
The Integration and Collaboration of Open
Source Communities into Software Development

Process of Commercial Companies: A Case
Study on Sailfish Operating System

Nazanin Hajimirarab

Master’s Thesis

Faculty of Science and Forestry

School of Computer Science

November 2015

UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry, Joensuu
School of Computing
Computer Science

Student, Nazanin Hajimirarab: The Integration and Collaboration of Open Source
Communities into Software Development Process of Commercial Companies: A Case
Study on Sailfish Operating System
Master’s Thesis , 80p.
Supervisors of the Master’s Thesis : Professor Markku Tukiainen
November 2015

Abstract:

Open Source (OS) development is a new way of thinking, developing, maintaining,
promoting, and distributing software. Every OS project has a complex community,
consisting of many individuals from different areas of expertise and in different parts
of the world, who are willing to volunteer to spend their time creating and improving
software. Communication is the essential key for the success of every OS community.

As interesting as being involved in Open Source Software (OSS) development can be,
having an OS community that delivers a high quality software requires coordination,
true transparency, and excellent communication.

This thesis project reviews the scientific researches done in OSS development. We
go through the importance of communication in OS projects, and how proper infras-
tructure needs to be prepared so that members have transparency over what they are
contributing to. We will talk about Agile methodologies, and its benefits of use in
OS projects. Then we will bring a real-life study of a software company developing a
partially OS operating system. We will go through the mode of operation in the com-
pany, and the tools it uses to develop and maintain software. We will further discuss
how the company struggled to keep the relationship with its OS community; how these
struggles affected the quality of software, and what the company did to solve those
problems. We will conclude by doing an evaluation of the project, earlier studies in
this fields, and suggesting topics for future woks.

Keywords: agile software development, collaboration in software development, oper-
ating systems, software performance, open source model

ACM Computing Classification (1998) Categories and Subject Descriptors:

K.6.3 [Software Management]: Software development,Software process. D.2.9 [Man-
agement]: Life cycle,Software process models. D.2.9 [Management]: Life cycle,Software
process models. D.2 [Software Engineering]: Methodologies, Tools.

2

Foreword

This thesis was done at the School of Computing, University of Eastern Finland from

summer 2014 to autumn 2015.

This project was a case study of a software development company through which I

took efforts as a project manager, responsible to manage teams and tasks to deliver the

planned insfrastructure. However, it would not have been possible without the kind

support of some of the individuals at Jolla. I would like to extend my thanks to all of

them who supervised me in this project.

I am highly thankful to Jolla’s Research and Development team members Bernd Wachter,

Eric Le Roux, Carsten Munk, and David Greaves for baring with me in learning the

process and guided me through it step by step; To Jolla’s community chiefs Carol

Chen and Iekku Pylkkä for providing necessary information regarding collaboration

and community, and to Jolla’s open-source community who supported this project af-

ter it was announced.

My thanks and appreciation also goes to my university supervisor professor Markku

Tukianen for trusting me, and giving me the freedom to choose my thesis project, and

contribute to a challenging Open Source project while working at Jolla Ltd.

3

Disclaimer

All the information gathered in this document are prepared by the author, from com-

pany confidential sources as well as non-confidential and scientific sources. All refer-

ences are mentioned at the end of this document unless company confidentiality pre-

vented it.

The content written on Mer wiki page about Jolla as a vendor of Mer1 and the FAQ

page for OS contribution2 are all edited by the author of the thesis, therefore, used

freely in this document.

Figures related to different operations in the company and all the information about

how each function works are reviewed by the supervisors in this project and are free to

be used in this document.

1https://wiki.merproject.org/wiki/Vendor/Release_Structure
2https://wiki.merproject.org/wiki/FAQ#Frequently_Asked_Questions_for_Vendors

4

List of Abbreviations

OS Open Source

OSS Open Source Software

FAQ Frequently Asked Questions

IRC Internet Relay Chat

OBS Open Build System

UI User Interface

RPM RedHat Package Manager

5

Contents

1 Introduction 1
1.1 Overview . 1

1.2 Thesis statement and objectives . 2

1.3 Thesis document structure . 3

2 Open source software development 4
2.1 Communication . 4

2.2 Development . 7

3 Agile methodologies in software development process 9
3.1 Iterative and incremental development 9

3.2 Iterative and incremental development for a software release 12

3.3 Use of continuous integration in iterative and incremental development 12

4 Case study: the software company ‘Jolla’ and its operating system ‘Sail-
fish’ 14
4.1 Why this project started . 14

4.2 Mode of operation and software development at Jolla 16

4.3 Iterative and incremental planning at Jolla 17

4.3.1 Pre-planning . 18

4.3.2 Planning . 18

4.3.3 Sprint planning . 19

4.3.4 Demo . 19

4.3.5 Retrospective . 19

4.4 Sailfish operating system . 20

4.5 Software development process . 21

4.5.1 An example of a Sailfish package on Git 23

4.5.2 Webhooks . 28

4.5.3 Open build systems (OBS) 30

4.6 Tracking system for planning and task tracking: Bugzilla 31

4.6.1 Quick entry . 32

4.6.2 File a report using a simple view 33

4.6.3 File a report using an advanced view 36

4.6.4 Description of a report in Jolla Bugzilla 38

4.6.5 What happens after a report is created on Jolla Bugzilla 38

6

4.7 The release process . 41

4.7.1 CI-bot . 42

4.7.2 Changelogs . 42

4.7.3 Bugzilla statuses and their meanings 42

4.7.4 Development level . 44

4.7.5 Testing level . 45

4.7.6 Release level . 45

4.7.7 Release snapshot . 45

4.7.8 Life cycle of reports in Jolla bugzilla during the integration

process . 46

4.7.9 Earlier tracking of the release process before this project . . . 47

4.7.10 Problem with the release tracking procedure before this project 48

4.7.11 What did Jolla do to solve the problem and ease the collabora-

tion? . 49

4.7.12 Upstream Bugzilla sync . 49

4.7.13 How automated cloning and tracking is done 50

4.7.14 How CI-Bot works during upstream sync 53

4.8 The proposal presented to Jolla’s open-source community 53

4.8.1 The request to Mer package maintainers 53

4.9 A example to show the results of the project in practice 57

4.9.1 Iteration Planning 12/2014 before the Upstream Bugzilla Sync 58

4.9.2 A Bugzilla report in the final release changelogs before the

upstream Bugzilla sync . 59

4.9.3 Planning 05/2015 after the upstream Bugzilla sync 60

4.9.4 Upstream Bugzilla sync and its affect on tracking the open

source components . 63

5 Analysis of the project 69
5.1 Earlier Works . 70

6 Conclusions 71
6.1 Lessons learned . 71

6.2 Open questions and future works . 72

7 Glossary 73

References 77

7

List of Figures

1 Iterative planning . 10

2 Planning cycle at Jolla . 17

3 Steps in delivering a goal . 19

4 A tree-view of a goal broken down to smaller reports 20

5 Sailfish operating system architecture including open oource and prop-

erty packages . 22

6 Branching during software releases 23

7 Overview of Sailfish Browser development page on GitHub 24

8 An example of a commit message with a Jolla Bugzilla number 24

9 A part of the list of commits to Sailfish Browser application 25

10 An overview of the .spec file page for Sailfish Browser 26

11 Webhook settings on Git . 28

12 An overview of sailfish-browser webhook mappings 29

13 Git links which point to related repositories 29

14 Other information about the webhook mappings 30

15 An overview of some open packages for Sailfish operating system on

OBS . 31

16 An overview of the first page of Jolla Bugzilla 32

17 Quick entry page in Jolla Bugzilla 33

18 Report entry with a simple view on Jolla Bugzilla 34

19 The advanced view . 36

20 A report that is a release blocker for update 10 38

21 Bug description outline . 40

22 An overview of a report filed on Bugzilla 40

23 Release cycle levels . 41

24 A bug status starts from ‘New’ and ends in a ‘Released’ 42

25 Where the code for a software release comes from 43

26 Bug life cycle during software integration 46

27 Changelog for a closed-source package called ‘ambienced’ 47

28 Changelog for an OS package called ‘ofono’ on Mer Side 48

29 Upstream Bugzilla sync in detail . 51

30 Report created on Jolla Bugzilla . 59

31 Pull request on Git for lipstick-jolla-home-qt5 component 60

32 Webhook shows a hook for the Git commit named upgrade-1.1.6 . . . 61

8

33 Lipstick-jolla-home-qt5 is on Jolla’s OBS 61

34 The commit in Git has landed in OBS on 3 December 2014 61

35 Lipstick-jolla-home-qt5 fix in the release changelog 62

36 Commit messages related to ’connman’ component in the release changelog 62

37 A report created on Mer Bugzilla . 64

38 A commit for a Fix for Connman in Mer packages repository on Git . 64

39 A commit for connman lands in Jolla webhook 64

40 Connman is on Jolla’s OBS . 65

41 The commit in Git has landed in OBS on 13 May 2015 65

42 Connman fix in the release changelog 66

43 An example of a cloned report from Mer Bugzilla on Jolla Bugzilla . 67

44 Clone of a Mer report shown on Jolla Bugzilla 67

45 How CI-bot updates the cloned report with Jolla’s integration cycle

changes . 68

9

List of Tables

1 File specifications for sailfish-browser 28

2 Different statuses in a Bugzilla report 35

3 Different severities in a Bugzilla report 35

4 Different priorities in a report on Jolla Bugzilla 37

5 An example of a report description on Jolla Bugzilla 39

10

1 Introduction

In recent years, there have been a large number of researches and documents concern-

ing OS communities and their practices in software development. Several surveys,

questionnaires and experimental studies have been done on the impact of different fac-

tors and values of these communities. [10]

Open Source Software (OSS) has made a significant impact on the software develop-

ment industry. Looking at projects such as Linux or Mozilla Firefox, shows the power

of such development methodologies in today’s world. OSS is unique in terms that it is

developed by people who are geographically disperse and unpaid programmers, thus,

nearly all the time having remote communication with each other. The power of com-

munication in such communities is another topic that attracts different studies towards

the quality of software delivered through OSS development.

1.1 Overview

During traditional software development end users are not actively involved in the

development process [17]. On the other hand, in OSS development, end users are one

of the main sources of user feedback and bug reporting for that software. End users of

OSS projects do not only report bugs on the software, but some of them can provide

fixes for the issues reported.

OSS development creates the core software in the beginning, with minimum required

functionality, and let users start using it. As they go forward, they continue maturing

the quality of the software by the requirements they receive. In traditional software

development processes, requirements should be defined and analyzed before the actual

development of the software begins. This also means that making changes to the soft-

ware after it was released to its end users, will also require a set of procedures where

changes need to be accepted by the higher management before they are applied to the

software [5]. OSS development is free from all the traditional requirement and change

analysis. OSS projects follow the evolutionary software development, where the newer

versions of software are increasingly released by the developers.

1

1.2 Thesis statement and objectives

The focus of this thesis study is first to discuss scientific researches that have been

done on OSS development, Agile Methodologies and use of such methodologies in

developing Open Source Software. The thesis will be continued by bringing a case

study of a software development company in how OSS development plays an important

role in the delivery of the final software product.

There have been efforts to study the foundation of OS communities and the importance

of communication among the community members. Also, several literature reviews

have been done on most used software development models in OS communities. The

framework of the studies in this section is to introduce – from scientific point of view

– and go a little into depth of OSS development concept, and the values that members

in such communities share among each other. Afterwards, we have brought a case

study, at Jolla Ltd.3, to analyze what happens when OS communities become part of

a commercial company. To be involved in the core of the case study, I have been

selected as the Project Manager of a project Jolla Ltd. was planning to do to ease the

collaboration for its OS community. Before starting to manage the actual project, I

had several training sessions held by the Release Manager, Technical Chiefs, and Co-

founders of Jolla to learn the software development and release process in the company.

Throughout the project the focus is more on aspects of agile software development

in start-up companies, as well as, paying more attention to the relationship of Jolla’s

OS community with its in-house developers and management. Another focus in this

project, as the Project Manager, was to first deliver the planned infrastructure to the

community. The findings of the project are used afterwards to give an analysis on the

whole process.

The findings of this project can be used to identify opportunities for improvement of

the relationship between commercial companies and their OS communities. It can

also be useful to help product managers in OS projects to pay more attention to the

value of transparency in delivery of product. The outcome of this project gives clue

to companies to bring in experienced leaders to coordinate the dynamic collaboration

between their in-house and OS developers.

3An introduction about the company, its software development process, and mode of operation is
given in chapter 4

2

1.3 Thesis document structure

This thesis consists of six chapters. After introduction, in the second chapter we study

the fundamentals of OSS and its communities. We go into more details about how

such communities keep contact with each other and how OSS development has helped

the industry in software development in the recent years. In chapter three we talk

about agile methodologies in software development and continue by describing why

OS communities lean more towards agile software development models. Chapter four

is where the case study comes into this document. In this chapter we will break down

the process of software development at Jolla Ltd. into details. We first study the mode

of operation in the company and the reasons behind that, what tools the company use to

develop software; and using those tools, how the software release process takes place

in the company. At this point, where we have an understanding of the release process,

we start discussing the main problem the company were struggling with since its es-

tablishment: We have a partially OS operating system, and we have an OS community

who would want to collaborate in the making of that operating system, but we do not

have the proper infrastructure to make this collaboration happen.

In chapter four, we also explain the outcome of the project done in the company and

how it was represented to the community, and will see real examples from the software

development process of the company before and after the project was done.

In chapter five, we go through earlier studies around this topic as well as the findings

of this project. Finally, in chapter six, we conclude the outcomes of the project, and

talk about the lessons learned. We will also suggest further studies that can be done in

the field of OSS development.

3

2 Open source software development

"If you want to build an open source project, you can’t let your ego stand

in the way. You can’t rewrite everybody’s patches, you can’t second-guess

everybody, and you have to give people equal control."(Rasmus Lerdorf)

Over the last decades, Free/Libre/Open Source Software (FLOSS) has proven to be

capable of working successfully in software development processes [2]. OS projects

talk about giving the liberty to all users of the software to contribute in making it better

so that it meets their needs. Building an active community of developers requires

thoughtful planning, analysis, patience, and support [3]. Simply because an OS project

exists, does not mean that its community will be continuously contributing to it. Every

product needs to deliver a clear and meaningful value to its developers. This means that

any OSS project should be explicit about its software design, business model, roadmap,

release schedule, and openness about bugs and when they will be addressed.

OSS allows users to improve the quality of the software by giving them access to

the source code [5]. OS development has introduced a new way in developing and

maintaining software which has several benefits such as lower costs in development

and maintenance of the software, higher quality as well as higher reliability of the

software [16].

To look at the definition of OSS, let’s go back to where it was rooted. Ezeala et al. [5]

explains the Free Software Foundation (FSF), founded by Richard Stallman in 1985,

focuses on the liberty of the software. This means freedom from control, not price.

In another case, Open Source Software, developed by Open Source Initiative (OSI)

focuses on the distribution terms of software license.

2.1 Communication

In OS communities, where a diverse group of people with different educational, cul-

tural and professional backgrounds gather around to volunteer and spend their time

on creating and improving software, communication plays one of the most significant

roles. Community members come from different parts of the world, with different time

zones, and usually busy with their own daytime jobs. What they do in OSS develop-

4

ment projects is more as a hubby than something to make money out of. There are, on

the other hand, people who make a living out of contributing to OSS projects.

"One of the questions I’ve always hated answering is how do people make

money in open source. And I think that Caldera and Red Hat – and there

are a number of other Linux companies going public – basically show

that yes, you can actually make money in the open source area." (Linus

Torvalds)

For OS communities, the nature of most of the tasks is to work in a team [22]. There-

fore, a proper way of communication where responsibilities are shared and trans-

parency exists during the whole development process, makes the project achievable

and brings more satisfaction to the team members to collaborate in future projects.

Communication in OS communities deals with communicating around code sharing,

helping the team to release a higher quality software [22]. Since the community de-

velopers can come from anywhere in the world, the language of communication is in

English, and everyone needs to obey that while e.g. sending e-mails to the mailing

lists, writing posts on wikis, or chatting in public groups.

There are certain group of people participating in Open Source communities [22]:

• Advanced users who stick around more often than the others, have more knowl-

edge of the source code, and are usually the ones whom other developers of the

group come to ask questions from.

• Normal users who do not necessarily participate in maintaining the code. They

might be end users of the software who appear in chat forums to familiarize

themselves more with the community behind the software, give user feedback,

or report bugs.

• Developers who write the code and have the authority to change the source code.

They are people who have the main knowledge over the code.

• Bug fixers who detect bugs and report them in bug tracking systems.

• Managers or project founders, who might early developers in other projects.

They help with the organizational aspects of development, release management

and the communication.

5

Since the initiation of OSS, a number of researches have been dedicated to analyze

the communication patterns in OS communities [15]. Why communication in such

communities is important lies mainly on the fact that people who contribute to the de-

velopment of the software are not in-house developers and testers working together in

an office, or under the same roof. People are usually more comfortable to describe an

issue when they know the person on the other side of the conversation, or they have

a device they can run the software on and show the bugs they have found in the soft-

ware. However, when it comes to remote communication, via services such as chats

or e-mails, communities need to try to communicate with clarity. For non-experienced

users or developers, adopting to communicating only via text can be difficult at the

beginning, but with time, they get to know the community people and also their com-

munication skills improve.

Hayashi et al. [7] puts the importance of communication in OSS development as a

means to improve software quality. In particular, to fix a bug in the software, sometimes

it is needed that multiple developers commit changes to the code. This is because every

developer has limited knowledge about a large software system.

The main mode of connection in OS communities is kept via online tools. With these

tools, such as chats, mailing lists, and wikis, everyone involved in the project, from the

founders to developers and end users, can communication with each other [22]. The

talks involve topics around the upcoming changes to the software, bugs or defects that

were found, questions regarding using the software, questions regarding how to main-

tain the software, and how to solve the difficulties while using the particular software.

Examples of some of the communication tools are [15]:

• E-mail via mailing list is one of the most common ways for communication

among the community people. Sending e-mails can make one thread and all the

replies to that thread be reachable via one email.

• Forums are like mailing lists with the difference that questions and communica-

tions are posted on a website. There are different categories in a forum, and one

needs to find the right group/category, and ask questions there.

• Instant Messaging use has increased in the recent years. Depending on the

community, services such as IRC , Skype, or Hangout are popularly used.

• Wiki is a website where users who have made accounts on that website can

6

edit the content there, and everyone else has access rights to read the content

posted on a wiki. Wikis are usually used for a more formal way of documenting

stuff. For example, how to install the software, or tutorials concerning working

with the software. These sort of information can be posted on wikis and be made

accessible for everyone. Later if false information is found in the text, authorized

users with accounts can edit the text.

2.2 Development

“Open source software communities do not have strict hierarchies as in

traditional software teams; However, the community structure is not com-

pletely flat. The organizational structure of an open-source community is

determined by the roles that the participants play.” (Eric Raymond)

Saini & Kaur [18] put the structure of OS community projects into these categories:

• Vendors: They are OS projects that are backed by a vendor under the open li-

cense. The full copyright of this software project goes to the vendor. For in-

stance, in our case study, Jolla is a vendor of Mer4.

• Development community: These communities represent OS projects where it be-

longs to stakeholders who share the copyright of the project. Debian community

is an example of such a project.

• Open Source competence centers: These are usually the conference and work-

shop organizers, providing services such as user training, testing, or research and

development. An example of such centers is the OSS Watch 5 in the UK.

Questions towards OSS development usually deal with ’why do people do something

for free?’ [18]. There can be different reasons for different people why they like to

contribute to OS projects. Eric Raymond in his book ‘The Cathedral & the Bazaar’

[16] says maybe it is a "personal itch", or the desire to help people. Others might find

it beneficial for themselves and use OS projects to learn new skills which can later land

them on better job opportunities. In GNU’s philosophy the overall concept of ‘doing
4www.merproject.org .You will read about Mer OS community in Chapter 4
5www.osswatch.co.uk

7

it for free’ should be looked at like freedom of speech, not free beer. Chawner [3] also

emphasizes on the motivation behind collaborating in OS projects, and how keeping

that motivation is the main factor in keeping people contributing to the community.

Since OS communities consists of people distributed in different places, there also

needs to be a distributed platform via which community members can develop on. Git

distributed version control system is a platform widely used for OSS development

[13]. Github , a code hosting repository based on Git version control system, is one

of the famous platforms used for Open Source collaboration. Vasilescu et al. [23]

explains that Github allows users to set up repositories with custom access, where those

with access rights can take an instance copy of the repository on their local machines,

develop on it, and then commit their changes to the main repository so that it can be

included in the final software release. There is much more to Github than a repository

with accessible data which we will discuss further in the chapter four.

Using Git version control system benefits the software development processes with re-

gards to easing collaboration in projects where there are number of developers working

on many components. Everybody has access to the code and can propose changes. Git

also works as a time capsule. Overtime changes are made to the code and checked into

the source code, it keeps a time log. So there will be a complete history of all the files

that have changed, and why they changed. This ensures graceful rollbacks whenever

code needs to be reverted.Moreover, Git does not have a centralized repository. This

means there can be multiple people making changes to the code and commit. It all

goes to one control repository (aka. one server).

There are commercial companies which benefit from having Open Source communities

supporting their software [4]. Sailfish operating system - developed by Jolla Ltd -

which we will talk about in chapter four, is one example of such companies. What

OS communities can bring for such companies are people motivated to improve the

software quality voluntarily. Community participants, in most cases, are users of the

software developed by the commercial company, and will report bugs or commit fixes

for the software.

8

3 Agile methodologies in software development process

Agility talks about change and willingness to respond to change. It depends on a

company to what level it wants to be adjustable to changes. The level of agility in

companies differs them from other competitors. Highsmith [8] describes agility - as a

noun in the concept of software development - the ability to both create and respond to

change in order to profit in a turbulent business environment.

The evolution of agile techniques and the current methods of using them have been sup-

porting management, defined processes, and concrete practices throughout the phases

of the software life cycle in software development process. Agile principles promote

the delivery of software in small increments and iterations, which enables frequent

progress checks and provides the opportunity to refine the goals of a project in line

with customer’s desires [21]. Self-adaptation is also promoted at both the project and

the process level.

From multiple definitions of agile software development processes, this quote explains

it all.

“Agility is dynamic, context-specific, aggressively change-embracing, and

growth-oriented. It is not about improving efficiency, cutting costs, or bat-

tening down the business batches to ride out fearsome competitive “storms”.

It is about succeeding and about winning: about succeeding in emerg-

ing competitive arenas, and about winning profits, market share, and cus-

tomers in the very center of the competitive storms many companies now

fear.” (Goldman, Nagel, and Preiss, 1995)

Agile approaches best adopt to businesses where innovation and creativity are their key

elements [8].

3.1 Iterative and incremental development

Iterative and Incremental software development is a methodology in agile practices.

Jinzenji et al. [11] describes an Iterative and Incremental Development agile method-

ology as development of software in cycles (i.e. iterations) and in smaller portions at a

9

Figure 1: Iterative planning

time (i.e. incremental) (see Figure 1). This allows developers to see how the software

behaved on the device, hence making it more efficient to apply improvements as they

go further into development. Having shorter cycles makes it possible to develop faster

and in smaller portions, and making a higher quality software. Agile methodology

is about continuous feedback and change. It is characterized by short cycles where

problems are inspected and changes are adopted through frequent feedback loops [20].

Uras et al. [22] explains that agile methodologies are adaptive and oriented towards

people, not the process. During agile development verbal communication identifies

requirements; failing, results in learning faster; the mode of operation is incremental

and iterative; developers have interchangeable roles; documents are kept to minimal,

and team members share important values such as respect, transparency and passion.

Although agile methodologies bring a more informal way of operation in teams, it

does not mean that they are easy to be coordinated. Applying agile methodologies in

the right way needs strong leaders who can coordinate different teams to work towards

the same goal.

Matthews [12] in The Manifesto for Agile Software Development6 talks about these

values:
6http://agilemanifesto.org/

10

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Sindhgatta et al. [20] explains that scrum agile development method is characterized by

Iterative and Incremental Development where the progress of making software takes

place in a series of short iterations or sprints. The iterations or sprints are typically

from one to four weeks during which team members discuss about new changes and

commit to deliver a number of them. At the end of the iteration or sprint, the needed

changes are committed according to the previous discussions. They are implemented,

tested and integrated into the system. There are Scrum Masters who handle meetings

for planning, reviewing and retrospective.

OS communities often use agile methodologies during their software development pro-

cesses [22]. Via Agile methodologies they can have the flexibility to adopt to changes,

learn from their mistakes, and focus more on releasing a bug-free software quickly,

rather than going through time-consuming requirement analysis and documentation.

Using Agile methodologies, OS communities can respond to changes while improving

the overall quality of the released software.

Ruparelia [17] in the history column article regarding software development life cycle

models - life cycle covers the initiation of the project to its requirement analysis, devel-

opment and maintenance - one of the main strengths of incremental model are to make

the delivery of the product available with early, incremental releases that evolve with

each iteration. At the same time feedback is taken in constantly and the feedback from

previous iterations can be used in current iterations. Incremental model also enables

incremental implementation of the software, which helps to monitor changes as they

are constantly coming in to the software; thus, make it easier to mitigate risks. Fur-

thermore, everyone responsible in the making of the software, from project managers

to developers and stakeholders, are involved in iterations and their opinion can directly

affect the software under development.

Applying agile methodologies are mostly suggested for smaller projects [17]. Having

agile mode of operation where people need to have everyday contact (usually face-to-

11

face), changes happen fast, and documentation is limited, makes it harder to manage

bigger projects with agile methodologies.

3.2 Iterative and incremental development for a software release

Software development with incremental release procedure requires operating func-

tions, which will then enable companies to provide system users with more stable

versions of a system at regular intervals [19]. This life cycle model enables itera-

tive enhancement of system development organization. It also supports to periodically

distribute software updates to end users or user communities. Having incremental de-

velopment during release cycles assures faster update intervals, where several bug fixes

or feature improvements are released with each update.

3.3 Use of continuous integration in iterative and incremental de-
velopment

Continuous Integration (CI) is about all the work within a team that goes through inte-

gration and testing to find defects and eliminate them as the software is going through

its software development life cycle [1]. CI plays an essential role in iterative and in-

cremental software development and its success. CI helps the team to keep track of the

current stage of the development as well as reassuring that a quality software based on

software planning is delivered at the end of an iteration [9]. When defects are found,

it is best to fix them while the software is still in the early phase of its development.

Fixing a bug during the development level is much less expensive, both in terms of

financial aspects and time, than when the software is delivered to users as the final

product. CI facilitates the early detection of bug through continuously integrating the

code and testing it [1].

In distributed software development projects, developers commit code several times a

day. Imagining one or more of these commits are carrying bugs, and the code does not

go through checks before it lands in the software, the final software that comes out of

the release cycle will contain those bugs. Later during system testing which happens

after a complete release cycle is done, those bugs are detected. With bugs being found

only after the release has been made, the code needs to go through full build again.

12

Developers responsible for those bug need to submit their fix, commit the new code to

the system, and a new release build should be made again. Considering the probability

that there is almost always more than one bug when several developers are working

on a software, if their codes are not checked some time before it lands into the final

software, it will be expensive to fix them. Vasilescu et al. [23] explains that what CI

does is to mitigate the risk of breaking the build, or releasing a buggy software. CI is

an essential tool for distributed systems, where geographical and time differences are

in the context of the work; exactly like OSS development projects. The practices of CI

can make improvements in the quality of software projects [12].

13

4 Case study: the software company ‘Jolla’ and its op-

erating system ‘Sailfish’

Jolla 7 was founded in 2011, aiming to continue the Nokia project, MeeGo8 - a Linux-

based operating system for mobile phones discontinued by Nokia - as they believed it

could succeed in the open innovative mobile space. During 2011 some of the MeeGo

team left Nokia to join Jolla. In November 2013, Jolla launched its first smartphone,

which uses a gesture-oriented user interface. The operating system running on the

phone is called Sailfish, which is a combination of Mer9 - an OSS project which acts

as a middleware on Linux-based systems - in its core; with Qt and QML and C++ in

its user interface.

Jolla’s aim is to be open and transparent towards their OS community in what they do.

Jolla’s motto has been ‘Doing It Together (DIT)’ which refers to having a software that

everyone who likes and uses, can contribute to make better.

Jolla’s OS developers community – the heart of any OSS project – plays an important

role in the growth and improvement of the software the company releases. Through

the years of development, Jolla has always tried to be transparent with its community,

and also asked for their contribution; however, due to lack of sufficient infrastructure,

the community could not really influence the quality of Jolla’s software development.

4.1 Why this project started

This project started to enhance the OS community collaboration at Jolla. One of the

reasons the company could not prepare the needed infrastructure for community col-

laboration was because of its partly Open Source and partly Closed-Source operating

system, Sailfish.

Sailfish operating system is built like a Linux distribution. The core of Sailfish is from

7www.jolla.com
8MeeGo was a Linux distribution using source code from Intel and Nokia. This project was canceled

by Linux Foundation in September 2011.
9Mer is a free and open-source software distribution targeted as a middleware for Linux distribution

services. After the MeeGo project was canceled, Jolla picked Mer, as a fork of MeeGo, and used it to
develop Sailfish operating system. Mer is now used in Sailfish OS core development.

14

Mer Project10 – an Open Source, Linux-based, mobile-optimized software that works

as a middleware [14]. The User Interface (UI) part of the operating system is based on

QML – a user experience design language provided by Qt framework.The features of

the QML language enables Sailfish to provide a rich set of UI elements, which creates

animated UIs and lightweight applications. Sailfish operating system also includes

the capability to run Android applications. It is based on a set of Android libraries,

integrated into the software and brings performance comparable to native applications.

Jolla used to develop the closed part of Sailfish operating system with its in-house

developers, and pick the changes on the open from Mer side and integrate them into

Sailfish software releases. Not being able to make the open part of the code accessible

for Jolla’s OS community, the developer community collaboration could not happen

during software release process. The reason for that was simply because the OS com-

munity could not see what was changing, or did not have any ways to commit fixes for

existing bugs and push them to Jolla’s repositories. What they did was to fix defects

that they knew existed, push them to the Open repositories, and wait for Jolla to pick

them once they needed those fixes for their software.

This was not the way the company wanted to continue its business. There was a mo-

tivated OS community motivated to help to make the software they were using better.

They wanted to have visibility over what was changing or needed to be changed in

the future. The OS community needed transparency, clear plans, and a platform from

Jolla, where they could contribute to make a higher quality software. This situation

was not desirable from Jolla’s point-of-view either. They knew they had been delayed

with opening up their platform, and they wanted to start making the required changes.

And so this project initiated to reach this goal.

Our goal in this project was to make the first proper steps in opening up the platform

and making the collaboration easier. After the project was done, We invited our com-

munity to contribute to the open-source part of the Sailfish operating system, Mer, and

we requested that they could adopt a policy to support vendor tracking for Jolla on Mer.

The creators of Mer, as well as community chiefs, release manager, backend develop-

ers, and the project manager at Jolla gathered up to discuss about the planning of the

project. I, as the project manager, was responsible to understand the whole process

behind software planning and development, and to make sure that all parties were in

10http://merproject.org/

15

sync to deliver the product within the target schedule. I was also in charge of organiz-

ing meetings and getting updated on the process. The main start of the project was in

June 2014 and the final proposal was presented to the community and in-house Jolla

developers in February 2015.

This thesis project describes the process of preparing the needed infrastructure for

Jolla, so that they are able to collaborate with their OS community in the making of

their partly OS operating system Sailfish.

We are going to read in this document, how the company created and maintained the

upstream sync they needed to open up their platform for OS contribution. Firstly, we

describe of the company’s mode of operation. Then, we study Sailfish operating sys-

tem and its components. Then disadvantages of lack of OS community collaboration

will be discussed. We follow this by looking more into the software development and

release process at Jolla. We study the planning needed to deliver the goal. The case

study is concluded by bringing an example of how the implemented technology is now

being used in the company during software releases, and the advantages it has brought

to the overall product lifecycle.

4.2 Mode of operation and software development at Jolla

The main mode of operation and software development in Jolla is based on Iterative

and Incremental agile methodology, and it is applied at different scales in the company.

From the common methodologies in agile development - prototyping, iterative and

incremental development, spiral development, rapid application development - Jolla

has chosen the Iterative and Incremental Development for its software development

process as it suits the main goals of the company. Applying an iterative methodology

in all parts of the company has given them the opportunity to get requirements in

constantly, be close to customers, and iterate to bring quality. Jolla has chosen iterative

planning to fail fast and learn faster, get fast feedback, have the possibility top rollback

if needed, and have a high quality code at the end of each iteration.

16

Figure 2: Planning cycle at Jolla

4.3 Iterative and incremental planning at Jolla

An iteration, at Jolla, is a planned development period lasting one month. At the end

of each month, a new software update for Sailfish operating system is released. The

one-month period can change to be longer in case the company hits release exceptions

, change requests , or release blockers that need more time to be fixed before the

software release is publicly out.

A typical iterative planning at Jolla consists of:

• Crystal Wall planning (every 3 months)

• Pre-planning (before iteration planning day starts)

• Iteration planning (every 1 month)

• Demos (during iteration planning day)

• Retrospective (during iteration planning day)

• Sprint planning (every 2 weeks)

Sprint, iteration, and crystal wall planning days are each targeted to achieve specific

goals. To see the big picture, Figure 2 shows how each planning day is designed for

the company to make the best coverage of the requirements, design, and development.

17

4.3.1 Pre-planning

Software pre-planning happens one week before the actual iteration planning. Dur-

ing pre-planning, each project and operational team including the team members and

chiefs will have their own meetings, discussing what they need to deliver by the end

of the next iteration. All project and operational teams including development, testing,

marketing, customer care, and human resources take part in this.

In pre-planning the product management team also need to discuss with sales and mar-

keting about the new requirements they want to be delivered. The result of all discus-

sions should then be forwarded to the Research and Development (R & D) team, and

only accepted if they can commit to deliver those requirements. Therefor a part of R

& D’s pre-planning schedule is to review the requests from product management and

check the possibilities to assign time and resources to deliver those requirements.

4.3.2 Planning

A few days to approximately a week after software pre-planning, the iteration planning

will start. On the first day of iteration planning, which is held in Jolla’s local offices

or remotely, each team goes through the plans they have agreed on in the pre-planning

session. Therefore, it is important that all employees are present11 on this day to hear

the ideas and give instant feedback if required.

During the planning day, all teams go through their schedule for the upcoming iteration

with the rest of the company. Every team is supposed to describe the main tasks they

are going to deliver by the end of the iteration planning day (i.e. the 1-month period).

All high level goals need to be documented with possible estimated target dates. While

each team is presenting its plans, other teams have the right to comment or disagree

with something. This will be followed by an open discussion in the company until the

problem is resolved and the majority reach an agreement. If a target for delivering a

task cannot be met, there is still a chance during the planning day to change the target

date.
11There are cases when an employee(s) cannot be participate to planning day. (S)He needs to inform

his/her team chief beforehand.

18

4.3.3 Sprint planning

The dates for sprint meeting sessions are agreed during iteration planning days. There

are two sprints for each iteration in which the high level tasks documented are broken

into smaller reports12, and assigned to related people to be done during the iteration

as shown in Figure 3. Available capacity of the developers, and the availability of

experts/skills needed for the sprint are estimated, too. In Sprint planning a matching

set of skill and capacity is allocated to tackle and complete the agreed tasks.

In Figure 4 you see a tree-view of some tasks in Bugzilla - a tool for planning and

tracking tasks - and how high level tasks are broken into smaller ones.

Figure 3: Steps in delivering a goal

4.3.4 Demo

A working software is the primary measure of progress in the development teams. It-

eration targets are abstract concepts until we see or touch the tasks/features/bug fixes

implemented. Therefore, demonstrating a working, tested software is a concrete. Cur-

rently since all Jolla employees have their goal devices at hand, they can check the look

and feel of a new feature or a bug fix on their own devices, so demo sessions are mostly

skipped unless something which others cannot access on their own devices need to be

presented.

4.3.5 Retrospective

At the following iteration planning day, retrospectives for the past iteration will be

held as well. During retrospective sessions things that could have been done better

12We still read later what tools the company uses to document and track process.

19

Figure 4: A tree-view of a goal broken down to smaller reports

during previous iteration planning will be discussed. The iteration retrospective is an

important mechanism that allows the company to continuously evolve and improve.

Everyone gets a chance to air their opinion in an open, honest, yet constructive atmo-

sphere.

4.4 Sailfish operating system

Sailfish is a Linux-based operating system, with a Linux-kernel base for the hardware

platform us, the Mer13 core middleware, the UI which is designed and maintained

by in-house Jolla designers and developers and is closed-source that are maintained

separately, and integrated into the operating system14 (see Figure 5).

13To name a few open source packages on Mer: mer-core, mer-tools, hybris-hal
common stuff, essentially Hardware Adaptation Development Kit. More about Mer:
https://wiki.merproject.org/wiki/Main_Page

14The property of the content in Figure 5 goes to www.sailfishos.org

20

Sailfish operating system consists of several components; some are developed on the

open (i.e. Mer) and some are property components of the company (i.e. the UI, An-

droid, etc.). The core of the operating system is Open Source15 while the UI-aspects

of it is closed. Therefore, the complete source code cannot be distributed to the public.

This means that Jolla needs to specifically define what parts of the source code can be

seen by everyone, while other parts should be only viewed by the in-house developers.

With this complexity in the operating system, there needs to be more advanced config-

urations in the way the authorization to the code is defined. When Jolla started, as a

start-up company concentrating on only delivering a workable software for its devices,

the goal to implement the configurations for custom access to the source code has been

put to a delay. It was a time-consuming task which needed the constant work of several

developers to be implemented. After implementation, it needed testing to make sure

that those who are not authorized to view the property components, will not.

Sailfish applications are packaged with an RPM file extension such as foo-1.0.4.12.

armv7hl.rpm . RPM is a format of package management system used on Linux-based

operating systems for packing applications. Packaging applications also require devel-

opers to mention what type of architecture the application works on. In the example

mentioned above, armv7hl, is the type of architecture that the foo application can work

on. The type of architecture that an application can run on depends on the processor

used on the device that runs the software.

One of the main goals for Jolla, from the early days of development, has been to open

up their platform for more OS contribution; however, the un-readiness of proper infras-

tructure prevented contributors from being able to collaborate since the beginning of

the software development process. The purpose of this project was to help reach this

goal.

4.5 Software development process

Jolla’s software development process for developing Sailfish operating system is done

using Git distributed version control systems, Webhook, Open Build System (OBS), and

Bugzilla. In simple words, Git is used to share the code; webhooks are used to hook

the code to related packages; OBS is used to update the packages according to what

15Sailfish open source code: https://github.com/sailfishos

21

Figure 5: Sailfish operating system architecture including open oource and property
packages

has changed in the code, and Bugzilla is used to track the whole process. All Jolla

employees access these services with specific credentials provided by the company.

The software development team uses Continuous Integration (CI) as the practice for

software development process. The CI process is about continuous development of

software assets which merges the developers’ copies of the working code several times

a day to the code in the related branch. The software asset is developed in the master

branch, and from the master branch we branch off for making software updates. There-

fore, the software releases are created in upgrade16 branches. This makes it possible

to continue feature development in the master while finalizing a release in the upgrade

branch. The reason for that is to be able to keep having stable software upgrades while

16Jolla started changing software ’updates’ to software ’upgrade’ some time during this project. The
document is going to use the word ’update’; however, in some screenshots you might see ’upgrade’.
Both words carry the same meaning in this document.

22

Figure 6: Branching during software releases

non-mature features are being developed in the master branch (see Figure 6).

4.5.1 An example of a Sailfish package on Git

Git distributed version control system containing the OS packages of Sailfish is avail-

able for public access. Figure 7 shows an example of a repository sailfish-browser on

GitHub17 . On the right side there are options to view the source code, branches, com-

mits, pull requests, and downloads. In the middle section, you can find all files that

are associated with making the Sailfish Browser application. There are 1,464 commits

made on this repository. Clicking on that will navigate you to the list of the commits

and all its related information (see Figure 9). In commit messages for Jolla reposito-

ries, there is also information about what the commit fixes or contributes to. The link

to the full report on Bugzilla is written like JB#xxxx or MER#xxxx 18 . In Figure 8,

JB#27682 is an example link for the commit that was pushed to Git. Such Bugzilla

report numbers help the release manager, and the testing team to be able to track in

what stage the fix is, and also make proper comments/actions in the report whenever

needed.

Navigating to the main page of the repository, we will go through the .spec file from

the RPM folder (see Figure 10).

Each .spec file consists of Tags, Scripts, Macros, File-related directives and condition-

17The GitHub repository can be found at this address: https://github.com/sailfishos/sailfish-browser
18JB#xxxx: JB corresponds to Jolla Bugzilla, and the xxxx corresponds to the bug number. Explained

in detail in Bugzilla section.MER#xxxx: MER corresponds to Mer Bugzilla, and the xxxx corresponds
to the bug number More explanation about this in Upstream Bugzilla Sync section

23

Figure 7: Overview of Sailfish Browser development page on GitHub

als.

• Tags (Not all these are necessary to be included for each RPM)

– Name: To define the name of the software being packaged

– Version: To define the version of the software being packaged

– Release: This shows the number of times the software has been packaged.

It follows the version number with ’-’. e.g. 1.1.0-2.3 (1.1.0 is the version

number and 2.3 is the release number)

– %description: Describes the package and what it does. The description

here can be more than 1 line.

– Source: Shows the name of the source file that exists in the ’source’ direc-

tory

– BuildRequires: Any other packages that are required to be present for the

successful build of the main package (i.e. sailfish-browser in our example)

Figure 8: An example of a commit message with a Jolla Bugzilla number

24

Figure 9: A part of the list of commits to Sailfish Browser application

– Requires(post): Is used to specify the required tools for the post installation

section.

– Copyright: To define the copyright terms apply to the software being pack-

aged.

– Distribution: To define a group of packages, of which this package is also

a part of

– Icon: For naming the file containing an icon representing the packaged

software (seen in RPMs related to applications)

– Vendor: For defining the name of the vendor who is responsible for pack-

aging the software

– Packager: Includes the name of the people who built the package

– Requires: It is used to say that the package needs to have certain capabilities

25

in order to be installed successfully and operate accordingly

– Conflicts: It is used to mention if anything is not compatible with the pack-

age

– %files: It contains a list of files that are part of the package. If the name is

not in the file list, it won’t be put into the package. For example for store-

client, you can see in which directories it installs files, you can see where

the .desktop file is located, etc.

• Scripts

– %prep: Is executed first while the RPM is being built.through the process of

Figure 10: An overview of the .spec file page for Sailfish Browser

26

preparing the software for building. In this section the build environment

for the software is created. ’%setup -q -n %name-%version’. In %prep,

we create the build directory, unpack the sources into that directory, and

perform any other actions that are necessary to get the source code into the

ready status.

– %build: Is the second script that executes during the RPM build. It is

responsible for performing the build. It is a shell script, and it does not

have the macros like %prep.

– %install: Is responsible to do whatever that is needed to install the software

that is built.

– %clean: Is used to clean up the build directory of the software

– %pre: Executes before the package is installed

– %post: Executes after the package is installed -%preun: executes before

the package is uninstalled

– %postun: Executes after the package is uninstalled

• Macros

– %setup: (also mentioned in the %prep section) Is used to unpack the origi-

nal sources while preparing for the build

– %patch: It applies patches to the unpacked sources

• File-related directives

– %config: Flags the file for being a configuration file

– %defattr: %attr(<file mode>, <user>, <group>, <dir mode>). For example

for store-client both the user and the group are ’root’ (non-numeric), but

there are no file/directory mode set for it.

To compare the above fields with the specification (aka .spec) file for Sailfish Browser,

we go through the .spec file of sailfish-browser, and check this information (see Table

1).

27

Tags The .spec file for sailfish-browser
Name sailfish-browser
Version 1.2.1
Release 1
Source %name-%version.tar.bz2
Requires In sailfish-browser, there are the names of the require packages

and the version which should be used. For example: sailfishsilica-qt5
BuildRequires As one example: pkgconfig(qt5embedwidget)
%description Sailfish Web Browser
%prep %setup -q -n %name-%version
%setup %setup -q -n %name-%version
%install ’All the code that is written below the install section’
%defattr %defattr (-, root, root, -)

Table 1: File specifications for sailfish-browser

4.5.2 Webhooks

Webhooks are user-defined callbacks over HTTP. They are intended to make web ap-

plications become more extensible, customizable and ultimately more useful. During

software development process at Jolla we use git distributed version control systems

and Webhooks. On Settings page of Git, there is the option to choose to which HTTP

link you want to hook your commit to (see Figure 11). One needs to add Jolla’s spe-

cific webhook link in that section. What happens after adding the webhook link there,

is that, whenever there is a new commit pushed to Git, the hook will be created for it

automatically and will be shown on Jolla webhook mappings.

Figure 11: Webhook settings on Git

28

Going through webhook mappings, one can find all that have been hooked to webhook.

In our example case, Sailfish Browser, if I search for sailfish-browser in search bar,

there is a list of all hooks, which are the links to the repositories with the Git branch

name, project name, package name, and the user name (see Figure 12).

Figure 12: An overview of sailfish-browser webhook mappings

To view the webhook page more closely, in Figure 13 and Figure 14, there is informa-

tion about Git links, project name, package name, and the user who pushed the commit

to Git.

Figure 13: Git links which point to related repositories

29

4.5.3 Open build systems (OBS)

OBS offers the chance to more people to collaborate in a project or package by prepar-

ing changes in a branched project, which is a copy of the original project, and then

merge them back. The merges can be approved upon submission, or sometimes in

bigger projects, the changes need to go through another revision after merging to be

completely checked. What one needs to do in order to take part or collaborate in a

project is to make a branch of the main project and start working on it. After apply-

ing the desired changes, one can submit them by merging them into OBS. If a project

needs to be accepted by another maintainer, he/she checks the changes and will accept

the submission if satisfied with it.

In OBS19, packages are built locally or on a remote build server. Each package can

be built multiple times. The multiple builds can be used for combination of reposito-

ries and architectures. In each build the packages are taken from the target repository.

If any packages change, OBS makes sure that packages which have the same build-

dependency against it are also rebuilt. If this has an effect on changing the package

binaries, the rebuild chain continues. Git repositories store all sources, and OBS builds

packages or projects from those sources. Webhooks are used to link OBS to Git repos-

itories and make package building possible. How the linkage works is that each time

a new commit is pushed to the Git repository, webhook will get notified about it and

the change will appear as a Git link in webhook mappings. Afterwards the CI-bot user,

which is a robot user in OBS packages, will automatically tell OBS to rebuild all the

19Jolla and Mer each have their own OBS system. Mer OBS can be found here:
https://build.merproject.org/ . Link to Jolla’s OBS cannot be disclosed due to confidentiality.

Figure 14: Other information about the webhook mappings

30

packages that are dependent on that Git repository. For an overview on OBS packages,

Figure 15 shows a short list of some of the OS packages currently available on OBS

for Sailfish operating system. Among the list of OS packages you can see mer:core

which is on Mer.

Figure 15: An overview of some open packages for Sailfish operating system on OBS

With OBS, as well as some instances of version control systems, there are configura-

tions to make a set of packages or repositories accessible to a specific group of people,

such as employees of a company. In this case, to be able top view or access the files,

one needs to sign in with company-specific e-mail address, or ask the administrator to

add them to the list of authorized users.

4.6 Tracking system for planning and task tracking: Bugzilla

Bugzilla is a web-based bugtracker originally developed and used by the Mozilla

project, and is licensed under the Mozilla Public License. it has been adopted by many

organizations for use as a bug tracking system for both OS software and proprietary

projects and products.

Jolla uses Bugzilla for many other tasks other than only bug reporting. It is used for

documenting information regarding research and development, marketing, planning,

legal issues and business management. Each report created on Jolla Bugzilla, consists

of a thorough description of the matter, as well as targets or deadlines, if any. Reports

filed in Jolla Bugzilla are not only about reporting glitches or defects in the software

or hardware; however, in this document, the word ‘bug’ only refers to flaws that need

31

Figure 16: An overview of the first page of Jolla Bugzilla

to be fixed. Figure 16 shows a general overview of the Jolla Bugzilla page. In the

middle of the page, there are four selections named Quick entry, File a bug, Search

and Preferences. Other important options are search for a report, create a new report,

browser Bugzilla, view different team, view different areas of operation, and see who

is logged in.

4.6.1 Quick entry

For issues which need to be reported as fast and easy as possible, this entry works best

(see Figure 17). All that should be done is to write a title and a short summary of the

issue that you want to report. Everything else can be set to default in case otherwise

stated. Fields with asterisk are mandatory.

From the drop down menu in this Product, you can choose the group(s) that can view

the entry after it is submitted. Whether it is for in-house employees , subcontractors ,

or specific to any external groups working with Jolla. After choosing the product type,

having the Component set to backlog makes sure the data will be sent to backlog and

is available for later checks. Summary gives a title which explains in a short phrase or

sentence what the reported issue is about. Any other information about the report goes

in the comments section. The Type field specifies if the issue is a Goal, Task, Story, or

Bug. The Area field brings on a drop-down menu with a long list of areas functioning

in Jolla. Any reported issue in Bugzilla must be assigned to an area. The checkbox

besides a field is t Keep the value of that field for further ideas. After checking the

32

Figure 17: Quick entry page in Jolla Bugzilla

checkbox, all settings will be preserved for the next entry you want to write. After

all is done, hitting the Submit button will submit a new report in Jolla Bugzilla, as

well as the real-time e-mail notification sent to those who subscribed to a specific area

mentioned in the report.

4.6.2 File a report using a simple view

Selecting this option from the main page will open up a more detailed page for a

report entry. However, this page also has a simple and an advanced settings page.

The simple view fields such as Product, Component, Type, Area and Summary are the

same as what was described in the Quick Entry section (see Figure 18). Although the

Description field is not marked as a mandatory field, it is often filled with either a short

or a thorough description of the issue. In this section we will go through the Type field

33

in more detail. We will also study more about the Severity and Priority fields, and what

needs to be written in the description box.

Figure 18: Report entry with a simple view on Jolla Bugzilla

The type field identifies what kind of report is going to be filed on Bugzilla. According

to table 2, there are four types of reports in Jolla Bugzilla.

A report in Bugzilla can be related to more than one area, and is not necessarily tied

to only one. For example, if someone finds an issue with how the Browser applica-

tion looks on Homescreen, both developers of the Browser area and Homescreen area

should be added to the bug report. Only a developer from one area might need to fix

the issue, but including all related areas makes sure that developers for both areas are

aware of the bug. Areas can be selected upon filing a report then adjusted later in case

more areas are needed to be added or some are needed to be removed. As soon as one

starts typing the name of an area in the text field of Area, a drop down menu opens up

and shows the user a list of the existing areas.

For any goals/stories/tasks/bugs, it is important that the severity matches the actual

impact of the defect or the importance of having a feature. According to Table 3 the

severity of a report can be selected upon filing it, and then adjusted later in case needed.

Severity of a report on Bugzilla is also divided into four groups:

34

Type Description
Goal It is a structural ‘meta’ item that can refer to implementation of a bigger

feature (e.g. a new application). A Goal can be achievable during one or
more iteration planning depending on how big the task is and how much
resources are available to implement it.

Story A specific and distinctive feature. It can be done as one big task or can be
split into several tasks. It is possible to achieve the target in a Story within
one iteration period.

Task A child of a Story or one specific feature independent of any stories.
This type is used when talking about small tasks or changes that are not
flaws or abnormalities, but would be good to be implemented
(e.g. feature requests). The priority for when they will be fixed depends
on the team and companyplanning.

Bug Refers to a defect in software/hardware or process. It is about deviation from
the expected or reasonable way of behaving.

Table 2: Different statuses in a Bugzilla report

Severity Description
Minor For small glitches or flaws one needs to polish to reach to perfection.
Normal The normal severity is selected by default while filing a new report.
Major For issues that are causing crashes of applications on the device.

As an example if opening 5 tabs in Browser causes it to crash (i.e. Close),
the report needs to have the major severity.

Critical For issues which make the whole device completely unresponsive,
cause the device to reboot, or cause data loss.

Table 3: Different severities in a Bugzilla report

35

4.6.3 File a report using an advanced view

When navigating to the advanced settings, some extra fields and options will appear

including Priority, Status, Assignee, CC list, Target and Deadline as shown in Figure

19. All of these are optional, and are selected if necessary.

Figure 19: The advanced view

Depending on the severity, type and description of a report, the level of priority it

should be dealt with changes. Priority indicated the level of commitment needed to

be put into taking care of a report. The priority of a report can be selected upon filing

it, and changed later in case needed. According to Table 4 There are three kinds of

priorities:

The Target field is used to state in which software upgrade a goal/story/task/bug is

planned to be delivered. This field is used to help in planning and keeping track of

things landing in a software upgrade. It is also used to track what changes need to be

36

Priority Description
Optional This means what is asked for in the description can be delivered

whenever possible.
Normal This level of priority is selected automatically upon filing a report.

This means the issue will be dealt with as planned, or can change
later if needed.

Mandatory Reports with a mandatory priority should be delivered within an
iteration or sprint.

Table 4: Different priorities in a report on Jolla Bugzilla

made in manual or automated test cases. This field can be set at the time of creating a

report or a while after that. However, the input in the target field is not carved in stone,

and if an item cannot be delivered for a specific software upgrade, with proper release

exception description explaining why it cannot be delivered, the target field can change

for later software upgrades.

An assignee for a report is the maintainer of the software component the report lands

into. An assignee can be set upon filing a report, or after it. Usually after a report is

created, area owners of the areas mentioned in it will receive a notification. After that,

they assign the goal/story/task/bug to themselves and give a target for when they can

deliver it.

The Status indicates the various states of a report in its lifecycle; from being filed until

taken care of.

A release exception may be required when an important feature cannot be completed

and tested on time for the feature integration deadline and needs to be part of the

release in the making. It is also for cases when a feature needs to be reverted because

it is not ready enough to be used on by end users. Release exception requests are filed

in Bugzilla as well, and there is a default template for them available in the report

description.

A change request may be required when an important feature, or an added component

does not work as it is planned to and need to be either changed or reverted.

Release blocker reports are the ones that are blocking a release and must be fixed before

the release is rolled out to end users. Jolla uses the whiteboard field (see Figure 20) to

identify what release version number a specific bug is blocking.

37

Figure 20: A report that is a release blocker for update 10

4.6.4 Description of a report in Jolla Bugzilla

The description of a report needs to be as precise as possible. It needs to explain the

main problem and the preconditions or prerequisites needed to reproduce that problem.

The report also needs to describe any type of hardware, or provide other information

by attachments. Figure 21 gives an overview of a typical report description on Jolla

Bugzilla. After filling out the above info, one will submit the report. Table 5 gives an

example for a bug report description for the Browser application on Tablet.

4.6.5 What happens after a report is created on Jolla Bugzilla

Since Bugzilla reports have a real-time connection with reader, at the same time the

report is created in the database, the email notification is generated to those who have

enabled this option. The developers analyze the report and in case of validity, assign

it to themselves in order to fix/implement it. Figure 22 shows an overview of a bug

38

Title Description
REPRODICIBILITY 70%
BUILD VERSION 1.1.9 RC3 (1.1.9.2)
HARDWARE Tablet
LANGUAGE Finnish
REPORT DESCRIPTION When watching videos uploaded to Facebook (URL starts

with video.xx.fbcdn.net),
Browser gets killed to Homescreen on some occasions.
Seems to be reproduced more reliably when 4-5 tabs
are open.

STEPS TO REPRODUCE 1. Have a few tabs open
2. Open Facebook in Browser
3. Go to a page with a lot of videos
(e.g. 9GAG and LADBible have a bunch)
4. Go to ‘Videos’ category of the mentioned websites.
5. Try to open and watchi a few videos, leaving their
tabs open.

EXPECTED RESULT Browser continues to function as expected.
ACTUAL RESULT Browser minimizes to Homescreen and need to be

restarted via the applicat6ion active cover on Homescreen.
ADDITIONAL INFO The issue seems more common with Facebook.

Managed to reproduce once on Youtube.com

Table 5: An example of a report description on Jolla Bugzilla

39

Figure 21: Bug description outline

report after it is filed on Jolla Bugzilla.

Figure 22: An overview of a report filed on Bugzilla

The See-Also field is used in Jolla for two main reasons: Either to link internal Bugzilla

reports to each other, or to track items from other Bugzilla instances, such as Mer. It

is also used to track items created on together.jolla.com 20, which is a forum for Jolla

users.
20together.jolla.com is a community for all Jolla users. In this community, users report issues, ask

40

The See-Also field plays an important role in this project. In this field one needs to

put the URL from one of the distance Bugzilla instances. Once a URL is added there,

the created report is linked to that URL to get information from that distant item. A

thorough description of how this field exactly operates will be covered in the Upstream

Bugzilla Sync section.

4.7 The release process

The release process in Jolla consists of various parts. As mentioned earlier in this chap-

ter, there are Git, Webhooks, OBS, Jolla Bugzilla, CI-bot, and last but not least, Jolla

crew with their OS community contributors to make the Sailfish release land sanely on

the devices. It is explained in the following lines how the whole release process works,

from different release levels and quality assurance work flow to Bugzilla integration

and the CI process.

The release process in Jolla consists of three levels: devel (as in development), testing,

and release (see Figure 23).

Figure 23: Release cycle levels

During all these levels, Jolla needs packages from two main sources:

1. Jolla in-house developers who deploy on Git, and push to webhook.

2. Mer developers who deploy on Git on the open, have an exclusive hook for Jolla

webhook, and push them to Jolla’s webhook.

Before this project Jplla used to cherry-pick the changes from Mer in webhook and

integrate them into their software releases (see Figure 25). Before going in depth with

questions, and in general are in contact with Jolla employees such as the release manager, project man-
ager, developers and testers.

41

Figure 24: A bug status starts from ‘New’ and ends in a ‘Released’

different release process cycles, the terms CI-bot, Changelogs, and Bugzilla statuses

need to be described.

4.7.1 CI-bot

CI-bot is a continuous integration robot developed to replace the manual tasks by doing

them automatically when given the command. During this project CI-bot is used to

make a connection between a Bugzilla report and its corresponding pull requests from

Git, and to link the Bugzilla reports numbers mentioned at the end of commit messages

(JB#xxx and MER#xxx) in the changelogs.

4.7.2 Changelogs

Changelogs are the list of changes which inform what has been changed from one

release candidate to another. For Sailfish OS software development, changelogs are

the list of commit messages saying what the commit contributes to/fixes.Changelogs

are available both internally for Jolla employees, and publically for the end users. It

can be gained by typing the following command on the device terminal application:

rpm -q –changelog package_name

4.7.3 Bugzilla statuses and their meanings

Status indicates the various states of a Bugzilla report in its lifecycle; from being filed

until getting fixed or implemented.

To explain Figure 24, a report that is just created usually has the ‘New’ status. After

a developer takes the report to fix/implement it, he/she assigns it to him/herself, and

the status will change from New to Assigned. The developer commits to the bug and

starts hacking in Git and creating a branch from the developing repository. As soon as

42

Figure 25: Where the code for a software release comes from

the commit lands in the development level in release cycle, the Bugzilla report status

changes from Assigned to Committed. Next, the commit lands into the software update

in testing gate. This is when the bug status will change from Committed to Fixed. At

this point there is a fix, but it is not in the final software release update. When the fix

lands in the release candidate, the bug status changes from Fixed to Released.

Goals, Stories and Tasks have the same situation as Bugs regarding their statuses. Sta-

tus for Bugzilla reports other than bugs are set manually by either the project manager

or the team chief after knowing that the report is done and implemented, or the bug

reports on which a Task/Story/Goal was dependent are all resolved.

The whole process with Bugzilla status changes is done both automatically and man-

ually, depending on how the developers want. For the automatic part, CI-bot changes

the Bugzilla status and comments on the report with the changes that have been made.

The reason to use CI-bot is to save developer’s time to do other important stuff instead

of checking a report constantly and updating its status manually. CI-bot also mes-

sages make it very clear for everyone to see what has changed, when it changed, who

changed it.

43

4.7.4 Development level

This is the first stage in CI where quality assurance for the release cycle comes in. All

changes planned for OS update releases are first pushed here.

As explained in the software development process section, the packages that build

Sailfish OS are picked from two sources:

1. Internal Jolla developers deploy via Git and push the changes to webhook. The

changes will then go through Jolla’s OBS to be built. At this stage, for all the

commits with Bugzilla numbers, there will be a comment from CI-bot automat-

ically put to that report, so the report will be committed. Therefore, the Bugzilla

status will be resolved/committed.

2. Jolla picks the needed changes from Mer developers who also push commits

to Jolla webhook. These will again go through OBS. However, there are no

Bugzilla report numbers for the commits made from Mer side. Also some of the

Bugzilla references currently showing up in the changelog are internal reports of

public things which we wanted to move to the open by doing this project.

After changes from documentation and translation servers also go through build, OBS

submits a request for package testing. Packages go through automated tests, and fi-

nally if all pass, image will be built for the devel repository. The automated tests done

in during the release cycle are previously written by the automation team, using me-

chanical and virtual robots , to be run with each build of the release software. After

a release hits the development level, it automatically goes through a set of automated

test cases which check the basic functionalities of the software. If any of these tests

fail, the release manager or a member from the automation team needs to check the

logs for the failed test cases. Sometimes failing happens due to reasons unrelated to

the software, such as crash in robot systems. In these cases, the test case is run again

manually on the software and the results from the re-run tests determines if there really

is a defect in the software or not.

44

4.7.5 Testing level

Continuing from the previous level, all the accepted packages go to the testing level,

along with a submit request which include fixes from both Jolla and Mer developers.

On Jolla side, for the commits including a Bugzilla number, CI-bot will post a comment

to the related goal/story/task/bug and change the status of it to Fixed. Everything will

go through Jolla testing repository and ready for tests. The system testing here is

done through automated test cases mentioned in the development level. In some cases,

release manager might request additional manual testing, by the QA team members,

on the image in the Testing level. This happens at times when there might be doubts

by the release manager that the automated tests have not given accurate results.

4.7.6 Release level

Continuing from the previous level, all changes accepted by the release manager will

go to the release level. The process is the same as two other levels: Changes from Mer

and Jolla developers will go through Jolla release repository after the submit request is

done, and the image will be ready for release testing. In this stage, for commits which

contribute to specific Bugzilla reports, CI-bot will post a comment and change their

status to Released

4.7.7 Release snapshot

With the test results being accurate from the previous level, in this level, the final

snapshot of the release candidate will be made and put for manual testing by the testing

team. Manual System Testing is done by going through thousands of test cases. All

the test cases have explicit steps, so that anyone reading the test case can understand

how to perform it. These test cases go through different applications on the software,

such as Settings, Phone, Gallery, Camera, Store, etc., and test all the available features,

options, and sub-pages in these applications. Manual test cases also consist of test cases

related to power management, hardware configurations such as Bluetooth, SD-cards,

USB, etc.

45

Figure 26: Bug life cycle during software integration

4.7.8 Life cycle of reports in Jolla bugzilla during the integration process

Figure 26 shows in detail the process of a goal/story/task/bug status since it is created

until it is resolved completely.

After a new report is filed and assigned to a developer, he starts developing a fix for

it on Git. What he does for the commits he pushes, is to add the Bugzilla number

like ’JB#number’ at the end of the commit message. This will help CI-bot to trigger

which commit contributes to which Bugzilla report, and then comments are integrated

automatically to the report during release process. After the developer deploys a fix for

a report, he can hither manually put a PR21 link to the bug and ask fellow developers

to review it, and then push the commit; or if no review is needed, the code will be

committed right away.

In both conditions, the fix will be committed and CI-bot changes the status of the report

to Committed. This happens in devel and the fix goes to be tested in ’devel’ level of the

release process. CI-bot also makes an automatic comment to the bug which includes

info of the software update version, who did the change and when, and it also adds the

commit message to the comment.

After going through automated tests devel and getting accepted by the release manager,

the fix goes to be tested in testing level. CI-bot changes the Bugzilla report status to

Resolved/Fixed. It also makes an automatic comment to the report which includes

information of the software update version, who did the change and when. There is

a set of automatic tests that run during the testing cycle. The results from these test

indicate whether the software update is stable enough to be a release candidate or not.

21Pull Request on Git

46

A QA22 report will also be created from the results of the test, and the release manager

will accept the changes in order to let it go through the release level.

After being tested through automated test cases and approved by the release manager,

the fix goes to be tested in release level. CI-bot changes the Bugzilla status to Re-

solved/Released. It also makes an automatic comment to the report which includes

information of software update version, who did the change and when along with the

commit message. In this level, the complete system testing is done which is both

manual and automated. The testing team will run test cases against the new release

candidate. There is also a QA report made out of the result of the tests. In the end the

release manager will either accept or reject the changes. If later someone realizes the

fix does not work after the release, he/she can reopen the report.

There is also a case where a developer does everything manually. This way there will

be no Bugzilla number in the commit and the responsible developer needs to update

the bug with different statuses manually.

4.7.9 Earlier tracking of the release process before this project

Currently in OBS changelog, the commits for non-open-source packages are followed

by a Bugzilla number which the commit contributes to. Take the below picture as

an example of changelog with its Bugzilla numbers for the ’ambianced’ package (see

Figure 27).

Figure 27: Changelog for a closed-source package called ‘ambienced’

However, for changes coming from open-source packages, the commits do not fol-

low any Bugzilla numbers (see Figure 28). Existing open packages include some on

Mer side such as mer-core, mer-tools, hybris-hal common stuff essentially Hardware

Adaptation Development Kit; some on Sailfish open side, and nemo:mw.
22Quality Assurance report used to show the results of testing procedures.

47

4.7.10 Problem with the release tracking procedure before this project

In Mer projects, looking at the changelog only shows the commit messages without

any Bugzilla numbers, therefore nothing is traceable from Jolla side. When releases are

made, it is important to be able to track the changes from Bugzilla. Internal developers

need to provide the release manager at least one Bugzilla number which addresses to

the changes they have made for the new update. On Mer side, there are not Bugzilla

numbers representing the commits from the open source components, in changelogs,

and the release manager on Jolla side cannot track the changes via Bugzilla numbers,

but only remembering them which is not sufficient enough. On the other hand, lack

of proper infrastructure made it harder for Jolla open-source community to contribute

in the development process. As one of the main purposes behind this project Jolla

wanted to prepare needed infrastructure, and ask the Mer package maintainers and the

Mer community to adopt a policy to require bug numbers in some commits to Mer

packages to support vendor tracking of changes in Mer.

Figure 28: Changelog for an OS package called ‘ofono’ on Mer Side

48

4.7.11 What did Jolla do to solve the problem and ease the collaboration?

The plan for this project was to be able to track Mer Bugzilla reports on Jolla Bugzilla

so that when a report is filed on Mer, there will be an automatic Jolla report created for

it on Jolla Bugzilla. Before having the Bugzilla numbers for commits from the Mer

community, changes on the Mer side was tracked manually. The reason to have this

Bugzilla number is to be able to track Mer report on Jolla Bugzilla and automate as

much of the process as possible. Our goals here are:

• To work on open components, in the open, using the external Bugzilla (i.e. Mer

Bugzilla)

• To have an internal interface for tracking the changes in both open and closed

components, because:

– There are dependencies between the open and closed components

– There are dependencies to tasks in other areas like business development,

marketing, etc., that need to be tracked internally

– Collecting and updating information manually in several places is difficult

and time consuming

• Minimize the amount of manual work required in development, testing and re-

leasing to make this tracking possible

To achieve this we need to prepare internal and external infrastructure for the upstream

Bugzilla sync.

4.7.12 Upstream Bugzilla sync

By going upstream, we want to work openly on some components and have an internal

interface for the external (i.e. Mer Bugzilla) reports. Also, we want to work on open

Bugzilla reports using the external Bugzilla, and be able to comment on the cloned

report in internal (i.e. Jolla) Bugzilla by going to the external Bugzilla. Moreover, we

want to make sure no writing of status information will be made on Bugzilla reports on

Mer. Each side (Jolla and Mer) set their own Bugzilla status. With upstream Bugzilla

sync as shown in Figure 29, there is going to be an automatic Jolla report created

49

in Jolla Bugzilla (internal) for the report on Mer Bugzilla (external). The report is,

however, only readable from Jolla Bugzilla.

In order to make any comments to the report, one needs to go to Mer Bugzilla to have

the write access. This is done in order to reduce the hassle of not having reports on

Bugzilla with the same content and different comments, as well as making it easier

for Jolla developers to be able to track external Bugzilla reports internally. They most

probably won’t have time to check Mer Bugzilla separately, so it is more convenient to

have the report already created on Jolla Bugzilla. They read it on Jolla Bugzilla, and if

they want to make any comments, then they have to go to Mer Bugzilla.

Porting the report from Mer Bugzilla to Jolla Bugzilla is done automatically; however,

the Bugzilla status is something independent from Mer. Each side, Jolla and Mer, has

their own Bugzilla status. The reason for independent statuses is that Jolla uses this

status to track integration changes for the time new OS updates want to be delivered.

The Bugzilla statuses are in aligned with Jolla’s software integration system, and it is

for a different purpose than used on Mer.

To have this tracking mechanism also on the open side, developers can file a goal/sto-

ry/task/bug on Mer Bugzilla explaining the issue they have a fix for, and then provide

the bug number (e.g. MER#12345) in the commit message they push to Git. This will

benefit both sides since Mer can provide the same kind of automation and tracking;

Jolla can cut down the manual effort required for tracking the changes in the open

parts; and Jolla can move planning of open components to Mer Bugzilla.

4.7.13 How automated cloning and tracking is done

Basically there are three steps:

1. A report gets created on Mer side (external)

2. Either a developer creates a tracking report on Jolla side, or Jolla CI-bot cre-

ates it automatically when it encounters a Mer Bugzilla reference in the package

changes (i.e. MER#xxx)

3. Jolla CI-bot reports the progress through the different integration levels to the

tracking report in Jolla Bugzilla.

50

Figure 29: Upstream Bugzilla sync in detail
51

We need the information from reports in Mer Bugzilla to also be visible in Jolla

Bugzilla for tracking and planning during the release process. We need the synchro-

nization to be automated to some degrees. The linking works in a way that there is a

report on Mer linked to a Jolla report and this will make the Jolla report be the track-

ing report. Creating a tracking report on Jolla Bugzilla can be done while creating the

report on Mer Bugzilla, or any time later. In Mer Bugzilla, upon creating a report there

is the option to clone from, which can be used to link the Mer report to be synced in

Jolla Bugzilla.

There are a few terms on how the tracking bug on Jolla Bugzilla, and the open bug on

Mer Bugzilla need to behave:

• There can be multiple tracking reports on Jolla Bugzilla for one report on Mer

Bugzilla, but a tracking report can only track one report on Mer Bugzilla.

• Tracking reports need to make an easy access to the report on Mer Bugzilla.

In Jolla, we make visibility of the Mer Bugzilla by adding the link of the Mer

report to the See Also section of the cloned Jolla Bugzilla report. Whenever the

See Also is removed, there needs to be a notification saying that the report on

Mer Bugzilla is no longer being tracked.

• All the tracking reports are like other reports on Jolla Bugzilla, which means they

can be goals/stories/tasks/bugs, and they can be used during iteration planning,

and software integrations.

• When there is a new comment in the report on Mer Bugzilla, the tracking report

will also have the comment added as a reflection of the Mer report followed by

an email notification in Jolla Bugzilla.

• When there is a status change in the report on Mer Bugzilla , there will be an

email notification triggered for the tracking report about this status change. On

Jolla side, developers have the freedom to change the bug status accordingly if

needed. Bugzilla statuses in Mer and Jolla Bugzilla are independent from each

other. Also when the status of a tracking report changes, the user who changes

the status on the closed Bugzilla (i.e. Jolla Bugzilla) will be prompted whether a

comment should be sent to the related report on Mer Bugzilla or not.

52

4.7.14 How CI-Bot works during upstream sync

In this level, CI-bot works with OBS changelog. It goes through the OSS (open source)

projects. From the packages, it scans sources and the .changes file, searching through

the commits. For every commit, CI-bot checks if there is already a cloned report for

it from Mer Bugzilla to Jolla Bugzilla. If the tracking report is already created, CI-bot

makes a link between the two reports. If not, CI-bot will make a read-only report for it

on Jolla Bugzilla and then points to it.

4.8 The proposal presented to Jolla’s open-source community

With upstream Bugzilla sync being implemented and in place, it was time to represent

the changes to Jolla’s open source community, and ask Mer package maintainers to

try to adopt to the new policy. I represented the main project, our goal and the result

of the project to the community members through developer mailing list23 on 27 Jan-

uary 2015 . In the representation, I first explained the all-time goal of the company

regarding collaborating with its open source developer community, and the difficulties

that had prevented us to reach this goal for so long. I continue by explaining how the

release process for the Sailfish operating system was done at Jolla. I then describe lim-

itations on community collaboration in the open-source code, and what we had done to

make this collaboration happen. I also explain how they can do the contribution to the

software development at Jolla, and I finish by asking them to adopt a policy to support

vendor tracking of changes in Mer. In the following lines of this chapter, you will read

the proposal exactly as it was represented to Jolla’s open-source community.

Section 4.8.1 shows the content of the proposal exactly as it was sent to the OS com-

munity members.

4.8.1 The request to Mer package maintainers

This is a request to Mer package maintainers and the Mer community to please adopt

a policy of requiring bug# in some commits to Mer packages for supporting vendor

tracking of changes in Mer

23The mailing list is accessible from: https://lists.sailfishos.org/pipermail/devel/2015-
January/005571.html

53

Jolla started with the emphasis of having community -the heart of any open source

project- involved in the long run ahead of it. We caught the ribbon with the motto

of ’doing it together’, and tried our best to stick to it from day one. And today we

are proposing and requesting a change which will help us all to be one step closer to

achieving more togetherness, by opening up our development to anyone interested in

getting a closer view of the code, and going further in contributing. We would like to

ask our community to take part and collaborate in Jolla’s release project.

How Jolla tracks work required for a release

As you may know Jolla obtains its source code both from open-source24 and closed-

source codes. The closed-source part is maintained by our internal developers, and

the open part by both internal and external developers. For each software release, this

source code is taken from both places and shapes the release image. As expected, with

each release candidate there is a changelog containing the info about what has been

changed from the previous release to the current one. In this changelog there are both

internal and external changes, with just one difference: For the internal changes, there

is at least one bug number which shows what the git commit is contributing to25 .

Up until now it’s been that for changes in the closed-source packages (=the internal

part), developers need to include at least one bug number in their commit messages

which addresses to that change. However, for the packages on the open side there has

never been such a tracking procedure. Therefore, tracking changes in the open has

always been difficult, whether for the release manager, testers, or anyone else who has

been interested in following the changes.

Having this bug number in the changelog for the closed-source part has had several

advantages:

1. From the release manager’s point of view, it can make tracking the changes easier

and more efficient; so that during each release cycle, there is some kind of a

documentation for him about what has been changed and in what level.

2. From the testers’ point of view, it is beneficial because they can test those bugs

24Existing open packages include some on Mer side such as mer-core, mer-tools, hybris-hal
common stuff, essentially HADK (https://github.com/mer-hybris); some on Sailfish open bits (
https://github.com/sailfishos), and nemo:mw

25Some of the bug references currently showing up in the changelog are internal bugs of public things
which need to move to the open.

54

and make sure the commits have really fixed the issues.

3. And last but not least, everyone else who is interested can follow the changes

from one release to another, getting a clear insight on the releases content and

changelogs26.

However, for the open-source parts, the commits in the changelog are not followed by

any bug numbers. This means for the release manager, testers, or anyone else interested

to track the changes on the open, there are not any specific documentation (i.e. bug

numbers) addressing them. Therefore, in order to track the changes in the open, one

needs to do it manually, which is both time consuming and not beneficial. On the other

hand, not offering a proper system to our community has also made it harder for you

to contribute to Jolla’s software development process .

Jolla is always seeking the support and contribution from its community. We’ve already

had 10 software releases, and had your words of support through all the ups and downs

since day one. Having our community’s continuous trust gave us the courage to be able

to row in this stormy sea, and deliver a part of what we’d promised. Although Jolla

couldn’t make all the infrastructures ready for better contribution from the beginning,

we continued to back each other up; it has never been Jolla’s sailors alone, but Jolla’s

sailors with its community. These all moved us forward, and now that we’ve put our

feet on the ground, we are ready to deliver a new part of our words of support since day

one’ to you. We have implemented a suitable system to ease the ways for our dearest

community’s contribution.

As we talked about changelog, Jolla’s internal developers provide at least one bug

number (the bug is created on Jolla Bugzilla) in their commit messages. This bug

number helps our bot to link what issue each commit contributes to. Then the bot will

update the bug automatically in each level of the release cycle; from the development

level, to testing and release levels. These automatic updates show detailed information

about ’who changed what’ .

The reasons Jolla uses a bot to do the tracking are:

• Lots of developer’s time can be saved to do other important stuff instead of

checking a bug constantly and updating its status manually.
26These changelogs are available on the Jolla phone via running ŕpm -q –changelog package_nameín

terminal.

55

• The CI-bot message makes it very clear for everyone to see what has changed,

when it changed, who changed it and lots of other info you can read in Mer wiki.

So, as the intro mentioned, as one of Mer’s vendors, Jolla would like to ask the Mer

package maintainers and the Mer community to please adopt a policy of requiring bug

numbers in some commits to Mer packages for supporting vendor tracking of changes

in Mer.

To have this tracking mechanism also on the open side, developers can file a bug on

Mer Bugzilla explaining the issue they have a fix for, and then provide the bug number

(e.g. MER#12345) in the commit message they push to Git. This will benefit both

sides, as:

1. Mer can provide same kind of automation and tracking.

2. Jolla can cut down the manual effort required for tracking the changes in the

open parts .

3. Jolla can move planning of open components to Mer Bugzilla

To keep a community successful, unified and going, participants need to have shared

goals, and respect the cultural values. In Jolla, as one of our main values, we respect

communication, advancement, challenge and invention. We want to move forward

by having the transparency in what we do, and showing our passion in what you do.

We would like to work with you as openly as possible. With your ideas, passion and

creativity combined, we believe we can take another big step in our journey. The infras-

tructure is alive and kicking; you contribute, and we take care of the rest. Please read

our FAQ (https://wiki.merproject.org/wiki/FAQ#Vendor_.27Jolla.27_Frequently_Asked

_Questions) for more detailed info, and don’t hesitate to contact us in case of any ques-

tions. Best regards,

Nazanin Mirarab (on behalf of the Jolla team)

An online meeting regarding this proposal was handled a week after representing it to

the community members. The purpose of the meeting was to answer any questions or

uncertainties regarding these changes.

56

4.9 A example to show the results of the project in practice

To show all the previous sections explained in this document in practice, and make it

more clear how the upstream Bugzilla sync could improve the software release process

in the company, I will illustrate examples of software planning before the upstream

changes, and software planning after the changes were implemented. After upstream

changes have been implemented, Open Source software development changed in two

places:

1. Open Source components on the open side i.e. Mer Bugzilla

2. Reports of Open Source components which were created on Jolla Bugzilla. These

reports were filed on Jolla Bugzilla since that was the only way for an in-house

developer to be able to track them during the release process before upstream

changes take effect.

We show an example of reports in category 2, and how they have changed after the

new infrastructure has been implemented.

In the before phase I will explain:

1. A report for an open-source/closed-source component is created in Jolla Bugzilla,

to be tracked during iteration planning

2. A fix for that report in Bugzilla is in a Git repository

3. How the Git commit is connected to a report in Jolla Bugzilla

4. How the Git commit is connected to Jolla Webhook

5. How Jolla Webhook is connected to OBS

6. What happens after OBS build an image with the fix from Git in it

7. Exploring the software release changelog and comparing commits with and with-

out bug numbers

8. How lack of information in changelog can cause difficulties in the release process

In the after phase I will explain:

57

1. A fix for an open source component is in a Git repository

2. How the Git commit is connected to a report in Mer Bugzilla

3. how Mer Bugzilla is connected to Jolla Bugzilla

4. How the Git commit is connected to Jolla Webhook

5. What happens after OBS build an image with the fix from Git in it

6. Exploring the software release changelog and pointing out bug numbers related

to both internal and external commits

7. Explaining how this can help software planning in Jolla as well as building a

better relationship with Jolla’s open-source community

4.9.1 Iteration Planning 12/2014 before the Upstream Bugzilla Sync

During the last iteration planning period for 2014, changes regarding the upstream

Bugzilla sync were not fully implemented, thus, not in use at that moment. This means

that open source components could not be tracked by the release team, testing team, or

Jolla’s open-source community. Any changes regarding the component in the open that

appeared in the changelogs could not be tested since the commit messages alone were

not enough to give sufficient information for testing, and there was no Bugzilla report

mentioned in the commit message via which one could obtain more information.

Therefore, during the 12th iteration planning in 2014 - and all the ones before that

- only internal issues could be tracked in our internal tracking system (i.e. Jolla

Bugzilla). Open source issues were known to some people in the company who were

working closely with them, but not to the rest.

The disadvantages of iteration planning where only closed components are being tracked:

• More risk for product management in predicting matters related to product de-

velopment.

• More risk for software project management in mistakenly exclude important

open source fixes, which were coming in the next software release, in the soft-

ware planning documents.

58

• Less visibility of the open source component in the changelogs of software re-

leases, making it nearly impossible for the testing team to test those new features

or bug fixes, before they land on the end users’ devices.

• More limitations for Jolla’s open-source community to be able to contribute in

the making of software releases. They had access to changelogs and could see

changes in open source components; however, if they wanted to know more

about those changes and contribute in improving the code, they had no informa-

tion regarding what the components were doing.

4.9.2 A Bugzilla report in the final release changelogs before the upstream Bugzilla
sync

A report (see Figure 30) is created in Jolla Bugzilla to be tracked during iteration

planning 12/2014.

Figure 30: Report created on Jolla Bugzilla

59

A fix coded by Jolla’s internal developers for that Bug will be in its Git repository

lipstick-jolla-home-qt5 as a pull request (see Figure 31). After review, the pull request,

names upgrade-1.1.6 is accepted and the commit will be pushed to Jolla Webhook (see

Figure 32). From Webhook, the commit is ready to be triggered for software build. The

‘trigger build’ button is available after you click on the Git link . After software build

is done, the commit lands in Jolla’s OBS and can be fetched for release image building

whenever it is called by the release manager (see Figure 33). From the .changes file in

OBS, you can see when the bug fix has landed in OBS (Figure 34).

Figure 31: Pull request on Git for lipstick-jolla-home-qt5 component

After the image containing this fix is built, from the release changelog you can find the

commit related to the fix (see Figure 35). JB#24761 is visible in front of the commit

message and is clickable hyperlink that will take you to the main Bugzilla report shown

at the beginning of this section in Figure 31.

From the same changelog, if you click on connman component, which contains the

connectivity-related packages of the software, and open its commit messages, you can

see that it only has a commit message without any Bugzilla reference number (see

Figure 36).

The commit message alone cannot help in testing what has been fixed in connman. It

cannot help release manager to track back the issue, Jolla’s internal testing team cannot

test this fix due to lack of information regarding the fix, and the external open-source

community cannot retrieve any information about where this fix has been used.

4.9.3 Planning 05/2015 after the upstream Bugzilla sync

During the 5th iteration planning period for 2015, changes regarding the upstream

Bugzilla sync were implemented, an announcement was made to the open-source com-

60

Figure 32: Webhook shows a hook for the Git commit named upgrade-1.1.6

Figure 33: Lipstick-jolla-home-qt5 is on Jolla’s OBS

Figure 34: The commit in Git has landed in OBS on 3 December 2014

61

Figure 35: Lipstick-jolla-home-qt5 fix in the release changelog

munity, and the service was in use. This means that open source components could be

tracked by the release team, testing team, and Jolla’s open-source community .

The upstream changes, however, started to gradually make open source components

accessible. Since there are quite many open source components, it takes time to have

Mer Bugzilla reports for all of them at once.

For those changes that a Mer Bugzilla report were created, they appeared in the changel-

ogs as MER#number, and could be tested since the commit messages included a hyper-

link report that could provide information for testing, and further collaboration from

Jolla’s open-source community.

The upstream Bugzilla changes started to be active from February 2015; however, the

Figure 36: Commit messages related to ’connman’ component in the release changelog

62

example I provide is for May 2015 since by this time many improvements have been

done to make the syncing process more efficient. The advantages of iteration plan-

ning where both open and closed source components can be tracked is the availability

for product management to predict matters related to product development, as well as

availability for software project management to include important open source fixes,

which are coming in the next software release, in the software planning documents.

There is also more visibility for the open source component in the changelogs of soft-

ware releases, making it more efficient for the testing team to test those new features

or bug fixes, before they land on the end users’ devices. Moreover, it will bring less

limitations for Jolla’s open-source community to be able to contribute in the making of

software releases. They now have access to changelogs with more visibility on open

changes; and as the main goal of this project communication between Jolla’s internal

developers and its OS community will be improved.

4.9.4 Upstream Bugzilla sync and its affect on tracking the open source compo-
nents

A report is created in Mer Bugzilla as shown in Figure 37. Reports on Mer Bugzilla

are created regardless of Jolla’s release cycle. Jolla will fetch and use the ones required

for its releases whenever needed. Since the report shown in Figure 37 is created on the

open, it is accessible via this link: https://bugs.merproject.org/show_bug.cgi?id=930

A fix for that Bug will be in its Git repository mer-packages/connmann as a pull request

(see Figure 38). This Git repository is connected to Mer Webhook as well as Jolla

Webhook. Therefore, after the pull request in Figure 39 is approved, the commit will

be hooked to Jolla Webhook automatically. After review, the pull request is accepted

and the commit will be pushed to Jolla Webhook (see Figure 40). From Webhook,

the commit is ready to be triggered for software build. The ‘trigger build’ button is

available after clicking on the Git link. After software build is done, the commit lands

in OBS and can be fetched for release image building whenever it is called by the

release manager (see Figure 41).

From the .changes file in OBS, you can see when the bug fix has landed in OBS (see

Figure 42). Since connman is an open source packages, all the information about the

contributor to this package can be shown in the screenshot.

63

Figure 37: A report created on Mer Bugzilla

Figure 38: A commit for a Fix for Connman in Mer packages repository on Git

Figure 39: A commit for connman lands in Jolla webhook

64

Figure 40: Connman is on Jolla’s OBS

Figure 41: The commit in Git has landed in OBS on 13 May 2015

After the image containing the connman commit is built, from the release changelog

you can find the commit related to the fix (see Figure 42). MER#930 is shown after the

commit message and is a hyperlink which can take you to the main Mer report shown

in Figure 37.

The open component connman, which contains the connectivity-related packages of

the software, now has two MER# in front of both of its commit messages. In the

previous example, there were no bug numbers representing the commit messages for

connman; however, upstream Bugzilla sync made it possible.

Figure 44 also shows the detailed view of fixes in the closed source component lipstick-

jolla-home-qt5. Before changes regarding the upstream Bugzilla sync, only closed

components such as lipstick had hyperlinks to the Bugzilla reports representing them.

65

Figure 42: Connman fix in the release changelog

After opening the cloned report, the report will be shown as Figure 44 on Jolla Bugzilla,

with the See Also section containing the original report from Mer Bugzilla. On the

SeeAlso section, there are two options to choose from: Track and Remove.

By selecting Track, CI-bot keeps an eye on the original report on Mer Bugzilla, as well

as showing on the Mer report that it is being tracked by a report on Jolla Bugzilla. Any

changes in the original Mer report will be notified to the area owners mentioned in the

Jolla Bugzilla report (i.e. Connectivity, Connectivity UI, Mer Project, and WLAN).

By selecting remove, the Mer report will be removed from the cloned report on Jolla

Bugzilla. Any changes regarding the Mer report will not trigger any notifications on

the Jolla report.

At this stage, CI-bot goes through the release changelog and searches for any MER#number.

CI-bot will then take this Mer report and searches through Jolla Bugzilla to see if it can

find a clone of the Mer bug there or not.

• If CI-bot finds a clone for the Mer bug, it points to the cloned report.

66

Figure 43: An example of a cloned report from Mer Bugzilla on Jolla Bugzilla

Figure 44: Clone of a Mer report shown on Jolla Bugzilla

• If CI-bot cannot find a clone of the Mer bug in Jolla Bugzilla, it will create one.

A clone of a report on Mer Bugzilla looks like Figure 43 on Jolla Bugzilla

Figure 45 shows how CI-bot uses the cloned Mer report on Jolla Bugzilla to update it

according to Jolla’s integration changes. For instance, in the second comment made by

CI-bot, it is mentioned that the commit is in Sailfish OS, upgrade 1.1.7.1, and in the

testing level. Such information can help anyone exploring the report to find out where

the commit is recently being used in. The third comment by CI-bot on the report shows

the commit is now in upgrade 1.1.7.2 and in the development level.

67

Figure 45: How CI-bot updates the cloned report with Jolla’s integration cycle changes

68

5 Analysis of the project

Referring to one of the essays on Open Source by Eric Raymond ‘The cathedral and the

bazaar’ [16], we can explain, in other words, how Jolla developed its Sailfish operating

system. Raymond uses cathedral as a metaphor for corporations, where everything

needs to be planned beforehand, and without setting the exact requirements following

the hierarchy, one cannot proceed to the process of making the product. The bazaar,

however, is used as a metaphor for companies where everyone can decide when, how

and to what extent to contribute to a project. Jolla, as a software company, is a little bit

of both: A bazaar inside a cathedral.

Let us go deeper into the definitions of a bazaar and a cathedral at Jolla. Although

Jolla is a start-up company, many operations in it still follow the traditional way of

decision making and software planning. One of the reasons for that can be that the

founders of the company, as well as some of the team managers come from Nokia –

a big corporation with a lot of hierarchy. Therefore, decisions tend to be made more

with a corporate way of thinking, rather than a start-up one. On the other hand, they are

trying to adopt to agile decision making modes. This transition of course, takes time,

and the response rate the company can have towards some of the planning will be done

by delay. This is exactly what happened with the Upstream Bugzilla Sync project.

Another factor influencing the operations in agile environments might be due to lack

of resources in the company. Implementing this project required skilled developers to

be able to develop the whole framework and test it before delivery. They also needed

to automate as many manual actions in the framework as possible. The reason for

automating the actions was to make the job of filing a report and committing a fix for it

less time-consuming for the developers, so that they did not have to spend most of their

time on manually updating statuses or comments on Bugzilla, Webhook, and OBS. The

developers in charge of preparing the platform for this project were also busy with their

other day-to-day tasks in the company that they needed to take care of.

One other aspect I observed as a participant in this project, during the meetings with the

chiefs and responsible people for the project, was the lack of understanding the goal.

For some people in the project, the main goal and reasons for its delivery were clear,

while some thought that there was no necessity to do the project when the company

did not have the needed resources.

69

Further in this chapter, we will read about earlier experiments and studies that were

done in similar environments.

5.1 Earlier Works

Based on a study that was conducted to analyze the factors that influence satisfaction

with free and open source application software project, several factors were investi-

gated [3]. The research question on this study was to examine what factors influence

the satisfaction of participants in OS application software projects. Their conceptual

model showed that perceived system complexity has been the main factor in staying

motivated in the community. On the other hand, perceived product openness was the

least important value among the participants in the study. Comparing this study to

the one done at Jolla, we can notice that not having product openness was a reason to

decrease the satisfaction in Jolla’s OS community.

In another study done on the Eclipse project – a widely recognized open source project

which provides platforms for developing integrated tools - the development of Eclipse

has been one of the successful OSS development processes, with a developers’ commu-

nity who are committed to deliver quality software [6]. Eclipse achieved this success

by always releasing beta versions that would get into the feedback loop of end users,

until the feedback was taken in and applied to the software. Comparing this study to

the one done at Jolla, releasing more frequently in beta versions to get quick user feed-

back is one of the main approaches that Jolla has been doing with a higher quality after

the Upstream Bugzilla Sync got in place. Implementing this project helped Jolla to

give its OS community the ability to contribute to the software development process,

while the in-house developers could spend more time on maturing the Closed Source

components for a release. This also resulted in faster release cycles since changes from

the Open Source side were easily traceable, and could be added to the software release

build.

70

6 Conclusions

The experience of working on an Open Source project in a commercial company has

resulted in number of lessons learned, which we will go through in this chapter. There

are also several ongoing problems that show opportunities for future research.

6.1 Lessons learned

One of the most important findings – and probably an essential topic for future studies –

that was discovered during this project was how badly OSS projects need coordination.

They need leaders who are determined on what the community should achieve, and can

help the participants reach a common understanding of the goals. Having a common

understanding during software planning is another factor that can significantly speed

up the process. Not having that understanding on the other hand, can cause friction

among the team members and deviate them from their main goals.

Working in an OS project, means getting involved with people, their time, their goals,

and their motivation. Unfortunately, commercial companies who work with OS com-

munities tend to forget that the community participants are not their employees. Com-

panies should promise something only if they know they can deliver it. Company

leaders should involve community members in the software planning through online

meetings, e-mails, etc. Members of a community need to know that they are part of a

project they are supporting.

In terms of agile practices in start-up companies, team leaders as well as the rest of the

employees need to remember although requirement analysis is not necessary before

starting a project, it influences the outcome of that project. If exact requirements are

not set at the beginning of a project, it does not mean that they never come into the

planning process. Agile gives more flexibility; being careful not to get into a chaos in

project planning from this flexibility is the duty of the leaders.

71

6.2 Open questions and future works

As more commercial companies are getting OS communities involved in their software

development processes, it is important to investigate on the psychological and behav-

ioral aspects of the relationship between the companies and their communities. Studies

can find out what factors strengthen or weaken this communication.

Another question concerning working with OS communities is how much transparency

affect the motivation of the participants in practice. We need to look more into the

correlation between communicating clear information and the motivation to continue

contributing in a community.

In terms of agile studies, we can observe how agile methodologies are being imple-

mented in companies, specifically start-ups. The experience we have achieved from

the case study in this thesis project shows that operating in an agile way usually leads

to not taking the requirements into account. Since documentation and proper require-

ment analysis in smaller and newly established companies are not done as much as in

corporations, future researches can conduct how lack of proper analysis and documen-

tation can lead into failure of a project during agile practices.

72

7 Glossary

Automated Testing: Act of testing a software/hardware using special software (sepa-

rate from the software being tested) to execute test cases and compare the results of the

executions with the predicted outcomes that were already given to the software.

Backend Developers: Developers who create the logical back-ends and core computa-

tional logic of a software.

Branch (in Git): A branch in Git is a movable pointer to one of the commits. The

default branch is called the master branch.

Bugzilla : A system used for task tracking as well as bug reporting

Build Dependency (in RPM):Defines what the RPM depends on in case one wants to

build that RPM. To be able to build an RPM, all of its dependencies should be met/built

beforehand.

Build Number: The build number in the version of a software shows the number

of times that software has been built. It is the 4th number in version number (e.g.

1.6.0.12). 12 is the build number.

Closed Source Software: A type of software for which the codes (binaries) are only

accessible to certain group of people assigned to develop the software.

Commit (in Git): A commit in Git is used to record changes in connection with the

local

Repository (in Git): A place where the source code of a software is stored.

Commit Message: A text used to describe what a certain commit does.

Community (in Software Development): A group of developers and backers who main-

tain and support the software they are using.

Community Contribution: Open source software have communities who use the soft-

ware and at the same time collaborate with its main developers in making the software

better and bug-free. Community contributors are people who are not employed by the

software company, but who are supporting the company by supporting their software

and maintaining it for free.

73

Component (in Software Development): A reusable program that can be combined

with other components in a distributed network to form a software or an application.

Continuous Integration: In development, continuous integration is the act of integrat-

ing code into a shared repository several times a day, and each time it is verified by

automated tests to detect problems.

Distributed Version Control System: A version control that record changes to a soft-

ware, is distributed among different developers, and is being maintained by them.

Embedded System : A computer system with a specific function within a larger system.

It is part of the larger system and is needed for the bigger system to function properly.

End User : Users who will get and use the final product that came out of a software

development cycle.

External Developers : Used in open source projects, external developers are the ones

who are not directly responsible to maintain code. (Aka. open source community

developers).

Feature Integration Deadline : In software development process, feature integration

deadline is the deadline used to let developers know up to when they can push changes

to the code before the code is ready for a software release.

Integration : In software release process, act of collecting, merging and integrating the

code into the software release.

Interface : A point where a software can communicate with its end users (e.g. graphical

user interface).

Internal developers : Developers who are directly responsible to maintain code and fix

bugs related to the code.

Linux : A Unix-based operating system assembled using free and open source software

development.

Manual testing: Act of testing a software manually (using people) without using any

other specific software.

Merge (in Git) : Act of integrating a commit into the current branch.

74

Middleware : Software that acts as a bridge between the operating system and applica-

tions.

Nemo Middleware : Is a vendor of Mer, using Mer core for its architecture and has its

own UI

Open Build System (in Software Release) : A system to build and distribute packages

from sources in an automatic way.

Open Source Software : A type of software for which the codes (binaries) are accessi-

ble to everyone.

Open-Source Community : A group of backers of a software helping to maintain the

software.

Package (in Linux): A compressed file archive containing all of the files that come

with a particular application.

Package Binary : The code from which an application is made.

Package Maintainer : Developers who are responsible for maintaining the code in

packages of an application.

Product Management : A product is anything that can be offered to the market, and it

has a life cycle. The life cycle of a product consists of different projects that need to

be managed for the delivery of the product.

Project Management : A project is a temporary endeavor to create a service, result or

a product.

Proposal: A plan or suggestion, written formally, that is put forward for consideration

by others.

Pull Request (in Git) : A pull request tells others about the changes one has made to a

repository.

Push A Commit : When a commit is pushed to a repository, the changes that were done

on the local repository will be pushed to the remote repository.

QA Report : A report used in quality assurance to show the results that were conducted

out of testing a software.

75

QML (Qt Modeling Language) : Is a user interface markup language.

Quality Assurance : Process of assuring the quality of a product.

Release Candidate : Using during software release process, a release candidate, is

a possible candidate of a specific release which might be suitable to be used by the

customers. A release candidate is tested by the testing team, and in case no issues

are found, it can be released to the main customers. If the testing team find bugs or

regressions, they should be fixed and a new release candidate will be created.

Release Number : The number in the version number of a software which shows the

release after bug fixes. (e.g. in red hat package manager).

RPM : A package manager used with application on Linux operating system. It can be

used to build, install, update, or remove individual software packages.

Scripts (in Programming) : A list of commands that can be executed without user

interaction. Scripts are widely used in automation.

Snapshot (in release) : Snapshot build are for users to download and review while the

platform is still being developed. It indicated a view of the source code taken at a

specific time.

Software Upgrade : A replacement of software with a newer version, and a better

quality.

Vendor : A company offering something for sale. In this document, that something

refers to software.

Version number : Numbers assigned to give a software a unique characteristic. As the

version number increase, the quality of the software increase as well.

76

References

[1] Arka Bhattacharya. Impact of continuous integration on software quality and

productivity. Master’s thesis, The Ohio State University, 2014.

[2] Kevin Daniel Andre Carillo, Sid Huff, and Brenda Chawner. It’s not only about

writing code: An investigation of the notion of citizenship behaviors in the con-

text of free/libre/open source software communities. 2014 47th Hawaii Interna-

tional Conference on System Sciences, 0:3276–3285, 2014.

[3] Brenda Chawner. Community matters most: Factors that affect participant satis-

faction with free/libre and open source software projects. In Proceedings of the

2012 iConference, iConference ’12, pages 231–239, New York, NY, USA, 2012.

ACM.

[4] Nigel Edwards and Liqun Chen. An historical examination of open source re-

leases and their vulnerabilities. In Proceedings of the 2012 ACM Conference on

Computer and Communications Security, CCS ’12, pages 183–194, New York,

NY, USA, 2012. ACM.

[5] Adanna Ezeala, Hyunju Kim, and Loretta A. Moore. Open source software de-

velopment: Expectations and experience from a small development project. In

Proceedings of the 46th Annual Southeast Regional Conference on XX, ACM-SE

46, pages 243–246, New York, NY, USA, 2008. ACM.

[6] Erich Gamma. Agile, open source, distributed, and on-time: Inside the eclipse

development process. In Proceedings of the 27th International Conference on

Software Engineering, ICSE ’05, pages 4–4, New York, NY, USA, 2005. ACM.

[7] Hironori Hayashi, Akinori Ihara, Akito Monden, and Ken-ichi Matsumoto. Why

is collaboration needed in oss projects? a case study of eclipse project. In Pro-

ceedings of the 2013 International Workshop on Social Software Engineering,

SSE 2013, pages 17–20, New York, NY, USA, 2013. ACM.

[8] Jim Highsmith. Agile Software Development Ecosystems. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 2002.

[9] Chin-Yun Hsieh, Yu Chin Cheng, and Chien-Tsun Chen. Emerging patterns of

continuous integration for cross-platform software development. In Proceedings

77

of the 2Nd Asian Conference on Pattern Languages of Programs, AsianPLoP ’11,

pages 9:1–9:9, New York, NY, USA, 2011. ACM.

[10] Jordan Hubbard. Open source to the core. Queue, 2(3):24–31, May 2004.

[11] Kumi Jinzenji, Takashi Hoshino, Laurie Williams, and Kenji Takahashi. An ex-

perience report for software quality evaluation in highly iterative development

methodology using traditional metrics, pages 310–319. 2013.

[12] Charles E. Matthews. Agile practices in embedded systems. In Proceedings of the

Compilation of the Co-located Workshops on DSM’11, TMC’11, AGERE! 2011,

AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11 Workshops, pages 249–250,

New York, NY, USA, 2011. ACM.

[13] Nora McDonald and Sean Goggins. Performance and participation in open source

software on github. In CHI ’13 Extended Abstracts on Human Factors in Com-

puting Systems, CHI EA ’13, pages 139–144, New York, NY, USA, 2013. ACM.

[14] Carsten Munk and David Greaves.

[15] Guido Porruvecchio, Giulio Conrcas, and Michele Marchesi. Open Source Com-

munities Structure and Communication Patterns: A Social Network Approach.

PhD thesis, 3 2010.

[16] Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Reilly & Associates, Inc., Sebastopol,

CA, USA, 2001.

[17] Nayan B. Ruparelia. Software development lifecycle models. SIGSOFT Softw.

Eng. Notes, 35(3).

[18] Munish Saini and Kuljit Kaur. Understanding the community culture in open-

source software projects. SIGSOFT Softw. Eng. Notes, 39(5):1–4, September

2014.

[19] Walt Scacchi. Process Models in Software Engineering. John Wiley and Sons,

Inc., 2002.

[20] Renuka Sindhgatta, Nanjangud C. Narendra, and Bikram Sengupta. Software

evolution in agile development: A case study. In Proceedings of the ACM In-

ternational Conference Companion on Object Oriented Programming Systems

78

Languages and Applications Companion, OOPSLA ’10, pages 105–114, New

York, NY, USA, 2010. ACM.

[21] Thomas Tan, Qi Li, Barry Boehm, Ye Yang, Mei He, and Ramin Moazeni. Pro-

ductivity trends in incremental and iterative software development. In Proceed-

ings of the 2009 3rd International Symposium on Empirical Software Engineering

and Measurement, ESEM ’09, pages 1–10, Washington, DC, USA, 2009. IEEE

Computer Society.

[22] Selena Uras, Giulio Conrcas, and Alessandro Giua. The Communicational Side

of Open Source Communities. PhD thesis, 2 2008.

[23] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir

Filkov. Quality and productivity outcomes relating to continuous integration in

github. In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-

ware Engineering, ESEC/FSE 2015, pages 805–816, New York, NY, USA, 2015.

ACM.

79

	Introduction
	Overview
	Thesis statement and objectives
	Thesis document structure

	Open source software development
	Communication
	Development

	Agile methodologies in software development process
	 Iterative and incremental development
	Iterative and incremental development for a software release
	Use of continuous integration in iterative and incremental development

	Case study: the software company ‘Jolla’ and its operating system ‘Sailfish’
	Why this project started
	Mode of operation and software development at Jolla
	Iterative and incremental planning at Jolla
	Pre-planning
	Planning
	Sprint planning
	Demo
	Retrospective

	Sailfish operating system
	Software development process
	An example of a Sailfish package on Git
	Webhooks
	Open build systems (OBS)

	Tracking system for planning and task tracking: Bugzilla
	Quick entry
	File a report using a simple view
	File a report using an advanced view
	Description of a report in Jolla Bugzilla
	What happens after a report is created on Jolla Bugzilla

	The release process
	CI-bot
	Changelogs
	Bugzilla statuses and their meanings
	Development level
	Testing level
	Release level
	Release snapshot
	Life cycle of reports in Jolla bugzilla during the integration process
	Earlier tracking of the release process before this project
	Problem with the release tracking procedure before this project
	What did Jolla do to solve the problem and ease the collaboration?
	Upstream Bugzilla sync
	How automated cloning and tracking is done
	How CI-Bot works during upstream sync

	The proposal presented to Jolla’s open-source community
	The request to Mer package maintainers

	A example to show the results of the project in practice
	Iteration Planning 12/2014 before the Upstream Bugzilla Sync
	A Bugzilla report in the final release changelogs before the upstream Bugzilla sync
	Planning 05/2015 after the upstream Bugzilla sync
	Upstream Bugzilla sync and its affect on tracking the open source components

	Analysis of the project
	Earlier Works

	Conclusions
	Lessons learned
	Open questions and future works

	Glossary
	References

