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ABSTRACT

Deciduous trees face increasing biotic and abiotic stresses as a result of climate
warming and respond in various ways including the emission of volatile organic
compounds (VOCs). There is an urgent need to quantify VOC emissions of deciduous
trees in response to environmental stresses in order to understand their contribution to
the atmospheric carbon and air quality in the face of climate change. The aim of this
thesis was to assess VOC emission responses of silver birch (Betula pendula Roth) to
short- and long-term herbivory and environmental changes as a result of provenance
translocation along a latitudinal gradient. It also assesses the effects of single and
combined warming and enhanced UV-B exposure on VOC emission from European

aspen (Populus tremula L.).

In the first experiment, long-term (30 days) and short-term (0-48 hours) foliar herbivory
experiments were carried out on potted silver birch plants by infesting them with
geometrid moth species (Agriopis aurantiaria Clerck) and Erannis defoliaria Hiibner).
Besides foliar herbivory, there was a bark herbivory by pine weevil (Hylobius abietis L.)
on silver birch plants for 21 days. In the second experiment, VOC emissions were
measured from three provenances (Loppi (60 °N), Vehmersalmi (62 °N) and Kittila (67 ©
N)) of silver birch at two common garden sites (Joensuu (62° N) and Kolari (67° N)) in
Finland. The plants were growing in the field for approximately two years before the
VOC sampling. In the third experiment carried out with European aspen, plants were
exposed to a single and combined warming (ambient + 2°C) and enhanced UV-B
radiation (30.9%) in field conditions. VOC emissions in the field were measured using
dynamic head space collection method and analysed by gas chromatography-mass
spectrometry (GC MS), whereas the online monitoring was performed by proton

transfer time-of-flight mass spectrometry (PTR-TOF-MS).

Short-term herbivory led to a rapid induction of green leaf volatiles (GLVs) and a
steady increase in terpenoid emission during the feeding period. The feeding pattern of
the larvae roughly matched the VOC emission peaks. Long-term foliage herbivory in
the field led to a genotype-dependent, transient increase in the emission rates of
monoterpenes (MTs) but the differences in emission due to treatments and genotypic
differences declined as the season progressed. There was no clear difference in VOC
emission rates as a result of bark damage. VOC emissions differed between
experimental sites but provenance translocation along a latitudinal gradient had no
significant effect. However, VOC composition was significantly affected by
translocation during the second experimental year. In the third experiment, warming

increased isoprene emission from European aspen; it also modified VOC emission



responses to UV-radiation. VOC emissions from the rhizospheres of both silver birch

and European aspen showed no significant treatment effects.

The results suggest that VOC emission rates of silver birch to foliar herbivory are
substantial immediately after herbivore damage and measurements from fresh
damages are important to estimate biotic stress-induced VOC emission rates. The lack
of clear provenance translocation effect on VOC emission responses of silver birch
suggests that this species might be rather tolerant to environmental changes in the
short-term. However, emission differences between sites indicate that abiotic condition
especially cumulative temperature plays a role. Increased emission from European
aspen as a result of combined warming and UV-B radiation suggests that abiotic
stresses have significant interactive effects on VOC emission from deciduous trees and

may further affect atmospheric chemistry.

Universal Decimal Classification: 504.3, 504.7, 57.045, 57.047, 581.135.5, 582.632.1,
582.681.81

CAB Thesaurus: volatile compounds; organic compounds; isoprenoids; terpenoids;
emissions; Betula pendula; Populus tremula; environmental factors; stress; herbivory;
translocation; provenance; latitude; environmental temperature; ultraviolet radiation;

rhizosphere; climate change; global warming

Yleinen suomalainen asiasanasto: haihtuvat orgaaniset yhdisteet; péaastot; koivu; haapa;

lampeneminen; ultraviolettisateily; juuristo; ilmastonmuutokset
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1 General introduction

1.1 BACKGROUND

It is widely accepted that global climate change manifested primarily by changes in
surface air temperature is the greatest environmental threat of all ecosystems. In the last
100 years, global surface air temperature has shown rapid increase as a result of
imbalance of incoming and outgoing radiation (IPCC, 2014). According to the third
assessment report of the Intergovernmental Panel on Climate Change (IPCC), the global
average surface air temperature is forecasted to increase by 1.4-5.8°C over the period of
1990 to 2100 (IPCC, 2001). There is a consensus that at least part of the rise in
temperature is attributable to greenhouse gas emissions from anthropogenic sources
(Barnett et al., 2005; IPCC, 2014). Water vapour, carbon dioxide (COz), methane (CHa),
ozone (Os), nitrogen oxides (NOx) and chlorofluorocarbon (CFC) compounds are the
main greenhouse gases that contribute to the rise in surface temperature. The emission
of these gases is facilitated by human activities such as fossil fuel burning, land use
change, and agricultural and industrial activities. As a result of the rapid increase in
their concentration, the global average temperature is approaching a level of 2°C above
pre-industrial levels, which is considered a threshold for irreversible change in the
biosphere (Meinshausen et al., 2009; IPCC, 2014).

Some of the greenhouses gases associated with climate warming impact the
concentration of stratospheric Os, which filters harmful UV-B radiation. Although the
role of chloro- and bromocarbons in depleting stratospheric Os is declining due to
Montreal protocol (McKenzie et al., 2011), springtime ozone depletion will continue to
increase for many decades at polar latitudes (Manney et al., 2011). Furthermore,
increasing concentration of replacements of Os depleting substances and other trace
gases such as nitrogen dioxide (NO:) continue to degrade stratospheric Os
(Ravishankara et al., 2009; Stolarski et al., 2015) leading to increased UV-B radiation in
some areas and simultaneously changing seasonal weather pattern (Bornman et al.,
2015). UV-B radiation can independently interfere with the cellular function injuring
deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and membranes (Jansen et al.,
1998). UV-radiation and seasonal variations in other abiotic and biotic factors may have

interactive effects on plant metabolism (Bornman et al., 2015).
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Forest ecosystems across various latitudes have shown changes, notably the
composition, structure and functional processes are affected by climatic factors (Dale et
al., 2001; Kellomdki et al.,, 2001), but these changes are more consequential at high
latitudes compared to low latitude ecosystems (Serreze et al., 2000; Parmesan and Yohe,
2003). Climate warming coupled with continuous COzenrichment of the air is expected
to increase carbon sequestration (Nemani et al., 2003) and thus enhance tree and forest
growth in areas where soil nutrients are not a limiting factor (Oren et al., 2001). Climate
warming also enhances expansion of vegetation zones and treeline further north and
upslope making new habitats for other organisms (IPCC, 2014). On the other hand,
treeline expansion reduces surface albedo (Beringer et al., 2005) which further enhances
warming of the lower atmosphere. Warmer temperature and northward expansion of
host species provide favourable conditions for herbivorous insect species that can cause
extensive damage to forest trees (Jepsen et al., 2008).

Herbivorous insects are subject to both direct and indirect effects of climate warming
(Bale et al., 2002; Deutsch et al., 2008). Climate warming can directly increase
overwintering survival, advance generation time and enhance growth of insects (Ayres
and Lombardero, 2000; Volney and Fleming, 2000). It can also have indirect effect
through changes in phenological synchrony between host plant and herbivorous insects
(Stange and Ayres, 2010; Pureswaran et al, 2014) and through regulation of the
abundance of insect population by enhancing the performance of the natural enemies of
insects (Ayres and Lombardero, 2000; Parmesan and Yohe, 2003; Delava et al., 2014).
Temperature-mediated changes in community composition and species dynamics
increase frequency of insect outbreaks and cause extensive defoliation in boreal forests
(Jepsen et al., 2008).

Climate change factors lead to a wide range of responses in plants, including structural,
physiological as well as phenological changes (Root et al., 2003). They also activate
various defence strategies in plants (Atkinson and Urwin, 2012). For example, the
responses of plants to climate change factors and herbivory involve production and
emission of chemical compounds. Environmental stresses induce the emission of
various volatile organic compounds (VOCs) (Kesselmeier and Staudt, 1999), which are
organic compounds with low boiling point and high vapour pressure at normal
conditions (Dudareva et al., 2006). Plant VOCs are used in defence against herbivorous
insects and relieve stress caused by abiotic factors. They also play roles in multitrophic
communication between plants, herbivorous insects, predators and parasitoids
(Holopainen, 2004) and are involved in biosphere-atmosphere-climate feedback system
(Laothawornkitkul et al., 2009; Ehn et al., 2014). At global scale, VOCs are emitted in
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large quantities with vegetation contributing the major share (Guenther et al., 2000).
The large scale of emission, multitrophic communication in the ecosystem and their
involvement in the atmospheric chemistry as a result of their reactive property makes
plant VOCs important to the physical and chemical properties of the atmosphere
(Fineschi et al., 2013). In order to understand the effects of environmental stresses on
VOC emissions and the resultant effects on atmospheric chemistry and air quality, there
is urgent need to investigate the VOC emission responses of climate change sensitive

deciduous trees.

This thesis discusses the changes in VOC emission responses of deciduous trees (silver
birch and European aspen), with particular emphasis on insect herbivory, warming,
and enhanced UV-radiation. It also reports on how translocation of different
provenances of silver birch to experimental sites located at different latitudes in
Finland, that differ in both biotic and abiotic factors, affects VOC emissions from
different provenances. Since most environmental stresses change simultaneously, the
effects of these factors on plant metabolism may add up or neutralize each other.
Therefore, this thesis also explores the effect of abiotic factors (UV-radiation and
warming) singly and in combination on the quality and quantity of VOCs emitted from
European aspen. Moreover, it addresses sex-specific differences in VOC emission from
different genotypes of European aspen in response to warming and enhanced UV-B
radiation. To my knowledge, no previous studies have investigated single or combined

effects of warming and UV-B radiation on VOC emissions from European aspen.

1.2 WARMING-RELATED CHANGES IN BOREAL FORESTS

The boreal forests, being the largest terrestrial biome, account for large proportion of
primary or unmanaged forests of the world and contribute to climate system by
keeping significant amount of carbon in the vegetation and soil under the canopy
(Bonan, 2008; Olsson, 2009). Recent climate projections indicate that warming will be
greatest in the northern boreal region with an expected increase of about 4-5°C at the
end of this century (IPCC, 2014). As a result, boreal forest ecosystems are likely to be
strongly influenced by climate change (Kellomaki et al., 2001). Some of the changes
include enhanced tree growth as a result of increased CO: availability and longer
growing season leading to gradual expansion of treeline (Kelloméki et al., 2008;
Ruckstuhl et al., 2008). Climate warming also alters species composition as evergreen
trees are gradually replaced by deciduous trees leading to continuous transformation of
boreal ecosystems (Chen et al.,, 2011; Koven, 2013; Kellomaiki et al., 2008). For instance,
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the proportion of silver birch is increasing while coniferous species are declining in the
Scandinavian region (Kellomaki et al., 2001; Engelkes et al., 2008; Elmhagen et al., 2015).

There is now ample evidence that plants are showing climate warming-induced
phenological shifts (Sparks and Menzel, 2002; Walther et al., 2002; Parmesan, 2007).
Most spring phenological events of boreal forests (e.g., bud break, leaf maturation, and
flowering) take place earlier (Visser and Both, 2005; Menzel et al., 2006). In the last few
decades, the beginning of growing seasons across Europe has advanced by eight days
(Chmielewski and Rotzer, 2002) leading to an expected increase of growing season by
3-4 days per decade (Pefiuelas et al, 2009). Faster plant development and longer
growing season coupled with increased precipitation and CO: enrichment enhance
plant biomass (Chmielewski and Rétzer, 2001; Boisvenue and Running, 2006). Chemical
composition of plants may also change due to enrichment of atmospheric CO, which
has the potential to change carbon to nitrogen ratios in plant tissues (Kostiainen et al.,
2006) and can affect the amount of foliage consumed by herbivorous insects (Hunter,
2001).

1.3 EFFECTS OF CLIMATE CHANGE ON INSECTS

Insects occupy a wide range of terrestrial and aquatic habitats and play a major role in
the succession, functioning and carbon cycling in ecosystems (Ayres and Lombardero,
2000). Since insects are ectotherms, their physiology, development and biogeographical
distribution are highly sensitive to climate change (Carroll et al., 2003; Stange and
Ayres, 2010). In the last century alone, an average of 120 km northward displacement of
climatic isotherm was reported over Europe (Beniston and Tol, 1998), which caused
considerable impact on metabolic processes of insects. For example, approximately
10°C rise in temperature can roughly double metabolic rates of insects (Clarke and
Fraser, 2004). Faster metabolism enhances growth and reproduction leading to shorter
generation, which in turn increases density of insects (Deutsch et al., 2008). Besides
creating more benign thermal environment in areas previously limited by low
temperature, climate warming enhances dispersal abilities of insects (Travis et al., 2013)
contributing to the range expansion of Lepidopterans in Europe (Parmesan et al., 1999;
Hill et al., 2002; Saarinen et al, 2003). A survey of 35 non-migratory European
butterflies with known boundaries has indicated that approximately 63% have
expanded northwards (35-240 km) (Parmesan et al, 1999). Some geometrid moth
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species including winter (Operophtera brumata 1) and autumnal (Epirrita autumnata
Borkh) moths have increased their distribution range northwards in recent years in
Scandinavia (Jepsen et al., 2008; Ammunét et al., 2012). Battisti et al (2006) have
reported an upslope expansion of approximately 99m in altitudinal range for pine
processionary moth (Thaumetopoea pityocampa Denis and Schiffermiiller) in a 30-year
period. The projections for 21+ century are more alarming as a 2°C rise in temperature
in the northern latitudes might move the current climate conditions by 600 km
northward and 330m upslope (IPCC, 2001). This shift in bioclimatic envelopes may
cause convergence of insects and increased outbreak in some parts of Scandinavian
countries especially in birch forests (Tenow et al., 1999; Ruohomaki et al., 2000;
Neuvonen et al., 2005).

1.4 VOLATILE ORGANIC COMPOUNDS EMITTED BY PLANTS

Plants produce over 100,000 chemical products, of which, over 1,700 are known to be
volatile (Dicke and Loreto, 2010). Isoprenoids (isoprene, tepenes) are the largest group
of these VOCs and their production and functions are well researched (Dudareva et al.,
2006). In 1960, the global terpene emission rate from vegetation was estimated to be 175
Tg C year'! (1Tg=10"2g) (Went 1960), but this underestimation has been rectified through
advancement in measurement techniques and better map of global vegetation. Current
estimation of the mean annual emission of biogenic VOCs including methane stands
around 760 Tg C (Sindelarova et al., 2014). The emission rate of VOCs costs plants up to
10% of fixed carbon and accounts for 80% of reactive VOCs added to the atmosphere
(Pefiuelas and Llusia, 2003). Plant VOCs are emitted from almost all plant parts
including branches and leaves (Loreto and Schnitzler, 2010), roots (Steeghs et al., 2004),
flowers (Knudsen et al., 1993) and fruits (Dudareva and Pichersky, 2008). Physiological
and physicochemical factors as well as other external constraints can alter the quality
and quantity of plant VOCs (Paré and Tumlinson, 1999; Niinemets, 2010b; Schaub et al.,
2010).

1.4.1.dsoprenoids{isoprene,nono-AndBesquiterpenes)r

Isoprenoids represented mainly by isoprene (Cs), monoterpenes (Cw) and
sesquiterpenes (Cis) are the largest and most diverse class of plant volatiles (Dudareva
et al., 2013) derived from five carbon precursors isopentenyl diphosphate (IPP) and its
isomer dimethylalyl pyrophosphate (DMAPP) (McGarvey and Croteau, 1995). They are
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synthesized through the mevalonic acid (MVA) and methyl-erythritol phosphate (MEP)
pathways (Rodriguez-Concepciéon et al, 2004). The two pathways are almost
independent but recent studies have revealed that there is some interaction through
metabolic cross-talk at IPP level (Laule et al., 2003). The MVA pathway takes place in
cytoplasm while the MEP pathway is operational in chloroplasts (Figure 1) (Owen and
Penwuelas, 2005). Isoprenoids are synthesized constitutively or induced by
environmental stresses and released immediately after synthesis or stored in some

special storage organs (resin ducts, glandular trichomes on the leaf surface, glands in

leaf tissues) (Fineschi et al., 2013).
\
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Figure 1. A simple diagram of the MVA and MEP pathways through which isoprenoids are
synthesized (modified from Li and Sharkey, 2013)
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Isoprene (2-methyl-1, 3-butadiene) is the most abundant hydrocarbon compound
emitted mainly from perennial plant species in terrestrial ecosystems (Fineschi et al.,
2013). Only 30% of extant plant species today emit isoprene, which might be due to
evolution of isoprene emission capability under various environmental conditions
(Harley et al., 1996). Globally, isoprene accounts for 44% of the total biogenic VOC
emission with an estimated emission rate of about 500 to 700 Tg C year! (Guenther et
al.,, 1995; Guenther et al., 2006). It is synthesized in chloroplasts via the MEP pathway
and emitted immediately after synthesis in a light- and temperature-dependent manner
(Guenther et al., 1993). As a result of its high reactivity and very short life time in
atmosphere, isoprene influences atmospheric chemistry through the formation of
secondary organic aerosols (SOA) (Atkinson and Arey, 2003).

Isoprene has multiple functions to plants, particularly in stressful conditions as it
strengthens thylakoid membranes and scavenges reactive oxygen and nitrogen species
(Sharkey et al., 2008). Recent studies have shown that isoprene also provides protection
against insect herbivores because of its repellent nature to herbivorous insects
(Laothawornkitkul et al., 2008a; Loivamaki et al., 2008). Isoprene emission rates are
affected by climate warming-related environmental factors such as high temperature,
increased CO: concentration and drought conditions (Pegoraro et al., 2004; Niinemets,
2010a; Calfapietra et al., 2013).

Monoterpenes (MTs) are an important class of plant volatiles with an estimated annual
emission rate of about 85 Tg C year" (Sindelarova et al., 2014). They are synthesized
through the MEP pathway in chloroplasts from head-to-head combination of geranyl
pyrophosphate (GPP) and IPP (Dudareva et al., 2013). After biosynthesis, MTs are
stored in specialized storage organs in terpene storing plants and are emitted later
following stress or developmental changes, whereas in non-storing species they are
emitted immediately after synthesis (Li and Sharkey, 2013). The biosynthesis and
emission of MTs are controlled by a wide range of environmental conditions
(Trowbridge et al., 2014) which is discussed in the coming sections. MTs are emitted
from different parts of plants and involved in direct and indirect defence against biotic
and abiotic stresses. As they represent the majority of reactive VOCs emitted into the
atmosphere, they play an important role in the formation of SOA. Plant VOCs most
often related to environmental stresses and their molecular structures are shown in

figure 2.
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Sesquiterpenes (SQTs) are structurally diverse, semi-volatiles hydrocarbons
synthesized through the MVA pathway in cytosol by condensation of farnesyl
diphosphate (FDP) and IPP facilitated by FDP synthase (Kesselmeier and Staudt, 1999).
They account for a small portion of the volatile carbon released into the atmosphere
due to their semi-volatile nature and high reactivity in the atmosphere (Li and Sharkey,
2013). However, their highly reactive nature makes them relevant in the atmosphere as
their photo-oxidation leads to the formation of aerosols which in turn generate more
cloud condensation nuclei (Bonn and Moortgat, 2003; Kulmala et al., 2004). SQTs are
emitted constitutively mainly from flowers; but they are also emitted from foliage
during and after herbivore and pathogen attack (Loreto and Schnitzler, 2010). Their
emission rate shows seasonal and diurnal variability (Hakola et al., 2006), which
suggests dependence on temperature, light and other abiotic factors (Duhl et al., 2008)
and also on changes in physiology of plants. SQTs play an important role in
multitrophic interactions involving plants, herbivorous insects and parasitoids
(Holopainen, 2004).

1.4.2. Green leaf volatiles and other compounds

Green leaf volatiles are hydrocarbon compounds synthesized through the lipoxygenase
(LOX) pathway, and consist of saturated and unsaturated Cs aldehydes, alcohols, and
their esters produced by oxidative breakdown of membrane lipids (Paré and
Tumlinson, 1999). GLVs have distinctive “cut grass scent” (Schaub et al., 2010) and are
emitted in large quantities during or immediately after herbivore damage and/or
mechanical wounding to plant tissues (Brilli et al., 2012). Some GLVs just leak out from
cell walls of a rapidly expanding leaves and decomposing cell walls in senescing leaves
with no specific purpose (Trowbridge and Stoy, 2013). GLVs can be emitted as a result
of abiotic environmental stresses such as severe drought stress that can damage the cell
wall and cell membrane (Capitani et al., 2009), and anoxic conditions caused by
flooding (Copolovici and Niinemets, 2010). Acute ozone exposure induces the emission
of several GLVs (Heiden et al., 1999), but ozone also degrades GLVs in the atmosphere
(Pinto et al.,, 2007). GLVs serve as important signalling molecules to the surrounding
conspecifics or natural enemies of herbivorous insects. In addition to isoprenoids and
GLVs, aromatic products of the shikimate pathway such as methyl salicylates and
methyl chavicol are also released from plants in response to aphid infestation (Blande et
al., 2010) or ozone exposure (Heiden et al., 1999). The quantity of methyl salicylate and
other VOCs tends to correlate with the severity of biotic and abiotic stresses
(Beauchamp et al. 2005; Karl et al., 2008; Copolovici et al., 2011). In addition to GLVs,
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plant tissue-damage is associated with products of octadecanoid pathway (Kessler and
Baldwin 2002). This pathway produces phytohormone jasmonic acid, which is

responsible for induction of defence genes.
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Figure 2. Molecular structures of the most common VOCs emitted from plants used in this
study.

1.5 MAJOR ENVIRONMENTAL FACTORS THAT AFFECT VOC EMISSIONS

1.5.1. Abiotic factors

Abiotic stresses such as high temperature (Singsaas et al., 1997), drought (Capitani et
al., 2009), air pollution (Pinto et al., 2007) and flooding (Copolovici and Niinemets,
2010) create suboptimal conditions for plants thus affecting the rate of primary
metabolism which in turn influences the synthesis and emission of plant VOCs.
Moreover, some of these factors have been shown to enhance the production of harmful
molecules inside plant tissues that impact metabolic pathways producing VOCs

(Vickers et al., 2009). Most abiotic stresses are predicted to further increase in frequency
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and intensity as a result of anthropogenic contributions (IPCC, 2014), thus plants are
likely to be exposed to more stressful environments in the future.

Increasing temperature can induce biosynthesis of plant VOCs through its control on
plant physiology (Niinemets et al., 2004). Enzymes that regulate the rate of primary
metabolism, especially respiration, which supplies intermediates for VOC biosynthesis,
are affected by changes in temperature (Niinemets et al.,, 2004). These enzymes show
temperature dependence up to 40-45°C (Sharkey, 2005). However, such high
temperature can be harmful to sustain other processes necessary for the synthesis of
substrates of VOCs (Singsaas and Sharkey, 2000). Increases in temperature also affect
the physicochemical characteristics of individual compounds such as volatility and
diffusion (Niinemets et al., 2004; Harley, 2013). Diffusion in particular leads to more
partitioning of the VOCs to gaseous phase leading to higher VOC emission from plants
(Possell and Loreto, 2013). Studies at controlled conditions have shown that high
temperature induces the emission of isoprene, (E)-4,8-Dimethyl-1,3,7-nonatraine
(DMNT), SQTs and GLVs from plants (Ibrahim et al., 2010). Some of these compounds
may have protective role against reactive oxygen species (ROS) and other oxidizing
agents that can cause major damage to photosynthetic apparatus (Pefiuelas and Llusia,
2003). Isoprene emitted during high temperatures stabilizes thylakoid membranes from
transient heat shocks (Sharkey and Singsaas, 1995) hence maintaining the dynamic
properties of the membranes.

Light effects on VOCs are usually attributed to changes in metabolite pool size, and
availability of ATPs and NADPH (Li and Sharkey, 2013). Increase in the atmospheric
aerosols is likely to increase the fraction of diffuse light (Mercado et al., 2009) which
enhances photosynthesis and supply of substrates for biosynthesis of VOCs (Kulmala et
al., 2013). Thus, as incident radiation increases, the isoprenoid emission increases due
to high supply of energy and substrates (Gray et al., 2005) but that trend depends on

other factors such as temperature and availability of water (Fineschi et al., 2013).

UV-radiation is another important abiotic factor which changes significantly as a result
of anthropogenic emissions to the atmosphere and influences both plant metabolism
(Holopainen, 2011) and VOC emissions (Filella and Pefiuelas, 1999). For example, UV-B
radiation has the potential to decrease photosynthetic capacity of plants by down-
regulating genes encoding proteins of photosynthetic apparatus (Hollosy, 2002). On the
other hand, UV-B radiation can also induce VOC synthesis by encoding enzymes of the
octadecanoid pathway (Izaguirre et al., 2003). Johnson et al (1999) found increased VOC
emission response as a result of increased dose of UV-B radiation on sweet basil while

higher concentration of some MTs and SQTs was found in peppermint (Dolzhenko et

26



al, 2010). Similarly, Harley et al (1996) found increased emission of isoprene from
Quercus gambelii and Gil et al (2013) reported higher MT emission from grapevine (Vitis
vinifera L. cv. Malbeck) as a result of exposure to UV-radiation. Isoprene emission from
subarctic fen was also found to increase following exposure to UV-B radiation at a dose
of 20% stratospheric ozone depletion (Tiiva et al., 2007). However, some studies found
reduction (Ambasht and Agrawal, 1997) or no change (Blande et al, 2009) in the
emission of VOCs as a result of exposure to supplemental UV-B radiation. Nonetheless,
there are not enough studies for the majority of plant species to clearly see the pattern
of the responses of VOC emission to UV-B radiation. In addition, most studies on the
effects of UV-radiation focus more on chemical traits other than VOCs, and those
studies on VOCs have mainly focused on isoprene emission (Blande et al., 2009). Since
plants are exposed to multiple environmental factors, then UV-radiation, warming and

other abiotic factors may have interactive effects on VOC emissions.

1.5.2. Biotic factors

Plants face constant attack from herbivorous insects, mammalian herbivores and
pathogens, which has the potential to influence primary and secondary metabolism.
Herbivore damage by insects is of great interest as frequency and intensity of insect
outbreaks are increasing in areas that are experiencing climate warming (Jepsen et al.,
2008). Although there are temporal and spatial differences, plants lose approximately 7-
11% of their tissues per year due to herbivory in various ecosystems (Coley and Barone,
1996). Some studies have suggested that herbivory is higher at low latitude ecosystems
than at high latitude ecosystems (Coley and Aide, 1991; Schemske et al., 2009) although
others argue against this pattern (e.g., Moles, 2013).

Herbivory profoundly affects VOC emission from a range of plant species as it has
genetic and physiological control over VOC emission. Herbivore damage breaks the
storage structures and diffusive barriers leading to large release of stored compounds
(Monson, 2013). It also stimulates the metabolic pathways of VOCs, and thus induces
de novo synthesis of some VOCs (Laothawornkitkul et al., 2008b; Fineschi et al., 2013).
VOCs induced by herbivore damage are involved in bottom-up and top-down plant
defence (Monson, 2013). In bottom-up defence, herbivore-induced VOCs reduce fitness
of insects through direct toxicity or affect host preference through repellence (Kessler
and Baldwin, 2001), whereas in top-down defence, these chemicals attract the natural

enemies of insect herbivores. Some of these compounds play important roles in
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multitrophic communication between organisms as they serve as cues to locate host
plants by specialist insects and preys by natural enemies of plant defoliating insect
species (Holopainen, 2004). The induction of VOCs by herbivorous insects varies
depending on plant species, age and developmental stage of plants, damage type and
intensity, tissue type being attacked, insect species and feeding mode (Takabayashi et
al., 1994; Cardoza and Tumlinson, 2006; Kessler and Halitschke, 2007).

In recent years, many insect species have reached outbreak threshold and caused
extensive defoliation of many tree species in temperate regions. With the expected rise
in temperature, herbivore damage of trees in boreal regions is expected to increase in
the coming decades. This is primarily because insects are expanding their geographical
range northwards due to more favourable thermal conditions in previously cold
temperate regions and colonize new habitats (Jepsen et al., 2011; Ammunét et al., 2012).
In addition, climate warming-induced abiotic stresses such as drought and high
temperature episodes increase the susceptibility of the host plants to herbivore pressure
(Adams and Zhang, 2009; Klapwijk et al., 2013). For instance, an outbreak of geometrid
moth species defoliated large swath of birch forest in northern Finland (Ayres and
Lombardero, 2000; Dale et al., 2001). This type of defoliation is likely to induce large
emission of VOCs with potential effect on the atmospheric chemistry (Joutsensaari et
al, 2015).

The independent effects of climatic factors can enhance, reduce or have no effect on
plant growth, development and defence, but they can also have additive or opposing
effects when they occur simultaneously. The combined effects of multiple
environmental stresses on VOC emission are not adequately assessed although it has
been suggested as an area of research that needs further attention (Holopainen and
Gershenzon, 2010). Copolovici et al (2014) showed that the combination of herbivory
and drought induces higher emission of (E)-f-ocimene and DMNT from Alnus glutinosa
(L.) Gaertn. Similarly, spider mite infestation and acute ozone-exposure induced the
emission of DMNT and cis-3-hexenyl acetate from lima bean (Phaseolus lunatus L.)
(Vuorinen et al.,, 2004). In contrast, others found no significant effect of combined stress
of herbivory and ozone exposure on the VOC emission from hybrid aspen (e.g. Blande
et al., 2007). The likelihood of warming and UV-B radiation concurrently challenging
deciduous trees at high latitudes is high, but their combined effect on VOC emission

response has not yet been investigated.
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In addition to aboveground effects, both biotic and abiotic factors can enhance the
emission of VOCs from the rhizospheres of deciduous trees. Many studies have shown
that plants release great amount of photosynthetically fixed carbon to the rhizosphere
for various reasons (Wenke et al., 2010). Several compounds including MTs, GLVs and
light carbon compounds are released into the soil and play defensive and
communication roles in the rhizosphere (Lin et al., 2007; Wenke et al., 2010). The effects
of aboveground stresses on the VOC emission responses from rhizospheres have
received less attention so in this study we examined the effects of aboveground
herbivory and abiotic stresses on VOC emission from the rhizospheres of silver birch
and European aspen.

1.6 SILVER BIRCH AND EUROPEAN ASPEN ARE ECOLOGICALLY AND
ECONOMICALLY IMPORTANT TREE SPECIES

Silver birch is an important deciduous tree species in the Northern Hemisphere with
multiple ecological and economic roles. It is a pioneer species that serves as a raw
material for pulp and paper industries and hosts several species to sustain biodiversity.
Recent studies have revealed that both basal area and wood production of silver birch
in boreal region are increasing as a result of increasing temperature and CO:
concentration in the atmosphere (Briceno-Elizondo et al., 2006; Kellomaki et al., 2008).
However, silver birch is susceptible to changes in both biotic and abiotic environmental
stresses which are exacerbated by climate warming (Oksanen et al., 2007; Ibrahim et al.,
2010). Herbivore pressure and warming are among the factors that are increasing in
magnitude and frequency and threaten performance of silver birch and other
deciduous trees in boreal regions. Furthermore, the change in the length of growing

season can interfere with the function of the internal clock of this species.

Silver birch has large genotypic diversity and phenotypic plasticity which could play an
important role in its resistance against biotic and abiotic stresses (Silfver et al., 2009). In
the face of cyclic outbreaks of some geometrid moth species, the genetic diversity could
contribute to enhance resistance or tolerance against herbivory (Neuvonen et al., 2005).
The large genotypic variation means that different provenances adapted to their
respective locality might vary in their VOC emission potential and thus respond
differentially to environmental stresses. Silver birch emits a wide diversity of VOCs in
its natural environment (Hakola et al., 1998) and in larger quantities following damage

to tissues or due to abiotic stresses (Vuorinen et al.,, 2007; Ibrahim et al., 2010). In
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addition to geometrid moth species, polyphagous pine weevil (Hylobius abietis L.) could

damage this species and may induce systemic emission of VOCs.

European aspen, which grows in mixed stands with spruce, pine and birches, is a
widespread deciduous tree species in most parts of Eurasia (Worrel, 1995). Aspen is an
ecologically important keystone species in boreal forests where it supports wide range
of species including some critically endangered species (Kouki et al., 2004). It also plays
a role in balancing the soil pH of boreal forest with its high calcium content in the
foliage (Suominen et al., 2003). This species is also used for phytoremediation purpose
as it can remove heavy metals such as cadmium and zinc from polluted habitats
(Hassinen et al., 2009). It contributes economically mainly through its use in pulp and
paper industry and making of plywood. Aspen is a prominent isoprene emitter; it also
emits significant quantities of MT's such as a-pinene and carene (Hakola et al. 1998) and
GLVs (Fall et al,, 1999). Exposure to high temperature, herbivory and high ozone
concentration showed greater emission of these compounds from aspen (Populus spp.)
(Hartikainen et al., 2009; Blande et al., 2007).

1.7 OBJECTIVES OF THE RESEARCH

Silver birch is expected to suffer from more intense herbivory as a result of frequent
insect outbreaks in the future (Ammunét et al., 2012; Kozlov et al., 2015). This tree
species is known to emit wide range of terpenes in nature (Hakola et al., 1998) and also
as a result of biotic (Vuorinen et al., 2007) and abiotic stresses (Ibrahim et al., 2010).
However, there are only a few studies on herbivore-induced VOC emission from
different provenances in field conditions. Moreover, no studies have used online
monitoring to examine the timing and pattern of VOC emission from silver birch while
larvae were feeding on the foliage. Climate change factors are likely to affect plant
performance thus altering also VOC emissions. But it is not known how silver birch, a
species with large genetic diversity, will respond to the changes in terms of VOC
emission. Plants are also challenged by multiple environmental factors and their
reactions are vital for their survival. How simultaneously appearing abiotic stresses,
like warming and UV-radiation, impact the VOC emission from European aspen has

not been investigated.

The main aim of this thesis was to assess the VOC emission responses of deciduous
trees to biotic and abiotic environmental stresses. More specifically, the aim was to
assess the effect of short- and long-term herbivore damage caused by larvae of two
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geometrid moth species on the emission rates and VOC blend from shoots and the
rhizospheres of different genotypes silver birch. This will provide information about
the quality and quantity of VOCs emitted from different provenances/genotypes of
silver birch in the field and laboratory conditions to aforementioned stresses. The thesis
also aims to assess the changes in VOC emission from shoots and rhizospheres of
different provenances of silver birch in response to changes in abiotic and biotic
following translocation of the provenances across a latitudinal gradient of seven
degrees in Finland. Moreover, this thesis explores the VOC emission responses of
European aspen to combined effects of warming and UV-radiation in the field
condition. The thesis was based on three experiments summarized in Table 1. The main

questions addressed in this thesis are:
1) Does insect herbivory alter VOC emission response of silver birch? (chapter 2)

2) What happens to the VOC emission responses when different provenances of silver

birch are translocated across a latitudinal gradient? (chapter 3)

3) Does combined enhancement of temperature and UV-B radiation affect VOC

emission of European aspen? (chapter 4)

1.8 SUMMARY OF THE EXPERIMENTS

This thesis is comprised of three experiments on VOC emission response of deciduous
trees to environmental stress (Table 1). The first two were conducted on silver birch and
the last one was performed on European aspen. In the first experiment (chapter 2),
silver birch plants (two micropropagated clones and one seed origin) were infested
with larvae of two geometrid moth species (Agriopis aurantiaria Clerck and Erannis
defoliaria Hiibner) at field condition in the research garden of the University of Eastern
Finland, Kuopio. Side branches were enclosed in two separate mesh bags, each
containing two larvae and the bags were tied to the base of the branches. Herbivory
lasted for approximately 30 days during the summers of 2011 and 2012 and VOC
measurements from shoot were carried out once in 2011 and three times in 2012.
Besides foliage herbivory, a bark damage experiment was set up in the same field using
two adult pine weevils (H. abietis) on plants not used for the moth herbivory
experiment. The bark feeding lasted for 21 days and VOCs were sampled twice during
the feeding period from the shoots. The VOC emissions from the rhizospheres were
also sampled for both foliage and bark herbivory during 2011 and 2012. The VOCs from
the rhizosphere were sampled by enclosing the whole root system inside the PET bags.
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In addition to field measurements, VOC emission was monitored online for 48 hours

while larvae were feeding on a Hausjdrvi provenance trees at laboratory condition in
2012.

In the second experiment (chapter 3), six different provenances of silver birch were
micropropagated and transferred to experimental sites established in Tuusula
(southern site), Joensuu (central site) and Kolari (northern site) across a latitudinal
gradient (north-south) of seven degrees in Finland. The VOC measurement study was
part of a broader study that was designed to assess acclimation of silver birch to climate
change across a latitudinal gradient in Finland (Heimonen et al., 2015). For VOC
assessment, three provenances representing the southern (Loppi), central
(Vehmersalmi) and northern (Kiitild) population were selected. There were three to six
genotypes for each provenance at each site but VOC assessment was limited to three
genotypes from each provenance. In order to examine the effect of variation in abiotic
factors and levels of herbivory on VOC emission, VOC samples were collected from
shoots and rhizospheres of selected saplings at both central and northern sites in the
summers of 2012 and 2013. Moreover, level of natural herbivore damage on the

branches enclosed in PET bags was monitored during VOC measurements.

The last experiment (chapter 4), was carried out at an experimental site located in the
Botanical Garden of Joensuu, Finland. The site was established to study the effect of
multiple environmental change factors on evolution of sexually dimorphic species
(Randriamanana et al., 2014, 2015) and the VOC assessment study was a part of it.
Branches of aspen plants collected from different locations in southern and eastern
Finland were micropropagated and the plantlets were transferred to the experimental
site in 2012. The plantlets were planted in 36 plots in the field to which six treatments
and treatment combinations (UV-A, UV-B, UVA+T, UVB+T, T, and control) were
randomly assigned. In this experiment, the VOC emission measurements from shoot
and rhizosphere were conducted twice in 2014. One male and one female sapling (total
of 72 saplings) were considered from each plot for VOC sampling while clones were

randomly selected in each plot.

A number of hypotheses were tested to assess the effect biotic and abiotic stresses on
the VOC emission responses of silver birch and European aspen. The research topics

and hypotheses tested are summarized in table 1.
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1.9 DESCRIPTION OF THE VOC MEASUREMENTS AND ANALYSIS

Most of the VOC measurements reported in this thesis were conducted using a
dynamic head space collection method (Stewart-Jones and Poppy, 2006; Amo et al.,
2013). VOC measurements in the field were performed using a portable VOC collection
system designed for field sampling which consists of power batteries, air filtering
system, air flow tubing, and the Tenax tubes (Figure 3). Before VOC sampling, pre-
heated (120°C, 1 hr) polyethylene terephthalate (PET) bags were used to enclose
branches from which VOCs were sampled. During VOC collection, air inside the bags
was pulled at a rate of 200ml/min while filtered air was pushed into the bags (300
ml/min) to make sure that there was continuous replacement air inside the bag. The
volume of replacement air was slightly higher compared to air pulled by the sampling
line in order to prevent contamination and compensate possible leakage. The
compounds that were pulled through the sampling line were adsorbed in an Automatic
Thermal Desorption (ATD) steel tube filled with Tenax-TA adsorbents. Immediately
after collection, the samples were kept in cool boxes for transportation and stored in a

refrigerator until analysis.

During VOC collection, temperature and photosynthetically active radiation (PAR)
were monitored by HOBO Micro Station (Onset Computer Corporation, Bourne, MA,
USA). The emission rates of VOCs from shoots of silver birch (chapter 2 and 3) and
European aspen (chapter 4) were standardized for +30°C according to temperature
dependent algorithms of Guenther et al (1993) for MTs and Duhl et al (2008) for SQTs.
However, the effects of light levels on the monoterpene and SQT emission rates were
not considered mainly because there is no light dependent algorithm available for silver
birch. In many field studies of Betula spp. at northern ecosystems, only temperature
correction is used for monoterpene and SQT emissions (Schollert et al. 2015; Rinnan et
al. 2011). This is partly based an observation that both MT and SQT emissions of
mountain birch were slightly better explained by the solely temperature dependent
algorithm (Guenther et al. 1993) than using the temperature and light based algorithm
(Haapanala et al. 2009). In the aspen experiment (chapter 4), isoprene emission rates
were standardized also for light to a photosynthetic photon flux density (PPFD) of 1000

pmol m? s and temperature levels according to Guenther et al (1993).

VOC samples were also collected from the rhizosphere by using a plastic collar
designed for this purpose. A week before VOC collection, the ground in close proximity
of the plants was weeded and the soil was dug with hand forks to soften the surface

before inserting the collars into the ground (about 2 cm). The VOC measurements from
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the rhizosphere were carried out in similar way to VOC collection from the shoot but
the duration was longer (1 hr). The online VOC monitoring discussed in chapter II was
performed by using high-resolution proton-transfer reaction time-of-flight mass
spectrometer (PTR-TOF 8000, Ionicon Analytik, Innsbruck Austria). The online
monitoring was conducted in laboratory conditions on the Hausjarvi provenance trees

only.

The VOC samples were analysed by gas chromatography-mass spectrometry (GC MS)
and the compounds were identified according to the mass spectra in the Wiley library,
and quantified by pure standard compounds. In order to determine the accuracy of
emission from plant parts, blank samples were collected from PET bags alone as well as
the plastic collars and any emission found was subtracted from the total emission to
determine the actual emission from the plants. In order to determine the VOC emission
rates, photos of the leaves were taken by digital camera against millimetre paper as a
background and leaf area of the enclosed leaves was calculated. Then the emission rates
from the shoots were expressed in nanograms per square metre of leaf area per second
(ng m?2s7). The rhizosphere emission rates were expressed in nanograms per square

metre of soil surface area inside the plastic collars.

——= Direction of airflow

Tenax TA adsorbent -
Sampling line

PET bag

Power source
Ozone scrubber |

Tnlet — =
anflow
Direction of
airflow
Charcoal
filter Pressure pump Vaomum pump

Figure 3. Schematic presentation of the collection system used to sample VOCs from
headspace of living tree branch in the field
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5 General Discussion

5.1 SHORT- AND LONG-TERM HERBIVORY INDUCED VOC EMISSIONS FROM

SILVER BIRCH

5.1.1 Short-term foliar herbivory caused burst of green leaf volatiles (GLVs)

The online monitoring by PTR-TOF-MS showed a rapid induction of GLVs due to
herbivore damage by the geometrid moth larvae. The large burst of GLVs peaked at a
certain order; aldehydes were released first while alcohols and acetates were released
after a delay of a few minutes. Alcohols are produced through oxidation of aldehydes
whereas acetates are the result of acetyl transfer by acetyl transferase. Typical wound
volatiles such as cis-3-hexenal, trans-3-hexenal and trans-2-hexenal were emitted
immediately after damage and the same was reported in previous insect herbivory or
mechanical damage studies on a range of plant species (Dudareva et al., 2006). There
was a lag period in the emission of acetates. Fall et al (1999) reported similar delayed

emission of alcohols and acetates from mechanically wounded aspen plants.

The emission of these compounds oscillated a great deal during the feeding hours and
the peaks seemed to follow the feeding pattern of insects (chapter 2, Figure 1). The
oscillation of the peaks suggests that each biting and tearing of the plant tissue might
have caused the breakdown of the fatty acids of plant cell membranes and led to the
large release while the resting phase of the larvae was shown by gaps in the peaks of
the GLVs. This is in line with previous studies that observed induction of certain GLVs
following insect herbivory (Paré and Tumlinson, 1997, 1999). Although methanol
emissions did not show feeding-dependent response, there was a large burst especially
in the morning which could be explained by tight stomatal control over its emission.
Methanol usually builds up during overnight and is released in large quantities in the
morning following the opening of the stomata (Niinemets and Reichstein, 2003). The
emission rate of isoprenoids was not as substantial as GLVs because silver birch does
not have storage structures to release terpenoids in large quantities after damage, but
emission rates increased gradually throughout the monitoring period possibly due to
activation of metabolic pathways. Measurements from intact shoots while larvae were

feeding on side branch showed low emission rates, but there was no difference in VOC
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profile between intact and damaged shoot. The rapid emission immediately after the
beginning of herbivory indicates that herbivore-induced GLVs are released soon after
damage and rapidly disappear into atmosphere due to their volatile nature. Thus,
timing of the measurements of herbivore-induced VOCs is important to get more

accurate emission rates.

5.1.2 Long-term foliar herbivory induced VOC emission

There was a transient increase in the emission rates of total MTs due to long-term foliar
herbivory by larvae of the geometrid moth (chapter 2, Figure 2). However, the increase
in the total MTs emission was observed only in genotype 14 (gtl4) while herbivore
damage caused a slight reduction in the emission rates of total MTs from genotype 15
(gt15) and Hausjarvi provenance trees. The effect of herbivory and genotype differences
on VOC emission was greater in 2011 but declined in 2012. The VOC emission response
might be affected by differences in climatic conditions in each year, or probably the
plants had acclimatized to herbivore damage in the second year. In general, VOC
emissions from birch plants were higher in June than August. This is attributable to
higher temperature and light condition in June which can influence the amount of
inducible volatiles (Takabayashi and Dicke, 1996). Moreover, differences in
developmental stages played a role as plants have more actively growing tissues in
June, thus any damage to these tissues can induce more emissions compared to mature
or senescing leaves. The variability in the emission rates between the genotypes
suggests that VOC emission responses are genetically controlled.

Principal component analysis of field VOC data revealed that emissions of GLVs (cis-3-
hexenol, cis-3-hexenyl acetate, cis-3-hexenyl butyrate and methyl salicylate) were more
associated with Hausjarvi trees than with the micropropagated genotypes during the
second measurement. Thus, it is logical to suggest that Hausjdrvi provenance trees
might be more palatable or more responsive to herbivory than micropropagated
genotypes. However, the GLVs were not detected in large quantities during all
measurements indicating that these compounds are usually emitted immediately after
fresh damages as discussed in section 5.1.1, and the systemic emission from intact parts
might also follow similar pattern. On the other hand, Hausjdrvi provenance trees
emitted more SQTs, especially p-caryophyllene as a result of herbivory while -
bourbonene was associated more to gtl4 plants. In general, the emission of different

VOCs lacked consistent pattern over the course of the two experimental years in the
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field condition. Although the VOC data were temperature corrected, other abiotic
factors could have affected the substrate supply for the synthesis of VOCs. In addition
to environmental variation, the differences in VOC blend are the result of genetic
control over synthesis of VOCs particularly terpenoids (Nerg et al., 1994). Vuorinen et
al (2007) and Mantyld et al (2008) reported similar VOC emission responses of silver
birch to foliage herbivory but the VOC blend was slightly different compared to the
VOC blend in this study. Ocimenes, DMNT as well as linalool were emitted in higher
quantities from silver birch as a result of herbivory by E. autumnata (Vuorinen et al.,
2007) and the response to herbivory was much stronger than what has been observed in
our study. That might be explained by the fact that Vuorinen et al., (2007) performed
their study on younger seedlings in more actively growing stage than those used in this

study.

5.1.3 No systemic effect of bark herbivory on VOC emission

Bark beetle outbreak is a concern in some areas of boreal region as bark damaging
insects can also take advantage of climate warming (Williams and Liebhold, 2002), and
damage to the bark is capable of inducing VOCs from surrounding tissues (Heijari et al.
2011). In the bark herbivory experiment, similar to foliar herbivory, there was a
genotype x herbivory interaction effect as herbivore-infested gtl4 plants had higher
emission rates of total MTs and total VOCs than gt15 and Hausjarvi provenance trees.
The genotype effect was clearer in 2011 as micropropagated genotypes seem to be more
sensitive to bark damage as these plants emitted more inducible GLVs than Hausjarvi
provenance trees due to bark herbivory (chapter 2). In the last measurement, conducted
in late summer of 2012, Hausjarvi provenance trees emitted more GLVs than
micropropagated saplings. GLVs were also released in large quantities from control
plants indicating that other herbivores and plant pathogens might have affected
emission rates from control plants. Despite variabilities in emission rates of different
VOCs, this study is significant as it was able to quantify genotype-dependent effects of
herbivore damage on VOC emission from silver birch in the field conditions.
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5.2 VOC EMISSION RESPONSES OF SILVER BIRCH TO PROVENANCE

TRANSLOCATION ACROSS A LATITUDINAL GRADIENT

Abiotic and biotic conditions determine the optimum strategy on the type and amount
of resources allotted to both constitutive and inducible plant defences (Rasmann et al.,
2014). As expected, the quality and quantity of VOC emission differed between the two
experimental sites, Joensuu and Kolari, separated by over 500 km. All provenances
emitted higher rates of different VOCs at central site in 2012 but the vice versa was true
in 2013 (chapter 3, Figure 2). The higher emission of total MTs, total SQTs and total
VOCs from plants at central site in 2012, and plants at northern site (which has more
maritime climate than continental) in 2013 might be explained by higher cumulative
temperature at the respective sites up until the VOC measurement days. The
accumulated average daily temperature can affect phenology (e.g. bud burst and leaf
out) and stages of VOC emission from different plant species (Hakola et al., 2001).
There was a large variability in emission rates between different sampling dates; so
environmental factors that are not included in the adjustment equation might have
contributed to it. The variabilities also suggest that there are still uncertainties
surrounding VOC collections at field condition. Therefore, interpretation of VOC data
acquired from natural settings needs caution to achieve more precise flux estimation in
the face of changing environmental conditions. Moreover, there is a substantial annual
difference in cumulative temperature and precipitation due to the 500 km difference
between sample sites, which means that longer than 2 years monitoring period is

needed to reliably assess the effects of local climate.

Plant provenances are usually adapted to local conditions and thus can differ in their
response to a wide range of environmental conditions. In line with the hypothesis, the
results in this study showed that VOC emission rates and profile of the compounds
were significantly altered according to provenance origin. Some existing literature
points out that plants of southern origin are more adapted to higher herbivory than
those from the north (Pennings and Silliman, 2005) and therefore develop better
defence against it (Van Alstyne et al., 2001). In the present study, southern provenance
(Loppi) trees had the lowest total VOC emission at both sites, which is opposite to the
long held assumption that plants of lower latitude have higher defence traits than
plants of higher latitudes (Coley and Aide, 1991; Van Alstyne et al., 2001). Kivimdenpaa
et al (2012) found variation in terpene emission from cut surfaces of Scots pine
depending on provenance origin. In their study, the southernmost provenance (Tartu
58°N) emitted higher proportions of compounds such as carene, sabinene, y-terpinene
and terpinolene than Suonenjoki (62°N) and Kemijarvi (66 °N) provenances. However,
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Nerg et al (1994) reported that seed origin does not affect the concentration of
secondary compounds in Scots pine seedlings. On the other hand, chemical defence
traits, including resin concentration (Wainhouse et al. 1998) and lignin content
(Wainhouse and Ashburner, 1996), have shown differences based on provenance origin.
Contrary to expectations, transferring the southern and central provenances to the
northern site or the northern provenance to the central site, had no effect on VOC
emission. Only the VOC blend showed differences mainly because northern saplings
emitted more GLVs at the central site while the southern and central provenance
emitted more terpenoids at the northern site (chapter 3, Figure 4c). Although
transferring plants along a latitudinal gradient may have negative effects on plant
performance (Ovaska et al., 2005) the effect on secondary chemistry of silver birch was

not clear.

Herbivore assessment on branches showed variation in herbivore-damage at both sites
during the experimental seasons. The northern and central provenance saplings
showed no difference in the level of herbivore damage at both sites with the northern
having higher damage level compared to the other provenances (chapter 3, Figure 5). In
2013, all provenances had more herbivore damage at northern site during the first
sampling but the trend was not the same in the second sampling as all provenances had
nearly similar levels of herbivore damage with the exception of southern provenance
having higher damage at central site. In general, herbivory was higher at northern site
suggesting that plants are more prone or more palatable to herbivory at higher latitudes
(Ho and Pennings, 2013). However, the level of herbivore damage was not necessarily
reflected on the VOC emission except higher emission of herbivore-damage induced
VOCs (cis-3-hexenol, cis-3-hexenyl acetate and cis-3-hexenyl butyrate) at northern site
in 2013.

Herbivore damage assessment was performed only on enclosed part of the branch
which might have over- or underestimated the damage intensity in trees resulting to
lack of clear relationship between herbivore damage and VOC emissions. In addition,
there was no knowledge when the damages first occurred and some of the damages
were not fresh and thus might no longer induce VOCs. In the same experimental sites,
herbivore damage assessment was carried out on actively growing part of the shoot in
2011 and 2012. There was an increase in the level of herbivore damage down the
latitudinal gradient in 2011 but no clear trend was found in 2012 (Heimonen et al.,
2015). Their herbivore assessment was on many actively growing shoots of the top
canopy unlike our assessment which was limited to the branch used for VOC collection.
This translocation experiment is relevant as it showed the variable responses of

different provenances of silver birch along a latitudinal gradient. The VOC emission is
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one of traits that could contribute to the understanding of acclimation potentials of

silver birch provenances/genotypes in the face of climate warming in boreal regions.

5.3 COMBINED ENHANCEMENT OF UV-RADIATION AND TEMPERATURE ALTERS

VOC EMISSIONS FROM EUROPEAN ASPEN

As expected, warming enhanced the emission rates of isoprene and total VOCs from
aspen saplings, but there was no significant effect on the emission rates of total MTs,
SQTs and GLVs (chapter 4, Figure 1). This is consistent with results in various studies
that have demonstrated temperature dependence of emissions of different VOCs in a
range of plant species (Guenther et al,, 1993; Singsaas et al., 1999; Niinemets et al.,
2004). Aspens emit large quantities of isoprene (Hakola et al., 1998) and that was also
seen here as isoprene accounted for approximately 90% of the total VOC emissions.
Isoprene emitting species are better evolved to deal with oxidative stress and high
temperature (Velikova and Loreto, 2005) through isoprene’s capacity for heat removal,
membrane stabilization or antioxidant functions that provide thermotolerance
(Pefiuelas et al., 2005). Therefore, higher levels of isoprene might enable aspens to adapt
to higher temperature levels by protecting important organs through its antioxidative
or membrane stabilizing role (Niinemets and Sun, 2014). High temperature affects the
physico-chemical properties of isoprene and the diffusion resistance of the VOC
emission channels inside leaves. Temperature can also affect VOC biosynthesis by
regulating the reaction rate via its effect on enzymes that catalyse reactions for
production of intermediates and substrates of isoprene (Niinemets and Sun, 2015).
Hartikainen et al (2009) reported increase in MT and GLV emission but no significant
enhancement in isoprene emission from genotypes of European aspen as a result of
moderate air and soil warming (ambient + 0.8-1°C), which they associated with the

continuous nature of temperature exposure rather than repeated episode.

In addition to emission rates, VOC blends were also affected by warming as there were
increased emissions of trans-B-caryophyllene and p-ocimene related to warming
treatments. These compounds are often emitted as a result of environmental stress
(Staudt et al., 2003; Grote et al., 2013). MTs are known to have role in protecting plants
against stresses (Loreto and Schnitzler, 2010). However, in the present study warming
was not reflected on the total MTs emission rates although some MTs (e.g., a-pinene,

limonene and carene) were found to be more related to warming treatments.
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In the present study, the combined effects of warming and UV-B radiation enhanced
the emission rates of isoprene and total VOCs from European aspen. The two factors
have somewhat different biochemical mechanism via which VOC emission is induced.
Plants have evolved to protect themselves against reactive oxygen species production
inside the tissue due to high temperature, while UV-B radiation causes injuries to
proteins and membranes (Jansen et al., 1998) and thus may affect the emission of VOCs.
How UV-B and warming caused additive effects on the emission of isoprene is not well
understood, and thus the underlying mechanisms are open to be explored. The total
MTs, total SQTs and total GLVs were similarly increased by the combined stresses, with
the clearest effect found in July measurement (chapter 4, Figure 2).

European aspen is a dioecious (male and female reproductive structures on separate
plants) species and its resource allocation to growth, development and defence can be
gender specific. Variation in plant quality as a result of inter-sexual differences
(Boecklen et al., 1990) might play role on plant defence traits including VOC emissions.
In the present study, gender effects were seen in the emission rates of different
compounds as females had higher emission of total MTs under UV-A and UV-B
treatments with or without warming. Moreover, female saplings had more variation
with regards to VOC blend composition compared to male saplings (chapter 4, Figure
3, 4). Females are slow growers and invest more resources on defensive compounds in
stressful conditions (Cornelissen and Stiling, 2005). This suggests that in addition to
defence against biotic stresses, sex-related differences play a role in resistance against
abiotic stresses such as warming and UV-radiation. On the other hand, more resource
allocation to reproductive parts in females may consume resources that might be used
for synthesis of chemical compounds (Bafiuelos et al., 2004) as the case reported in male

Spanish plum (Spondias purpurea L.) plants (Maldonado-Lopez et al., 2014).

The results of this experiment are significant because they quantify for the first time the
VOC emission responses of European aspen to the combined warming and UV-
radiation at field condition. In light of predicted climate change factors in the coming
decades, it is vital to understand how trees in boreal region, which are expected to face
large effect of climate change, respond to multiple environmental factors. The results of
this study indicate that emission rates and composition of VOCs are subject to change
in the future as a result of expected changes in climate with a potential effect on air

quality and atmospheric chemistry.
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5.4 RHIZOSPHERE EMISSIONS

Only MTs were detected in the rhizosphere samples of both foliar and bark herbivory
experiments on silver birch. Contrary to the expectation, the emission rates were
unaffected by genotype, herbivory or interaction of these factors. Similar results were
reported in a previous study performed in cotton as herbivore damage on above-
ground parts did not cause significant effect on VOC emission the rhizosphere
(Bezemer et al., 2004). The VOC emission from roots in forested sites accounts for about
half of the carbon emission from soil (Gray et al., 2014), but in this study the quantities
of VOCs are not in the same order of magnitude as the compounds were detected only
in small quantities. In provenance translocation experiment, VOC emissions from the
rhizospheres of silver birch were not affected by provenance effect, and in general only
few VOCs were detected from samples. In addition to terpenoids, GLVs found in the
rhizosphere emissions may be attributable to mechanical damage sustained by birch
roots during weeding. The result indicates that non-terpene storing roots of deciduous
trees are not so responsive to above-ground stress as terpene-storing conifer roots
(Ghimire et al., 2013). Similarly, emissions from the rhizospheres of European aspen
were not affected by above ground warming and UV-B radiation treatments. Only low-
molecular-weight compounds such as toluene, which is associated to stressful
conditions such as ozone level (Heiden et al., 1999), were detected but there was no

clear difference in emission rates between control and treated plants.

5.5 LIMITATIONS OF THE STUDY

As most of the VOC measurements (except online monitoring) were carried out in the
field conditions where many external factors such as wind and relative humidity that
could not be controlled during VOC measurements, these factors might have affected
plants and the sampling procedure. Therefore, it is likely that some of these factors
have caused physical injury and influenced tree physiology contributing to the large
variability of VOC emissions. In the field conditions, the surrounding plants are also
probably affecting the VOC responses and natural background herbivory is difficult to
fully exclude.

In provenance translocation study, the southern site (Tuusula) had to be excluded due
to high mortality of the saplings as a result of fungal diseases. This means that VOC
measurements were carried out from the central (Joensuu) and northern (Kolari) sites

only, and this limited the possibility of making the planned comparison of larger
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latitudinal gradient measurements and full understanding of its effect on VOC
emissions. This study also indicated that not only latitudinal gradient (i.e. temperature
change and herbivore pressure along the latitude) affected the VOCs but there were
probably also some masking factors like photoperiod and edaphic factors which
affected responses.

Several previous studies have used similar VOC collection method, i.e.,, dynamic
headspace VOC collection technique (Stewart-Jones and Poppy, 2006; Blande et al.,
2007; Ibrahim et al.,, 2010). Some of the constraints in this method include the
mechanical induction of VOCs while fixing the lines and changes in air flow rates after
flushing the empty PET bags. The changing flow rates of incoming air can affect
photosynthesis of experimental plants, which may in turn influence VOC synthesis and
emission. However, this measurement procedure was the same for all the plants from
which VOCs were sampled, thus it may not be considered as a serious flaw. This
method is the best method thus far to conduct VOC measurements in remote sites and
enable to collect several simultaneous samples by saving time between measurements.
The VOC measurement from rhizosphere has its own limitations as the collection
system or the sampling times used might not be sensitive enough to detect the VOC
flux from the roots and rhizosphere system, so future methodological considerations

are necessary to acquire more accurate VOC emission rates.

5.6 CONCLUSIONS AND IMPLICATIONS

This study revealed contrasting pattern in VOC emission to short- and long-term
herbivore damage to silver birch by geometrid moth species (A. aurantiaria and E.
defoliaria). Herbivory showed strong influence on VOC emission on short-term whereas
a long-term response was transient and variable throughout the measurement period.
VOC emissions to both foliar and bark herbivory were altered based on genotype
differences, but aboveground herbivory had no significant influence on VOC emission

from rhizosphere.

The VOC emission response of silver birch at common garden experimental sites varied
based on provenance origin and the responses of VOC blends was genotype-specific
which suggests that there was genetic control over VOC biosynthesis. However,
provenance translocation across latitudinal gradient had no effect on VOC emissions or
herbivore damage intensity. This indicates that provenances of silver birch may not be

very sensitive to changes in environmental conditions at least in short-term. Moreover,
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the study does not support the classical theory that plants have higher defence at lower
latitudes than at higher latitudes.

The study also showed that combined environmental factors (warming and UV-
radiation) had additive effects on the emission rates of VOCs from European aspen. As
the impacts of these factors increase as a result of climate change, it is likely that they
might alter VOC emission rates from different plant species, especially for those in

boreal regions.

In conclusion, the VOC emission response of deciduous trees is dependent on biotic
and abiotic factors at laboratory and field conditions. Herbivory effect on VOC
emission seemed to be greater immediately after damage and declines gradually. In
order to get accurate VOC emission rates to insect herbivory, measurements need to be
carried out immediately after herbivore attack. Performing emission rates right away
after herbivory from individual plant species will enable to scale up estimation of
annual stress-induced VOC emission at regional and global scale. As a model plant
species, the response of aspen to warming and enhanced UV-B radiation is an
important step in understanding how future changes in the environment might affect
defence traits. Higher isoprene emission in response to combined climatic factors might
be a resistance trait that provides protection against these stresses, but the mechanisms
underlying the additive effect need further investigation. High emission of isoprene in
response to these stresses from deciduous trees should not be overlooked in the face of

predicted changes in temperature and other abiotic stresses.
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