
Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences No 190

Publications of the University of Eastern Finland

Dissertations in Forestry and Natural Sciences

isbn: 978-952-61-1901-4 (printed)

issn: 1798-5668

isbn: 978-952-61-1902-1 (pdf)

issn: 1798-5676

Nan Li

Difference Cartan-
Nevanlinna theory and 
meromorphic solutions of 
functional equations

This thesis considers the properties 

of meromorphic solutions of some 

functional equations in the complex 

plane. In addition, a generalization 

of the difference Cartan second main 

theorem is also introduced, which 

can be used as a tool for the study of 

functional equations.

d
isser

tatio
n

s | 19
0 | N

a
n

 L
i | D

ifferen
ce C

a
rta

n
-N

eva
n

lin
n

a
 th

eo
ry a

n
d

 m
ero

m
o

rp
h

ic solu
tio

n
s of fu

n
ctio

n
a

l equ
a

tio
n

s

Nan Li
Difference Cartan-

Nevanlinna theory and 
meromorphic solutions of 

functional equations





NAN LI

Difference
Cartan-Nevanlinna theory

and meromorphic
solutions of functional

equations

Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences

No 190

Academic Dissertation
To be presented by permission of the Faculty of Science and Forestry for public

examination in the Auditorium E100 in Educa Building at the University of
Eastern Finland, Joensuu, on November, 19, 2015,

at 12 o’clock noon.

Department of Physics and Mathematics



University of Eastern Finland

Jyväskylä, 2015

Editor: Prof. Pertti Pasanen, Prof. Pekka Kilpeläinen
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ABSTRACT

The survey of this thesis begins with some background on classi-
cal Nevanlinna and Cartan theories, and their difference analogues.
Secondly, we introduce notation and corresponding properties of a
good linear operator, which satisfies certain regularity conditions
in terms of value distribution theory. This concept will be used as a
tool for the study of general classes of functional equations. In addi-
tion, this survey also presents some recent results on the properties
of solutions to certain types of functional equations. Finally, short
summaries of the papers being part of this survey are included.

2010 Mathematics Subject Classification: 39B32; 30D35; 39A10.
Keywords: Nevanlinna theory; Cartan theory; Functional Equation.
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1 Introduction

In the 1920’s, Nevanlinna theory was devised by the Finnish math-
ematician Rolf Nevanlinna, as one of the few great mathematical
events of the twentieth century. It is composed of two main the-
orems, which are called Nevanlinna’s first and second main theo-
rems. Nevanlinna theory has since been solidly developed in itself
and widely applied to other fields of complex analysis such as the
uniqueness of meromorphic functions, complex differential and dif-
ference equations, and several complex variables.

Since Nevanlinna theory is concerned with the distribution of val-
ues of a holomorphic map in the complex projective line, in 1933,
Cartan [4] extended the theory to higher dimensional cases. This
generalization is a strong result in the value distribution of holo-
morphic curves in the n-dimensional complex projective space Pn(C),
as well as an efficient tool for certain problems in the complex plane
C, or the study of Gauss maps of minimal surfaces in R3, hyper-
bolic complex spaces or Diophantine approximation. In this thesis,
we extend the difference analogue of Cartan’s second main theo-
rem obtained by Halburd, Korhonen, and Tohge [26] for the case of
slowly moving periodic hyperplanes, and introduce two different
natural ways to find a difference analogue of the truncated second
main theorem. As applications, we obtain a new Picard type the-
orem and difference analogues of the deficiency relation for holo-
morphic curves.

In order to study the properties of meromorphic solutions of func-
tional spaces, a notion and corresponding properties of a good lin-
ear operator, which satisfies certain regularity conditions in terms
of value distribution theory, were introduced as a tool since the
methodologies used in the study of meromorphic solutions of dif-
ferential, difference, and q-difference equations are largely similar.

Dissertations in Forestry and Natural Sciences No 190 1
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As an application, we apply our methods to study the growth of
meromorphic solutions to the functional equation M(z, f ) + P(z, f )
= h(z), where M(z, f ) is a linear polynomial in f and a good linear
operator L( f ), P(z, f ) a polynomial in f with degree deg P ≥ 2,
both P and M have small meromorphic coefficients, and h(z) is a
meromorphic function.

Let C be the ring of meromorphic functions M, rational functions R,
entire functions E or polynomials P, respectively. Recently, many
scholars have been devoted to investigating the analogue of Fer-
mat’s last theorem for function fields, and Gundersen-Hayman [20]
collected the best lower estimates that are known for FC(n), where
FC(n) is the smallest positive integer k such that the equation

f n
1 + f n

2 + · · ·+ f n
k = 1

has a solution consisting of k nonconstant functions f1, f2, . . . , fk in
C. In this thesis, we investigate a difference analogue of this prob-
lem for the rings of M, R, E, P with certain conditions, and obtain
lower bounds for GC, where GC is the smallest positive integer k
such that the equation

f1(z) · · · f1(z + (n − 1)c) + · · ·+ fk(z) · · · fk(z + (n − 1)c) = 1

has a solution consisting of k nonconstant functions f1, f2, . . . , fk in
C.

In this thesis, we also study the solutions to functional equations of
another type. We investigate the existence of non-trivial subnormal
solutions for second-order linear differential equations. We show
that under certain conditions some differential equations do not
have subnormal solutions, and the hyper-order of every solution is
equal to one.

As for the uniqueness problem, we investigate shared value prob-
lems related to an entire function f (z) of the hyper-order less than
one and its linear difference operator L( f ) = ∑k

i=1 ai f (z+ ci), where

2 Dissertations in Forestry and Natural Sciences No 190
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ai, ci ∈ C. We give sufficient conditions in terms of weighted value
sharing and truncated deficiencies, which imply that L( f ) ≡ f .
From the above identity, we can see that f is a solution to a linear
difference equation with constant coefficients. Therefore, this prob-
lem can also be classified as a problem of solutions to functional
equations.

Like the case of Cartan’s second main theorem, the difference ana-
logue of Cartan’s second main theorem can be viewed as another
useful tool for the study of solutions to functional equations of cer-
tain types. In this thesis, we develop this tool, and extend the dif-
ference analogue of Cartan’s second main theorem to the case of
slowly moving periodic hyperplanes. Furthermore, we introduce
two different natural ways to find a difference analogue of the trun-
cated second main theorem.

The rest of this survey is structured as follows: After recalling the
basic notations and classical results of Nevanlinna and Cartan the-
ory, as well as their difference analogues in section 2, notation and
corresponding properties of a good linear operator are introduced
as a tool for investigating the solutions to functional equations in
section 3. In section 4, we give some recent results on the properties
of solutions to functional equations of three different types. Finally,
the essential contents of the Papers I–V are summarized in section
5.

Dissertations in Forestry and Natural Sciences No 190 3
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2 Preliminaries

In this survey, a meromorphic function means meromorphic
in the whole complex plane C. As a convenience to the reader,
we recall the basic notations, definitions and results of the classical
Nevanlinna and Cartan theories and their difference analogues in
this section; for details, refer to [27, 35, 36, 62].

2.1 CLASSICAL NEVANLINNA THEORY

Let f be a meromorphic function in the complex plane. For each
r > 0, the counting function N(r, f ), which measures the average
frequency of the poles of f in the disk |z| < r, is now being defined
as

N(r, f ) :=
∫ r

0

n(t, f )− n(0, f )
t

dt + n(0, f ) log r,

where n(t, f ) denotes the number of poles of f in the disk |z| ≤ t,
each pole counted according to its multiplicity.

The proximity function m(r, f ), which measures the average mag-
nitude of f on the circle |z| = r, is defined as

m(r, f ) :=
1

2π

∫ 2π

0
log+ | f (reiθ)|dθ,

where log+ x := max{log x, 0}.
The Nevanlinna characteristic function of f (z) ∈ C is then defined

by
T(r, f ) = m(r, f ) + N(r, f ).

For a ∈ C, the definitions for m
(

r, 1
f−a

)
, N

(
r, 1

f−a

)
and T

(
r, 1

f−a

)

are immediate.
Based on these notations, the definitions of order, hyper order,

exponent of convergence of zeros and poles are given to measure
the complexity of meromorphic function f (z) as follows:

σ( f ) = lim sup
r→∞

log+ T(r, f )
log r

, σ2( f ) = lim sup
r→∞

log+ log+ T(r, f )
log r

,

Dissertations in Forestry and Natural Sciences No 190 5
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λ( f ) = lim sup
r→∞

log+ N(r, 1
f )

log r
and λ

(
1
f

)
= lim sup

r→∞

log+ N(r, f )
log r

.

Before introducing Nevanlinna theory, we list the following el-
ementary inequalities according to the properties of the positive
logarithmic function and the Nevanlinna counting function; for de-
tails, see [35]:

m(r, α f + βg) ≤ m(r, f ) + m(r, g) + O(1),

m(r, f g) ≤ m(r, f ) + m(r, g),

N(r, α f + βg) ≤ N(r, f ) + N(r, g),

N(r, f g) ≤ N(r, f ) + N(r, g),

T(r, α f + βg) ≤ T(r, f ) + T(r, g) + O(1),

T(r, f g) ≤ T(r, f ) + T(r, g).

By applying the Poisson–Jensen formula [27, Theorem 1.1], we
can easily obtain the first main theorem, see, e.g., [27, Theorem 1.2],
[36, Theorem 2.1.10], which gives a relationship between character-
istic functions of 1/( f − a) and f .

Theorem 2.1.1 (The First Main Theorem) Let f be a non-constant mero-
morphic function. Then for any complex number a ∈ C,

T
(

r,
1

f − a

)
= T(r, f ) + O(1).

Throughout this section, S(r, f ) denotes a quantity satisfying
that S(r, f )/T(r, f ) approaches zero as r → ∞ outside a possible
exceptional set of finite linear measure.

The second main theorem of the Nevanlinna theory depends
essentially on the lemma for the logarithmic derivative [62, Theo-
rem 1.7]:

Theorem 2.1.2 (The logarithmic derivative lemma) Suppose f is mero-
morphic and non-constant in the complex plane. Then m(r, f ′/ f ) =

S(r, f ), and whenever f is of finite order, m(r, f ′/ f ) = O(log r) without
an exceptional set.

6 Dissertations in Forestry and Natural Sciences No 190
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Obviously, supposing that k ∈ N, then m(r, f (k)/ f ) = S(r, f ).
Moreover, whenever f is of finite order, m(r, f (k)/ f ) = O(log r)
without an exceptional set, and according to an inequality due to
Milloux (see [62])

T(r, f (k)) ≤ (k + 1)T(r, f ) + S(r, f ).

By combining the first main theorem with the logarithmic deriva-
tive lemma, we can obtain the following second main theorem [35,
Theorem A.9], which is the deepest and the most important result
of the value distribution theory. It generalizes the classical Picard
theorem.

Theorem 2.1.3 (The Second Main Theorem) Let f be a non-constant
meromorphic function, q ≥ 2, and αj(j = 1, 2, . . . , q) distinct complex
numbers. Then

m(r, f ) +
q

∑
j=1

m
(

r,
1

f − αj

)
≤ 2T(r, f )− Nram(r, f ) + S(r, f ),

where Nram(r, f ) := 2N(r, f ) + N(r, 1/ f ′)− N(r, f ′) is the integrated
counting function for multiple points of f , so that each such multiple point
(or a multiple pole) of multiplicity p is here to be counted p − 1 times.

It has the following two simple variants [35, Theorems A.10–11],
which are used more often.

Theorem 2.1.4 (The Second Main Theorem V1) Let f be a non-constant
meromorphic function, q ≥ 2, and αj(j = 1, 2, . . . , q) distinct complex
numbers. Then

(q − 2)T(r, f )−
q

∑
j=1

N
(

r,
1

f − αj

)
+ Nram(r, f ) = S(r, f ).

Theorem 2.1.5 (The Second Main Theorem V2) Let f be a non-constant
meromorphic function, q ≥ 2, and αj(j = 1, 2, . . . , q) distinct complex
numbers. Then

(q − 1)T(r, f ) ≤ N(r, f ) +
q

∑
j=1

N
(

r,
1

f − αj

)
+ S(r, f ),

Dissertations in Forestry and Natural Sciences No 190 7
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where N(r, f ), resp. N(1/( f − αj)), stands for the counting function of
distinct poles, resp. of distinct αj−points of f .

Actually, the second main theorem is also valid for the case of
small functions; for proof refer to [27, Theorem 2.5], [59, Corollary
1].

For the characteristic function of a rational function of a mero-
morphic function with small coefficents, we have the following
Valiron–Mohon’ko theorem [62].

Theorem 2.1.6 (Valiron–Mohon’ko theorem) Let f be a meromorphic
function, and consider an irreducible rational function in f ,

R(z, f ) =
∑

p
i=0 ai(z) f i

∑
q
j=0 bj(z) f j

with meromorphic coefficients ai(z), bj(z) small with respect to f . Then

T(r, R(z, f )) = dT(r, f ) + S(r, f ), d := max{p, q}.

2.2 DIFFERENCE NEVANLINNA THEORY

For a meromorphic function f (z) and c ∈ C\{0}, a shift of f (z)
is defined as f (z + c), while the forward differences are defined as

△c f (z) = f (z + c)− f (z), △n
c f (z) = △c(△n−1

c f ), n = 2, 3, . . .

Throughout this section, we denote by S̃(r, f ) a quantity such
that S̃(r, f )/T(r, f ) approaches zero as r → ∞ outside a possible
exceptional set of finite logarithmic measure.

Difference analogues of the logarithmic derivative lemma, which
are of great importance in the study of difference analogues of clas-
sical Nevanlinna theory, were established by Halburd–Korhonen
[22, 23], and Chiang–Feng [9, 10] independently.

8 Dissertations in Forestry and Natural Sciences No 190
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Theorem 2.2.1 [22, Theorem 2.1] Let f (z) be a non-constant meromor-
phic function of finite order, and c ∈ C and δ < 1. Then

m
(

r,
f (z + c)

f (z)

)
= o

(
T(r, f )

rδ

)
= �S(r, f ).

Theorem 2.2.2 [9, Corollary 2.6] Let η1, η2 be two complex numbers
such that η1 ̸= η2 and f be a meromorphic function of finite order ρ.
Then, for each ε > 0,

m
(

r,
f (z + η1)

f (z + η2)

)
= O(rρ−1+ε).

Recently, Theorem 2.2.1 has been extended to meromorphic func-
tions of hyper-order strictly less than one by Halburd, Korhonen
and Tohge [26].

Theorem 2.2.3 [26, Theorem 2.1] Let f (z) be a non-constant meromor-
phic function, and c ∈ C. If σ2( f ) = σ2 < 1 and ε > 0, then

m
(

r,
f (z + c)

f (z)

)
= o

(
T(r, f )
r1−σ2−ε

)

for all r outside of a set of finite logarithmic measure.

As for the relationship of Nevanlinna characteristics of mero-
morphic function with its shift, two forms exist. The first one is
obtained by Chiang-Feng as follows:

Theorem 2.2.4 [9, Theorem 2.1] Let f (z) be a meromorphic function
with the order σ = σ( f ) < +∞, and c ∈ C\{0}. Then for each ε > 0,
we have

T(r, f (z + c)) = T(r, f ) + O(rσ−1+ε) + O(log r).

The second form, which is a special case of [34, Lemma 2.2], can
be stated as follows:

Theorem 2.2.5 Let f (z) be a meromorphic function with the hyper-order
less than one, and c ∈ C\{0}. Then we have

T(r, f (z + c)) = T(r, f ) + �S(r, f ).

Dissertations in Forestry and Natural Sciences No 190 9
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In order to prove the above form, we need the following theorem:

Theorem 2.2.6 [26] Let T : [0,+∞) → [0,+∞) be a non-decreasing
continuous function and s ∈ (0, ∞). If the hyper-order of T is strictly less
than one, i.e.,

lim sup
r→∞

log log T(r)
log r

= σ2 < 1

and δ ∈ (0, 1 − σ2) then

T(r + s) = T(r) + o
(

T(r)
rδ

)
,

where r runs to infinity outside of a set of finite logarithmic measure.

By combining Theorem 2.2.6 with the following inequality from
reference [15, P.66],

(1+ o(1))T(r−|c|, f (z)) ≤ T(r, f (z+ c)) ≤ (1+ o(1))T(r+ |c|, f (z)),

we can obtain the conclusion of Theorem 2.2.5.
Next we introduce the difference variants of the second main

theorem.

Theorem 2.2.7 [35, Theorem A.15] Let c ∈ C, and f be a meromorphic
function such that σ2( f ) < 1 and f (z) − f (z + c) ̸≡ 0. Moreover, let
q ≥ 2, and a1(z), . . . , aq(z) be small periodic meromorphic functions
with period c. Then

m(r, f ) +
q

∑
j=1

m
(

r,
1

f − aj

)
≤ 2T(r, f )− Npair(r, f ) + �S(r, f ),

where

Npair(r, f ) := 2N(r, f )− N(r,△c f ) + N(r, 1/△c f ).

Before giving a more general version, we first introduce the fol-
lowing definitions; refer to [23] for details.

Let f be a meromorphic function, and c ∈ C. We denote by
nc(r, a) the number of points z0 in |z| ≤ r where f (z0) = a and

10 Dissertations in Forestry and Natural Sciences No 190
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f (z0 + c) = a, counted according to the number of equal terms in
the beginning of the Taylor series expansions of f (z) and f (z + c)
in a neighborhood of z0. We call such points c-separated a-pairs of
f in the disk {z : |z| ≤ r}.

The integrated counting function is now defined in the usual
way:

Nc

(
r,

1
f − a

)
:=

∫ r

0

nc(t, a)− nc(0, a)
t

dt + nc(0, a) log r.

Similarly, we have Nc(r, f ).
A difference analogue of N(r, f ) can then be obtained as

�Nc

(
r,

1
f − a

)
:= N

(
r,

1
f − a

)
− Nc

(
r,

1
f − a

)
,

which counts the number of those a-points (or poles) of f which are
not in c-separated pairs. With this notation, we obtain

Theorem 2.2.8 [35, Theorem A.16] Let c ∈ C, and f be a meromorphic
function such that ρ2( f ) < 1, and f (z)− f (z + c) ̸≡ 0. Let q ≥ 2, and
a1(z), . . . , aq(z) be distinct small periodic functions with period c. Then

(q − 1)T(r, f ) ≤ �Nc(r, f ) +
q

∑
k=1

�Nc

(
r,

1
f − ak

)
+ �S(r, f ).

Next, we give the difference analogues of the Clunie Lemma
and Mohon’ko-Mohon’ko Theorem [35, Theorems A.17, A.19].

Theorem 2.2.9 (Difference Clunie Lemma) Let f be a transcendental
meromorphic solution of finite order of

H(z, f )P(z, f ) = Q(z, f ),

where H, P, Q are difference polynomials (with small coefficients) such
that the total degree n of H(z, f ) in f and its shifts is ≥ deg Q(z, f ).
Assuming that H(z, f ) contains just one term of maximal total degree in
f and its shift, then

m(r, P(z, f )) = �S(r, f ).

Dissertations in Forestry and Natural Sciences No 190 11
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Theorem 2.2.10 (Difference Mohon’ko-Mohon’ko Theorem) Let f (z)
be a nonconstant meromorphic solution of P(z, f ) = 0, , where σ2( f ) < 1
and P(z, f ) is difference polynomial in f (z) and its shift. Assuming that
a(z) satisfies T(r, a) = �S(r, f ), and that P(z, f ) does not vanish identi-
cally, then

m
(

r,
1

f − a

)
= �S(r, f ).

2.3 CARTAN’S VERSION OF NEVANLINNA THEORY

Several self-contained monographs about Cartan theory on holo-
morphic curves of the complex plane in projective spaces as well as
its related fields exist, for example [14, 33, 37, 47, 50]. Here we only
give a short review on this topic.

Since the second fundamental theorem in Nevanlinna theory
is concerned with the value distribution of a holomorphic map in
the complex projective line, Cartan extended the theory to higher
dimensional cases. Like Nevanlinna, Cartan introduced the charac-
teristic function measuring the growth of those holomorphic curves.

Let g : C → Pp−1 be a holomorphic curve, with homogeneous
coordinate g = [g1 : · · · : gp]. Its order of growth is defined by

σ(g) = lim sup
r→∞

log+ Tg(r)
log r

,

where log+ x = max{0, log x} for all x ≥ 0, and

Tg(r) :=
∫ 2π

0
u(reiθ)

dθ

2π
− u(0), u(z) = sup

k∈{1,...,p}
log |gk(z)|

is the Cartan characteristic function of g. The hyper-order is defined
by

σ2(g) = lim sup
r→∞

log+ log+ Tg(r)
log r

.

Before introducing the Cartan Theorem, we first recall some
properties of the Cartan characteristic function; refer to [20, 26, 37,
50], for details.
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If g = [g1 : · · · : gp] with p ≥ 2 is a reduced representation of
a non-constant holomorphic curve g, then Tg(r) → ∞ as r → ∞,
and if at least one quotient gj/gm is a transcendental function, then
Tg(r)/ log r → ∞ as r → ∞. Moreover, if f1, . . . , fq are q linear
combinations of the functions g1, . . . , gp over C, where q > p, such
that any p of the q functions f1, . . . , fq are linearly independent, then

T
(

r,
fµ

fν

)
≤ Tg(r) + O(1), (2.1)

where r → ∞, and µ and ν are distinct integers in the set {1, . . . , q}.
The following theorem gives the relationship between the Car-

tan characteristic function and the Nevanlinna characteristic func-
tion:

Theorem 2.3.1 [4] Let h1 and h2 be two linearly independent entire
functions that have no common zeros, and set f = h1/h2. For positive r,
set

T(r) =
1

2π

∫ 2π

0
υ(reiθ)dθ − υ(0),

where
υ(z) = sup{log |h1(z)|, log |h2(z)|}.

Then
T(r) = T(r, f ) + O(1) as r → ∞.

The order of a holomorphic curve f : C → Pn is independent of
the reduced representation of f . For detail proofs, refer to [26, 35].

Gundersen-Hayman [20] generalized Cartan’s theorem [3,4], and
considered a system of p entire functions on C instead of a holomor-
phic curve of C to Pp−1(C). Their theorem is a strong result in the
value distribution of holomorpic curves in the p − 1-dimensional
complex projective space Pp−1(C) [14, 33, 37, 50], as well as an effi-
cient tool for certain problems in the complex plane C [20, 28], or
for the study of hyperbolic complex spaces [33], etc.

Theorem 2.3.2 (Cartan-Gundersen-Hayman) [4,28,37] Let g1, g2, . . . ,
gp be linearly independent entire functions, where p ≥ 2. Suppose that
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for each complex number z, we have max{|g1(z)|, |g2(z)|, . . . , |gp(z)|}
> 0. For positive r, set

T(r) =
1

2π

∫ 2π

0
u(reiθ)dθ −u(0), where u(z) = sup

j∈{1,...,p}
log |gj(z)|.

Let f1, f2, . . . , fq be q linear combinations of the p functions g1, g2, . . . , gp,
where q > p, such that any p of the q functions f1, f2, . . . , fq are linearly
independent. Let H be the meromorphic functions defined by

H =
f1 f2 · · · fq

W(g1, g2, · · · , gp)
,

where W(g1, g2, · · · , gp) is the Wronskian of g1, g2, · · · , gp. Then

(q − p)T(r) ≤ N(r, 0, H)− N(r, H) + S(r), r > 0,

where S(r) is a quantity satisfying

S(r) = O(log T(r)) + O(log r) as r → ∞ n.e.

We have

N(r, 0, H) ≤
q

∑
j=1

Np−1(r, 0, fj),

and this gives

(q − p)T(r) ≤
q

∑
j=1

Np−1(r, 0, fj)− N(r, H) + S(r), r > 0.

If at least one of the quotients gj/gm is a transcendental function, then

S(r) = o(T(r)) as r → ∞ n.e.,

whereas if all the quotients gj/gm are rational functions, then

S(r) ≤ −1
2

p(p − 1) log r + O(1) as r → ∞.

Furthermore, if all the quotients gj/gm are rational functions, then there
exist polynomials h1, h2, . . . , hp, and an entire function ϕ, such that

gj = hjeϕ, j = 1, 2, . . . , p.
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Here N(r, 0, H) and N(r, H) denote the ordinary Nevanlinna counting
functions of zeros and poles of the meromorphic function H, and Np−1(r, 0, fj)

is the truncated function in which a zero of fj of multiplicity m is counted
exactly min{m, p − 1} times.

The abbreviation n.e. for nearly everywhere means ”everywhere
in R≥0, except possibly for a set of finite linear measure”.

The second fundamental theorem is a particular example of
Theorem 2.3.2; for detailed reasoning refer to [35, p. 205]. Borel’s
theorem can be deduced as a corollary of Cartan’s theorem above;
here we give its simpler statement.

Theorem 2.3.3 [37, Corollary 6.2] Let g1, . . . , gn be entire functions
without zeros ( units in the ring of entire functions). Suppose that

g1 + · · ·+ gn = 1.

Then g1, . . . , gn are linearly dependent if n ≥ 2.

Of course, this statement is a generalization of Picard’s little the-
orem stating that all holomorphic mappings f : C → P1(C)\{a, b, c}
are constants.

Fujimoto [12] and Green [16] interpret Borel’s theorem in the
context of holomorphic curves of C into Pn(C), as another natural
generalization of Picard’s theorem.

Before introducing Theorem 2.3.4, we give the following defini-
tions for convenience of the reader.

Here a hyperplane H is the set of all points x ∈ Pn, x = [x0 : · · · :
xn], such that

α0x0 + · · ·+ αnxn = 0,

where αj ∈ C for j = 0, . . . , n. The hyperplanes Hk, k = 0, . . . , m
defined by α0,kx0 + · · ·+ αn,kxn = 0 are said to be in general position
if m ≥ n and any n + 1 of the vectors αk = (α0,k, . . . , αn,k) ∈ Cn+1

are linearly independent.

Theorem 2.3.4 Let f : C → Pn(C) be a holomorphic curve. Assume
that the image of f lies in the complement of the n + p hyperplanes in
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general position, that is, f omits those hyperplanes where p ∈ {1, . . . , n +

1}. Then the image of f is contained in a linear subspace at most of
dimension [n/p].

Further extensions of Picard’s theorem for holomorphic curves
lacking hyperplanes can be found in [13, 14, 17, 18, 33, 37, 50] etc.

2.4 DIFFERENCE CARTAN THEORY

In a similar way as Cartan’s value distribution theory extends
Nevanlinna theory, a natural generalization of the difference vari-
ant of Nevanlinna theory for holomorphic curves in the complex
projective space exits. We will introduce this difference variant of
Cartan’s theory in this section.

Let g(z) be a meromorphic function and c ∈ C. For a fixed c,
we will use the short notation

g(z + c) ≡ g, g(z + 2c) ≡ g, . . . , g(z + nc) ≡ g[n]

to suppress the explicit z-dependence of g(z). Then the Casorati
determinant of g1, . . . , gn (n ∈ N) is defined by

C(g1, . . . , gn) =

∣∣∣∣∣∣∣∣∣∣

g1 g2 · · · gn

g1 g2 · · · gn
...

...
. . .

...
g[n−1]

1 g[n−1]
2 · · · g[n−1]

n

∣∣∣∣∣∣∣∣∣∣
. (2.2)

As Cartan generalized the second main theorem by expressing
the ramification term in terms of the Wronski determinant of a set
of linearly independent entire functions, Halburd, Korhonen and
Tohge [26] gave the difference analogue of Cartan’s result by re-
placing the ramification term in terms of the Casorati determinant
of entire functions, which are linearly independent over the field P1

c
of c-periodic meromorphic functions of the hyper-order less than 1.

Theorem 2.4.1 [26, Theorem 2.1] Let n ≥ 1, and g0, . . . , gn be entire
functions, linearly independent over P1

c , such that

max{|g0(z)|, . . . , |gn(z)|} > 0
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for each z ∈ C, and

σ2(g) < 1, g := [g0 : · · · : gn].

Let ε > 0. If f0, . . . , fq are q + 1 linear combinations of the n + 1 func-
tions g0, . . . , gn over C, where q > n, such that any n + 1 of the q + 1
functions f0, . . . , fq are linearly independent over P1

c , and

L :=
f0 f1 · · · fq

C(g0, g1, . . . , gn)
,

then

(q − n)Tg(r) ≤ N
(

r,
1
L

)
− N(r, L) + o

(
Tg(r)

r1−ρ2−ε

)
+ O(1),

where r approaches infinity outside of an exceptional set E of finite loga-
rithmic measure (i.e.

∫
E∩[1,∞) dt/t < ∞).

A special case of Theorem 2.4.1 has been also given, indepen-
dently, by Wong-Law-Wong [57] for a class of finite-order holomor-
phic curves with finite-order coordinate functions. Their result is
also an extension of the results by Halburd-Korhonen in [22] to
holomorphic curves into Pn(C).

Before giving the difference analogue of Green and Fujimoto’s
Theorem 2.3.4, we first introduce the definition of forward invariant.

A preimage of a hyperplane H ⊂ Pn under f is said to be for-
ward invariant with respect to the translation τ(z) = z + c if

τ( f−1({H})) ⊂ f−1({H}), (2.3)

where f−1({H})) and τ( f−1({H})) are multisets in which each
point is repeated according to its multiplicity.

For example, let φ(z) be an entire function given by the pullback
divisor of the hyperplane H. Suppose that

φ(z) =
φ(i)(z0)

i!
(z − z0)

i + O((z − z0)
i+1), φ(i)(z0) ̸= 0,
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and

φ(z + c) =
φ(j)(z0)

j!
(z − z0)

j + O((z − z0)
j+1), φ(j)(z0) ̸= 0,

for all z in a neighborhood of z0. If j ≥ i > 0, the point z0 is a
forward invariant element in a preimage of H with respect to τ(z),
while if i > j, then z0 is not a forward invariant element.

Finitely many exceptional values are allowed in inclusion (2.3)
if the holomorphic curve f is transcendental.

Theorem 2.4.2 [26, Theorem 1.1] Let f : C → Pn(C) be a holomorphic
curve such that ρ2( f ) < 1, c ∈ C and p ∈ {1, . . . , n + 1}. If the n + p
hyperplanes in general position have forward invariant preimages under
f with respect to the translation τ(z) = z + c, then the image of f is
contained in a projective linear subspace over P1

c of dimension ≤ [n/p].

As an immediate consequence of Theorem 2.4.2, we also have

Corollary 2.4.1 [26, Corollary 1.3] Let f : C → Pn(C) be a holomor-
phic curve such that ρ2( f ) < 1, and c ∈ C. If the 2n + 1 hyperplanes
Hj(j = 0, 1, . . . , 2n) in Pn(C) are located in general position and satisfy
the condition

τ( f−1({Hj})) ⊂ f−1({Hj})

about their preimages under f with respect to the translation τc(z) =

z + c, then f is periodic with period c.

This result indicates us that if the preimages f−1Hj under f are
all empty, then f reduces to a constant. Therefore, Corollary 2.4.1
is also regarded as a generalization of Green’s Picard-type theorem
in [16] for holomorphic curves of the hyper-order less than one.

As Nevanlinna’s second main theorem follows from Cartan’s
result, the analogue of Nevanlinna’s second main theorem for the
difference operator △c for constant targets follows from Theorem
2.4.1; for proof refer to [35, p. 216-217].
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Nevanlinna theory provides us with many tools applicable to
the study of value distribution of meromorphic solutions to dif-
ferential equations. Analogues of some of these tools have been
recently developed for difference and q-difference equations. In
many cases, the methodologies used in the study of meromorphic
solutions to differential, difference and q-difference equations are
largely similar. Thus, to collect some of these tools in a common
toolbox is urgently needed for the study of general classes of func-
tional equations. In this chapter, we deal with this problem by
introducing notation and corresponding properties of a good linear
operator, which satisfies certain regularity conditions in terms of
value distribution theory.

3.1 INTRODUCTION

The lemma on the logarithmic derivative is an important techni-
cal tool in the study of value distribution of meromorphic solutions
of differential equations. It plays an important role in the proof of
the Clunie lemma [11] and in a theorem due to A. Z Mohon’ko and
V. Z Mohon’ko [43], both of which are applicable to large classes
of differential equations. Similarly, the difference analogues of the
lemma on the logarithmic derivatives due to Halburd and Korho-
nen [22, 23], and Chiang and Feng [9, 10] are of great importance in
studying large classes of difference equations, often by using meth-
ods similar to the case of differential equations. A q-difference ana-
logue of the lemma on the logarithmic derivatives [2], as well as an
analogous result on the proximity function of polynomial composi-
tions of meromorphic functions [34] are applicable to correspond-
ing classes of q-difference equations and functional equations much
in the same way. Therefore, to present all these results under one
general framework is naturally needed. For value distribution of
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meromorphic functions, this was done by Halburd and Korhonen
in [25], where a second main theorem was given for general lin-
ear operators, operating on a subfield of meromorphic functions
for which a suitable analogue of the logarithmic derivative lemma
exists. The purpose of this chapter is to develop this method fur-
ther so that it is applicable to a general class of functional equations.
This will be done in section 3.2 by introducing the notion and corre-
sponding properties of a good linear operator, which encompasses
such operators as L( f ) = f ′, Lq( f ) = f (qz) and Ec( f ) = f (z + c).

3.2 GOOD LINEAR OPERATORS

The lemma on the logarithmic derivative and its difference ana-
logues all produce different types of exceptional sets. Therefore, in
order to include this phenomenon in our set–up, we first need to
give the following notion. We say P is an exceptional set property if
for any two sets E1 ⊂ (0, ∞) and E2 ⊂ (0, ∞) having the property P

it follows that E1 ∪ E2 also has property P. For instance, “finite lin-
ear measure”, “finite logarithmic measure” and “zero logarithmic
density” are all exceptional set properties from the corresponding
definitions.

With the above notion, we redefine S(r, f ), a quantity satisfying
that S(r, f )/T(r, f ) approaches zero as r → ∞ outside of an excep-
tional set with the exceptional set property P throughout the rest
of this survey for unity and simplicity. A meromorphic function a
is small with respect to f if T(r, a) = S(r, f ).

Denote by M the field of meromorphic functions in the complex
plane, and let N ⊂ M. We say that a linear operator L : N → N
is a good linear operator for N with an exceptional set property P if the
following two properties hold:

(1) For any f ∈ N ,

m
(

r,
L( f )

f

)
= S(r, f ).
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(2) The counting functions N(r, f ) and N(r, L( f )) are asymptoti-
cally equivalent, i.e., there is a constant K ≥ 1 such that

1
K

N(r, f ) + S(r, f ) ≤ N(r, L( f )) ≤ KN(r, f ) + S(r, f ). (3.1)

Next, we will give two examples of a good linear operator. Let
N = M and L( f ) = f ′, then property (1) is satisfied by the lemma
on the logarithmic derivatives, i.e. Theorem 2.1.2 with P being
“finite linear measure”. Property (2) holds with K = 2 from the
definition of counting functions, even without an error term and an
exceptional set. Another example is given by taking N to be the set
of all meromorphic functions of the hyper-order strictly less than
one, and L( f (z)) = f (z + 1). Then property (1) is satisfied by the
difference analogue of the lemma on the logarithmic derivative, i.e.
Theorem 2.2.3 with P being “finite logarithmic measure”. In this
case property (2) holds with K = 1 by using Theorem 2.2.6.

The following result shows that a composition of two good op-
erators is also a good operator.

Theorem 3.2.1 [38] If L1 and L2 are good linear operators for N with
an exceptional set property P, then L1 ◦ L2 is a good linear operator for N
with the same exceptional set property P.

Proof. Since the linearity follows immediately by the linearity of L1

and L2, we only need to check that properties (1) and (2) hold for
L1 ◦ L2.

First, for any f ∈ N , we have

m
(

r,
L1(L2( f ))

f

)
≤ m

(
r,

L1(L2( f ))
L2( f )

)
+ m

(
r,

L2( f )
f

)
.

Therefore, since f ∈ N and L2( f ) ∈ N , and by the assumption that
L1 and L2 are good operators, we have

m
(

r,
L1(L2( f ))

f

)
= S(r, L2( f ))) + S(r, f ). (3.2)
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But since

T(r, L2( f )) = m(r, L2( f )) + N(r, L2( f ))

≤ m(r, f ) + m
(

r,
L2( f )

f

)
+ KN(r, f ) + S(r, f )

≤ KT(r, f ) + S(r, f ),

equation (3.2) becomes

m
(

r,
L1(L2( f ))

f

)
= S(r, f ).

Thus property (1) holds for the operator L1 ◦ L2.
To show that property (2) also holds, we observe that since

L2( f ) ∈ N and f ∈ N ,

1
K1

N(r, L2( f )) + S(r, L2( f )) ≤ N(r, L1(L2( f )))

≤ K1N(r, L2( f )) + S(r, L2( f ))

and

1
K2

N(r, f ) + S(r, f ) ≤ N(r, L2( f )) ≤ K2N(r, f ) + S(r, f ),

it follows by (3.2) that

1
K1K2

N(r, f ) + S(r, f ) ≤ N(r, L1(L2( f ))) ≤ K1K2N(r, f ) + S(r, f ).

Thus property (2) is valid for L1 ◦ L2, and hence it is a good linear
operator for N with an exceptional set property P. �

Note, however, that the sum of two good linear operators is not
necessarily a good operator, since the lower bound in (3.1) may fail
to be valid.

The next theorem shows that a composition of single–term dif–
ferential and difference operators of an arbitrary order is a good
linear operator for sufficiently slowly growing meromorphic func-
tions.
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Theorem 3.2.2 [38] Let c ∈ C and k ∈ N ∪ {0}, and N1 be the field
of meromorphic functions of the hyper-order strictly less than one. The
operator

L( f (z)) = f (k)(z + c)

is a good linear operator in N1 with P = “finite logarithmic measure”.

Proof. By Theorem 3.2.1 it is sufficient to show that the operators
L1( f ) = f (k) and L2( f (z)) = f (z + c) are good linear operators in
N1 with the exceptional set property P. The operator L1 is in fact
good in all of M with a weaker exceptional set property. Namely,
property (1) is satisfied by the lemma on the logarithmic derivative,
and property (2) holds since

1
k + 1

N(r, f ) ≤ N(r, L1( f )) ≤ (k + 1)N(r, f ) (3.3)

for all meromorphic functions f ∈ M and for all r ≥ 1. By combin-
ing (3.3) with the lemma on the logarithmic derivative, or by using
the Milloux inequality [62], it follows that

T(r, L1( f )) ≤ 2T(r, f ) + S(r, f ).

Therefore, if f ∈ N1, L1( f ) ∈ N1 and thus L1 : N1 → N1 is also a
good linear operator in N1 with the exceptional set property P.

If f ∈ N1, it follows by Theorem 2.2.3 that

m
(

r,
L2( f )

f

)
= m

(
r,

f (z + c)
f (z)

)
= S(r, f ). (3.4)

Therefore property (1) is satisfied for L2 in N1 with the exceptional
set property “finite logarithmic measure”. Moreover,

N(r − |c|, f (z)) ≤ N(r, L2( f )) ≤ N(r + |c|, f (z))

for all r ≥ |c|, and so by Theorem 2.2.6, we have

N(r, f (z)) + S(r, f ) ≤ N(r, L2( f )) ≤ N(r, f (z)) + S(r, f ). (3.5)

Dissertations in Forestry and Natural Sciences No 190 23



Nan Li: difference analogue of cartan’s second main theorem and
solutions to functional equations

Hence property (2) holds for L2 in N1 with the exceptional set prop-
erty “finite logarithmic measure”. Finally, by combining (3.4) and
(3.5), it follows that

T(r, L2( f )) ≤ T(r, f ) + o(T(r, f ))

as r → ∞ outside of a set of finite logarithmic measure. Hence
L2(N1) ⊂ N1, and thus L2 : N1 → N1 is a good linear operator in
N1 with the exceptional set property P. This completes the proof
of Theorem 3.2.2. �

Here, for the exceptional set, we can deduce that if the set is of
finite linear measure, then it is of finite logarithmic measure. Thus,
this composition makes sense.
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equations

In this chapter, we recall some results about the uniqueness,
growth, and existence of meromorphic solutions in three different
classes of functional equations.

4.1 SOLUTIONS TO FUNCTIONAL EQUATIONS OF THE TYPE
L(F) + P(Z, F) = H(Z)

In 2001, C.C.Yang [60] studied transcendental entire solutions of
finite order of

L( f )− p(z) f n = h(z),

where L( f ) denotes a linear differential polynomial in f with poly-
nomial coefficients, p(z) is a non-vanishing polynomial, h(z) is en-
tire and n ≥ 3. In particular, he showed that f must be unique,
unless L( f ) ≡ 0.

Later on, Heittokangas, Korhonen, and Laine [29] generalized
p(z), h(z) and the coefficients of L( f ) from entire functions to a
meromorphic case, and obtained the following result.

Theorem 4.1.1 [29] Consider a differential equation

p(z) f n − L(z, f ) = h, (4.1)

where p(z) is a small function of f of degree n, L(z, f ) a linear differential
polynomial in f , and h a meromorphic function. If n ≥ 4, then equation
(4.1) may admit at most n distinct entire solutions.

Specific to L( f ) − p(z) f 3 = h(z), Heittokangas et. al [29] also
considered the existence and uniqueness of meromorphic solutions
with only few poles and obtained the following result.
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Theorem 4.1.2 [29] Let f be a transcendental meromorphic function. If
f satisfies the nonlinear differential equation

a1(z) f ′ + a0(z) f − p(z) f 3 = h(z), (4.2)

then one of the following situations holds:

(a) Equation (4.2) has f as its unique transcendental meromorphic so-
lution such that N(r, f ) = S(r, f ).

(b) Equation (4.2) has exactly three transcendental meromorphic solu-
tions fj, j = 1, 2, 3 such that N(r, fj) = S(r, fj) for j = 1, 2, 3.
Moreover a1(z) f ′j + a0(z) f j ≡ 0, and h(z) = −p(z) f 3

j for all
j = 1, 2, 3.

In particular, letting h(z) = c sin bz, they obtained

Theorem 4.1.3 [29] Let p be a non-vanishing polynomial, and b, c be
nonzero complex numbers. If p is nonconstant, then the differential equa-
tion

f 3 + p(z) f ′′ = c sin bz (4.3)

admits no transcendental entire solutions, while if p is constant, then
equation (4.3) admits three distinct transcendental entire solutions, pro-
vided (pb2/27)3 = 1

4 c2.

For the growth of the solutions to a slightly more general form,

L( f ) + P(z, f ) = h(z), (4.4)

where L( f ) = a0(z) f + a1(z) f ′ + · · ·+ ak(z) f (k) is a linear differen-
tial polynomial in f with meromorphic coefficients, and P(z, f ) =

b2 f 2 + · · ·+ bn(z) f n is a polynomial in f with meromorphic coeffi-
cients, and h(z) a polynomial in f with meromorphic coefficients,
they obtained the following result.

Theorem 4.1.4 [29] Given L( f ), P(z, f ), h(z) as above, and P(z, f ) ̸≡
0, denote by F the family of meromorphic solutions of (4.4) such that
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whenever f ∈ F , all coefficients of (4.4) are small meromorphic functions
of f , and N(r, f ) = S(r, f ). If f , g ∈ F , then

T(r, g) = O(T(r, f )) + S(r, f ).

Moreover, if α > 1, then for some rα > 0,

T(r, g) = O(T(αr, f ))

for all r ≥ rα.

Recently, a difference variant of Nevanlinna theory was estab-
lished by Halburd and Korhonen [22, 23], Chiang and Feng [9, 10]
independently. Based on this background, differential-difference
analogues of Theorem 4.1.1 to Theorem 4.1.4 were obtained by
Yang-Laine in [61]. Before giving the corresponding results, we
first introduce the following definition.

A difference polynomial, resp. a differential-difference polynomial, in
f is a finite sum of difference products of f and its shifts, resp.
of products of f , derivatives of f and of their shifts, with all the
coefficients of these monomials being small functions of f .

Theorem 4.1.5 [61] A nonlinear difference equation

f 3(z) + q(z) f (z + 1) = c sin bz, (4.5)

where q(z) is a nonconstant polynomial and b, c ∈ C are nonzero con-
stants, does not admit entire solutions of finite order. If q(z) = q is a
nonzero constant, then equation (4.5) possesses three distinct entire so-
lutions of finite order, provided b = 3πn and q3 = (−1)n+1 27

4 c2 for a
nonzero integer n.

An example in a special case is given as follows [61]: the equa-
tion

f 3(z) +
3
4

f (z + 1) = −1
4

sin 3πz,

has three entire solutions of finite order, i.e.

f1(z) = sin πz =
1
2i
(eiπz − e−iπz),
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f2(z) =
1
2i
(εeiπz − ε2e−iπz) = −1

2
sin πz +

√
3

2
cos πz,

f3(z) =
1
2i
(ε2eiπz − εe−iπz) = −1

2
sin πz −

√
3

2
cos πz,

where ε := − 1
2 +

√
3

2 i is a cubic root of unity.

Theorem 4.1.6 [61] Let M(z, f ) be a linear differential–difference poly-
nomial of f , not vanishing identically, h a meromorphic function of finite
order, and n ≥ 4 an integer. Then the differential-difference equation

f n + M(z, f ) = h (4.6)

possesses at most one admissible transcendental entire solution of finite
order such that all coefficients of M(z, f ) are small functions of f . If such
a solution f exists, then f is of the same order as h.

4.2 SOLUTIONS TO FERMAT-TYPE EQUATIONS

Let C be a ring, and n (≥ 2) be an integer. Let FC(n) denote the
smallest positive integer k such that we have a nontrivial represen-
tation

xn
1 + xn

2 + . . . + xn
k = 1,

where xj ∈ C for j = 1, 2, . . . , k.
For the case C = Z, on the one hand, according to the famous

Fermat’s last theorem, which was proved by Wiles [55] and Taylor
and Wiles [51], no nonzero rational numbers x, y, nor an integer n
exist, where n ≥ 3, such that

xn + yn = 1.

On the other hand, Ramanujan noted that 93 + (10)3 + (−12)3 = 1.
Thus combining the above two facts, we have FZ(3) = 3.

Next, we recall the functional case. Let M, R, E and P denote the
rings of meromorphic functions, rational functions, entire functions
and polynomials, respectively. Therefore, if C is equal to M, R, E
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or P, and n is an integer satisfying n ≥ 2, then FC(n) denotes the
smallest positive integer k such that the equation

f n
1 + f n

2 + . . . + f n
k = 1 (4.7)

has a solution consisting of k nonconstant functions f1, f2, . . . , fk in
C. Obviously, k depends on n.

Many scholars have investigated this and related problems; for
details see [13, 18, 28, 40, 41, 46, 52, 63, 65]. Gundersen and Hayman
[20] collected the best lower estimates known for every n as follows:

a FP(n) > 1/2 +
√

n + 1/4,

b FR(n) >
√

n + 1,

c FE(n) ≥ 1/2 +
√

n + 1/4,

d FM(n) ≥
√

n + 1.

There is another way to express the above inequalities, which
can be stated as follows. For C equal to P, R, E, M, there are no
k nonconstant functions f1, . . . , fk in C satisfying (4.7) when n ≥
k2 − k, n ≥ k2 − 1, n ≥ k2 − k + 1, or n ≥ k2, respectively. In
addition, Cartan’s theorem was used in [28] to prove all the above
four inequalities.

Next, we will recall the upper bound of FC(n). Let b and n
be integers satisfying 1 ≤ b ≤ n, for 1 ≤ ν ≤ b, we set ων =

exp{2πiν/b}. From the identity (see [44])

b

∑
ν=1

(1 + ωνzn)n = A0 + A1znb + A2z2nb + . . . + A[n/b]z
nb[n/b], (4.8)

where each Aν is a positive integer, and [x] denotes the greatest
integer that is less than or equal to x for a real number x, there
exist k = b + [n/b] nonconstant polynomials f1, . . . , fk satisfying
equation (4.7). Since the minimum over all b of k = b + [n/b] is
[
√

4n + 1] (see [46]), it follows that FP(n) ≤
√

4n + 1, n ≥ 2.
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Next we consider the cases where C is equal to E, R or M. From
the identity (see [46])

b

∑
ν=1

ων(1 + ωνzn)n

z(b−1)n
= B0 + B1zbn + B2z2bn + . . .

+B[(n+1)/b]−1z([(n+1)/b]−1)bn,

where each Bν is a positive integer, we find that there exist k =

b + [(n + 1)/b]− 1 nonconstant functions f1, . . . , fk in C satisfying
(4.7). Since the minimum over all b of k = b + [(n + 1)/b] − 1 is
[
√

4n + 5]− 1 (see [28]), we find that FC(n) ≤
√

4n + 5 − 1, n ≥ 2.
Examples concerning the above results are given as follows.
When n = 2, on one hand (see [28]), from

(
1 + z√

2

)2

+

(
1 − z√

2

)2

+ (iz)2 = 1,

we have FP(2) ≤ 3. On the other hand (see [32]), if f and g are
nonconstant entire solutions of f 2 + g2 = 1, then we obtain entire
solutions f = cos ω, g = sin ω; and rational solutions f = 2z(z2 +

1)−1, g = (z2 − 1)(z2 + 1)
−1

. Therefore, we have FP(2) = 3, FE(2) =
FM(2) = 2, and FR(2) = 2.

When n = 3, let b = 2 in (4.8), and we obtain
1
2
(1 + z3)3 +

1
2
(1 − z3)3 − 3(z2)3 = 1. (4.9)

On the other hand, f and g are nonconstant meromorphic solutions
of f 3 + g3 = 1 if and only if f and g are certain nonconstant elliptic
functions composed of an entire function; see [1]. Combining this
result with (4.9) gives FM(3) = 2 and FP(3) = FR(3) = FE(3) = 3.

When n = 4, let b = 3 in (4.9), and we get

1
18

(
1 + z4

z2

)4

+
e2πi/3

18

(
1 + e2πi/3z4

z2

)4

+
e4πi/3

18

(
1 + e4πi/3z4

z2

)4

= 1. (4.10)

By combining the results [a,b,c,d] collected by Gundersen and Hay-
man with (4.10), we find that FM(4) = FR(4) = FE(4) = 3. For more
examples and references concerning equation (4.7), see [19].
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4.3 SOLUTIONS TO SECOND-ORDER COMPLEX DIFFEREN-
TIAL EQUATIONS

Consider the second–order homogeneous linear periodic differ-
ential equation

f ′′ + P(ez) f ′ + Q(ez) f = 0, (4.11)

where P(z) and Q(z) are polynomials in z and not constants. It is
well known that every solution f of (4.11) is entire.

For a meromorphic funtion f , define

σe( f ) = lim sup
r→∞

log T(r, f )
r

,

as the e-type order of f . If f ̸≡ 0 is a solution of (4.11) satisfying
σe( f ) = 0, then we say that f is a nontrivial subnormal solution of
(4.11).

Wittich [56] investigated subnormal solutions of (4.11), and ob-
tained the form of all subnormal solutions in the following theorem.

Theorem 4.3.1 [56] If f ̸≡ 0 is a subnormal solution of (4.11), then f
must have the form

f (z) = ecz(h0 + h1ez + · · ·+ hmemz),

where m ≥ 0 is an integer and c, h0, . . . , hm are constants with h0 ̸= 0
and hm ̸= 0.

Gundersen and Steinbart [21] refined Theorem 4.3.1 and ob-
tained the following theorem.

Theorem 4.3.2 [21] Under the assumptions of Theorem 4.3.1, the fol-
lowing statements hold.

(i) If deg P > deg Q and Q ̸≡ 0, then, any subnormal solution f ̸≡ 0
of (4.11) must have the form

f (z) =
m

∑
k=0

hke−kz,

where m ≥ 1 is an integer and h0, h1, . . . , hm are constants with
h0 ̸= 0 and hm ̸= 0.
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(ii) If deg P ≥ 1 and Q = 0, then any subnormal solution of equation
(4.11) must be a constant.

(iii) If deg P < deg Q, then the subnormal solution of equation (4.11)
is f = 0.

Chen and Shon [6] investigate the problem concerning which
condition will guarantee that (4.11) does not have a non-trivial sub-
normal solution, and obtained the following result.

Theorem 4.3.3 [6] Let

P(ez) = cnenz + · · ·+ c1ez + c0,

Q(ez) = dsesz + · · ·+ d1ez + d0,

where cnds ̸= 0, cj, dk (j = 0, 1, . . . , n; k = 0, 1, . . . , s) are constants.
Suppose that P and Q satisfy any one of the following three additional
hypotheses:

(i) s > n;

(ii) n > s and c0 = d0 = 0;

(iii) n > s and equation x2 − c0x + d0 = 0 has no positive integer
solution.

Then (4.11) has no non-trivial subnormal solution, and every non-trivial
solution f satisfies σ2( f ) = 1.

For deg P = deg Q, Xiao [58] studied the case, and proved the
following result.

Theorem 4.3.4 [58] Let

P(ez) = anenz + · · ·+ a1ez + a0,

Q(ez) = bnenz + · · ·+ b1ez + b0,

where ai, bi (i = 0, . . . , n) are constants, anbn ̸= 0, deg(Q − bn
an

P) ≥ 1.
Suppose that any one of the following two hypotheses holds:
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(i) a0an = 2bn and a2
0 = 4b0;

(ii) x2 − c0x + d0 = 0 has no positive integer solution, where c0 =

a0 − 2 bn
an

, d0 = b0 − a0bn
an

+ b2
n

a2
n
.

Then (4.11) has no non-trivial subnormal solution, and every non-trivial
solution f satisfies σ2( f ) = 1.

Xiao also considered another problem, namely, which condition
will guarantee that the general equation

f ′′ + P(eαz) f ′ + Q(eβz) f = 0, (α ̸= β), (4.12)

where P(z), Q(z) are polynomials in z, α, β are complex constants,
does not have a non-trivial subnormal solution, and obtained the
following results.

Theorem 4.3.5 [58] Let

P(eαz) = anenαz + · · ·+ a1eαz + a0,

Q(eβz) = bmemβz + · · ·+ b1eβz + b0,

where n (≥ 1), m (≥ 1) are integers, ai, bj (i = 0, . . . , n; j = 0, . . . , m), α, β

are constants, anbm ̸= 0, αβ ̸= 0. Suppose any one of the following two
hypotheses holds:

(i) arg α ̸= arg β;

(ii) nα = cmβ (0 < c < 1).

Then equation (4.12) has no non-trivial subnormal solution and every
non-trivial solution f satisfies σ2( f ) = 1.

Theorem 4.3.6 [58] Let

P∗(eαz) = anenαz + · · ·+ a1eαz,

Q∗(eβz) = bmemβz + · · ·+ b1eβz,

where n (≥ 1), m (≥ 1) are integers, ai, bj (i = 1, . . . , n; j = 1, . . . , m), α, β

are constants, anbm ̸= 0, αβ ̸= 0. Suppose that nα = cmβ (c > 1).
Then equation (4.12) has no non-trivial subnormal solution and every
non-trivial solution f satisfies σ2( f ) = 1.
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In 2007, Chen and Shon [5] studied the existence of subnormal
solutions of a more general form

f ′′ + (P1(ez) + P2(e−z)) f ′ + (Q1(ez) + Q2(e−z)) f = 0, (4.13)

and obtained the following results.

Theorem 4.3.7 [5] Let Pj(z), Qj(z) (j = 1, 2) be the polynomials in z.
If

deg Q1 > deg P1 or deg Q2 > deg P2

then (4.13) has no nontrivial subnormal solution, and every solution of
(4.13) satisfies σ2( f ) = 1.

Theorem 4.3.8 [5] Let Pj(z), Qj(z) (j = 1, 2) be the polynomials in z.
If

deg Q1 < deg P1 and deg Q2 < deg P2

and Q1 + Q2 ̸≡ 0, then (4.13) has no nontrivial subnormal solution, and
every solution of (4.13) satisfies σ2( f ) = 1.
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In the following summaries, some notations used in the original
papers have been introduced in previous chapters.

5.1 SUMMARY OF PAPER I

Viewed as another useful tool (just like the case of Cartan’s sec-
ond main theorem) in the study of solutions to functional equa-
tions of certain types, the difference analogue of Cartan’s second
main theorem is extended in paper I to the case of slowly mov-
ing periodic hyperplanes . In addition, two different natural ways
are also introduced to find a difference analogue of the truncated
second main theorem. As applications, we obtain a new Picard
type theorem and difference analogues of the deficiency relation
for holomorphic curves.

5.1.1 Introduction

In order to state the Cartan second main theorem for differences,
we define the n-dimensional complex projective space Pn as the
quotient space (Cn+1 \ {0})/ ∼, where

(a0, a1, . . . , an) ∼ (b0, b1, . . . , bn)

if and only if

(a0, a1, . . . , an) = λ(b0, b1, . . . , bn)

for some λ ∈ C \ {0}.
Comparing the differential operator D f = f ′ and difference op-

erator ∆ f = f (z + 1)− f (z), a natural difference analogue of con-
stant targets for f ′ is the periodic targets case for ∆ f . For instance,
linear differential equations with constant coefficients can be ex-
actly solved modulo arbitrary constants, while for linear difference
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equations the same statement is true but with arbitrary periodic
functions. Moreover, take the solution space of L( f ) = 0 as an ex-
ample, where L is a linear operator mapping a subclass N of the
meromorphic functions in C into itself. Allowing L( f ) = D f gives
constants as targets, while the choice L( f ) = ∆ f yields periodic
functions. Furthermore, as in Theorem 2.4.1, the condition ”entire
functions g1, g2, . . . , gp linearly independent over C” is changed nat-
urally to ”linearly independent over P1

c ”. In the light of this, a nat-
ural difference analogue of Cartan’s second main theorem would
therefore be suitable for slowly moving periodic target hyperplanes,
rather than constants, as is the case in Theorem 2.4.1. In paper I, we
remedy this situation by introducing the following theorem.

Theorem 5.1.1 Let n ≥ 1, and g = [g0 : . . . : gn] be a holomorphic
curve of C into Pn(C) with σ2(g) = σ2 < 1, where g0, . . . , gn are linearly
independent over P1

c . If

fj =
n

∑
i=0

aijgi j = 0, . . . , q, q > n,

where aij are c-periodic entire functions satisfying T(r, aij) = o(Tg(r)),
such that any n + 1 of the q + 1 functions f0, . . . , fq are linearly indepen-
dent over P1

c , and

L =
f0 f1 · · · fq

C(g0, g1, . . . , gn)
,

then

(q − n)Tg(r) ≤ N
(

r,
1
L

)
− N(r, L) + o(Tg(r)),

where r approaches infinity outside of an exceptional set E of finite loga-
rithmic measure.

Theorem 5.1.1 implies the difference analogue of the second
main theorem obtained in [22, Theorem 2.5] in the general case
of slowly moving periodic targets, while Theorem 2.4.1 implies the
special case of constant targets.
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5.1.2 Picard’s theorem

As an application of the difference analogue of Cartan’s theo-
rem, Halburd, Korhonen and Tohge obtained a difference analogue
of Picard’s theorem for holomorphic curves in [26].

Theorem 5.1.2 [26] Let f : C → Pn be a holomorphic curve such that
σ2( f ) < 1, c ∈ C and p ∈ {1, . . . , n + 1}. If the n + p hyperplanes in
general position have forward invariant preimages under f with respect
to the translation τ(z) = z + c, then the image of f is contained in a
projective linear subspace over P1

c of dimension ≤ [n/p].

As mentioned in the introduction, a natural difference analogue
of Picard’s theorem would have periodic moving targets. In order
to state our generalization in that direction, we first need to define
what we exactly mean by a moving periodic hyperplane.

First, we fix the numbers n and q (≥ n), and observe q moving
hyperplanes Hj(z) associated with aj = (aj0(z), . . . , ajn(z)). Let us
write Q := {0, . . . , q} and N := {0, . . . , n} for convenience. By K
we denote a field containing all the ajk(z) (j ∈ Q, k ∈ N) and also
C, where ajk(z) are c-periodic entire functions.

Let H(z) be an arbitrary moving hyperplane over the field K in
Pn, that is, a hyperplane given by

H(z) = {[x0 : · · · : xn] ∈ Pn : a0(z)x0 + · · ·+ an(z)xn = 0},

where a0, . . . , an are c-periodic entire functions. Thus H(z) is asso-
ciated with a holomorphic mapping

a(z) = (a0(z), . . . , an(z)) : C → Cn+1.

Letting x = [x0 : · · · : xn], we denote

LH(x, a(z)) = ⟨x, a(z)⟩ = a0(z)x0 + · · ·+ an(z)xn.

For x = g = [g0 : · · · : gn], we then obtain

LH(g, a(z)) = ⟨g(z), a(z)⟩ = a0(z)g0(z) + · · ·+ an(z)gn(z),
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and state that the curve g and the moving hyperplane H is free if
LH(g, a(z)) ̸≡ 0.

Moving hyperplanes

Hj(z) =

{
[x0 : · · · : xn] :

n

∑
i=0

aji(z)xi = 0

}

in Pn over K, and holomorphic mappings aj(z) = (aj0(z), . . . , ajn(z))
of C into Cn+1 associated with Hj(z), j = 0, . . . , q, are given. We
state that H0(z), . . . , Hq(z) are in general position over K, if q ≥ n and
any n + 1 of the vectors aj(z), j = 0, . . . , q, are linearly independent
over K.

In order to measure the growth of holomorphic mappings as-
sociated with moving hyperplanes, we need a modified version of
the Cartan characteristic function, and the corresponding notion of
hyper-order.

Let a(z) = (a0(z), . . . , an(z)) : C → Cn+1 be a holomorphic
mapping. Then

T∗
a (r) =

∫ 2π

0
sup

j∈{0,...,n}
log |aj(reiθ)| dθ

2π

is the characteristic function of a, and

σ∗
2 (a) = lim sup

r→∞

log+ log+ T∗
a (r)

log r

is the hyper-order of a.
We can now state our generalization of Theorem 5.1.2.

Theorem 5.1.3 Let f : C → Pn be a holomorphic curve such that
σ2( f ) < 1, c ∈ C, and p ∈ {1, . . . , n + 1}. If the n + p moving c-
periodic hyperplanes Hj in general position with associated holomorphic
mappings aj(z) = (aj0(z), . . . , ajn(z)) have forward invariant preimages
under f with respect to the translation τ(z) = z + c, and

ai1···in+2 = (ai10, . . . , ai1n, . . . , ain+20, . . . , ain+2n) (5.1)

satisfying σ∗
2 (ai1···in+2) < 1 for all i1 · · · in+2, then the image of f is con-

tained in a projective linear subspace over P1
c of dimension ≤ [n/p].
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In order to state the relevant growth condition for the coordinate
functions aji of a0, . . . , an+p in a condensed form, we have intro-
duced holomorphic mapping (5.1). Alternatively, this assumption
could be replaced with a simpler but stronger condition that each of
the coordinate functions aji satisfies σ2(aji) < 1. Note that in either
case we do not need every element of aj to be of growth o(Tg(r));
what is needed here is just that the hyper-order of holomorphic
mapping (5.1) is strictly less than 1.

The following examples are used to demonstrate the sharpness
of Theorem 5.1.3.

Since g(z) := π/Γ(1 − z) = (sinπz)Γ(z) is an entire function
with only single zeros on the set of positive integers, it follows that
g−1({0}) = Z>0 is forward invariant under the shift τ(z) = z + 1.
On the other hand, the entire function h(z) := (sin πz)/Γ(z) has
single zeros on Z>0 and double zeros on the set of non-positive inte-
gers Z≤0. The set of the zeros of h(z) is still forward invariant with
respect to τ(z) in our definition. Note also that the gamma function
Γ(z) is a meromorphic function of order 1 and the maximal type in
the plane; in fact, T(r, Γ) = (1+ o(1)) r

π log r ( [8, Proposition 7.3.6]),
while T(r, sin πz) = 2r+O(1) = o(T(r, Γ)) (see also [8, p. 27]). Fur-
ther, sin πz ∈ P1

1 but Γ ̸∈ P1
1 .

Let us consider the holomorphic curve

f :=
[

1
Γ(z)

:
1

Γ(z)
:

1
Γ(z + 1/2)

]
=

[
1 : 1 :

Γ(z)
Γ(z + 1/2)

]
: C → P2,

which has its image in a subset of P2 of dimention 1. Take the four
moving hyperplanes Hj over P f with c = 1, each of which is given
respectively by the vectors

(sin πz, 0, 0), (0, sin π(z + 1), 0), (0, 0, sin π(z + 1/2)),

and
(sin πz, sin π(z + 1), sin π(z + 1/2))

in (P1
c )

3 in general position. It is easy to see that each of these hy-
perplanes has a forward invariant preimage under f . For example,
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f−1({H1}) coincides with the zeros of the above entire function
h(z). This shows that Theorem 5.1.3 is sharp in the case where
n = p = 2.

Similarly, when n = 3 and p = 2, 3, the bound [n/p] = 1 is
attained by the six hyperplanes given by the following vectors in
(P1

1 )
4 in general position with the primitive fourth root of unity ω:

(sin πz)(1, 0, 0, 0), (sin πz)(0, 1, 0, 0), (sin πz)(1, ω, ω2, ω3),

(cos πz)(0, 0, 1, 0), (cos πz)(0, 0, 0, 1), (cos πz)(1, 1, 1, 1)

and the curve f : C → P3 is given by

f : =

[
1

Γ(z)
: − 1

Γ(z)
:

ω

Γ(z + 1
2 )

: − 1
Γ(z + 1

2 )

]

=

[
1 : −1 : ω

Γ(z)
Γ(z + 1

2 )
: − Γ(z)

Γ(z + 1
2 )

]
.

This f is linearly degenerate in the sense that

f (C) = {[z1 : z2 : z3 : z4] ∈ P3|z1 + z2 = 0, z3 + ωz4 = 0} ≃ P1.

A counter-example is also given to show the best-possibility of
the restriction of the hyper-order less than one.

Consider the holomorphic curve f (z) := [1 : exp e2πiz] : C → P1,
and three two-dimensional constant vectors (1, 0), (0,−1), (1,−1)
associating to three hyperplanes of P1 in general position. It is easy
to see that the roots of the linear equation

⟨(1, exp e2πiz), (1,−1)⟩ = 1 − exp e2πiz = 0

are forward invariant with respect to τ(z) = z + 1, since they are of
the form

z =
1

2πi
log(2mπ)± 1

4
+ k

for m ∈ Z>0 and k ∈ Z. (For τ(z) = 1
2πi log(2mπ)± 1

4 + (k + 1).)
On the other hand, [n/p] = [1/2] = 0, but f (z) is a non-constant
meromorphic function in C.
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5.1.3 Difference analogues of the truncated second main theo-
rem

Next, we introduce two alternative difference analogues of the
truncated second main theorem, and provide corresponding differ-
ence deficiency relations. We begin with a definition of the differ-
ence counterpart of the concept of truncation.

Let n ∈ N, c ∈ C \ {0} and a ∈ P. An a-point z0 of a mero-
morphic function h(z) is said to be n-successive and c-separated, if
the n entire functions h(z + νc)(ν = 1, . . . , n) take the value a at
z = z0 with multiplicity there not less than that of h(z). All the
other a-points of h(z) are called n-aperiodic of pace c. By �N[n,c]

g (r, LH)

we denote the counting function of n-aperiodic zeros of the function
LH(g, a) = ⟨g(z), a(z)⟩ of pace c.

Therefore, when all the zeros of LH(g, a), taking their multiplic-
ities into account, are located periodically with period c, we obtain
�N[n,c]

g (r, LH) ≡ 0. So in the case when the hyperplane H is for-
ward invariant by g with respect to the translation τc(z) = z + c, i.e.
τc(g−1({H})) ⊂ g−1({H}) holds by definition.

In addition, we denote

Ng(r, LH) = N
(

r,
1

LH(g, a)

)
= N

(
r,

1
⟨g(z), a(z)⟩

)

and

NC(r, 0) = N
(

r,
1

C(g0, . . . , gn)

)
.

With these definitions and notations in hand, we obtain the fol-
lowing auxiliary result:

Theorem 5.1.4 Let g be a holomorphic curve of C into Pn(C), n ∈ N

and q ∈ N be such that q ≥ n, and let

aj(z) = (aj0, . . . , ajn), j ∈ {0, . . . , q},

where ajk(z) are c-periodic entire functions satisfying T(r, ajk) = o(Tg(r))
for all j, k ∈ {0, . . . , q}. If the moving hyperplanes

Hj(z) =
{
[x0 : · · · : xn] : LHj(x, aj(z)) = 0

}
, j ∈ {0, . . . , q},
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are located in general position, then

q

∑
j=0

Ng(r, LHj)− NC(r, 0) ≤
q

∑
j=0

�N[n,c]
g (r, LHj) + o(Tg(r)).

By combining Theorem 5.1.4 with Theorem 5.1.1, we get the fol-
lowing difference analogue of the truncated second main theorem.

Theorem 5.1.5 (Difference Cartan Second Main Theorem) Let n ≥
1, and g = [g0 : . . . : gn] be a holomorphic curve of C into Pn(C) with
σ2(g) = σ2 < 1, where g0, . . . , gn are linearly independent over P1

c . Let

aj(z) = (aj0, . . . , ajn), j ∈ {0, . . . , q},

where ajk(z) are c-periodic entire functions satisfying T(r, ajk) = o(Tg(r))
for all j, k ∈ {0, . . . , q}. If the moving hyperplanes

Hj(z) =
{
[x0 : · · · : xn] : LHj(x, aj(z)) = 0

}
, j ∈ {0, . . . , q},

are located in general position, then

(q − n)Tg(r) ≤
q

∑
j=0

�N[n,c]
g (r, LHj) + o(Tg(r))

for all r outside of a set E with finite logarithmic measure.

From Theorem 5.1.5, we can obtain a difference analogue of the
truncated deficiency relation for holomorphic curves.

Corollary 5.1.1 Under the assumptions of Theorem 5.1.5, we obtain

q

∑
j=0

δ
[n,c]
g (0, LHj) ≤ n + 1,

where

δ
[n,c]
g (0, LHj) = 1 − lim sup

r→∞

�N[n,c]
g (r, LHj)

Tg(r)
.
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Instead of n-successive points, we can also consider points with
different separation properties. For instance, we say that a is a
derivative-like paired value of f with the separation c if the following
property holds for all except at most finitely many a-points of f :
whenever f (z) = a with the multiplicity m, then also f (z + c) = a
with the multiplicity max{m − 1, 0}.

As for the definition of the usual truncated counting function,
refer, for instance, to Chapter 5.4 or [20] for details.

With this definition we may state the second difference analogue
of the truncated second main theorem.

Theorem 5.1.6 Assume that the hypotheses of Theorem 5.1.1 hold, and
0 is a derivative-like paired value of fi with the separation c for all i ∈
{0, . . . , q}. Then we obtain

N(r, 0, L) ≤
q

∑
j=0

Nn(r, 0, f j) + O(1),

and this gives

(q − n)Tg(r) ≤
q

∑
j=0

Nn(r, 0, fj)− N(r, L) + o(Tg(r)),

where r approaches infinity outside of an exceptional set of finite logarith-
mic measure.

Theorem 5.1.6 immediately implies the following deficiency rela-
tion for derivative-like paired values of holomorphic curves.

Corollary 5.1.2 Under the assumption of Theorem 5.1.6, we obtain

q

∑
j=0

δ
[n]
g (0, fj) ≤ n + 1,

where

δ
[n]
g (0, fj) = 1 − lim sup

r→∞

Nn

(
r, 1

f j

)

Tg(r)
.
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For the growth of a holomorphic curve to be relatively fast, The-
orem 5.1.1 can also be used to obtain a sufficient condition in terms
of value distribution. With regard to the definition of exceptional
paired value, refer to Chapter 5.2 or [22] for details.

Corollary 5.1.3 Let n ≥ 1, and g = [g0 : . . . : gn] be a holomorphic
curve of C into Pn(C), where g0, . . . , gn are linearly independent over
P1

c . If

fj =
n

∑
i=0

aijgi j = 0, . . . , q, q > n,

where aij are c-periodic entire functions satisfying T(r, aij) = o(Tg(r)),
such that any n + 1 of the q + 1 functions f0, . . . , fq are linearly in-
dependent over P1

c , and 0 is an exceptional paired value of fi for all
i ∈ {0, . . . , q}, then we have σ2(g) ≥ 1.

5.2 SUMMARY OF PAPER II

The purpose of paper II is to formulate and study a difference
analogue of Fermat’s last theorem for function fields M, R, E, P.

In the light of the fact that a natural difference analogue of the
Taylor series expansion is the factorial series [42, p. 272], we intend
to consider the difference monomial x(x− 1) · · · (x− n+ 1) as a dis-
crete analogue of xn. Therefore, in paper II we study the difference
equation

f1 f 1 · · · f
[n−1]
1 + f2 f 2 · · · f

[n−1]
2 + · · ·+ fk f k · · · f

[n−1]
k = 1, (5.2)

and denote by GC the smallest positive integer k such that the above
equation (5.2) has a solution consisting of k nonconstant functions
f1, . . . , fk in C.

In order to state our results, we need the following definition
and notations. Refer to [22, 62] for more details. Let f and g be
meromorphic functions and a be a complex number. Let zn (n =

1, 2, . . .) be zeros of f − a. If zn (n = 1, 2, . . .) are also zeros of g − a
(ignoring multiplicity), we denote

f = a ⇒ g = a or g = a ⇐ f = a.
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Let ν(n) be the multiplicity of the zero zn. If zn (n = 1, 2, . . .) are
also ν(n) (n = 1, 2, . . .) multiple zeros of g − a at least, we write

f = a → g = a or g = a ← f = a.

If f = a � g = a, it is said that f and g share a CM; If f = a ⇔
g = a, it is said that f and g share a IM; if f = a → f = a except for
at most finitely many a-points of f , it is said that a is an exceptional
paired value of f with the separation c (as defined in [22]).

Let M̃ be the collection of all nonconstant meromorphic func-
tions of the hyper-order less than one such that any finite collection
{ f1, . . . , fk} ⊂ M̃ satisfies the following properties

(i) fi and 1/ fj (i, j = 1, . . . , k, i ̸= j) have no common zeros;

(ii) fi = ∞ � f i = ∞ for all i = 1, . . . , k;

(iii) 0 is an exceptional paired value of fi for all i = 1, . . . , k.

In the case of meromorphic functions, compared to the lower
bound of FM, we obtain a corresponding result for GM̃.

Theorem 5.2.1 Let n (≥ 2) be an integer. Then

GM̃(n) ≥
√

n + 1.

Let Ẽ be the collection of all nonconstant entire functions of
hyper-order less than one such that any finite collection { f1, . . . , fk} ⊂
Ẽ satisfies the property that fi = 0 ⇒ f i = 0 for all i = 1, . . . , k.

In particular, for the case of entire functions, analogously to the
lower bound of FE, we give a better lower estimate for GẼ.

Theorem 5.2.2 Let n (≥ 2) be an integer. Then

GẼ(n) ≥ 1/2 +
√

n + 1/4.

The following example is given to show the condition that the
hyper-order of less than one cannot be deleted.

Take f (z) = exp{ez}, c = iπ and n = 2. Since 0 and ∞ are Picard
exceptional values of f (z), they are also automatically exceptional
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paired values of f (z). Moreover, the function also satisfies the con-
ditions f = 0 ⇒ f = 0 and f = ∞ ⇒ f = ∞. The hyper-order of
f (z) is 1, and

f (z) · f (z + c) = exp{ez} · exp{ez+iπ} = exp{ez} · exp{−ez} = 1.

But k = 1 is strictly less than 1/2 +
√

2 + 1/4 = 3+1
2 = 2 and√

2 + 1 (> 1).
The next example shows the sharpness of the lower bound of

GC, where C is equal to M̃ and Ẽ.
Let c = 2π, f1 = sin z and f2 = cos z. Then f 1 = sin(z + 2π) =

sin z and f 2 = cos(z + 2π) = cos z. Clearly fi (i = 1, 2) satisfy
fi = 0 ⇒ f i = 0 and

f1 f 1 + f2 f 2 = sin2 z + cos2 z = 1.

Furthermore, 0 is an exceptional paired value of fi for i = 1, 2.
Thus we have GM̃(2) ≤ 2 and GẼ(2) ≤ 2. On the other hand,
by Theorems 5.2.1 and 5.2.2, we obtain GC(n) > 1 for C = M̃, Ẽ.
Therefore, GM̃(2) = GẼ(2) = 2.

Let R̃ be the collection of all nonconstant rational functions such
that any finite collection { f1, . . . , fk} ⊂ R̃ satisfies the property that
zeros and poles are of a multiplicity positive integer multiple of n.

In the case of rational functions, compared to the lower bound
for FR, we get a corresponding estimate for GR̃.

Theorem 5.2.3 Let n (≥ 2) be an integer. Then

GR̃(n) >
√

n + 1.

Let P̃ be the collection of all nonconstant polynomial functions
such that any finite collection { f1, . . . , fk} ⊂ P̃ satisfies the property
that zeros are of a multiplicity no less than n.

Moreover, in the case of polynomials, we give a better lower
estimate for GP̃, as an analogue to the entire case.

Theorem 5.2.4 Let n (≥ 2) be an integer. Then

GP̃(n) > 1/2 +
√

n + 1/4.
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5.3 SUMMARY OF PAPER III

In Paper III, we apply the concept and corresponding properties
of a good linear operator to study meromorphic solutions of

M(z, f ) + P(z, f ) = h(z), (5.3)

where M(z, f ) denotes a linear polynomial in f and L( f ) with L
being a good linear operator, P(z, f ) is a polynomial in f and h(z)
a meromorphic function.

Equation (5.3) is an extension of a differential equation stud-
ied by J. Heittokangas et. al [29] in 2002. They considered the
growth of meromorphic solutions of equation (4.4) and obtained
Theorem 4.1.4.

Specific to L( f )− p(z) f 3 = h(z), J. Heittokangas et. al [29] also
considered the existence and uniqueness of meromorphic solutions
with only few poles and obtained Theorem 4.1.2.

Difference-differential counterparts of Theorem 4.1.4 and The-
orem 4.1.2 were obtained by Laine and Yang in [61]. They in-
vestigated equations (4.5) and (4.6), and obtained Theorem 4.1.5
and Theorem 4.1.6. Further results on difference and differential-
difference related to (4.6) can be found, e.g., in [49, 53, 54].

In the following theorem we apply the concept and correspond-
ing properties of a good linear operator introduced in chapter 3 to
obtain a natural extension of Theorem 4.1.4 and of its difference
analogue to a general class of functional equations.

Theorem 5.3.1 Let N ⊂ M such that for any f ∈ N ,

N(r, f ) = o(T(r, f ))

as r → ∞ outside of a set E with an exceptional property P, and let
{Lk : k ∈ J} be a finite collection of good linear operators for N with
an exceptional set property P. If f1 ∈ N and f2 ∈ N are any two
meromorphic solutions of the equation

M(z, f ) + P(z, f ) = h(z), (5.4)
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where P(z, f ) = b2(z) f 2 + · · · bn(z) f n is a polynomial in f with small
meromorphic coefficients, h ∈ M and M(z, f ) is a linear polynomial in f
and Lk( f ), k ∈ J, with small meromorphic coefficients, then

T(r, f2) = O(T(r, f1)) + o(T(r, f1)),

where r → ∞ outside of an exceptional set E with the property P.

The following corollary of Theorem 5.3.1 is obtained by choos-
ing N as the family of meromorphic functions of the hyper-order
strictly less than one with relatively few poles, and by taking L1, . . . Ll+1

such that Lk( f ) = f (z + ck), k = 1, . . . , l and Ll+1( f ) = f ′.

Corollary 5.3.1 Let M(z, f ) be a linear differential-difference polynomial
in f . If f1 and f2 are any two meromorphic solutions of the equation (5.4)
of the hyper-order strictly less than one such that N(r, f1) = S(r, f1) and
N(r, f2) = S(r, f2), then

T(r, f2) = O(T(r, f1)) + S(r, f1).

Moreover, if α > 1, then for some rα > 0,

T(r, f2) = O(T(αr, f1))

for all r ≥ rα. In addition, every meromorphic solution such that the
hyper-order σ2 < 1 and N(r, f ) = S(r, f ) satisfies ρ( f ) = ρ(h).

In particular, let P(z, f ) = −p(z) f 3(z), where p(z) is a small
meromorphic function, then we obtain the following result on the
existence of meromorphic solutions.

Theorem 5.3.2 Let f be an transcendental meromorphic function of the
hyper-order σ2 < 1, M(z, f ) a linear differential-difference polynomial of
f with small meromorphic coefficients, not vanishing identically, and h
a meromorphic function. Set λ f = max{λ( f ), λ( 1

f )}. If f satisfies the
nonlinear differential-difference equation

M(z, f )− p(z) f (z)3 = h(z), (5.5)

where p(z) ( ̸≡ 0) is a small function of f , then one of the following situa-
tions holds:
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(a) Equation (5.5) has f as its unique transcendental meromorphic so-
lution such that λ f < σf .

(b) Equation (5.5) has exactly three transcendental meromorphic solu-
tions fj, j = 1, 2, 3 such that λ f j < σf j for j = 1, 2, 3. Moreover
M(z, fj) ≡ 0, and h(z) = −p(z) f 3

j for all j = 1, 2, 3.

5.4 SUMMARY OF PAPER IV

The goal of paper IV is to study the growth of solutions to
second-order linear differential equations of a certain type. We
show that under certain conditions some differential equations do
not have subnormal solutions, and the hyper-order of every solu-
tion equals one.

Given the background knowledge in section 4.3, it is natural to
ask what will happen when deg P1 = deg Q1 and deg P2 = deg Q2

for equation (4.13).
We consider the above question and obtain the following theo-

rem.

Theorem 5.4.1 Let

P1(z) = anzn + · · ·+ a1z + a0,

Q1(z) = bnzn + · · ·+ b1z + b0,

P2(z) = cmzm + · · ·+ c1z + c0,

Q2(z) = dmzm + · · ·+ d1z + d0,

where ai, bi (i = 0, . . . , n), cj, dj (j = 0, . . . , m) are constants, anbncmdm ̸=
0. Suppose that andm = cmbn and any one of the following three hypothe-
ses holds:

(i) there exists i satisfying
(
− bn

an

)
ai + bi ̸= 0, 0 < i < n;

(ii) there exists j satisfying
(
− bn

an

)
cj + dj ̸= 0, 0 < j < m;

(iii) (
− bn

an

)2

+

(
− bn

an

)
(a0 + c0) + b0 + d0 ̸= 0.
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Then (4.13) has no non-trivial subnormal solution, and every non-trivial
solution f satisfies σ2( f ) = 1.

The following example is given to show the sharpness of restric-
tions (i)–(iii) in Theorem 5.4.1.

The equation

f ′′ + (e2z + e−z + 1) f ′ + (2e2z + 2e−z − 2) f = 0

has a subnormal solution f0 = e−2z. Here n = 2, m = 1, a2 = 1,
b2 = 2, a1 = b1 = 0, c1 = 1, d1 = 2, a0 + c0 = 1, b0 + d0 = −2,
(− b2

a2
) · a1 + b1 = 0, and (− b2

a2
)2 + (− b2

a2
)(a0 + c0) + b0 + d0 = 0.

Another problem we consider in paper IV is which condition
will guarantee that the more general form

f ′′ + (P1(eαz) + P2(e−αz)) f ′ + (Q1(eβz) + Q2(e−βz)) f = 0, (5.6)

where P(z), Q(z) are polynomials in z, α, β are complex constants,
does not have a non-trivial subnormal solution. We prove the fol-
lowing two theorems.

Theorem 5.4.2 Let

P1(z) = a1m1 zm1 + · · ·+ a11z + a10,

P2(z) = a2m2 zm2 + · · ·+ a21z + a20,

Q1(z) = b1n1 zn1 + · · ·+ b11z + b10,

Q2(z) = b2n2 zn2 + · · ·+ b21z + b20,

where mk ≥ 1, nk ≥ 1 (k = 1, 2) are integers, a1i1 (i1 = 0, 1, . . . , m1),
a2i2 (i2 = 0, 1, . . . , m2), b1j1 (j1 = 0, 1, . . . , n1), b2j2 (j2 = 0, 1, . . . , n2),
α and β are complex constants, a1m1 a2m2 b1n1 b2n2 ̸= 0, αβ ̸= 0. Suppose
m1α = c1n1β (0 < c1 < 1) or m2α = c2n2β (0 < c2 < 1). Then
(5.6) has no non-trivial subnormal solution and every non-trivial solution
f satisfies σ2( f ) = 1.

Theorem 5.4.3 Let P1(z), P2(z), Q1(z), Q2(z) be defined as in Theo-
rem 5.4.2. Suppose m1α = c1n1β (c1 > 1) and m2α = c2n2β (c2 > 1).
Then (5.6) has no non-trivial subnormal solution and every non-trivial
solution f satisfies σ2( f ) = 1.
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The following example shows that the restrictions that m1α =

c1n1β (c1 > 1) and m2α = c2n2β (c2 > 1) cannot be omitted.
Note that the solution f0 = e−z + 1 satisfying the equation

f ′′ − [e3z + e2z + e−z] f ′ − [e2z + e−z] f = 0

is subnormal. Here α = 1
2 , β = 1/3, m1 = 6, m2 = 2, n1 = 6, n2 = 3,

m1α = 3
2 n1β and m2α = n2β.

5.5 SUMMARY OF PAPER V

As a result of recent interest in existence, value distribution
and growth of meromorphic solutions of difference equations (see,
e.g., [9,24]), a difference variant of Nevanlinna theory has emerged.
With the development of new tools in value distribution theory
suited to study solutions of difference equations, research into the
general value distribution properties of meromorphic functions can
be studied from a new perspective. Shared value problems of mero-
morphic functions and their shifts (see, e.g., [7, 30, 31, 39, 48]) are a
new active direction of study.

The purpose of paper V is to investigate shared value problems
related to an entire function f (z) of the hyper-order less than one
and its linear difference operator L( f ) = ∑k

i=1 ai f (z + ci), where
ai, ci ∈ C. We give sufficient conditions in terms of weighted value
sharing and truncated deficiencies, which imply that

L( f ) ≡ f . (5.7)

Equation (5.7) also implies that f is a solution to a linear difference
equation with constant coefficients. Therefore, the exact form of f
can be, at least in principle, determined by using the characteristic
equation for linear difference equations.

For simplicity, the family of all small meromorphic functions
with respect to f , i.e. of the growth S(r, f ) which was defined in
chapter 3.2, is denoted by S( f ). Moreover, Ŝ( f ) = S( f ) ∪ {∞}.

Heittokangas et al. proved that if a finite-order meromorphic
function f (z) and f (z + η) share three distinct periodic functions
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aj ∈ Ŝ( f ) (j = 1; 2; 3) with period η CM, then f is a periodic func-
tion with period η (see [30, Theorem 2.1(a)]). They also showed
that the 3 CM assumption can be replaced by 2 CM + 1 IM, and the
same conclusion holds (see [31, Theorem 2] ). Chen and Yi [7] con-
sidered the case where f (z) and ∆ f (z) share three distinct values
a, b, ∞ CM as follows:

Theorem 5.5.1 [7] Let f (z) be a transcendental meromorphic function
such that its order of growth σ( f ) is not an integer or infinite, and let
η ∈ C be a constant such that f (z + η) ̸≡ f (z). If ∆ f (z) = f (z +
η) − f (z) and f (z) share three distinct finite values a, b, ∞ CM, then
f (z + η) ≡ 2 f (z).

In the case of only one CM value, but with the function f being
entire and additionally having a finite Borel exceptional value, Chen
and Yi obtained the following theorem.

Theorem 5.5.2 [7] Let f (z) be a finite order transcendental entire func-
tion which has a finite Borel exceptional value a, and η ∈ C be a constant
such that f (z + η) ̸≡ f (z). If ∆ f (z) = f (z + η)− f (z) and f (z) share
the value a CM, then a = 0 and

f (z + η)− f (z)
f (z)

= A,

where A is a nonzero constant.

Comparing the aforementioned results of Heittokangas et al.
with Theorems 5.5.1 and 5.5.2, a natural question swift arises to
end. Can the CM condition in these theorems be weakened to IM?
Another question is whether we can extend these results in a nat-
ural way to general linear operators, rather than just the difference
∆ f (z) or the shift operator. In paper IV, we studied these problems
from the point of view of weighted value sharing. In order to ex-
plain what exactly do we mean by this we need to first introduce
some additional notation.

Let l be a non-negative integer or infinite. Denote by El(a, f ) the
set of all a-points of f where an a-point of multiplicity m is counted
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m times if m ≤ l and l + 1 times if m > l. If El(a, f ) = El(a, g), we
say that f and g share (a, l). It is easy to see that if f and g share
(a, l), then f and g share (a, p) for 0 ≤ p ≤ l. We also note that f
and g share the value a IM or CM if and only if f and g share (a, 0)
or (a, ∞), respectively.

Let p be a positive integer and a ∈ C∪{∞}. We use Np)

(
r, 1

f−a

)

to denote the counting function of the zeros of f − a whose multi-
plicities are not greater than p, N(p+1

(
r, 1

f−a

)
to denote the count-

ing function of the zeros of f − a whose multiplicities are not less
than p+ 1, and we use Np) (r, 1

f−a ) and N(p+1(r, 1
f−a ) to denote their

corresponding reduced counting functions (ignoring multiplicities),
respectively. We use Ep)(a, f ) (E(p+1(a, f )) to denote the set of zeros
of f − a with multiplicities ≤ p (≥ p+ 1) (ignoring multiplicity), re-
spectively. We also use Np

(
r, 1

f−a

)
to denote the counting function

of the zeros of f − a where a zero of multiplicity m is counted m
times if m ≤ p and p times if m > p. Then by defining the truncated
deficiency as

δp(a, f ) = 1 − lim sup
r→+∞

Np(r, 1
f−a )

T(r, f )
,

it follows that δp(a, f ) ≥ δ(a, f ), where δ(a, f ) is the usual Nevan-
linna deficiency of f .

Our results give sufficient conditions in terms of weighted value
sharing and truncated deficiencies for a transcendental entire func-
tion of relatively slow growth to be mapped to itself by a linear
difference operator.

Theorem 5.5.3 Let f (z) be a transcendental entire function with the
hyper-order less than 1, and aj, cj ∈ C be constants such that L( f ) :=
∑k

j=1 aj f (z + cj) ̸≡ 0, and ci ̸= cj when i ̸= j. Assume that f (z)− 1 and
L( f )− 1 share the value (0, l). Then

L( f ) ≡ f

if one of the following assumptions holds:
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(1) l ≥ 2 and

δ2(0, f ) + δ(0, f ) + δ(1, f ) > 1; (5.8)

(2) l = 1 and

1
2

δ2(0, f ) +
3
4

δ(0, f ) +
1
2

δ(1, f ) >
3
4

; (5.9)

(3) l = 0 (i.e. f − 1 and L( f )− 1 share the value 0 IM) and

δ2(0, f ) + 3δ(0, f ) + Θ(0, f ) + δ(1, f ) > 4. (5.10)

In Theorem 5.5.2 it was assumed that a = 0 is a Borel exceptional
value of an entire function f . Therefore, since such an f is always
of regular growth, the condition of Borel exceptionality of 0 implies
that conditions (5.8), (5.9) and (5.10) are automatically satisfied.

Theorem 5.5.4 Let f and L( f ) ( ̸≡ 0) be defined as in Theorem 5.5.3.
Assume that f − 1 and L( f )− 1 share the value (0, l) and E(i(0, f ) ⊆
E(i (0, L( f )) (i ≥ 3). Then

L( f ) ≡ f

if one of the following assumptions holds:

(1) l ≥ 2 and

2δ2(0, f ) + δ(1, f ) > 1;

(2) l = 1 and

5
4

δ2(0, f ) +
1
2

δ(1, f ) >
3
4

;

(3) l = 0 (i.e. f − 1 and L( f )− 1 share the value 0 IM) and

2δ2(0, f ) +
1
2

Θ(0, f ) +
1
2

δ(1, f ) > 2.

54 Dissertations in Forestry and Natural Sciences No 190



Summary of Papers I-V

If, instead of assuming that i ≥ 3 as in Theorem 5.5.4, we
consider the more general case i ≥ 2, we have to impose slightly
stronger conditions to obtain the same assertion.

Theorem 5.5.5 Let f and L( f )( ̸≡ 0) be defined as in Theorem 5.5.3.
Assume that f − 1 and L( f )− 1 share the value (0, l) and E(i(0, f ) ⊆
E(i (0, L( f )) (i ≥ 2). Then

L( f ) ≡ f

if one of the following assumptions holds:

(1) l ≥ 2 and

2δ2(0, f ) + δ(1, f ) > 1;

(2) l = 1 and

δ2(0, f ) +
1
4

Θ(0, f ) +
1
2

δ(1, f ) >
3
4

;

(3) l = 0 (i.e. f − 1 and L( f )− 1 share the value 0 IM) and

δ2(0, f ) +
3
2

Θ(0, f ) +
1
2

δ(1, f ) > 2.
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This thesis considers the properties 

of meromorphic solutions of some 

functional equations in the complex 

plane. In addition, a generalization 

of the difference Cartan second main 

theorem is also introduced, which 

can be used as a tool for the study of 

functional equations.
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