .
da  n(a,t)  (1-x(a)) n(0,t—a) 1—x(n(a)))
So we can convert a pdf via equation 9.6 into the rate. The steady age distribution
for the whole cell cycle can be calculated straight forward from the multiple phase
description. The pdf for the division mynele is the convolution of the pdfs from the
single phases m;

(9.6)

Twhole(@) = m1(a) o ma(a) o ...omp(a).
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9. Age structured cell cycle model

From this it follows that the mean piypoe and the variance ogvhole are the sum of the
means p1; and variances o2 of the multiple phases (which is true for all cumulants)

Mwhole = Z,U"L
iel

Ogvhole = ZUZQ (97)

il

The measured cell cycle length distribution is often skewed to the right. Note, that
the convolution reduces the skew which is not a cumulant and the skewness of the
single phases (or at least from one single phase) has to be stronger than the skewness
of the resulting distribution.

9.2.1 Simple case without cell death and sharp phase transition gives
exponential steady age distribution

The simplest assumption for the model is a fixed cell cycle length A. Then the
division rate is described by a Dirac delta distribution k(a) = d(a— A) and it follows
that

s(a) = s(0) e for a < A

and

n(0,t) = Nys(0)eM = Z/mn(a, t)8(a — A) da = 2Ny eM s(A)
0

& 5(0) = 2s(A) =2s(0)e M

A —1
In(4
s(0) = [/0 e_’\t] = n[(x )
n(a7t) = NO S(CL) GAt = ]Voiil(4) 2%2%& for a S A (98)

The number of cells decreases exponentially with age until it reaches half the value
at the age of division A (figure 9.1). The total amount of cells N(t) doubles as
expected after A
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Figure 9.1: For a constant cell cycle length A the steady age distribution of the cells
declines exponentially with age (black line). The same is true for distributed transition
times 7(a) (dashed gray line) but then in an region dependent on the width of m(a)
around the mean transition time A the distribution deviates from the exponential decline
(dashed black line).
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For a Gaussian distribution of cell division times the width of the distribution has
no effect on the global steady age distribution, as long as it is sufficiently narrow
(figure 9.1). Just the right border at the transition is shaped by the distribution of
transition times.

For multiple phases with fixed phase lengths A; one would get for the number of
cells at age a in the cell cycle ncycle(a,t) (as the ages of the single phases have to be
added up to get the age in the whole cell cycle)

ni(a,t) 0<a<A
ng(a—Al,t) A <a<Ay
ncycle(aa t) = . .

nD(a*ZZeI\{D}AZ,t) ADfl <CLSAD

= scycte(0) = 51(0) = 25p(Ap) = 2scyete( Y M)

Thus as expected, analogous to equation 9.8, the solution is the same as for the case
of one phase with fixed length
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Neyelo(a,1) = No2 & 2% with A = ZZ A,

9.3 Apoptosis

We include cells in an apoptotic state nq(a,t) into which cells enter from all other
phases with rates [;(a). This additional rate enters the steady age distribution, but
not the boundary condition of the equation system

Oni(a,t) + 0yni(a,t) = —(ki(a)+1l;(a)) ni(a,t)

ni+1(0,t) = §i+1/0 ni(a,t) ki(a) da

ni(a, 0) = Noﬂ' si(a).

In measurements of apoptotic cells (e.g. fractionated DNA, caspase cleavage) the
cells are just detectable for a limited time span. Therefore, we have to take into
account, the time in which apoptotic cells are detectable. This is modeled by the
rate k(a) (where a is the age in the apoptotic state), which describes the time until
the apoptotic cells are not detectable any more. The equations for the apoptotic
state read

Ot na(a,t) + 0gnala,t) = —k(a)nala,t)
na(0,t) = ;/ﬂ n;i(a,t)li(a) da

na(a,0) = Ny, Sala).

So the equations for the fractions of cells in a certain phase u; and u, is

Uit 5i+1(0) = SZ(O) £i+1 / e—)xa—fo‘l(kq;(a*)+li(a*)) da* kjl(a,)da
0

Us, 83(0) — Z w; 81(0) / e—)\a_foa(ki(a*)—i-li(a*)) da* l,L (a)da

0

i€l

5a(0) = [ /0 Ooexp{—)\a _ /0 aﬁ(a*)da*}da]l. (9.9)
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9.4. Division times from single cell live microscopy

When we include pdfs for the phases ¢ € I both for apoptosis p; and for phase
transitions m; there is a freedom to define the rates. Omne possibility is to use a
competition model as in [55], where the apoptosis machinery is competing with
the cell cycle machinery. Since we want to treat the decision to undergo apoptosis
independently from the time of the decision to undergo cell cycle commitment we
introduce the probability w; to undergo apoptosis in phase i. This yields

Kl(a) = ki(a)—i-li(a)

Ui(a) (1 —wj) mi(a) +wi pi(a)
1 — x(IT;) 1= ((1 = wi)x(mi) + wix(pi))
() — (1 - wi) mi(a) n
=R = T o) + e
o) — wi pi(a)

1= ((1 = wi)x(mi) +wix(pi))’

with K;(a) the transition rate and II;(a) the pdf of apoptotic and cycling transitions.

9.4 Division times from single cell live microscopy

We used conditionally MYCN expressing SH-EP cells transfected with a p21 pro-
moter driving the fluorophore mCherry with an added nuclear localization sequence
for single cell live microscopy. From three day time courses for both endogenous
MYCN expression (MYCN-off) and MYCN overexpressing (MY CN-on) cells the cell
cycle lengths could be detected semi-automatically. The cells were tracked [117, 50]
and then the trajectories inspected manually and corrected where required. The
tracking of 101 MYCN-off cells showed a mean division time of 23.1 hours with a
standard deviation of 5.4 hours whereas the measurements of 52 MYCN-on cells
resulted in a mean of 18.0 hours with a standard deviation of 3.2 hours (figure 9.2).
Thus, the coeflicient of variation of the division times distribution was smaller for
MYCN-on cells. Both distributions are skewed to the right. The skewness of the
distribution for MYCN-on cells is slightly higher (skew MYCN-on: 0.98 compared
to skew MYCN-off: 0.62).
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Figure 9.2: (A) Measured distribution of division times for the MYCN-off SH-EP
T21N p21mCherry cells. (B) The measured distribution of the MYCN-on cells is shifted
to the right with smaller width compared to the MYCN-off condition.

0.5 Phase durations from DNA content FACS
measurements

In the presented framework we have derived a system of equations 9.9 for the steady
age distributions of multiple cell cycle phases with apoptosis. This can be utilized
to analyze FACS data of cell populations to derive underlying parameters like cell
cycle phase durations and apoptosis probability.

DNA content of conditionally MYCN expressing SH-EP cells were measured by
FACS (figure 9.3 A). After MYCN induction a reduction of cells in G1 phase and
an increase of cells in S and G2 phase were visible. Additionally the fraction of
apoptotic cells showed an increase of 55 %. The equations 9.9 give the relation
between fraction of cells measured in the phases (G1, S, G2, apoptosis) and the
rates for the transitions. We solved the equations numerically for the mean transition
times p;, the growth rate A and the apoptosis probability w. For this we assumed
Gaussian transition probabilities. To model cell cycle phase dependent apoptosis we
used the idea that cells progress through the cell cycle at different velocities and that
the behavior of the cell cycle dependent genes is governed by the relative progress
through the cell cycle [26]. Accordingly apoptosis was implemented to occur at 80 %
completion of the G1 phase (0.8-p1). This was motivated by apoptosis measurements
[44]. The time span during which apoptotic cells can be measured (given by k(a))
was set to 10 hours. Additionally, we used the measured total cell cycle times for
MYCN-on and MY CN-off condition from section 9.4 to get the mean total cell cycle
times which is the sum of the mean transition times (equation 9.7). The widths of
the transitions were chosen such that the resulting total variance agreed with the
measured variance. However, the resulting mean phase durations were insensitive
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Figure 9.3: (A) After MYCN induction the cell fraction in G1 phase decreased whereas
the fractions in S and G2 phase increased (measured by DNA content measurements
using FACS). The apoptotic fraction increased by 55 %. (B) Calculating the phase
durations with the introduced model showed that the length of the G1 phase shortened
and the length of the S and G2 phases did not change. (C) The calculated probability
to undergo apoptosis showed a minor increase with MYCN overexpression. The strong
increase in the apoptotic fraction in the measurements might be explained by the faster
cycling of the MYCN-on cells and the resulting more frequent passage of cell cycle
control points.

to a change in the variance of the underlying pdf (at least under such variations
for such the resulting total variance in the simulation was close to the measured
variance). The results (figure 9.3 B & C) showed that the duration of the G1 phase
decreases with MYCN whereas the duration of S and G2 phase remained constant.

To compare the growth of cells with and without M YCN overexpression we simulated
the proliferation of a single cell for the two conditions for a time course of seven
days. MYCN overexpressing cells grow much faster and reach six fold the number of
MY CN-off cells after one week (figure 9.4). The apoptosis probability did not change
much between MYCN-off and MYCN-on (increase of 16 %). We tested our results
for the influence of the time that apoptotic cells remain in the system (determined
by k) and the age at which cells die in the G1 phase. For a change of k just a
minor change in the resulting mean phase times was observed whereas the apoptosis
probability was highly dependent. However, variations in the value of x did not
change the difference in the apoptosis probability between MY CN-off and MY CN-
on cells. Changes in the age at which apoptosis occurred did influence the output
significantly.
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Figure 9.4: Simulated cell population size of the MYCN-on cells exceeds six times the
size of the MYCN-off cell population after seven days of growth.

9.6 Desynchronisation

For several experiments it is beneficial or even necessary to synchronize cells with
respect to their cell cycle position, for example to investigate effects in certain phases
only. We wanted to investigate how long this cells will be synchronized until, via
stochastic processes, the cell cycle positions are decorrelated. From the measured
distribution of cell cycle durations we can estimate the desynchronisation time of
the cells. Note that normally distributed frequencies of cell cycle progression speed
would lead to an inverse Gaussian distribution of division times [85] in accordance
to the usually observed right skewed distributions of cell cycle duration. Thus, we
fitted two inverse normal distributions

A Y2 —Az — p)?
R
to the measured distributions from section 9.4 (figure 9.5). Indeed, the two dis-
tributions are fitted reasonably well by inverse normal distributions as shown by
a x? analysis. Interestingly fitting a normal distribution lead to a similar result
with respect to fitting performance for the MYCN-on distribution but performed
poorly in fitting the MYCN-off distribution. Fitting a log normal distribution gave
the opposite result: good fit for the MY CN-off distribution and a worse fit for the
MYCN-on distribution (table 9.1). Thus, we used an inverse normal distribution to
analyze desynchronisation.

Let Py be the distribution of positions in the cell cycle for cells synchronized by arrest
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Figure 9.5: (A) The distribution of cell cycle durations for the MYCN-off cells is well
fitted by an inverse normal distribution. (B) This is also true for the distribution of
the cell cycle durations of MYCN-on cells with smaller width and less skewness.

distribution X?)ff Xgn

normal 37 49
log normal 18 155
inverse normal 18 55

Table 9.1: x? values for the fit of the cell cycle length distribution for the MY CN-off
cells (x%;) and the MYCN-on cells (x2,). The fit of an inverse normal distribution
resulted in the best combined 2 value, where all three distributions were fitted with
two degrees of freedom.

(e.g. by serum starvation or a thymidine block). When the cells are released again
the distribution broadens because of differences in speed of cell cycle progression.
After every cell division the distribution of the cells in the cell cycle can be estimated
by taking the starting distribution Py and convolute it with the fitted distribution
for the cell cycle durations Z and analogous P; = P;—1 o Z. So for every division
the variance of the distribution of the cell cycle durations ¢?(Z) is added to the
variance of the actual distribution o(P;) (values table 9.2). That would mean both
for MYCN-on and MYCN-off cells after three divisions the value of two standard
deviations is bigger than half of the mean. Already after one division for both
populations the value of two standard deviations is in the order of the length of the
G1 phase. The proposed framework of steady age distributions might lead to a future
standard method to analyze FACS-measured cell cycle data to deduce underlying
parameters.
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mean y  variance 02 two standard deviation 20
MYCN-off 23.9 hours 47.6 hours? 13.8 hours
MYCN-on 17.9 hours 7.6 hours? 5.5 hours

Table 9.2: Mean and variance for the fitted distributions for MYCN-off and MYCN-
on cells. The width of the distribution (two standad deviations) is in the order of
the duration of the S phase. For a synchronized dividing cell population this means
a rather fast desynchronization (for every division the variance of the cell cycle length
distribution is added to the variance of the distribution of cells in the cell cycle).
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10 Conclusions and discussion
Neuroblastoma

10.1 p53-MDM2 core module

Mathematical models can help to analyze the responses of systems with multiple
interactions. Especially the response of networks with feedback loops are very hard
to predict. Often it is intuitionally not clear, if a given network is able to produce a
certain measured response. We established a model of the p53-MDM2 core module
to rationalize the dysfunction of the DNA damage response in neuroblastoma and
the role MYCN plays therein.

Some measurements in the SH-EP T21N cells did not show an increase of the p53
level upon DNA damage induction, seemingly contradicting the believed mechanism
of sensing DNA damage and subsequent p53 stabilizing with increase of p53 level
[155]. An analysis of the mathematical model of p53-MDM2 core module showed
that the steady state of the system exhibits a universal behavior upon p53 activation
in phase space. Thus, the possible responses of this module could be systematically
determined. This set of possible trajectories included the measured transient MDM?2
induction with simultaneously constant or even decreasing level of total p53 concen-
tration. The explanation why p53 is not induced is that the increase of stabilized
active pb3 is compensated by the increased p53 degradation via MDM2-mediated
ubiquitination. To validate the mathematical model and to further analyze the re-
sponse to DNA damage it would be very beneficial to experimentally distinguish
between transcriptionally active and transcriptionally inactive p53. One possibility
to detect p53 activity would be to use a pb3 target gene as a measure of p53 ac-
tivity or to use antibodies specific to certain posttranslational modifications of p53
[125, 57, 79].

The negative feedback of p53 via MDM2 renders the system already in the noncom-
plex model without mRNA regulation close to oscillatory. Including also MDM?2
mRNA generates oscillatory behavior if parameters are chosen appropriately. This
is in line with experimental observations of oscillatory or pulse like responses of
p53 and MDM2 [73, 68, 79]. We did not observe any indication of this behav-
ior in the neuroblastoma cells when monitoring p21 promoter activity in SH-EP
T21IN p21mCherry cells after doxorubicin treatment on single cell level under the
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microscope. The lack of the oscillatory behavior might be attributed to differences
between the cell types or by a dampening effect of the p21 promoter reporter regu-
lation. Another explanation might be a malignant dysregulation of the p53-MDM?2
core module in the neuroblastoma cells inhibiting p53 and MDM2 oscillations. Due
to the fact that we could not observe any oscillations, we progressed with the pre-
sented framework and did not investigate the oscillatory regimes of the model as was
done in previous studies [81, 22, 116, 42, 8, 41]. It might also be possible that there
are no p53 oscillations observed in the SH-EP cells due to the deletion of p144RF g
negative regulator of MDM2 [147]. The role of p14ARF for oscillations was already
mentioned in [113] in a qualitative model analysis.

The protein levels in several neuroblastoma cell lines (including MYCN wild-type
and MYCN-amplified cells) differ strongly. The mathematical model shows that
the differences of the protein levels can be explained by using the MYCN level
in the cells as input and considering the status of p53 (mutated or not). Only
the high MDM2 and p21 protein levels in the two SH-EP cell clones could not be
explained just by the measured MYCN levels. An additional parameter allowing for
higher p53 activity in these cells was needed to reproduce the measured data. We
hypothesized that this parameter may account for the deletion of the p142RF gene
in the SH-EP cell line. However, both a simulation including p14*RF regulation and
a SH-EP clone with a conditionally p14*RF knock in showed a resulting decrease
of MDM2 level after pl4ARF overexpression. Thus, the reason for the high MDM2
and p21 level in the SH-EP cell line remains unknown. The level of p53 for the
SK-BE(2)C cells is overestimated by the model. One possible explanation for this
is a lower stability of the mutated p53. In summary, it remains plausible that the
main reason for differences in protein level between these neuroblastoma cell lines is
mainly attributed to their differences in MYCN protein level. However, the apparent
high p53 activity in the SH-EP cells remains an issue for further investigations.

We measured the response of p53, MDM2 and p21 upon DNA damage and upon
treatment with the small molecule inhibitor Nutlin-3 in two clones of the SH-EP cell
line. The resulting time courses differed between these two measurements. However,
both can be qualitatively reproduced by the mathematical model of the p53-MDM2
core module. In both measurements the p21 response is weaker in the MYCN-on
cells compared to the MYCN-off cells. This is reproduced in the model just by the
impact MYCN has on the protein level of p53 and MDM2 and the p21 regulation.
Despite the upregulation of p53, which potentially enhances the p21 induction it
seems that the negative control of MYCN on the pb53 mediated p21 activation and
the increase of MDM2, which both repress cell cycle arrest, is dominant over the
effect of the p53 protein increase. Thus, it is plausible that the weak G1 arrest in
the MYCN-on SH-EP cells is due to a MYCN induced protein level imbalance in
the p53-MDM2 module.

A measurement of MDM2 mRNA levels upon doxorubicin treatment showed a de-
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crease after ~ 15 hours after treatment, which is not captured by the corresponding
model fit. In the model only a decrease of p53 could produce such a behavior (result-
ing also in a MDM2 decrease). However, this would contradict the observed increase
in the p21 mRNA level (while PUMA mRNA level stays constant). Probably the
MDM2 behavior indicates a more complex gene regulation or another regulatory in-
teraction, such as interactions with the MDM4 protein [128, 72]. The MDM4 protein
which is associated with the regulation of the p53-MDM2 response and potentially
plays an important role in other embryonic tumors [110, 48, 40] is not included in
the model. This regulation might account for the observed kinetics which could not
be explained by the model. For all time points but the last the level of mRNA after
Nutlin-3 treatment is higher than after doxorubicin treatment. At the last time
point the mRNA level of p21 decreases after Nutlin-3 treatment and is lower than
the measurement in the cells after doxorubicin treatment. Here further experimental
investigation is necessary to see if this is Nutlin-3 specific or if this can be attributed
to other effects such as apoptosis. Also to assess the differences between the two
shown datasets collected in the SH-EP clones further experimental investigations
are needed. Both measurements were just performed once and have to be validated.

The measured responses of p53 and MDM?2 for MY CN-on and MY CN-off conditions
in the IMR5-75 cells did not show any significant differences. Only the p21 response
is modulated under changed MYCN level. Thus, the MYCN level change seems to
be in a regime, where neither p53 nor MDM?2 expression is sensitive to it. However,
qRT-PCR showed that the expression of other genes involved in the G1-S transition
like CDK/ were changed significantly after MYCN knock down in the IMR5-75
cells. Consequently, it seems important to consider the MYCN impact on both the
pH3-MDM2 axis and the E2F1-pRB axis. This is also indicated by the finding that
perturbation of both axes with simultaneous Nutlin-3 and CDK4i treatment exerted
a synergistic effect on the growth of neuroblastoma cells.

10.2 E2F1-pRB regulation

A basic model for the E2F1-pRB interaction, governing the transition from G1 to
S phase was established. In contrast to other studies, which also model the R-point
as a bistable switch [2, 53, 106, 164], this mathematical model is a linear model
including just the core interaction of E2F1, pRB protein and the promoter binding
sites. Nonetheless it exhibits bistability in line with the experimental findings of
[164].

To account for the most important regulatory mechanism governing the dysfunc-
tional G1-S transition in neuroblastoma we included feedback regulation of SKP2
and CDK2, as well as the impact of MYCN and p21 in the model [98, 44]. This

extension of the mathematical model allowed us to utilize the bifurcation diagram as
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a readout to investigate the effect of perturbations on the system (such as different
MYCN levels and treatment with chemotherapeutical drugs or protein inhibitors).
The bifurcation curve is highly dependent on the input level of MYCN. Higher
MYCN levels shift the G1-S transition to lower activation levels (e.g. growth fac-
tors, serum). Plotting the bistable regime as function of p21 and CDK4 shows that
it is most effective to target both simultaneously to restore a functional G1-S transi-
tion or to even induce G1 arrest. This is in line with the observed synergistic effect,
Nutlin-3 and CDK4i have on neuroblastoma cell growth [157]. The model serves as
a valuable tool to predict and understand the effect of network perturbations.

To determine the model parameter it is necessary to test, if the G1-S transition in the
neuroblastoma cells really show a bistable behavior or if by malignant transformation
or differences in cellular parameters (e.g. amount of E2F1, genetic background) the
bistable switch is altered. This could be measured by using single cell measurements
[164]. Furthermore it would be very interesting to test if the modeled change of
the bifurcation diagram is directly related to the measured change of G1 phase
duration after conditional MYCN overexpression. By simulating the time to reach
a certain E2F1 activity threshold level as a function of CDK4 level the model might
be able to predict the length of the G1 phase under different conditions. If it is
possible to validate this experimentally it could eventually be used as an input for
the phenomenological cell cycle model. Thereby an integrated cell cycle model could
be generated to connect molecular mechanisms to cell population measurements.

One problem of the model is the mapping of the bifurcation diagram to a cell pop-
ulation behavior. There are many mechanisms by which cell to cell variability in
crossing the G1-S transition can arise such as the availability of growth factors,
E2F1 concentration and upstream signaling [71]. However, measurements at single
cell level can potentially resolve this problem.

Most of the MYCN-amplified cell lines show a strongly impaired G1 arrest after
serum starvation (Frank Westermann, private correspondence). The pRB-E2F1
model indicates that the combination of Nutlin-3 and CDK4i can compensate for the
MYCN effect on the G1-S transition. It would be interesting if the treated cells can
be arrested by additional serum starvation after treatment with Nutlin-3 or CDKA4i.

10.3 SAD model

By utilizing a phenomenological model of the cell cycle describing an age structured
population, we provided a mathematical framework to extract underlying cell cycle
parameters, which are difficult to measure directly, from combined FACS-measured
cell cycle phase distributions and cell growth rate measurements. The formulation
of the equations allow the implementation of biological assumptions directly related
to the measurements (e.g. the estimated apoptosis probability).
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The model showed that conditionally upregulated MYCN in the SH-EP cells mainly
affect the length of the G1 phase. Interestingly, the apoptosis probability does not
change much. However, the faster cell cycling causes the cells to pass the points of
the cell cycle at which the cells are more likely to undergo apoptosis more frequently.
This explains the higher fraction of apoptotic cells in the MY CN-on cell population
(increase of 55 percent).

Recently published models proposed an intracellular competition of different pro-
cesses for lymphocyte proliferation, apoptosis and differentiation [169, 31, 30]. Here,
in contrast we assumed apoptosis to be mainly coupled to the cell cycle regulation
[162, 99, 149] and to occur at a specific region of the cell cycle (the deduced pa-
rameter values are not strongly dependent on the exact choice of the region). This
assumption has to be tested experimentally by better quantifying apoptosis in neu-
roblastoma cells and relating it to the cell cycle progression. This might be possible
by time course FACS measurements in combination with mRNA or protein quan-
tification methods.

By verifying the predicted phase length of the model for example by single cell flu-
orescent live microscopy utilizing FUCCI dyes [119] the model could be used as a
standard analysis tool for cell cycle data. Besides the analysis of the FACS mea-
surements the SAD model might also be used to model synchronized or perturbed
cell populations by implementing a stochastic simulation in the framework.

The main goal of the future work should be the integration of the mathematical
model of the p53-MDM?2 core module and the pRB-E2F1 model with the phenotyp-
ical read out of cell growth and cell cycle phase durations. To achieve this several
experiments have to be performed. The data for the p53-MDM2 model has to be
validated. To fit the pRB-E2F1 model single cell measurements of the G1-S transi-
tion have to be carried out and compared to the model. It remains questionable if
the G1-S transition is at all bistable in neuroblastoma cells.
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A Appendix

A.1 JAK/STAT1 model equations parameter values
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A.1. JAK/STAT1 model equations parameter values

We considered cytoplasmic (subscript cyt) and nuclear (subscript nuc) species of
monomeric STAT1 proteins (S) and of STAT1 homodimers (SS) . The superscript
p indicates a tyrosine phosphorylation (two superscripts indicating that both Stats
are phosphorylated). The dimer binding is either by N-terminal interactions (su-
perscript NN) or by phospho-tyrosine/SH2 domain interactions (superscript SH2).
The receptors can be inactive (R) or activated (R*), where the activated receptors
can bind unphosphorylated STAT1 monomers (R*S) and N-terminal STAT1 homod-
imers (R*SS). The nuclear phospho-tyrosine/SH2 dimers can bind DNA specifically
(Ds) by interaction with GAS-sites and unspecifically (Dvy).

Reaction Para. Value [95% confidence]
Concentration of IFN+~ receptors Ry 5.3 nM = 10* receptors
Concentration of GAS sites gas 5 nM ~ 3 - 103 sites
Nucleo-cytoplasmic volume ratio P 3 (Veyto/ Vaue)

Activation IFN receptor/JAK complex ky 0.056 [0.049;0.069] min~*
Deactivation IFN receptor/JAK complex ko 1.9 [0;17] - 10~% min~*
Receptor degradation ks 0.017 [0.015;0.018] min~*
Binding STAT1 to receptor ky 0.02 min~'nM !
Dissociation STAT1-receptor complex k_4 0.7 min~!

STAT1 phosphorylation & dissociation ks 29 [> 2] min~!
Formation phospho-tyrosine/SH2 dimer ke 0.01 min~'nM™?
Dissociation SH2 dimer k_g 0.5 min~*
Dephosphorylation in the cytoplasm ke 0.023 [0.021;0.025] min~!
Nuclear import phospho-STAT1 ks 1 min~*

Binding STAT1 to GAS-site ko 0.06 min " 'nM !
Dissociation STAT1 from GAS-site k_g 0.05 min~!

Unspecific binding STAT1 to DNA k1o 2 min~?

Dissociation STAT1 from DNA k_10 5 min~*
Dephosphorylation in the nucleus k11 0.29 [0.24;0.37] min~*
Energy independent nuclear export latent STAT1 ko, 0.2 min~*

CRM1 dependent nuclear export latent STAT1 k12p 0.3 min~—!

Energy independent nuclear import latent STAT1 k3 0.2 min~*

Formation N-terminal dimer k14 0.02 min " 'nM™!
Dissociation N-terminal dimer k_14 0.8 min~*

Table A.1: The measured parameters and fitted values with 95% confidence intervals

(given in brackets) used for the simulations.
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A. Appendix

A.2 Nuclear residence time of phospho-STAT1 from
deterministic solution

From the deterministic solution we get the concentration flow of STAT1 from one
state into another. For example the phospho-STAT1 concentration flow into the
nucleus Fi is determined by the concentration of phospho-STAT1 SH2 dimers in the
cytoplasm SppSCS}E2

.7:1 =p k?g SppSSH2.

nuc

The concentration flow of nuclear dephosphorylation F5 is determined by the con-
centration of nuclear phopho-STAT1 monomers and N-terminal dimers

Fo = ko (SB,. + SPSNN + SPPGNNY |

From this we get the expected time of import 77 and the expected time of dephos-
phorylation 75 as

1= (F) = [ Feot

For a standard stimulus we get 77 = 79.1 min and 75 = 91.4 min. If the dephos-
phorylation is independent from the import

(Fo = F2) = (1) — (F2)

holds and the time spent in between import and dephosphorylation 772 would follow
straight forward

This would give T2 = 12.3 min for our model. Due to the non-linearity of the dimer
formation the dimerization is dependent on the STAT1 concentration and thereby
on the import time. Because the time of dephosphorylation is dependent on the
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A.2. Nuclear residence time of phospho-STAT1 from deterministic
solution

(i) deterministic (ii) Fourier (iii) stochastic

mean time in minutes 12.3 12.5 12.3
5 percentile in minutes - 0.7 1.1
95 percentile in minutes - 33 47.9

Table A.2: The mean time, the STAT1 molecules stayed activated in the nucleus
(from import until dephosphorylation) deduced (i) from the deterministic solution by
difference of the means (ii) by Fourier transform of the deterministic solution (iii) from
stochastic simulation agree very well. The width of the distribution of the times mea-
sured by the 5 and 95 percentiles calculated by Fourier transform give the correct order
of magnitude but are not very accurate (error ~ 30%).

dimerization it is not independent of the import time and the deduced T12 = 12.3 min
is biased by this correlation. However, a comparison with the stochastic simulation
shows (main text, section 4.2; table A.2), that the deviation is smaller than 1 second.
With the deterministic solution it is also possible to not only estimate the mean time
of the proteins staying phosphorylated in the nucleus but also the distribution of
times. This is given by the flow through the phosphorylated states in the nucleus
Fi2. We use, that the flow of phospho-STAT1 into the nucleus F; convoluted with
the flow through the phosphorylated states in the nucleus F12 must yield the flow of
dephosphorylation F» = F; o F12. By using a Fourier transformation, we can solve
this equation for Fi5 and transform back. Due to numerical errors this just gives
an approximation to the distribution simulated by the stochastic algorithm (figure
A.1). The mean times agree quite well, but the width of the distribution deduced
by the Fourier transformation is too small.

0.12
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0.04

0.02

O . . e A e

0 10 20 30 40 50 60
time in minutes

— stochastic
— Fourier

probability density

Figure A.1: Probability density for the residence time of phospho-STAT1 in the
nucleus (until dephosphorylation) from the stochastic simulation (red line) and the
deterministic simulation via fourier transform (black line).
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A. Appendix

A.3 Comparison of STAT1-WT and STAT1-NES
transcriptional response of six genes
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Figure A.2: Comparison of STAT1-WT and STAT1-NES transcriptional response of
six STAT1 target genes.
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A.4. Western blot experiments of doxorubicin treatment of
conditionally MYCN knock down in IMR5-75 C2 cells

A.4 Western blot experiments of doxorubicin treatment of
conditionally MYCN knock down in IMR5-75 C2 cells

= ]

© B 4

£ 100f ]

MYCN level in IMR5-75 cells S 6l ]

- = :

Z B -

e T O a3f ]

TET - + - + - + - + - + S | ]
oF

TET - +

Figure A.3: MYCN knockdown efficiency of the IMR5-75 C2 cells harboring condi-
tionally expressing MYCN siRNA under control of tetracycline measured by Western
blot and quantified with ImageJ. The resulting knock down efficiency is ~ 40%.
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A

tetracyclin(MYCN-off) + doxorubicin
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Figure A.4: Western blots for the protein quantification in the conditionally MYCN
knockdown IMRS5-75 cells under different conditions: (A) MYCN-off and doxorubicin
(B) MYCN-on and doxorubicin (C) MYCN-off control (D) MYCN-on control.
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A.5. p21mCherry plasmid

A.5 p21mCherry plasmid
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Molecule Features:

Start End Name Draw As

392 2725 p21 promoter Region

2745 3671 d2mCherry Gene

3456 3572 PEST Region

3582 3668 NLS Region

4532 4840 SV40 ori Region

4887 4942 EM-7 Region

4961 5359 Blasticidin Gene

5517 5647 SV40 polyA Region

6031 6704 pUC Region

7709 6849 C Amp Gene
Enzymes (31 sites)
AatII 117, Zral 117, BglII 134, MunI 283
HindIII 387, EcoICRI 453, SacI 453, Swal 927
TthlllI 988, Bsu36I 1146, SanDI 2628, Srfl 2650
HindIII 2725, EcoRI 2732, SbfI 3095, AleI 3383
XcmI 3424, SgrAIl 3425, BsrGI 3445, BsrGI 3661
NotI 3679, PspXI 3685, Agel 3755, Pmel 3782
SexATI 4600, BlnI 4833, BsaBI 5256, BsmI 5598
SapI 5906, BglIl 7036, FspI 7142,

Figure A.5: Map of the plasmid containing the p21 promoter driving mCherry, NLS
and PEST.
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A.6 equations p53 mRNA module

O 11 (t) = kyx1 — kax1 T1 (t) + kne n(t)
Dra(t) = o1 (£) — o wa(t) — b 2D )+ kg ()
U kixa + y2(%)
at l’g(t) = (kon + kdam) J:Z(t) - koff xS(t)
Bryi(t) = ko +k 7s()" kag1 41 (t) + kg 1(2)
t Y1 = vyl vyx 5o, 4 hdy1 Y1 n
Y ™ (kg + (1) Y Y
Oy2(t) = kyyavn(t) — kay2y2(t)
x3(t)? 1
O:21(t) = kygl + kvgx — ka1 21 (t
=l e a0 O g 1
ya(1)
1) = kg 21 (1) — kagy 20(t) ——2 o 2o(t
Orza(t) 2 21(t) dyZz()(ZQ(t)+ka2) dz2 22(t)
dw(t) = ve+v [WT—a w(t)
t — W XW wa—l-.%'g(t) w 9
with concentrations:
x1(t) pb3 mRNA x2(t) pb3 protein x3(t) active pb3 protein

y1(t) MDM2 mRNA  yo(t) MDM2 protein  z1(¢t) p21 mRNA
z9(t) p21 protein w(t) PUMA mRNA  n(t) MYCN protein
u Nutlin-3

Fitted values with units of concentration in a.u. and time in hours:

kyxi = 0.0030211, kgxy = 0.012513, kyy = 0.0000027, kyxa = 0.001367, kgxy = 0.045035, kiexr =
2.9075¢ — 06, kon = 0.0017047, kogg = 0.015316, kaxs = 0.0021122, kyy; = 1.8902¢ —

06, kyyx = 0.0016559, kiy1 = 0.0041499, kqy1 = 0.0085461, kyy = 0.42642, kyyy —
—4.2553¢ — 08, kayy = 0.00062203, ky,1 = 0.00089221, kyyy = 1.4091€ — 07, ki1 =

3.185, kigin = 0.007337, kg1 = 0.00055685, kyyo = 0.0044282, kayy = 0.48128, kyyn =
0.23796, kazo = 9.0057e — 05, ky = 0.22345, ky = 21.802, kyyw = 0.0017019, kyyy =
0.03973, kiew = 0.029752, kqw = 0.44152, kaxe = 0.00030335

116



A.7. Input file for XPPaut for the equations of the E2F-pRB module

A.7 Input file for XPPaut for the equations of the E2F-pRB
module

dPE/dT=KE1*P*E-LE1*PE-KR1*PE*R-KR2*PE*RP+LR1*PER+LR2*PERP+A2*C2*PERP

dPA /dT=KP*PII*C2-LP*PA-DP*PA-DP2*S*PA-KC*PA*C2+LC*CPA+DC*CPA
dPII/dT=VP-KP*PII*C2+LP*PA-DP*PII-KC*PII*C2+LC*CPI+DC*CPI
dC2/dT=VC0+VC*PE-DC*C2-KC*(PA+PII)*C2+LC*(CPI+CPA)-kp1* (p2ltot-c2p)*C2-+1pl*c2p
dc2p/dT=-DC*c2p+kpl*(p21ltot-c2p)*C2-Ipl*c2p
dCPI/dT=-DC*CPI4+KC*PII*C2-LC*CPI-KP*CPI*C2+LP*CPA
dCPA/dT=-DC*CPA+KC*PA*C2-LC*CPA+KP*CPI*C2-LP*CPA
dR/dT=-A1*C4*R+B1*RP+VR-DR*R-KR1*(PE+E)*R+LR1*(PER+ER)
dRP/dT=A1*C4*R-B1*RP-A2*C2*RP+B2*RPP-DR*RP-KR2*(PE+E)*RP+LR2*(PERP+ERP)
dP/dT=-KE1*P*(E+ER)-KE2*P*ERP+LE1*(PE+PER)+LE2*PERP
dPER/dT=KE1*P*ER-LE1*PER+KR1*PE*R-LR1*PER-A1*C4*PER+B1*PERP
dE/dT=VE+VE2*PE-KE1*P*E+LE1*PE-KR1*E*R-KR2*E*RP+LR1*ER+LR2*ERP-DE*E+A2*C2*ERP
dER/dT=KR1*E*R-LR1*ER-KE1*P*ER+LE1*PER-A1*C4*ER+B1*ERP
dERP/dT=KR2*E*RP-LR2*ERP-KE2*P*ERP+LE2*PERP+A1*C4*ER-B1*ERP-A2*C2*ERP
dS/dT=VS*PE+VS0-DS*S

PERP=1-(P+PE+PER)

RPP=10-(R+RP+ER+ERP+PER+PERP)

C4=1/KC4*(c+myc)*serum

param
serum=0.01,myc=0,p21tot=0,VP=1,KP=1,LP=10,DP=0.01,DP2=0.5,KC=1,LC=1,VC0=10,VvC=1,DC=1,
Al1=1,B1=1,A2=1,B2=0.09,VR=0,DR=0,KE1=1,LE1=0.01,KE2=1,LE2=0.01,KR1=1,KR2=1,LR1=0.025,LR2=0.025,
VE=0.1, VE2=2,DE=4,VS=1,VS0=0.01,DS=0.1,KC4=1,c=1,kpl=1,lpl= 1

init PA=0,PI11=0,C2=0,CPI=0,CPA=0,R=10,RP=0,P=1,PE=0,PER=0,E=0,ER=0,ERP=0,c2p=0

@ total=100,dt=.1,xhi=100,METH=qualrk

done

117



Abbreviations

AIC Akaike information criterion

a.u. arbitrary units

bHLHZ basic-helix-loop-helix-zipper

cdf cumulative distribution function

cDNA complementary DNA

cyto cytoplasmic

DAPI 4,6-diamino-2-phenylindol

DTT dithiothreitol

FACS fluorescence-activated cell sorting

FCS fetal calf serum

FRAP fluorescence recovery after photobleaching
GAS IFN-gamma-activated sites

GFP green fluorescent protein

HRP horse reddish peroxidase

IFN-~ interferon gamma

LMB leptomycin B

LSN mutated NLS

MCMC Markov chain Monte Carlo

NES nuclear export sequence

NLS nuclear localization sequence

wNLS weak NLS

sNLS strong NLS

nuc nuclear

PAA polyacrylamide

PBS phosphate buffered saline

PCR polymerase chain reaction

pdf probability density function

PEST rich in proline, glutamic acid, serine, and threonine sequence
phospho phosphorylated

qRT-PCR quantitative real-time RT-PCR

R-point restriction point

RT-PCR reverse transcription reaction followed by PCR
SAD steady age distribution

SDS-PAGE sodiumdodecylsulfat polyacrylamide gel electrophoreses
SH2 src homology 2 domain

siRNA small interfering RNA

tot total

unspec. unspecific

Tyr tyrosine

WT wild type
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