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ABSTRACT

The work summarized in this thesis contains analytical and numer-

ical studies on the role of partial coherence of light in optical beam

shaping and imaging systems. Spatially partially coherent station-

ary light fields as well as temporally and spectrally partially coher-

ent non-stationary fields (pulse trains) are considered in the frame-

work of classical second-order coherence theory. New methods for

the analysis of beam shaping and imaging systems are developed,

some of which are based on decomposing the partially coherent

field into a set of fully coherent modal fields. The efficiency of such

approaches is demonstrated by numerical examples.
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1 Introduction

Optical fields are often idealized as being strictly harmonic (mono-

chromatic) waves or deterministic wave packets (pulses) that con-

sist of a continuum of mutually correlated frequency components.

In the case of stationary fields, single-mode laser beams represent

the ideal case of full spatial coherence, allowing light waves em-

anating from different points of space to interfere. Correspond-

ingly, single-mode femtosecond lasers produce fully coherent pulse

trains in the sense that all pulses are of identical spectral and tem-

poral form. However, all real stationary or pulsed electromagnetic

fields undergo certain fluctuations either in the spatial, temporal,

or frequency domains, or in all of them. Not even single-mode

lasers are fully stable, and femtosecond pulse trains produced by

mode-locked lasers exhibit some pulse-to-pulse variations. Such

fluctuations are, in general, best treated by considering the optical

field as a random process and applying statistical methods to de-

scribe it. This is all the more important if one considers stationary

sources of light such as thermal emitters and light-emitting diodes,

in which the spatial correlations of light fields emitted from two

closely spaced points is low. Similarly, a statistical description is a

natural approach to describe pulse trains in which the individual

pulses have non-identical wave forms. Optical coherence theory

of stationary [1–4] and non-stationary [5–7] fields describes corre-

lations between field fluctuations at two (or more) points in the

spatial, angular, temporal, or spectral regime, and forms the basis

of the work reported in this thesis.

Both beam shaping and imaging problems with partially co-

herent light will be considered. In beam shaping, the goal is to

transform a field with a given spatial profile (typically Gaussian)

into some other predefined profile [8–14], which is often an ap-

proximation of a flat-top profile [15]. This task can, in general,

be accomplished either with refractive free-form elements [16–23]
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or by means of diffractive elements [24–32] with an appropriately

designed phase transmission function [33], or with so-called har-

monic diffractive elements [34–39], which provide a transition be-

tween purely diffractive elements and refractive elements. These

different types of elements are equivalent for monochromatic light,

but their chromatic properties differ widely [40–42] and this be-

comes important if one considered the shaping of ultrashort pulses

with broadband spectra. Also non-perfect spatial coherence has

an effect in the performance of beam shaping elements since the

spreading properties of optical beams depend critically on the spa-

tial coherence of the source [43–45]. All of these aspects will be

considered in this thesis and in Papers I–III.

In the case of partially coherent fields, propagation integrals of

spatial correlation functions are generally four-dimensional (4D),

which makes their numerical treatment more or less untractable. In

order to make numerical calculations feasible, so-called modal ap-

proaches [46–51] are used extensively, especially to describe partial

spatial coherence. Such modal approaches, in which the partially

coherent field is represented as a superposition of fully coherent

fields, lead to the evaluation of a set of two-dimensional (2D) inte-

grals instead of a single 4D integral. Modal decompositions offer

great benefits in numerical treatment of partially coherent light in,

e.g., beam shaping problems. In this thesis they are also applied to

imaging problems (Paper IV) and shown to facilitate efficient anal-

ysis of these problems regardless of the degree of spatial coherence

of object illumination.

The thesis is organized as follows.

In Chapter 2, the basic concepts of optical coherence theory are

presented, which are applicable to stationary and non-stationary

scalar fields. The correlation functions in the space-time and space-

frequency domains are introduced, and the coherence properties of

several partially coherent light sources are discussed in brief.

In Chapter 3, we focus on beam shaping by refractive, diffrac-

tive, and hybrid optical elements. This chapter also includes the

basic concepts of the optical map transform method. The designed

2 Dissertations in Forestry and Natural Sciences No 207
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beam shaping elements are then considered assuming illumination

by broadband light sources. The performance of all three types of

beam shaping elements are compared using examples (frequency-

integrated results).

In Chapter 4, two different modal approaches, namely the Mer-

cer coherent-mode representation and the elementary field repre-

sentation [52,53], are presented in the form applicable to stationary

and non-stationary fields. These modal decomposition techniques

are applied to Gaussian Schell-model beams and pulses. Examples

of this kind of models are discussed.

In Chapter 5, we deal with one of the most prohibitive numeri-

cal problems in optics, i.e., image formation with spatially partially

coherent light. The traditional theoretical approaches involve four-

dimensional integrals, the numerical evaluation of which is a pro-

hibitive task especially for objects of complicated structure. With

the help of the elementary-field representation, we introduce an

efficient and computationally feasible method, which is discussed

with examples on bright-field and dark-field imaging geometries.

Finally, in Chapter 6, the main conclusions of this work and

some future prospects are presented.

Dissertations in Forestry and Natural Sciences No 207 3
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2 Coherence of stationary and

non-stationary fields

There are numerous randomly radiating but temporally stationary

primary light sources, such as thermal sources, whose statistical

properties are time-invariant. This kind of random sources can

be best described using the optical coherence theory of light [1],

which is based on correlation functions obtained either by calcu-

lating time averages of certain products of field quantities or av-

erages over ensembles formed by individual field realizations. On

the other hand, there are numerous non-stationary sources includ-

ing mode-locked femtosecond lasers, supercontinuum sources, and

free-electron lasers, which produce trains of short pulses. In this

case subsequent pulses in the train can be considered as individual

field realizations, which may be more or less identical. Correla-

tion functions that describe the statistical properties of the pulse

train can be defined by means of ensemble averages of products of

field quantities in analogy with the stationary case [5–7]. Coherence

properties of optical fields can be characterized by means of these

correlation functions.

Both stationary and non-stationary sources, and the fields ra-

diated by them, can be spatially and temporally fully or partially

coherent. In the case of stationary sources (and fields), the temporal

coherence is a function of only the time difference τ = t2 − t1 (one

time coordinate), while the temporal coherence properties of non-

stationary sources must be described by a correlation function that

depends on both t1 and t2 (two time coordinates). Similarly, there

is an important difference between stationary and non-stationary

sources if their spectral correlations are considered. In the case of

stationary fields, all frequency components of light are strictly un-

correlated and hence the spectral-domain correlation function de-

Dissertations in Forestry and Natural Sciences No 207 5
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pends on only one frequency coordinate. In the non-stationary case,

any (full or partial) degree of correlation between two frequencies

ω1 and ω2 is generally possible.

In this thesis both stationary and non-stationary light sources

and fields are considered. However, although the electromagnetic

field is vectorial in nature, the studies presented here are restricted

to scalar fields. Ignoring the vectorial nature of the field amounts to

neglecting important phenomena like polarization, but this is often

acceptable especially in the paraxial domain, where only the two

transverse components of the electric field are significant and can

be treated independently.

In this chapter the qualitative considerations presented above

are put on a firm mathematical basis by formally introducing the

correlations functions used in the scalar description of both station-

ary and non-stationary fields. We begin with a complex representa-

tion of the optical field itself and proceed to a formal description of

field correlations in space-time and space-frequency domains. Fi-

nally, spatial, spectral, and temporal correlation properties of some

typical partially coherent light sources are described in a qualitative

fashion.

2.1 BASIC FIELD REPRESENTATION

Monochromatic harmonic fields are real, but it is customary to use a

complex representation because of its mathematical convenience. A

complex representation is convenient also for polychromatic fields.

It leads to the concept of a complex analytic signal [54] and to

a Fourier-transform relationship between field representations in

time and frequency domains.

Let us consider a scalar field Vre(r, t), which is a real-valued

function of position r and time t and satisfies the wave equation in

vacuum. This function can be represented as a Fourier integral

Vre(r, t) =
∫ ∞

−∞
V(r, ω) exp (−iωt)dω, (2.1)

6 Dissertations in Forestry and Natural Sciences No 207
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where the field is decomposed into its components at different an-

gular frequencies ω.

Since the field Vre(r, t) is real, the negative frequency compo-

nents contain no information that is not already present in the pos-

itive frequency components. Thus the field is completely specified

by the complex analytic signal defined as

V(r, t) =
∫ ∞

0
V(r, ω) exp (−iωt) dω, (2.2)

where, by inverse Fourier transform,

V(r, ω) =
1

2π

∫ ∞

−∞
V(r, t) exp (iωt)dt. (2.3)

This mathematically convenient complex field representation will

be employed throughout the thesis.

2.2 MUTUAL COHERENCE FUNCTION

In the space-time domain the second-order coherence properties of

the field are characterized by a correlation function that generally

depends on two arbitrary spatial positions r1 and r2, and on two

arbitrary instants of time t1 and t2. If the field is stationary, its sta-

tistical properties are independent of the origin of time and the cor-

relations therefore depend only on the time difference τ = t2 − t1.

Th appropriate correlation function is then the Mutual Coherence

Function (MCF) defined as

Γ(r1, r2, τ) = �V∗(r1, t)V(r2, t + τ)�. (2.4)

Here the angular brackets may be interpreted as the time average

over the quantity enclosed, i.e.,

�V∗(r1, t)V(r2, t + τ)� = lim
T→∞

1

T

∫ T/2

−T/2
V∗(r1, t)V(r2, t + τ)dt. (2.5)

Alternatively, one may consider a set (ensemble) of field realizations

Vn(r, t) (long but finite temporal sections of the field) and define an

Dissertations in Forestry and Natural Sciences No 207 7
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ensemble average

�V∗(r1, t)V(r2, t + τ)� = lim
N→∞

1

N

N

∑
n=1

V∗
n (r1, t)Vn(r2, t + τ). (2.6)

Very often these two definitions produce the same result, and in

this case the field is said to be ergodic.

It is convenient to define a normalized form of the MCF, known

as the complex degree of coherence, by the formula

γ(r1, r2, τ) =
Γ(r1, r2, τ)

[I(r1)I(r2)]
1/2

, (2.7)

where

I(r) = Γ(r, r, 0) = �|V(r, t)|2� (2.8)

represents the spatial intensity distribution of the field. The func-

tion γ(r1, r2, τ) satisfies the inequalities

0 ≤ |γ(r1, r2, τ)| ≤ 1, (2.9)

where the lower limit represents complete incoherence and the up-

per limit full coherence of field fluctuations at points r1 and r2,

and at time delay τ. Spatial coherence is characterized by zero-

time-delay functions Γ(r1, r2, 0) and γ(r1, r2, 0), while temporal co-

herence at any single point r is characterized by functions Γ(r, r, τ)

and γ(r, r, τ).

In addition to stationary fields, also pulse trains are considered

in this thesis. In the case of such non-stationary fields the correla-

tions depend on both temporal coordinates and the MCF is defined

as

Γ(r1, r2, t1, t2) = �V∗(r1, t1)V(r2, t2)�. (2.10)

Here different pulses are considered as field realizations and the

angular brackets denote an ensemble average

�V∗(r1, t1)V(r2, t2)� = lim
T→∞

1

N

N

∑
n=1

V∗(r1, t1)V(r2, t2). (2.11)

8 Dissertations in Forestry and Natural Sciences No 207



Coherence of stationary and non-stationary fields

In analogy with the stationary case, the spatiotemporal intensity

distribution is defined by setting r1 = r2 = r and t1 = t2 = t in

Eq. (2.11), which gives

I(r, t) = Γ(r, r, t, t) = �|V(r, t)|2�. (2.12)

The normalized form of MCF, still called the complex degree of

coherence, is defined as

γ(r1, r2, t1, t2) =
Γ(r1, r2, t1, t2)

[I(r1, t1)I(r2, t2)]
1/2

(2.13)

and it obeys the inequalities

0 ≤ |γ(r1, r2, t1, t2)| ≤ 1, (2.14)

where the lower and upper bounds represent complete incoherence

and complete coherence between the two space-time points, respec-

tively.

2.3 CROSS-SPECTRAL DENSITY FUNCTION

In addition to field correlations in the space-time domain, it is of in-

terest to examine correlations in the space-frequency domain, i.e., as

a function of two spatial coordinates r1 and r2 and two frequencies

ω1 and ω2. In many instances it is more natural and mathematically

simpler to consider fields in this domain. This is true, for example,

in propagation, beam shaping, and imaging problems considered

later on in this thesis.

The precise theory of coherence of stationary optical fields in

the space-frequency domain was developed by Wolf [46,47,55]. The

central quantity in this theory is the cross-spectral density function

(CSD), defined by means of the spectral field representation V(r, ω)

introduced in Eq. (2.3).

Considering non-stationary fields first, the CSD is defined as an

ensemble average

W(r1, r2, ω1, ω2) = �V∗(r1, ω1)V(r2, ω2)�. (2.15)

Dissertations in Forestry and Natural Sciences No 207 9
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In analogy with the quantities in the space-time domain, we define

the spectral density of the field, or the power spectrum at position

r, as

S(r, ω) = W(r, r, ω, ω) = �|V(r, ω)|2�. (2.16)

Further, it is useful to define a normalized form of the CSD as

µ(r1, r2, ω1, ω2) =
W(r1, r2, ω1, ω2)

√

S(r1, ω1)S(r2, ω2)
. (2.17)

This quantity, called the complex degree of spectral coherence, sat-

isfies the inequalities

0 ≤ |µ(r1, r2, ω1, ω2)| ≤ 1. (2.18)

The lower and upper bounds correspond to complete incoherence

and coherence, respectively, between field fluctuations at the two

space-frequency points. Spatial coherence at any given frequency

ω is characterized by functions W(r1, r2, ω, ω) and µ(r1, r2, ω, ω),

while spectral coherence at a spatial point r is characterized by

functions W(r, r, ω1, ω2) and µ(r, r, ω1, ω2).

By inserting from Eqs. (2.3) and (2.10) into Eq. (2.15) we imme-

diately find that

W(r1, r2, ω1, ω2) =
1

(2π)2

∫∫ ∞

−∞
Γ(r1, r2, t1, t2)

× exp [−i (ω1t1 − ω2t2)] dt1 dt2 (2.19)

and, inversely,

Γ(r1, r2, t1, t2) =
∫∫ ∞

0
W(r1, r2, ω1, ω2)

× exp [i (ω1t1 − ω2t2)] dω1 dω2. (2.20)

This connection between the CSD and MCF is called the generalized

Wiener–Khintchine theorem for non-stationary fields [56–61].

Let us proceed to consider stationary fields by assuming that

the MCF has the form of Eq. (2.4) and insert t1 = t, t2 = t + τ into

10 Dissertations in Forestry and Natural Sciences No 207
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Eq. (2.19). Defining

W(r1, r2, ω) =
1

2π

∫ ∞

−∞
Γ(r1, r2, τ) exp (iωτ) dτ (2.21)

we get the relation

W(r1, r2, ω1, ω2) = W(r1, r2, ω1)δ(ω1 − ω2), (2.22)

which shows that all frequency components of a stationary field are

uncorrelated. The CSD of a stationary field, defined according to

Eq. (2.22), is related to the MCF though Eq. (2.21) and its inverse

Γ(r1, r2, τ) =
∫ ∞

0
W(r1, r2, ω) exp (−iωτ) dω. (2.23)

These equations constitute the generalized Wiener–Khintchine the-

orem for stationary light.

The spectral density of a stationary field is defined as S(r, ω) =

W(r, r, ω) and its complex degree of coherence by an expression

analogous to Eq. (2.17),

µ(r1, r2, ω) =
W(r1, r2, ω)

√

S(r1, ω)S(r2, ω)
. (2.24)

We now have the inequalities 0 ≤ |µ(r1, r2, ω)| ≤ 1 and the Fourier-

transform relations

S(r, ω) =
1

2π

∫ ∞

−∞
Γ(r, r, τ) exp (iωτ) dτ, (2.25)

Γ(r, r, τ) =
∫ ∞

0
S(r, ω) exp (−iωτ) dω (2.26)

between the spectral density and the autocorrelation function of

a stationary random process. These relations form the (standard)

Wiener–Khintchine theorem [62–64] and they provide an important

connection between the spectrum and the temporal coherence func-

tion of stationary light.
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2.4 PARTIALLY COHERENT LIGHT SOURCES

Before having a closer look at the mathematical models and the

modal approaches that can be used to describe different types of

real light sources, it is necessary to understand the coherence prop-

erties of these sources. When the spectral content is considered,

a source can be considered as monochromatic (single frequency),

quasi-monochromatic (spectral bandwidth is much smaller than the

mean frequency), or polychromatic (the spectral bandwidth is sig-

nificant compared to the center frequency). Only stationary sources

(in practise single-mode lasers) can be approximated as being mono-

chromatic since, according to Eq. (2.3), short pulses necessarily have

frequency spectra of finite bandwidth [65].

Considering spatial coherence, a stationary source is fully coher-

ent in the space-frequency domain if the CSD can be represented

in a factored form W(r1, r2, ω) = V∗(r1, ω)V(r2, ω), which implies

that |µ(r1, r2, ω)| = 1 [66]. Correspondingly, it is fully spatially co-

herent in space-time domain if Γ(r1, r2, 0) = V∗(r1, t)V(r2, t) and

hence |γ(r1, r2, 0)| = 1. It should be noted that even if the source

(or field) is fully spatially coherent at every frequency ω, it is not

necessarily fully coherent in the space-time domain [67]. This is the

case, for example, if the transverse scale or shape of S(r, ω) of a

stationary field depends on ω [68, 69].

If we consider a source that emits light predominantly in the

z direction and assume that r1 and r2 are located in the source

plane, the spatial coherence area of the source is the region in which

|µ(r1, r2, ω)| or |γ(r1, r2, 0)| (depending on whether we consider the

field in the spcae-frequency or in the space-time domain) differs sig-

nificantly from zero. Generally, the coherence area is space-variant

in the sense that it depends on the center coordinate r = 1
2 (r1 + r2).

However, many sources are at least approximately of the Schell-

model form, such that µ or γ depend only on the coordinate dif-

ference ∆r = r2 − r1, and in this case the coherence area is space-

invariant.

If the spatial coherence area is everywhere comparable to, or

12 Dissertations in Forestry and Natural Sciences No 207



Coherence of stationary and non-stationary fields

larger than the effective area of S(r, ω) or I(r), one speaks of a

quasi-coherent source in space-frequency and space-time domains,

respectively. If, on the other hand, the coherence area is everywhere

small compared to the source size, one customarily uses the term

quasihomogeneous source. Similar terms are used also for fields

radiated by primary sources. An incoherent source is obtained in

the limit of zero coherence area. However, this is an idealization

(though often a quite useful one). It can be shown that the smallest

possible dimensions of the coherence area are of the order of the

wavelength [70]. In fact, even if the coherence area of a primary

source were in the subwavelength scale, the coherence area of the

field radiated by it would grow to wavelength scale after a propa-

gation distance of only a few wavelengths since at that distance the

evanescent spatial-frequency components of the field die out.

Similar terminology (quasi-coherence and quasi-homogeneity)

is applicable to spatial coherence of non-stationary sources. The

only difference is that one considers the function µ(r1, r2, ω, ω) in-

stead of µ(r1, r2, ω), and γ(r1, r2, t, t) instead of γ(r1, r2, 0), when

defining the coherence area.

As already seen from Eq. (2.22), a strictly stationary source is al-

ways spectrally incoherent, i.e., all of its frequency components are

uncorrelated. Such a source is fully temporally coherent at point

r if |γ(r, r, τ)| = 1 for all τ and temporally partially coherent if

|γ(r, r, τ)| has a finite effective width (coherence time). It should be

noted that no temporally incoherent sources exist since the Γ(r, r; τ)

is related to the spectrum S(ω) through the Wiener–Khintchine the-

orem (2.25); since S(ω) has a finite bandwidth, its Fourier transform

Γ(r, r; τ) must have a finite temporal width.

Non-stationary sources (and fields) are fully spatially and spec-

trally coherent if the two-frequency CSD is of the factored form

W(r1, r2, ω1, ω2) = V∗(r1, ω1)V(r2, ω2), which immediately implies

that |µ(r1, r2, ω1, ω2)| = 1. Similarly, non-stationary sources are

fully spatially and temporally coherent if the two-time MCF can

be represented as Γ(r1, r2, t1, t2) = V∗(r1, t1)V(r2, t2), which implies

that |γ(r1, r2, t1, t2)| = 1. This type of fields are generated, to an
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excellent approximation, by mode-locked lasers [71].

Considering the field at a single point r1 = r2 = r, the spec-

tral coherence area is defined as the effective region within which

|µ(r1, r, ω1, ω2)| differs significantly from zero, and the temporal co-

herence area is the region where |γ(r1, r2, t1, t2)| has significant val-

ues. In general, the spectral coherence area depends on the mean

frequency ω = 1
2 (ω1 + ω2) and the temporal coherence area is a

function of the mean time t = 1
2 (t1 + t2). However, often one can

assume that |µ(r, r, ω1, ω2)| = |µ(r, r, ∆ω)| with ∆ω = ω2 − ω1,

i.e., the field is spectrally of the Schell-model form. In this case

the spectral coherence area depends only on the frequency differ-

ence ∆ω and not on the mean frequency ω. Similarly, if the field is

temporally of the Schell-model form, the temporal coherence area

depends only on t2 − t1.

In full analogy with spatial coherence, a non-stationary field

is spectrally quasi-coherent if the dimensions of the spectral co-

herence area of the same order of magnitude as the mean spec-

tral width, and a corresponding criterion defines temporally quasi-

coherent fields. Non-stationary fields are called quasi-stationary if

the temporal coherence area is small compared to the pulse dura-

tion, which typically implies that also the spectral coherence area

is small compared to the spectral width. In general, if we fix the

spectral width and reduce the spectral coherence area, the pulse

duration increases. In reverse, if we consider pulses of fixed dura-

tion and reduce the temporal coherence area, the spectrum widens.

As with stationary fields, no temporally incoherent pulsed fields

exist.

Continuous-wave (CW) single-mode lasers (He-Ne, Nd:YAG,

Ar+, etc.) are, for nearly all practical purposes, fully spatially and

temporally coherent. As already mentioned, mode-locked femto-

second lasers are virtually fully coherent spatially, spectrally, and

temporally. However, all other sources are partially coherent in at

least one of these domains. Let us next consider some examples of

such partially coherent sources.

As stated above, there are no strictly spatially incoherent sources
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but thermal sources and surface-emitting LEDs have spatial coher-

ence areas with dimensions of the order of the wavelength and are

therefore quasihomogeneous. However, if light from such a source

is collimated, one creates a virtual source with an increased appar-

ent coherence area. In the case of quasihomogeneous sources, the

divergence of the field is inversely proportional to the coherence

area instead of the source size as it is in the case of fully spatially

coherent fields [72]. Hence, the better the field is collimated, the

larger is the apparent coherence area.

The temporal coherence properties of thermal sources and LEDs

operating in the continuous-wave mode differ quite significantly.

Thermal sources are broadband emitters, thus having very short

(femtosecond-range) coherence times, while LEDs are polychro-

matic but nevertheless rather narrow-band sources, thus having sig-

nificantly larger coherence times [73]. Of course, spectral filtering

of a thermal source increases the coherence time according to the

passband of the filter as dictated by the Wiener–Khintchine theo-

rem.

Laser diodes operating in a single transverse and longitudi-

nal mode are good approximations of fully spatially and tempo-

rally coherent sources. However, to obtain a high output power

from a single diode laser requires that a large number of trans-

verse and longitudinal modes are allowed to be excited. Broad-area

laser diodes (BALDs) with high output power are stationary, quasi-

monochromatic, quasi-homogeneous, and temporally partially co-

herent light sources [74–80]. Even higher power levels can be achie-

ved by means of arrays of vertical-cavity surface-emitting lasers

[81,82]. Depending on the way of construction, individual lasers in

such arrays can be coupled in order to produce nearly spatially co-

herent illumination (which however is highly structured), or the ad-

jacent lasers may emit light independently from each other [83, 84].

In the latter case, the array behaves as a quasimonochromatic spa-

tially partially coherent source.

There are also several pulsed sources with different coherence

states. Excimer lasers are pulsed sources operating in the ultravi-
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olet region of the spectrum, which have important applications in,

e.g., optical projection lithography and biomedical optics [85–89].

These lasers can be characterized as quasi-monochromatic, quasi-

homogeneous and quasi-stationary light sources.

Supercontinuum (SC) light sources realized by pumping non-

linear optical fibers with pulsed light produce highly broadband

(even octave-band) fields. These sources are spatially fully coherent

in the spectral domain and spatially quasi-coherent in the tempo-

ral domain. The spectral and temporal coherence properties vary

widely depending on the pump pulse power and duration [90–95].

It has been recently demonstrated that the two-frequency CSD and

the two-time MCF contain both quasi-coherent and quasi-stationary

contributions (the spectral coherence width varies widely as a func-

tion of ω and the coherence time varies with t) [93].

Finally, X-Ray Free-Electron Lasers (XFELs) [96, 97] are quasi-

monochromatic sources of short-wavelength radiation. Beams radi-

ated by these sources have been unambiguously demonstrated as

being spatially quasi-coherent [98]. The temporal coherence prop-

erties of XFELs have also been studied and they have been shown

to be partial [99–106]. There are indications that some XFELs are

temporally quasi-coherent, while others are quasi-stationary.
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In this chapter we study the effects of a finite spectral width of the

illuminating field in beam shaping problems, which are relevant

in, e.g., target illumination, imaging, laser printing, beam homoge-

nization, and holography [107–111]. The idea is to use a specially

designed element to modulate the phase of the incident beam in

such a way that a desired intensity distribution is obtained either in

the Fresnel region or in the far field. In particular, we consider ele-

ments designed by the optical map transform method [28,112–114],

although there exist many other ways of designing beam shaping

elements [115–118], including the iterative Fourier-transform algo-

rithm [109, 119, 120].

Elements designed by the geometrical map-transform method

can be realized in different forms, such as diffractive or refractive

surface-relief structures, modulo 2πM (M = integer) diffractive

structures that are generalizations of harmonic diffractive lenses [121,

122], or hybrid structures that are combinations of refractive and

diffractive elements [34, 35]. The performance of these different

types of element is compared in Paper II, with a summary provided

below. It is a common belief that purely diffractive elements work

appropriately only for quasimonochromatic light fields with nar-

row frequency spectra, though previous studies indicate that they

can be used to shape beams from wavelength-tunable lasers [123,

124]. The simulation results given below show that purely diffrac-

tive elements can perform surprisingly well even if extremely wide-

bandwidth light beams from either stationary (such as thermal or

RGB, Red/Green/Blue) sources or ultra-wide-bandwidth pulsed

supercontinuum light sources are considered.
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3.1 THE GEOMETRICAL MAP TRANSFORM METHOD

The principles of the optical map transform method were intro-

duced independently by Kurtz et al. [112] and Bryngdahl [113]. The

basis of this method is a geometrical energy conservation (or bal-

ance) criterion, which relates the energy distributions at the input

(element) and the output (target) planes as schematically illustrated

in Fig. 3.1.

x u

element target

λ

∆z

w
a

S ( x) S (u     )

0

Figure 3.1: The principle of the geometrical map-transform method in a y-invariant geom-

etry, illustrated for Gaussian to flat-top transformation in a discrete form. The intensity

distributions at the element and target planes are divided into sections of equal energy, and

the task of the element is to redirect the incident field in such a way that these sections are

connected.

Assuming first monochromatic illumination at some frequency

ω0 (and wavelength λ0 = 2πc/ω0), which we ignore from nota-

tion for the time being, we denote the field incident on the element

by V(x) and its intensity (spectral density) by S(x), normalized

such that
∫ ∞

−∞
S(x)dx = 1. Within the usual thin-element approx-

imation [125], the action of the element is described by a phase-

only complex-amplitude transmission function t(x) = exp [iφ(x)].

The goal is to design the phase function φ(x) in such a way that

the target-plane intensity distribution has a prescribed form S(u),

which satisfies
∫ ∞

−∞
S(u)du = 1 (energy conservation).

If we let the finite sections of equal energy in the element and

target planes of Fig. 3.1 become infinitely narrow, we arrive at a

mapping x → u(x) between the ray exit point x at the element
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plane and the ray arrival point u(x) at the target plane, which can

be determined from the energy balance condition

∫ x

0
S(x′)dx′ =

∫ u(x)

0
S(u′)du′. (3.1)

In writing this expression we have assumed mirror symmetries

S(−x) = S(x) and S(−u) = S(u). Since the criterion (3.1) is based

on purely geometrical considerations, a word of warning is already

in place. Light propagation between the element and target planes

is in reality affected by diffraction, and hence the prescribed target

distribution S(u) can generally not be achieved exactly. This is true,

in particular, if the spatial width of S(u) is close to the diffraction

limit [109].

Assuming that the incident field has a constant phase, the task

of the element is to convert a normally incident ray at each point x

into a ray that propagates at an angle θ given by

tan θ =
u(x)− x

∆z
. (3.2)

The local ray direction is normal to the phase of the field just af-

ter the element, which is determined by the gradient of the phase

function φ(x), and therefore we have (see, e.g., Ref. [107], Sect. 1.3.5)

sin θ =
1

k0

dφ(x)

dx
, (3.3)

where k0 = ω0/c = 2π/λ0. In paraxial approximation we can

write tan θ ≈ sin θ ≈ θ. Then, combining Eqs. (3.2) and (3.3) and

integrating, we have

φ(x) =
k0

∆z

∫ x

0

[

u(x′)− x′
]

dx′, (3.4)

which provides the desired phase function of the element.

Let us consider the Gaussian to flat-top transformation [126,127]

already illustrated in Fig. 3.1 as an example. The incident field is

taken to have a Gaussian distribution

V(x) =

(

2

π

)1/4

exp

(

− x2

w2

)

(3.5)
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and hence the spatial distribution of its spectral density is given by

S(x) =

(

2

π

)1/2

exp

(

−2x2

w2

)

. (3.6)

The spectral density at the target plane is specified as

S(u) =

{

1/2a if |u| ≤ a

0 otherwise.
(3.7)

The energy balance criterion (3.1) now gives a geometrical mapping

criterion

u(x) = a erf

(√
2x

w

)

(3.8)

and the phase function given by Eq. (3.4) takes the form

φ(x) = − k0x2

2∆z

+
k0a

∆z

{

w√
2π

[

exp

(

−2x2

w2

)

− 1

]

+ x erf

(√
2x

w

)}

. (3.9)

This is a superposition of a quadratic term and an aspheric term.

The quadratic term represent the parabolic phase function of a thin

lens [125] that would, in the absence of the aspheric term, focus

light into a diffraction-limited Gaussian spot at the target plane.

The aspheric term is responsible for creating aberrations that shape

the spot into a flat-top form.

Instead of considering the Fresnel-domain beam shaping geom-

etry of Fig. 3.1, one often wishes to shape the incident field into pre-

scribed form in the far zone. In this case the coordinate u (and u′) in

Eq. (3.1) is interpreted as the x-component of the spatial-frequency

vector and Eq. (3.4) is replaced by

φ(x) =
∫ x

0
u(x′)dx′. (3.10)
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Let us assume that the incident field is still given by Eq. (3.5) and

define the target distribution as

S(u) =

{

1/2k0Φ if |u| ≤ a

0 otherwise,
(3.11)

where Φ represent the (paraxial) divergence half-angle of the flat-

top profile (in radians). The mapping condition is now

u(x) = k0Φ erf

(√
2x

w

)

(3.12)

and, by inserting this into Eq. (3.10), we obtain the phase function

φ(x) = k0Φ

{

w√
2π

[

exp

(

−2x2

w2

)

− 1

]

+ x erf

(√
2x

w

)}

. (3.13)

Because of the mapping into the far field, the quadratic focusing

term is absent from this expression and only the aberration term

remains.

3.2 REFRACTIVE CASE

Let us consider first the transformation of a polychromatic Gaus-

sian field with frequency-invariant width w into a flat-top far-zone

pattern with an angular half-width Φ using an optical element with

an aspheric refractive surface profile (strictly speaking, for broad-

band fields, both w and Φ generally depend on frequency, but for

a while we ignore this dependence for simplicity) The phase func-

tion at the design frequency ω0 is given by Eq. (3.13) and the phase

function at any other frequency ω has the form

φ(x, ω) =
ω

ω0
D(ω)φ(x). (3.14)

Here the term

D(ω) =
n(ω)− 1

n(ω0)− 1
(3.15)
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is a dispersion factor, where n(ω) is the frequency-dependent re-

fractive index of the material used to realize the surface-relief pro-

file. This dispersion factor can be ignored for quasimonochromatic

light, but not for broadband light from thermal, RGB, femtosecond,

or supercontinuum sources.

If we assume that the far-field diffraction pattern is observed

in the back focal plane of an achromatic 2F Fourier-transforming

system of focal length F and interpret u as a spatial coordinate

in this target plane, the output field can be evaluated using the

diffraction integral [125]

V(u, ω) =

√

ω

i2πcF

∫ ∞

−∞
V(x, ω) exp[iφ(x, ω)] exp

(

− iω

cF
ux

)

dx,

(3.16)

where V(x, ω) = V(x) is given by Eq. (3.5) if the frequency depen-

dence of w is ignored. If we assume that no beam-shaping element

is in place and thus write φ(x, ω) = 1, the target-plane field at the

design frequency is a diffraction-limited Gaussian spot with width

wF =
2cF

wω0
=

2F

k0w
=

Fλ0

πw
. (3.17)

Hence it is meaningful to define a ‘times diffraction limit’ expansion

factor

Q =
ΦF

wF
=

wω0

2c
Φ =

1

2
k0wΦ =

πw

λ0
Φ. (3.18)

The geometrical map-transform method can be expected to work

well only if Q ≫ 1.

If we also scale the x axis by introducing a normalized spatial

variable X = x/w, Eq. (3.13) takes the form

φ(X) = 2Q

{

1√
2π

[

exp
(

−2X2
)

− 1
]

+ X erf
(√

2X
)

}

. (3.19)

If we further define the normalized frequency Ω = ω/ω0 and the

normalized Fourier-plane coordinate

U =
u

wF
=

wω0

2cT
u =

k0w

2F
u =

πw

Fλ0
u, (3.20)
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the dispersion term becomes

D(Ω) =
n(Ωω0)− 1

n(ω0)− 1
(3.21)

and the diffraction integral (3.16) is transformed into the form

V(U, Ω) = C(Ω)
∫ ∞

−∞
exp(−X2)

× exp [iΩD(Ω)φ(X)] exp (−i2ΩUX) dX, (3.22)

where C(Ω) is a factor that varies only slowly with Ω (see Paper

II). This form is nice especially if dispersion is ignored, since then

all quantities are dimensionless and do not depend on the design

frequency ω0.

So far we have assumed that w and Φ are independent on wave-

length. However, broadband Gaussian pulses generated in spherical-

mirror resonators are of isodiffracting type [71], i.e., the beam

width w(ω) becomes frequency dependent but the so-called Rayleigh

range zR = ωw2(ω)/2c is independent on frequency. Then we

have the relation w(ω) = w/
√

Ω. In this case the input-field term

exp(−X2) in Eq. (3.22) is simply replaced with exp(−ΩX2).

3.3 DIFFRACTIVE CASE

3.3.1 Theory of generalized orders

Let us next consider, in general terms, the diffractive case, where

the transmission function

t(x, α) = exp [iαφ(x)] (3.23)

is periodic with period 2πM, M is a positive integer (called the har-

monic parameter), α is a constant, and φ(x) is an arbitrary design

phase function. Because of the periodicity, we may represent t(x, α)

in the form of a generalized Fourier series [128]

t(x, α) =
∞

∑
m=−∞

Gm(α) exp [imφ(x)/M] (3.24)
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where the Fourier coefficients are

Gm(α) =
1

2πM

∫ 2πM

0
t(x, α) exp [−imφ(x)/M] dφ(x)

=
1

2πM

∫ 2πM

0
exp [i (Mα − m) φ(x)/M] dφ(x), (3.25)

and Eq. (3.23) was used to arrive at the latter form. Performing the

integration and simplifying, we readily obtain

Gm(α) = sinc(Mα − m) exp [iπ(Mα − m)] , (3.26)

where sinc(x) = sin(πx)/(πx). Since Gm(0) = 1, all light goes

to order m = M if α = 1. For values of α around unity we have

several generalized orders with |Gm(α)| significantly different from

zero. These are located around order m = M and they need to

be included in the analysis. However, since the number of such

orders is not large, the generalized-order expansion is numerically

efficient.

3.3.2 Output field in diffractive case

Taking α = ΩD(Ω) in Eq. (3.26) and using the normalized spatial

coordinate X, the complex-amplitude transmittance function of a

harmonic diffractive element of harmonic order M can be repre-

sented in the form

t(X, Ω) =
∞

∑
m=−∞

Gm(Ω) exp [i2πmφ(X)/M] , (3.27)

where

Gm(Ω) = sinc [MΩD(Ω)− m] exp {iπ[MΩD(Ω)− m]} . (3.28)

We can now readily write a frequency-dependent expression corre-

sponding to Eq. (3.22) for modulo 2πM elements in terms of gen-

eralized orders as

V(U, Ω) = C(Ω)
∞

∑
m=−∞

Gm(Ω)
∫ ∞

−∞
exp

(

−X2
)

× exp [imφ(X)/M] exp(−i2ΩUX)dX. (3.29)
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This allows us to study either purely diffractive elements (for which

M = 1) or the transition from the diffractive to the refractive case

(if we increase M). Again, for an isodiffracting incident wave, we

just replace exp
(

−X2
)

in Eq. (3.29) with exp
(

−ΩX2
)

.

3.4 HYBRID CASE

The theory of generalized orders can also be applied to arbitrary

hybrid refractive/diffractive structures, which are generalization of

hybrid lenses [34, 35]. Let us expand the phase function given by

Eq. (3.13) in a Taylor series:

φ(X) = 2Q

√

2

π
X2 +

2

3
Q

√

2

π
X4 + . . . (3.30)

The first term represents the phase function of a thin lens and the

rest are aberration terms. We can therefore construct a hybrid ele-

ment with phase function

φ(X) = φR(X) + φD(X), (3.31)

where

φR(X) = 2Qc

√

2

π
X2, (3.32)

φD(X) = 2Q

{

1√
2π

[

exp
(

−2X2
)

− 1
]

+ X erf
(√

2X
)

− c

√

2

π
X2

}

,

(3.33)

and c is a constant. The phase function φR(X) again represents a

thin lens, which may be realized as a refractive element, and φD(X)

is an aberration term that can be realized as a modulo 2πM diffrac-

tive element with any desired harmonic parameter M. These two

elements could be fabricated separately and put in contact.

Considering the field at any frequency, we have the refractive

and diffractive phase functions

φR(X, Ω) = ΩD(Ω)φR(X) (3.34)
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and

φD(X, Ω) = ΩD(Ω)φD(X). (3.35)

The diffraction formula from which the target-plane field can be

obtained now reads as

V(U, Ω) = C(Ω)
∫ ∞

−∞
exp

(

−X2
)

exp [iΩD(Ω)φR(X)]

× exp (−i2ΩUX) dX

+ C(Ω)
∞

∑
m=−∞

Gm(Ω)
∫ ∞

−∞
exp

(

−X2
)

× exp [imφD(X)/M] exp (−i2ΩUX) dX. (3.36)

Isodiffracting incident fields can be treated as in the previous cases.

3.5 EXAMPLES

Figure 3.2 illustrates the y-invariant 2F geometry considered to

compare the performance of different types of beam shaping ele-

ments. In practice the distance between the beam shaping element

and the lens is not critical (the element and the lens could even be

in contact) as long as we are interested only in the intensity profile

in the target plane and not the phase of the output field.

In this section we concentrate on spectrally integrated target-

plane profiles

S(U) =
∫ ∞

0
S(U, Ω)dΩ =

∫ ∞

0
S0(Ω) |V(U, Ω)|2 dΩ, (3.37)

where S0(Ω) represents the spectral shape of the incident field. If

this field is non-stationary, the frequency-integrated target-plane

profile is directly proportional to the time-integrated intensity pro-

file by as demonstrated in Appendix of Paper II. Hence the results

to be presented apply both to stationary and non-stationary fields

and are the same for both provided that S0(Ω) is the same.
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x

z

S0(Ω)

0 F 2F

u

φ(X,Ω)

V (X,Ω) V (U,Ω)

Figure 3.2: The 2F geometry for transformation of an incident field with spatial distribu-

tion V(X, Ω) and spectrum S0(Ω) into a target field V(U, Ω) in the Fourier plane of an

achromatic lens with focal length F, using a beam shaping element with phase function

φ(X, Ω) located at the plane z = 0.

Although any spectral profile S0(ω) could be used, we assume

specifically that the incident field has a Gaussian spectrum

S0(Ω) = S0 exp

[

−2 (Ω − 1)2

Ω2
S

]

, (3.38)

where ΩS is the effective width of the spectrum normalized by the

center wavelength ω0. In the numerical examples we assume an

isodiffracting Gaussian spatial profile of the form

V(X, Ω) = exp
(

−ΩX2
)

. (3.39)

Figure 3.3 shows the phase functions of refractive, diffractive and

modulo M = 5 harmonic beam shaping elements for an expansion

factor Q = 20. As we move from diffractive to hybrid and refractive

cases, there are changes in phase jumps and phase height. These

changes have significant effects in the target-plane profiles. Simi-

larly, Fig 3.4 shows the phase functions of hybrid elements, where

almost all the focusing power is contained in the refractive part if

c = 1 and almost all the power is contained in the diffractive part

when c = 0.1, and in the case c = 0.6, the focusing power is best
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Figure 3.3: The design-frequency phase functions of purely refractive (red), purely diffrac-

tive (blue) and modulo M = 5 (green) beam shaping elements with Q = 20.
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Figure 3.4: The design-frequency phase functions of a hybrid element when c=1 (red),

c=0.6 (blue) and c=0.1 (green) with Q = 20.

contained in the refractive element in the sense that the diffractive

element contains only few phase transitions.

Figure 3.5 shows how refractive, harmonic, and diffractive el-

ements work for normalized wavelengths Λ = 2πc/Ω other than

the design wavelength. Refractive elements work almost perfectly,

as expected, for all the wavelengths considered. When we look at

the diffractive and harmonic cases, there are strong fluctuations at

wavelengths Λ �= 1. If Λ > 1, profiles produced by a diffractive
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element contain a central dip; if Λ < 1, one observes a central peak.

These phenomena result from the zeroth generalized diffraction or-

der being focused at the center of the Fourier-plane pattern as a nar-

row diffraction-limited spot that interferes with the contributions

from other generalized orders. However, the frequency-integrated

flat-top pattern is nearly as good as the one obtained with the re-

fractive element. In the case of a harmonic element the central dip

and peak disappear because the efficiency of the zeroth generalized

order is low, as only a few orders around the main harmonic or-

der M = 5 are significant. Again, the frequency-integrated flat-top

profiles show good quality.

In the previous example the spectrum was relatively narrow.

Let us next consider RGB illumination consisting of three discrete

wavelengths λR = 633 nm (red), λG = 532 nm (green), and λB =

473 nm (blue). The corresponding frequencies are ωR = 2.98 ×
1015 Hz, ωG = 3.54× 1015 Hz, and ωB = 3.99× 1015 Hz. The relative

intensities of these sources are chosen as SR = 1, SG = 0.6290, and

SB = 0.8177 in order to produce white light in RGB space. The

dispersion data are taken from Ref. [129] for polycarbonate.

Figure 3.6 illustrates the target profiles when no beam shap-

ing element is placed in the setup, i.e., the diffraction-limited spots

at the RGB wavelengths result in a frequency-integrated profile

S(U) = SR(U) + SG(U) + SB(U). Figure 3.7 shows the individ-

ual profiles S(U, Λ) generated by these sources when an element is

present, as well as the resulting distributions S(U).

Even though the spectrum in now non-symmetric and extends

over most of the visible region, the standard diffractive element still

works reasonably well if we consider only the frequency-integrated

results shown by the black line. As expected, the individual pro-

files and the frequency-integrated result for the refractive element

show an excellent flat-top profile also at individual wavelengths,

but for the diffractive element the individual profiles at red and

blue wavelengths are highly distorted. On the other hand, the

modulo M = 5 hybrid element produces rather high-quality flat-

top profiles at each wavelength. The individual profile widths are

Dissertations in Forestry and Natural Sciences No 207 29



Partially coherent beam shaping and imaging

−30 −15 0 15 30
0

0.6

1.2

U

S(
U

,Λ
)

 

 

S(U)
Λ =0.95
Λ =1
Λ =1.05

−30 −15 0 15 30
0

0.6

1.2

U

S(
U

,Λ
)

 

 

−30 −15 0 15 30
0

0.6

1.2

U

S(
U

,Λ
)

 

 

Figure 3.5: Fourier-plane spatial distributions S(U, Λ) for (top) standard refractive, (cen-

ter) standard diffractive, (bottom) modulo M = 5 diffractive elements.The black lines rep-

resent frequency-integrated profiles S(U). Here the expansion factor is Q = 20.
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Figure 3.6: Target-plane profiles generated by red (R), green (G), and blue (B) light sources,

and the frequency-integrated result with no element in place.

nearly the same. When we look at the true-color profiles as seen

by human eye, those produced by the refractive and harmonic ele-

ments look bluish. In the case of a diffractive element there are sig-

nificant color variations across the profile, with strongly red-colored

edges. This is because the diffractive element spreads the pattern

more at large wavelengths and the sign of dispersion is opposite

to that of refractive elements. Figure 3.8 shows (as-yet unpub-

lished) simulations on the hybrid case considered by means of the

generalized-order theory in Sect 3.4. Here the individual profiles

S(U, Λ) generated by these sources when an element is present, as

well as the resulting distributions S(U) are shown. The combina-

tion of the refractive and diffractive powers at c = 0.6 leads to the

best approximation for a flat-top profile.

3.6 SUMMARY

In summary, we can say that one can use refractive elements for all

kinds of broadband applications. Diffractive elements also perform

well for symmetric spectra that are some tens of nanometer wide.

Such spectra are produced, e.g., by pulsed lasers or by superlumi-

nescent diodes. For highly broadband spectra (RGB or supercon-

tinuum sources), diffractive elements perform satisfactorily if the

color of the target profile is of no concern, and harmonic diffractive
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Figure 3.7: Target-plane profiles generated by red (R), green (G), and blue (B) light sources,

and the frequency-integrated result for standard refractive (top), standard diffractive (cen-

ter), and modulo M = 5 diffractive (bottom) elements. Also shown are true-color profiles

as seen by the human eye.

elements produce quite acceptable results even in color-sensitive

applications.

32 Dissertations in Forestry and Natural Sciences No 207



Broadband beam shaping

−40 −20 0 20 40
0

1.5

3

U

S(
U

,Λ
)

 

 
S(U)
B
G
R

−40 −20 0 20 40
0

1.5

U

S(
U

,Λ
)

 

 
S(U)
B
G
R

−40 −20 0 20 40
0

1.5

3

U

S(
U

,Λ
)

 

 
S(U)
B
G
R

Figure 3.8: Target-plane profiles generated by red (R), green (G), and blue (B) light sources,

and the frequency-integrated result for a hybrid element when c = 1 (top), c = 0.1

(center), and c = 0.6 (bottom). Also shown are true-color profiles as seen by the human

eye.
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4 Modal approaches to partial

coherence

The propagation integrals of two-dimensionally varying fully co-

herent and monochromatic optical fields from one plane to another

involve 2D integrals [125]. If the field is spatially partially coher-

ent, 4D integrals need to be evaluated to connect the CSD func-

tions at the two planes [1]. The evaluation of such integrals is

a formidable numerical task, which is unmanageable because of

computer-memory limitations alone if the field at the starting plane

is of complicated shape. Fortunately there are ways around this dif-

ficulty: any stationary spatially partially coherent field has a rigor-

ous space-frequency domain representation that takes the form of a

superposition of fully coherent modal fields, which are solutions of

a Fredholm integral equation of the second kind [48,49,130–132]. A

corresponding modal representation applies also to non-stationary

fields [133–135]. These representations, which are generally appli-

cable to any partially coherent field, are introduced in Sect. 4.2.

Alternatively to the rigorous Mercer-type modal decompositions,

one may in certain circumstances represent a spatially partially co-

herent field as a superposition of laterally displaced replicas of a

single coherent field [51, 136–139]. Both of these approaches have

been successfully used to model spatially partially coherent light

[140] and, rather recently, to describe light radiated by certain re-

alistic light sources [141–144]. Also this type of modal field repre-

sentations, to be described in Sect 4.3, can be applied to represent

the spectral and temporal coherence properties of non-stationary

light [51].
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4.1 PROPAGATION OF PARTIALLY COHERENT FIELDS

Suppose that we know the space-frequency-domain field distribu-

tion V(ρ, ω) at any transverse coordinate ρ = (x, y) across the plane

z = 0. The spatial-frequency content of the field is then determined

by the angular spectrum [1]

A(κ, ω) =
1

(2π)2

∫∫ ∞

−∞
V(ρ, ω) exp (−iκ · ρ) d2ρ, (4.1)

where κ =
(

kx, ky

)

is the transverse component of the wave vector

k =
(

kx, ky, kz

)

. The function A(κ, ω) also determines the field

distribution in the far zone, i.e., when z → ∞, and at any r = (ρ, z)

with z > 0 the field is given by

V(r, ω) =
∫∫ ∞

−∞
A(κ, ω) exp (ikzz) exp (iκ · ρ) d2κ, (4.2)

where

kz =
(

ω2/c2 − k2
x − k2

y

)1/2
. (4.3)

In the paraxial domain, where only field components at low spatial

frequencies (k2
x + k2

y ≪ |k|2) are significant, the Fresnel formula

V(r, ω) =
ω

i2πcz
exp (iωz/c)

∫∫ ∞

−∞
V(ρ′, ω)

[

iω

2cz

(

ρ − ρ
′)2

]

d2ρ′

(4.4)

is applicable. The diffraction integrals Eq.(4.1)–(4.4) are two-dimensio-

nal and can be evaluated numerically in an efficient way using the

Fast Fourier Transform (FFT) algorithm.

If the field at z = 0 is known in the space-time domain, it is

best to first move into the space-frequency domain using Eq. (2.3),

propagate it in this domain, and finally move back to the space-time

domain using Eq. (2.2).

The propagation integrals for the CSD of partially coherent light

become four-dimensional. Considering, for example, non-stationary
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fields and inserting from Eq. (4.4) into the definition (2.15) we have

W(r1, r2, ω1, ω2) =
∫∫∫∫ ∞

−∞
T(κ1, κ2, ω1, ω2) exp [−i (kz1z1 − kz2z2)]

× exp [−i (κ1 · ρ1 − κ2 · ρ2)] d2κ1 d2κ2, (4.5)

where

T(κ1, κ2, ω1, ω2) =
1

(2π)4

∫∫∫∫ ∞

−∞
W(ρ1, ρ2, ω1, ω2)

× exp [i (κ1 · ρ1 − κ2 · ρ2)] d2ρ1 d2ρ2. (4.6)

is known as the angular correlation function. This function defines

the spatial-frequency content of the partially coherent field and also

the field distribution in the far zone [1]. Four-dimensional propa-

gation integrals are also obtained if stationary light is considered,

and in the paraxial domain.

4.2 COHERENT-MODE REPRESENTATION

The decomposition of partially coherent fields into a complete set

of fully coherent modes that are mutually uncorrelated has been

known for a long time for stationary fields [48, 49, 130]. In this case

we may always write the CSD at the plane z = 0 in the form of a

Mercer representation

W(ρ1, ρ2, ω) =
∞

∑
m=0

αm(ω)φ∗
m(ρ1, ω)φm(ρ2, ω), (4.7)

where the coefficients αm(ω) are real, non-negative eigenvalues that

generally depend on ω. The functions φm(ρ, ω) are the orthonor-

mal eigenfunctions of the Fredholm integral equation of the second

kind,
∫∫ ∞

−∞
W(ρ1, ρ2, ω)φm(ρ1, ω)dρ1 = αm(ω)φm(ρ2, ω). (4.8)

The functions φm(ρ, ω) are the coherent modes associated with the

CSD at z = 0. Since the summation in Eq. (4.7) is a linear com-

bination of fully coherent contributions, it is possible to propagate
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each individual coherent mode separately and then add these in-

dividual coherent modes to construct the propagated CSD in the

form [136, 137]

W(r1, r2, ω) =
∞

∑
m=0

αm(ω)φ∗
m(r1; ω)φm(r2; ω),

where the relationship between the input-plane field φm(ρ, ω) and

the field φm(r, ω) at any distance z can be determined using diffrac-

tion integrals for coherent light introduced above [1, 125].

The coherent-mode expansion for non-stationary fields [133–

135] must deal with two frequencies. Thus we represent the two-

frequency CSD at the plane z = 0 in the form

W(ρ1, ρ2, ω1, ω2) =
∞

∑
m=0

αmφ∗
m(ρ1, ω1)φm(ρ2, ω2), (4.9)

the integral equation (4.8) is replaced by

∫ ∞

−∞
W(ρ1, ρ2, ω1, ω2)φm(ρ1ω1), dρ1 = αmφm(ρ2, ω2).

and the propagated form of the coherent-mode expansion for non-

stationary fields is

W(r1, r2, ω1, ω2) =
∞

∑
m=0

αmφ∗
m(r1, ω1)φm(r1, ω2). (4.10)

It should be emphasized that, for non-stationary fields, the eigen-

values αm no longer depend on frequency.

4.3 ELEMENTARY-FIELD REPRESENTATION

For a wide class of spatially partially coherent non-stationary fields,

the CSD at the plane z = 0 may be written in the form of a super-

position integral [51]

W(ρ1, ρ2, ω1, ω2) =
∫∫ ∞

−∞
p(ρ̄, ω1, ω2)

× e∗(ρ1 − ρ̄, ω1)e(ρ2 − ρ̄, ω2)d2ρ̄ (4.11)
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so that its spectral density is given by

S(ρ, ω) =
∫∫ ∞

−∞
p(ρ̄, ω, ω) |e(ρ − ρ̄, ω)|2 d2ρ̄. (4.12)

Here p(ρ̄, ω1, ω2) is a real and non-negative function and the e(ρ, ω)

is known as the elementary field associated with the CSD [138,145].

The field representation (4.13) expresses the CSD in the form

of a weighted superposition of elementary fields of identical form,

centered at laterally shifted positions ρ̄ in the plane z = 0. The el-

ementary field can be propagated into any finite distance by meth-

ods given above for coherent fields, and the propagated CSD has

the form

W(r1, r2, ω1, ω2) =
∫∫ ∞

−∞
p(ρ̄, ω1, ω2)

× e∗(r1 − ρ̄, ω1)e(r2 − ρ̄, ω2)d2ρ̄. (4.13)

Now the 4D integrals needed to propagate partially coherent light

have been reduced to evaluation of just one 2D integral. Once this is

done, the result is used to construct the field at any distance simply

by adding a weight distribution defined by p(ρ̄, ω1, ω2). Strictly

analogous expressions may be readily written for stationary fields.

If we represent both the weight function and the elementary

field in the form of a Fourier integrals

p(ρ̄, ω1, ω2) =
∫∫ ∞

−∞
q(κ, ω1, ω2) exp (iκ · ρ̄) d2κ (4.14)

and

e(ρ, ω) =
∫∫ ∞

−∞
f (κ, ω) exp (iκ · ρ) d2κ, (4.15)

a straightforward calculation shows that the angular correlation

function defined in Eq. (4.6) takes the Schell-model form

T(κ1, κ2, ω1, ω2) = (2π)2 f ∗(κ1, ω1) f (κ2, ω2)q(∆κ, ω1, ω2), (4.16)

where ∆κ = κ2 − κ1. If we now write the angular correlation func-

tion in the form

T(κ1, κ2, ω1, ω2) = [S(κ1, ω1)S(κ2, ω2)]
1/2

µ(∆κ, ω2, ω2), (4.17)
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the angular spectral density becomes

S(κ, ω) = T(κ, κ, ω, ω) = (2π)2q(0, ω, ω) | f (κ, ω)|2 (4.18)

and the complex degree of angular spectral coherence is

µ(∆κ, ω1, ω2) =
q(∆κ, ω1, ω2)

[q(0, ω1, ω1)q(0, ω2, ω2)]
1/2

× exp {i [ϕ(κ2, ω2)− ϕ(κ1, ω1)]} , (4.19)

where ϕ(κ, ω) = arg [ f (κ, ω)]. Hence the angular spectral den-

sity is fully determined by the elementary field at the plane z = 0

and the angular degree of spectral coherence is determined by the

weight function of the elementary fields.

4.4 GAUSSIAN SCHELL MODEL SOURCES

Let us next consider a useful class of spatially partially coherent sta-

tionary fields for which the CSD is separable in x and y directions.

Considering the x direction (with the understanding that the y di-

rection can be treated in a strictly analogous way) and neglecting

the ω dependence for brevity of notation, we write

W(x1, x2) = [S(x1)S(x2)]
1/2

µ(∆x) (4.20)

with ∆x = x2 − x1,

S(x) = S0 exp

(

−2x2

w2

)

(4.21)

and

µ(∆x) = exp

(

−∆x2

2σ2

)

. (4.22)

This source is spatially of the Schell-model form, with Gaussian

distributions of the spectral density and complex degree of spatial

coherence characterized by parameters w and σ, and it is known as

the Gaussian Schell-model (GSM) source [146]. This source is fully

spatially coherent in the limit σ → ∞, quasicoherent if σ ≈ w, and
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quasi-homogeneous if σ ≪ w. Provided that w ≫ λ and σ ≫ λ,

the source radiates a directional, beamlike field characterized by

Gaussian profiles of spectral density and complex degree of spatial

coherence at all propagation distances [146–151].

The GSM source is one of the few spatially partially coherent

sources for which the coherent-mode decomposition is known ana-

lytically [131, 136]. We have

W(x1, x2) =
∞

∑
m=0

αmφ∗
m(x1)φm(x2), (4.23)

where the coherent modes are Hermite–Gaussian modes

φm(x) = (2/π)1/4 (2mm! wc)
−1/2 Hm

(√
2x

wc

)

exp

(

− x2

w2
c

)

, (4.24)

where Hm(x) is a Hermite polynomial of order m, and wc is the

transverse scale factor of the coherent modes. In order to obtain

a Gaussian Schell-model source characterized by the parameters w

and σ, we choose the modal scale factor as

wc = w
√

β, (4.25)

where

β =
[

1 + (w/σ)2
]−1/2

(4.26)

and assume that the modal weights obey the law

αm = S0

√
2πw

1 + 1/β

(

1 − β

1 + β

)m

. (4.27)

In addition to the Mercer coherent-mode representation, the

GSM source also has an elementary-field representation [152, 153].

The weight function and the modal field are both of the Gaussian

form, specifically

p(x̄) = p0 exp

(

−2x̄2

w2
p

)

(4.28)

and

e(x) = exp

(

− x2

w2
e

)

(4.29)

Dissertations in Forestry and Natural Sciences No 207 41



Partially coherent beam shaping and imaging

with scale factors

wp = w
√

1 − β2 (4.30)

and

we = wβ, (4.31)

where p0 =
√

(2/π)
(

w−2
p + w−2

e

)

.

In paper I we have applied the modal representations to study

the effect of partial coherence of light in beam shaping problems.

In particular, we consider the Gaussian to flat-top transformation

in the 2F geometry illustrated in Fig. 3.2, assuming that a Gaus-

sian Schell-model field illuminates the beam shaping element. Fig-

ure 4.1 shows the Fourier-plane intensity profile using the Mercer-

type coherent mode representation, where σ = 0.2w, w = 1 mm,

F = 100 mm, and λ = 633 nm. When we look at individual coher-

ent modes, we see that their target-plane intensity profiles do not

look anything like flat-top profiles. The low-order modes have con-

tributions to the center and as the order index increases, the main

contribution shifts towards the edges. The incoherent superposition

then gives a high-quality flat-top profile. In Figure 4.1, 14 modes

were required to get a convergent result and a further increase in

the number of modes did not affect the Fourier-plane profile signif-

icantly.

Figure 4.2 illustrates the Fourier-plane intensity profile obtained

using the elementary field representation in a 4F setup considered

in Paper I, with the beam shaping element located in the intermedi-

ate Fourier plane of the system. The target-plane profiles generated

by individual elementary fields each have an approximately Gaus-

sian spatially shifted shape but when we look at the summation

of all elementary fields-field responses with appropriate weights,

we get a good approximation of a flat-top profile. In this case 22

elementary fields were required to get a convergent result and fur-

ther increase in the number of elementary fields did not affect the

target-plane intensity profile significantly. Finally, in Figure 4.3 we

show the effect of varying the ratio of σ/w in the flat-top profile.

For a nearly coherent case we see the edge-enhancement effect ob-
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Figure 4.1: Fourier-plane intensity profiles generated by some lowest order Mercer modes

of a Gaussian Schell-model field with σ = 0.2w, and the superposition of all significant

modal contributions, which gives rise to a nearly flat-top intensity profile. The 0th order

(red), 1st order (pink), 2nd order (green), 3rd order (blue) and 4th order (yellow) show the

individual mode contribution.

served already in Chapter 3, but the oscillations smooth out as the

coherence decreases. However, then also the sidewalls become less

steep.

4.4.1 Gaussian Schell model pulses

A Gaussian Schell-model plane-wave pulse train [154, 155] is char-

acterized by a two-time CSD of the form

W(ω1, ω2) = [S(ω1)S(ω2)]
1/2

µ(∆ω), (4.32)

where ∆ω = ω2 − ω1. The spectral density is given by

S(ω) = S0 exp

[

− 2

Ω2
(ω − ω0)

2

]

, (4.33)

and the complex degree of spectral coherence is

µ(∆ω) = exp

(

−∆ω2

2Ω2
µ

)

, (4.34)

where Ω is the characteristic width of the spectrum, Ωµ is the spec-

tral coherence width, and ω0 is the central frequency of the spec-

trum. When Ωµ/Ω → ∞, we obtain a fully spectrally coherent
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Figure 4.2: Fourier-plane intensity profiles generated by some laterally displaced elemen-

tary field modes when σ = 0.2w. The red lines are individual elementary-field contribu-

tions.

pulse train, and when Ωµ/Ω ≪ 1 one can talk about a quasi-

stationary train of pulses.

In analogy with spatial GSM sources, the GSM pulse train has

both a coherent-mode representation and an elementary-field de-

composition. The coherent mode-decomposition takes the form of

a superposition of spectral Hermite–Gaussian modes: we have

W(ω1, ω2) =
∞

∑
m=0

αmφ∗
m(ω1)φm(ω2), (4.35)

where

φm(ω) = (2/π)1/4 (2mm! Ωc)
−1/2 Hm

[√
2 (ω − ω0)

Ωc

]

× exp

[

− (ω − ω0)
2

Ω2
c

]

. (4.36)

The characteristic spectral width of the coherent modes is

Ωc = Ω
√

β, (4.37)

where the spectral β parameter is defined as

β =
[

1 +
(

Ω/Ωµ

)2
]−1/2

(4.38)
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Figure 4.3: Effect of varying the degree of spatial coherence in the shape of the flat-top

profile.

and the expansion coefficients are chosen as

αm = S0

√
2πΩ

1 + 1/β

(

1 − β

1 + β

)m

(4.39)

in analogy with Eq. (4.27) in the spatial domain.

Let us now consider a general linear optical system illustrated

in Fig. 4.4, which is described by a response function K(u, x, ω)

such that a coherent incident field V0(x, ω) in the input plane is

transformed into a field

V(u, ω) =
∫ ∞

−∞
t(x, ω)V0(x, ω)K(u, x, ω)dx. (4.40)

in the output plane (we still consider the y-invariant case). Here

t(x, ω) represents the complex-amplitude transmittance function of

an optical element (such as a beam shaping element) placed in the

input plane. If the incident field is spectrally stochastic, it may

be written in the form U0(x, ω) = a(ω)V0(x, ω), where a(ω) is a

random function with spectral two-frequency CSD

W(ω1, ω2) = �a∗(ω1)a(ω2)�, (4.41)

which we assume to obey the Gaussian Schell model. The space-

frequency domain CSD of the incident field, which we assume to
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be fully spatially coherent in the spectral domain, may be written

as [68]

W0(x1, x2, ω1, ω2) = W(ω1, ω2)V
∗
0 (x1, ω1)V0(x2, ω2) (4.42)

and the field at the output plane of the system takes the form

W(u1, u2, ω1, ω2) = W(ω1, ω2)V
∗(u1, ω1)V(u2, ω2). (4.43)

We further assume, as in Paper III, that the spatial field profile of the

incident field represents the waist of the fundamental isodiffracting

Gaussian mode of a spherical-mirror resonator [156], i.e.,

V0(x; ω) = V0 exp

(

− ω

ω0

x2

w2

)

, (4.44)

where w characterizes the beam width at ω = ω0. In what follows,

we also assume that the field just defined is incident on Gaussian

to flat-top beam shaping elements discussed in Chapter 3, and that

the optical system is simply a section of free space so that

K(u, x, ω) =

√

ω

i2πcz
exp (iωz/c) exp

[

iω

2cz
(u − x)2

]

(4.45)

is the Fresnel transform kernel for propagation over a distance z.

input plane output plane

x u

z

U0(x;ω) U(u;ω)
K(u, x;ω)

t(x;ω)

Figure 4.4: The beam shaping geometry, where x and u denote the transverse coordinates

in the input and output planes, separated by an optical system with a response function

K(u, x, ω). A thin beam-shaping element with complex-amplitude transmission function

t(x, ω) transforms the incident field U0(x, ω) into a spatially shaped output field U(u, ω).

If we express the spectral CSD W(ω1, ω2) in the form of a coherent-

mode representation, the target-plane spatiotemporal CSD given by
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Eq. (4.43) may be rewritten in the form

W(u1, u2; ω1, ω2) =
∞

∑
m=0

αmφ∗
m(ω1)φm(ω2)V

∗(u1; ω1)V(u2; ω2).

(4.46)

The spatiotemporal properties of the target-plane field are charac-

terized by the two-time MCF, which is obtained by applying the

generalized Wiener–Khintchine theorem for non-stationary light,

which according to Eq. (2.20) now reads as

Γ(u1, u2, t1, t2) =
∫∫ ∞

0
W(u1, u2, ω1, ω2)

× exp [i (ω1t1 − ω2t2)] dω1 dω2. (4.47)

On inserting from Eq. (4.46) into Eq. (4.47) we have

Γ(u1, u2; t1, t2) =
∞

∑
m=0

αmV∗
m(u1; t1)Vm(u2; t2), (4.48)

where

Vm(u; t) =
∫ ∞

0
φm(ω)V(u; ω) exp (−iωt) dω. (4.49)

Hence the space-time intensity profile in the target plane is

I(u; t) =
∞

∑
m=0

αm |Vm(u; t)|2 . (4.50)

We proceed to present some examples of these intensity profiles,

noting that Eq. (4.48) would also allow us to study the time-domain

spatial coherence in the target plane by examining the function

Γ(u1, u2; t, t), or the spatial variations of the two-time temporal co-

herence by studying the function Γ(u, u; t1, t2).

Figure 4.5 illustrates the space-frequency and space-time pro-

files of Gaussian Schell-model pulse trains in the target plane of

a refractive beam shaping element. The following set of param-

eters is assumed. The central wavelength of the pulse train is

λ0 = 800 nm (i.e., ω0 ≈ 2.36 × 1015 Hz), the propagation distance
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is z = 0.5 m, the incident beam diameter at the central wavelength

is w = 0.3 mm, and the spectral width of the incident pulse train

is Ω = 6 × 1013 Hz, which implies an axial temporal half-width of

T = 2/Ω ≈ 33 fs in the fully coherent case. The super-Gaussian

parameter of the beam shaping element is Q = 20 as in Chapter 3,

which implies a target spot half-width w ≈ 4.2 mm, ensuring that

we are well within the paraxial domain. The space-frequency pro-

file in the target plane is shown on top of Fig. 4.5, while the bottom

row displays space-time intensity profiles for different values of the

ratio Ωµ/Ω, revealing the effects of partial spectral coherence in the

spatiotemporal profiles.
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Figure 4.5: Top: Target-plane space-frequency profile for a Gaussian Schell-model pulse

train. Bottom: Space-time profiles of pulse trains with the same spectral width but

different spectral coherence widths Ωµ/Ω = 3 (left), Ωµ/Ω = 0.5 (center), and

Ωµ/Ω = 0.2 (right). The horizontal axis in the bottom-row figures represents the re-

tarded time tr = t − z/c.

Figure 4.5 shows that good-quality space-frequency-domain flat-

top profiles are obtained throughout the entire spectral extent of

the pulse train. However, the space-time intensity distributions are
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bent. This implies that the axial part of each pulse is seen first at

the target plane. In fact, the on-axis pulse passes the target plane

before any significant contributions arrive at the edges of the flat-

top profile. Reduction of the spectral coherence implies a widening

of the temporal profile throughout the flat-top region, as one would

expect since also the temporal width of the incident pulse increases

when the degree of spectral coherence is reduced. Figure 4.6 shows

the temporal bending of the profile as the pulse propagates.

−100 0 100

−20

0

20
−100 0 100

 

 

−100 0 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7

z − z0 [µm]

U

Figure 4.6: Spatial intensity profiles of a pulse train with Q = 20 and Σ/Ω = 0.5 when

the central maximum of the pulse is at z = 0.1 m (left), z = 0.3 m (center), and z = 0.5 m

(right).

4.4.2 Supercontinuum pulse trains

Supercontinuum (SC) pulses were first observed by Alfano and

Shapiro [157]. These spectrally broadband light pulses have gained

many applications, for example in imaging, bio-medicine [158–160],

metrology [161], and telecommunication [162]. We can represent SC

pulse trains using the Mercer coherent-mode representation [163],

by first constructing the CSD or MCF using numerically simulated

pulse realizations generated in microstructured fibers [95, 164] and

then solving the coherent modes φm(ω) and their weights αm nu-

merically from the Fredholm equation. Alternatively, we can use

the elementary field representation to describe SC pulse trains in

an approximate way [165] . In the examples considered below, we
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make direct use of numerically simulated field realizations En(ω)

and write the spectral CSD in the form

W(ω1, ω2) = �E∗(ω1)E(ω2)� =
1

N

N

∑
n=1

E∗
n(ω1)En(ω2). (4.51)

The space-time field realizations in the target plane are of the form

Vn(u, t) =
∫ ∞

0
En(ω)V(u, ω) exp (−iωt) dω. (4.52)

where V(u; ω) is the spatial target-plane field distribution. Hence

the space-time intensity distribution in the target plane is obtained

as an ensemble average

I(u, t) = �|V(u, t)|2� = 1

N

N

∑
n=1

|Vn(u, t)|2 . (4.53)

Figure 4.7 shows the mean spectral density and the mean tem-

poral intensity of an SC pulse train and their decompositions into

quasi-stationary (qs) and quasi-coherent (qc) parts [93, 94]. We

can see many fluctuations in the qc spectral density and a much

smoother qs profile. The temporal intensity profile also fluctuates

rapidly, showing several spikes within a time scale of a few picosec-

onds. Figure 4.9 illustrates the space-frequency and space-time pro-

files at the target plane of a refractive beam shaping element: here

we assume geometrical parameters w = 0.3 mm, z = 0.5 m, and

Q = 10. Even though there are fluctuations in the spectral density,

the space-frequency profile is a good approximation of a flat-top

profile. The spatio-temporal profile shows bending similar to that

seen in the case of GSM pulses, but the bending is comparatively

smaller since the SC pulses considered here are in the picosecond

time scale, while femtosecond GSM pulses were considered.

4.5 SUMMARY

To summarize the results presented in this chapter, we have con-

sidered representations of partially coherent fields in the form of
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Figure 4.7: The temporal intensity (top) and the spectral density (bottom) of the incident

SC pulse train. The blue lines represent the entire pulse train, whereas the green and red

lines illustrate the quasi-coherent (qc) and quasi-stationary (qs) contributions, respectively.
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Figure 4.8: The target-plane space-frequency profiles produced by the SC pulse train con-

sidered in Fig. 4.7. Top: the entire pulse train. Middle: the qc contribution. Bottom: the

qs contribution. The profiles are scaled to their maximum values in each case.

coherent-mode superpositions and shown how such representa-

tions help to reduce the computational complexity of propagation

problems. The results were applied to shaping spatially partially
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Figure 4.9: (a) The target-plane space-time profiles produced by the SC pulse train consid-

ered in Fig. 4.7. Top: the entire pulse train. Middle: the qc contribution. Bottom: the qs

contribution.The profiles are scaled to their maximum values in each case.

coherent stationary light and spectrally partially coherent pulse

trains. In the case of spatial beam shaping, the profiles generated by

individual modes were seen to have widely different target-plane

properties, but the modal superpositions were found to produce

good approximations of the desired flat-top profiles. In the case of

ultrashort pulse trains, high-quality target profiles were observed

at each individual frequency. The spatio-temporal target-plane pro-

files were found to bend such that the arrival times of the pulses at

the target plane depend on the lateral position.
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We saw in Sect. 4.1 that propagating partially coherent fields in free

space requires the evaluation of 4D integrals if the cross-spectral

density function is considered directly. The same is generally true

if we consider imaging problems with partially coherent light, as-

suming that the field incident on an object is described by a CSD

of arbitrary form [166–168]. Often one can assume that the inci-

dent field is generated with a primary incoherent source placed in

the front focal plane of a 2F Fourier-transform system (condenser),

with the object located in the back focal plane. Then the CSD takes

a specific (Schell-model) form, which depends only on coordinate

differences. Numerous methods have been developed to approach

this type of partially coherent imagery problems [169–177]. How-

ever, these methods are not applicable in all circumstances.

The computational complexity of free-space propagation and

beam shaping problems can be reduced dramatically if modal meth-

ods are used, as we saw in Chapt. 4. It is therefore natural to apply

them also to imaging problems. Some steps in this direction have

been taken using the Mercer coherent-mode method [178–180], and

the use of the elementary-field representation has also been sug-

gested [52]. In this chapter we formulate the imaging problem us-

ing both of these modal approaches to model the partially coherent

field incident on an object described by a complex-amplitude trans-

mission function of arbitrary form. We compare them in the case

of imaging of a slit. We then concentrate on the elementary-field

approach, considering imaging by a telecentric system. The coher-

ent system response to each laterally shifted elementary field mode

is evaluated separately and the final image is evaluated by sum-

ming these contributions incoherently. We stress that this method

is not only applicable to fields generated by an incoherent source

in a condenser system, but to all cases where the incident field has

an elementary-field representation (so that its angular correlation
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function is of the Schell-model form). Numerical examples are pre-

sented on a 2D object displaying the characters UEF; more examples

can be found in Paper IV.

5.1 IMAGING WITH COHERENT LIGHT

The general imaging geometry to be considered is illustrated in

Fig. (5.1). The spatial coordinates at the object plane O are denoted

by (x′, y′), those at the intermediate Fourier plane A by
(

kx, ky

)

,

and those at the image plane I by (x, y). The object is described by

a complex-amplitude transmittance function t(x′, y′) and the pupil

at A by a transmission function P(kx, ky). The pupil function may

be complex-valued in order to describe systems with aberrations or,

as in Paper I, beam shaping elements. In the latter case we assume

that t(x′, y′) = 1, i.e., no object is present in the system.

F1F1 F2F2

V (x, y)V −(x′, y′)

O A IL1

t(x′, y′)

L2

P (kx, ky)

z

Figure 5.1: Imaging of an object at plane O by a telecentric system consisting of lenses L1

and L2 (focal lengths F1 and F2) through a pupil in the intermediate Fourier plane A.

Considering first coherent illumination of the object by a field

V−(x′, y′), where the explicit frequency dependence is suppressed

for brevity of notation, the field transmitted by the object is

V(x′, y′) = t(x′, y′)V−(x′, y′). (5.1)

The field incident on the pupil plane is essentially the spatial Fourier
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transform of V(x′, y′) and may be expressed in the form [125]

V−(kx, ky) =
ω

i2πcF1

∫∫ ∞

−∞
V(x′, y′)

× exp

[

− iω

cF1

(

kxx′ + kyy′
)

]

dx′ dy′. (5.2)

After passage through the pupil, we then have

V(kx, ky) = P(kx, ky)V
−(kx, ky) (5.3)

and finally the field in the image plane is

V(x, y) =
ω

i2πcF2

∫∫ ∞

−∞
V(kx, ky)

× exp

[

− iω

cF2

(

kxx + kyy
)

]

dkx dky. (5.4)

Hence the computation of the image field requires two 2D Fourier

transforms, which can again be easily computed using the FFT al-

gorithm.

The Fourier-transform nature of Eqs. (5.2) and (5.4) becomes

even more apparent if we introduce normalized object-plane and

image-plane coordinates

x̃′ =
ω

cF1
x′, ỹ′ =

ω

cF1
y′, x̃ = − ω

cF2
x, ỹ = − ω

cF2
y. (5.5)

The magnification of the system, generally defined as M = x′/x =

y′/y, is equal to M = −F2/F1 for the system in Fig. (5.1). Hence the

normalized coordinates provide a convenient 1:1 mapping (x̃, ỹ) ↔
(x̃′, ỹ′) between the object and image planes. The propagation for-

mula (5.2) in these modified coordinates reads as

V−(kx, ky) =
cF

i2πω

∫∫ ∞

−∞
V(x̃′, ỹ′) exp

[

−i
(

kx x̃′ + kyỹ′
)]

dx̃′ dỹ′,

(5.6)

which (apart from the factor in front) represents a direct Fourier

transform, and Eq. (5.4) takes the form

V(x̃, ỹ) =
ω

i2πcF2

∫∫ ∞

−∞
V(kx, ky) exp

[

i
(

kx x̃ + kyỹ
)]

dkx dky (5.7)
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of an inverse Fourier transform. If we now insert Eqs. (5.3) and (5.6)

into Eq. (5.7), we arrive at a linear superposition integral

V(x̃, ỹ) =
∫∫ ∞

−∞
V(x̃′, ỹ′)K(x̃ − x̃′, ỹ − ỹ′)dx̃′ dỹ′, (5.8)

where

K(x, y) =
1

(2π)2M

∫∫ ∞

−∞
P(kx, ky) exp

[

i
(

kxx + kyx
)]

dkx dky (5.9)

is known as the impulse response (or point spread function) of the

system.

5.2 IMAGING WITH PARTIALLY COHERENT LIGHT

In the spatially partially coherent case, the CSD at the output plane

is obtained by inserting Eq. (5.8) into the definition

W(x̃1, ỹ1, x̃2, ỹ2) = �V∗(x̃1, ỹ1)V(x̃2, ỹ2)�, (5.10)

This immediately gives the result

W(x̃1, ỹ1, x̃2, ỹ2) =
∫∫∫∫ ∞

−∞
W(x̃′1, ỹ′1, x̃′2, ỹ′2)K

∗(x̃1 − x̃′1, ỹ1 − ỹ′1)

× K(x̃2 − x̃′2, ỹ2 − ỹ′2)dx̃′1 dỹ′1 dx̃′2 dỹ′2, (5.11)

which is a nonlinear 4D superposition integral.

Alternatively to using this result directly, we may first evaluate

the CSD incident on A by

W−(kx1, ky1, kx2, ky2) = −
(

cF1

2πω

)2 ∫∫∫∫ ∞

−∞
W(x̃′1, ỹ′1, x̃′2, ỹ′2)

× exp
[

i
(

kx1 x̃′1 + ky1ỹ′1 − kx2 x̃′2 − ky2ỹ′2
)]

dx̃′1 dỹ′1 dx̃′2 dỹ′2, (5.12)

then calculate the field transmitted by the pupil by

W(kx1, ky1, kx2, ky2) = P∗(kx1, ky1)P(kx2, ky2)W
−(kx1, ky1, kx2, ky2),

(5.13)

56 Dissertations in Forestry and Natural Sciences No 207



Partially coherent imaging

and finally determine the image-plane field from

W(x̃1, ỹ1, x̃2, ỹ2) = −
(

ω

2πcF2

)2 ∫∫∫∫ ∞

−∞
W(kx1, ky1, kx2, ky2)

× exp
[

−i
(

kx1 x̃′1 + ky1ỹ′1 − kx2 x̃′2 − ky2ỹ′2
)]

dkx1 dky1 dkx2 dky2.

(5.14)

However, this procedure also involves 4D integrals which need

to be reduced to 2D form to allow numerically efficient evalua-

tion [181–184], a task in which we will next concentrate.

5.2.1 Mercer coherent mode representation

Let us denote the coherent modes of the incident field by ϕn(x̃′, ỹ′).
After transmission through the object we then have

φm(x̃′, ỹ′) = t(x̃′, ỹ′)ϕm(x̃′, ỹ′). (5.15)

The modal contributions to the image-plane CSD are denoted by

φm(x̃, ỹ). We may now expand the CSD of the incident field in the

form of a coherent-mode series

W−(x̃′1, ỹ′1, x̃′2, ỹ′2) =
M

∑
m=0

αm ϕ∗
m(x̃′1, ỹ′1)ϕm(x̃′2, ỹ′2). (5.16)

If we define a coherent-mode response of the system as

φm(x̃, ỹ) =
∫∫ ∞

−∞
φm(x̃′, ỹ′)K(x̃ − x̃′, ỹ − ỹ′)dx̃′ dỹ′ (5.17)

in analogy with Eq. (5.11), we have the expression

W(x̃1, ỹ1, x̃2, ỹ2) =
M

∑
m=0

αmφ∗
m(x̃1, ỹ1)φm(x̃2, ỹ2) (5.18)

for the image-plane CSD. The spectral density in the image plane,

which one is usually interested in, is therefore

S(x̃, ỹ) =
M

∑
m=0

αm|φm(x̃, ỹ)|2. (5.19)
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Once the coherent modes of the incident field have been found and

coherent modes up to index M to represent the incident field with

sufficient accuracy, the computational complexity of evaluating the

partially coherent image is M + 1 times greater than that of calcu-

lating the coherent image.

The transfer function approach already described for fully co-

herent fields is applicable to efficient numerical evaluation of par-

tially coherent diffraction images if the coherent-mode approach is

used. Each mode is propagated to the plane A using an expression

analogous to Eq. (5.6), multiplied by the pupil function, and finally

propagated to the image plane using an expression analogous to

Eq. (5.7).

5.2.2 Elementary-field representation

If we denote the incident elementary field centered at position (x̄, ȳ)

by e(x̃′ − x̄, ỹ′ − ȳ), the corresponding field transmitted by the object

is given by

g(x̃′ − x̄′, ỹ′ − ȳ) = t(x̃′, ỹ′)e(x̃′ − x̄, ỹ′ − ȳ) (5.20)

We again write the CSD of the incident field in the form

W−(x̃′1, ỹ′1, x̃′2, ỹ′2) =
∫∫ ∞

−∞
p(x̄, ȳ)e∗(x̃′1 − x̄, ỹ′1 − ȳ)

× e(x̃′2 − x̄, ỹ′2 − ȳ)dx̄ dȳ. (5.21)

The elementary-field spread function, which depends on the center

coordinates (x̄, ȳ), is defined as

g(x̃ − x̄, ỹ − ȳ) =
∫∫ ∞

−∞
g(x̃′ − x̄, ỹ′ − ȳ)K(x̃ − x̃′, ỹ − ỹ′)dx̃′ dỹ′.

(5.22)

This function becomes space-invariant if no object is present (as in

Paper I), in which case it needs to be evaluated only once.
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The total image-plane CSD, which in the elementary-field rep-

resentation is of the form

W(x̃1, ỹ1, x̃2, ỹ2) =
∫∫ ∞

−∞
p(x̄, ȳ)g∗(x̃1 − x̄, ỹ1 − ȳ)

× g(x̃2 − x̄, ỹ2 − ȳ)dx̄ dȳ. (5.23)

Usually one is again interested in the spectral density of the par-

tially coherent diffraction image, which is given by

S(x̃, ỹ) =
∫∫ ∞

−∞
p(x̄, ȳ) |g(x̃ − x̄, ỹ − ȳ)|2 dx̄ dȳ. (5.24)

For homogeneous incident fields (with a constant intensity distri-

bution) we simply choose p(x̄, ȳ) = 1, so we do not have to approx-

imate such a field with, e.g., a Gaussian Schell-model beam like

in the case of Mercer representation. In practise we of course use

a discrete version of Eq. (5.23). The FFT algorithm and a discrete

version of Eqs. (5.23) and (5.24) are used, with sufficiently dense

sampling of (x̄, ȳ) to achieve convergence.

5.2.3 Comparison of the methods: images of slits

In order to compare the two modal approaches described above we

consider a y-invariant geometry involving a slit object width D, i.e.,

t(x′) =

{

1, if |x′| ≤ D/2

0, if |x′| > D/2,
(5.25)

and assuming that the pupil function is of the form

P(kx) =

{

1, if |kx | ≤ k NA

0, if |kx | > k NA,
(5.26)

where k = 2π/λ is the vacuum wave number and NA is the image-

space numerical aperture of the imaging system. In the fully coher-

ent and incoherent limits the diffraction images for spatially uni-

form illumination of the slit can be expressed in terms of sine in-

tegral functions [185, 186], but no simple analytical solutions seem
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to exist for partially coherent illumination. Considering first the

Mercer-type coherent-mode representation, we assume that the (ge-

ometrical image of) the incident field is a Gaussian Schell-model

field with well-known Hermite-Gaussian modes introduced in Sect.

4.4. If w ≫ D, the illumination of the slit is virtually uniform and

the effect of partial coherence can be studied by varying the param-

eter σ.

Figure 5.2 illustrates numerical results on the imaging of a slit

under variable coherence conditions. The slit width was chosen

as D = 20λ and we chose w = 100λ in the model. Further, we

assume that NA = 0.25 . The blue curve corresponds to σ = 40λ

and the red one to σ = 10λ, which represents almost fully coherent

and quasi-coherent cases, respectively. Strong intensity variations

across the slit image are seen in these cases, which are well known

to take place in coherent illumination [125]. The green curve with

σ = 2.5λ represents quasi-homogeneous illumination. In this case

the fluctuations have already decreased significantly, though some

level of ‘overshoot’ at the edge of the slit image is still apparent.

Going below σ = 2.5λ proved numerically problematic with the

coherent-mode approach since then high-order Hermite–Gaussian

modes with complicated, highly oscillatory spatial variations must

be included, which causes numerical instabilities.

Let us next examine the elementary-field approach, assuming a

uniform Gaussian-correlated source with the same coherence width

σ as above. In this case the axial incident elementary field takes the

(normalized) form

e(x′) =
1

π1/4
√

σ0
exp

(

− x′2

2σ2

)

, (5.27)

and the elementary-field expansion of the incident field can be con-

structed according to Eq. (5.20). In the elementary-field method,

the discretization step of the center point locations x̄ must be less

than σ; for a slit of width D we need at least N = [d/2σ0] + 2 sam-

pling points, where the square brackets denote the integer part of

the enclosure.
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Figure 5.2: Mercer coherent-mode analysis of slit imaging under spatially partially coher-

ent illumination. The curves are normalized with their energies
∫ ∞

0 S(x)d. x. Only one

half of the slit image is shown for clarity.
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Figure 5.3: Elementary-field analysis of slit imaging with varying degrees of coherence

of input illumination. The curves are normalized with their energies
∫ ∞

0 S(x)d. x. As in

Fig. 5.2, only one half of the slit image is shown.

Figure 5.3 illustrates the results of the elementary-field analysis

of slit imaging with the same assumptions on the slit width and the

properties of the incident field as in Fig. 5.2, but considering also
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some less spatially coherent fields than those examined in Fig. 5.2.

Clearly, with σ = 40λ (the nearly coherent case), strong ringing ef-

fects are seen again. Also the results given by the elementary-field

representation for σ = 2.5λ are virtually identical with those given

by the Mercer coherent-mode approach. Importantly, however, the

elementary-field model allows the analysis of imaging problems

with quasi-homogeneous light that may actually approach the ideal

limit of full incoherence (which can not be exactly reached). The

case σ = 0.5λ considered in Fig. 5.2 is close to the most incoherent

case that one can achieve in practice, since decreasing σ much more

would lead to a non-physical situation not realizable by any con-

denser system. If σ < 1/k NA, spatial-frequency components with

values kρ =
√

k2
x + k2

y > k, which represent evanescent waves, are

required to represent the incident field precisely. Such plane-wave

components can not be generated by any condenser system; the

case σ = 0.5λ considered in Fig. 5.3 is close to physically realizable

limits even in immersion microscopes.

5.2.4 Numerical implementation with an adaptive computational

window

Suppose that the effective area of the elementary field covers only

a tiny part of the object around the center point (x̄, ȳ), which is

the case especially if the incident field is quasihomogeneous. In

order to form the final image, the incident elementary field needs

to be scanned over the entire object as illustrated in Fig. 5.4. It is

clear that, for any arbitrary center position (x̄, ȳ) of the elemen-

tary field, no new information appears in the image from regions

outside a rectangle with sides Dx × Dy, which essentially contains

the elementary field, characterized by coherence widths σx × σy and

also contains the necessary amount of zero padding to make sure

that the FFT algorithm produces results with no aliasing errors. By

means of numerical experiments, it has been found that the step

size in scanning the elementary field needs to be ∆x̄ × ∆ȳ, where

∆x̄ < σx and ∆ȳ < σy are chosen such that convergence of the
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elementary-field superposition is ensured.

ȳ

x̄

Dy/2

Dx/2

x

y

σy

σx

∆ȳ

∆x̄

Figure 5.4: Use of an adaptive window that scans the object along with the elementary field.

The yellow and blue dots represent two scanning points of the center of the elementary field,

the blue circle is the effective area of the elementary field, and the red rectangle represents

the corresponding computational window that is always centered at the same (discrete)

point as the center of the elementary field.

If the illumination is highly coherent, the size of the elementary

field is at least of the same order of magnitude as the spatial extent

of the incident field. In this case the computational window must be

chosen to cover the entire object and the use of adaptive windows

does not help. But this is no problem since then we do not need to

scan the center point position too much. On the other hand, with

highly incoherent illumination, the situation is different and we

need sufficient sampling within the effective area of the elementary

field to represent the final image well. If we use the adaptive com-

putational window that is shifted laterally as illustrated in Fig. 5.4,

we can use the shift theorem of Fourier transforms to compute the

field incident on the pupil. Hence, instead of the Fourier transform

over the entire object, we only need to compute the Fourier trans-

form over a spatially limited region around the center point of each

particular elementary field to obtain the elementary-field distribu-
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tion incident on the pupil at plane A. Then we multiply it with the

pupil function and perform the inverse Fourier transform to obtain

the elementary-field contributions to the image-plane field, which

are finally summed up incoherently.

In numerical calculations we choose the discrete sampling of the

center points (x̄, ȳ) so that the shifts (∆x̄, ∆ȳ) as well as the dimen-

sions (Dx, Dy) of the computational window are some multiples of

the FFT sampling steps, so stitching the computational subfields to-

gether in the final summation of the elementary field integral pose

no problems.

5.2.5 Examples: bright-field and dark-field imaging

In the examples to be presented below (as in Paper IV) we consider

the standard Köhler illumination system with an incoherent pri-

mary source and a condenser [70], while previously in this chapter

the illumination of the object was assumed to be of arbitrary form.

We proceed to numerical demonstrations of the elementary-field

decomposition technique described above by applying it to both

Bright Field Imaging (BFI) and Dark Field Imaging (DFI) condi-

tions illustrated in Fig. 5.5. Both imaging schemes can be described

by assuming that an incoherent primary source is present at the

input plane of the condenser. This source generates an incident

field with a CSD determined by an incoherent angular correlation

function with an angular spectral density of the form S(kx, ky) = S0

when P1 ≤ kρ ≤ P2 and zero otherwise, where kρ is again the radial

spatial frequency.

Figure 5.5 illustrates the BFI and DFI imaging geometries. In

BFI, the primary source is assumed to be circular with P1 = 0, such

that the NA of the condenser system is determined by P2. In DFI,

an annular aperture is placed in the plane of the primary source,

which blocks all directly transmitted light from passing through

the pupil of radius P; thus only light scattered by the object can

arrive at the image plane.

In the general case of an annular primary source, the incident
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Figure 5.5: Köhler illumination of an object O with a condenser represented by a lens LC

of focal length FC is followed by lens L1, which forms the image of the primary source at the

aperture plane A. Symbols P1 and P2 represent the limiting spatial frequencies generated

by the annular primary source in the condenser system. Correspondingly, P denotes the

maximum spatial frequency passed by the circular aperture of the imaging system. In BFI

P1 = 0 and in DFI P1 ≥ P.

elementary field may be expressed in the form

e0(ρ
′) =

2 [P2 J1(P2 |ρ′|)− P1 J1(P1 |ρ′|)]
(

P2
2 − P2

1

)

|ρ′| , (5.28)

where J1 is the Bessel function of the first kind and order one. In

BFI we set P1 = 0 and in DFI P1 ≥ P as discussed above, but in both

cases P2 can vary. If the system is free from aberrations, we assume

that the pupil function P(kx, ky) = 1 when 0 ≤ kρ ≤ P. In what

follows, we normalize all quantities to P = k NA. The absolute

value of the pupil function

P(kx, ky) =
∣

∣P(kx, ky)
∣

∣ exp
[

ikW(kx , ky)
]

(5.29)

accounts, as usual, for truncation and apodization of the field at the

A plane. The term W(kx, ky) contains the wave aberrations of the

system, which may be expressed, e.g., by means of the Hamilton

expansion [187]. The effects of aberrations on the imaging process

have previously been analyzed for 1D case [188,189] and we analyze

it here for 2D case, and the examples presented below give some

illustrative results in the 2D case. The combined effect of spherical

aberration and defocus is defined by a wave aberration function
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(2D)

W(kx, ky) = a
(

k2
x + k2

y

)

/P2 + b
(

k2
2 + k2

y

)2
/P4, (5.30)

where a and b are constants that may be chosen at will. If a = 0, we

have pure spherical aberration and if b = 0 we have pure defocus

in the system.

In the numerical examples that follow we consider a real-valued

object shown in Fig. 5.6, which consists of the alphabets UEF. Each

box superimposed on the object in the figure represents a grid with

cartesian dimensions given by r = 0.61/P, which represents the res-

olution limit of the imaging system [125]. The transverse scales are

in dimensionless units, the white areas have a complex-amplitude

transmittance 1 and black areas have a complex-amplitude trans-

mittance of 0.

Figure 5.6: The 2D resolution target used as the object in the numerical simulations. Each

box superimposed on the object represents a grid of dimensions r = 0.61/P in relation to

the resolution limit of the imaging system. The size of each alphabet is equal to the number

of boxes occupied by the sidewalls of the alphabet.

Some results of the elementary-field analysis of BFI and DFI

imaging systems without aberrations are presented in Figs. 5.7 and

5.8. The BFI results illustrate a well-known phenomenon: lowering

the degree of spatial coherence (small P2 with high spatial coher-

ence to a large P2 with low spatial coherence ) results in a reduction

of speckle-like fluctuations in the image-plane intensity profile and

resolution of the image is improved. The edge enhancement effects

in DFI imaging are clearly seen in Fig. 5.8, which are reduced by

lowering the degree of spatial coherence.
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Figure 5.7: Bright-field imaging (P1 = 0) of a UEF resolution target. Top: P2 = 2P.

Middle: P2 = 0.7P. Bottom: P2 = 0.1P. As the spatial coherence is lowered (P2 = 0.1P

to P2 = 2P), the resolution of image is improved.

The effect of defocusing and spherical aberration on the image

quality in both BFI and DFI conditions is illustrated in Fig. 5.9.

Here we assume one wave of pure spherical aberration (b = 1) to

be present in the system and consider the effect of defocusing by

varying the value of a in Eq. (5.30). The results illustrate well how a

suitable amount of defocusing can balance the image-deteriorating

effect of spherical aberration, at least to some extent [187].

More examples on numerical application of the elementary-field

model to imaging problems can be found in Paper IV. The media

files presented there illustrate more closely the effects of variable

partial coherence on the image quality of aberration-free bright-

field and dark-field imaging systems, as well as the effects of defo-

cusing in the image quality of systems with spherical aberration.
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Figure 5.8: Dark-field imaging (P1 = P). Top: P2 = 2P. Middle: P2 = 1.6P. Bottom:

P2 = 1.1P. As the spatial coherence is lowered (P2 = 1.1P to P2 = 2P), the resolution of

image is improved.

Figure 5.9: The effect of defocusing in bright-field imaging (top row) with P1 = 0 and

P2 = 0.7P. Left: a = 0. Center: a = −0.75. Right: a = −1. Bottom row: Dark-field

imaging with P1 = P and P2 = 1.6P. Left: a = 0. Center: a = −0.75. Right: a = −1.

For clarity only one alphabet U is shown.

5.3 SUMMARY

In this chapter we have considered imaging systems under partially

coherent illumination conditions. Modal methods for wave optical
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analysis of image formation in such systems were studied, which

permit efficient numerical evaluation of partially coherent diffrac-

tion images of arbitrary objects. Particular attention was paid to the

elementary-field approach, which is applicable to any illumination

conditions allowed by the Schell-model assumption on the angular

correlation function of the illuminating field [52, 138, 139, 152]. Ex-

amples on slit imaging, and on bright-field and dark-field imaging

of a complicated object, were presented to demonstrate the effects

of partial coherence on image formation and the numerical feasibil-

ity of the elementary-field model.
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6 Discussion and conclusion

Three different types of beam-shaping elements have been theoret-

ically analyzed in this thesis. The method for designing them by

means of geometrical optics was also discussed in brief. The em-

phasis has been on the formulation and interpretation of how these

elements perform on the basis of diffraction theory when illumi-

nated either by stationary or non-stationary light. It was shown

that, when the elements are illuminated with nearly coherent illu-

mination, the target intensity profiles exhibit edge and color distor-

tion effects. Such effects are reduced if the degree of spatial coher-

ence of the illuminating fields is decreased. Secondly it was high-

lighted that, contrary to common belief, conventional or harmonic

diffractive beam shaping elements can be used to shape beams ra-

diated by polychromatic sources with spectral extensions of tens

of nanometers. Harmonic diffractive beam shaping elements were

shown to be useful even for highly broadband sources like RGB or

supercontinuum.

Two modal approaches, namely the Mercer coherent-mode rep-

resentation and the elementary field representation, were applied

to partially coherent stationary and non-stationary fields. These

representations decrease the computational complexity of modeling

partially coherent field in various situations. When the modal ap-

proach was used for beam shaping, individual coherent modes pro-

duced Fourier plane intensity profiles of strongly different shapes

but their superposition showed a good approximation of the de-

sired flat-top profile. These concepts were also illustrated using

Gaussian Schell-model fields in space-frequency and space-time do-

mains, for shaping pulsed beams (non-stationary fields). The target

plane space–frequency intensity distribution showed good quality

flat-top profiles with smooth edges. The space–time pulse profiles

were seen to possess bent shapes, implying that the axial part of

the pulse is seen first at the target plane and the on-axis pulse has
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in fact passed before any light arrives at the edges. This behav-

ior is common to model sources and real light sources including

supercontinuum, and it can be of importance in time resolved ex-

periments.

In Chapter 5, we concentrated on the computational effort re-

quired for partially coherent imaging, demonstrating the possibil-

ity of reducing it by representing the incident CSD in terms of spa-

tially shifted and mutually uncorrelated elementary field modes.

We showed that this elementary-field model (introduced in Paper

IV) is not restricted to incoherent primary sources but can be ap-

plied to any spatially partially coherent primary sources that obey

the spatial Schell model. Examples on bright-field and dark-field

imaging of a 2D resolution target were presented to illustrate the

effect of varying the degree of spatial coherence in the imagery of

the resolution target. The elementary-field model was compared

to the Mercer modal expansion in the case of imaging of a 1D slit

and shown to outperforms the latter especially if illumination with

a low degree of spatial coherence is considered.

All studies in this thesis have been done in the framework of

scalar coherence theory, and hence the results are more or less re-

stricted to the paraxial domain, which is the standard approach

adopted in Fourier optics. Non-paraxial analysis, where the elec-

tromagnetic nature of light must be taken into account, is how-

ever becoming increasingly relevant. The paraxial scalar approach

taken here is reasonably valid if we consider beamlike fields with

divergence angles below 10-15 degrees, but if the beam divergence

exceeds this region, the longitudinal components of the electro-

magnetic field become increasingly significant and the optical fields

should be described electromagnetically when free-space propaga-

tion, beam shaping, or imaging problems are considered.

In beam shaping problems it is no major problem to extend the

analysis into the non-paraxial domain as long as the thin-element

approximation can be assumed to hold. However, if the angular

extent of the signal (such as a flat-top profile) to be generated in

the far field exceeds ∼ 30◦, the thin-element approximation begins
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to fail at least if diffractive elements are employed [190–192]. In

such circumstances the element response should be analyzed by

rigorous electromagnetic diffraction theory, and this is indeed one

natural extension of the work presented above.

In the treatment of imaging problems (bright-field and dark-

field) the discussion was also limited to the scalar theory of par-

tially coherent fields and in the thin-element approximation of the

object response. If the thin-element approximation is retained, the

analysis could rather easily be extended to electromagnetic fields

in the non-paraxial domain. Again the longitudinal components of

the electromagnetic field would contribute to the results and cer-

tain geometrical factors appear, which can be neglected in paraxial

analysis but must be included in the non-paraxial treatment [193].

One major extension of the results presented in this thesis would

be the abandoning of the thin-element approximation, implying

that the response of the object to the illuminating partially coher-

ent field would be considered rigorously, such as using the Fourier

Modal Method (FMM) [194]. There are several alternative approach-

es of doing this, but it appears that the key to all of them is to first

evaluate the scattering matrix (S-matrix) of a given object. Once this

computationally heavy task is performed at a sufficient precision,

the response of the object to any fully coherent field (such as the

elementary field mode) can be evaluated by simple matrix multipli-

cation and the rest of the analysis could be performed in much the

same way as described in Chapter 5 and Paper IV.
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Manisha Singh

Partially coherent beam
shaping and imaging

The thesis contributes new results 

to the theory of partially coherent 

light and its applications to beam 

shaping and imaging problems that 

are of central importance in modern 

photonics research. Techniques are 

introduced for shaping the spatial 

intensity distributions of both beams 

and pulse trains originating from 

partially coherent light sources into 

a more desirable form. Numerically 

efficient methods for analyzing the 

effects of partial coherence in imag-

ing problems (including microscopy) 

are also developed.  
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