
Seminar für Computerlinguistik
Institut für allgemeine und angewandte Sprachwissenschaft

Ruprecht-Karls-Universität Heidelberg

Magisterarbeit

Latent Semantic Indexing and

Information Retrieval

A quest with BosSE

Johanna Geiß

Neugasse 12

69117 Heidelberg

E-Mail: j-o-g@web.de

18 January 2006

Supervisors:

PD Dr. Karin Haenelt

and

Prof. Dr. Peter Hellwig

to Anni Reemda Elisabeth

Abstract

This master thesis deals with the implementation of a search engine using Latent Semantic

Indexing (LSI) called BoSSE.

Four different search types were implemented which allow a search for documents or terms

similar to a given term, query or document. These search types are evaluated and the

importance of term weighting, exclusion of non content words and the right selection of

k for the reduction of dimension are discussed.

Furthermore, an introduction to Latent Semantic Indexing (LSI) and an explanation of

the Singular Value Decomposition (SVD) is given.

Contents

1. Introduction 1

2. Introduction to Latent Semantic Indexing 2

2.1. The LSI algorithm . 5

2.1.1. The Preprocessing . 5

2.1.2. The Search . 6

3. Singular Value Decomposition 8

3.1. The purpose of SVD . 8

3.2. SVD in Information Retrieval . 9

3.2.1. The term space . 10

3.2.2. The document space . 12

3.2.3. The SVD semantic space . 14

3.3. The mathematics behind SVD . 21

4. BosSE 24

4.1. What is BosSE? . 24

4.1.1. The document collection . 24

4.2. The Design and Implementation of BosSE 28

4.2.1. The user interface . 29

4.2.2. The Preprocessing . 35

4.2.3. The Search . 41

4.2.4. The extra features . 46

IV

Contents

5. The Retrieval Performance of BosSE 48

5.1. The document to documents search . 50

5.2. The word to documents search . 52

5.3. The query to documents search . 53

5.4. The word to words search . 54

5.5. Conclusion . 54

6. Unresolved problems 56

6.1. Preprocessing . 56

6.2. Search . 57

6.3. Extra features . 57

7. Future work 58

7.1. The Folding–in . 58

7.2. Changes to indexing . 59

7.2.1. Exclusion of terms . 59

7.2.2. Stemmer . 59

7.3. More search types . 59

8. Conclusion 60

A. The articles of the test corpus 61

B. Queries 64

B.1. word to documents search . 64

B.2. Query to documents search . 64

B.3. Document to documents search . 65

B.4. Word to words search . 65

References 67

Glossary 68

Acknowledgements 70

V

List of Figures

3.1. SVD in image compression . 8

3.2. Term Space of TDM Y . 10

3.3. Document space of TDM Y . 13

3.4. Schema of SVD for a matrix A . 14

3.5. Truncation of the SVD space . 15

3.6. Different scaled term and document vectors in the reduced SVD space . . 19

4.1. Overview of self defined modules of BosSE 28

4.2. The user interface of BosSE - the preparation panel 29

4.3. The user interface of BosSE - the search panel 33

4.4. The user interface of BosSE - the search panel 34

4.5. Flow chart of BosSE . 36

5.1. Performance of document to documents searches 51

5.2. Performance of word to documents searches 52

5.3. Performance of query to documents searches 53

5.4. Performance of word to words searches . 54

5.5. Averaged F-measures for the test corpus 55

VI

List of Tables

3.1. Example TDM Y . 10

3.2. Document similarities of TDM Y in the vector space 12

3.3. Term similarities of TDM Y in the vector space model 13

3.4. Term similarities of TDM Y in SVD space 17

3.5. Document similarities of TDM Y in SVD space 18

3.6. The term to document similarities of TDM Y in SVD space 20

3.7. Document to query similarities for TDM Y in SVD space 21

4.1. Example of a TDM build from a TDMdict 40

5.1. Attributes of the search bases . 48

VII

Chapter 1

Introduction

Most common search engines have serious problems returning all the documents which

are important to the query because they can not disambiguate ambiguous terms or find

documents which only include synonyms of the query terms.

A promising approach to overcoming these shortcomings gives Latent Semantic Indexing

(LSI).

This indexing scheme uses Singular Value Decomposition (SVD) to find the underlying

latent semantic structure.

In this master thesis the implementation of a search engine called BosSE, which uses

LSI is described and evaluated.

The goal of the implementation was to design a local search engine, which searches

through a larger document collection consisting of articles written in everyday language

with an unlimited domain (see chapter 4). Four different search types were implemented

allowing users to search for documents and terms.

In chapter 5 the performance of BosSE is discussed. Together with an examination of the

different search types, a report is given of the performance development when changing

the values for the SVD and for indexing. This includes a discussion of the importance

of exclusion of stop words and term weighting for LSI.

The remaining problems of the implementation and possible improvements are described

in chapters 6 and 7.

But initially a short introduction to LSI is given in chapter 2 and an explanation and

guide to SVD in chapter 3.

1

Chapter 2

Introduction to Latent Semantic Indexing

LSI [Deerwester et al., 1990] is a special vector space approach to conceptual Information

Retrieval (IR). It attempts to overcome the common problems of search engines. These

problems are:

1. Common search engines do not allow users to retrieve documents which are terms

missing from the query although they might be relevant.

2. Synonymy: the same meaning can be expressed by two or more different terms.

But the user will only enter one of these words in a query and most of the search

engines do not expand the query by synonyms. Therefore the number of retrieved

documents may be fewer than the optimal number. In other words the synonymy

problem can decrease the recall of a search engine.

Even if there is an automatic term expansion, it might do more bad than good,

because it may add terms that have a different meaning from that intended by

the user [Deerwester et al., 1990, p. 392], which leads to another typical problem:

polysemy.

3. Polysemy: one term may have two or more different meanings.

In a query the meaning can not be disambiguated so the search engine will retrieve

documents that are not relevant to the meaning intended by the user. That is to

say: the polysemy problem can decrease the precision of an information retrieval

system.

How will LSI solve this problems?

LSI is designed to uncover the latent semantic structure of a document collection by

2

Chapter 2. Introduction to Latent Semantic Indexing

building a semantic space. It therefore uses the word usage patterns that exist in the

document collection, namely, the word co-occurrences.

Within the semantic space created by LSI, terms and documents are represented. This

is desired because “then a query can be placed at the centroid of its term points”

[Deerwester et al., 1990, p. 394] and at the same time it can be used as a pseudo-

document.

By reducing the term-document space to fewer dimensions, SVD reveals the under-

lying relationships between terms and documents in all possible combinations, while

‘noise’ (differences in word usage, terms that do not help distinguish documents, etc.)

[Letsche, 1996, S.16] is reduced. In other words “the patterns of word usage across the

entire document collection” [Letsche, 1996, p.16] are analyzed and similarities between

terms and documents, between terms and between documents are shown within the re-

duced space.

The patterns of word usage are build up on word co-occurrences. Terms that often co–

occur get high similarity values. For example school and pupil often occur together since

these terms are semantically related.

There are several grades of relationships between terms. When two terms occur together

in a document it is a first order co–occurrence. If pupil co–occurs with school and school

co–occurs with teacher, teacher and pupil are of second order co–occurrence.

The correspondence between high order co-occurrence and the values produced by LSI

were analysed in [Kontostathis and Pottenger, 2004]. In conclusion this analysis shows

that term co-occurrence plays a crucial role in LSI. “We have explicitly shown use of

higher orders of co-occurrence in the Singular Value Decomposition algorithm and, by

inference, on the systems that rely on SVD, such as LSI.”. “LSI emphasises important

semantic distinctions while de-emphasising terms that co-occur frequently with many

other terms (reduces noise)” [Kontostathis and Pottenger, 2004, p.21, p. 6].

Thus school and pupil will be placed close to each other as will school and teacher. That

is why pupil and teacher will be close to each other as well, whereas terms that occur

very often together with many other terms like is or are (supposed they are not deleted

during stop-word elimination) will be de-emphasised and not put near teacher, pupil or

school.

3

Chapter 2. Introduction to Latent Semantic Indexing

Now even documents that do not share the same terms might be placed near each other

in the reduced term–document space when they are semantically related, that is to say

their words have higher order co–occurrence.

If the user searches for teacher and pupil he will also get documents which include only

the term school.

And synonymy? Imagine a long article about pupils learning experience in grammar

school. The author would not always use the term pupil because it is not good writing

style to use the same word throughout the whole text. Thus he might use carefully

chosen synonyms such as learner, schoolchild or student. Pupil would then occur with

these terms in first order and they would not co-occur only in one article but in several.

Therefore they will end up close to each other in the semantic space of LSI.

But which solution does LSI give to the polysemy problem?

Let us have a look at an example of polysemy taken from [Penguin, 2001]:

mouse 1. any of numerous species of small rodents with a

pointed snout, grey to brown fur, and a long slender al-

most hairless tail [...]

2. in computing, a small box, with a movable ball under it,

that is connected to a computer [...]

3. a timid person, especially a shy or very quiet girl or

woman

Here mouse has got three distinct meanings. Let us assume, in the document collec-

tion used, there is one article about computers with the content words [screen, mouse,

trackball, printer] and one about rodents with the index terms [rat, squirrel, mousetrap,

mouse, cheese, gnawing]. In the LSI space screen, printer, trackball will build one cluster

and rat, squirrel, mousetrap, cheese, gnawing another. Mouse will be placed between

them.

If the user now enters a query containing mouse and cheese LSI will retrieve the article

about rodents with a much higher similarity value than the one about computer. But if

the user enters only the word mouse not even a LSI search engine can guess what the

user means, thus it will retrieve both documents with equal similarity.

4

Chapter 2. Introduction to Latent Semantic Indexing

The ability of LSI depends on the quality of the corpus (a document collection). Good

retrieval results can only be achieved when the term distribution is ‘natural’ and there are

no ‘nonsense’ texts within the collection. That is to say simple listings of things should

not be included in a document collection that is used for an IR application working with

word use patterns.

2.1. The LSI algorithm

A search engine using LSI consists of two parts: preprocessing and search.

2.1.1. The Preprocessing

In the preprocessing phase the term–document space of a document collection is built.

Usually this has to be done only once, or when significant changes to the corpus or the

document collection have been made. It is independent of the actual search/es, which

the user performs. Because of that, the time it takes is not crucial to the efficiency of the

system.

The preprocessing steps are:

- Given a corpus (a document collection), the LSI search engine first of all indexes all

terms in the corpus or in every document in the collection. Within that procedure

the ‘stop-words’ (all terms considered common) might be eliminated. The result is

a table of frequencies of occurrence of terms in each document (see section 4.2.2).

- Local and global weighting functions might be applied to estimate the relative

importance of a term within the document and within the whole collection (see

section 4.2.2).

- The values of the index are written to a Term Document Matrix (TDM) A = [ai,j]

wherein each row represents an unique term and each column a document where

ai,j is the (weighted) frequency of term i in document j. Usually this is a high

dimensional sparse m × n matrix. That means most of the cells are filled with

0 because normally not every word appears in each document. The number of

terms (m) is significantly greater than n (number of documents). In this work

5

Chapter 2. Introduction to Latent Semantic Indexing

the dimension of a TDM will be denoted as terms × documents (t × d) for better

comprehension.

- SVD is a mathematical method for the factorisation of any matrix into three ma-

trices T , S and D. In LSI it is used to reduce the dimension of the semantic space.

It is applied to A to reduce the rank of the matrix. The rank (r) of a matrix is

the smaller of the number of linearly independent rows and the number of linearly

independent columns in this matrix: r = min(t, d). Typically in IR it is equal to

the number of documents.

Thus SVD gives a rank-k approximation Ak of A. k stands for the number of

remaining dimensions in the semantic space (see chapter 3).

2.1.2. The Search

The efficiency of this part of the search engine with which the user interacts, is very

important. The following steps are executed for each search.

1. First the user decides which type of search to perform. The types are:

• search for terms similar to an entered term (term to terms search)

• search for documents similar to an entered document (document to documents

search)

• search for documents similar to an entered term (term to documents search)

• search for documents similar to an entered query (query to documents search)

2. The user enters the query i.e. a term, a document or a sequence of words.

3. According to the search type, the term and/or document vectors are scaled for the

search (see section 3.2.3).

4. Depending on what was entered

• the query is processed - the terms that were not found in the index are taken

from the query and this is projected into the SVD semantic space or

• the entered word is checked against in the index and the corresponding vector

is scaled for the search or

6

Chapter 2. Introduction to Latent Semantic Indexing

• the vector for the chosen document is scaled to prepare it for searching.

5. The similarities between the query, the entered word or entered document and each

vector in the search space are calculated.

6. The results of the similarity calculation are ranked and returned to the user.

7

Chapter 3

Singular Value Decomposition

SVD is a method from linear algebra for the factorization of any rectangular (and any

square) matrix A with the dimensions of t × d into three matrices. It is related to the

Eigenvalue decomposition of square matrices [Golub and Van Loan, 1996].

3.1. The purpose of SVD

SVD is used to reduce the rank of a matrix without losing important content and to

eliminate all noise, that is to say all data that obscure the content. But what does that

mean? The following two examples were chosen to illustrate the use of SVD.

In [Persson, 2005] a good example from the field of image compression can be found:

Figure 3.1.: SVD in image compression: View the m× n image as a matrix. The rank of this matrix

was reduced from r = 200 to k = 1, 2, 5, 15, 50. Hardly any difference is visible between

the rank k = 50 approximation of the image and the original, but the computer storage

is reduced from m × n to k(m + n)[Persson, 2005].

8

Chapter 3. Singular Value Decomposition

If viewing this m×n sized image in figure 3.1 as a matrix, SVD can be applied. The rank

of the original image was reduced. The rank k = 1 approximation shows only vertical and

horizontal lines. ”This checkerboard-like structure is typical of low rank component ap-

proximations to images” [Moler, 2004, S.26]. The rank k=50 approximation of the image

requires less computer storage (k(m + n) instead of m× n) while still having a good res-

olution. Hardly any visual difference to the original rank k=200 image can be recognized.

SVD helps to find a better (and smaller) representation of a given space. Therefore it

first analyses the space and then returns a better basis. What does that mean?

Imagine an owner of an aquarium, who wants to take a photo of his fishes. In this photo

all fishes are to be represented and nicely presented, that means not bunched together in

one big swarm. From the owner’s current point of view a few fishes are in front of each

other or hidden by plants. So he takes his camera and searches for the best angle to see

as many fishes as possible.

That is exactly the same as what SVD does when it factorizes the matrix. It looks for the

best basis coordinate system within the space in which the document and term vectors

can be shown.

The owner of the fish tank takes a photo. Now he has got a two dimensional picture of

his three dimensional aquarium. By taking the picture he reduced the space, still has a

good representation of his fishes and most of them are clearly visible.

Exactly the same happens when the semantic space is reduced by truncating the three

matrices given by SVD. When multiplying these three truncated matrices we get a rank

reduced matrix which is an approximation of the original matrix.

The terms and documents are projected into a semantic space with smaller dimension.

The latent semantic structure, that is to say the relationships between documents and

terms in the document collection, is revealed.

3.2. SVD in Information Retrieval

In a common Vector-Space Model only terms or documents are represented in the Vector-

Space.

What does that mean? What is a term space or a document space?

9

Chapter 3. Singular Value Decomposition

This will be explained by means of a very simple example Term Document Matrix

(TDM) Y , which will be used throughout this section.

For this example I chose a square 3× 3 matrix, because it can be graphically represented

and the rank can be reduced to 2. The TDM Y is given in 3.1.

Table 3.1.: Example TDM Y of size 3 × 3

d1 d2 d3

t1 2 1 1

t2 1 0 1

t3 0 2 1

3.2.1. The term space

In a term space each document forms a vector and each term represents a dimension. In

other words the three documents from this example are displayed as three vectors in a

chart with three orthogonal axes, one for each term in figure 3.2.

Figure 3.2.: Term space of the TDM Y : the documents d1, d2, d3 from the example TDM (see 3.1)

are shown as blue vectors in the term space of the three terms t1, t2, t3. The query

〈0, 2, 2〉 is depicted by the yellow vector.

The direction and the longitude of a vector are determined by the number of occurrences

of each of the three terms in the document.

This example uses three terms, so the space has got three dimensions. If a matrix of a

real document collection were used, the space would have thousands of dimensions, one

10

Chapter 3. Singular Value Decomposition

for each content word and as many vectors as documents in the document collections

would be displayed in it.

To reduce the dimension of such a space one would have to reduce the number of content

words, but in Information Retrieval one does not wish to miss possible important terms

just to make the search faster. Furthermore, this kind of reduction would not cause a

better representation of the documents.

In a term space only similarities between documents can be calculated. A query is repre-

sented as a pseudo-document. It is noted how often a term that represents a dimension

occurs in the query. Here the query ”t2, t2, t3, t3, t4” was used with the vector 〈0, 2, 2〉

(the yellow vector in figure 3.2).

The only way to calculate similarities between a term and a document is by using it as a

query. LSI, therefore provides an extra calculation scheme (see section 3.2.3).

The axes which represent the terms are orthogonal to each other, so there is no informa-

tion concerning the similarity between content words.

Cosine similarity

To calculate the similarities between the documents and the query the cosine similarity

measurement is used. With this measurement the angle between two vectors can be

estimated, an angle being a good measurement of similarity [Letsche, 1996]. The smaller

the angle the nearer the vectors are to each other, the more similar the vectors are and

in vector space IR models the more similar the documents are.

The calculation of an angle between two vectors ~a and ~b is taken from the inner product

(also called dot product or scalar product) described in equation 3.1.

~a ·~b = |~a||~b| · cos(α) (3.1)

This states that the product of two vectors is given by the product of their norms (in

geometric terms, the length of the vector) multiplied by the cosine of the angle α between

them. For the area of application here it means that we can easily calculate the angle

respectively the cosine value for the angle between them by converting equation 3.1:.

cos(α) =
~a ·~b
|~a||~b|

(3.2)

The values of cos(α) are in the range of −1 which corresponds to 180◦ or 0% similarity

to 1 which stands for 0◦ or 360◦ which is equal to 100% similarity. So a cos(α) of 0

11

Chapter 3. Singular Value Decomposition

corresponds to a similarity of 50%, which means that the vectors are rectangular to each

other.

To compute the percentage psim of similarity the following equation 3.3 is used.

psim = 50 · cos(α) + 50 (3.3)

The similarities between the documents from the example TDM Y are shown in table 3.2.

The query and the document d3 have got the highest similarity value, in this example

0.82, that corresponds to an angle of 35◦ between them. ~d3 is the nearest vector to the

query. They are similar to a degree of 91%, whereas the document vector ~d1 is only

66% similar to the query vectors, which is shown by the smaller cosine value of 0.32

corresponding to an angle of 71◦. The lowest value possible would be of course −1 which

is equal to an angle of 180◦, which means that the two vectors would lie in opponent

directions.

Table 3.2.: Document similarities of TDM Y in the vector space: the similarities were calculated with

the cosine similarity measurement (see equation 3.2).

d1 d2 d3 query

d1 1 (100%) 0.4 (70%) 0.77 (88.5%) 0.32 (66%)

d2 0.4 (70%) 1 (100%) 0.77 (88.5%) 0.63 (81.5%)

d3 0.77 (88.5%) 0.77 (88.5%) 1 (100%) 0.82 (91%)

query 0.32 (66%) 0.63 (81.5%) 0.82 (91%) 1 (100%)

3.2.2. The document space

In a document space the terms are represented as vectors (the rows of the TDM contain

the components of the vectors) and the documents are the axes around which the vectors

are grouped. The three terms from the example are displayed as three vectors in figure

3.3 with three orthogonal axes, one for each document.

The size and the direction of the vectors demonstrate how often a term occurs in each

document.

Corresponding to what was explained before, if a matrix of a real corpus were used, the

space would have as many dimensions as documents in the corpus. To reduce the di-

mensions of this space the number of documents would have to be declined, which would

12

Chapter 3. Singular Value Decomposition

Figure 3.3.: Document Space of the TDM Y : The terms t1, t2 and t3 from the example TDM (see

3.1) are shown as red vectors in the document space of the three documents d1, d2, d3.

decrease the usability of an Information Retrieval system.

In this space only the similarities between terms and not between terms and documents

can be discussed. The documents are like the terms in the term space represented by

orthogonal axes.

The similarities between the terms are shown in table 3.3. In this example the terms

t1 and t2 have got the highest similarity, 93.5%, which was calculated from the cosine

value of 0.87%, which corresponds to an angle of 29.5◦. The most dissimilar terms in this

example are t2 and t3 whose vectors ~t2 and ~t3 form an angle of 71.3◦, which is equal to

a cosine of 0.32.

Table 3.3.: Term similarities of TDM Y in the vector space model: the similarities were calculated

with the cosine similarity measurement (equation 3.2).

t1 t2 t3

t1 1 (100%) 0.87 (93.5%) 0.55 (77.5%)

t2 0.87 (93.5%) 1 (100%) 0.32 (66%)

t3 0.55 (77.5%) 0.32 (66%) 1 (100%)

13

Chapter 3. Singular Value Decomposition

3.2.3. The SVD semantic space

The goal of LSI is to represent the terms together with the documents in one space.

That makes it possible to calculate similarities between documents, between terms, be-

tween terms and documents and to place queries at the centroid of their terms in order

to compare them to documents.

To calculate the new basis for that space and the vectors, SVD is needed.

Moreover, we aim to reduce the dimensions or the rank of the TDM to unveil the latent

semantic structure, this is also done by SVD.

The Singular Value Decomposition splits the t × d matrix A where t ≥ d and r = d

into three matrices:

A = UΣV T (3.4)

U is an rectangular matrix of the size t × r and contains in its rows the term vectors

scaled to the new basis. It will therefore be called T . The other rectangular matrix is

V T , which is the transposed matrix V . To transpose a matrix means to interchange its

rows with its corresponding columns. Those matrices are marked by T . V T has the size

r× d and contains the new vectors for the documents, which is why it will be called DT .

The square matrix Σ is a diagonal matrix, which means that only the cells in the main

diagonal (from top left corner to bottom right corner) are non-zero. It contains the

singular values σ1, σ2, ...,σn where σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0 and will be named S.

All matrices can be factorized this way [Strang, 2003], shown in equation 3.4 and depicted

in figure 3.4.

Figure 3.4.: Schema of SVD for a matrix A: The term document matrix A is factorized into three

matrices: T of size t× r, the diagonal matrix S of size r × r and the r × d matrix DT .

14

Chapter 3. Singular Value Decomposition

For the TDM Y from above the factorization is:

Y =


−0.75 0.41 0.52

−0.36 0.41 −0.84

−0.56 −0.82 −0.16




3.11 0 0

0 1.73 0

0 0 0.56



−0.6 −0.6 0.54

0.71 −0.71 0

0.38 −0.38 −0.84


The multiplication of these matrices returns the original matrix Y .

Now the terms and documents can be shown in the same space. Let us call this new

space the SVD space because new axes were found by SVD along which the terms and

documents can be grouped.

By now the different searches, I mentioned about could be performed by scaling the new

term and document vectors according to what is being looked for, but the latent semantic

structure has not yet been revealed. Therefore the dimension of the new SVD space has

to be reduced. This is done by truncating the three matrices as shown in figure 3.5.

Depending on k (number of remaining dimensions) from T the last r − k columns will

Figure 3.5.: Truncation of the SVD space

be deleted. These contained the components of the term vectors for the k + 1, k + 2,...,

k + n, r dimensions resulting in Tk. The r − k last rows of DT , which contained the

components of the document vectors for dimension k + 1 to dimension r which leads to

DT
k , are truncated . To get Sk from S the last r − k values from the diagonal are taken.

For the example above the truncated SVD is:

Yk=2 =


−0.75 0.41

−0.36 0.41

−0.56 −0.82


3.11 0

0 1.73

 −0.6 −0.6 −0.54

0.71 −0.71 0

 =

d1 d2 d3

t1 1.90 0.90 1.26

t2 1.18 0.17 0.6

t3 0.04 2.05 0.94

The rank of the matrix Y has been reduced from r = 3 to r = 2, that means Yk=2 is the

best rank 2 approximation of Y .

15

Chapter 3. Singular Value Decomposition

In Yk=2 there are no zeros remaining and the values have changed slightly. For example

yk,(2,2) = 0.17 whereas y(2,2) = 0. This is because the latent semantic structure was

revealed and shows that t2 and d2 are somehow related, even if t2 does not occur in

d2. “It is important for the method that the derived k dimensional factor space not

reconstruct the original term space perfectly, because we believe the original term space

to be unreliable. Rather we want a derived structure that expresses what is reliable and

important in the underlying use of terms as document referents.” [Deerwester et al., 1990,

p. 395].

Generically the rank k approximation of A is the product of the three truncated matrices

Tk, Sk and DT
k which is shown in equation 3.5.

Ak = TkSkD
T
k (3.5)

With these truncated matrices the new vectors have to be scaled according to the search

type.

Term to term similarity

To compare terms with each other or, in other words, to look for similar words to a

given one, the dot product (see equation 3.1) of two row vectors of Ak is calculated. The

multiplication AkA
T
k as in equation 3.6 results in a matrix containing these dot products.

AkA
T
k = TkSkD

T
k (TkSkD

T
k)T = TkSkD

T
k DkS

T
k T T

k = TkSkSkT
T
k = TkS

2
kT T

k = TkSk(TkSk)T

(3.6)

Dk is orthonormal which is is why DT
k Dk = E where E is the identity matrix (a diagonal

matrix with the values in the diagonal equal to 1). Sk is a diagonal matrix thus Sk =

ST
k .ai,j of this matrix can be obtained by taking the dot product of the ith and jth row

of TS. But the cos(α) of these vectors can also be calculated for the equation since the

cos(α) descends from the dot product see equation 3.2.

Thus all that is to be done is to scale the term vectors in Tk by the values from Sk as

seen in equation 3.7.

TT = TkSk (3.7)

The result is the t× r matrix TT which contains in its rows the new scaled term vectors

now ready for comparing against each other and to show to what extent two terms have

16

Chapter 3. Singular Value Decomposition

a similar pattern of occurrence across the corpus. For Y this calculation is:

TT =


−0.75 0.41

−0.36 0.41

−0.56 −0.82


3.11 0

0 1.73

 =


−2.33 0.71

−1.12 0.71

−1.74 −1.42


Now the similarities between the new term vectors t1 〈−2.33, 0.71〉, t2 〈−1.12, 0.71〉 and

t3 〈−1.7,−1.42〉 can be calculated and are listed in table 3.4. These new term vectors

are shown by red arrows in figure 3.6.

From table 3.3 where the similarities of the terms in the original document space are

Table 3.4.: Term similarities for the TDM Y in SVD space calculated using the cosine similarity

measurement from equation 3.2.

t1 t2 t3

t1 1 (100%) 0.96 (98%) 0.56 (78%)

t2 0.96 (98%) 1 (100%) 0.32 (66%)

t3 0.56 (78%) 0.32 (66%) 1 (100%)

shown, to table 3.4 the values have changed. t1 and t2 get a similarity of 98% in the SVD

space of in contrast to 93.5% in the document space. Here the similarity increased but it

can also decrease during SVD and the revealing of the latent semantic structure.

As described above in equation 3.6 there is the possibility of calculating the dot prod-

ucts for discovering the similarities between terms. But by using this method the values

in TT are not normalized, the highest value is not known and therefore it’s hard to as-

sess the value. To overcome this shortcoming one would have to normalize the rows first

before calculating the matrix product. It is also not practicable for actual application,

because for term to term similarity the matrix would be of size t× t which is acceptable

when there are three terms in the collection but not for thousands of words. This matrix

would have to be stored and to be read in, which would take more time then calculating

the cosine between each row from a matrix of size t × r.

Document to document similarity

To be able to calculate the similarities among documents, dot products (see equation 3.1)

between two columns of Ak have to be calculated. The product of AT
k Ak from equation

17

Chapter 3. Singular Value Decomposition

3.8 contains these similarities.

AT
k Ak = (TkSkD

T
k)T TkSkD

T
k = DT ST

k T T
k TkSkDkT

T
k = DkS

2
kDT

k = DkSk(DkSk)T (3.8)

Sk is a diagonal matrix so Sk = ST
k . Tk is orthonormal so T T

k Tk = E is valid. ai,j of this

matrix can be obtained by taking the dot product of the ith and jth row of DS, but the

cos(α) of these vectors can be also calculated, as the equation for the cos(α) descends

from the dot product see equation 3.2.

In other words, the document vectors in Dk have to be scaled by Sk as in equation 3.9.

DD = DkSk (3.9)

Note that here Dk and not DT
k is used.

This calculation is analogous to the calculation for the term to term similarity. The

calculation for Y is:

DD =


−0.6 0.71

−0.6 −0.71

−0.54 0


3.11 0

0 1.73

 =


−1.87 1.23

−1.87 −1.23

−1.68 0


In the rows of DD the new document vectors are written. Now the similarities between

the documents can be calculated and are shown in table 3.5. The new document vectors

are shown in figure 3.6 by dark grey arrows.

Here also an increase of similarity can be noted in contrast to the term space (for the

term space similarities in the common vector space model see table 3.2). The document

vector ~d1 and ~d3 now forms a smaller angle of 32.86◦ than in the term space where the

angle was 39.65◦.

Table 3.5.: Document similarities of TDM, Y in SVD space calculated using the cosine similarity

measurement from equation 3.2

d1 d2 d3

d1 1 (100%) 0.4 (70%) 0.84 (92%)

d2 0.4 (70%) 1 (100%) 0.84 (92%)

d3 0.84 (92%) 0.84 (92%) 1 (100%)

18

Chapter 3. Singular Value Decomposition

Figure 3.6.: Different scaled term and document vectors in the reduced SVD space. The red vectors

depict the term vectors scaled for term to term search. The document vectors scaled for

the document to document search as well for the query to document search are shown

by dark grey arrows. The query was folded into the SVD space for comparison to the

document vectors and is shown by the dark grey vector query. The blue vectors show

the term and document vectors scaled for term to document search.

Term to document similarity

To get values for the similarity between terms and documents the rank k approximation

of A has to be calculated. That is shown in equation 3.5. This equation can be changed

to equation 3.10.

Ak = TkSkD
T
k = TkS

1
2
k S

1
2
k DT

k = TkS
1
2
k (DkS

1
2
k)T (3.10)

The matrix Sk is split into S
1
2
k S

1
2
k which is equal to

√
Sk

√
Sk which results in Sk. To

calculate the square root of a diagonal matrix, the square roots of the values have to be

extracted.

The ith and jth cell of this matrix Ak can be obtained by calculating the dot product of

the ith row of the matrix TDT resulting from equation (3.11) and the jth row from the

matrix TDD specified in (3.12).

TDT = TkS
1
2
k (3.11)

TDD = DkS
1
2
k (3.12)

19

Chapter 3. Singular Value Decomposition

I have calculated TDT which contains the scaled term vectors in its rows and TDD

wherein the scaled document vectors are written (also in rows) for Y :

TDT =


−0.75 0.41

−0.36 0.41

−0.56 −0.82


1.76 0

0 1.32

 =


−1.32 0.54

−0.63 0.54

−0.98 −1.08



TDD =


−0.6 0.71

−0.6 −0.71

−0.54 0


1.76 0

0 1.32

 =


−1.06 0.94

−1.06 −0.94

−0.95 0


Now the similarities between terms and documents can be calculated using the cosine

similarity measurement. The results for the example TDM Y are shown in table 3.6.

These similarities could not be easily calculated in the common Vector Space Model

unless queries consisting of only one term were used. Here it can be seen that t3 has got

Table 3.6.: The term to document similarities of TDM Y in SVD space calculated using the cosine

similarity measurement from equation 3.2.

d1 d2 d3

t1 0.94 (97%) 0.44 (72%) 0.93 (96.5%)

t2 0.999 (99.95%) 0.13 (56.5%) 0.75 (87.5%)

t3 0.01 (50.5%) 0.994 (99.7%) 0.67 (83.5%)

the highest similarity to d2, 99.7% which is logical because this term occurs in d2 twice

whereas it can be found only once in d2, and d1 does not contain the term at all. These

similarities can also be recognized in figure 3.6 where these term and document vectors

scaled for the term to document search are depicted by blue arrows and are named TDt1,

TDt2 and TDt3 for the terms and TDd1, TDd2 and TDd3 for the documents.

The query to document similarity

To search for a document that is similar to an entered set of words, this query has

first to be folded into the SVD space to become a pseudo–document ~dqu. Then this

pseudo–document can be compared to the other documents as in a document to document

similarity calculation.

This folding in is done by multiplying the query vector with the corresponding rows of Tk

20

Chapter 3. Singular Value Decomposition

as shown in equation 3.13. Usually this product has to be scaled by S−1
k , but because it

will be compared to the document vectors and these will be scaled by Sk (equation 3.9),

it must also be multiplied by Sk. But S−1
k Sk = E so this step can be omitted.

~dq = ~quT TquS−1
k Sk = ~quT Tqu (3.13)

~dq =
(
0 2 2

) 
−0.75 0.41

−0.36 0.41

−0.56 −0.82

 =
(
−1.84 −0.81

)

Now this vector ~dqu can be compared with the vectors from DD from equation 3.9. The

results are shown in table 3.7.

The document d2 has got the highest similarity, 99%, which means that there is only

an angle of approximately 8◦ between the two vectors. This can also be verified by

considering figure 3.6 and the dark grey vectors.

Table 3.7.: Query to document similarity for TDM Y and query ~qu in SVD space

query

d1 0.54 (77%)

d2 0.99 (99.5%)

d3 0.91 (95.5%)

3.3. The mathematics behind SVD

In this section the mathematics behind SVD and the calculation of SVD are illustrated.

The information where taken from [Lang and Pucker, 1998] and [Strang, 2003].

The purpose of SVD is to diagonalize any t × d matrix A. The diagonalization corre-

sponds to a transit to a new coordinate system [Lang and Pucker, 1998, p. 419]. This is

what we require to obtain the latent semantic structure of the corpus, that is to say the

concepts which are hidden in the TDM.

Orthonormal bases have to be found, to which the matrix A can be diagonalized. A is an

arbitrary matrix, so it need not to be symmetric. Thus two bases are required, one for the

columns space, and one for the row space both subspaces of the matrix A [Strang, 2003,

21

Chapter 3. Singular Value Decomposition

p.368]. The column space lies in Rt (a column has got t cells), the row space in Rd (a

row consists of d cells) and they are both r dimensional.

An orthonormal basis consists of orthogonal unit vectors.

These basis vectors for the two bases are written in the columns of U (basis for the column

space) and V (basis for the row space) in equation (3.4) or T and D in equation 3.14 and

Σ or S is the diagonalization of A.

A = UΣV T (3.14)

T consists of r column vectors with t cells and D of r column vectors with d components.

We do not simply wish to obtain an orthonormal basis vectors, we are searching for

stable vectors which are characteristic of A, which in our case represent the underlying

concepts of the document collection. So orthogonal unit vectors are needed, which do not

change their directions when multiplying them by A as other vectors do. In other words

we are looking for eigenvectors ~x which lie in the same direction as Ax.

When multiplying an eigenvector ~x with A the result is λ~x (equation 3.15). Where λ is

an eigenvalue. Its value determines the scaling of the eigenvector, whether it is racked,

clinched or turned.

A~x = λ~x (3.15)

But how can this equation be solved? How do we get the eigenvalues/eigenvectors? By

subtracting λ~x equation 3.15 becomes equation 3.16.

(A − λE)~x = 0 (3.16)

E is the unity matrix, a diagonal matrix consisting of 1.

If this equation has a nontrivial solution, A − λI is not invertible, which means that no

inverted A − λI (it will be called B−1) exists which makes B−1B = BB−1 = E. Thus

the determinate has to be equal to 0 (equation 3.17). The inclusion of this derivation

here would go beyond the scope of this chapter, for more information see [Strang, 2003,

chapter 6].

det(A − λE) = 0 (3.17)

With this equation the eigenvalues λ can be derived.

But a determinant can only be calculated from square matrices. In IR most TDMs are

22

Chapter 3. Singular Value Decomposition

rectangular. To make a matrix A square it can be multiplied by AT .

But AAT 6= AT A. So there are two ways of calculating a square matrix. As described

above, two bases are needed, therefore two sets of eigenvectors are needed, so we need

two square matrices. The eigenvectors for the column space which are written to T are

calculated with AAT = AT and the eigenvectors for the row space which are written to

D with AT A = AD.

How can this be achieved?

For AT and AD the following steps have to be performed:

1. Calculate the determinant of (AT/D − λE) from equation 3.17. This will result in

a polynomial of rth order.

2. Find the values for λ where the polynomial equals 0 (the roots or the zeros of the

polynomial This will lead to the eigenvector ~xi for the eigenvalue λi

3. The eigenvectors are not yet unit vectors. Its lengths has to be normalized. The

length of a vector is its absolute value: |~x| =

√
n∑

i=1
x2

i

4. Calculate the singular values by extracting the root of the eigenvalues, due to this

only the positiv eigenvalues are taken into account.

5. Write the singular values in descending order into S.

6. Write the eigenvectors in corresponding order to S into T and D respectively.

Now the Singular Value Decomposition is calculated and the derived concepts or topics

of the document collection are depicted in D, and the word distribution patterns in T .

S is only used for scaling these matrices correspondingly to the searches.

23

Chapter 4

BosSE

4.1. What is BosSE?

BosSE is a GUI based local search engine using LSI. It is implemented in Python1 and

the user interface was designed using wxPython2.

BosSE is optimized for the German release of Wikipedia [Wikipedia, 2005], but it can be

used for every version of Wikipedia. Furthermore BosSE is easily adaptable to any other

document collection.

4.1.1. The document collection

Wikipedia is a free internet encyclopedia to which everyone can contribute by changing

articles or by adding new ones.

It is based on a ‘Wiki’ which is something like a content management system3. A Wiki

is a website that allows users to edit and add content. The user does not need to know

HTML. Each change will be recorded, thus an earlier version can be reconstructed easily.

Wikipedia is multilingual, up to now there are 200 language editions available. “Ten

editions have more than 50,000 articles each: English, German, French, Japanese, Pol-

ish, Italian, Swedish, Dutch, Portuguese, and Spanish.”4. In total there are more than

2,500,000 articles available. The project was started in 2001 and is operated since 2003

by the Wikimedia Foundation – a non-profit organisation.

1version 2.4.1 http://www.python.org last visited 2.11.2005
2version 2.6-mac-Unicode http://www.wxpython.org/ last visited 2.11.2005
3for further information see http://en.wikipedia.org/wiki/Wiki
4http://en.wikipedia.org/wiki/Wikipedia last visited 10.12.05

24

http://www.python.org
http://www.wxpython.org/
http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Wikipedia

Chapter 4. BosSE

The slogan of Wikipedia is “The Free Encyclopedia that anyone can edit”. This might be

a good thing and a bad thing. The bad thing is, that it is open to vandalism, inaccuracy

and opinion although contributors are asked to keep a “neutral point of view”. It has

been criticized, that is lacks an authority and reliability. But every article is reviewed by

thousands of users who can and will update the articles. The premise of Wikipedia is,

that due to continuous improvement it will get more and more perfect5.

But what is important for this IR project is: it is free (published under the GNU Free

Documentation License (GFDL)6) and (living) natural language is used for it was actu-

ally written by people like you and me of today. This includes natural word patterns and

actual use of synonyms.

For BosSE XML dumps of Wikipedia are used.

Different XML dumps of the encyclopedia are downloadable from http://download.

wikimedia.org/wikipedia/. For each language there are several versions:

• pages full.xml which includes all pages and all revisions

• pages current.xml with only the current revision of all pages

• pages articles.xml or pages public.xml includes only the current versions of

the articles, without discussions, talks or user pages.

For BosSE the files http://download.wikimedia.org/wikipedia/de/20050903_pages_

public.xml and http://download.wikimedia.org/wikipedia/nds/20051029_pages_

articles.xml were used. The latter is the release of Wikipedia in Plattdütsch (Low

Saxon and East Low German) and it was used just for testing during implementation,

because with 5.2 MB it is significantly smaller than the German version which is an XML

file of 1.35 GB and includes approximately 280,000 articles.

It is also possible to export particular pages or a set of pages from Wikipedia to XML

on http://de.wikipedia.org/wiki/Spezial:Export. For evaluating BosSE a corpus

of 169 German articles was build (see chapter 5).

All these Wikipedia XML files, no matter how they were exported, have the same struc-

ture.
5for more on Wikipedia see http://en.wikipedia.org/wiki/Wikipedia last visited 10.12.2005
6http://www.fsf.org/licensing/licenses/fdl.html

25

http://download.wikimedia.org/wikipedia/
http://download.wikimedia.org/wikipedia/
http://download.wikimedia.org/wikipedia/de/20050903_pages_public.xml
http://download.wikimedia.org/wikipedia/de/20050903_pages_public.xml
http://download.wikimedia.org/wikipedia/nds/20051029_pages_articles.xml
http://download.wikimedia.org/wikipedia/nds/20051029_pages_articles.xml
http://de.wikipedia.org/wiki/Spezial:Export
http://en.wikipedia.org/wiki/Wikipedia
http://www.fsf.org/licensing/licenses/fdl.html

Chapter 4. BosSE

The main element of each file is the element <mediawiki>. Within this tag the attribute

for the XML name-space7 (which is needed later on for the XML parser in BosSE to iden-

tify the tags), the attribute for the XML schema location8, (which must be downloaded

and saved in the directory of the corpus) and the attribute for the language of the XML

dump, which helps to identify the several article collections and files needed for BosSE,

is given.

After this opening some tags for site information are included and then a set of <page>

elements follows. In these the actual articles are defined. For BosSE only the elements

<title> and <revision><text> within the element <page> are important, because the

title and the actual text is given there. For every page more additional information is

available, but this is not needed for the purposes of the search engine.

The advantages of these XML dumps towards other document collections are:

- There is no encoding problem. The XML files are written in UTF8.

- There is no updating problem for the SVD space. No ‘folding-in’ is necessary,

because every few months new XML dumps are published. This is not too frequently

to spent the effort of calculating the SVD space from scratch.9

- The XML dumps are easy to parse. The structure of the XML dump is clear

and always the same throughout all versions, because its verified against an XML-

schema. This makes it easy to use different language versions with the search

engine, for only the list of stop words and some minor changes to the list of text

substitution have to adapted.

- Wikipedia has a great spectrum of articles about many topics. but they are all of

the same type: encyclopedia entries. That means there is no nonsense text. Each

article is about a special topic, written in a factual manner.

- The use of the Wikipedia content is free of charge (see footnote 6).

But there are also some disadvantages which should not be kept secret:

7usually xmlns="http://www.mediawiki.org/xml/export-0.3/"
8http://www.mediawiki.org/xml/export-0.3.xsd
9For a corpus build manually using the Wikipedia export utility a ’folding–in’ option would be helpful

and desirable, but this way of building a corpus was not intended at the time of planing BosSE.

26

http://www.mediawiki.org/xml/export-0.3/"
http://www.mediawiki.org/xml/export-0.3.xsd

Chapter 4. BosSE

- The content is not verified by experts therefore it might include some false infor-

mation. But because Wikipedia articles are reviewed daily by many users, who (I

hope) will correct any mistake and I assume that no one enters incorrect facts in

bad faith, it is considered a minor drawback.

- There might be spelling mistakes and bad HTML syntax (although HTML is not

necessary for a Wiki it is often used). This makes it harder to find good index terms

for the search engine10.

- The XML files have to be cleaned from pages containing listings of names, cities etc.

They do not reflect normal word usage and do not contain text in the linguistically

sense.

- The articles are written in a special syntax for Wiki e.g. headings are specified by

surrounding them by ‘=’. These annotations have to be changed to HTML code,

so that the user can read articles easily in the standard browser when links to the

articles were returned by the search engine.

- Articles are put into categories. This categorization is done by hand and is therefore

not reliable and most of the categories are not very meaningful e.g. men, 1809 births,

People from Baltimore are categorizations for Edgar Allen Poe. Furthermore this

additional information can obscure the actual patterns of word usage, that is why

it has to be removed otherwise e.g. all men will be linked by second order co-

occurrence.

Despite of these few drawbacks, which mean some more work and attention when indexing

the collection and preparing it for viewing, Wikipedia is considered as good corpus for it

is not domain specific and not explicitly build for research in natural language processing

or IR like other (annotated) corpora. With this collection it can be examined, if LSI

is suitable for everyday language written by non professionals. [Deerwester et al., 1990]

uses the CISI corpus, a collection of 1460 information science abstracts and the MED

document collection of 1033 medical abstracts.

10This really is a bigger problem than thought at the beginning of this master thesis and still is not

solved. One can not think of all the absurd mistakes users can do.

27

Chapter 4. BosSE

4.2. The Design and Implementation of BosSE

In this section the design, structure and important algorithms of BosSE are described.

The search engine is written in Python (version 2.4.1). The implementation was mainly

done on a Macintosh PowerBook with a 550 MHz PowerPC G4 processor, 768 MB

SDRAM and a 20 GB harddrive (splitted unequally on 2 partitions, that’s why only

1.24 GB were available for swapping data see chapter 6).

Some modules were added to the default installation of Python. They are:

• wxPython 2.6-mac-unicode http://www.wxpython.org/

• numarray 1.3.3 http://www.stsci.edu/resources/software_hardware/numarray/

• pyxml 0.8.4 http://pyxml.sourceforge.net/

• cElementTree 1.0.2 http://www.effbot.org/zone/celementtree.htm.

The modules shown in figure 4.1 are described in the following sections.

Figure 4.1.: Overview of self defined modules for BosSE

The first level displayed in dark grey is the starting point of the application. The boxes

of the next layer (highlighted with grey) depict the modules which represent the three

panels of the GUI. The boxes (light gray) of the third level are GUI modules for specific

panels/windows. The boxes connected to the GUI boxes by dotted arrows stand for the

modules in which the actual functions are implemented. They are called sequentially

from the GUI modules.

28

http://www.wxpython.org/
http://www.stsci.edu/resources/software_hardware/numarray/
http://pyxml.sourceforge.net/
http://www.effbot.org/zone/celementtree.htm

Chapter 4. BosSE

4.2.1. The user interface

The overall look and usage of the user interface of BosSE is described here.

The GUI was designed using wxPython. To start the application BosSE the GUI has

Figure 4.2.: The user interface of BosSE - the preparation panel

1:three panels of BosSE 2:selection of search base 3:options for excluding stop words

and using term weighting 4:specification of idf value for removing frequently used terms

which are not listed in the stop word file 5:specification of number of documents to index

6:specification of number of remaining dimensions (k) 7:selection of svd files 8:status

frame.

to be called in the shell by typing pythonw BosseGui.pyw. In this file (BosseGui.pyw)

the application window and the top frame are defined.

As can be seen in figure 4.2 at label 1 the interface is divided into three panels: Search,

Extras and Preprocessing.

The panels are arranged by frequency of use not chronological. This is done, because

in the best case the preprocessing is done only once, whereas the search can be executed

as often as needed once the SVD space is calculated.

29

Chapter 4. BosSE

The Preprocessing panel

For the first use of BosSE the user has to start with the preprocessing panel which is

defined in the module preppanel.

The user is asked to specify which data base he wants to search (label 2 in figure 4.2).

Therefore he uses the browse button, which will open a file dialog from which by default

only XML files are selectable.

At the next step the user has to choose, if he wants stop words to be deleted from the

index of words. Stop words are all the words that are considered common and not used

for indexing. The list of stop words differ from language to language. The file containing

this list must be a plain text file written in UTF-8 (or Latin-1).

If the users checks the ‘yes’ button behind ‘Eliminate stop-words’ (which is by default

unchecked) a text field and another ‘browse’ button will turn up, with which the user can

choose his list of stop words (label 3 in figure 4.2).

Another important feature is ‘Term weighting’. This option is set by default. If the

user leaves that choice, the frequencies of term occurrences will be weighted locally and

globally (see section 4.2.2).

If both the option for eliminating stop words and the weighting option are set to ‘Yes’

another text field turns up. It is called ‘idf value’ (see label 4 in figure 4.2). Auxiliary to

the list of stop words, this field gives the opportunity to eliminate corpus independently

all terms that occur in most of the articles (for details see section 4.2.2). ‘idf’ stands

for inverse document frequency, how it is calculated will be described in equation 4.2.

The smaller the idf value for a special term in more documents that term appears. If

for example a word occurs in every document all words would be linked by second order

co-occurrence. Mostly these words are common words like forms of to be which normally

are listed in the file of stop words. But in some document collection some words appear

in almost every article e.g. in Wikipedia the terms category or image. The list of stop

words should be language specific but should not have to be revised for every corpus used

with an search engine.

Finally the user can enter the number of documents which should be indexed (at position

5 in figure 4.2). If all articles of the collection are to be read in the field can be left blank.

This feature was added during the phase of implementation after recognising, that it

is not possible to index all 280,000 articles of the German Wikipedia with BosSE. The

30

Chapter 4. BosSE

calculation of the SVD space for such a big TDM is to CPU-intensive for the machine

used.

Now the preprocessing can begin.

In the text area at the bottom of the window some information about the status of the

application will be given. First it is repeated which corpus was chosen and which options

were set.

The filename along with the values for the two options, the file of the list of non content

words (if this option was chosen), the values of the idf text field and the document field

are referenced to the main function of the self defined module indexer see section 4.2.2.

When BosSE indexed the articles the number of documents is displayed as well as an

acknowledgment that the weighting was done. After that a list of words which were

eliminated from the index due to their idf value and the number of terms written to the

TDM are given. When BosSE has finished the first part of preprocessing it will be stated

that the matrix was filled.

Now this matrix will be decomposed. Therefor the TDM is given to the function svd in

the module svd (see section 4.2.2). After the factorisation is finished, it will be displayed

how long it took BosSE to calculate T , S and D.

During these first steps of indexing some files are created. The first one is a XHTML file

with the name language Dnumber of documents.xhtml to which the actual text of the

indexed articles is written. The other files for the search basis created here all start with

the same string, which will depend on the options used: language Dnumber of documents

SBoolean value of stop word option WBoolean value of weighting option idf

value of idf field . The language string is taken from the XML file, the others are

taken from the GUI. The TDM will be written to the file namestring tdm.txt, the

dictionary of indexed terms to namestring tdmdict.txt and the result of SVD to

namestring svd.txt (detailed description in section 4.2.2). These files will be stored

in the same directory as the article collection which should be a sub-directory of the

BosSE source code directory. Due to this naming convention all files can easily be recog-

nized and assigned to a search basis (see section 4.2.2).

When the SVD was done a slider (label 6 in figure 4.2) will appear in the GUI with a

range from 1 to the rank of the TDM. With this slider the user can enter the number

31

Chapter 4. BosSE

of remaining dimensions in the SVD space, namely the value k. By default this slider is

set to 150 dimensions. If the document collection contains less than 150 documents the

slider is set to the half of the number of dimensions.

After choosing k, BosSE will proceed with the module reduce where the semantic space

that is the matrices T , S and D will be truncated and three more files will be created

one each for T , S and D (namestring knumber of remaining dimensions redS.txt,

- redT.txt, - redD.txt) (see section 4.2.2).

If the user wants to create different truncated SVD spaces for the same document collec-

tion he does not have to start from the beginning. He can also enter an existing svd.txt

file into the text field ‘Enter ...svd.txt’ (label 7 in figure 4.2). After a while the slider will

turn up and the user can proceed.

Now the preparation is finished and the search can begin.

The search panel

The search dialog described here is implemented in the module searchpanel. The search

dialog is designed that the user starts with the selection of a search basis. An alphabet-

ically ordered list of all redS.txt files which are found within the BosSE directory is

displayed in a choice box. If the user just did the preprocessing he has to use the ‘refresh

list of files’ button, to see the search basis just created. When the user chooses a basis the

namestring will be saved to a variable called fn to be able to find all other files necessary

for performing searches. The first file to be opened is the corresponding XHTML file. It

will be opened using the load function of the cPickle module (a module that allows to

save complex serialized data structures to a file and which creates these data structures

when the file is read in). The XHTML file will be searched for the titles of the articles

which then will displayed in a choice control next to ‘search for an article similar to the

article about:’ (see label 4 in figure 4.3).

Now the user can enter the number of results he wants to get back from the search engine.

If he does not give this value the number is set to −1. Or he can specify a minimum of

similarity the results should have. Here he enters percentages. If this one is left blank

the value is set to 0%. If both values are not specified all documents or terms will be

returned by BosSE in ranked order (by percentage of similarity). When both fields are

filled and for example 20 results should be shown but only with a higher or equal simi-

32

Chapter 4. BosSE

Figure 4.3.: The user interface of BosSE - the search panel

1:selection of search basis 2:specification of number of returned results 3:term-documents

search 4:query-documents search 5:document-documents search 6:term-terms search

7:status window 8:saving of results

larity of 80% and there are more than 20 results with a higher similarity than 80% only

20 will be displayed. On the other hand if there are only 10 terms or documents with

80% similarity to the query or higher only these 10 are listed.

Now the user can choose between four different search types. They are:

1. search for documents similar to a term

2. search for documents similar to a query (a set of terms)

3. search for documents similar to a document

4. search for terms similar to a term

For the first search type the user can only enter one term. Here the similarities between

the term vector for the entered word and all document vectors are calculated (see term to

33

Chapter 4. BosSE

document similarity in section 3.2.3). For this search the files fn redT.txt,fn redS.txt

and fn redD.txt are needed and opened.

After the similarities were calculated a ranked list of results is returned to the GUI and

displayed in the result frame at the bottom of the window (see label 7 in figure 4.3).

This frame is a scrolled frame and implemented in the module scroll.

The list of results is composed of the rank, the title of the document (which is linked to

the article in the XHTML file) or the term and the similarity of the result to the query

in percent. By double clicking on the title, the XHTML file should be opened in the

standard browser and scrolled to the appropriate article.

The results can also be saved to a text file by using the ‘save results’ button (label 8

figure 4.3).

The extra panel

Figure 4.4.: The user interface of BosSE - the search panel

1:display of dimension of TDM 2:call of the function for showing the TDM 3:buttons

for displaying T , S and D 4:function displays the table of the term to term similarities

5:function for displaying the table of the document to documents similarities 6:function

for displaying the table of the term to documents similarities 7:space for messages to the

user

34

Chapter 4. BosSE

The extra panel is only for research purposes and is specified in the module extrapanel.

Just as in the search panel firstly a search basis has to be chosen. Accordingly to the

preprocessed search basis chosen, the files containing the TDM, the truncated matrices

T , S, and D as well as the dictionary of indexed terms is opened. This will take a while

depending on the size of the TDM.

After this has been done it is stated how many terms and documents are indexed in this

search basis (see label 1 in figure 4.4). Now the researcher can have a look at the TDM

created by the indexer (at label 2 in figure 4.4) as well as at the three matrices T , S and

D - the results of the SVD (see label 3 in figure 4.4). This data is taken directly from

the corresponding files.

Furthermore the user can view the different search matrices (label 4 to 6 in figure 4.4).

Here the different matrix products I talked earlier about can be calculated and viewed.

The actual tables displaying these data are shown in separate frames. To display them

the module mytable is used.

After all parts of the GUI has been discussed, in the next sections the several functions

of BosSE are described.

4.2.2. The Preprocessing

The preprocessing is the first step that has to be performed before initial use of the search

features of BosSE. Here the bases for searching are created. The different functions which

build up the step of preprocessing will be described in this section.

The chart in figure 4.5 shows the data flow within BosSE. Firstly the user interacts with

the GUI and then starts the preprocessing.

The string from the text field for the XML dumps is read and the values of the options

for excluding stop words and term weighting are saved to the Boolean variables stop and

weight. The string of the text field for the file of the stop word list is written to the

variable stoplist and the idf value is saved to the variable idf. If the user entered a

number of documents to index this is written to the variable docs otherwise it is set to

−1.

With this parameters read from the GUI the function main in the module indexer is

called.

35

Chapter 4. BosSE

Figure 4.5.: Flow chart of BosSE: the text files ware written during preprocessing and are used for

the search and/or for the extra features. The svd.txt is only used, when the user wants

to create another SVD space for a present index.

indexer

If the option for eliminating stop words was chosen main firstly opens the file of stop

words, reads it as a string, splits it into a list of single terms and saves it to stoplist .

The words have to be separated by spaces, for the split routine takes a space as a word

boundary. The idf value, provided that the option of term weighting was set to True and

a value was entered, is converted to a float otherwise it is set to 0. If stop was set to

False the variable stoplist is instantiated with an empty string.

Now the actual preprocessing begins.

The XML file is opened and by using the iterparse function of the external module

cElementTree a tree of the XML structure of the file is build.

The tree is searched and from the element <mediawiki> which is the first element in the

file the language attribute is read. By using the function head of the module writexml

the language attribute together with the usual XML declaration and the head for the

XHTML structure is written to the new created XHTML file.

From each <page> element found in the XML tree the title and the text of the page

(which corresponds to an article of Wikipedia) are retrieved and prepared for indexing.

For each page the following is done:

The title is searched for a colon. If the string contains a colon the article is a special

36

Chapter 4. BosSE

item of Wikipedia like a discussion or a user page because titles for this pages are labeled

with a keyword (e.g. discussion) followed by a colon. These pages are undesirable for

indexing for they might contain nonsense or no factual article and are skipped.

Afterwards the text of the page, which is found in the element <page><revision><text>

is prepared for writing to the XHTML file, so that the user can read it later on. There-

fore it has to be made readable. So the function revisionsub of the module substitute

is called. This function deletes all tables and category links etc. from the file because

they can not be displayed properly yet. Links to other Wikipedia pages are written like

[[link target|link name]]. Only the link name shall be seen by the user when reading

the articles so the link target and the squared bracket have to be deleted from the text.

Headings are labeled in a Wiki by embedding the text of a heading in sequences of equal

signs(=). So these sequences have to be translated to the HTML tags for headings: <h2>

to <h5>. <h1> is already used for the heading of the whole XHTML file containing the

string “Articles from Wikipedia language searched with BosSE”.

<bold> is represented in a Wiki by enclosing the terms desired to be displayed in bold

typeface in a sequence of three apostrophes (”’this should be bold”’) for an italic typeface

two apostrophes are used.

Furthermore some common mistakes like the usage of
 in XML files instead of <br\>

are corrected and for it is an XHTML file all ampersands are substituted by &.

This revised text is then written together with the title to the XHTML file.

The text of the title is written to a heading element of second order (<h2>) to which an

ID and a name attribute was given to be able to identify the article later on and anchor

it with a link. The revised text follows as a new paragraph (enclosed in <p> and </p>).

Now the original is again sent to the substitute module but this time changed by the

function indexsub with first converts the string to lower characters. Then everything

that is not a term worth indexing will be deleted. That means all internet and E-mail

addresses, tags and numbers will be removed from the text. Also all images, tables and

links to categories are deleted. Otherwise (as described in section 4.1.1) the word use

patterns would be obscured.

At the and all special characters are taken from the text. Here some special characters

might still be lacking. First it was thought to remove all non-characters, but python

37

Chapter 4. BosSE

considers only ASCII characters as characters so e.g. ä, ö, ü, ß as well as all French

characters would be deleted.

The hyphen was also a character to think of. It is substituted now by a blank so words

that form together a new meaning like H-Milch, deutsch-polnisch or Make-up will be

added to the index as separate words otherwise the TDM would grow bigger and bigger.

From the remaining string a list of terms called terms to index is build by splitting

the string after each blank. The list is sorted and the occurrences of each word are

counted.

For each term in this list it is checked, if it is listed in the stop word list (if the option

was not chosen the stoplist is an empty string) and if the term string is longer than

one character. If these requirements are fulfilled, the term is checked against a dictionary

called TDMdict.

In Python a dictionary is an unsorted list of (key, value) pairs with the syntax dict={key1:

value1, key2: value2... keyn: valuen}. The keys are the terms, the values are lists con-

taining: an unique ID for the term as first element (starting at 0 for the first term), as

the second element the term again and in its third element a list of frequency lists – one

for each document this term appears in. For example the term mouse is the first term

in the first document and appears in there four times the dictionary would be at first

TDMdict={’mouse’:[0,mouse,[[0,4]]]}. The document numbers appoint the column

to which the frequency value will be written. Index of matrices start at 0, that is why in

the list of frequencies above a 0 was written although it was the first article.

If a term appears for the first time in the document collection a new entry is added to

the dictionary. For example document 2 contains the term cat once, so the dictionary be-

comes TDMdict={’mouse’:[0,mouse,[[0,4]]], ’cat’:[1,cat,[[1,1]]]}. If a term

appears again in another document within the corpus a [document number, frequency]

list element is added to the list of frequencies. That is to say if mouse appears again in

document 5 altogether three times the TDMdict becomes {’mouse’:[0,mouse,[[0,4],

[4,3]]], ’cat’:[1,cat,[[1,1]]]}.

The unique ID indicates later on the row of the TDM to which the data of the frequency

list is written. During filling the dictionary it is noted which was the highest frequency

of occurrence of a term in this document. We need this value for the local weighting.

38

Chapter 4. BosSE

If the user chooses to use term weighting the local weighting is applied after the loop over

the terms to index list is finished, that is to say when all terms of the document were

indexed and the corresponding data was written to the TDMDdict.

local term weighting

The local weighting scheme measures the importance of a term within the document and

it is called Normalized Term Frequency (NTF).

fi,m =
freqi,m

maxj,m
(4.1)

The normalized term frequency fi,m is calculated by dividing the frequency of occurrence

of a term ti in document Dm (freqi,m) by the highest frequency of a term tn in document

Dm (maxi,m) as shown in equation 4.1. Which means that words that occur often in a

document get a higher importance for the text because it is thought to be characteristic

for this document. This normalized term frequency substitutes the raw frequency in the

list of term frequencies.

When all this was done for every <page> element in the XML file or for as many docu-

ments as stated by the user the closing tags will be added to the XHTML file and it will

be closed.

global term weighting

Then the global weighting scheme is applied on the gathered data. It calculates the

Inverse Document Frequency (IDF) (idfi in equation 4.2). This measures the importance

of a term within the document collection. It is calculated by dividing the number of all

documents in the collection N by the number of documents the term occurred in (ni)

and takes the logarithm of this quotient to the basis of 2.

idfi = log
N

ni
(4.2)

If this value is smaller than the idf value specified by the user, the entry for this term is

deleted from the TDMdict.

A term that occurs in every document of the collection gets a lower value and is thereby

39

Chapter 4. BosSE

considered as not as significant for distinction between documents or as expressive for

the meaning of an article as terms that occur rarely throughout the document collection.

Together with the NTF the IDF gives a good weighting scheme wi,m:

wi,m = fi,m × idfi (4.3)

Of course any other weighting scheme could be used with LSI, but this is the most pop-

ular one, thus it was decided to use this.

The wi,m is written to the TDMdict and replaces the fi,m The TDMdict is then written

to a text file (with the ending tdmdict.txt).

It might be said, that weighting is not needed for LSI for it should decrease the im-

portance of words that are often together with many other words by itself. This could

be true and is a matter of evaluation in chapter 5, so until now it is not obliged but a

recommended option.

After the weighting of the terms was done, the TDM is build.

First it is counted how many terms were indexed, therefor the length of the TDMdict has

to be calculated.

The number of documents were counted during the indexing process. Now a matrix of

size t × d filled with zeros is created.

For each entry in the TDMdict, that is for each term, frequencies (or the weighted fre-

quencies) are written to the matrix: the unique ID gives the row to write to. The first

element of each list in the list of frequencies gives the number of the column and the value

is given by the second element of each list.

For the small TDMdict example from above the TDM is (without term weighting):

Table 4.1.: Example of a TDMfrom a TDMdict

t\D 0 1 2 3 4

0 4 0 0 0 3

1 0 1 0 0 0

This matrix is saved to a file by using the dump function of the external cPickle module

(which allows to save complex data structures to a file and create them again, when the

40

Chapter 4. BosSE

file is read using the load function).

The step of indexing is finished and the TDM is returned to preppanel from where

the function svd from the module svd is called.

svd

To perform the SVD the external module numarray 11 is loaded. From this package the

function la.singular value decomposition(TDM) is used. It takes a matrix as input

and returns a tuple of the three matrices T , S and D. How SVD works and how it is

calculated was described in detail in chapter 3. The resulting tuple is stored to a file

ending in svd.txt.

Using this file the user can produce different truncated SVD spaces (that is to say the

value of k is different) for the same index without doing the indexing and calculation of

T , S and D again.

The resulting tuple along with the rank of the TDM , which is equal to the dimension of

the square matrix S, is returned to the GUI and the slider (label 6 in figure 4.2) turns up.

The user specifies a value for k that is to say how many dimensions he wants to keep.

Then the main function of the module reduce is called.

reduce

This functions takes the first k columns of T and writes them to a matrix Tnew of size

t× k, the first k rows of DT and writes them to the matrix DnewT of size k× d. From S

the first k values are taken and written to a square diagonal matrix Snew of size k × k.

To save this data for searching a file for each truncated matrix is created.

The preprocessing phase is completed.

4.2.3. The Search

After the user had chosen the search basis he likes to search in from the choice dialogue

depicted in figure 4.3 at label 1, the function getdoc is called.

11 http://www.stsci.edu/resources/software_hardware/numarray/

41

http://www.stsci.edu/resources/software_hardware/numarray/

Chapter 4. BosSE

getdoc

The XHTML file for the chosen search basis is opened and read in. From the external

module pyxml12 the XML parser named PyExpat is called. With this parser a XPath

expression is evaluated with which the titles of all articles are found. The titles found are

returned as a list to the GUI where they are displayed in a choice box (label 5 in figure

4.3).

Now the user can start the searching.

search

Depending on what the user entered the search function of the module search is called

with different arguments.

If the user entered a maximum value of documents to return or a lower limit of similarity,

these values are also send to the search function.

Supposing that the user forgot to choose a search basis but entered a query (a term or

a document), an error message will be shown in the scroll frame at the bottom of the

window.

The calculation of the similarities is basically the same for each search type. The similari-

ties between a query vector called quvector and each vector of a matrix called compareTo

have to be calculated (see below). But the calculation of the quvector and the matrix

compareTo is different from search type to search type. This preliminary work will be

described first.

Term to document search

If the user wants to find documents similar to one term, he enters one word in the field

next to label 3 in figure 4.3.

The query string (here containing one word) will be converted to lower characters, for

all terms in the TDMdict are stored in lower case. If the query contains more than one

word the search is stopped and an error message is displayed for the user, that he should

only enter one term. Otherwise the search continues.

For this search the matrices TDT and TDD have to be calculated (equations 3.11 and

equation 3.12).

12http://pyxml.sourceforge.net/

42

http://pyxml.sourceforge.net/

Chapter 4. BosSE

First it is checked which files needed for performing the search were already read in and

which have to be opened and loaded by the cPickle module. That is to say if the user

performs more than one search the files do not have to be opened each time. For this

search type the three matrices are needed so the data of the files

searchbasis redT.txt, searchbasis redD.txt and searchbasis redS.txt has to be

read in.

The ID of the term is looked up in the TDMdict. If no corresponding key to the entered

search term was found, a message saying that this word is not in the list of searchable

terms is displayed. The ID gives the number of the row in which the data for the vector

representing this term in the SVD space is written. This vector is written to the matrix

named Tk,qu (T of the query term) which this time only contains one row and is used

instead of the whole matrix Tk. One can also use the whole matrix Tk and multiply it

first by a query vector, which notes which term occurs how often in the query. This query

vector would be of size t× 1 and would contain zeros except for one component which is

set to 1, for the query term. The result of this multiplication is the same matrix Tk,qu as

if using just this one row out of Tk.

Tk,qu is multiplied by S
1
2
k accordingly to the function for scaling Tk into SVD space for

calculating similarities between terms and documents as shown in equation 3.11. Tk,qu is

of size 1 × k and S
1
2
k of size k × k so TDT becomes 1 × k.

The similarities between this query vector and all document vectors has to be calculated.

Therefor the document vectors have to be scaled as described in equation 3.12. DT
k of

size d × k has to be multiplied by S
1
2
k (k × k). The matrix TDD is then of size d × k.

The quvector for this search is TDT and the matrix compareTo is TDD.

Query to document search

If the user types one or more words in the text field for the second search type (label 4 in

figure 4.3) the search function will be called for searching documents similar to a query.

For this search the pseudo-document ~dq (equation 3.13) and the matrix DDT (equation

3.9) have to be calculated.

So the files searchbasis redT.txt, searchbasis redD.txt and searchbasis redS.txt

are needed and again it is checked if some of them were already opened. The query is

used like a document, but therefor it has to be folded into the SVD space to become a

pseudo-document.

43

Chapter 4. BosSE

First it is converted to lower case characters and a vector is build from it containing the

raw frequency of terms in the query. If a user wants to emphasize one term of the query,

that is to say he wants to give it more weight than the other(s) he can repeat that word.

This is taken into account when the pseudo-document is build. For example the query

vector for the query “mouse computer computer” would be

1

2

.

The words are looked up in the TDMdict. The IDs give the number of the rows of Tk in

which the data for these terms were stored. These rows are taken from the matrix Tk and

form the matrix Tqu (of size length of query × k). By multiplying the transposed query

vector ~quT (size 1 × length of query) with Tqu the pseudo-document ~dq of size 1 × k is

created as written in equation 3.13.

The matrix Dk contains in its rows the document vectors to which the pseudo-document

is compared. Therefor it has to be scaled by Sk which creates the matrix DD of size d×k

as stated in equation 3.9. The quvector for this search is ~dq and the matrix compareTo

is DD.

Document to Document Search

Here the user chose one document and wants to get similar documents.

For this search type the matrix DDT (equation 3.9) has to be calculated. Here only the

files searchbasis redD.txt and searchbasis redS.txt have to be read in, if they were

not already opened.

First the Dk matrix is multiplied with Sk as described in equation 3.9 to get DD. From

the GUI the ID of the document to which the user wants to find similar articles was

returned. To get the data for the chosen document out of DD the (ID − 1)th column

has to be extracted. This row is the quvector and DD is the matrix compareTo.

Term to Term Search

For this search, TT has to be calculated (equation 3.7) and only two files would have to

be opened: searchbasis redT.txt and searchbasis redS.txt.

The user entered one word in the text field for the term to term search. If he entered

more terms, an error message will be displayed and the search is stopped.

First of all the Tk matrix is scaled by Sk which leads to the matrix TT which is the

compareTo matrix of this search type.

44

Chapter 4. BosSE

The ID of the term is looked up in the TDMdict and the corresponding row is read from

TT . This forms the quvector.

Similarity calculation

When this work was done the similarity calculation is done independently from the search

type. Accordingly to equation 3.2 the cosine between the quvector and each row of the

compareTo matrix is calculated.

Now this value has to be converted to percentage of similarity. This is done by equation

3.3. If this value is greater than or is equal to the threshold value for similarity (if the

user did not enter a value it was set to 0) the number of the row of the compareTo matrix

along with the cosine value and the percentage of similarity is written to the result list.

Ranking

The list of results are sorted by the cosine value, because it is a float and therefore more

accurate than the percentage which is an integer.

When the user specified the peak value of documents to return (x), only the first x entries

of the list are kept.

Representation of Results

If the list of results is empty a message will appear in the text area at the bottom,

saying that no similar documents or terms compatible to the query and/or similarity

requirements were found.

Otherwise the query is displayed in the text area and it is stated which file had to be

opened.

There are two different representations for the results.

If the user was searching for terms, the TDMdict is used again. This time only the values

of the dictionary are needed that is to say the list of {ID, term, list of frequencies}.

The row number saved to the result list is compared to the IDs in the TDMdict. If it

matches the term string is extracted and written to the result text area led by the rank

and followed by its percentage of similarity.

If the user searched for documents, the title of the documents have to be found, for

in the result list only the number of the row of the Dk matrix is listed. Therefore the

XHTML file has to be searched for a heading element <h2> with an ID equal to the row

45

Chapter 4. BosSE

number. For this the PyExpat parser and an XPath expression is used again to find the

title of the article, which is stored in a name attribute of the <h2> element. If it was

found a link object with a hyper reference to the article in the XHTML file is created.

Then the results can be displayed in the GUI, starting with the rank, followed by the

link object and the similarity percentage.

The results can be stored to a text file by using the save button. During the search

process all important data was written to a string which can be written to a chosen text

file.

4.2.4. The extra features

If the user wants to see the values and matrices used within BosSE, he can use this panel.

First he has to choose a search basis.

Then the files searchbasis redT.txt, searchbasis redD.txt, searchbasis redS.txt,

searchbasis tdm.txt and searchbasis TDMdict.txt are opened and loaded. The di-

mension of the TDM gives the number of terms and documents in the search basis. This

information is send to the GUI (see label 1 in figure 4.4).

If the user wants to see the entries from the TDM he has to enter how many terms (x)

and documents (y) he wants to get displayed. These values are taken and a new grid

window specified in the mytable module is created, showing the xth first rows and the

yth first columns of the TDM. The terms are shown in the first column of the tables

for it is easy to get the corresponding terms for the rows, whereas the document titles

are not displayed, because then the XHTML file had to be searched again for the titles

whose IDs correspond to the column numbers.

If the user likes to see the entries of the T , S, or D matrices he has to click on the

appropriate button (shown in figure 4.4 at label 3). Then the whole data is taken from

the corresponding files and shown in separated frames. The rows of Tk are named by the

terms.

To display the term to term similarities, the user has to enter the number of terms (x)

he wants see the similarities for.

The matrix Tk will be truncated to hold only the information of the first x terms. This

x× k matrix Tx,k is used instead of Tk in equation 3.6. This leads to a matrix containing

46

Chapter 4. BosSE

the dot products between all term vectors. This matrix is shown in a separate window.

For the display of the similarities between terms and documents or between documents

the procedure is the same only by using Tk and Dk or only Dk and use them with equa-

tions 3.11, 3.12 and 3.8.

After the implementation of BosSE has been described it is of interest how good its

performance is.

The retrieval performance is discussed in the following chapter.

47

Chapter 5

The Retrieval Performance of BosSE

The retrieval performance of BosSE was tested with a corpus of 169 articles from the

German Wikipedia. The articles were extracted by using the export feature of Wikipedia

mentioned in section 4.1.1. The articles in the test corpus are listed in Appendix A.

This document collection was indexed in four different ways:

• stop words were excluded (option S=True) and term weighting was applied (W=True)

(called TT)

• only term weighting was used (S=False W=True) (called FT)

• only the option for excluding of stop words was chosen (S=True W=False) (called

TF)

• neither elimination of stop words (S=False) nor term weighting was used (W=False)

(called FF).

The attributes of these different index variants are shown in table 5.1.

TT FT TF FF

number of documents 169 169 169 169

number of unique terms 23360 24165 23360 24165

mean number of terms

per documents 138.2 142.9 138.2 142.9
Table 5.1.: Attributes of the search bases

48

Chapter 5. The Retrieval Performance of BosSE

The number of unique terms is 24,165 or 23,360 (when only content words are indexed).

That leads to a TDM of 4,083,885 or 3,947,840 cells respectively.

BosSE even kept those terms which occur in only one document resulting in an average

number of 138.2 unique terms in each article, whereas [Deerwester et al., 1990] removed

these terms from the corpora used (CISI and MED). For the MED, which consists of 1033

medical abstracts, an average of 50.1 terms per documents was calculated. For the CISI,

a corpus of information science abstracts, this number was 54.5. Adding this feature to

BosSE has to be considered (see section 7.2.1).

For each of the four different index variants (TT, FT, TF, FF) search bases with different

numbers of remaining dimension (k={25, 50, 75, 100, 125, 150, 169}) are calculated,

which leads to 28 search bases.

The value of k is a crucial value for the performance of a search engine using LSI. If

too many dimensions are kept, the latent semantic structure cannot be revealed since

the documents and words are not projected near enough to each other and too much

noise remains. If k is too small then too many words and/or documents will be projected

into a dimension, destroying the latent semantic structure. I want therefore to evaluate

which value of k is best for this test corpus and whether there is a difference between the

different search types and the different index types.

For each of the search bases 12 searches were performed: three word to documents

searches, three query to documents searches, three document to documents searches and

three word to words searches, resulting in 336 single searches.

For this performance test all items receiving a similarity value of 75% or higher are con-

sidered relevant to the query. The queries and the relevant items are shown in Appendix

B.

The performance is measured using the Recall–Precision scheme.

The precision (P) states how many of the returned results are relevant to the query. The

formula for calculation of the precision is shown in equation 5.1.

P =
number of returned relevant items

number of returned items
(5.1)

The value ranges from 0 and 1, where 1 represents the best precision, i.e. that all returned

items are relevant to the query.

49

Chapter 5. The Retrieval Performance of BosSE

The recall of a search (R) indicates completeness of the search results. It states how

many of all the relevant results were found by the search engine. It is calculated using

equation 5.2.

R =
number of returned relevant items

number of relevant items
(5.2)

The value of R lies between 0 and 1, where 0 shows that no relevant item was returned,

whereas 1 illustrates that all relevant items were returned by the search engine.

The F-measure (F) combines the precision and recall values into one value. It is

calculated by using the equation 5.3.

F =
2PR

P + R
(5.3)

The value of the F-measure also ranges from 0 to 1. An explanation of the F-measure is

given in [Rennie, 2004].

In the next sections the four different search types and the performance of the different

indexed search bases with varying values of k will be discussed.

Some charts are shown, depicting the course of precision, recall and F-measure over

varying values of k. The curves in these charts are approximations, since it is only

possible to test some values of k and no formula is available for calculation the precision

and recall for any desired k. In other words, the conjunctions between the points of actual

tested k only depict trends.

5.1. The document to documents search

As can be seen in figure 5.1 the recall for all index types (depicted by small dotted lines)

decreases when the number of remaining dimensions grow.

It is interesting that the recall for the index type FF (grey small dotted line) stays at 1

and only declines when k is greater than 100. That means that BosSE is not able to find

all relevant documents when k ≥ 100 because too much “noise” remains in the corpus

obscuring the latent semantic structure.

Stated simply, on the other hand, the precision increases with a growing k. But it has

50

Chapter 5. The Retrieval Performance of BosSE

Figure 5.1.: Precision, recall and F-measure curves for document to documents searches with different

values for k

to be noted that the precision for search bases where the stop words were not excluded

(FT and FF (green and grey dashed lines)) always lies below a value of 0.05. That means

that not even 1 out of 20 returned documents is relevant to the document entered. The

precision for the TF search bases stays at 1 when k ≥ 100.

For the TT (blue lines) and TF (red lines) search bases the precision and recall curves

have contrasting slopes resulting in F-measure curves describing arches where the vertex

for the TT F-measure curve (blue line) lies with k = 100 and for TF at k = 75.

In conclusion, for the document to documents search excluding stop words is crucial.

The optimal search base for this type of search is the TT with k = 100. Here the results

are very good. For example a search for similar documents to an article about “Die

Sendung mit der Maus” (a TV show for children with an animated mouse) returned all

relevant articles plus the article “Maus (EDV)” (about the input device in computing).

If term weighting is not desired a value for k = 75 should be used.

It has to be noted, that the TT index scheme only performs better with k ≥ 100. For

smaller k the index variant TF returns better results.

51

Chapter 5. The Retrieval Performance of BosSE

5.2. The word to documents search

Figure 5.2.: Precision, recall and F-measure curves for word to documents searches with different

values for k

The recall, precision and F-measure curves for this search are shown in figure 5.2.

The recall for search bases where stop words were not excluded (TF– red dotted line and

FF– grey dotted line) is inefficient. The values lie under 0.3 which means that less than

3 out of 10 relevant documents are returned.

The precision (except for k = 25) always lies over 0.5 which means that most of the

returned documents are relevant to the entered term.

Another striking feature is that the precision for FF search bases (grey dashed line) is

constantly 0.65, and thus is likely to be a coincident.

Similar to the document to documents search the performance of word to documents

search depends particularly on one option. This time it is the term weighting. For the

search bases where this option is not set to True (TF and FF) the F-measure always stays

under 0.4.

The curves for the precision and recall of the index types TT and FT again run counter

to each other.

52

Chapter 5. The Retrieval Performance of BosSE

The best performance was observed for the search base TT50.

Here reliance on the correct chosen value for k is especially relevant. The curve for the

TT index type shows an explicit peak at k = 50.

5.3. The query to documents search

Figure 5.3.: Precision, recall and F-measure curves for query to documents searches with different

values for k

As can be seen in figure 5.3 this search type is different to the previous ones.

This search does not depend on one indexing option.

The best retrieval performance is found again when using TT search bases and k lies

between 50 and 100. For k > 125 the search bases indexed with the FT index variant

performs better. For 75 < k < 125 the TF and FF schemes are the second best indexing

schemes.

In contrast to the word to documents and document to documents searches, here no index

scheme performs extremely badly.

Once again the precision and recall curves usually run oppositionally in their slope.

In conclusion this search is the one which depends least on the indexing scheme but still

heavily on the number of remaining dimensions.

53

Chapter 5. The Retrieval Performance of BosSE

5.4. The word to words search

Figure 5.4.: Precision for word to words searches with different values of k

This search is different to all the others. Here words instead of documents are returned.

In contrast to the other searches, not all words that have a minimum similarity of 75%

are returned, only the first 10 results.

It is hard to say which word has to be considered relevant to the query, for synonyms

might be relevant as well as hyperonyms, hyponyms or even antonyms. Thus the recall

was not calculated only and the precision is shown in figure 5.4.

The best precision is achieved by using the TT125 search base. Unexpectedly the TF

precision has the worst performance, even that of the search bases, which do not exclude

stop words and term weighting is better. That means that LSI on its own works efficiently,

but when changing the indexing process both given index options should be used.

5.5. Conclusion

The F-measures for the three search types which return documents are shown in figure

5.5. As can be seen, the search bases indexed with the TT scheme perform best. Only for

54

Chapter 5. The Retrieval Performance of BosSE

the lowest value of k tested (25) and the original dimension of the TDM (169) do other

index schemes outperform TT.

The worst performance is achieved by the FF scheme, but it still depends on the value

of k.

The F-measure curves for the TF and FT schemes are always in the region of 0.5 where

for TF the best value for k = 100 and for FT k = 125. This would suggest that the term

weighting is more crucial to the performance of the search engine than the exclusion of

non index terms.

It seems that the best performance for all four index schemes is about k = 100 which is

about 60% of the original dimension.

But this value is not assignable to all corpora, in particular not to larger ones. In these

document collections the number of new terms, which will be added to the index when

another document is preprocessed, decreases during the indexing process. Thus for twice

the number of documents there will not be twice as many terms. The dimensions of the

TDM therefore do not grow linearly with the growing number of documents and the k

value cannot be generally set.

Figure 5.5.: The averaged F-measures of the four index schemes for the searches returning documents.

55

Chapter 6

Unresolved problems

6.1. Preprocessing

During the phase of preprocessing the XML file is read in and parsed. The Wiki syntax

is removed, replaced by HTML equivalents and written to the XHTML file. Not all Wiki

instructions can already be translated to HTML.

If there are HTML errors within the XML file, if for example the closing tag for an ele-

ment is missing, then this error is transferred to the XHTML file. When this file is opened

during search, it cannot be parsed and the titles of the articles cannot be displayed. An

HTML validator might assist.

The SVD calculation requires too much time and uses too much memory. For example

for a 24,164×179 TDM it takes 6:25 minutes. Indexing a corpus of about 500 documents

and performing the SVD took a matter of hours for the computer used. The working

memory was too small, so swap files had to be created. But 800 MB was soon insufficient.

Thus corpora of 700 and more documents could not be indexed.

The run–time on faster machines has to be examined. It may be possible to decrease

memory load and run–time by using the svdpackC1 instead of the numarray module.

An attempt has already been made to reduce the degree of accuracy by decreasing the

number of post decimal positions. This was not successful since significant information

for some entries e.g. the algebraic sign were thereby lost.

1www.netlib.org/svdpack/ last visited 12.1.2006

56

www.netlib.org/svdpack/

Chapter 6. Unresolved problems

6.2. Search

The text files needed for searching are quite extensive. For example, for the test corpus

used above, the file containing T of a search base where stop words were not excluded

but term weighting was applied, has a size of 84.9 MB.

Depending on the search type, up to three of these files have to be loaded by the pickle

module (see section 4.2.1), which can take some time and is disturbing for the user. Other

possibilities saving and loading complex data types to/from files have to be considered.

Depending on the number of results to be returned, once the necessary files are loaded

the search itself is quite fast and user friendly.

On Windows there is a problem with opening the link to a document directly from the

GUI of BosSE. Although all participating modules were examined and the preferences for

the standard browser were set, this problem has not yet been solved. But it is possible

to copy the link and paste it into the address field of a browser.

6.3. Extra features

The features available on the extra panel are time consuming, once again connected to the

problem of loading the text files containing T , S, D and the term-document dictionary.

But these features are only for research purposes, the time factor can be disregarded since

they are very rarely used and are not necessary for the actual search.

57

Chapter 7

Future work

Some improvements are listed in this chapter, which could possibly be added to BosSE.

The implementation and testing of these features is beyond the scope of this master

thesis.

7.1. The Folding–in

Folding-in is a mathematical method to project new documents or terms into the SVD

space without recalculating the three matrices T , S and D (see [Berry et al., 1995]).

To fold-in a new document, represented by an m × 1 vector ~d, the projection d̂ of ~d into

an existing SVD space is be calculated using equation 7.1.

d̂ = ~dT TkS
−1
k (7.1)

To fold-in a new term, represented by an 1 × n term vector ~t, the projection t̂ of ~t into

an existing SVD space is calculated using equation 7.2

t̂ = ~tDkS
−1
k (7.2)

At the start of this master thesis the aim was to index the whole German Wikipedia.

Therefore, folding-in was considered unnecessary.

However since the discovery, that only a few hundred documents can be indexed, folding-in

has become more important for updating and extending the document collection without

having to re–do the time consuming SVD calculation.

58

Chapter 7. Future work

7.2. Changes to indexing

7.2.1. Exclusion of terms

In BosSE even words that occur in only one document are indexed whereas the authors of

[Deerwester et al., 1990] propose to exclude these words: “Since few terms which appear

in only one document (and were thus excluded by LSI) are used in the queries, the

omission of these words is unlikely to be a major determinant of performance.”. This

exclusion feature could be added to BosSE. In my opinion, these words would be good

candidates for adding to the SVD space, using folding-in.

7.2.2. Stemmer

When using a stemming algorithm, only the stems of words are written into the TDM.

In that case the number of index terms would be reduced and even more importantly

a more exact latent semantic structure might be revealed resulting in better retrieval

performance. ”Stemming, however, seems to capture some structure LSI was unable to

capture [...]” [Berry et al., 1995, p. 404].

Stemming could be added to BosSE as an option during preprocessing.

In [Klein-Berning, forthcoming 2006] BosSE is already used for research in multilingual

Information Retrieval using LSI, and among other things the usefulness of stemming to

LSI is about to be tested.

7.3. More search types

For some applications it might be useful to find the most significant word or sentence for

a paragraph or for an entire document e.g. in automatic text summarization.

Thus search types and the corresponding preprocessing steps have to be added in order to

perform a document to term/sentence, paragraph to term/sentence and term to sentence

search.

59

Chapter 8

Conclusion

The implementation of BosSE was extremely successful, despite exceeding the estimated

time frame. It is currently being used for another master thesis about multilingual Infor-

mation Retrieval using LSI ([Klein-Berning, forthcoming 2006]).

Unfortunately it was impossible to index and search a corpus of significant size, such as

the complete of the German Wikipedia, because of the limited capacities of the computer

used. But for smaller corpora BosSE works extremely well.

The results are promising. The retrieval performances for all four search types are unex-

pectedly good, although it was difficult to evaluate the term to terms search.

The performance of LSI improves when the options of term weighting and exclusion of

stop words are used. Results show that term weighting is actually slightly more impor-

tant than the exclusion of non content words.

The number of remaining dimensions for truncating the TDM matrix, is still crucial to

the performance of LSI.

BosSE is the first search engine to use LSI to search for terms and documents in dif-

ferent ways.

A tool is now available with BosSE, which makes it possible to test and evaluate crucial

values within LSI.

BosSE is applicable to many fields of Natural Language Processing. As previously stated

the possibilities of multilingual IR are currently being tested using BosSE. It could also

be extended to become a text summarizing tool, or to build thesauri.

60

Appendix A

The articles of the test corpus

42 (Antwort)

ABAP

Alan Smithee

Albert Einstein

Albert Fraenkel

Altburg (Burg)

Altherrenverein

Altweibersommer

Ameisenigel

Amos Oz

Andreas Eschbach

Andy Warhol

Angela Merkel

Angelina Jolie

Anluven und Abfallen

Archäologie

Armin Maiwald

Atonale Musik

August Mayer

Austen Henry Layard

Autonomieprinzip

Barockmusik

Bela Lugosi

Benôit Mandelbrot

Bianca - Wege zum Glück

Bigos

Bilinguismus

Bill Gates

Blackout

Blaue Hörner

Bosse

Britisches Museum

Bundesmonopolverwaltung für Branntwein

Burgwedel

Carl Hagenbeck

Christoph Biemann

Clone Wars (Cartoon)

Colin Firth

Computerlinguistik

Cordula Stratmann

Der Wolf und die sieben jungen Geißlein

Die Sendung mit der Maus

Dirk Bach

Distinktives Merkmal

Double Density

Edgar Allan Poe

61

Appendix A. The articles of the test corpus

Eforie Nord

Elefant (Jagdpanzer)

Elefant, Tiger und Co.

Elefanten

Elefantenschule

Elefantenvögel

Elefantiasis

Ernst Toller

FBI

Feldberg im Schwarzwald

Fettes Brot

Frank Elstner

Fruchtobst

Fräuleinwunder

Fury in the Slaughterhouse

Gene Roddenberry

Genfer Konventionen

Geocaching

Gesunder Menschenverstand

Gesundheitsvorsorge

Global Positioning System

Grabenkrieg

Grisu

Hansekogge

Hauptverkehrszeit

Hausziege

Heidelberg

Henning Kagermann

Hockey

IBM

Irisdruck

Ispell

Israeliten

Iteso

Janosch

John Langshaw Austin

Johnnie Walker

Johnnie Walker (Radiomoderator)

Jugendpresse

Julia - Wege zum Glück

KZ Bergen-Belsen

Kai Wingenfelder

Kaiserrecht

Karl August Möbius

Karl Lohmann

Karl Markus

Kashima (Ibaraki)

Kinder-Schokolade

King’s College (Cambridge)

Klaus Tschira

Kloster Grönenbach

Knut Hickethier

Königreich Bayern

Landesrundfunkgesetz

Laredo (Spanien)

MLP AG

Magisterarbeit

Mammut

Mannesmann Mobilfunk

Martinsdom (Bratislava)

Maus (EDV)

Mausschwanzartige

Max Mallowan

Metal Matrix Composite

62

Appendix A. The articles of the test corpus

Middlesex University

Mirage (Hotel)

Mittelstand

Muckefuck

Mufti

Märchen

Mäuse

Neoliberale Einheitspartei

Nimrud

Noam Chomsky

Norbert Blüm

Optimist (Bootsklasse)

Paläolinguistik

Pandia

Parlamentarismus

Partei der Alternativen Bürgerbewegung

2000 Deutschlands

Pergamonmuseum

Phönizier

Pinne (Segeln)

Plan 9 from Outer Space

Quint Buchholz

Radio ffn

Ralph Caspers

Raumschiff Enterprise- Das nächste

Jahrhundert

Reismalz

Rentenmark

Rossmann

SAP AG

Sachtext

Schillerstraße

Ska Jazz

Skywarn

Sprachwissenschaft

Stephen Hawking

Studium

Suprematismus

Swanfassung

Telenovela

Thomas Gottschalk

Tierpark Hagenbeck

Tigerenten Club

Tonke Dragt

TorDACH

Trekkie

Umberto Eco

Universitätsplatz (Heidelberg)

Vorderasiatische Archäologie

Vorsorgeprogramm

Warengruppe

Watergate-Affäre

Wental

Whoopi Goldberg

Wir Kinder aus Bullerbü

Wirtschaftskontrolldienst

Wochenfluss

Zoo Hannover

Zoo Heidelberg

Zoo Leipzig

Zwiebelfisch (Buchdruck)

63

Appendix B

Queries

B.1. word to documents search

query: “Linguistik”

relevant documents: “Sprachwissenschaft”, “Computerlinguistik”, “Noam Chomsky”,

“Bilinguismus”, “Paläolinguistik”, “Distinktives Merkmal”, “John Langshaw Austin”

query: “Archäologie”

relevant documents: “Archäologie”, “Vorderasiatische Archäologie”, “Max Mallowan”,

“Austen Henry Layard”, “Nimrud”, “Britisches Museum”, “Phönizier”, “Pergamonmu-

seum”

query: “Politik”

relevant documents: “Neoliberale Einheitspartei”, “Norbert Blüm”, “Angela Merkel”

B.2. Query to documents search

Qu1= query: “Fernsehsendung Improvisation Fernsehpreis Comedy”

relevant documents: “Schillerstraße”, “Cordula Stratmann”

Qu2= query: “grüner Pullover Sachgeschichten Sonntag”

relevant documents: “Christoph Biemann”, “Die Sendung mit der Maus”, “Armin Mai-

wald”, “Ralph Caspers”

Qu3= query: “schlechtester Film aller Zeiten Wood”

relevant documents: “Plan 9 from outer space”, “Bela Lugosi”

64

Appendix B. Queries

B.3. Document to documents search

query: “Austen Henry Layard”

relevant documents: “Austen Henry Layard”, “Archäologie”, “Vorderasiatische Archäolo-

gie”, “Max Mallowan”, “Nimrud”, “Britisches Museum”

query : ”Die Sendung mit der Maus”

relevant documents:“Christoph Biemann”, “Die Sendung mit der Maus”, “Armin Mai-

wald”, “Ralph Caspers”

query: “Geocaching”

relevant documents: “Geocaching”, “Global Positioning System”

B.4. Word to words search

query: Watergate

query: TV

query: Ausgrabung

65

References

[Penguin, 2001] The new Penguin dictionary. Penguin Group, 2001.

[Wikipedia, 2005] Wikipedia- Die freie Enzyklopädie, 2005. URL http://de.

wikipedia.org.

[Berry et al., 1995] M. W. Berry, S. Dumais, and G. W. O’Brien. Using Linear Algebra

for Intelligent Information Retrieval. SIAM Review, 37(4):573–595, 1995.

[Deerwester et al., 1990] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,

and R. Harshman. Indexing by Latent Semantic Analysis. Journal of the American

Society For Information Science, 41:391–407, 1990.

[Golub and Van Loan, 1996] G. H. Golub and C. F. Van Loan. Matrix Computations.

The Johns Hopkins Press, Baltimore and London, third edition, 1996.

[Klein-Berning, forthcoming 2006] J. Klein-Berning. Multilinguales Information Re-

trieval mit Latent Semantic Indexing (working title). Master’s thesis, University

of Heidelberg, Heidelberg, forthcoming 2006.

[Kontostathis and Pottenger, 2004] A. Kontostathis and W. M. Pottenger. A framework

for understanding Latent Semantic Indexing (LSI) performance. Preprint submitted

to Elsevier Science, 2004.

[Lang and Pucker, 1998] C. B. Lang and N. Pucker. Mathematische Methoden in der

Physik. Spektrum Akademischer Verlag, Heidelberg, Berlin, 1998.

[Letsche, 1996] T. A. Letsche. Toward Large-Scale Information Retrieval Using Latent

Semantic Indexing. Master’s thesis, University of Tennessee, Knoxville, Tenessee,

1996.

66

http://de.wikipedia.org
http://de.wikipedia.org

References

[Moler, 2004] C. Moler. Numerical Computing with MATLAB chapter 10, 2004 URL

http://www.mathworks.com/moler/eigs.pdf.

[Persson, 2005] P.-O. Persson. Script to MIT 18.335: Introduction to Numerical Methods

(fall 2005) lecture 3, 2005. URL http://www-math.mit.edu/~persson/18.335/

lec3.pdf.

[Rennie, 2004] J. D. M. Rennie. Derivation of the F-Measure, 2004. URL http://

people.csail.mit.edu/jrennie/writing/fmeasure.pdf.

[Strang, 2003] G. Strang. Lineare Algebra. Springer, Berlin, Heidelberg, 2003.

67

http://www.mathworks.com/moler/eigs.pdf
http://www-math.mit.edu/~persson/18.335/lec3.pdf
http://www-math.mit.edu/~persson/18.335/lec3.pdf
http://people.csail.mit.edu/jrennie/writing/fmeasure.pdf
http://people.csail.mit.edu/jrennie/writing/fmeasure.pdf

Glossary

corpus

A corpus is a collection of writings of a special kind (here encyclopedia entries) or

sometimes on a particular subject. In this thesis the corpus is considered to be

subject independent.

diagonal matrix

In a diagonal matrix only the cells in the main diagonal (from top left corner to

bottom right corner) are non-zero.

IDF:Inverse Document Frequency

IDF is a global weighting scheme that measures the importance of a term within a

document collection.

IR:Information Retrieval

LSI:Latent Semantic Indexing

NTF:Normalized Term Frequency

NTF is a local weighting scheme that measures the importance of a term within a

document.

orthogonal

Vectors are orthogonal, if their dot product is equal to 0 that is to say if they form

a right angle.

68

Glossary

orthonormal

An orthonormal matrix is a matrix whose rows (or column) vectors are orthogonal

to each other, which means that their dot product is equal to 0 (geometrically

spoken, the vectors form a right angle) and have the length 1.

rank

The rank (r) of a matrix is the smaller of the number of linearly independent

rows and the number of linearly independent columns in a matrix: k = min(t, d).

Typically in IR it is equal to the number of documents.

sparse matrix

Many of the cells of a sparse matrix are set to 0.

SVD:Singular Value Decomposition

SVD is a method for factorization of any rectangular matrix

TDM:Term Document Matrix

TDMdict

A TDMdict is a Python dictionary (a list of <key:value> pairs), which holds all

necessary information about an indexed term in a document collection. The key is

the term, the value is a list of: unique ID, term, list of frequency list containing list of

<document number, frequency> pairs. Example: {’mouse’:[0,mouse,[[0,4],

[4,3]]], ’cat’:[1,cat,[[1,1]]]}

transposed matrix

To transpose a matrix means to interchange its rows with its corresponding columns.

Those matrices are marked by T .

69

Acknowledgements

I want to thank Dr. Karin Haenelt, my major advisor, for her support and motivation.

Prof. Dr. Hellwig for introducing me to computational linguistics and for his guidance

throughout my studying.

Many thanks belong to Benny who supported me throughout the work and was a great

help during all ups and downs :-X. Now we can go geocaching, to the movies, sleep late

on weekends -yes, I have got my life back!

Thanks to Jette for testing BosSE and making suggestions for improvement.

I am also thankful to Suzanne and Thorsten who showed consideration for me and like

Jette and Benny did the proofreading.

Special thanks belong to Isobel Ryder-Grabolle for her proofreading.

For supporting me during my whole education and for much more, I want to thank my

parents

TNX 1.0E6 to my beloved Titanium PowerBook - thank you for not letting me down. I

promise I will never sell you!

70

	Introduction
	Introduction to Latent Semantic Indexing
	The LSI algorithm
	The Preprocessing
	The Search

	Singular Value Decomposition
	The purpose of SVD
	SVD in Information Retrieval
	The term space
	The document space
	The SVD semantic space

	The mathematics behind SVD

	BosSE
	What is BosSE?
	The document collection

	The Design and Implementation of BosSE
	The user interface
	The Preprocessing
	The Search
	The extra features

	The Retrieval Performance of BosSE
	The document to documents search
	The word to documents search
	The query to documents search
	The word to words search
	Conclusion

	Unresolved problems
	Preprocessing
	Search
	Extra features

	Future work
	The Folding--in
	Changes to indexing
	Exclusion of terms
	Stemmer

	More search types

	Conclusion
	The articles of the test corpus
	Queries
	word to documents search
	Query to documents search
	Document to documents search
	Word to words search

	References
	Glossary
	Acknowledgements

