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ABSTRACT 

 

New remote sensing forest inventory techniques developed during this century have become 

more and more common. Airborne laser scanning (ALS) has proved to be one of the most im-

portant remote sensing method that is also able to accomplish inventories for large areas cost 

efficiently. In Finland, the multisource method which utilizes ALS, aerial photography and field 

data together is operationally used. However, solely ALS-based area-based species-specific in-

ventories have turned out to be a challenge. Increasing knowledge and the development of the 

methods has encouraged to study those methods more.  

 

Here, the dominant species pre-classification method has been presented, and the hypothesis 

was to get accuracy improvements for plot-level volume predictions. The dominant species 

have been evaluated according to the field measurements but also ALS recognition has been 

studied. The study material consists of two different datasets and the first has been collected 

from northeastern (Kuhmo) and the second from southern Finland (Janakkala-Loppi). Three 

species classes were stratified: Scots pine, Norway spruce and deciduous. The species-specific 

volumes were predicted by means of Seemingly Unrelated regression (SUR) and compared to 

k-Most Similar Neighbor (K-MSN) method in the data of Kuhmo. The Kuhmo dataset was also 

tested to predict the dominant species by ALS using Linear Discriminant Analysis (LDA).  

 

The results revealed that the pre-classification increased the accuracies of fitted SUR predic-

tions. The improvements (RMSE) were 12.6–28.9 % and 20.9–36.9 % depending on the species 

for Kuhmo and Janakkala-Loppi, respectively. In comparison between parametric and non-par-

ametric methods with Kuhmo data, the k-MSN got slightly better results. In case of predicted 

dominant species, the LDA predictions degraded the volume accuracies since the overall accu-

racy of classification was 76 % at best. Although the recognition of the species proved to be 

challenging with used dataset, the predictions implemented with fitted models (correct domi-

nant species information) revealed that the pre-classifying strategy proposed here has real po-

tential to improve species-specific volume models. According to the tests executed, it was no-

ticed that the classification should be rationalized for each dataset individually to get the best 

advantage out of it. 

 

 

 

 

Keywords: Airborne laser scanning (ALS), Light Detection And Ranging (LiDAR), Area-

based approach, Seemingly Unrelated Regression (SUR), Species-specific volume model 
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TIIVISTELMÄ 

 

Suomessa kuvioittainen arviointi on ollut vuosikymmenien ajan perinteinen tapa tuottaa tietoa 

operatiivisen metsätalouden tarpeisiin. Vuosituhannen alusta alkaen kaukokartoitusmenetelmät 

ovat kuitenkin kehittyneet nopeasti, ja ne ovatkin osittain korvaamassa perinteisiä menetelmiä. 

Lentolaserkeilaus on yksi kiinnostavimmista kaukokartoituksen menetelmistä, ja sen potenti-

aali tuottaa tarkkoja ennusteita kustannustehokkaasti on havaittu useissa tutkimuksissa. Käy-

tännön metsätaloudessa käytetäänkin jo kaukokartoituspohjaista inventointimenetelmää, jossa 

yhdistetään lentolaserkeilauksen, ilmakuvien ja maastomittausten parhaita puolia. Pelkän len-

tolaserkeilauksen käyttö aluetason puulajikohtaisten tilavuuksien ennustamisessa on kuitenkin 

osoittautunut haasteelliseksi.  

 

Tämän tutkimuksen tarkoituksena on esitellä ja testata koealakohtaista pääpuulajin esiluokitte-

lua, jonka tarkoituksena on tuoda lisätarkkuutta laserkeilauspohjaisiin puulajikohtaisiin tila-

vuusmalleihin. Tutkimusaineistona on käytetty vertailun vuoksi kahta eri aineistoa, joista toi-

nen on kerätty Suomen koillisosasta (Kuhmo) ja toinen eteläisestä Suomesta (Janakkala-Loppi). 

Molemmissa aineistossa eroteltiin kolme pääpuulajiryhmää: mänty, kuusi ja lehtipuut. Lajikoh-

taisten tilavuusmallien muodostamisessa käytettiin parametrista Seemingly Unrelated Regres-

sion -menetelmää. Kuhmon aineiston osalta tutkimuksessa esitetään myös ei-parametrisella k-

MSN-menetelmällä tuotetut ennusteet. Kuhmon aineistoon ennustettiin myös pääpuulajiluoki-

tus ALS-muuttujista Linear Discriminant Analysis -menetelmää käyttäen, jolloin myös käytän-

nön ALS-pohjainen ennustustarkkuus kyseisessä aineistossa saatiin selville. 

 

Pääpuulajin esiluokitus paransi SUR-tilavuusmallien sovitusten tarkkuutta (RMSE) riippuen 

puulajista 12.6–28.9 % Kuhmon aineistossa ja 20.9–36.9 % Janakkala-Lopin aineistossa. En-

nustusmenetelmiä verrattaessa ei-parametrinen menetelmä tuotti lähes poikkeuksetta hieman 

tarkemmat tulokset. Laserkeilausaineistosta ennustettua pääpuulajia käytettäessä tilavuusen-

nusteiden tarkkuudet heikkenivät, koska luokituksen oikeinluokitusprosentiksi saatiin parhaim-

millaan ainoastaan 76 %. Vaikkakin laserkeilausaineiston mukaan suoritetun pääpuulajien luo-

kittelun tulos jäi alhaiseksi, voidaan todeta, että tutkimuksessa esitetty esiluokittelu on varsin 

käyttökelpoinen menetelmä tavoitellessa lisätarkkuutta puulajikohtaisiin aluetason tilavuusen-

nusteisiin. Mallien maastoperusteisia pääpuulajiluokitusvaihtoehtoja testattaessa havaittiin, että 

luokituksen rakennetta suunniteltaessa aineiston puustosuhteisiin tulee kiinnittää ehdottomasti 

huomiota.  

 

 

 

Avainsanat: Lentolaserkeilaus (ALS), Light Detection and Ranging (LiDAR), Aluepohjainen 

laserkeilausinventointi, Seemingly Unrelated Regression (SUR), Puulajikohtainen 

tilavuusmalli 
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1 INTRODUCTION 

 

1.1 Study background 

The importance of the forests resources for Finland is enormous since 86 % of area consists of 

forestry land according to the 11th national forest inventory (Peltola 2014). Due to the amount 

of the forest resources, strategic and operational planning are essential to get advantage of the 

resources and simultaneously taking into account the sustainability according to ecological, 

economic and social aspects. The national forest inventory is one example of strategic forest 

planning which aims to get comprehensive information of Finnish forests, such as data of 

growth, biomass, carbon balance and cutting possibilities (Holopainen et al. 2013). The opera-

tional forest planning aims to offer as precise information as possible for forest owners of their 

property. Forest owners need the unbiased data of their forests to make supported decisions for 

timing the silvicultural operations. Furthermore, forest inventory data are also needed in as-

sessing the ability of soil to produce forest biomass and acquiring the exact information of 

quality of forests, which would be important for wood procurement (Holopainen et al. 2013; 

Vauhkonen et al. 2014b). The traditional stand-wise inventories have still implemented, but the 

remote sensing, both active and passive methods, has taken revolutionary footsteps to develop 

novel methods to attain more accurate and efficient inventory processes during the 21th century. 

This paper also aims to present a method related to active remote sensing. 

 

The research of Airborne Laser Scanning (ALS) in forestry applications began with promising 

results of correlation between field measurements and height metrics extracted from ALS point 

cloud in the late 90s (e.g. Næsset 1997). The first approaches focused on plot-level forest at-

tributes whereas the second fundamental approach, focusing on individual tree-level, was pro-

posed a little bit later by Hyyppä & Inkinen (1999). After that, methods with Light Detection 

and Ranging (LiDAR) data collected by small-footprint airborne laser scanners have developed 

rapidly. At first, the data acquisition costs were high and it reduced the development of the new 

procedure. Nowadays, ALS is a common method in Finnish forest inventories, and it is sup-

posed to keep on replacing partly the traditional forest inventory methods. At least, the most of 

the large area inventories are done in contribution with ALS data. Furthermore, The National 

Land Survey of Finland and Finnish Forest Centre are working co-operatively to implement 

project which aims to get national coverage of ALS data in Finland. According to the plans, the 

whole Finland should has been inventoried by 2019 (Maanmittauslaitos…2015).  

 



7 

 

At the beginning of the development of the ALS techniques, Area-Based Approach (hereafter 

ABA; Næsset 1997, 2002), was the mainstream method for forest inventories. Nonetheless, the 

Individual Tree Detection approach (hereafter ITD; Hyyppä & Inkinen 1999) was also studied 

although it was soon noticed to be more arduous and expensive in light of existing knowledge. 

Methods have improved a lot and nowadays the main, thus the most cost-effective, method in 

practical forest inventories have been the area-based approach. Although stand-wise ALS-based 

and ALS-aided inventories have produced sufficient results (e.g. total stand volumes), recogni-

tion of the species-specific data solely from sparse pulse ALS data has been noticed to be chal-

lenging even if the recent studies have given promising results for to facilitate those challenges 

(Vauhkonen et al. 2014c). Most of the studies considering ALS-based researches are located in 

Europe, especially in Scandinavia, but studies have also been published from areas of North 

America. The boreal forests which have only few significant tree species, are absolutely ade-

quate locations to implement and develop ALS-based tree recognition.  

 

Traditionally, the recognition task of the tree species has been processed by using aerial pho-

tography (Packalén & Maltamo 2006, 2007, 2008) or satellite images (Wallerman & Holmgren 

2007). The spectral data derived from aerial or satellite imaginary have proved to give important 

information for the species-specific forest inventories because the reflected light of the electro-

magnetic spectrum differs remarkably according to the main boreal tree species, exactly be-

tween coniferous and deciduous (Vauhkonen et al. 2014c). ALS data and such images have 

usually been combined to get more accurate results for species-specific predictions. Many stud-

ies have proposed that aerial photography can improve accuracy of tree species characteriza-

tion, thus species-specific predictions, considering current separating methods of ALS (e.g. 

Vauhkonen et al. 2012; Ørka et al. 2013). Regarding ALS data in recognition of tree species, 

there are two attribute classes extracted from ALS, which have been noticed to be able to give 

essential information about tree species-specific features. Consequently, species-specific infor-

mation is mainly based on both structural information extracted from ALS data and intensities 

of returning laser echoes (Vauhkonen et al. 2014c).  

 

In practice, forest assessments using ABA techniques have been executed with non-parametric 

Nearest Neighbor (hereafter NN) methods to search forest attributes for source grid cell from 

given feature space, and then attributes can be estimated for a stand and a whole farm. NN 

imputations are usually thought to be more efficient compared to the parametric regression-
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based methods (Holopainen et al. 2013). However, the availability of comprehensive training 

data is essential when using k-NN methods because the predictions for unknown attributes of 

cells are obtained from the cells of the observed neighborhood as averages in terms of the de-

tected distance (Holopainen et al. 2013). Especially, if sufficient reference data is not available, 

some parametric regression methods are also competitive for predicting forest attributes (e.g. 

Maltamo et al. 2009b, 2012). In this study, regression-based parametric method for plot-level 

species-specific volume estimations is presented but non-parametric predictions have also pre-

sented for dataset from the original study. The second dataset has been analyzed only with 

regression-based method. 

 

Promising results of classification of the dominant species by ALS data in the previous studies 

(Ørka et al. 2013; Vauhkonen et al. 2014b) were the encouraging reason for researching this 

ALS method more. For example, Vauhkonen et al. (2014b) used sparse (< 2 pulses/m2) to ob-

serve differences in ALS derived intensity features of different plots dominated by certain tree 

species. According to this, dominant species could be predicted accurately.  Furthermore, pre-

vious studies have also used some kind of pre-acquired dominant tree proportions with ALS 

data as a predictor to produce more accurate predictions by RMSE, compared to aerial images, 

for species-specific basal areas in urban environments (Pippuri et al. 2013). Those observations 

encouraged to construct solely ALS-based volume models for the most significant tree species 

existing in Finland and to include the dominant tree pre-classification variable in those models. 

Here, the term of solely ALS-based model means that all the predictors used in models are 

ALS-based variables but field measurements have nevertheless been used in regression model-

ing and non-parametric imputation. In practice, it is difficult, almost impossible, to totally avoid 

field measurements in practical forest inventories. The hypothesis was that the plot-level dom-

inant species information would be able to improve the prediction accuracies of forest attributes 

at least when the classification is correct. 

 

In the beginning of this master’s thesis, an overview of airborne laser scanning applications 

used in forest inventories has been presented. The purpose of that chapter is to give introductory 

information to clarify the subject matter of the subsequent chapters. The rest of this study will 

follow standard structure of a scientific research paper. The material and methods of this study 

have been presented. After that, results are introduced with visual plot diagrams. In the end, the 
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results have been analyzed and compared to the previous studies which have been in association 

with the topics of ALS-based species-specific forest inventories. 

 

This thesis is deeply based on the previous study which has been recently published in the 

journal of Forest Ecosystems (see Forewords). The aim of the original study was to produce 

solely ALS-based species-specific timber volume models in a strongly pine-dominated study 

area. One of the issues was to test a priori classification information of dominant tree species 

to acquire more accuracy for species-specific models. The models have been produced with 

two different methods, SUR and k-MSN, which are compared. In this master thesis, the whole 

study has been presented as an extensive edition with some new and broader formatting and 

analysis of the results. Also supplementary ALS and field data have been analyzed and modeled 

to give comparative material beside the earlier results. The k-MSN part of the original study 

has been left as a comparison and the methodological emphasis has shifted on Linear Discrimi-

nant Analysis and Seemingly Unrelated Regression. Owing to the strong relation to the earlier 

study, this master’s thesis attempts to offer broader aspect for questions presented in the original 

study instead of trying to present totally new study objectives.  

 

1.2 Research objectives 

The previous studies have proposed results of species-specific volume predictions, but pre-

classifying of the dominant tree species is a novel idea that is not utilized earlier in the same 

way. Furthermore, the most species-specific studies are emphasized on individual tree detection 

methods and the predictions without tree delineation are quite uncommon. The individual tree 

methods have been observed to be more accurate in common but the development of the area 

based methods would be advantageous for practical forest management in which sparse air-

borne laser scanning data have been operationally used in contribution with other inventory 

data sources.  

 

According to the background presented, the subsequent objectives can be stated: (1) the main 

objective is to attain improvements for the accuracies of the SUR-based species-specific plot-

level volume predictions that are based on ALS data and observed dominant tree species, (2) 

two different datasets by tree species compositions are evaluated and according to the evalua-

tion the possible guidelines for subsequent dominant tree classifications will be presented and 
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(3) a comparison between non-parametric and regression based estimation methods are exam-

ined. Furthermore, the discrimination of dominant tree species of sample plots by extracted 

ALS features was also one of the issues in the original study. Consequently, a solely ALS-based 

approach to yield species-specific volume predictions can be presented and evaluated. 

 

 

2 AN OVERVIEW OF AIRBORNE LASER SCANNING 

 

2.1 History and theory 

Airborne laser scanning has matured into one of the most researched fields in the sector of forest 

mensuration. ALS method is often related to Light Detection and Ranging (LiDAR). Virtually, 

the ALS is utilizing the LiDAR, and it also uses positioning system (e.g. assisted Global Posi-

tioning System) to give very precise three-dimensional x-, y- and z-coordinates for an airplane 

processing the laser scanning. Thus, also the locations of target objects, such as echo returns 

from canopy, can be calculated. Considering term of ALS, it is originally from Europe whereas 

LiDAR has been developed in the United States (Holopainen et al. 2013). In forestry applica-

tions, the principle of ALS is to produce three dimensional point data of the vegetation beneath 

the airplane. The very first studies considering ALS were implemented in 1964 when airborne 

profiling LiDAR system was used to measure forest canopies (Rempel & Parker 1964). The 

revolutionary development can be observed during 1990s when GPS and Inertial Navigation 

Systems (INS) were integrated and become more available for public applications. By below 

20 years, ALS has become one of the most important forest inventory method, and the tradi-

tional forest inventory methods, as field measurements and aerial images, are giving more space 

for modern ALS methods. The ALS methods and equipment are evolving all the time and due 

to that, the forest inventories are becoming more efficient considering both time and costs. 

 

The remote sensing can be divided in two sections: active and passive. The passive remote 

sensing is based on methods that do not use external machines to produce emissions, and in-

struments can utilize the natural radiation which is emitted by the object of interest. In forestry 

applications, passive remote sensing technologies have traditionally been used, for example, as 

form of aerial imagines (Packalén & Maltamo 2007). Whereas in active remote sensing, the 
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instruments are emitting light (often near-infrared) beams (e.g. laser pulses) towards to the ob-

ject. To take the advantage of emitting laser pulse, the returning echoes should be captured with 

external receiver. Thus, ALS is classified as an active remote sensing. Due to the physical prin-

ciples of ALS, the main ranging equipment needed in the scanning process are: the emitting 

laser unit to send laser beams and the electro-optical receiver to catch echoes. Moreover, sig-

nificant part of the ALS system consists of opto-mechanical scanner and unit for controlling 

and processing data (Wehr & Lohr 1999). Control and processing unit includes aided position-

ing system which consists of GPS/GNSS (GNSS is a global fused positioning system, Global 

Navigation Satellite System) and INS systems of which latter is measuring the orientation of 

an airplane (Holopainen et al. 2013).  

 

Implementing ALS to produce three-dimensional point cloud, the time, between the moment of 

emitting the pulse and capturing the pulse echo, has to be measured to take the advantage of the 

process. To determine the height of the underlying object, the speed of the airplane and the 

elapsed time between transmitting and receiving the laser beam are required (Wehr & Lohr 

1999). Since precise position and angle of the laser transmitter are known, the height of the 

reflection point can be reported. However, the canopy of forest does not form a solid surface 

and inevitably part of the transmitted laser pulses tend to divide, which will cause that the re-

ceiving unit will capture many returning echoes. However, the most common situation is that 

only one echo will be captured (Holopainen et al. 2013). For example, the first echo may be 

returned from the top branches of tree, the second from middle branches and the third from the 

ground. According to this notice, it is possible to produce forest characteristics that are describ-

ing structure of vegetation above the ground. For example, it is possible to process point clouds 

according to the echoes returned from the ground to produce Digital Terrain Model (DTM) or 

conversely the first-echoes are suitable for producing Canopy Height Model (CHM). 

 

Nowadays, full-waveform ALS methods have become more available to produce full-wave re-

cordings of the laser energy instead of only having individual echo points between the ground 

and a canopy (Roncat et al. 2014; Vauhkonen et al. 2014c). Full-waveform methods are able to 

produce more accurate information of the forest and presumably it will be one of the most 

interesting ALS techniques, together with multispectral ALS acquisitions, in the future. How-

ever, there is also need for some research in the current, economically more efficient, field of 
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small-footprint discrete-return methods which have been noticed to be able to yield even more 

useful and accurate information of forests. 

 

The structural features (e.g. height and percentiles) of the canopy are the most important attrib-

utes which are extracted from ALS data. Furthermore, ALS techniques have rapidly improved 

and modern ALS equipment can also recognize laser echo intensity information which is espe-

cially advantageous in the ALS-based forest inventories that aim to yield species-specific pre-

dictions for forest attributes (Korpela et al. 2010). Further about species recognition in section 

2.3. 

 

2.2 Basic ALS inventory techniques 

Considering airborne laser scanning, there are two different mainstream methods for predicting 

forest attributes. The most used method is called Area Based Approach (ABA), and it is pro-

posed by Næsset (1997, 2002). In the ABA method, strong statistical correlation is required 

between forest inventory plot data and attributes extracted from ALS data. The other funda-

mental technique used in forestry applications is Individual Tree Detection (ITD) (Hyyppä & 

Inkinen 1999). According to this method, in order to recognize individual trees, the ALS-based 

surface models for canopy covers are often exploited. In practice, the locations of single trees 

are generally determined according to the local maximum points of canopy height models. 

 

Most often, forest inventories are implemented using ABA in Finland nowadays. This method 

has showed its potential to model forest attributes with adequate accuracy for practical forestry, 

especially using passive remote sensing in contribution with ALS. Additionally, ABA method 

is almost always more cost efficient than ITD method when inventories are implemented in 

large forest areas. The main reason for cost efficiency of ABA is the number of pulses per 

spatial unit (Maltamo et al. 2009a). On the other hand, the ABA method requires always high 

quality forest mensuration data acquired from well-organized plot design.  In the ABA method 

it is possible to use ALS pulse densities between 0.5–2.0 measurements m-2 whereas ITD mainly 

requires over 2.0 measurements m-2 (Holopainen et al. 2013). Considering the accuracies of 

ALS metrics on varying pulse densities, the difference is not directly noticed because standards 

for plot size and pulse density have not been chosen in the recent studies (Vauhkonen et al. 
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2014a). However, it has been noticed that remarkable degradation in estimations cannot be no-

ticed if nominal pulse densities per square meter are reduced even to 0.06 pulses per plot 

(Maltamo et al. 2006; Gobakken & Næsset 2008). However, observations have been obtained 

in artificial and theoretical circumstances and the decrease of resolution in real data acquisition 

will probably have a more significant effect on data quality. In addition of pulse density, plot 

design is worth organizing carefully. The operating principle in ABA method is implemented 

by grid cells which cover whole inventory area and size of the precisely located plots of inven-

tory area are matched with grid cell size. The predictions for other grid cells are estimated by 

using ALS-based metrics and observed inventory data of reference plot cells. Hence, plot se-

lection for forest field training data is beneficial to be fitted according to the pre-information of 

inventory area (Maltamo et al. 2011). Maltamo et al. (2011) have proven that in the case of 

volumes, ALS data as a priori information in plot selection strategies can produce the most 

accurate results compared to random sampling or selection according to geographical location, 

especially when number of plots were kept under 150. 

 

Implementing the ABA method for wall-to-wall forest inventory, different ALS variables have 

to be extracted and selected for to produce adequate independent variables that are able to form 

desirable regression models for forest attributes of interest. Alternatively, non-parametric k-NN 

methods are often used in predicting forest stand characteristics (Maltamo et al. 2006). Non-

parametric methods are more often used because the construction of regression models individ-

ually for every forest object has proven to be arduous (Holopainen et al. 2013). The key ALS 

extracted variable for forest attributes, such as volume, is the height of canopy. Other often used 

ALS-based attributes, also used in this study, are for example height percentiles and corre-

sponding densities. Also vegetation ratio is often used to describe understory of a forest. Usu-

ally, vegetation ratio threshold has been set on, for example, 2 meters above the ground. Inten-

sities of laser echoes have turned out to be adequate especially in distinguishing tree species 

and in those cases high or very high density ALS data is used most often. In this study, intensity 

variables were nevertheless used in distinguishing tree species although the sparse ALS data 

was implemented. 

 

With ITD method, it is possible to execute forest inventories even without field measurements 

(Holopainen et al. 2013). The first presumption is that ALS data could be sufficient for predict-
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ing all or part of the forest attributes of interest and, secondly, common models should be avail-

able for unknown attributes. For example, diameter of recognized tree is not properly possible 

to estimate according to the ALS point cloud. In this case, for example allometric models (Kal-

liovirta & Tokola 2005) and local regression models (Peuhkurinen et al. 2007) are used. How-

ever, modelling the breast-height diameter is not simple case because the vertical dimensions 

of single trees are not the only variables affecting diameter of tree: such as silvicultural history 

and stand density are also variables which have an effect on growth of diameter (Maltamo et 

al. 2007). Furthermore, the most challenging challenge is that ITD-based forest inventories 

meet often problems with determining locations of stems and all trees cannot be detected from 

the height surface models which are based on ALS data (Vauhkonen et al. 2014a). The previous 

studies have proposed some alternatives to prevent those problems by, for example, using pre-

assigned selection filters (Heinzel et al. 2011) or more accurate ALS data such as full-waveform 

data instead of conventional ALS echo data (Reitberger et al. 2009). The problems with dupli-

cating inaccuracies of allometric models (e.g diameter at-breast-height) can be avoided by us-

ing, for example, NN-methods or regression (Maltamo et al. 2009b; Vauhkonen et al. 2010) to 

produce volume models straight from ALS data. 

 

2.3 Species-specific assessments by utilizing ALS metrics 

In practice, yielding forest attributes for needs of compartment-wise forest management, such 

as volume of timber or basal area for optimal management decisions, it is necessary to be able 

to produce species-specific inventory data from forest (Vauhkonen et al. 2014a). Tree species 

recognition has been one of the biggest issues in implementing forest inventories by ALS data, 

and this study also attempts to test some ideas for to relieve subsequent classifications to attain 

more accurate results in the future. Traditionally, recognition has been implemented with col-

laboration of hyperspectral or multispectral images but recent studies have stated that even pure 

ALS data could have potential to recognize at least species of the boreal forest well enough 

(Korpela et al. 2010). For example, Holmgren & Persson (2004) have managed to classify over 

560 sample plots of Norway spruces (Picea abies [L.] H. Karst.) and Scots pine (Pinus sylvestris 

L.) with overall plot-level success rate of 95 %. Studies have denoted that deciduous species 

may cause some problems in the ALS-based classification process (Ørka et al. 2007). From the 

point of view of multisource inventories, this result is not overly insuperable since the spectral 

data of aerial images are capable to distinguish deciduous from coniferous due to the clear 

differences in ability to reflect the light in the infrared (over 750 nm) and red-edge (680–720 

nm) areas of the spectrum (Vauhkonen et al. 2014c).  
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Ørka et al. (2012) tested again classification with coniferous and deciduous forests using height 

percentiles to characterize structure of forest beneath the canopy cover, and they also used nor-

malized intensity variables. In that study, quite high pulse density was used and the method for 

the identification was based on individual tree approach. The overall accuracy of that classifi-

cation could reach 77 %. Thus, aforementioned studies focused on to use the individual tree 

lineation and ALS data with quite high densities although operationally lower pulse densities 

are often used in Finland – usually densities beneath 1 observations m-2 are preferred in area-

based approaches. However, earlier studies have also researched ABA methods, without indi-

vidual tree lineation, to predict the species-specific composition in plot-level and at least dom-

inant tree species can be separated quite well but minor species proportions, for example under 

the dominant canopy, are more challenging to predict compared to the individual tree detection 

methods (Ørka et al. 2013). However, the recognition of main species in plot-level is less stud-

ied because the generalized structural and intensity data is not so obviously describing species-

specific properties than the individual tree properties of ITD methods. Some studies have 

proven that the methods are also able to yield species-specific estimations with ABA methods 

(Wallenius et al. 2012), most of them have also utilized spectral data in contribution with ALS 

(Packalén & Maltamo 2007). Exactly, those ALS-assisted ABA methods are used operationally 

in forest management in Finland (Vauhkonen et al. 2014c; further Maltamo & Packalén 2014).  

 

All in all, according to the recent studies the most advantageous elements extracted from ALS 

data for species recognition is difficult to choose between structural and intensity features 

(Vauhkonen et al. 2014). However studies, such as Törmä (2000) being one of the earliest, have 

noticed the potential of intensity values during the ALS-era in forestry. The intensities of re-

turning echoes are describing mainly the ability of reflectance of laser pulses but moreover the 

intensity values are affected also, for instance, by the size of ALS footprint, the power of trans-

mitted pulse or otherwise the size and the quality of target. It is also worth noticing that there 

are some differences between sensors, and it is possible to normalize sensors to produce a nor-

malized intensity (Ørka et al. 2012). Of course, the laser beam will be scattering all the time 

when it hits the targets and so the intensity is depending also on this variable. According to that 

notice, the highest intensity values will be captured from tree species that have large leaf sur-

faces, for example Maple (Acer platanoides) (Korpela et al. 2010). Thus, the possible advantage 

of the intensity features should be individually considered in every operational case according 

to equipment employed and area measured. 

 



16 

 

The other, more advanced, species recognition method which is based on very high density 

laser pulse data is proposed by Vauhkonen et al. (2008, 2009). The principle of this method is 

to create structural three dimensional alpha shapes for individual trees. According to these tri-

angulated point clouds, it is possible to derive classification features, such as computational 

volumes of trees. The method has proven to be capable to yield very accurate results, for ex-

ample, the overall accuracy of 93 % considering species of pine, spruce and deciduous trees. 

This alpha shape-based method has also been tested in plot-level when sparse ALS data have 

been employed with encouraging results (Vauhkonen et al. 2012). 

 

2.4 Accuracy needs of species-specific area-based volume models 

The traditional field inventory method is practically implemented by means of angle count sam-

pling field measurements and visual assessments carried out by forest professional. Thus, the 

traditional method can be found more subjective than the ALS-based approaches in implement-

ing forest inventories. Moreover this discussion, studies have proven that the inclusion of ALS 

data in multisource stand-level inventory operations is able to give at least as accurate species-

specific results as the traditional way (e.g. Wallenius et al. 2012; see also multisource inventory 

by Packalén & Maltamo 2007) and especially considering totals of the forest attributes, the 

modern ALS-based method tends often to give more accurate results (Holopainen et al. 2013). 

The accuracies of, for example volume models, are often assessed by means of RMSE and 

BIAS (Packalén & Maltamo 2007). As a reference, the proper and useful predictions of pine 

stand volume should not achieve relative RMSE over 30 % and in mixed pine dominated forests 

relative RMSE should be at most about 20–40 % (Uuttera et al. 2002). Species-specific models 

will easily be more inaccurate even with the traditional stand-wise inventory methods, for ex-

ample Haara & Korhonen (2004) observed relative RMSEs of 29 %, 43 %, 65 % and 25 % for 

pine, spruce, deciduous and stand total, respectively. According to the previous study of ALS-

based ABA control inventories by Wallenius et al. (2012), the relative RMSEs of species-spe-

cific volumes have been 33 %, 63 %, 69 %, 15 % for pine, spruce, deciduous and total, respec-

tively. Regarding to this study, species-specific models for minor species are not accurate 

enough but the total volume results can be found adequate for the practical forest management. 

It should be remembered that study area in the latter study had strong and the first had clear 

dominance of Scots pine, which is able to explain the inaccuracy of the minor species. 
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3 MATERIAL AND METHODS 

 

3.1 Study areas  

The first part of the data studied were originally collected for crown base height assessments 

(Korhonen 2012). Two test areas within a geographical distance of 30 km were established in 

Kuhmo, northeastern Finland. With respect to tree species proportions, the area is very homog-

enous and strongly dominated by Scots pine trees. The other species to be distinguished are 

Norway spruce and a group of deciduous trees, consisting mainly of birches (Betula spp. L.), 

form minor proportions that typically occur below the dominant canopy. Altogether 265 field 

sample plots with co-located ALS and field data were studied. 

 

Circular sample plots with radii of 9 m were used in the field data collection. Every tree with a 

diameter at breast height (Dbh) > 5 cm was measured for the Dbh and crown base height. Trees 

with a Dbh corresponding to the basal area-weighted median tree of each species occurring on 

a plot were determined in the field and measured for tree height. The Dbh and height of these 

trees were used as the median tree diameter and height (DgM and HgM, respectively) of the cor-

responding species per plot, and the maxima of the values were used as the DgM and HgM of the 

entire plot. Plot basal area (G) was calculated by summing from the Dbh measurements. The 

missing tree heights were predicted by calibrating the prediction models for the parameters of 

Näslund’s (1936) height curve presented by Siipilehto (1999) using the species-specific DgM 

and HgM estimates. The volumes of the individual trees were predicted by models of Laasase-

naho (1982), employing the Dbh, height, and tree species as predictors. The models for birch 

were used for all deciduous trees. Central characteristics of the field measurements aggregated 

for the field plots are shown in Table 1. 

 

Table 1. Species-specific volume characteristics of the 265 sample plots in Kuhmo.  

 Mean Min Max Sd 

Total volume, m³ 131.5 6.3 434.9 85.3 

Pine volume, m³ 87.2 0.0 295.6 66.4 

Spruce volume, m³ 28.6 0.0 401.6 53.7 

Deciduous volume, m³ 15.8 0.0 178.1 24.3 

 

The second part of the data studied were acquired for Metsälaser 2 -project by UPM kymmene 

Oy during the summers of 2007 and 2008. The field data was collected from two separate areas, 
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Janakkala and Loppi, in southern Finland within a geographical distance of about 25 km. The 

study area was noticeably more heterogeneous by tree species compositions than the data of 

Kuhmo. The proportions of deciduous and spruces were stronger that is supposed to give inter-

esting comparison with the strongly pine dominated data. However, this area was also strongly 

dominated by coniferous species. In this study data, there were also distinguished tree species 

classes for the study: pine, spruce and deciduous species. After combining the ALS data and 

the field data, altogether 434 field plots were studied.  

 

The computational methods for calculating plot-level volumes and other characteristics of the 

second dataset were described by Kotamaa and Villikka (2008). Central characteristics of the 

joined data of Janakkala and Loppi are presented in Table 2. 

 

Table 2. Species-specific volume characteristics of the 434 sample plots located in Janakkala-

Loppi. 

 Mean Min Max Sd 

Total volume, m³ 205.8 24.2 672.5 113.8 

Pine volume, m³ 77.0 0 536.3 89.6 

Spruce volume, m³ 105.4 0 672.5 132.3 

Deciduous volume, m³ 23.3 0 254.6 40.2 

 

3.2 ALS data acquisitions and the extracted features 

The ALS data for areas of Kuhmo were acquired on September 4–7, 2011. Leica ALS50-II 

scanner was operated from an altitude of 2000 m using a field-of-view of 30°, a scanning rate 

of 52 Hz, and a pulse frequency of 58.9 Hz. These scanning parameters resulted in a nominal 

measurement density of 0.52 observations m-2. The ALS data for area of Janakkala-Loppi were 

acquired during the summer of 2007 using an Optech ALTM3100 laser scanning system. The 

data acquisition was operated from an altitude of 2400 m using a field-of-view of 30° and a 

scanning frequency of 30 Hz. In this case, the nominal measurement density was 0.62 meas-

urements m-2. Owing to the data acquisition period, the leaf-on data have been used in study 

 

The predictor features extracted for the study were mainly based on the earlier studies (e.g., 

Vauhkonen et al. 2014b). However, since a prediction of the crown base height of a tree has 

been found to be an useful indicator of its species based on tree-level studies (Holmgren & 
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Persson 2004; Holmgren et al. 2008) and the quality ALS-based CBH data were available for 

Kuhmo data, the CBH was supposed to be a potential independent variable to improve species-

specific ALS-based discrimination. The area-based estimate of crown base height were imple-

mented to distinguish plots dominated by various species. The CBH was earlier predicted by 

extracting connected alpha shape components from the lowest parts of the point cloud according 

to the method of Maltamo et al. (2010), which is a variant of a tree-level method described by 

Vauhkonen (2010). 

 

The other ALS features considered were the mean and standard deviation of the intensity values 

and the proportion of the different echoes (Vauhkonen et al. 2014b). Following Ørka et al. 

(2012) and Vauhkonen et al. (2014b), for example, the intensity features were calculated sepa-

rately based on all, only, or first-of-many echoes. However, the intensity variables were not 

available from Janakkala-Loppi ALS acquisition, thus only the structural variables have been 

used in the models considering that dataset. The most common structural ALS-based predictor 

variables (Næsset 2002), i.e., the maximum, the mean and the standard deviation of the height 

values, proportion of echoes above 2 m vegetation threshold, various height percentiles (5th, 

10th…95th) and the corresponding proportional densities of the ALS-based canopy height dis-

tribution were calculated according to Korhonen et al. (2008) for Kuhmo data. Principally, the 

same common variables were also available in data for Janakkala-Loppi (Kotamaa & Villikka 

2008). All the structural ALS features were calculated according to the first echoes in all of the 

cases. 

 

3.3 Methods 

3.3.1 Methodological overview 

There are two different data sets used in this study, which may easily cause confusion in imple-

mented methods between data sets. Table 3 will clarify the meaning of the implemented meth-

ods in both datasets and the purposes of the stages are also presented. The data of Kuhmo was 

first used for all the experiments.. The Janakkala-Loppi data is used entirely as a supplemental 

data to verify the results obtained in the Kuhmo data. It was noticeably probable that the strong 

pine dominance has an effect on the accuracies of the volume predictions. Hence, the Janakkala-

Loppi data was tested as a more heterogeneous area according to its species compositions, and 

it is supposed to give advantageous information for subsequent dominant tree classification 
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structures. This hypothesis was tested by re-fitting the SUR models. According to the results 

with Kuhmo data, it was very reasonable to leave Janakkala-Loppi out of the Linear Discrimi-

nant Analysis and final predictions because the dominant species structure is more complicated 

and the intensity values of ALS were not available.   

 

Table 3. An overview of the analysis presented in this study. All of the analysis have been done 

with the original Kuhmo dataset whereas the data of Janakkala-Loppi have only been analyzed 

in the model fitting stage. The number codes in brackets: 1 – the fitting stage; 2 – the solely 

ALS-based prediction stage. 

Analysis Dataset Purpose 

SUR (1) Kuhmo &  

Janakkala-Loppi 

To predict volumes according to the ALS features and ob-

served dominant species information; To compare predic-

tions between datasets and verify the operability of prede-

termination method 

LDA Kuhmo To determine the plot-level dominant tree species by 

means of ALS 

SUR (2) Kuhmo To evaluate accuracies of solely ALS-based predictions 

k-MSN (1,2) Kuhmo To compare volume predictions with SUR method 

 

 

3.3.2 Pre-classification of the dominant species by field and ALS data 

The species proportions were determined as the percentages of each species from the total plot 

basal area. The dominant species were subsequently determined based on these proportions. 

Several alternatives to determine the exact percentage values for the dominant species were 

tested, however, to analyze operationally feasible possibilities to derive this information by 

ALS (Table 4). First, the species with the highest percentage were set as the dominant species 

of the plot, yielding three dominant species classes (pine, spruce, and birch dominated). Second, 

the dominant species were determined using a threshold of 75%: whether a species had a pro-

portion higher or equal to this level, it was set as the dominant species of the plot. Whether no 

species reached this threshold, the plot was labeled as “mixed”. For example, this classification 

yielded the dominant species classes of pine, spruce, deciduous, and mixed. The rest of the 

classes were determined adding separate true pine class since the study area of the original study 

(Kuhmo) was noticed to be strongly dominated by pine. Those plots were selected using a 

threshold of 95 % and tested along the aforementioned two alternatives. In this master´s thesis, 

this idea was also tested in the supplement Janakkala-Loppi data in which the dominance of 

any species was not such strong. However, the inclusion of true pine class was reasonable to 
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test because areas were coniferous dominated as well. The definition alternatives for the domi-

nant species are listed in Table 4. 

 

Table 4. The different definitions used for the dominant tree species in this study. 

Abbreviation  Definition for the dominant species Classes1 

Spmax Highest species-specific proportion of G per plot. P, S, D 

Spmax+95 Highest species-specific proportion of G per plot + sepa-

rately labeled plots with G ≥ 95 % of pine. 

P95, P, S, D 

Sp75 Species-specific proportion of G ≥ 75 %; plots with a lower 

dominant proportion pooled in a separate class. 

P75, S75, D75, 

M 

Sp75+95 Species-specific proportion of G ≥ 75 %; plots with a lower 

dominant proportion pooled in a separate class + separately 

labeled plots with G ≥ 95 % of pine. 

P95, P75, S75, 

D75, M 

1 Dominated by pine (P), spruce (S), deciduous trees (D), or the aforementioned species with 

the proportion given in the subscript; or mixed (M). 

 

The extracted ALS features were subsequently used for yielding classifications for aforemen-

tioned strategies to stratify the dominant species. The original study included only the Kuhmo 

data and the attempts to classify the dominant tree species according to the ALS variables were 

only implemented in that data. The supplement data of Janakkala-Loppi for this study were 

regarded as a complicated situation by tree compositions, which supported, with the results 

achieved in the original study, the speculation that the predicted classification would be redun-

dant. The ALS-based predictors were first graphically assessed with respect to their abilities to 

discriminate between species and invariance with respect to tree size quantified in terms of the 

DgM and HgM characteristics.  

 

3.3.3 A linear discriminant analysis 

A linear discriminant analysis (LDA; a generalization of the method introduced by Fisher 

(1936)) implemented in the MASS package (Venables & Ripley 2002) of R (R Core Team 2013) 

was used to classify the data by tree species for the final prediction stage of the Kuhmo data. 

For producing the categorical classification for plots according to the ALS features, Linear Dis-

criminant analysis was used. The principle of LDA is to form linear combination which max-

imize the ratio of the between-class to within-class variance based on the data of the original 

feature vectors (Venables & Ripley 2002). To clarify, the main effort is to determine the linear 

line which is able to maximize the variance between the classes in analysis, i.e., the data classes 

projected for the linear line are located as far away from the line as possible. The LDA was run 
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with a leave-one-out cross validation, in which the priors of the LDA were adjusted to give an 

equal probability for each species. The predictors used in the LDA were manually selected 

according to the graphical assessments. First, the discriminant functions were fitted with one 

predictor variable at the time. The variables resulting to best accuracies were added with a sec-

ond variable and the accuracies of these combinations were further ordered. The procedure was 

repeated until the number of predictors was 4. 

 

3.3.4 Modelling the species-specific volumes 

Prior to the modeling, the predictors based on the ALS data were evaluated with respect to their 

relationships with the species-specific volumes in a similar manner than described in the previ-

ous section for LDA predictors. Finally, two modeling strategies, a parametric regression based 

approach and a non-parametric nearest neighbor, were tested in the workflow of the original 

study. This master´s thesis intends to emphasize the focus on the foremost, regression based, 

method although the principle and the results of a non-parametric method are also briefly pre-

sented.  

 

3.3.5 Seemingly Unrelated Regression (SUR) 

The species-specific volumes were predicted as a simultaneously fitted system of equations 

based on the Seemingly Unrelated Regression (SUR) modeling implemented using the systemfit 

package (Henningsen & Hamann 2007) of R (R Core Team 2013). The main idea of SUR 

(Zellner 1962) is to take into account the interactions between residual structures (disturbance 

terms) of different linear regression equations, and results of every regression model will have 

an effect on equations in SUR modelling (Henningsen & Hamann 2007). The coefficients of 

the SUR model were based on generalized least squares (GLS) estimation. A presumption for 

the GLS method is that the matrices which are constructed from the regression models should 

be correlated but unequal. The one alternative for GLS would has been the OLS (Ordinary Least 

Squares) for equation-by-equation models but due to the correlations between the explanatory 

variables, it was reasonable to employ the GLS estimator. 

 

In the SUR modelling, the dominant tree species were taken into account by introducing a cat-

egorical predictor variable with levels corresponding to the dominant tree species classifier 

considered. Constructing the SUR model groups were implemented by examining every single 
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model individually (section 3.3.4). The ALS features were added as further predictors, with the 

categorical variable, of the model based on the coefficient of determination (R2) values. Indi-

vidual predictors were added attempting to maximize the R2. However, a new predictor was 

included only if it affected the model significantly according to a p-value of the Student’s t-test.  

The selection of the independent variables for species-specific models were manually managed 

due to the quite slight set of alternatives to test. It should be noticed that with larger ALS da-

tasets this method will not presumably prove to be an adequate working technique. The signif-

icances of the ALS variables and categorical variables proved to alter due to the theory of SUR 

method when the models were joined for a SUR group. This notice was motivated to accom-

plish some tests for coefficients which are presented in the end of the results section. 

 

3.3.6 K-Most Similar Neighbor (k-MSN) 

The nearest neighbor (NN) approach, used for volume predictions, is based on an average of k-

NN observations in terms of the ALS features. The NNs were determined according to the Most 

Similar Neighbor (MSN) distance metric (Moeur & Stage 1995). The k-MSN approach uses a 

canonical correlation analysis to produce a weighting matrix for suitable nearest neighbors from 

the feature space, i.e., from the training data. 

 

The k-MSN imputation was implemented using the yaImpute package (Crookston & Finley 

2007) of R (R Core Team 2013). In practice, the dominant species information was taken into 

account by restricting candidates in the feature space including only plots which had the same 

dominant tree species than the target plot. Taking into account this restriction, up to 1–10 NNs 

were selected from an initial neighborhood. The total and species-specific volumes were pre-

dicted simultaneously as arithmetic averages of the restricted k-NNs. 

 

3.3.7 Accuracy assessment and tests 

The accuracies of the predictions were originally assessed separately at the stages of model 

fitting and prediction. Due to the decision to ignore the prediction stage of the Janakkala-Loppi 

data, only the fitted models are evaluated in that material. In the case of prediction stage, the 

dominant species predicted according to the LDA were used to replace those observed dominant 

tree information which were captured in the field and used for fitting the SUR models. 



24 

 

The accuracy of the species-specific volume predictions was assessed by means of the root 

mean squared error (RMSE, Eq. 1) and mean difference (BIAS, Eq. 2) between the observed 

and estimated values. 

𝑅𝑀𝑆𝐸 =  √
∑(𝑝−𝑟)2 

𝑛
        (1) 

 

𝐵𝐼𝐴𝑆 =  
∑(𝑝 – 𝑟)

𝑛
      (2) 

 

where p is the observed value based on field measurements, r is the predicted value, and n is 

the number sample plots. 

 

The accuracies of the species classifications (LDA) were assessed by means of the overall ac-

curacy and kappa (κ) scores. The overall accuracy gives the number of correctly classified dom-

inant tree cases as a proportion of all observations. The κ coefficient (Eq. 3) can be interpreted 

as a proportion of chance-expected disagreements which do not occur (Cohen 1960). In this 

case, it describes how much better the results of LDA classification are compared to the corre-

sponding material which is classified by chance. The κ coefficient was obtained as: 

 

κ =  
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
       (3) 

where po is proportion of correctly classified observations and pe is probability of correct clas-

sification by chance. 

 

After actual accuracy assessment, it proved to be beneficial to check the significances of the 

categorical, so-called dummy, variables whether some of the coefficients are redundant. Fur-

thermore, the numerical evidence for the operability of the dominant tree classifications would 

be important to present plausible outcomes of the method. The tests were implemented by 

means of the Wald-test of CAR package (Fox & Weisberg 2011) of R (R Core Team 2013). 

The significances in SUR groups were assessed by using χ2 for the Wald test. 
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The tests were carried out for every categorical variable of the considered classification strategy 

so that, at first, the whole variable of model group was ignored. It was implemented by setting 

coefficients in every equation as zero in restriction, i.e., in null hypothesis. The p-values showed 

whether the coefficient would be worth removing while the risk level of 5 % was set as a thresh-

old value. Also stepwise test procedure was implemented for individual coefficients of categor-

ical variables (Further description in Results). The procedure was executed to reveal redundant 

variables in a single species-specific equations to simplify subsequent equations and to notice 

possible congruence between two different datasets considered.  

 

 

4 RESULTS 

 

4.1 Relationships between ALS features and species-specific attributes 

The CBH predicted by ALS for sample plots of Kuhmo had RMSEs of 1.58 m and 1.47 m and 

biases of -0.93 m and 0.07 m, when evaluated against the arithmetic and basal-area weighted 

means of the field measurements, respectively. These accuracies suggest that the area-based 

prediction of the CBH is a reliable estimate of this measure particularly with respect to the 

largest trees. The results are on the same accuracy level as in the earlier studies (e.g. Maltamo 

et al. 2010).  

 

The CBH was however not an appropriate indicator of the tree species proportion (Figure 2). 

Instead, other ALS features produced a better discrimination between the dominant species 

considered. For example, considering data of Kuhmo, the features based on the proportions and 

intensities of the different echoes (Figure 2) indicated a difference in the leveling between pine 

and spruce dominated plots. This difference was also invariant to the size according to the DgM 

measure.  Although, the actual classification was not implemented for Janakkala-Loppi data, it 

was also interesting to compare relations between structurally different datasets. Thus, a set of 

used variables are presented in Figure 1. As we can see, the corresponding variables between 

datasets are giving such similar results although the ability to distinguish was better in the 

strongly pine dominated data. Generally, for deciduous dominated plots it was difficult to find 

ALS features which could separate them from the other species groups. 
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At first, the height metrics with density metrics were supposed to have a main role in describing 

volumes of the plots. The height and the density metrics had a quasi-linear relationship between 

the total and main species volumes, as illustrated in Figure 3 using a product of a height per-

centile and the ratio of echoes reflected above ground to all echoes, i.e., the canopy cover. 

However, the volumes of the minor species were not favorably related to these metrics (Figure 

3). Concordant results were also noticed in the data of Janakkala-Loppi (Figure 4). However, 

variances between classes were greater compared to Figure 3. This could be explained by the 

much larger dataset that covers a vast variety of different plots, which also offers a better presen-

tation for deciduous plots (c.f. Figures 3 & 4). The computational procedure of coefficients in 

multi-independent variable regression model is imitating the metrics idea presented in Figures 

3 and 4. According to those notices, moreover with that the main species were generally well 

related to the produced metrics, it was natural to regard both density and height metrics as 

potential candidates for the species-specific volume models.  

 

 

 

Fig. 1. A pair of ALS-based variables illustrating the species-specific differences in the data of 

Janakkala-Loppi. The field-measured DgM is used in the x-axes to assess the invariance of the 

features to size. H90 – the 90th height percentile, Hmean – the average of the height of the first-

returns occurred in each plot. The solid symbols have been used if the basal area proportion of 

the dominant tree species is ≥ 75 %. 
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Fig. 2. Species-specific differences in selected ALS features of Kuhmo data, when the field-

measured DgM is used in the x-axes to assess the invariance of the features to the size. Predicted 

CBH – crown base height, H60 – the 60th height percentile, Prop_first – the proportion of the 

first-of-many returns to all returns above 2 m vegetation threshold, Imean_all – mean intensity 

value of all returns above the vegetation threshold. The solid symbols have been used if the 

basal area proportion of the dominant tree species is ≥ 75 %. 
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Fig. 3. Relationships between the species-specific volumes and the ratio of echoes above the 2 

m vegetation threshold to all echoes (Vegeratio) × the 30th height percentile (H30) in Kuhmo 

data. The solid symbols have been used if the basal area proportion of the dominant tree species 

is ≥ 75 %. 
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Fig. 4. Relationships between the species-specific volumes and the ratio of echoes above the 2 

m vegetation threshold to all echoes (Vegeratio) × the 90th height percentile (H90) in Janak-

kala-Loppi data. The solid symbols have been used if the basal area proportion of the dominant 

tree species is ≥ 75 %. 

 

4.2 Models for species-specific volumes 

Before modeling the species-specific volumes with SUR, the predictor variables were system-

atically tested considering the goodness of the predictor features. Although the final composi-

tion of the predictor variables slightly varied depending on the species, usually the ratio of the 

echoes reflected above ground (2 m) to all echoes combined with a height percentile gave the 

best alternatives for volume models according to the coefficient of determination (R²). This is 

reasonable since the first describes the density of the forest and together with the latter they 

form the components of the approximation of growing stock volume. However, for sample plots 
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of Kuhmo data which were dominated by the deciduous trees, the predictors describing inten-

sity of returned ALS echoes were more appropriate. Considering Janakkala-Loppi in which the 

intensities were not available, the combination of height percentile and density feature proved 

to be successful.  

 

The species-specific models employed in SUR, were typically composed of two ALS features 

and the dominant species information. All variables were most often significant according to 

the t-test for the model coefficients. The most essential results are presented in Tables 5 and 6 

for Kuhmo data and, thus, the corresponding results for Janakkala-Loppi in Tables 7 and 8. 

However, producing the SUR composition, the significances tended to vary from the individual 

regressions. Due to that observation, the tests for the dominant species variables are presented 

in the last section of this chapter (Section 4.5).  All of the models were fitted using the plots 

dominated by pine as the reference level. In practice, that means that applying the models with-

out the species-specific coefficients, they will yield the species-specific volumes assuming that 

the dominant species of the plot is pine. Similar to the results mentioned earlier in this study, 

the structure of the model system differed depending on the dominant species in question.  

 

Table 5. The SUR1 model based on the Spmax+95 strategy to stratify the dominant species 

(Kuhmo). 

Predictor1 Vtotal Vpine Vspruce Vdecid 

Intercept -83.1778 *** -72.1165 *** -11.8327 -11.8591 * 

Species     

P95 -17.0412 * 12.47493 * -13.6919 ** -14.5252 *** 

S 21.61634 * -89.1431 *** 99.7402 *** 7.486791 * 

D -41.1525 ** -87.2537 *** -0.87776 44.85359 *** 

ALS     

Vegeratio 167.1603 *** 113.0326 *** 54.32393 *** - 

H30 12.73679 *** - - - 

H40 - 10.46561 *** - - 

H95 - - -0.1767 - 

Hmean - - - 2.173142 *** 

Imean, first - - - 0.175805 . 

Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
1 Species: pine with G ≥ 95 % (P95), spruce (S) or deciduous trees (D). The I, D, and H refer to 

intensity, density, and height metrics; Vegeratio is the ratio of echoes above 2 m height to all 

echoes; and Prop_first is the proportion of first echoes to all echoes. The subscript indicates 

which descriptive statistic or percentile value was used and whether it was applied to a propor-

tion of the echoes (sd=standard deviation, first=first-of-many echoes).  
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Table 6. The SUR1 model based on the Sp75+95 strategy to stratify the dominant species 

(Kuhmo). For the abbreviations used, please refer to Table 5. 

Predictor Vtotal Vpine Vspruce Vdecid 

Intercept -99.86995 *** -63.060416 *** -32.585827 ** -15.382497 ** 

Species     

P95 -12.04051 0.247694 -3.370746 -8.13935 ** 

S 30.36624 * -108.00624 *** 129.469296 *** 5.270839 

D -14.26998 -117.48788 *** -0.555964 100.272105 *** 

M 9.99804 -42.385164 *** 35.570611 *** 15.234861 *** 

ALS     

Vegeratio 147.73339 *** 87.519629 *** 56.8353 *** - 

H30 15.05592 *** 13.061476 *** - - 

Hsd - - 2.170459 * - 

Hmean - - - 1.632179 *** 

Isd, first - - - 0.413249 * 

 

 

Table 7. The SUR2 model based on the Spmax+95 strategy to stratify the dominant species (Ja-

nakkala-Loppi). For the abbreviations used, please refer to Table 5. 

Predictor Vtotal Vpine Vspruce Vdecid 

Intercept -138.995661 *** 75.126877*** -170.79225 *** -43.9928872 *** 

Species     

P95 -4.347771 23.08388 ** -22.815650 * -6.4725531 

S 35.292819 *** -133.981972 *** 173.967805 *** -4.0344517 

D -42.77166 *** -137.084530 *** 21.693204 . 73.4335707 *** 

ALS     

Vegeratio 1.480844 *** 0.830904 *** - 0.6522456 *** 

H90 - -  1.7371693 *** 

H70 - - -0.689629 - 

H5 - 2.940213 ***  - 

Hmean 21.446159 *** - 17.909888 *** - 
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Table 8. The SUR2 model based on the Sp75+95 strategy to stratify the dominant species (Ja-

nakkala-Loppi). For the abbreviations used, please refer to Table 5. 

Predictor Vtotal Vpine Vspruce Vdecid 

Intercept -139.50374 *** 68.145675 *** -151.228556 *** -55.347138 *** 

Species     

P95 -5.128199 12.799513 -17.497792 . -0.929856 

S 42.744521 *** -156.033676 *** 213.227368 *** -11.583733 ** 

D -67.782674 ** -164.337313 *** -12.595459 108.811071 *** 

M 1.838347 -99.562928 *** 67.749118 *** 34.580047 *** 

ALS     

Vegeratio 1.289625 *** 0.563688 *** - 0.720063 *** 

H90 - - - 1.952479 *** 

H70 - - -2.983202 *** - 

H20 - 5.148116 *** - - 

Hsd - - - - 

Hmean 22.251249 *** - 18.332841 *** - 

 

 

Besides the SUR models the k-MSN imputation was also provided for Kuhmo data. Those 

results are presented and compared in the Table 9 according to the most essential stratifying 

strategies. For further comparison, that table also includes the accuracies of the SUR models 

for Janakkala-Loppi. Also the corresponding results are presented in a graphical form in the 

Figures 5, 6 and 7 which are presenting the observed total and species-specific volumes versus 

the corresponding predicted values for SUR1 of Kuhmo, k-MSN of Kuhmo and SUR2 of Janak-

kala-Loppi, respectively. The k-MSN predictions were generally more accurate than those ob-

tained by SUR except when including the dominant species information (Spmax+95) to the model 

of deciduous predictions. However, the comparison is originally based on the k-MSN applied 

with k=5, which has produced the most accurate predictions with this method in the original 

study. 

 

Using both methods and both training datasets, the predictions regarding the total volume were 

well in line with the observed values (Figures 5, 6 and 7). As a difference to the Kuhmo, the 

predictions for pine volumes in pine dominated plots were worse in line than the predictions 

for spruce in spruce dominated plots in Janakkala-Loppi (Fig. 7). In all cases, the predictions 

of the minor species had considerably lower accuracies. Due to the coefficient structure of the 

SUR model of Kuhmo (Table 5), the predictions could not show values between 50 and 100 

m3/ha of the spruce volume (Figure 5). Hence, the predictions also saturated at certain values 
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(150 m3/ha for spruce) whereas the true observed volumes were considerably higher (e.g. 400 

m3/ha for spruce). Considering the accuracy of the k-MSN, the models were better in line with 

observed values, also in the models of spruce and deciduous. The aforementioned saturating 

problem noticed in the SUR of Kuhmo (spruce and also deciduous), was also perceived in the 

SUR models of Janakkala-Loppi but the problems were observed in the model constructed for 

pine and deciduous. The coefficient structure (Table 7) for pine and deciduous forced to saturate 

the predictions at certain values. However, the pile was slightly skewer and wider than in the 

predictions of spruce in Kuhmo data (cf. Figures 5 & 7). Presumably, the problems in modeling 

are related to the predictors’ ability to predict but also to the mean volumes (Table 1 & 2) and 

the proportions of the plots dominated certain species. In Kuhmo with Spmax+95 strategy data, 

there was the proportion of pine dominated plots of 79 %. Whereas the proportions for Janak-

kala-Loppi were 47 % and 44% for pine and spruce, respectively. The SUR compositions had 

challenges to model species-specific models if some species had strong dominance according 

to either on high volumes rates or amount of plots dominated by certain species. For example, 

the Kuhmo had very strong pine dominance, which had an effect on ability to predict plots 

dominated by spruce and deciduous (Figure 5). Whereas in Janakkala-Loppi, the plot propor-

tions between coniferous species were quite equal but the spruce dominated plots had consid-

erably higher observed volume values and wider projection scale (Figure 7). However, in the 

data of Janakkala-Loppi slight systematic inaccuracy was observed in the residual structure of 

species-specific model of spruce in which the volume predictions were overestimated on low 

observation values and underestimated on high observation values. To sum up, it seems to be 

challenging to get field data from forest which would have the most optimal species and age 

compositions for species-specific modeling with SUR. 

 

The inclusion of the main species improved both the prediction types (SUR & k-MSN) consid-

erably (Table 9). In addition, the achieved relative improvement was greater in the more heter-

ogeneous data of Janakkala-Loppi. Using Spmax+95 as the information of the dominant species 

in data of Kuhmo, the RMSEs of  pine, spruce, deciduous, and total volumes improved by 28.9 

%, 25.4 %, 12.6 %, and 1.9 %, respectively, using SUR1, whereas the corresponding species-

specific figures for k-MSN were 16.4 %, 13.3 %, and 13.6 % for pine, spruce and deciduous, 

respectively. For comparison, the corresponding values for the RMSEs of Janakkala-Loppi 

were 36.4 %, 36.9 %, 20.9 % and 9.4% for pine, spruce, deciduous and total, respectively. 

However, using the k-MSN method with the species restriction degraded the accuracy of the 

total volume by 2.4%. In the case of k-MSN, the species-specific improvement was particularly 
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due to removing close-to-zero observations from the plots dominated by certain species which 

employed the dominant species restriction for the neighborhood. This restriction however re-

duced the number of potential nearest neighbors for some plots and therefore had a degrading 

effect on certain accuracy levels. 

 

Table 9. RMSEs (m3/ha) of the MSN/SUR1/SUR2 predictions for Kuhmo (MSN & SUR1) and 

Janakkala–Loppi (SUR2) with different strategies to stratify the dominant species when evalu-

ated in the training data.  

 Dominant species information 

Tree species - Spmax+95 Sp75+95 

Pine 42.6 / 52.9 / 84.4 35.6 / 37.6 / 53.7 39.0 / 41.9 / 54.8 

Spruce 36.0 / 47.6 / 108.1 31.2 / 35.5 / 68.2 33.2 / 39.3 / 66.1 

Deciduous trees 21.3 / 21.5 / 34.9 18.9 / 18.8 / 27.6 18.4 / 17.1 / 27.6 

Total 50.2 / 53.5 / 59.6 51.4 / 52.5 / 54.0 52.2 / 52.2 / 54.8 
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Fig. 5. Predicted vs. observed species-specific volumes in the Kuhmo training data based on 

the SUR1 model structured in the Table 5. Thus Spmax+95 strategy to stratify the dominant species 

has been implemented. The solid symbols have been used if the basal area proportion of the 

dominant tree species is ≥ 75 %. 
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Fig. 6. Predicted vs. observed species-specific volumes in the Kuhmo training data based on 

the k-MSN imputation using k=5 and a neighborhood restricted by Spmax+95 (Table 4). The solid 

symbols have been used if the basal area proportion of the dominant tree species is ≥ 75 %. 
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Fig. 7. Predicted vs. observed species-specific volumes in the Janakkala-Loppi training data 

based on the SUR2 model structured in Table 7. Thus Spmax+95 strategy to stratify the domi-

nant species has been used. The solid symbols have been used if the basal area proportion of 

the dominant tree species is ≥ 75 %. 

 

 

4.3 Classification of the dominant species 

The accuracies of the attempts to predict the dominant species using LDA in Kuhmo dataset 

are summarized in Table 10. The species stratification with only three classes (Spmax) was the 

most simple to predict and these predictions also yielded the best results: overall accuracies of 

73.6 % and 76.2 % and kappa coefficients of 0.40 and 0.48 using 3 or 4 predictors, respectively. 

When the plots were classified according to the ≥ 75 % species proportion, the most problematic 

case was naturally the “mixed” class including plots of lower dominance of the various species. 
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Excluding this class, the overall accuracy and the kappa of the classifier were 87.3 % and 0.56 

(n=158), respectively, using 3 predictors. Considering only coniferous species with ≥ 75 % 

basal area proportions, the accuracy of the corresponding classification according to the overall 

accuracy was 91.6 %. This result ensures the same observation that has also been noticed in 

earlier studies: true pine and spruce areas can be distinguished with considerable accuracy by 

means of ALS (e.g. Holmgren & Persson 2004; for spruce among deciduous: Ørka 2007)  

 

The inclusion of the pine plots with ≥ 95 % species proportion also complicated the classifica-

tion and lowered the success rates. However, for the final volume predictions it was thought 

that it would be probably beneficial to distinguish true pine plots. Instead of increasing the 

number of classes in LDA, however, it was found equally accurate to select these plots manually 

based on thresholding of the predictor variables. Selecting the plots with ≥ 95 % species pro-

portion manually was implemented and tested using the classification of Spmax and Sp75 after-

wards the LDA classification. In both cases, selecting the plots which had a standard deviation 

of the intensity values of all pulses < 30, a proportion of first pulses < 0.6 and a density in the 

10th height percentile < 0.2 increased the overall accuracy by about 5–9 %-points, depending 

on the used model, compared to including a class with the pine plots with ≥ 95 % species pro-

portion in the LDA. Applying these rules mainly resulted in confusion between plots with less 

pine (≥ 75 %) and decreased the overall accuracies although the dominance of the pine had been 

described better. It was pleasant to notice that the confusion between other tree species in man-

ual thresholding did not just occur. Applying that idea while taking into account the strong pine 

dominance of the teaching area, the classified true pine plots will get more exact predictions for 

pine volumes.  The poor result in LDA with ≥ 95 % species could be related to the priors applied 

with LDA, which had been set equal among the classes being classified. For these reasons, the 

manually composed classifications of Spmax+95 and Sp75+95 are presented in Table 10 and used 

later in this study.  
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Table 10. The achieved results of linear discriminant analysis with the dataset of Kuhmo. For 

the abbreviations used, please refer to Tables 4 and 5. 

Classifier 

Number of ex-

planatory va-

riables Explanatory variables 

Overall ac-

curacy (%) 

Kappa coeffi-

cient  

Spmax 

3 Imean, all + Prop_first +D40 73.6 0.40 

4 Imean, all + Prop_first + D40 + H60 76.2 0.48 

Spmax+95 

3 Imean, all + Prop_first +D40 55.5 0.34 

4 Imean, all + Prop_first + D40 + H60 57.7 0.39 

Sp75 

3 Imean, all + Prop_first + D30 58.5 0.34 

4 Imean, all + Prop_first + D40 + H70 59.6 0.35 

Sp75+95 

3 Imean, all + Prop_first + D30 46.8 0.30 

4 Imean, all + Prop_first + D40 + H70 45.7 0.28 
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4.4 Prediction accuracies 

To observe the level of accuracies which are obtainable in a practical prediction, the dominant 

species predicted by LDA were combined with the fits of SUR1 compositions. Moreover, the 

k-MSN predictions of the original study have also been presented for a comparison. The dom-

inant species classification predictions which included 24–54 % of classification errors (Table 

10) degraded the accuracies obtained earlier (Figure 8). The k-MSN method provided consid-

erably more accurate results than the SUR models in species-specific cases. Nevertheless, when 

the dominant species had to be predicted with the aforementioned error levels, the insufficient 

classification was resulted in the predictions of dominant tree species by decreasing the accu-

racies of the volume models of dominant species. In conclusion and due to the LDA predictions, 

almost all the final prediction accuracies (Table 11 and Table 12) were worse compared to the 

corresponding predictions which have implemented without the information of the dominant 

tree species (Table 9). 

 

The most accurate results based on SUR1 were obtained using the model structured in Table 5 

and  LDA model with four explanatory variables to predict Spmax and Spmax+95 (Table 11). Con-

sidering the RMSEs of the total volumes, there weren’t considerable differences whether the 

dominant species was either predicted or observed (cf. Table 9, Table 11). However, the RMSE 

values of spruce were in particular considerably poorer and the predictions of pine plots in 

particular were biased (Table 11). The predictions of spruce plots were also seemingly biased 

especially when the LDA was run with four explanatory variables. Moreover, the vast gap in 

the RMSEs of the SUR1 between the spruce predictions predicted with LDA of four or three 

independent variables could be related to the height percentile (H60) of the Spmax strategy. As 

we can see in Figure 2, H60 appears to be a quite adequate variable for distinguishing plots 

dominated by spruce. 

 

The most accurate k-MSN predictions for the species-specific volumes were obtained using 

four explanatory variables to predict Spmax+95 (Table 12). Compared to the k-MSN predictions 

using the field-observed dominant tree information, predicting the dominant tree species de-

graded the RMSEs 25 %, 13 %, 15 % and 0.1 % for pine, spruce, deciduous and total volumes, 

respectively. The definition of the dominant species had generally less importance in the k-

MSN predictions than those based on the SUR models (cf. values in Tables 9 & 12). 
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Table 11. RMSEs and (BIASes) of the species-specific volumes based on the SUR1 models, 

when the dominant species were predicted by LDA. For the abbreviations used, please refer to 

Table 2. 

  m³/ha 

Species in-

formation 

Number of explana-

tory variables Pine Spruce Deciduous Total 

Spmax 3 52.2 (11.5) 60.0 (-8.3) 22.8 (-3.4) 56.8 (-0.5) 

Spmax 4 53.0 (14.2) 49.3 (-11.4) 23.2 (-3.8) 54.1 (-1.3) 

Spmax+95  3 51.7 (11.3) 61.1 (-8.1) 22.2 (-2.9) 58.2 (-0.2) 

Spmax+95  4 53.1 (13.9) 49.8 (-11.1) 22.6 (-3.1) 55.4 (-0.8) 

Sp75 3 56.7 (13.9) 61.3 (-8.1) 31.9 (-6.0) 54.9 (-0.6) 

Sp75 4 54.4 (11.5) 55.8 (-5.1) 31.8 (-5.8) 54.4 (0.2) 

Sp75+95 3 55.5 (12.7) 60.4 (-7.1) 31.8 (-5.1) 55.2 (0.2) 

Sp75+95 4 55.7 (12.8) 59.9 (-7.8) 31.3 (-4.6) 54.9 (0.0) 

 

 

 

Table 12. RMSEs and (BIASes) of the species-specific volumes based on k-MSN, when the 

dominant species were predicted by LDA. For the abbreviations used, please refer to Table 2. 

  m³/ha 

Species in-

formation 

Number of explana-

tory variables Pine Spruce Deciduous Total 

Spmax 3 44.9 (0.9) 38.1 (-1.9) 22.2 (-0.6) 53.8 (-1.7) 

Spmax 4 44.8 (0.5) 35.3 (-0.9) 22.0 (-0.4) 52.0 (-0.8) 

Spmax+95   3 45.3 (1.6) 38.1 (-1.9) 22.2 (-0.8) 51.5 (-1.1) 

Spmax+95   4 44.5 (1.2) 35.2 (-1.3) 21.8 (-0.7) 51.5 (-0.8) 

Sp75 3 47.1 (-1.4) 38.4 (-2.8) 22.8 (-0.6) 54.6 (-4.8) 

Sp75 4 46.8 (-0.5) 38.2 (-2.2) 22.5 (-0.6) 51.9 (-3.3) 

Sp75+95 3 45.9 (-2.4) 39.6 (-3.0) 22.6 (-0.7) 53.5 (-6.0) 

Sp75+95 4 47.1 (-1.6) 37.7 (-2.4) 22.9 (-0.3) 53.0 (-4.3) 
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Figure 8. Comparison of the RMSEs obtained by the different approaches in the model fitting 

(above) and prediction (below). The broken and solid lines indicate the accuracies with and 

without dominant species information, respectively. The horizontal lines give the accuracies of 

the best SUR models and the other lines those of the k-MSN predictions with k=1–10. For the 

color codes used please refer to the previous figures. (Figure © Jari Vauhkonen) 

 

 

 

 



43 

 

4.5 Significance of the coefficients in the fitted models 

During the process of SUR modeling, it was noticed that all of the categorical variables were 

not essential for the final fitted model group. Examining the results of the fitted SUR models in 

Tables 5, 6, 7 and 8 reveals that all of the coefficients have not deserved the significance ac-

cording to the implemented t-test at the risk level of 5 %.  To take into account the interactions 

between the categorical variables of various equations included in the SUR composition, the χ² 

was used for the Wald test.  

 

Considering the data of Kuhmo, separating the plots with G ≥ 95 % of pine significantly af-

fected the model predictions which were based on Spmax+95 (Table 5) whereas this information 

was insignificant using the Sp75+95 strategy to stratify the species (Table 6). The importance of 

the pine class of G ≥ 95 % was thus tested for the two most important fitted SUR groups 

(Spmax+95 and Sp75+95). According to the test, it was proven that the true pine class is redundant 

in the case of stratifying the dominant species by Sp75+95 and thresholding the risk level at 5 % 

(Table 13). Generally, the importance of the true pine class was more significant in the Kuhmo 

data, which could be interpreted to be related simply to the proportions of the tree species, 

exactly to the strong mature pine dominance.  Presumably, considerable changes in the RMSEs 

of the species-specific models won´t be observed when the redundant classes would be re-

moved. However, it is reasonable to keep the structure of the volume models as simple as pos-

sible. The class of the deciduous trees had significant role in every case tested. The deciduous 

trees mainly had the role of the minor species in the both datasets used in this study. 

 

Considering a chance to observe the redundant categorical variables in the single models of the 

SUR composition, it was noticed straight from the p-values of the t-test (see asterisks in the 

Tables 5–8) that there would be possibilities to simplify the models. This kind of simplifying 

would be more complicated because therefore the classification should be individually imple-

mented for every species-specific models. However, stepwise test procedures was implemented 

to the species-specific models by the way of trying to observe the most insignificant variables 

of SUR group and thus setting the coefficients to zero. The first stage of the system was to 

decide the first, the most redundant, variable according to the p-value of the t-test and then the 

second variable was chosen by the Wald-test. Actually, the coefficients were added to the zero 

hypothesis according to the significance of the t-test while the Wald-test was used in checking 

the significance of the whole zero hypothesis on every step.  This procedure was repeated until 



44 

 

the determined level of risk (5 %) was exceeded. The testing was operated above-mentioned 

way due to the comparability and efficiency. Setting the coefficients to zero one-by-one accord-

ing to the t-test, would had forced to create vast amount of different dominant tree vectors. It is 

more reasonable to assess the significance according to the one p-value than many of them.  

 

The results of the aforementioned test procedure were presented in the Table 14. In conclusion, 

it could be noticed that the stratifying strategy that includes less classes (Spmax+95) is also in-

cluding less non-significant categorical variables in both cases. The first variable to be removed 

in Kuhmo data showed to be deciduous class in the model of spruce volume. The same variable 

was also noticed to be redundant in the data of Janakkala-Loppi. It could be explained by the 

shortage of the mature spruces in the plots dominated by e.g. birches. Thus, significant differ-

ence between pine dominated and birch dominated plots could not have been observed and it is 

quite indifferent for spruce volume if the plot was dominated by deciduous or pine (pine is the 

reference level of the model). In practice, it is often noticed that understory of spruce are quite 

common in pine and birch dominated stands. In the case of Janakkala-Loppi, the 95-class is 

mentioned more often than in the data of Kuhmo, which is also noticed in the results of the 

Table 13. Generally, the results proved that the species proportions of the training data are 

affecting strongly to the significances.  

 

Table 13. The results of testing significance of the two categorical variables of interest in the 

SUR fittings presented before (Tables 3–6). For the principle of the dominant species codes 

please refer to Table 4.  

 The p-value of the Wald-test(χ²) 

Kuhmo Pine G ≥ 95 % Deciduous 

Spmax+95 1.90E-07 2.20E-16 

Sp75+95 0.06791 2.20E-16 

Janakkala-

Loppi 

  

Spmax+95 0.006731 2.20E-16 

Sp75+95 0.4544 2.20E-16 
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Table 14. Assessing significances of the categorical variables when adding the variables for 

restriction stage-by-stage until the zero hypothesis was rejected (p-value of the Wald test (χ²) 

at risk level of 5 %). The letter code1 indicates the equation considered in the SUR group while 

the number code2 is representing the variable in question. The p-values are presented in brack-

ets.  

 Kuhmo Janakkala-Loppi 

Number of the stage Spmax+95 Sp75+95 Spmax+95 Sp75+95 

1 S3 (0.9249) S3 (0.9775) T95 (0.58163) D95 (0.833) 

2 S1 (0.457) P95 (0.9991) D2 (0.3993) T0 (0.954) 

3 D1 (0.1379) S95 (0.9649) D95 (0.3346) S3 (0.9532) 

4 (0.01322) T3 (0.954) S3 (0.1659) T95 (0.9086) 

5 - D2 (0.8593) (7.03E-04) P95 (0.5356) 

6 - T0 (0.6038) - S95 (0.6571) 

7 - (0.01549) - (0.04945) 
1Equations for the volume models: S –spruce, P – pine, D – deciduous, T – total 
2Variables: 1 – pine (maximum G), 2 – spruce (max. G or ≥75 %), 3 – deciduous (max G or 

≥75 %), 95 – pine (G≥95 %), 0 – “mixed” (species ≤75 %)  

 

 

5 DISCUSSION 

 

Finally, the improvement of the pre-classifying can be observed in the predictions of the fitted 

models. The acquired improvement of the RMSEs in the species-specific volumes (Spmax+95) 

were at best about 20.9–36.9 % using the SUR model in the data which didn´t have a clear 

dominance of certain species. In the case of strong pine dominance, the RMSEs decreased as 

well but the improvement was smaller being 12.6–28.9 % depending on the species-specific 

model. The k-MSN results of the original study was also presented for a comparison and noticed 

to be slightly better than SUR in the case of strongly pine dominated data. All in all, the accu-

racies of the fitted models were slightly more accurate with the earlier studies of predicting 

species-specific attributes without individual tree lineation. For example, Vauhkonen et al. 

(2012) had ALS-only plot-level RMSEs of 65 m³/ha (43 %), 76 m³/ha (114 %), 70 m³/ha (133 

%), 48 m³/ha (161 %) for total, pine, spruce and deciduous in unbalanced field-data, respec-

tively. Whereas the corresponding results of Janakkala-Loppi were 54 m³/ha (26 %), 54 m³/ha 

(70 %), 68 m³/ha (65 %) and 28 m³/ha (119%) for total, pine, spruce and deciduous, respec-

tively. The Kuhmo data gave more accurate species-specific results, which can be explained by 

the homogenous species structure. The corresponding figures for Kuhmo were 53 m³/ha (40 

%), 38 m³/ha (43 %), 36 m³/ha (124 %) and 19 m³/ha (16 %) for total, pine, spruce and decid-

uous, respectively. In this case, also the intensity variables were used which have proven to be 
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appropriate in distinguishing tree species (e.g. Törmä 2000; Ørka et al. 2012). However, in the 

SUR models of Kuhmo data set, the intensity variables were only used in the model for decid-

uous volumes since the power of intensity variables to predict volumes was not really excellent. 

The advantage of the intensity variables were absolutely important when implementing domi-

nant species classification by LDA. 

 

The pre-classification of dominant species to attain more accuracy for forest attribute models 

has also been used before in the researches of forestry field with encouraging results. Never-

theless, the idea of this study has some unique specifications which have not been seen in pre-

vious studies. For example, Maltamo et al. (2015) tested to improve k-NN-based species-spe-

cific models by stratifying the reference data according to the main tree species and develop-

ment stages. Aerial photographs, field data and ALS data were used in the stratification. They 

observed slight improvisations in the models that were stratified according to the ALS forest 

structure or photo-based stratifying which was corrected with field observations. Moreover, 

Maltamo et al. (2006) have also proven that the field-based class variables can give noticeable 

improvement for the stand and plot predictions based on ALS. All in all, the first aforemen-

tioned study is absolutely not comparable to this study because, at first, the forest structure in 

Norway may be considerably different and, secondly, the stratification has emphasized on aerial 

photographs. The latter study is comparable better to this study although that study only in-

cludes predictions for total volumes. Also the earlier study of Pippuri et al. (2013), proposes 

the potential of pre-classifying idea by using various species proportions as a predictor in re-

gression and k-NN methods. The data of the study was mainly collected from urban forest en-

vironments. Absolutely the environment differs from this study although the idea of stratifying 

the dominant trees was quite similar. However, the structure of the forest are not equal with 

this: here the coniferous dominated forests are used whereas Pippuri et al. (2013) have focused 

on deciduous, i.e. hardwood, species. 

 

The discrimination of the tree species was turned out to be a bottleneck in this study. Finally, 

replacing the dominant species information by LDA predictions in models, the accuracies of 

the volume predictions were clearly degraded (Table 9 and 11). However, the previous studies 

have proven that distinguishing tree species solely from ALS data can be challenging. For ex-

ample, Ørka et al. (2007) tested classification according to the intensity variables implementing 

the LDA, as well as in this study, with the overall accuracy at most 74.1 %. As difference, it 
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should be noticed that most studies, such as the aforementioned, have used the denser resolution 

of the ALS data, which is one subject to give more accuracy to the results. The best overall 

accuracy of LDA classification was 76.2 % in this study. Since the classification problem would 

have been much more complicated in the case of Janakkala-Loppi and moreover the intensity 

variables were not available, it was really reasonable to leave it out of the LDA. For example, 

the Figure 1 is demonstrating well the overlapping of the species in aforementioned data.   

 

Although the classification of the species by attributes extracted from ALS was noted to be 

challenging, the potential of the SUR method in modelling the species-specific attributes must 

be taken to further examination. This study offers the results of SUR modelling with two con-

siderably different training data-set. Also the k-MSN predictions are provided from the original 

study. Considering the accuracies of the models of Kuhmo (Table 9), the accuracies of species-

specific volume models improved by 5.6 %, 13.8 % and 2.1 % for pine, spruce and total when 

using Spmax+95 strategy to stratify the dominant species and the k-MSN method instead of the 

SUR1. The RMSE of deciduous degraded 0.5 % due to the lack of adequate neighbor plots 

which would have been dominated by deciduous species. Implementing the SUR method, it 

was noticed that some non-dominant species, according to the total amount of plots in area or 

mean volume inside all plots, tended to construct model structure which was not able to predict 

properly on high or low volume values and the predictions saturated on the narrow range of 

values (see Figures 5 & 7). Presumably, reason is related to the power of the variables to de-

scribe those “minor” species.  In spite of those results, the potential of SUR-method must not 

be rejected. According to the previous studies, the k-NN methods are able to give better results 

than regression based methods (e.g. Pippuri et al. 2013; Maltamo et al. 2009b) but the ability 

of regression-based methods will be noticed in special cases, such as studies which do not have 

vast training data to predict the targets. This kind of problems was encountered in Kuhmo data, 

where the amount of deciduous plots were too small for having a quality neighborhood in NN 

imputation.  Also the possibility to calibrate the reference data by stand-wise data are kept an 

advantage of the method although the accuracies could not reach the same level as non-para-

metric models are able to achieve (Maltamo et al. 2012). For instance, geophysical properties 

of each stand are giving an effect on the growth, and it can be taken into account with regres-

sion-based methods. 
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Implementing predictions by means of k-NN imputations, the amount of the predictor variables 

are often kept high without a doubt of any overfitting problems (Maltamo et al. 2009b).  In this 

study, the models of SUR composition were constructed of tree independent variables of which 

one was the categorical variable illustrating the dominant tree species. In both modeling cases 

(Kuhmo & Janakkala-Loppi), the variables were searched manually using graphical assess-

ments, coefficient of determination and p-values of t-test. Here, this method can be considered 

as a reasonable alternative due to the small amount of the potential variable candidates. Thus, 

the best alternatives have been efficiently found, and it would be unlikely to get better accuracy 

out of the models by searching the variables automatically. Also the manual selection of LDA 

variables from the set of ALS variables in data of Kuhmo, can be explained by the quite small 

amount of candidates. The discriminating variables were more efficient to search by graphical 

assessments. The biggest surprise was the discrimination ability of ALS-based crown base 

height that turned out to be unusable in this training data of Kuhmo even if the previous studies 

(Holmgren et al. 2008, Holmgren & Persson 2004) have given some promising results. The 

reason for the difference in the distinguishing ability between dominant species with CBH could 

be explained by the diameter distribution of the dominant species which emphasized on small 

diameters, exactly for spruce and pine. The diameter distribution has also caused some confu-

sion with other variables, which can be seen in the Figure 2. For example, the ability of 

Imean_all and Prop_first to distinguish the ≥ 75 % plots of pine and spruce in the levels of DgM 

of over 25 cm was better compared to the plots of small diameters. 

 

Considering only the fitted models of this study (Table 5–8) the outcomes between different 

study areas can be discussed. In conclusion, the inclusion of the tree species classifiers in SUR 

gave better improvement in the more heterogeneous data with respect to the strongly pine dom-

inated data (Table 9). The classifier of four separate classes (Spmax+95) was proven to be better 

than the classifiers with five different classes in both datasets. However, it was noticed that the 

RMSEs of Janakkala-Loppi was considerably high and the suitability of the pre-classification 

should be examined. In the Figure 1, the amount of spruce dominated plots are quite equal with 

the pine dominated plots and the confusion between those plots seems to be really probable 

using only the ALS variables describing the structure of the canopy and understory. Thus, the 

lack of intensity data may have caused problems in species-specific modeling although the in-

tensity variables were not outstanding good for predicting species-specific volumes in Kuhmo 

data. Nonetheless, it would have been interesting to clarify the explanatory power of the inten-
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sity variables in species-specific volumes when the more complicated forest structure was ex-

amined. The importance of intensity variables in distinguishing pine and spruce has been no-

ticed in the outcomes of numerous studies (e.g Holmgren & Persson 2004; Vauhkonen et al. 

2009). Examining the species-specific volume models of Kuhmo (Tables 5 & 6), the intensity 

variables were not widely used, anyhow. The reason for this could also be explained by the lack 

of plots dominated by spruce. Earlier studies have proposed that the intensity variables are use-

ful precisely in the discrimination between spruce and pine at least when employing high ALS 

densities (e.g. Holmgren & Persson 2004). Although the same strategies to stratify the dominant 

species in training data were used in both datasets to get better ability to compare them, the 

better performance could have been achieved by calibrating the classes according to the more 

heterogeneous forest composition in the case of Janakkala-Loppi. The place to develop the fit-

ted SUR models would has been in the ≥ 95 % class. In Janakkala-Loppi, the separate class for 

spruce, for example G ≥ 95 %, would has been reasonable due to the discrimination observed 

in Figure 1. 

 

One of the objectives of this study was to evaluate differences between the used datasets. As 

the results proved, the more complicated species compositions will have an effect on the pre-

dictions (Table 9). To sum up the main differences between the results, the RMSEs of the spe-

cies-specific volumes in Janakkala-Loppi were noticeably higher than in the Kuhmo dataset. 

However, the relative improvement of employing the dominant tree species information was 

more important, although species-specific predictions were more inaccurate than corresponding 

results in Kuhmo dataset. The reason for the inaccuracies could be explained by species com-

positions because the differences between specifications of the ALS data acquisitions were 

quite insignificant. The data of Janakkala-Loppi was lacking of the ALS intensity values, but, 

instead of volume models, the intensities values have especially been proven to be advantageous 

in classification of the tree species and most advantageous they are in the individual tree ap-

proaches. That is why, the operationally used forest inventory methods in Finland, proposed by 

Packalén & Maltamo (2006), are incorporating aerial photographs with sparse ALS intensity 

and structure data to derive species-specific information. To give some guidelines for dominant 

species classification structures, the species compositions seem to have an important role. As 

the implemented tests proved (Table 13 & 14), the same classification strategy of the dominant 

species as in the Kuhmo data, did not work effectively in the Janakkala-Loppi data set. Never-

theless, the inclusion of the supplementary dataset ensured the hypothesis that the classification 

of the dominant species will improve species-specific volume predictions. Although, the more 
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heterogeneous species compositions have an effect on the accuracies of the predictions, and 

RMSE values are quite far away from the values that are sufficient for practical forestry man-

agement needs. 

 

For the subsequent classification attempts, the tests for categorical variables describing the var-

ious dominant species were presented in section 4.5. Also the tests were employed to produce 

some numerical evidence of usefulness and significance of the dominant tree classifications 

strategies which are tightly bounded to the basic theory and objectives of this and the original 

study. The results of testing variables with χ² for Wald-test showed and ensured the assumptions 

discussed above. According to the Table 13, the true pine class showed to be redundant in the 

cases of stratifying strategies which were implemented with five dominant species strata. In 

cases of Spmax+95, the whole SUR composition had significant results of the zero hypothesis 

when the true pine variable was evaluated at the risk level of 5 %. However, considering the 

single equations (Table 14) in the SUR compositions of Janakkala-Loppi, significances for total 

and deciduous volumes were unsuitable when the true pine class was evaluated. The testing 

results did not reveal the common guidelines for subsequent classifications but anyhow the 

importance of knowing the species compositions and development classes should be taken into 

account in implementing subsequent classification. The most problematic will be the true class 

with high basal area proportions. On the other hand, it could give slight accuracy improvement 

for predictions in simple cases of simple species composition, like in the final predictions using 

k-MSN in Kuhmo data. However, considering the fitted models, only the RMSE of the decid-

uous model get improvements in case of Kuhmo. For Janakkala-Loppi, the very slight improve-

ment was achieved adding the ≥ 95 % class for Spmax-classifier. The inclusion of the number of 

classes can be related to the problem of degrading accuracy observed by (Heinzel & Koch 

2011). For example, the data of Kuhmo was quite simple by species compositions thus the pine 

≥ 95 % did not have enough power to describe different phenomenon than the basic pine class 

had already described. The step-wise removal test of the single coefficients in fitted SUR mod-

els revealed some resemblances between datasets used. At first, the deciduous class for spruce 

model was observed to be redundant in all cases tested. That describes that the volume of spruce 

are behaving in a similar way in the deciduous (G ≥ 75 %)  and pine (G ≥ 75 %) forests which 

is reasonable according to the canopy and understory structure of those forests. The significance 

of the true pine class of Spmax+95 strategy for data of Kuhmo could be related to the result of 

Table 14 in which the pine class as an intersect proved to be a redundant in two different single 

models due to the better describing power of the true pine class. The testing results of individual 
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coefficients have been evaluated to find some similarities between datasets and, thus, to help in 

combining some guidelines for classification structure to maximize the advantage of the pre-

classifying idea studied. To sum up, the testing results in Table 13, it was proven again that 

increasing the amount of classes will show up in increasing amount of redundant categorical 

variables in SUR modeling.  

 

Evaluating the other possibilities to improve the accuracies of the models presented in this 

study, the target of interest will move on over the technology and methodology used in the 

acquisition of both the field measurements and the ALS data. Carefully planned plot selection 

strategies have been proven to be important for yielding quality predictions for forest attributes 

(Maltamo et. al 2011). In many cases, the plot selecting strategies are difficult to compare be-

cause field inventories are implemented, naturally, once for the area of interest. The field in-

ventories are implemented by cluster sampling in Kuhmo and for Janakkala-Loppi the method 

was unknown. However, the improvement of the possible better selection strategies can only 

be discussed but the results of the abovementioned study are worth considering when managing 

the selection systems. In this study, the more precise examination can be focused on the features 

of implemented ALS. As mentioned before, the intensity features have proven to have an im-

portant role in implementing the species-specific classification which should be more accurate 

for practical operations than the results presented in Table 10. In this study, the intensity values 

were more commonly used in the LDA classification than in the SUR modelling. The previous 

studies have proposed the normalization of intensity values for to improve tree species inven-

tories. The studies have had an encouraging outcome to improve species recognition by nor-

malization (e.g. Ørka et al. 2012; Korpela et al. 2010). The intensity data used were not nor-

malized which should be one reason for such weak results in LDA. However, the other ALS 

features are also having an effect on the accuracy of the LDA and the SUR models, too. For 

example, the specifications of the flight and the ALS system operated in which, for example, 

density of measurements and footprint area are having an effect on the quality of ALS data. 

Korpela et al. (2010) have assessed two different sensor types, and they noticed that smaller 

footprint will probably enhance a signal-to-noise ratio.  This study is based on the area-based 

method which attempts to predict the forest attributes by means of the sparse scanning density. 

Here, the nominal measurement densities of 0.52 and 0.62 measurements per m-2 were used for 

Kuhmo and Janakkala-Loppi, respectively. ALS acquisition of Janakkala-Loppi had higher fly-

ing altitude which tends to enlarge the footprint. 
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By the recent techniques of producing the species-species forest characteristics, it is seldom 

possible to produce solely ALS-based models which have satisfactory prediction accuracy for 

practical forest management (Uuttera et al. 2002). Hence, the supporting data have been used 

and studied in numerous studies. The most used way of getting more accuracy to the species-

specific models is to include variables extracted from aerial images to the independent variables 

of the models. This method has been presented by Packalén & Maltamo (2006, 2007). However, 

the use of solely ALS data-based forest inventories is reasonable and attractive because extract-

ing variables from the aerial images have been noticed to be challenging due to the varying 

quality of the photographs. The similarity of aerial imagines (e.g. light conditions and features 

of data acquisition) is demanded and the acquisition date with ALS data should be quite near 

with passive remote sensing (Packalén & Maltamo 2007). The potential of the use of aerial 

imagines has also been studied in other previous studies dealing with distinguishing species or 

producing the species-specific models (e.g. Vauhkonen et al. 2012). 

 

Development during the last decades in the sector of ALS-based forest inventory techniques 

has been considerable rapid. It can be supposed that the development will continue more in the 

future due to the some potential methods which have been turned out to be too expensive now-

adays. The one potential alternative to improve species-specific predictions would be the full-

wave laser sensors which are not yet studied a lot in Scandinavian circumstances (Vauhkonen 

et al. 2014c). Moreover, the multispectral ALS sensors are also worth studying for the applica-

tions of species-specific forest inventories in the near future. The point densities have often 

been kept relative sparse due to the better economic efficiency (Maltamo et al. 2009a). The 

development of sensors will cause that the measurement densities are becoming denser, which 

is supposed to bring more exact information of the forest structure. The advantages of the denser 

ALS data have approved in previous studies, for example, the ITD methods of very high pulse 

density have produced considerable accurate results in tree species classification (c.f. Vauhko-

nen et al. 2008 and Vauhkonen et al. 2010). Also some interesting possibilities to improve spe-

cies-specific models have been observed in the acquisition of ALS data. The bottleneck of spe-

cies recognition, also in this study, has been the discrimination power between deciduous and 

coniferous, especially in mixed forests. The usage of leaf-off data in area-based forest invento-

ries has been studied by Villikka et al. (2012) with encouraging results. The period of collection 

leaf-off data has recently been narrow because the leaf-off data have mainly been collected 

straight after when the snow coverage has melted in spring. The time period between melting 
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of snow and buds tend to vary slightly every year (Villikka et al. 2012). In the future, the op-

portunities will be changed since the climate change are modifying seasons in Finland that the 

coverage of snow will come later and maybe melt earlier. Villikka et al. (2012) proved that the 

leaf-off data can improve species-specific models and recognition of species solely from ALS 

data. However, they noticed that merging leaf-off and traditional leaf-on data increased bias 

values.  

 

Principally, the main aim of this master’s thesis was to present the possibilities to exploit the 

field-based pre-classifying method to improve the ALS-based species-specific volume predic-

tions. The correct stratification of dominant tree species resulted in the improvements of 1.9–

28.9 % and 9.4–36.4 % for the SUR groups fitted for Kuhmo and Janakkala-Loppi, respectively. 

In comparison with the results of earlier studies, Vauhkonen et al. (2010) have reached im-

provements of 9–47 and 33–50 percentage points by using balanced field data together with 

spectral imagines and ALS data. Also, for example Packalén et al. (2015), have managed to 

develop the method to improve plot-level volume predictions with edge-tree correction by 11–

17 % according to the size of the plots. Moreover, Latifi et al. (2010) and Packalén et al. (2012) 

have proposed optimizing methods for NN-methods to get quite corresponding accuracy im-

provements. Although some of the previous studies have proposed numerous methods to reach 

at least corresponding improvements for species-specific volume predictions, the results of this 

study are able to give an appropriate alternative to increase accuracy of volume models when 

quality dominant tree information and ALS data are available. In the future, the ALS techniques 

and methods will develop, which will probably be seen in the better discrimination power be-

tween tree species by ALS data when the full advantage of the presented pre-classifying method 

could be reached. It is also probable that the individual tree detection methods will become 

more and more common in practical forestry. However, the area-based approaches are quite 

novel method in operational use of Finland, and it will be a mainstream method during near 

years. Hence, every applications to improve accuracies of those methods are surely welcome. 
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6 CONCLUSIONS 

 

The results indicated that accuracies of the ALS-based species-specific plot-level volume pre-

dictions can be improved by including correctly predetermined dominant tree species infor-

mation in both regression based and non-parametric imputations. The improvisations of RMSEs 

by using this method were at best 12.6–28.9 % and 20.9–36.9 % for SUR1 of Kuhmo and SUR2 

of Janakkala-Loppi, respectively, depending on the species. The non-parametric k-MSN 

method implemented in Kuhmo data was slightly better by RMSE compared to the regression-

based method. Consequently, the presented method gave encouraging results in both datasets 

which were seemingly differently distributed by tree species compositions. However, the com-

parison of two training datasets revealed that the species compositions have an important role 

in planning the dominant tree species classification structures. The predetermination of the 

dominant tree species by sparse ALS data proved to be a bottleneck to apply the method in 

solely ALS-based area-level species-specific volume predictions. 
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