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ABSTRACT
An accurate implementation of the Electron Tomography can reveal useful information e.g. from
the subcellular structures in biological samples of the tomographs acquired using electron
microscopy. Three dimensional (3D) electron tomography helps studying the presence of different
layers and nuclei in the cell tissues, their geometry and their natural formation. This thesis work
includes a background study of the Electron Tomography in different fields as well as the
implementation of its processes.
The hierarchical processes of 3D Electron tomography were studied and implemented to align and
reconstruct the microscopic data of two difference samples prior to the segmentation and
visualization. Implementation of the different image registration algorithms and the usage of
tomography software suggest that a near error free volume reconstruction is only possible if the
microscopy images (tomographs) are well aligned before continuing towards the volumetric
reconstruction.
Methods such as alignment via fiducials and markerless alignment together with feature points
provided very useful results. Alignment via fiducials produced an exact alignment while the
process of markerless alignment was tested with the introduction of manually selected features,
Affine Transform and Scale Invariant Feature Transform (SIFT) algorithms. Electron tomography
software IMOD generated simulations for volume reconstruction (tomograms) presented the
acceptable results for both single and dual axis tomography. 3DMOD software routines were used
to perform the segmentation and the visualization of the reconstructed tomograms.
During the course of this thesis work it was observed that Affine Transform and SIFT based
alignment techniques performs faster than both the manual seeding of the fiducials on individual
tomographs and IMOD fiducial seeding. However lack of common feature points on all
tomographs limits the SIFT algorithm to perform on a certain views only.



iii

ACKNOWLEDGMENTS

I would like to present my deepen gratitude towards my main supervisors Arto Koistinen, Ph.D.

and second supervisor Stefanos Georgiadis, Ph.D. for continuous, patient and valuable support

during all the practical work and thesis writing.

I would also like to offer my gratitude to my Supervisor Arto Koistinen and Prof. Reijo

Leppalainen, Department of Applied Physics, University of Eastern Finland for providing funding

and handling all managerial issues for the this research work as well as arranging visits to the labs

in Joensuu and Helsinki.

I am also thankful to Helena Vihinen (Senior Scientist) and Ilya Belevich (Postdoctoral

Researcher) at Electron Microscopy Unit, University of Helsinki for their constant support and

guidance during this research work.

In the end I would like to dedicate my work to my whole family, my friends and Suuskuu because

without their support and encouragement I couldn’t have completed my thesis work in Finland.

Above all I am thankful to Allah who provided me this convenience and strengthened me to finish

my research work.



iv

ABBREVIATIONS

ET = Electron Tomography

TEM = Transmission Electron Microscopy

SIFT = Scale Invariant Feature Transform

DoG = Difference of Gaussian

SIRT = Simultaneous Iterative Reconstruction Techniques
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1 Electron Tomography: An Overview

Study of microscopic data has been proved very useful in the analysis of structural and

organizational properties of different materials. Beyond the limitations of human eye visibility

there exists an enormous world of microscopic and even smaller level information. This

information about biological cell tissues or the particles of some metal reveals some very important

facts for analysis. From the preparation of first ever samples using electron microscopy to the

development and deployment of latest electron microscopes the study of ultra-thin structures

opened the doors of a vast variety of research to scientists, engineers and biologists [1]. Experts in

their related fields started benefiting from the images produced by electron microscopy but with

the limitation of conventional microscopes and 2D image information, the need of 3D visualization

of microscopic objects yet remained a big question.  Over the past few years Electron Tomography

(ET) has been in practice to overcome the 2D limitations such as rotation and visualization from

multiple views and also volumetric data acquisitions using the third dimension [1].

Transmission Electron Microscopy (TEM) has gone through various technological and technical

changes such as numerous changes in hardware as well as in algorithms and fast computational

software programs [2]. The high resolution ability of the latest microscopes helped producing the

micro and nano scale images which has led to a vast variety of advancement in the area of

biological and materials research and industry [3]. TEM was first developed and applied in

biological research; however its rapid growth can be seen in other fields such as in materials

sciences [4]. Many explorations using ET in the fields of life sciences, material sciences, electronic

and polymer industry and educational research are on the record.

1.1 3D Tomography
3D Tomography is a versatile technique allowing researchers to study the structures of objects

with nanometer resolution. In this technique a beam of electrons is passed through the specimen

sample at incremental degrees of rotation around the center axis of the sample. This information

is then acquired and collected to reconstruct the three dimensional image of the original sample.

Fig 1-1 illustrates the mechanism of ET.
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Fig.  1-1 Electron tomography mechanism [11]

Fig 1-2 shows the main principle behind taking the projections at tilt angles and then reconstructing

the volume from these projections.

Fig.  1-2 A) Acquiring projections of specimen B) Volume reconstruction from the specimen projections [11]

A

B
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1.2 Applications of 3D Tomography
With the development of high performance electron microscopes and 3D visualization the study

of tomography expanded its domain from life sciences, industry to material sciences and

geophysics. 3D visualization of nanometer scale objects made it possible for the researchers to

find out the buried structures and other useful information i.e. in life and Clinical sciences  ET is

suitable to study biological structures with nanometer resolution. This makes it extraordinarily

versatile, allowing the study of a large range of biological specimens, both in an isolated form and

in their cellular context [5]. The continual shrinking of microelectronic devices has resulted in

commercial products incorporating complex non-planar features with nano scale dimensions. 3D

imaging of such samples from IC devices is possible and that details such as buried defects and

surface roughness can be visualized and 3D metrology can be performed using ET [6]. In polymers

nano-fillers have been assumed to be the most important determining factors of physical properties

of the composites. Using 3D tomography the presence and structure of these nano fillers can be

determined with in base polymer’s geometry [7]. Figure 1-3 illustrates the presence of silica

particles in rubber matrix.

Fig.  1-3 Silica Particles and their morphology in natural rubber [7]

After the 3D reconstruction of the image stack produced by TEM the silica particles were visible

in the form of aggregates as shown in the Figure 1-4.
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Fig.  1-4 3D Visualization of Silica Aggregate [7]

The shrinkage of microelectronic devices also leads to the study of marking defects in order to

avoid production problems. Previous scanning microscopy techniques are limited because of 2D

projections only. On the other hand solid catalysts are of tremendous importance for economy and

environment and the drive towards clean and efficient technology calls for precise design and

characterization of catalysts. With the development of ET it has become possible to get a 3D image

of both the surface and the interior of the sample as well as structural information in three

dimensions on nano scale resolution [8]. Figure 1-5 shows the reconstructed tomogram displaying

the location of Au (catalyst) nano particles as their strong on-surface and inside metal support

interaction.

Fig.  1-5 Location of Au particles on TiO2 (left), 3D representation of TiO2 with the presence of Au
nanoparticles on surface (center) and inside the metal (right) [8]



5

2 Principles of Electron Tomography

The principles of ET are similar as for most of the three dimensional imaging algorithms and

techniques [9]. Compared to 2D TEM from few decades ago, ET reveals detailed structural and

organizational insight of the nano-scale biological and inorganic objects [10]. However the higher

complexity  of  a 3D architecture tends to provide less information in ET because of large data

presence in a single 2D image [10].

2.1 Background	

In ET the set of 2D image projections recorded are called tomographs and the reconstruction of

these tomographs is called tomogram reconstruction. In this thesis work the terms ‘tomograph(s)’

and ‘image(s)’ are used interchangeably. In the process of tomogram generation, volumetric

reconstruction must be preceded by the alignment of projections [11]. Alignment algorithms are

usually preferred on one another depending upon the nature of the obtained tomographs.

Alignment processes are discussed in more detail in the later sections of this chapter. A broader

explanation behind the difference in nature is whether gold nano particles were used to help in the

alignment during the microscopy process.

The most used 3D reconstruction methods are algebraic such as in real space or in the Fourier

space [11]. Since in chapter 4 of this thesis work it is shown that the tomograms are reconstructed

using Fourier methods therefore the discussion of reconstruction methods in this chapter is limited

to Fourier space algorithms only.

The definition of the Fourier space theorem explains 2D image of the tilt series as a correspondent

central section in the Fourier transform of the original imaged specimen [10]. i.e. Tilt series

acquisition on a tilt angular range is the same as scanning the sample’s information in Fourier

domain.

2.1.1 Resolution and Parametric Differences
In ET it’s important to understand the relationships among specimen thickness, tilt angle range(s)

and the attainable resolution. Frank [11] explained the following rule relating all the

aforementioned parameters. The relationship between the attainable resolution r, specimen

thickness T and the number of projections N is	
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= / (2.1 )

Therefore, for a sample of original thickness 200nm the attainable resolution of the 101 projections

(tomographic data recorded at -50° to +50°) will be ~ 6nm.

Equation 2.1 can be used to find the estimate of other involved parameters. i.e. Number of

projections or tilt increment on a desired tilt range.

Therefore for an attainable resolution of 5nm from original sample of thickness 100nm, Equation

2.1 gives 63 projections with an increment of 2°. The above relationship is valid for a limited tilt

axis if the specimen is not cylindrical or spherical. For spherical or cylindrical specimen full

resolution can be achieved by tilting the sample at -90° to +90°. Frank [11] explained that in

practice however this is not achievable due to two main reasons.

1. On high tilts (more than 65°-70°) the specimen holder’s design causes mechanical

constraints while recording projections

2. At high tilts only few electrons will pass though the specimen thus will provide very less

useful contribution of structural data to the projected images

2.1.2 Missing Wedge
The missing information on higher tilt angles results in the missing data on the z axis in the shape

of a wedge and hence referred by many authors as missing wedge as shown in Figure 2-1. 	

Fig.  2-1 Missing wedge [11]
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Frank [11] described an elongation factor max in the z axis as following.		

	

																																								r = SQRT{ } (2.2)

For a tilt range of -50° to + 50° and the maximum tilt angle 50° the elongation factor will be ~

1.81, which then changes the previous attainable resolution from 6nm to 10.8nm.

These effects because of missing wedge lead to the development of dual axis tomography [11]. 	

2.2 Alignment
Precise and correct alignment for 2D projections is very important towards the 3D tomographic

reconstruction. Ideally all the projections should be aligned according to the projection angle used

in the image acquisition from original sample.  Poor image alignment will result in the blurring of

features in the volumetric reconstruction [12]. There are many factors involved behind the

difficulty in image alignment. One of the main reasons which make it more difficult is the exposure

of electron beam which causes geometric changes in many samples [11]. Also the range of the

rotational axis of the object holder is limited due to mechanical limitations [11]. Alignment of the

projections also includes rotational and translational alignment [13]. In the attempts towards

solving the problem of alignment, finding the initial correspondence in the consecutive images is

also important before proceeding to the next phases of tomographic reconstruction [14].

Misalignment of the projections may also be	 the	 result of the fact that the tilt axis of the

tomographic data isn’t orthogonal to the beam direction [15], [16].

Considering all the above mentioned factors behind the unaligned tomography data, the accurate

and fine alignment with respect to a common point [17], is necessary in the successful generation

of tomograms and volumetric reconstruction.

Different algorithms and techniques are being used to deal with the image alignment prior to

tomographic reconstruction. The two most common techniques used for the alignment methods

are 1) Using fiducials as seeds 1) and Markerless alignment [18].

2.2.1 Alignment with Fiducial Markers
Solutions to the alignment problem either include or exclude fiducials.

Most frequently the fiducial alignment is done via gold nanoparticles [14], [15], [19], [20] that are

introduced to the specimen during preparation. Typically these gold particles are present on all the
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projections and it’s easier to locate them because of their round shape geometry. Frank [12]

describes the usefulness of gold nanoparticles because of their spherical shape geometry and due

to the high contrast to the background.

Ideally a single projection may contain more than 15 to 25 fiducial markers. Marking an average

of 20 particles for all the respective projections yields good results in tomographic reconstruction.

The projections are aligned by shifting the images by the difference in the locations of the fiducials.

2.2.2 Markerless Alignment

In contrast to the more adapted technique of using gold nanoparticles in alignment the markerless

alignment is preferred when there is a danger of gold particles interfering in reconstruction [21]

Another reason for not using gold particles is because of the objects which are freely supported

[11]. Some of the highlighted algorithms in literature [11], [21] are the use of common line and

cross correlation using geometric shifts in projections with respective angles. According to Frank

[21] the principle of cross-correlation alignment can be expressed in terms of discrete 2D cross

correlation function as

( , ) = ( , ) ( + , + )																																															(2.3)	

Where f and g are the optical density measurement of the images while M and N are respectively

the width and height of the images. If f and g are similar i.e. almost similar views then the value

of h will be higher on those locations. Here the cross-correlation principle means finding all such

locations for every two tomographs. Then using these locations i.e. coordinates points, the relative

shift are calculated. Once all the shifts are found for the whole image stack, the image set can be

aligned using those shifts.

In many cases the cross correlation technique may not be completely successful and hence different

further algorithms can be used to improve the alignment results. One such technique proposed and

implemented in this thesis work is the manual selection of common feature points. In the features

selection process, common points are found on all the images and then the unaligned images are

moved with respect to the location of the points in the central image. There are different ways to

use this technique but the simplest method is to compare an image, pair wise with the central image

and repeating the procedure for the whole image stack. Since the technique of using feature points

is completely manual therefore, the emphasis is only on finding the least error in the alignment.
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This error value will then be compared with the more automatic technique of using Scale Invariant

Feature Transform (SIFT) algorithm.

2.2.3 Scale-Invariant Feature Transform (SIFT)

Scale-invariant feature transform (SIFT) is an algorithm in computer vision to detect and describe

local features in images. This technique can be used for extracting distinctive features from

different views of an image. The extracted features from SIFT algorithm are highly distinctive and

a single feature vector can be used to match features in a large database of features from other

views of the same image [22]. In tomography the different views of an image sample are not scale

variant rather they only differ from each other with respect to the tilt angle and shrinkage or

stretching along z-axis. In the current study the SIFT algorithm is used in the following pattern in

order to compute an alignment feature.

Scale-space extrema detection
Lowe [22] recommends Gaussian function as the only possible scale space detector. Hence for an

image,  the  scale  space  function  can  be  written  as M(x,  y,  ) which can be obtained from the

convolution of variable scale Gaussian G(x, y, ) with an image I(x, y). Where x and y are  the

coordinates of the image and  is the relative angle.

M(x,y, ) = G(x, y, ) I(x, y)                                               (2.4)

G(x, y, ) = 	 e e ( )/ 																																												(2.5)	

Difference of Gaussian is used to detect stable key point locations in the scale space of an image

view [22]. Difference of Gaussian DoG(x, y, ) is computed as

DoG(x, y, ) = {	G(x,y, ) 	G(x, y, )	 I(x, y)																																		(2.6)		

Where l is a constant multiplicative factor differentiating two adjacent scales. Equation 2.6 can be

written as 	

DoG(x, y, ) = M(x, y, k ) M(x, y, )																																											(2.7)

Key point localization and relative angle orientation
Once a key point is located by the comparison of its pixels to its neighbors, next step is to fit this

interpolation to the nearby data for location and scale.

These key points are then selected based on their stability and angle of orientation.	
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Extracting descriptor and alignment
Followed by the assignment of location, scale and orientation to every key point the descriptor can

be extracted by computing the gradient magnitude and orientation at each image [22].

2.3 Tomogram Reconstruction
 For the Tomogram reconstruction the weighted backprojection algorithm is used.

The backprojection algorithm implements a two dimensional reconstruction of the density  (x,y)

from the specimen projections [23]. In polar coordinates the density is represented as (r, ) as

shown in Figure 2-2 A. Conventionally for the backprojection algorithm the projections are spaced

by angular range of /N. Where N is the number of Projections. However due to the TEM

limitations the max angle is limited to 65°-70°. For example in this study for the second sample

there are 121 projections over the range -60° to +60°. Hence the projections are spaced at /3 N

with 1° increment. Figure 2-3B shows the Fourier space coordinates for the density.

	

Fig.  2-2 A) Real space coordinates B) Fourier space coordinates [24]

While recording the TEM 2D projections it is easier to understand that these projections actually

intersect on a common line (z-axis) along the electron beam. The spacing between the consecutive

projections as illustrated above is measured at the incremental tilt angles. Hence the 3D volumetric

reconstruction of these projections can easily be restricted to a number of sequential 2D

reconstructions which are orthogonal to the projection axis.
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In the polar coordinate system parallel to the optical axis (x-axis) the projected densities can be

written as  [x'=rcos ( )]. The following derivation as derived by Gilbert [24] explains the

step by step R weighted backprojection implementation in IMOD.

As seen above the density distribution of the projections is  (x, y). Then the 2D Fourier transform

of this density is

, (x, y) exp i2 x, y (2.8)

From this the 1D density (x´) can be deduced as the projected density along the y axis on x axis

[24]. 	

( ) = (x, y) (2.9)

According to the Fourier slice theorem, the Fourier transform of a particular projection  (x') is a

central slice of the Fourier transform of the density distribution at an angle  along the x-axis.

 i .e.

{ = ( )}] = F(X, Y) ( ) (2.10)

Let’s assume that

[ = ( )] (2.11)

Then equation 2.10 becomes.

) = F(X, Y) ( ) (2.12)

The right hand side on the above equation shows the line section of the 2D Fourier transform of

the original density  (x, y). Taking the inverse Fourier transform of the equation 2.12.

= [F(X, Y) ( )] (2.13)

By summing up for all the projection angles yields

= [ F(X, Y) ( ) (2.14)
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Introducing a sampling function as described by Gilbert [24] to the right hand side of equation

2.14.

S(R, ) = (Xcos + Ysin R) (2.15)

F(X, Y) ( ) = F(X, Y)S(R, ) + ( 1)F(0,0) (2.16)

Where S(R, ) is the dirac delta function of unit weight at angles /3N, where N is 1, 2 … N and

at the origin where R (the reciprocal radius in Fourier space) is zero. The value of S(R, ) is zero

when R reaches beyond the maximum radius in the Fourier space.

In Equation 2.16 the term (N-1) F(0,0) appears because of the Fourier transform values of N

projections contribute at the origin x=0, y=0 whereas the term F(X,Y) S(R, ) is the complete

Fourier transform of the original sample projected along the line sections at the angular range

n/3 N, n=1,2…N with unit weight of the dirac delta function at the origin.

Now taking the Inverse Fourier transform of equation 2.16 and taking convolution with the density

 (x, y).

[ F(X, Y) ( )] = 	 (x, y) 	[S(R, )] + ( 1) [F(0,0)] (2.17)

The direct back projection method uses the above definition for the reconstruction purposes

however there lies one problem. The dirac delta function assigns a unit weight to the sampling

function S(R, ) at all the locations in the Fourier space and the sampling function should expand

in the expanding radial direction in the Fourier space therefore it must be increased according to

the value of R in the Fourier space for a precise reconstruction [24]. Introducing another function

 which is defined as

( ) = 	                                (2.18)

Where 1/x  ́is the reciprocal radius in the Fourier space. The Fourier transform of the function

is equal to the Fourier transform of the projections times the Fourier space radius value R.

According to the central slice theorem

[ = ( ) = RF(X, Y) ( ) (2.19)

Let’s assume that

= [ = ( )] (2.20)

Equation 2.19 then becomes
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= RF(X, Y) ( ) (2.21)

Introducing the sampling function S(R, ) to the right hand side of the above equation and by

applying the same argument which was used in the derivation of the equation 2.17 and denoting

the reconstructed density as rec yields

( , ) = (x, y) [RS(R, )] (2.22)

Hence the reconstructed density value is convoluted with the inverse transform of the sampling

function weighted by the radial value R in the Fourier space for an accurate reconstruction [24].

The reconstructed tomograms were later segmented and modelled using IMOD software  as

explained in chapter 4. IMOD routines perform relatively better than other imaging software.

Figure 2-3 presents the flow chart of the practical steps carried out in this thesis work which is

explained in detail in chapter 4.
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Fig.  2-3 Flow Chart summary of the electron tomography processes for sample 1 and 2

Sample 2
Sample 1
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3 Aim of the study

The main purpose of this research study are to carry out research and implementation of electron

tomography steps using two different sets of tomographs obtained from biological samples after

electron microscopy. Primarily this study compares some of the previously employed alignment

techniques with the proposed method of aligning tomographs using Affine transform and SIFT. In

addition to the comparison of different alignment techniques, IMOD software  was  used  to

elaborate the process of tomogram reconstruction, segmentation as well as 3D modelling and

visualization. The aims of the study are

Background study of the Electron Tomography processes

Implementation and analysis of alignment techniques

Volumetric reconstruction of the aligned tomography images

The basic problem in the alignment of microscopy images can be dealt with the proper

implementation of image registration techniques. As discussed in the previous chapters, the

acquired image stack after electron microscopy contains images which differ from each other in

rotation, translation and scaling. Affine transform was used at the primary tool for the

preprocessing as well as initial alignment of the image stacks.

SIFT algorithm used in this study is implemented recursively to locate the common feature points

on the registered images using Affine transform. Due to the robust nature of SIFT matching

descriptors, common points were marked and located in pair wise opposite views of the image

stack. SIFT descriptors containing both the feature point attributes and locations of the feature

points were used as the only image registration parameters during the course of aligning the image

stack. Both Affine and SIFT algorithms were developed in MATLAB (see Appendix 3) and image

stack data was tested for the alignment results.

IMOD software was also used for fiducial based alignment for both single and dual axis

tomography. IMOD routines were used to perform the tomogram reconstruction and segregation

followed by 3D visualization.
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4 Methods and Implementation

In this chapter the implementation of the ET process is discussed i.e. from image acquisitions and

preprocessing to the final segmentation and visualization as described in Chapter 1. The methods

and implementation are performed mainly on two different data sets. Figure 4-1 and Figure 4-2

show the original raw data for both sample acquired at different tilt series. The description of both

the data sets is as follows.

1. Sample 1 (Tomographs without fiducials markers ) – Oral mucosa

i. 101 images of the size 1336 K x 952 8 bit TIFF images

ii. Images taken at -50° to +50°

iii. Tilt angle increment 1°

iv. Pixel size 8.5 nm

2. Sample 2 (Tomographs with gold fiducial markers) - Mitochondria

i. 121 x 2 images of the size 2K x 2 K, 16 bit TIFF images

ii. Images taken at -60° to +60° for both axis

iii. Tilt angle increment 1°

iv. Fiducial markers size 10 nm

v. Pixel size 2.28 nm

The system and software programs specifications are as follows.

i. a) Intel Core i5 , Two 2.5 GHz processors and b) Intel Core2 Duo 2.0 GHz &

8 GB RAM

ii. MATLAB 2012(a) on UEF server (Mathworks Inc., Natick, Massachusetts, USA)

iii. IMOD 4.7.7 (University of Colorado, Dept. of MCD Biology, 347 UCB, Boulder,

CO 80309, USA )

iv. VideoMach developed by Gromada.com

In the first half of this chapter the process of markerless alignment with Feature point selection

and SIFT based alignment is discussed while in the lateral part IMOD routines are used to perform

the tomography steps. Results and observations are discussed in chapter 5.
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Fig.  4-1 Sample 1 obtained at angles A) -50°  B) 0°  C) +50°

Fig.  4-2 Sample 2 obtained at angles A) -60°  B) 0°  C) +60°

4.1 Markerless Alignment and Feature Points

4.1.1 Preprocessing
In this section the implementation of Feature point algorithm of aligning tomographs without

fiducial markers is explained. Images when taken at tilt angles differ from one another by a few

geometric transformations as shown in Figure 4-3. These transformations can be shifting on the

horizontal and vertical axis and also rotational axis. Therefore a geometric transformation method

‘Affine Transform’ employed to find the shifted parameters in the translation, rotation and

skewness. The Affine transformation model can be used on the registered images to perform the

image registration [25]. In image matching and image registration Affine models and Affine

transforms are widely used and preferred over other standard techniques because of their robust

estimation of displacements in the image pixels [26].
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According to the affine transformation theory for an image pair containing points I(x,y) and

I´(x´,y´) the affine relation between these two points is given by

=  (4.1)

M is the affine transformation matrix whose elements are in the first Row: m11 m12 m13, second

Row: m21 m22 m23 and in third Row: 0 0 1. For N pair of corresponding points in the pair of the

images the solution of the above equation can be written as

	

	

= , + , + 																																																							(4.2)

	

= , + , + (4.3)

for j=1,…N

After interchanging the sides the above set of equations can be written in the generalized form as

b= (4.4)

or

= (4.5)

The above equation can be solved using least square fit and for that taking the transpose on both

sides yields

Ka = b (4.6)

a = ( K) b                                                            (4.7)

Here the term (KTK)-1KT is the pseudo inverse of scalar K. MATLAB provides the solution of

problem in Equation 4.7. Affine transformation was performed on the images to reduce the

attainable values of offsets in the image alignment process. Images are transformed in such a way

that the central image lies usually on the zero tilt angle. The tilted images are then transformed one

by one with respect to the central image and the transform values are recorded. Let Xi as the central

image then by first moving in the forward direction with the indexed images as Xi+1, Xi+2…XL and

repeating the same process in the backward direction for images Xi-1, Xi-2, XM, , the comparison of
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the pairwise images is completed. Where i is the tilt angle, L and M are the total number of

projections in each direction only divided by 2.

Fig.  4-3 Affine transformation processes. A) Center image B) Tilted image C) Tilted image transformed

It is important to mention here that the transformed images are not the ones processed in the

alignment process rather these images will be used only to calculate the transform offset in the tilt

images with respect to the central image. Using these offset values along the tilt axis (x axis)

original image is moved closer to the central image Xi. Figure 4-4 shows the process of affine

transformation and moving the original images using offsets.

Fig.  4-4 A) Center image and tilted image before Affine transformation B) Images after Affine
transformation

After the affine transform and moving the images towards the center with respect to the central

image its now easier to find maximum correlation in the alignment process.
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4.1.2 Alignment
Image transformation is followed by the implementation of Cross Correlation algorithm in the

Fourier domain as presented by Frank [21]. In TEM, the images are taken at tilt angles and

therefore when moving forward or backward from the central image, the tilted projections are

shrinked along the axis of electron beam. Preprocessing using the affine transform stretches the

images with respect to the central image and hence produces images in more registered form then

original form. This algorithm implemented in MATLAB (see Appendix 1) then computes the

cosine stretching of the image pairs with the ratio of the cosine of the angles between them. Since

this method attempts to find the cross correlation between images as pairs i.e. pair wise cross

correlation of the tilted image with the central image therefore the cosine stretching formula

becomes

x = Cos /Cos   (4.8)

Where Cos  is  0  and Cos 0 is 1 so the stretching factor X for respective image pair therefore

becomes 1/ Cos . The cross correlation is implemented in the Fourier space. Figure 4-5 shows the

graph of the Cross Correlation peak for the two compared images in sample 1 where the maximum

correlation was found. The pixel values offset in the neighborhood of the peak are computed to

find the matching areas in both images.

Fig.  4-5 Cross correlation graph and peak in dark red color for sample 1

Once the offset values of the pixel points in both images are found, the moving image is

transformed with respect to those offset values. In this way all the images were moved with respect
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to the central image. The final transformed images were then stacked together to see the alignment

progress. At this point, the markerless alignment for the image data did not quite produced accurate

results. While moving from negative to positive axis the distortion in the y axis causes the image

stack to shutter.

4.1.3 Fine Alignment using Feature Points
Preceded by the markerless alignment and the inspection of the results generated in the cross

correlation process, feature points are selected to further improve the alignment of tomograms.

For this purpose the tomograms were checked for the occurrence of common features (points).

Once the inspection of the points seemed promising, the searched points in every image were

selected manually using a MATLAB written routine (see Appendix 2). For 101 images a total of

505 points were selected i.e. 5 points on each image. Figure 4-6 shows the locations of the selected

points on all the images.

Fig.  4-6 Feature points distribution on the center image of sample 1

The central image was set as the index image and the relevant distances of the index image points

were calculated from the location of the same points in the images on either angular direction. The

distances were calculated using the Euclidian distance formula as given by

{( ) + ( ) } (4.9)
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Where x and y are the coordinates of a point in the central image and xi and yi are the points in the

tilted images. Once the distances are found, images were compared pair wise i.e. Index image with

the tilted images one by one. Finally all the images were moved according to the central image

points using the mean of the displacement of all the five points in both images. The results were

then checked visually by importing the images in Videomach software and playing the video output

file.  As compare to the resultant video in the markerless alignment process, the new video file

looked error free and there was very less distortion found in the movie frames.

4.1.4 SIFT based Alignment		
SIFT based alignment algorithm (written in MATLAB and C language  by  Lowe  [22],  (see

Appendix 3) runs on individual images and computes the SIFT features for every image. SIFT

returns the feature points as seeds based on detection of common points, their matching and the

tracking while tomographs are compared pairwise [27]. Figure 4-7 shows the results of individual

points marked by the algorithm. Once the points are marked on the individual images, the matches

in the images are found pair wise.  Every image was compared with the center image and matching

point attributes were computed as shown in Figure 4-8 and Figure 4-9. Based on the matching

locations the matching points in both images were recorded.

Fig.  4-7 SIFT points located on three different images

This resulted in a very large matrix containing the matches between the center image and all

remaining images on both directions of the tilt angles. For finding common features to compute

the relative offset distances in the tilt images with respect to the center image, the count for the

matches were searched in the center image.
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Fig.  4-8 SIFT matching between images with less tilt angle among them

Fig.  4-9 SIFT matching of the images with higher tilt angle difference

Only those points were selected from the center images which occurred most frequently in the

matching phase. Figure 4-10 shows the common feature points used for the alignment of the image

stack using SIFT. Once the common points are found, the tilt images were aligned using those

features with respect to the center image. During the matching process as the algorithm searches

for features points in the far distant images from the center image, the number of common points

reduces due to the shrinking of the objects in the images. Figure 4-11 shows the graphs of the

common points found with respect to the increasing tilt angles.
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Fig. 4-10 Feature points selected for the SIFT based alignment

Fig.  4-11 A) No. of matches on negative tilt axis B) No. of matches on positive tilt axis

4.2 Volume Reconstruction with Alignment via Fiducials

4.2.1 Preprocessing

Prior to the alignment via Fiducials in IMOD,  both samples  were loaded in IMOD and in the

preprocessing phase the x-rays were eliminated using IMOD routine ccderaser. Originally samples

contained some extreme values due to x-rays presence and therefore these values were truncated.
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IMOD routine ccderaser then searched through the entire stack of the images for extreme intensity

values. ccderaser removed the extreme intensity values using the algorithm of dividing the image

into patches, calculating the mean and standard deviation of the pixel values in the respective

patches and then the patches were searched for pixels with extreme values and finally the pixels

with values higher than a multiple of standard deviation were replaced with the mean value of the

pixels 8 neighborhood.

4.2.2 Alignment

For initial alignment of the preprocessed stack, the IMOD routine Xcorr was used and images were

coarse aligned using translation and rotation followed by cross correlation.

Prior  to  the  alignment  the  images  were  stretched  with  respect  to  the  central  image  and

perpendicular to the tilt axis. The stretching factor is the ratio of the cosines of the tilt angles of

the respective images. After the stretching the function  calculates the cross correlation in the

IMOD routine Xcorr and the peaks of correlation matrix were examined to find the shifts in the

tilted images.  This step performs the alignment without taking the notice of fiducial markers

present on the sample data. Once the images were aligned the fiducials models were generated for

further alignment.

4.2.3 Fiducial Model Generation and Fine Alignment

After the initial alignment via cross correlation, the fiducial markers models were generated in

IMOD. Sample 1 images did not contain any gold particles therefore some marks were manually

found on the images to be seeded as fiducials. The fiducial models were created on the central

image (0° tilt) and roughly 10 to 15 particles were selected as seeds. Sample 2 already contained

some gold particles and fiducials were seeded as 25 particles per image. While seeding fiducials

opposite surfaces were checked for the exact seeding. Figure 4-12 shows the seeding of fiducials

on both sample images. Figure 4-13 shows the model view of the seeds and their presence on the

opposite surfaces.

After seeding the fiducials on the images, the tracking process was used in IMOD to track the

fidcuials on all the surfaces. IMOD routine Bead Fixer was used in this step. Bead Fixer runs

iteratively to check for the residual errors due to the gold particle missing or not centered on the

individual images.
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Fig.  4-12 Fiducial markers as seeds in green color

Fig.  4-13 Fiducial seeds on separate views for A) Sample 1   B) Sample 2

After the first full iteration of the seed tracking on both sample images, residual vectors were

examined. Figure 4-14 shows the presence of residual vectors on the surfaces. The tail of the

residual vector arrow shows the current position of the fiducial while the point head indicates the

correct location. However this was not always true and instead of moving the fiducials with respect

to the new arrow direction, the center of the seeds were selected as the new location for the seeds.

At each iteration, the number of missing points and the mean error were recorded.
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Fig.  4-14 A) Residual error vector on sample 1 image B) Residual error vector on Sample 2 image C)
Residual error vector new location marked in red arrow

4.2.4 Transfer of Fiducials to Second Axis
As in the start of this chapter it was mentioned that Sample 2 contains tilt images on both axis,

therefore the same IMOD routines were used for the second axis too. The process of aligning the

second axis images is exactly the same as of first axis. However for seeding the fiducials on the

second axis, the fiducials from the first axis were used as seeds. Figure 4-15 shows the transfer of

the fiducials from x-axis on to the second axis.

Fig.  4-15 Transfer of fiducials for second axis of sample 2
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4.2.5 Tomogram Reconstruction
Tomogram generation in IMOD mainly consists of two phases. i) Tomogram positioning and ii)

Final tomogram generation. In the first phase the boundary models for the tomograms were

acquired. These boundary models represent the top, middle and the bottom surfaces of the image

stacks. A boundary model is generated by analyzing the sample’s boundaries in the IMOD and

points are marked where the thickness of the material is visible. A pair of two distant points is

connected by a line called a contour. As shown in Figure 4-16A, there are two contours on every

surface of the material. In total there were 6 contours for all three surfaces. After the manual

positioning of the tomogram’s boundaries IMOD routine Tomopitch (Etomo) was run. This routine

sets the values of different parameters such as the thickness and the final values of the tilt axis to

make the tomogram look flat. Once these parameters are set by the Tomopitch, the Tiltalign routine

of the IMOD is run to compute the final tomogram alignment.

Finally the Backprojection algorithm is run and the final tomograms were reconstructed as shown

in the Figure 4-16B for Sample 1 and Figure 4-16C for sample 2.

Fig.  4-16 A)Boundary value marking before final tomogram generation B) 2D view of sample 1 final
reconstructed tomogram C) 2D view of sample 2 final reconstructed tomogram

CB

A
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4.3 Segmentation and Visualization		

IMOD modules Drawing tool and Interpolator were used for the segmentation of the sub volumes

of the generated Tomograms. Etomo generated the tomograms in the .rec format. The .rec models

were loaded into IMOD and different built-in routines were used to mark various parts of the

samples’ volumes as shown in the Figure 4-17. These parts were saved as objects. An object may

consist of many contours and where necessary some of these contours were filled by interpolation.

Figure 4-18 and Figure 4-19 show the segmented parts of the materials for both tomograms.

Fig.  4-17 Segmentation of A) Sample 1 tomogram B) Sample 2 tomogram

As shown in Figure 4-18 and Figure 4-19, for both cases the external segmentation (extracting the

areas of interest) and the internal segmentation were performed.

Fig.  4-18 3D segmentation of sample 1 tomogram
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Fig.  4-19 3D view of sample 2 tomogram

Figure 4-18 shows the presence of a hole in the sample along the zigzag main body part. Along

the length of the vessel at some places the boundary was thinner than other walls.

Figure 4-19 shows the presence of internal cristae in mitochondria. Different cristae were colored

differently to show their structures. After the marking and interpolation of the contours and objects

a mesh was drawn around the segmented area. The VideoMach software was used to run the

simulation in the video format.
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5 Results and Discussion

This Chapter presents the results and observations from the implementation of the different

alignment and reconstruction techniques used in this thesis work first the results of the markerless

alignment and feature selection are presented.

5.1 	Markerless and Feature Points Alignment	
The improvement in the markerless alignment process by the introduction of feature points resulted

in the uniform alignment of the image stack of sample 1. Table 5-1 shows the location of 5 features

points in all 101 images of sample 1. It can be seen that the locations of the points vary in every

image. Due to the tilt shifts the distances vary in both x and y directions.

Table 5-1 Feature points locations in images of sample 1

Image No.
Point 1 Point 2 Point 3 Point 4 Point 5

X Y X Y X Y X Y X Y

1 514 179 864 157 989 445 858 584 796 603

2 514 182 872 162 982 440 869 590 807 613

3 488 187 854 169 967 446 855 598 790 619

.

.

51 409 130 922 195 1115 512 996 653 899 656

.

.

99 456 193 839 210 935 486 839 635 756 645

100 510 186 886 202 977 473 881 623 803 632

101 492 202 863 217 950 488 853 640 775 646

In Figure 5-1 the graph shows the difference between the x and y coordinates of the features points

in all 101 images. It’s clear that with the incremental tilt change, the respective average differences

in the x and y coordinates increases. The change in both negative and positive axis shows that the



32

difference values increase in an almost symmetric pattern. This symmetrical behavior is because

of the equal tilt changes in both directions from the central (index) image.

Fig.  5-1 Difference in the offset values of the feature points (x1, y1...x5, y5) with respect to the center image at 0°

Figure 5-2 shows the Euclidian distance graph of the pixel values in all 101 images with respect

to the index image. After the fine alignment process based on the feature points locations, the new

pixel values of the features points can be seen in Table 5-2.

The respective graph of the differences in the pixel locations in all 101 images can be seen in

Figure 5-3 whereas Figure 5-4 shows the new Euclidian distance measures of the updated locations

of the feature points after the alignment process.

It is clear from Figure 5-3 and Figure 5-4 that after the successful alignment the change in the x

and y locations and the change in the distances of the 5 feature points in all 101 images is uniform.

These results can also be verified with the distortion free video demonstration of this alignment

process. The Root Mean Square (RMS) error value for this approach is 36.27.
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Fig.  5-2 Euclidian distances (d1...d5) of the feature points in the images with respect to the center image at 0°

Table 5-2 Feature points locations in aligned images of sample 1

Image

No.

Point 1 Point 2 Point 3 Point 4 Point 5

X Y X Y X Y X Y X Y

1 578 215 928 193 1053 481 922 620 860 639

2 573 214 931 194 1041 472 928 622 866 645

3 565 212 931 194 1044 471 932 623 867 644

.

.

51 409 130 922 195 1115 512 996 653 899 656

.

.

99 559 188 942 205 1038 481 942 630 859 640

100 567 192 943 208 1034 479 938 629 860 638

101 574 193 945 208 1032 479 935 631 857 637
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Fig.  5-3 Differences of the feature points (x1, y1...x5, y5) locations in the images with respect to the
center image after alignment.

Fig.  5-4 Euclidian distances (d1..d5) of the feature points from the center image after alignment

5.2 SIFT based Alignment
Using SIFT algorithm the alignment methods were implemented based on the offset locations and

their distances in the tilt images of sample 1. For total 101 images, the number of common feature

points found was 2. SIFT features for different images were found on different various locations;
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however few feature points were located in most of the images. To locate the two most common

feature points the efficiency of the SIFT algorithm is shown in the Table 5-3.

Table 5-3 SIFT algorithm efficiency to locate the common feature points in sample 1 images

SIFT Methods Number of images Images with Common Features Efficiency

Feature Point 1 101 84 83.16 %

Feature Point 2 101 80 79.20

Figure 5-5 shows the occurrence of the common points in all images, plotted on the center image.

Red marked points were found in 84 images while blue marked points were found in 80 images.

Data points marked with other colors were found in only few images and therefore were ignored

while proceeding towards alignment of the image stack.

Fig.  5-5 Locations of the feature points in the image stack

The progress of the SIFT algorithm however still did not help in the attainable satisfactory

alignment of the image stack. The offset distances in the x directions were easy to be moved while

moving in the y directions produced some errors in the alignment process. Figure 5-6 shows the
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difference of offsets for the two common points.  Figure 5-7 shows the Euclidian distances between

center image and the tilt stack before and after the alignment.

Fig.  5-6 Differences of the first (left) and second (right) feature points (x1, y1 & x2, y2) locations in the
images with respect to the center image before SIFT alignment

Fig.  5-7 Euclidian distances (d1, d2) of the feature points from the center image before SIFT alignment
(left) and Euclidian distance (d) on Y axis after SIFT alignment (right)
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It is clear that after the SIFT alignment the distances in x direction were completely moved in all

the images whereas some images were still having distances in y axis. The root mean square errors

RMS of the SIFT algorithm were calculated as 44.93 for the first feature point and 54.06 for the

second feature point which are much higher than the target RMS value of 36.27 from the manual

alignment.

Figure 5-7 shows that after the alignment the offset distances in the x axis were reduced to almost

zero for most of the images but the y axis offset distances caused the distortion in the alignment.

5.3 Fiducial Markers Alignment
For the second technique using features extraction, the residual errors in the alignment process for

the images of both samples were reduced in an iterative process. In each iteration of TiltAlign

routine of IMOD the number of missing points was reduced and the corresponding residual error

values were recorded. The number of iterations and the residual mean error values were almost

same for both the samples as shown in Table 5-4.

Table 5-4 Convergence of Residual Error

Iteration No. Sample 1 Residual Error (mean) Sample 2 Residual Error (mean)

1 0.662 0.698

2 0.621 0.652

3 0.585 0.605

4 0.559 0.568

5 0.547 0.555

6 0.547 0.551

7 0.542 0.538

5.4 3D Visualization
Finally the successful segmentation and visualization results for the both the samples can be seen

in Figure 5-8 and 5-9. Figure 5-8 shows the 3D view of the First sample tomogram volume whereas

Figure 5-9 shows the 3D view of the second sample tomogram volume.
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Fig.  5-8 3D view of the sample 1 reconstructed volume

Fig.  5-9 3D view of the sample 2 reconstructed volume

5.5 Conclusions
The techniques implemented in the previous chapters work acceptably fine for the tested data.

Using the feature based alignment, different algorithms can be written to perform the volumes

reconstruction of the tomograms. IMOD and MATLAB routines will be best suitable to perform

the segmentation and visualization processes. Different sub cellular objects can be viewed

separately to examine the sub volume properties of the tomograms.

For the second technique based on fiducial markers alignment, IMOD software routine 3DMOD

can be used to extract the quantitative information of the sample from the final reconstructed and
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segmented tomograms. For SIFT algorithm, the RMS value can be reduced more if the proper

feature points are found for all the images. As seen from the manual alignment method of feature

points that the error value was less than that of SIFT algorithm. For future work the SIFT algorithm

will be optimized and the RMS value will be reduced. The residual error in the alignment can be

further reduced if the tomographs are 16 bit images.

As a conclusion, this study suggests that IMOD routines when used carefully both for single axis

and dual axis tomography will produce near perfect results. Following summary presents the time

costs and the suitability of the implemented algorithm.

IMOD Alignment:  (More Manual)

Average time for single axis tomography = 20-25 Minutes

Average time for dual axis tomography = 35-40 Minutes

Alignment results suitable for volumetric reconstruction

Feature Point Based Alignment: (More Manual)

Average time for single axis tomography 45-55 Minutes

Alignment results suitable for volumetric reconstruction

SIFT based Alignment: (More Automatic)

Average time for single axis tomography 40-45 Minutes

Alignment results acceptable for few tomographs

Alignment results not suitable (currently) for volumetric reconstruction

More common feature points can produce better alignment but more time consumption

IMOD routines are useful when error free alignment is targeted, however seeding fiducials requires

manual work as compare to the proposed technique using SIFT features.

Although the affine transform used for registering images produced near error free results in initial

alignment, there is still some room to adjust the mismatches of pixels while matching displaced

pixels in opposite views and the improvement can be achieved after smoothing all the displacement

vectors [26]. Since Affine transformation is usually carried out on the edges on the image segments

and if the edges are blurry or too noisy, it will not yield proper image registration [25]. SIFT

features proved to be accurate and the whole process is automatic however manual changes might

be needed when SIFT doesn’t perform on some of the tilt images. The problem arises when the

SIFT descriptor returns quite many feature points in opposite views. This leads to the problem of
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optimizing the feature points. Minimum features points can help in achieving better alignment

[27].

As for the Future work in the alignment process and volume reconstruction, the algorithm of local

binary pattern and Simultaneous Iterative Reconstruction Techniques (SIRT) will be implemented

and tested.
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Appendix 1: Matlab program routines: Initial alignment

crop.m

% Crop the Sample 1 images to reduce the area while preserving the region
% of interest

clear; close all
load OFFS
pathf = 'Sample1/';
files = dir(fullfile(pathf, 'TomoImage*'));
chopyx_topleft = max(offsets,[],2);
chopyx_bottomright = min(offsets,[],2);

% Croping images and saving

for i = 1:length(files)

    I = imread( fullfile(pathf, files(i).name) );
    [x, y] = size(I);
    xmin = chopyx_topleft(2);
    ymin = chopyx_topleft(1);
    width = (y + chopyx_bottomright(2)) - xmin;
    height = (x + chopyx_bottomright(1) - 65) - ymin;
    rect = [xmin ymin width height];
    I = imcrop(I, rect);
    imwrite( I, fullfile('CropTomo',sprintf('CropImage%d.tif', i)) )
    fprintf('Save image %d\n',i)
end

preAlignPair.m

% Electron Tomography Allignment
% Implementation of Image allignment method based on the cross-corelation
% and affine transformation of the cropped images in the Fourier domain .

% Part of the code used as it is available on matworks.com in examples
% Works for all images from most negative tilted angle to most positive
% tilted angle sequentially

% Computes allignment in pairwise images

clear; close all

pathf = 'CropTomo/';
files = dir(fullfile(pathf, 'CropImage*'));

iter = 1;
offsets = zeros(2,length(files));
angle = 0;

A0 = imread( fullfile(pathf, files(62).name) ); % image 62 , reference image
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for k = 1:length(files)

if k ~= round(length(files)/2)

if k < round(length(files)/2)
% rotation angle

            angle = angle + 1;
            im2 = k + round(length(files)/2)
            B = imread( fullfile(pathf, files(im2).name) ); % image k , compared image

if k == 1
                im1 = round(length(files)/2)
                A = imread( fullfile(pathf, files(im1).name) ); % image 62
                ang2 = 0;

else
                A = D; % previous image
                angle2 = angle - 1;
                ang2 = 1;

end

else
% rotation angle

            angle = angle - 1;
            im2 = k + angle + angle
            B = imread( fullfile(pathf, files(im2).name) ); % image k

if k == round(length(files)/2)+1;
                im1 = round(length(files)/2)
                A = imread( fullfile(pathf, files(im1).name) ); % image 62
                ang2 = 0;

else
                A = D; % previous image
                angle2 = angle + 1;
                ang2 = 1;

end

end

        tx = 0; % x translation
        ty = 0; % y translation
        r2 = cosd(angle);
        T2 = [1/r2 0;
            0 1;
            tx ty];

if ang2
            r1 = cosd(angle2);
            T1 = [1/r1 0;
                0 1;
                tx ty];

% Affine transformations
            stretch_lc = maketform('affine',T1);
            resamp = makeresampler({'nearest','cubic'},'fill');
            x1_pos = fix( (T1(1)*(size(A, 2))-(size(A, 2)))/2 + 1);

x2_pos = fix( (T1(1)*size(A, 2)) - (T1(1)*(size(A, 2))-(size(A, 2)))/2 );
            y_pos = size(A, 1);

            [A, xdata, ydata] = imtransform(A,stretch_lc,resamp,...
'XData', [x1_pos x2_pos],...
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'YData', [1 y_pos],...
'FillValues', 255);

end

        stretch_lc = maketform('affine',T2);
        resamp = makeresampler({'nearest','cubic'},'fill');
        x1_pos = fix( (T2(1)*(size(B, 2))-(size(B, 2)))/2 + 1);

x2_pos = fix( (T2(1)*size(B, 2)) - (T2(1)*(size(B, 2))-(size(B, 2)))/2 );
        y_pos = size(B, 1);

        [C, xdata, ydata] = imtransform(B,stretch_lc,resamp,...
'XData', [x1_pos x2_pos],...
'YData', [1 y_pos],...
'FillValues', 255);

% Cross-correlation starts
% Fourier transform

        A1 = A;
        A = fftshift(fft2(A));

        [x, y] = size(A);
        G = mat2gray(fspecial('gaussian',[x y],75)); % Gaussian filter
        A = A .* G;

% Fourier transform
        C = fftshift(fft2(C));
        C = C .* G; % Gaussian filter

% Compute cross-correlation
        C = A .* conj(C);

% Apply inverse Fourier and inverse shift
        C = abs(ifftshift(ifft2(C)));
        close all
        mesh(C)
        pause

% Compute offset from center of the Cross-correlation matrix
        maxC = max(C(:));
        [ypeak, xpeak] = find(C == maxC); % Find Max

% Offsets
        [yc, xc] = size(C);
        ych = fix(yc/2); xch = fix(xc/2);
        yoff = ypeak - ych;
        xoff = xpeak - xch;

if size(xoff,1) > 1
            fprintf('Many peaks\n')

return
end

        offsets(:,iter) = [yoff; xoff]; % record offsets
        iter = iter + 1;

        D = ones(yc, xc) * 0.5;
        D = uint8(D);

if (xoff ~= 0 && abs(xoff) < xch)
if yoff == 0
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                yoff = 1;
end

if (yoff < 0 && xoff < 0)
                fprintf('yoff: -neg, xoff: -neg\n')
                fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                D(1:yc-abs(yoff)+1, 1:xc-abs(xoff)+1) =...
                    B(abs(yoff):yc, abs(xoff):xc);

elseif (yoff > 0 && xoff < 0)
                fprintf('yoff: +pos, xoff: -neg\n')
                fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                D(abs(yoff):yc-1, 1:xc-abs(xoff)+1) =...
                    B(1:yc-abs(yoff), abs(xoff):xc);

elseif (yoff < 0 && xoff > 0)
                fprintf('yoff: -neg, xoff: +pos\n')
                fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                D(1:yc-abs(yoff)+1, abs(xoff):xc-1) =...
                    B(abs(yoff):yc, 1:xc-abs(xoff));

elseif (yoff > 0 && xoff > 0)
                fprintf('yoff: +pos, xoff: +pos\n')
                fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                D(abs(yoff):yc-1, abs(xoff):xc-1) =...
                    B(1:yc-abs(yoff), 1:xc-abs(xoff));

end
            fprintf('ANGLE from center = %d\n',angle)
            fprintf('------------------------\n')
            fprintf('------------------------\n')

else
            fprintf('WARNING xoff is zero\n')

end
        imwrite( D, fullfile('preAlignedTomo',sprintf('preAlignPair%d.tif', k)) )
        close
        figure, imshowpair(A0, D, 'falsecolor')
        figure, imshowpair(A1, D, 'falsecolor')

else
        offsets(:, iter) = [0; 0];
        iter = iter + 1;
        angle = 0;

end
    pause
end

preAlignCenter.m

% Electron Tomography Allignment
% Implementation of Image allignment method based on the cross-corelation
% and affine transformation of the cropped images in the Fourier domain .

% Part of the code used as it is available on matworks.com in examples
% Works for all images from most negative tilted angle to most positive
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% tilted angle sequentially

% Computes allignment from center image

clear; close all

pathf = 'CropTomo/';
files = dir(fullfile(pathf, 'CropImage*'));

iter = 1;
offsets = zeros(2,length(files));
angle = 62;

A = imread( fullfile(pathf, files(62).name) ); % image 62 , Central image
angle = 2;
for k = 61:length(files)

if k ~= 62
        im2 = k;
        im1 = 62;
        A = imread( fullfile(pathf, files(im1).name) ); % image 62
         B = imread( fullfile(pathf, files(im2).name) ); % image k,  compared image

if k < 62
% rotation angle

            angle = angle - 1;
else

% rotation angle
            angle = angle + 1;

end
        tx = 0; % x translation
        ty = 0; % y translation
        r = cosd(angle);
        T = [1/r 0;
            0 1;
            tx ty];

% Affine transformations
        stretch_lc = maketform('affine',T);
        resamp = makeresampler({'nearest','cubic'},'fill');

        x1_pos = fix( (T(1)*(size(B, 2))-(size(B, 2)))/2 + 1);
        x2_pos = fix( (T(1)*size(B, 2)) - (T(1)*(size(B, 2))-(size(B, 2)))/2 );
        y_pos = size(B, 1);

        [C, xdata, ydata] = imtransform(B,stretch_lc,resamp,...
'XData', [x1_pos x2_pos],...
'YData', [1 y_pos],...
'FillValues', 255);

        Ct = C;
        Ao = A;

% Cross-correlation starts
% Fourier transform

        A = fftshift(fft2(A));

        [x, y] = size(A);
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        G = mat2gray(fspecial('gaussian',[x y],75)); % Gaussian filter
        A = A .* G;

% Fourier transform
        C = fftshift(fft2(C));
        C = C .* G; % Gaussian filter

% Compute cross-correlation
        C = A .* conj(C);

% Apply inverse Fourier and inverse shift
        C = abs(ifftshift(ifft2(C)));
        figure, mesh(C)

% Compute offset from center of the Cross-correlation matrix
        maxC = max(C(:));
        [ypeak, xpeak] = find(C == maxC); % Find Max

if 1
% Cut Correlation in threshold

            C( C(:) > (maxC - 8e8) ) = maxC - 8e8;
            figure, mesh(C)
            maxC = max(C(:));
            [ypeaks, xpeaks] = find(C == maxC); % Find all peaks Max

% Compute center of mass
            idxp = find(C(:) == maxC);
            M = double(Ct(idxp));
            x_cen_mass = round((xpeaks'*M) / sum(M));
            y_cen_mass = round((ypeaks'*M) / sum(M));

end

        figure, imshowpair(Ao,Ct,'falsecolor')
        hold on;
        plot(xpeak,ypeak,'r.')
        plot(x_cen_mass,y_cen_mass,'.')
        rh = rectangle('Position',[min(xpeaks),min(ypeaks),...
            max(xpeaks) - min(xpeaks),...
            max(ypeaks) - min(ypeaks)],...

'Curvature',[.5,.5]);
        set(rh,'EdgeColor','r','LineWidth',1)

return
% Offsets

        [yc, xc] = size(C);
        ych = fix(yc/2); xch = fix(xc/2);

if 0
            yoff = ypeak - ych;
            xoff = xpeak - xch;

else
            yoff = y_cen_mass - ych;
            xoff = x_cen_mass - xch;

end
        offsets(:,iter) = [yoff; xoff]; % record offsets
        iter = iter + 1;

        D = ones(yc, xc) * 0.5;
        D = uint8(D);
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if (xoff ~= 0 && abs(xoff) < xch)
if yoff == 0

                yoff = 1;
end
if (yoff < 0 && xoff < 0)

                fprintf('yoff: -neg, xoff: -neg\n')
                fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                D(1:yc-abs(yoff)+1, 1:xc-abs(xoff)+1) =...
                    Ct(abs(yoff):yc, abs(xoff):xc);

elseif (yoff > 0 && xoff < 0)
                fprintf('yoff: +pos, xoff: -neg\n')
                fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                D(abs(yoff):yc-1, 1:xc-abs(xoff)+1) =...
                    Ct(1:yc-abs(yoff), abs(xoff):xc);

elseif (yoff < 0 && xoff > 0)
                fprintf('yoff: -neg, xoff: +pos\n')
                fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                D(1:yc-abs(yoff)+1, abs(xoff):xc-1) =...
                    Ct(abs(yoff):yc, 1:xc-abs(xoff));

elseif (yoff > 0 && xoff > 0)
                fprintf('yoff: +pos, xoff: +pos\n')
                fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                D(abs(yoff):yc-1, abs(xoff):xc-1) =...
                    Ct(1:yc-abs(yoff), 1:xc-abs(xoff));

end
            fprintf('ANGLE from center = %d\n',angle)
            fprintf('------------------------\n')
            fprintf('------------------------\n')

else
            fprintf('WARNING xoff is zero\n')

end
        close all
        imshowpair(Ao,D,'falsecolor')

return
imwrite(D, fullfile('preAlignedTomo',sprintf('preAlignCen%d.tif',...    k)) )

else
        offsets(:, iter) = [0; 0];
        iter = iter + 1;
        angle = 0;

end
end
figure, plot(1:length(offsets),offsets(1,:),'.-')
set(gca,'Ytick',[min(offsets(1,:)):max(offsets(1,:))])
Yticks = get(gca,'Ytick');
set(gca,'YTickLabel',cellstr(num2str(Yticks(:))))
ylabel('y offsets')
axis tight
figure, plot(1:length(offsets),offsets(2,:),'.-')
ylabel('x offsets')
axis tight

save OFFS offsets
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Appendix 2: Matlab program routines ; Manual features alignment

markFeatures.m

% mark points in the original images cropped earlier

clear; close all

pathf = 'preAlignedTomo/';
files = dir(fullfile(pathf, 'preAlignCen*'));

marks = zeros(4,length(files));

for k = 1:length(files)

    I = imread( fullfile(pathf, files(k).name) );
    close;
    imshow(I,[])
    p = ginput(5); % Manual points choosing
    marks(:,k) = p(:);

end
save markers.mat marks % saving manually marked features

alignMarks.m

% Alignment of the images from the saved markers (manually plotted features)
%

clear; close all
load markers.mat % saved feature points marked manually
writefiles = 0;
drawpair = 1;

pathf = 'preAlignedTomo/';
files = dir(fullfile(pathf, 'preAlignCen*'));
I = imread( fullfile(pathf, files(62).name) );
if writefiles
    imwrite( I, fullfile('alignedtomo',sprintf('alignmark%d.tif', 62)) )
end
[yc, xc] = size(I);
imshow(I, [])
hold on;
plot(marks(1,:),marks(3,:),'r.',marks(2,:),marks(4,:),'b.');
plot(marks(1,51),marks(3,51),'gx',marks(2,51),marks(4,51),'gx',...

'MarkerSize',12,'LineWidth',2);

% Find difference
displt = zeros(4,size(marks,2));
for i = 1:size(marks,2)
    displt(:,i) = marks(:,51) - marks(:,i);
end



52

% Plot difference
figure, plot(displt')
hold on;
plot([51 51],[min(min(displt,[],2)) max(max(displt,[],2))],'k-')
legend('x1','x2','y1','y2')
axis tight

% Choose which points to use, options:(1,2,3)
switch 1

case 1 % first point
        offsets = zeros(2,size(marks,2));
        offsets(1,:) = displt(1,:);
        offsets(2,:) = displt(3,:);

case 2 % second point
        offsets = zeros(2,size(marks,2));
        offsets(1,:) = displt(2,:);
        offsets(2,:) = displt(4,:);

case 3 % both points
        offsets = zeros(2,size(marks,2));
        offsets(1,:) = round(mean([displt(1,:); displt(2,:)]));
        offsets(2,:) = round(mean([displt(3,:); displt(4,:)]));
end

% loop over images
iter = 1;

for k = 12:length(files)-11

if k ~= 62

        I2 = imread( fullfile(pathf, files(k).name) );
% Offsets

        xoff = offsets(1,iter);
        yoff = offsets(2,iter);

        D = ones(yc, xc) * 0.5;
        D = uint8(D);

if xoff == 0
            xoff = 1;

end
if yoff == 0

            yoff = 1;
end

if (yoff < 0 && xoff < 0)
            fprintf('yoff: -neg, xoff: -neg\n')
            fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
            D(1:yc-abs(yoff)+1, 1:xc-abs(xoff)+1) =...
                I2(abs(yoff):yc, abs(xoff):xc);

elseif (yoff > 0 && xoff < 0)
            fprintf('yoff: +pos, xoff: -neg\n')
            fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
            D(abs(yoff):yc-1, 1:xc-abs(xoff)+1) =...
                I2(1:yc-abs(yoff), abs(xoff):xc);
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elseif (yoff < 0 && xoff > 0)
            fprintf('yoff: -neg, xoff: +pos\n')
            fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
            D(1:yc-abs(yoff)+1, abs(xoff):xc-1) =...
                I2(abs(yoff):yc, 1:xc-abs(xoff));

elseif (yoff > 0 && xoff > 0)
            fprintf('yoff: +pos, xoff: +pos\n')
            fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
            D(abs(yoff):yc-1, abs(xoff):xc-1) =...
                I2(1:yc-abs(yoff), 1:xc-abs(xoff));

end
        fprintf('Aligned %d\n',k)
        fprintf('------------------------\n')
        fprintf('\n')

if drawpair
            close all
            imshowpair(I,D,'falsecolor')
            hold on;

plot(marks(1,iter),marks(3,iter),'ro',marks(2,iter),marks(4,iter),'bo',...
'MarkerSize',6,'Linewidth',2);

plot(marks(1,51),marks(3,51),'gx',marks(2,51),marks(4,51),'gx',...
'MarkerSize',12,'LineWidth',2);

            pause()
end

if writefiles
          imwrite( D, fullfile('alignedtomo',sprintf('alignmark%d.tif', k)) )

end
        iter = iter + 1;

else
        iter = iter + 1;

end

end
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Appendix 3: Matlab program routines ; SIFT based alignment

get_marks.m

% Based on matches this funcation saves the SIFT features as marks
% Other SIFT algorithm files not included here and used as in their
% original form can be downloaded from
% http://www.cs.ubc.ca/~lowe/keypoints/.

clear; close all

switch 2
case 1

        pathf = 'preAlignedTomo/';
        files = dir(fullfile(pathf, 'preAlignCen*'));
        marks = zeros(4,length(files));

for k = 1:length(files)
            I = imread( fullfile(pathf, files(k).name) );
            close;
            imshow(I,[])
            p = ginput(2);
            marks(:,k) = p(:);

end

case 2 % Running this part once and saving
%         pathf = 'preAlignedTomo/';
%         files = dir(fullfile(pathf, 'preAlignCen*'));

        allmatches = [];
        locs = {};
        iter = 1;

for k = 12:112 %length(files)-11
if k ~= 62

% calculating matches using match.m
                [num, matches, loc1, loc2] = match('preAlignCen62.tif',...
                    sprintf('preAlignCen%d.tif',k));
                allmatches(iter,:) = matches;
                locs{iter} = loc2;
                title(sprintf('image number %d',k))
                drawnow
                close
                iter = iter + 1;

end
end

        save matchlocs allmatches locs loc1

end

%%
close all;
clear
load matchlocs.mat
countlocs = allmatches > 0;
[sval, sidx] = sort(sum(countlocs),'descend');
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zeroidx = ~countlocs(:,sidx(2)) .* ~countlocs(:,sidx(4));
missing = find(zeroidx)'
[sval2, sidx2] = sort(sum(countlocs(missing,:)),'descend');

marks = [];
marks(1,51) = fix(loc1(sidx(2),2));
marks(2,51) = fix(loc1(sidx(2),1));
marks(3,51) = fix(loc1(sidx(4),2));
marks(4,51) = fix(loc1(sidx(4),1));
marks(5,51) = fix(loc1(sidx(9),2));
marks(6,51) = fix(loc1(sidx(9),1));

iter = 1;
n = 1;
for i = 1:size(countlocs,1)

if i == 51
        iter = iter + 1;

end
    loc2 = locs{i};

if (allmatches(i,sidx(2)) > 0)
        marks(1,iter) = fix(loc2(allmatches(i,sidx(2)),2));
        marks(2,iter) = fix(loc2(allmatches(i,sidx(2)),1));

elseif (allmatches(i,sidx(4)) > 0)
        marks(3,iter) = fix(loc2(allmatches(i,sidx(4)),2));
        marks(4,iter) = fix(loc2(allmatches(i,sidx(4)),1));

elseif (allmatches(i,sidx(9)) > 0)
        marks(5,iter) = fix(loc2(allmatches(i,sidx(9)),2));
        marks(6,iter) = fix(loc2(allmatches(i,sidx(9)),1));

else
        idx = find(countlocs(i,:));

if ~isempty(idx)
            marks(6+n,51) = fix(loc1(idx(1),2));
            marks(6+n+1,51) = fix(loc1(idx(1),1));
            marks(6+n,iter) = fix(loc2(allmatches(i,idx(1)),2));
            marks(6+n+1,iter) = fix(loc2(allmatches(i,idx(1)),1));
            n = n + 2;

else
            marks(1,iter) = fix(loc1(sidx(2),2));
            marks(2,iter) = fix(loc1(sidx(2),1));

end
end

    iter = iter + 1;

end

% Features marking and plotting

figure,
I = imread('preAlignCen62.tif');
subplot(351)
imshow(I); hold on;
plot(marks(1,51),marks(2,51),'bx','LineWidth',2)
plot(marks(1,:),marks(2,:),'b.','LineWidth',2)
subplot(352)
imshow(I); hold on;
plot(marks(3,51),marks(4,51),'rx','LineWidth',2)
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plot(marks(3,:),marks(4,:),'r.','LineWidth',2)
subplot(353)
imshow(I); hold on;
plot(marks(5,51),marks(6,51),'gx','LineWidth',2)
plot(marks(5,:),marks(6,:),'g.','LineWidth',2)
subplot(354)
imshow(I); hold on;
plot(marks(7,51),marks(8,51),'cx','LineWidth',2)
plot(marks(7,:),marks(8,:),'c.','LineWidth',2)
subplot(355)
imshow(I); hold on;
plot(marks(9,51),marks(10,51),'cx','LineWidth',2)
plot(marks(9,:),marks(10,:),'c.','LineWidth',2)
subplot(356)
imshow(I); hold on;
plot(marks(11,51),marks(12,51),'cx','LineWidth',2)
plot(marks(11,:),marks(12,:),'c.','LineWidth',2)
subplot(357)
imshow(I); hold on;
plot(marks(13,51),marks(14,51),'cx','LineWidth',2)
plot(marks(13,:),marks(14,:),'c.','LineWidth',2)
subplot(358)
imshow(I); hold on;
plot(marks(15,51),marks(16,51),'cx','LineWidth',2)
plot(marks(15,:),marks(16,:),'c.','LineWidth',2)
subplot(359)
imshow(I); hold on;
plot(marks(17,51),marks(18,51),'cx','LineWidth',2)
plot(marks(17,:),marks(18,:),'c.','LineWidth',2)
subplot(3,5,10)
imshow(I); hold on;
plot(marks(19,51),marks(20,51),'cx','LineWidth',2)
plot(marks(19,:),marks(20,:),'c.','LineWidth',2)
subplot(3,5,11)
imshow(I); hold on;
plot(marks(21,51),marks(22,51),'cx','LineWidth',2)
plot(marks(21,:),marks(22,:),'c.','LineWidth',2)
subplot(3,5,12)
imshow(I); hold on;
plot(marks(23,51),marks(24,51),'cx','LineWidth',2)
plot(marks(23,:),marks(24,:),'c.','LineWidth',2)
subplot(3,5,13)
imshow(I); hold on;
plot(marks(25,51),marks(26,51),'cx','LineWidth',2)
plot(marks(25,:),marks(26,:),'c.','LineWidth',2)
subplot(3,5,14)
imshow(I); hold on;
plot(marks(27,51),marks(28,51),'cx','LineWidth',2)
plot(marks(27,:),marks(28,:),'c.','LineWidth',2)
subplot(3,5,15)
imshow(I); hold on;
plot(marks(29,51),marks(30,51),'cx','LineWidth',2)
plot(marks(29,:),marks(30,:),'c.','LineWidth',2)

save markersift.mat marks % Save SIFT features as marks
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match.m

% This function takes two images, finds the SIFT features, and
% displays the lines which connect the matched points.
% This funcation finally returns the number of matches found and displayed.
% This Funcation orignally written by David Lowe [22].
% Function comments originally written by David Lowe [22].
% Other funcations are also partially suplemented by the original code and
comments by David Lowe [22].

function [num, matches, loc1, loc2] = match(image1, image2)

% Find SIFT keypoints for each image
[im1, des1, loc1] = sift(image1);
[im2, des2, loc2] = sift(image2);
% distRatio: Only keep matches in which the ratio of vector angles from the
% nearest to second nearest neighbor is less than distRatio (Reference: David
Lowe SIFT code)
distRatio = 0.5;

% For each descriptor in the first image, select its match to second image.
des2t = des2'; % Precompute matrix transpose
for i = 1 : size(des1,1)
   dotprods = des1(i,:) * des2t; % Computes vector of dot products
   [vals,indx] = sort(acos(dotprods)); % Take inverse cosine and sort
results

% Check if nearest neighbor has angle less than distRatio times 2nd.
if (vals(1) < distRatio * vals(2))

      matches(i) = indx(1);
else

      matches(i) = 0;
end

end

% Create a new image showing the two images side by side.
im3 = appendimages(im1,im2);

% Show a figure with lines joining the accepted matches.
figure('Position', [100 100 size(im3,2) size(im3,1)]);
colormap('gray');
imagesc(im3);
hold on;
cols1 = size(im1,2);
for i = 1: size(des1,1)
if (matches(i) > 0)

    line([loc1(i,2) loc2(matches(i),2)+cols1], ...
         [loc1(i,1) loc2(matches(i),1)], 'Color', 'c');
end

end
hold off;
num = sum(matches > 0);
fprintf('Found %d matches.\n', num);
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align_marks_sift.m

% This function performs alignment
% alignment from saved markers based on the SIFT method
%

clear; close all
load markersift.mat
writefiles = 1;
drawpair = 0;

I = imread( 'preAlignCen62.tif' );
if writefiles
    imwrite( I, fullfile('alignedtomo',sprintf('alignmark%d.tif', 62)) )
end
[yc, xc] = size(I);
imshow(I, [])
hold on;
plot(marks(1,:),marks(2,:),'r.',marks(3,:),marks(4,:),'b.',...
    marks(5,:),marks(6,:),'g.',marks(7,:),marks(8,:),'m.',...
    marks(9,:),marks(10,:),'c.',marks(11,:),marks(12,:),'rs',...
    marks(13,:),marks(14,:),'bs',marks(15,:),marks(16,:),'gs',...
    marks(17,:),marks(18,:),'ms',marks(19,:),marks(20,:),'cs',...
    marks(21,:),marks(22,:),'r^',marks(23,:),marks(24,:),'b^',...
    marks(25,:),marks(26,:),'m^',marks(27,:),marks(28,:),'g^',...
    marks(29,:),marks(30,:),'c^');
plot(marks(1,51),marks(2,51),'ro',marks(3,51),marks(4,51),'bo',...
    marks(5,51),marks(6,51),'go',marks(7,51),marks(8,51),'mo',...
    marks(9,51),marks(10,51),'co',marks(11,51),marks(12,51),'rs',...
    marks(13,51),marks(14,51),'bs',marks(15,51),marks(16,51),'gs',...
    marks(17,51),marks(18,51),'ms',marks(19,51),marks(20,51),'cs',...
    marks(21,51),marks(22,51),'r^',marks(23,51),marks(24,51),'b^',...
    marks(25,51),marks(26,51),'m^',marks(27,51),marks(28,51),'g^',...
    marks(29,51),marks(30,51),'c^',...

'MarkerSize',14,'LineWidth',2);

% Find difference
displt = zeros(30,size(marks,2));
for i = 1:size(marks,2)

for j = 1:size(marks,1)
if marks(j,i) ~= 0

            displt(j,i) = marks(j,51) - marks(j,i);
end

end
end
% Plot difference
figure, plot(displt(1:2,:)')
hold on;
plot([51 51],[min(min(displt(1:2,:),[],2)) max(max(displt(1:2,:),[],2))],'k-
')
legend('x1','y1')
axis tight
figure, plot(displt(3:4,:)')
hold on;
plot([51 51],[min(min(displt(3:4,:),[],2)) max(max(displt(3:4,:),[],2))],'k-
')
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legend('x2','y2')
axis tight

% Find distance
distpts = zeros(2,size(marks,2));
for i = 1:size(marks,2)
    n = 1;

for j = 1:2:4
if marks(j,i) ~= 0 && marks(j+1,i) ~= 0

            distpts(n,i) = sqrt((marks(j,51) - marks(j,i))^2 + ...
                (marks(j+1,51) - marks(j+1,i))^2);

end
        n = n + 1;

end
end
% Plot distance
figure, plot(distpts(1,:)','r-')
hold on;
plot(distpts(2,:)','b-')
plot([51 51],[min(min(distpts,[],2)) max(max(distpts,[],2))],'k-')
legend('d1','d2')
axis tight

% Choose the best images or all images
% close all
switch 1

case 1

        tmarks = marks(1:4,7:90);
        offsets = zeros(2,size(marks,2));
        idx1 = find(displt(3,:) == 0);
        idx2 = find(displt(3,:) > 0);
        offsets(1,idx1) = displt(1,idx1);
        offsets(2,idx1) = displt(2,idx1);
        offsets(1,idx2) = displt(3,idx2);
        offsets(2,idx2) = displt(4,idx2);
        offsets = offsets(:,7:90);
        idxp = idx2 - 6;

% loop over images
        iter = 1;
        newmarks = zeros(2,size(tmarks,2));

for k = 7:90

if k ~= 62

                I2 = imread(sprintf('preAlignCen%d.tif',k));
% Offsets

                xoff = offsets(1,iter);
                yoff = offsets(2,iter);

                D = ones(yc, xc) * 0.5;
                D = uint8(D);

if xoff == 0
                    xoff = 1;

end
if yoff == 0
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                    yoff = 1;
end

if (yoff < 0 && xoff < 0)
if ismember( iter, idxp )

                        newmarks(:,iter) = tmarks(3:4,iter) -...
                            abs(offsets(:,iter));

else
                        newmarks(:,iter) = tmarks(1:2,iter) -...
                            abs(offsets(:,iter));

end
                    fprintf('yoff: -neg, xoff: -neg\n')
                    fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                    D(1:yc-abs(yoff)+1, 1:xc-abs(xoff)+1) =...
                        I2(abs(yoff):yc, abs(xoff):xc);

elseif (yoff > 0 && xoff < 0)
if ismember( iter, idxp )

                        newmarks(1,iter) = tmarks(3,iter) -...
                            offsets(1,iter);
                        newmarks(2,iter) = tmarks(4,iter) +...
                            offsets(2,iter);

else
                        newmarks(1,iter) = tmarks(1,iter) -...
                            offsets(1,iter);
                        newmarks(2,iter) = tmarks(2,iter) +...
                            offsets(2,iter);

end
                    fprintf('yoff: +pos, xoff: -neg\n')
                    fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                    D(abs(yoff):yc-1, 1:xc-abs(xoff)+1) =...
                        I2(1:yc-abs(yoff), abs(xoff):xc);

elseif (yoff < 0 && xoff > 0)
if ismember( iter, idxp )

                        newmarks(1,iter) = tmarks(3,iter) +...
                            offsets(1,iter);
                        newmarks(2,iter) = tmarks(4,iter) -...
                            offsets(2,iter);

else
                        newmarks(1,iter) = tmarks(1,iter) +...
                            offsets(1,iter);
                        newmarks(2,iter) = tmarks(2,iter) -...
                            offsets(2,iter);

end
                    fprintf('yoff: -neg, xoff: +pos\n')
                    fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                    D(1:yc-abs(yoff)+1, abs(xoff):xc-1) =...
                        I2(abs(yoff):yc, 1:xc-abs(xoff));

elseif (yoff > 0 && xoff > 0)
if ismember( iter, idxp )

                        newmarks(:,iter) = tmarks(3:4,iter) +...
                            abs(offsets(:,iter));

else
                        newmarks(:,iter) = tmarks(1:2,iter) +...
                            abs(offsets(:,iter));
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end
                    fprintf('yoff: +pos, xoff: +pos\n')
                    fprintf('yoff = %d, xoff = %d\n',yoff,xoff)
                    D(abs(yoff):yc-1, abs(xoff):xc-1) =...
                        I2(1:yc-abs(yoff), 1:xc-abs(xoff));

end
                fprintf('Aligned %d\n',k)
                fprintf('------------------------\n')
                fprintf('\n')

if drawpair
                    close all
                    imshowpair(I,D,'falsecolor')
                    hold on;

plot(tmarks(1,iter),tmarks(2,iter),'ro',tmarks(3,iter),tmarks(4,iter),'bo',...
'MarkerSize',6,'Linewidth',2);

plot(tmarks(1,45),tmarks(2,45),'gx',tmarks(3,45),tmarks(4,45),'gx',...
'MarkerSize',12,'LineWidth',2);

                    drawnow
                    pause()

end

if writefiles
                    imwrite( D,
fullfile('alignedtomo',sprintf('alignmark%d.tif', k)) )

end
                iter = iter + 1;

else
                newmarks(:,iter) = tmarks(1:2,45);
                iter
                iter = iter + 1;

end

end

        figure,
        imshow(I, [])
        hold on;
        idx = 1:size(newmarks,2);
        idx(idxp) = [];
        plot(newmarks(1,56),newmarks(2,56),'rx',...
            newmarks(1,idx),newmarks(2,idx),'r.',...
            newmarks(1,idxp(1)),newmarks(2,idxp(1)),'bx',...
            newmarks(1,idxp),newmarks(2,idxp),'b.',...

'MarkerSize',12,'LineWidth',3);

% Find difference again
        displt2 = zeros(size(newmarks));

for i = 1:size(newmarks,2)
if ismember( i, idxp )

                displt2(:,i) = newmarks(:,idxp(1)) - newmarks(:,i);
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else
                displt2(:,i) = newmarks(:,56) - newmarks(:,i);

end
end
% Plot difference

        figure, plot(displt2')
        hold on;
        plot([56 56],[min(min(displt2,[],2)) max(max(displt2,[],2))],'k-')
        legend('x1','y1')
        axis tight

% Find distance again
        distpts2 = zeros(1,size(newmarks,2));

for i = 1:size(newmarks,2)
if ismember( i, idxp )
distpts2(i) = sqrt((newmarks(1,idxp(1)) - newmarks(1,i))^2 + ...
(newmarks(2,idxp(1)) - newmarks(2,i))^2);
else

                distpts2(i) = sqrt((newmarks(1,56) - newmarks(1,i))^2 + ...
                    (newmarks(2,56) - newmarks(2,i))^2);

end
end
% Plot distance

        figure, plot(distpts2')
        hold on;
        plot([56 56],[min(min(distpts2,[],2)) max(max(distpts2,[],2))],'k-')
        legend('d')
        axis tight

% Compute Error
        idx1 = idx1(7:90);
        idx1(idxp) = [];
        RMSE1 = mean( sqrt((distpts2(idx) - distpts(1,idx1)).^2) )
        RMSE2 = mean( sqrt((distpts2(idxp) - distpts(2,idx2)).^2) )
        RMSE = RMSE1 + RMSE2

        save newmarks displt displt2 distpts distpts2 RMSE

end


