
Performance Analysis of Dijkstra, A* and Ant

Algorithm for Finding Optimal Path

Case Study: Surabaya City Map

Leo Willyanto Santoso, Alexander Setiawan, Andre K. Prajogo
Informatics Department, Faculty of Industrial Engineering

Petra Christian University

Jl. Siwalankerto 121-131 Surabaya, 60236

leow@petra.ac.id

1. Introduction

In the programming world there are so many algorithms that can be used to do an optimal

path finding, for example Dijkstra, Ant and A* algorithm. However, there has been little work on

the benchmarking in terms of the performance analysis of these algorithms [3, 7]. In this paper, we

compare the performance of Dijkstra, Ant and A* algorithm to better know the characteristic of

each algorithm when finding optimal path of certain route.

It would need the appropriate algorithm to search the optimal route, therefore, the purpose of this

research is to explore what a good routing algorithm by comparing the 3 types of algorithms that

can be used to solve the problem route search is: Ant algorithm, Dijkstra and A * in hopes of

finding the best algorithm for searching a route.

The problems to be solved in this research are as follows:

1. How to implement an optimal routing algorithm in this application.

2. How to create a user friendly and easily understandable application.

3. How to set the constraints in this application.

4. How to implement an optimal routing algorithm on several goals at once.

The purpose of this research is to make an application to compare search algorithm routes between

the three algorithms used in the search for optimal route so that the results of the third comparison

of these algorithms can be determined which algorithms are suitable for searching the optimal route.

The remaining part of this paper is organized as follows. Section 2 presents an overview of current

proposal for dealing with routing algorithm. Section 3 depicts the approach that we have delineated

to solve the proposed problems. Moreover, the performance of proposed methods were discussed.

Finally, section 4 concludes the paper.

2. Background

In graph theory, the shortest path problem is the problem of finding a path between two vertices (or

nodes) such that the sum of the weights of its constituent edges is minimized. An example is finding

the quickest way to get from one location to another on a road map; in this case, the vertices

represent locations and the edges represent segments of road and are weighted by the time needed to

travel that segment [2, 6].

Multiple destination path finding problem is problem to find a solution path which must pass

through several places at once. This problem can be solved by two approaches, brute force and

heuristic [1].

2.1 Ant Colony Algorithm

This algorithm is aiming to search for an optimal path in a graph, based on the behavior of

ants seeking a path between their colony and a source of food.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Repository

https://core.ac.uk/display/32452834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The original idea comes from observing the exploitation of food resources among ants, in

which ants’ individually limited cognitive abilities have collectively been able to find the shortest

path between a food source and the nest. The first ant finds the food source (F), via any way (a),

then returns to the nest (N), leaving behind a trail pheromone (b). Ants indiscriminately follow four

possible ways, but the strengthening of the runway makes it more attractive as the shortest route.

Ants take the shortest route; long portions of other ways lose their trail pheromones [5].

• An ant will move from node i to node j with probability:

 (1)

where,

τi,j is the amount of pheromone on edge i,j

α is a parameter to control the influence of τi,j

ηi,j is the desirability of edge i,j (a priori knowledge, typically 1/di,j, where d is the distance).

β is a parameter to control the influence of ηi,j

• It must visit each city exactly once.

• Pheromone Update:

τi,j = (1 − ρ)τi,j + ∆τi,j

where

τi,j is the amount of pheromone on a given edge i,j

ρ is the rate of pheromone evaporation

∆τi,j is the amount of pheromone deposited, typically given by

 (2)
where Lk is the cost of the kth ant's tour (typically length).

2.2 Dijkstra Algorithm

Dijkstra's algorithm is a graph search algorithm that solves the single-source shortest path

problem for a graph with nonnegative edge path costs, producing a shortest path tree.

In the following algorithm [4], the code u := vertex in Q with smallest dist[], searches for

the vertex u in the vertex set Q that has the least dist[u] value. That vertex is removed from the set

Q and returned to the user. dist_between(u, v) calculates the length between the two neighbor-nodes

u and v. The variable alt on line 13 is the length of the path from the root node to the neighbor node

v if it were to go through u. If this path is shorter than the current shortest path recorded for v, that

current path is replaced with this alt path. The previous array is populated with a pointer to the

"next-hop" node on the source graph to get the shortest route to the source.

 1 function Dijkstra(Graph, source):

 2 for each vertex v in Graph: // Initializations

 3 dist[v] := infinity // Unknown distance function from source to v

 4 previous[v] := undefined // Previous node in optimal path from source

 5 dist[source] := 0 // Distance from source to source

 6 Q := the set of all nodes in Graph

 // All nodes in the graph are unoptimized - thus are in Q

 7 while Q is not empty: // The main loop

 8 u := vertex in Q with smallest dist[]

 9 if dist[u] = infinity:

10 break

 // all remaining vertices are inaccessible from source

11 remove u from Q

12 for each neighbor v of u: // where v has not yet been removed from Q.

13 alt := dist[u] + dist_between(u, v)

14 if alt < dist[v]: // Relax (u,v,a)

15 dist[v] := alt

16 previous[v] := u

17 return dist[]

An upper bound of the running time of Dijkstra's algorithm on a graph with edges E and vertices V

can be expressed as a function of | E | and | V | using the Big-O notation.

For any implementation of set Q the running time is ,

where dkQ and emQ are times needed to perform decrease key and extract minimum operations in set

Q, respectively.

The simplest implementation of the Dijkstra's algorithm stores vertices of set Q in an

ordinary linked list or array, and extract minimum from Q is simply a linear search through all

vertices in Q. In this case, the running time is O(| V | 2 + | E |) = O(| V | 2). For sparse graphs, that

is, graphs with far fewer than O(| V |
2
) edges, Dijkstra's algorithm can be implemented more

efficiently by storing the graph in the form of adjacency lists and using a binary heap, pairing heap,

or Fibonacci heap as a priority queue to implement extracting minimum efficiently. With a binary

heap, the algorithm requires O((| E | + | V |)log | V |) time (which is dominated by O(| E | log | V |

), assuming the graph is connected), and the Fibonacci heap improves this to O(| E | + | V | log | V |

).

2.3 Algoritma A* (A Star)

A* (pronounced "A star") is a computer algorithm that is widely used in path finding and

graph traversal, the process of plotting an efficiently traversable path between points, called nodes.

As A* traverses the graph, it follows a path of the lowest known path, keeping a sorted priority

queue of alternate path segments along the way. If, at any point, a segment of the path being

traversed has a higher cost than another encountered path segment, it abandons the higher-cost path

segment and traverses the lower-cost path segment instead. This process continues until the goal is

reached [8, 9].

The time complexity of A* depends on the heuristic. In the worst case, the number of nodes

expanded is exponential in the length of the solution (the shortest path), but it is polynomial when

the search space is a tree, there is a single goal state, and the heuristic function h meets the

following condition:

| h(x) − h * (x) | = O(logh * (x))

where h
*
 is the optimal heuristic, the exact cost to get from x to the goal. In other words, the error

of h will not grow faster than the logarithm of the “perfect heuristic” h * that returns the true

distance from x to the goal

3. Implementation and Testing

In this section, discussed the use and testing of application. Testing process conducted by

performing the test route search using three existing path finding algorithms with multiple

destinations at once and by providing constraints. Applications have been tested on computers with

Intel ® Core2Duo processor specifications ™ T5550@1.83 GHz with 2 GB of memory.

Using this application, users can directly search the route because the application has been

entered the point - the crossing point and the points are already connected, however, the user must

enter a first starting point and desired point to do a search and choosing one among the three

algorithms that have been provided. Figure 1 shows entering the destination and choosing the

algorithm.

Figure 1: Entering Destination and Choosing Algorithm on Application

After entering the destination and choose the algorithm that is used then the user can press the

search button after that will show the route through which the route, mileage and duration of the

search process route. This can be seen in Figure 2.

Figure 2: Route Search Result

Testing the application carried out by comparing the results of the 3 existing algorithms, the testing

conducted are as follows:

• Testing the running time of algorithm

• Testing the correctness of the calculation in the program

• Testing mileage generated by the algorithm

There are two kinds of testing method of multiple destination on this application, heuristic methods

and the Traveling Salesman Problem (TSP) where the heuristic method has better speed but with

less accuracy. The test is done with destination " AE - U - E - G - BJ - AP ". Here are the test results

and TSP heuristic method:

Table 1: Testing Dijkstra's algorithm with heuristic methods
No. Point passed

(with destination AE – U – E – G – BJ – AP)

Distance traveled

(meter)

Time

(ms)

1. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ- 3007.61 140

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

2. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 141

3. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 141

4. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 140

5. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 140

Table 2: Testing A* Algorithm with Heuristic methods

No. Point passed

(with destination AE – U – E – G – BJ – AP)

Distance traveled

(meter)

Time (ms)

1. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 109

2. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 109

3. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 109

4. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 124

5. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 94

Table 3: Testing Ant Algoritma Ant with Heuristic methods

No. Point passed

(with destination AE – U – E – G – BJ – AP)

Distance traveled

(meter)

Time (ms)

1. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 14133

2. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 13946

3. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 13884

4. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 13604

5. A-B-C-D–E-U-AE-AH-AJ-AL–AP-AS-AY-AZ-

BK–BJ-BK-AZ-AY-AS-AP-AL-AJ-AH-AE-

AF-T-S-R-Q-G

3007.61 13993

Figure 3: The output of Heuristic Method Testing

Table 4: The testing of Dijkstra Algorithm with TSP Method

No. Point passed

(with destination AE – U – E – G – BJ – AP)

Distance

traveled (meter)

Time (ms)

1. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 9454

2. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 9485

3. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 9453

4. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 9484

5. A A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 9438

Table 5: Testing of A* Algorithm with TSP Method

No. Point passed

(with destination AE – U – E – G – BJ – AP)

Distance

traveled (meter)

Time (ms)

1. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 9313

2. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 9328

3. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 9298

4. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 9327

5. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 9422

Table 6: Testing of Ant Algorithm with TSP Method

No. Point passed

(with destination AE – U – E – G – BJ – AP)

Distance

traveled (meter)

Time (ms)

1. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 25155

2. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 26005

3. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 25990

4. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 25600

5. A-B-C-D–E-F–G-Q-R-S-T–U-AH-AJ-AL–AP-AS-

AY-AZ-BK-BJ

2260.96 26083

Figure 4: The output of TSP Method

From the test results can be concluded that the route search with heuristic methods can

provide results faster but produces a much longer route, whereas when using the TSP method the

time required to perform the search requires more time than the heuristic method, but produces a

shorter route. However, there is also a condition in which the two methods produce similar results.

Our simulation show that the ant algorithm is not good enough to be used for path finding

if compared to the Dijkstra and A* algorithm because lack of accuracy and stability and the

duration for the process is far slower. However, under varying traffic conditions, Ant algorithm

could adapts to the changing traffic and performs better than other shortest path algorithm.

Moreover, the Dijkstra and A* algorithm could be developed more because the duration is still fast

enough.

4. Conclusions

Based on the results of the implementation and testing program that has been done, it can be

concluded that:

• Ant algorithm is not suitable for path finding algorithm because it is less stable and requires

a long time to do a search.

• Dijkstra's algorithm and the algorithm A* provide optimal results in a fairly quick time.

• The more destinations you are looking for the longer process is needed.

• The constraint on the road does not affect the long process required. The constraint could

affect the result of the search route depending on some conditions.

• Heuristic methods have a faster running time but sometimes gives a longer route, while the

TSP method has a little longer running time but produces a much shorter routes than

heuristic methods.

• Heuristic methods and TSP could provide the same results under certain conditions.

The emphasis of this paper was on feasibility – identification of possible approaches and

development of methods to put them into practices. The evaluation of performance and the

reliability of methods was proposed in this paper. Firstly, benchmarking for performance evaluation

indicates for which method is the most efficient and effective from response time point of view. The

next concern is the quality of the result.

References

[1] Champandard, Alex J. How to Calculate Paths to Multiple Destinations. Retrieved September

10, 2009 from http://www.aigamedev.com, 2003.

[2] Cormen, T.H., Leiserson, C.E., Rivest, R.L., & Stein, C. Introduction to algorithms (2nd ed.).

Massachusetts: The MIT Press. 2001.

[3] Dariusz Król , Łukasz Popiela, Modelling Shortest Path Search Techniques by Colonies of

Cooperating Agents, Proceedings of the 1st International Conference on Computational

Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, October

05-07, 2009, WrocBaw, Poland, 2009.

[4] Dijkstra, E. W. "A note on two problems in connexion with graphs". Numerische Mathematik

1: 269–271, 1959.

[5] Dorigo, M., Maniezzo,V. & Colorni, A., Ant System: Optimization by a Colony of

Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics–Part B, 26, 1-13,

1996.

[6] Khan, Md. Mujibur Rahman. Ant System to find the shortest path. Paper presented at the 3
rd

International Conference on Electrical & Computer Engineering. Dhaka, Bangladesh, 2004.

[7] Lin Zhang , Li Xiaoping, The research and improvement of AntNet algorithm, Proceedings of

the 2nd international Asia conference on Informatics in control, automation and robotics,

p.505-508, March 06-07, 2010, Wuhan, China, 2010.

[8] Nillson, N.J. Artificial intelligence: A new synthesis. San Fransisco: Morgan Kauffman

Publishers, 1998.

[9] Russel, S. & Norvig, P. (2003). Artificial Intelligence: A modern approach (2nd ed.). New

Jersey: Prentice Hall, 2003.

