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ABSTRACT

Arthroscopy is one of the most common orthopedic operations and
millions of arthroscopies are annually performed worldwide. Arth-
roscopic diagnosis should be immediate, sensitive and reproducible
to optimize surgical treatments and to indicate therapies in order
to combat trauma-initiated osteoarthritis (OA). During traditional
arthroscopy, the severity and extent of cartilage defects are evalu-
ated by means of visual inspection and palpation. In the diagnosis,
these findings are collated together other with preoperative infor-
mation e.g. those obtained with external palpation, radiographic
imaging or magnetic resonance imaging. However, the conven-
tional arthroscopic evaluation of cartilage is subjective and poorly
reproducible. Thus, more quantitative arthroscopic methods to di-
agnose cartilage lesions are warranted.

Quantitative ultrasound imaging, conducted during arthroscopy
(ultrasound arthoscopy), enables the detection of cartilage injuries
as well as the early signs of spontaneous OA. Nevertheless, the opti-
mization of this technique requires that the effect of cartilage struc-
ture and composition on ultrasound propagation must be under-
stood. In addition, the clinical feasibility of quantitative ultrasound
for simultaneous evaluation of cartilage and subchondral bone has
not been examined in any detail.

In this thesis, the feasibility of using the ultrasound arthroscopy
technique in the diagnostics of joint disorders was investigated in
vitro and in vivo, and ultrasound interactions in cartilage tissue were
modeled using the finite difference time domain (FDTD) method.

In studies I and II, the simultaneous ultrasound assessment of
articular cartilage and subchondral bone was evaluated in vitro and
in vivo. In study III, numerical models for ultrasound reflection
from articular surfaces with varying surface roughnesses, material
properties and angles of ultrasound incidence were constructed.
Study IV introduced a sample specific transversely isotropic nu-
merical model of ultrasound propagation in articular cartilage con-
taining chondrocytes, proteoglycans (PG), collagen and water.



In study I, significant correlations were detected between ultra-
sound parameters and radiographic subchondral bone properties
(volume fraction, mineral density, surface/volume ratio and tra-
becular thickness). Furthermore, in study II, the inclusion of ul-
trasound during arthroscopy was shown to significantly affect the
evaluation of cartilage integrity by increasing ICRS grades com-
pared to those based on conventional visual arthroscopy. In study
III, the significant correlations were revealed in vitro between the ul-
trasound reflection at cartilage surface and the state of the cartilage.
The results of FDTD models for ultrasound reflection and propaga-
tion in cartilage agreed with both current and previously published
experimental studies. The present models provided sample spe-
cific implementation of surface roughness and cartilage composi-
tion. In study IV, a significant correlation was revealed between the
experimental and simulated SOS. The effects of depletion of solid
components agreed with the results in previous literature.

To conclude, ultrasound arthroscopy was found to provide valu-
able information on cartilage. The ultrasound probe used in the
present studies was originally designed for intravascular use and
is not optimal for ultrasound arthroscopy. The numerical models
introduced in this thesis may provide significant help in the inter-
pretation of the results of ultrasound assessment of cartilage and
subchondral bone. However, further development will be needed
before there can be routine clinical use of these techniques.
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1 Introduction

Articular cartilage is a highly specialized tissue covering the ends
of the articulating bones, shielding them from excessive mechan-
ical stress and friction. Cartilage has nonhomogeneous structure
and composition [1–3]. The mechanical properties of articular car-
tilage are based on structural anisotropy and fibril reinforced poro-
viscoelasticity. The main components of cartilage are collagen (type
II) fibrils, proteoglycan macromolecules (PGs) and water. The inter-
actions between these structural components govern the mechanical
response of articular cartilage. It is essential that cartilage retains
its structural integrity if it is to maintain its functionality [4].

In the early stages of cartilage degeneration, the compressive
stiffness of cartilage decreases as the PG content of superficial tis-
sue is reduced, the water content increases and the organization of
collagen fibrils deteriorates [5–7]. Because the cartilage tissue has
a limited capability for repair, even minor changes in the structure
or composition can lead to a pathogenic condition, osteoarthritis
(OA) [5, 8]. OA is the most common joint disease and it has signif-
icant socioeconomic consequences [9]. OA causes pain and loss of
mobility to millions of people all around the world [8].

In current clinical practice, the diagnosis of OA is based on
palpation, and the results of radiography and magnetic resonance
imaging (MRI). Unfortunately the early signs of OA are not visible
in radiography [10]. MRI suffers from inadequate resolution in its
ability to detect signs of incipient OA and furthermore its availabil-
ity is limited. The current advanced MRI methods for quantifying
matrix changes normally require a long acquisition time [11]. In ad-
dition, these methods are non-optimal for real-time monitoring of
surgical interventions. Often, findings obtained with pre-operative
methods such as radiography and MRI need to be verified with
arthroscopy. Arthroscopy is also needed to facilitate the surgical
repair of cartilage and meniscus injuries.

Dissertations in Forestry and Natural Sciences No 174 1
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During arthroscopy, cartilage is evaluated by means of visual
inspection and subjective mechanical probing. Unfortunately, the
inter-observer reliability of the arthroscopic grading of cartilage le-
sions is poor [12], and the majority of orthopedic surgeons have
indicated that they would prefer more quantitative arthroscopic
methods with which to diagnose cartilage lesions more effectively
[13]. Thus, better arthroscopic methods capable of quantitative
evaluation of articular cartilage would be valuable. These meth-
ods could also contribute to the development of novel medical and
surgical treatments.

Quantitative high-frequency ultrasound imaging (QUI) has been
successfully applied in vitro to evaluate several properties of artic-
ular cartilage, including surface roughness [14, 15], integrity of the
superficial layer [15, 16], state of maturation [17], effects of enzy-
matic degradation [18, 19], spontaneous repair [20, 21] and tissue
thickness [22]. QUI has been also used to evaluate the status of the
subchondral bone in vitro [16, 23, 24].

Intravascular ultrasound is a clinical high frequency imaging
modality originally designed for use during cardiovascular surgery
[25]. The technique enables real time, high resolution imaging and,
when modified and adapted, it has been shown to have the po-
tential also to assess articular cartilage. In ultrasound arthroscopy,
this technique can be exploited to image articular cartilage dur-
ing conventional arthroscopy. Ultrasound arthroscopy has been
used to evaluate cartilage thickness, ultrasound reflection and back-
scattering [21, 26, 27], and found to provide valuable diagnostic
information. However, the clinical feasibility of the ultrasound
arthroscopy for simultaneous assessment of articular cartilage and
subchondral bone has not been determined. Furthermore, the inter-
pretation of ultrasound data achieved in ultrasound arthroscopies
needs to be clarified. In addition a full understanding on the inter-
play between sound waves and cartilage constituents requires that
one applies modeling approach.

The finite difference time domain (FDTD) method has been used
to model acoustic wave propagation in inhomogeneous media [28,
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29]. It has also been applied successfully to model ultrasound prop-
agation in bone tissue [30–34]. Previously, when evaluating the
subchondral bone, the effects of cartilage have not been taken into
account or cartilage has been considered as a water-like homoge-
neous and isotropic tissue.

This thesis focuses on the further investigation and development
of the ultrasound arthroscopy technique, and consists of experimen-
tal in vitro and in vivo studies as well as two modeling studies. In ex-
perimental studies I and II, feasibility of simultaneous arthroscopic
ultrasound assessment of articular cartilage and subchondral bone
was investigated. In modeling studies III and IV, numerical models
for ultrasound reflection from the articular surface and propagation
in cartilage were devised and evaluated.

Dissertations in Forestry and Natural Sciences No 174 3
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2 Articular cartilage and sub-
chondral bone

2.1 STRUCTURE AND COMPOSITION OF ARTICULAR CAR-
TILAGE

Collagen is the main structural protein in connective tissues. Col-
lagen, mainly (90-95%) type II collagen, accounts for roughly 10-
20% of cartilage wet weight [35] and approximately 60% of its dry
weight [6]. The rest of the collagen are types IV, IX, X and XI. Col-
lagen forms fibrils with diameters varying from 20 to 200 nm [35].
The fibrils are cross-linked and form a network architecture [36,37]
which confers both high tensile stiffness and strength for the tis-
sue [36–39]. The fraction of collagen of tissue dry weight decreases
from superficial to deep cartilage [40].

In Benninghoff’s model [1] (Figure 2.1) cartilage is divided into
depth-wise zones based on the varying arrangements of the colla-
gen fibrils. In the superficial zone (5-10% of the total thickness [41]),
the collagen fibrils are densely packed and arranged in parallel to
the articular surface [1, 42, 43], in this zone their volume density is
lowest [44].

In the middle zone (5-20% [41]), the fibrils bend toward the sub-
chodral bone and are randomly oriented [1, 45, 46]. Here, the colla-
gen volume density is moderate [44].

In the deep zone (70-90% [41]) the collagen volume density is
highest [44] and the fibrils are oriented perpendicularly to the ar-
ticular surface. The fibrils are anchored to the bone through calci-
fied cartilage. Although Benninghoff’s model is widely applicable,
both anatomical site and species dependent variations in the colla-
gen network organization have been reported [47–50].

Proteoglycans (PGs) are macromolecules accounting for approxi-
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Figure 2.1: Schematic presentation for the structure of articular cartilage.

mately 5-10% of cartilage wet weight [35, 39]. Glycosaminoglycan
(GAG) chains, such as chondroitin sulphate and keratin sulphate
connected to the core protein are made up of PGs [35]. The PG
monomers are bound to a single hyaluronan chain forming a PG
aggregate [51, 52]. PG concentration increases from the superficial
zone to the deep zone [35, 40, 53]. The negative charge of GAGs at-
tracts sodium ions (Na+) leading to the formation of osmotic pres-
sure inside cartilage.

Chondrocytes are specialized cells (diam. ≈ 15 μm) responsible
for manufacturing and maintaining the extracellular matrix (ECM).
Chondrocytes make up roughly 1-5% of the cartilage volume [54,55]
and less than 5% of cartilage wet weight [35]. In the superficial, the
zone chondrocytes are small, flat and oriented tangentially to the
articular surface [46, 56]. In the middle zone, the chondrocytes are
of medium size and spherical [46,56]. In the deep zone, one encoun-
ters the largest chondrocytes, they are arranged in vertical columns
and metabolically they are most active [46, 56, 57]. The mechani-
cal and chemical environments, e.g., external stress and fluid flow
affect the function of chondrocytes [6, 54, 58].

Interstitial water containing electrolytes contributes about 60-80%
to the cartilage wet weight [40, 51]. Although some water is bound
in chondrocytes and collagen fibrils, most of the water is free [59].
The flow of free water plays an important role in determining the
mechanical properties of articular cartilage [35] as well as providing
lubrication of the articulating surfaces. The convection of water and

6 Dissertations in Forestry and Natural Sciences No 174
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its diffusion provide nutrition and allow the exchange of ions in
cartilage [35, 60]. The water content decreases from the superficial
zone towards the deep zone [61, 62].

2.2 FUNCTION OF ARTICULAR CARTILAGE

In ECM of articular cartilage, the PG macromolecules are bound in
the tissue by the collagen network. The negative charge of GAGs
produces repulsive forces which expand the ECM. Furthermore,
the tissues swells due the osmotic pressure caused by negatively
charged GAGs as they attract Na+-ions and the increase in the total
inorganic ion concentration and the resulting elevated osmolarity.
The swelling is resisted by the collagen network. The diverse in-
terplay between the components of porous viscoelastic anisotropic
tissue explains the behavior of articular cartilage during mechani-
cal loading. [39, 63, 64] The viscoelasticity leads to time-dependent
properties that can be divided into flow-dependent and flow-inde-
pendent parts. The flow-dependency is described by the frictional
flow of the interstitial fluid [65]. In contrast, the flow-independent
time-dependent behavior is associated with intrinsic viscoelasticity
of the collagen and PG-matrix [66].

When a constant compressive force is applied onto an articular
surface, it causes the fluid to flow within and out of the porous
tissue. The low permeability of the extracellular matrix prevents
any rapid escape of interstitial fluid. At mechanical equilibrium,
the fluid flow will cease and the resistance to the compressive force
is mainly caused by the solid matrix [67–69]. As the compression
ends, fluid flows back into tissue and it regains its original vol-
ume. During static loading, a hyaluronate binding protein, lubricin,
which is present in synovial fluid and at the cartilage surface helps
to lubricate the surface of cartilage [60].

Under an instantaneous compressive load, the fluid flow plays
a minor role in the mechanical response. As the interstitial fluid
has no time to escape from the tissue it becomes pressurized and
carries the applied load [70–72]. The permeability of articular car-
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tilage is small (approximately 10−16 m4 · N−1 · s) [73]. In a con-
fined compression test of articular cartilage, it has been shown that
the interstitial fluid provides more than 95% of the total load sup-
port [74]. For intact articular cartilage, this high percentage of fluid
load support can last more than 500 s [73]. In addition, the collagen
network contributes to load bearing by resisting the deformation of
cartilage [75–77]. In dynamic loading, the articular surface is lubri-
cated mainly by the interstitial water as it is pressurized and flows
through the cartilage surface [78].

2.3 OSTEOARTHRITIS AND CARTILAGE LESIONS

Osteoarthritis is a holistic joint disease involving the degeneration
of articular cartilage and catabolic changes in other joint tissues.
OA is the one of the most common reasons for mobility problems
not only in senior citizens but also in people of working age.

2.3.1 Etiology

The development of OA is not fully understood [79]. Often OA
develops along with aging without any specific reason (primary
OA). In addition, OA can be initiated after an injury, infection or
dislocation (secondary OA). [6, 7, 80] Cartilage has a limited ability
to recover. When chondrocytes detect degenerative changes in tis-
sue, they start a restoration process, i.e., synthesis of collagen and
PGs [7, 81]. If the degradation process of cartilage overwhelms the
chondrocytic response, OA passes a point of no return [35]. The
loss of PGs has been reported to be reversible, but the disruption of
the collagen network is believed to be irreversible [82–85].

The first signs of OA are fibrillation of collagen network and
the loss of PGs [5, 6, 86]. These changes lead to an increase in the
permeability and water content. As a result, the tissue swells and
becomes softer. At the same time fissures in the articular surface
may occur [7]. In the next phase of OA, cartilage becomes thinner,
the tissue tears and fragments of cartilage end up in the joint space.
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Finally, the underlying subchondral bone is revealed, evoking pain
in articulating bones and the joint becomes dysfunctional or even
immobile [6, 87].

2.3.2 Diagnostics

Clinically, OA is diagnosed based on the results of the physical ex-
amination and the severity of symptoms such as tenderness, swell-
ing, reduced movement or instability of the joint [88, 89]. The di-
agnosis may be confirmed by X-ray or magnetic resonance imag-
ing (MRI). Advanced OA can be detected radiographically as a
narrowed joint space or alterations in the subchondral bone [90].
Unfortunately the almost identical attenuation in articular cartilage
and surrounding tissues limits the visibility of cartilage in X-ray
and computed tomography (CT) images. Thus, the early stages
of OA cannot be revealed [10]. MRI makes it possible to assess
the cartilage thickness, lesions and alterations in subchondral bone
and meniscus [91]. However, high costs, long acquisition times and
limited resolution (size detection limit of 200 μm with a 9.4 T ex-
perimental system [92]) limit the use of current MRI devices in the
diagnostics of incipient OA. In addition, the intra-observer reliabil-
ity of the MRI grading has been reported to be poor [93].

Arthroscopy is an invasive type of joint assessment technique,
enabling a visual evaluation and mechanical probing of the articu-
lar surfaces. Its invasiveness limits its use in diagnostics of OA, but
it is widely applied in the evaluation of the scoring of cartilage le-
sions [13]. The international Cartilage Repair Society’s (ICRS) scor-
ing system can be used to classify the lesions by dividing cartilage
integrity into five categories: intact (0), nearly normal (1), abnormal
(2) and severely abnormal (3 and 4) [94]. The categories are de-
scribed by the depth of the lesion, the integrity of the articular sur-
face and the stiffness of cartilage [94]. Nonetheless, the arthroscopic
evaluation is subjective and poor intra- and inter-rater agreements
have been reported [13, 95]. At the same time, the majority of even
experienced arthroscopists have been reported to feel unsure of the
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grading and thus there is a clear demand for measurement devices
that would provide an objective cartilage grading [95].

2.3.3 Treatment

At present there is no curative treatment available for OA. However,
symptomatic treatments providing pain relief and maintenance of
mobility are available. Physical or occupational therapy may also
be utilized. Commonly these include a loss of excess weight, mus-
cle strengthening, ergonomic improvements, motion exercises and
patient education. When chronic pain occurs or mobility and daily
activities become difficult, pharmacological treatment or surgery
may be considered [96–99].

The pharmaceutical approach consists of analgesics, nonster-
oidal anti-inflammatory drugs or intra-articular injections of hya-
luronic acid or glucocorticoids [96]. At best, even the injections pro-
vide only a short-term pain relief for up to six months [96]. In addi-
tion, their many side effects have limited the prolonged use of non-
steroidal anti-inflammatory drugs [96, 100, 101]. Disease-modifying
drugs and intra-articular drug delivery systems are under devel-
opment [102], e.g., non-invasive ultrasonic delivery of therapeutic
compounds has been reported to be a promising technique avail-
able in the immediate future [103].

The most common surgical procedures for repair of cartilage
injuries are microfracturing [97, 104, 105], autologous chondrocyte
transplantation [98] and osteochondral mosaicplasty [106]. In the
microfracturing procedure, the articular cartilage over the lesion
area is removed and the subchondral bone is perforated with many
holes [104,105] which allow the mesenchymal cells to leave the bone
marrow and to gain access to the surface of the subchondral bone.
The cells differentiate into fibrous chondrocytes forming fibrocar-
tilage in the lesion area [97]. Unfortunately, the fibrocartilage and
hyaline cartilage differ in both structure and composition, e.g., fi-
brocartilage has less type II collagen. The recovery is only tempo-
rary as the clinical benefits have been reported to deteriorate with
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time [105].
In autologous osteochondral transplantation, small cylindrical

osteochondral plugs from the non-weight bearing locations are trans-
planted into the lesion area [107]. This can be conducted during a
single operation. The results of the autologous mosaicplasty treat-
ments have been encouraging [97]. The operation is feasible only
if the lesion site is relatively small and suitable donor sites can be
found. In addition, the results may suffer from the differences in
the structure and composition between the transplant and the sur-
rounding tissue.

Autologous chondrocyte transplantation is conducted in two
phases. In the first phase, chondrocytes are harvested from low
weight bearing sites of a joint for culturing. In the second phase,
the cultured cells are injected in the lesion area and covered with a
periosteal graft [108]. Autologous chondrocyte transplantation may
result in hyaline cartilage appearing the lesion area [108]. How-
ever, the technique is time consuming [97] and the harvesting of
the periosteal grafts may lead to complications [99].

The total joint replacement is the ultimate surgical operation,
suitable when the other treatments are insufficient or inapplicable.
Approximately 90% of the patients are satisfied with the results of
the operation [109]. Unfortunately, the cost of the surgery is high
and sometimes a revision operation is needed [109].

2.4 SUBCHONDRAL BONE

Subchondral bone is located immediately under articular cartilage
and provides support for it. The abnormal interplay between artic-
ular cartilage and subchondral bone is an essential component in
the development of OA. Increases in the thickness and density of
subchondral bone and formation of cysts are often associated with
OA [6, 7, 110]. It has been postulated that OA development orig-
inates from subchondral bone [110–112]. Putatively, the dyssyn-
chrony in the adaptation of the cartilage and bone disrupts the
physiological relationship between the articular cartilage and sub-
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chondral bone and contributes to OA pathology [110]. Even though
the fundamental cause of OA remains unclear, it is evident that a
simultaneous diagnostic assessment of articular cartilage and sub-
chondral bone would greatly contribute to the early detection of
OA. Furthermore, surgical treatments involving operations in sub-
chondral bone, e.g., osteochondral autograft could benefit if there
had been a prior assessment of the health of the subchondral bone.

12 Dissertations in Forestry and Natural Sciences No 174



3 Ultrasound

3.1 BASICS OF ULTRASOUND

Ultrasound is a mechanical wave motion beyond the audible limit
of 20 kHz. Practically the upper limit for ultrasound frequency in
liquids is around 500 MHz due to the extensive attenuation (equa-
tion 3.15). In this presentation, the propagation of ultrasound in
homogeneous, elastic and isotropic medium will be described. The
ultrasonic propagation can be differentiated into two different types
of plane waves: transverse and longitudinal. A transverse or shear
wave is formed when the oscillation of the particles is perpendic-
ular to the direction of the wave propagation. Shear waves do not
occur in low-viscous medium such as air or water [113]. In artic-
ular cartilage, the shear waves play only a minor role [114, 115].
When the particles vibrate in parallel to the direction of the wave
propagation, a longitudinal or pressure wave is formed.

The linear wave equation [116]

∂2u
∂x2 =

1
c2

∂2u
∂t2 , (3.1)

describes the displacement (u = f (x, t)) of single particle as a func-
tion of distance (x) and time (t). The solutions for the partial differ-
ential equation (3.1) take the form

u(x, t) = u1(ct − x) + u2(ct + x), (3.2)

with suitable functions u1 and u2. In acoustics, the most com-
monly used expression is eiω(t±x/c) or the corresponding trigono-
metric expression. Solutions are critically dependent on the selected
initial and boundary conditions. These conditions are usually se-
lected by investigating the system in specific time points and loca-
tions, i.e., interfaces of the medium to meet the requirements of the
system in known states.
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In an elastic medium, a multidimensional wave can be repre-
sented with a one dimensional wave equation provided that exces-
sive medium is assumed; so that the effects of the boundaries can
be neglected. In this case, the boundary conditions are similar in
each point and the wave magnitudes are a function of distance par-
allel to the normal of the planar waves. In this case, the real part of
the function u1 (3.1) gives the pressure amplitude (A):

A = Amax cos(ω0t + φ), (3.3)

where Amax is the maximum amplitude of the wave, ω0 is the
angular frequency, t is time and φ is the phase difference [117].
The velocity and acceleration related to A are the derivatives of the
equation (3.3). The propagating wave is formed when the parti-
cles undergo one by one the harmonic movement. The velocity of
propagating wave is given by the equation

c = f λ, (3.4)

where f is the frequency and λ is the wavelength. In prac-
tice, the density and elastical properties of the medium affect the
speed [113]. The average speed of sound in human soft tissues has
been reported to be approximately 1550 m/s [118].

Intensity I is defined with ρ, c and u by the equation

I =
1
2

ρcu2. (3.5)

The comparison of ultrasound intensities is usually conducted
on the decibel-scale:

ΔI = 10 log10
I
I0

, (3.6)

where I is the measured intensity and I0 is the reference value.
The amplitudes A and A0 can be compared similarly using the
equation
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ΔA = 20 log10
A
A0

. (3.7)

If no attenuation is assumed the pressure of the propagating
wave is directly proportional to the density ρ, propagation speed c
and vibration speed u [113]

p = ρcu. (3.8)

Acoustic impedance Z is a fundamental magnitude defined as
a product of the density ρ and velocity c

Z = ρc. (3.9)

In human soft tissues, acoustic impedance is approximately the
same as in water (1.6 · 106 Pa · s/m) [118].

Absorption In practice, acoustic systems are neither elastic nor
homogeneous. In these cases, the energy of the propagating wave
is transferred to heat energy absorbed by the medium either directly
or indirectly. The conventional absorption coefficient is defined as
the sum of viscous and thermal attenuation by the equation

αabs =
ω2

2ρ0c3

(
4
3

η +
(γ − 1)κ

cP

)
, (3.10)

where ω is the angular frequency, ρ is the density, η is the vis-
cosity, γ is an experimental constant ja cP is the specific heat of the
medium [117]. By assuming that it is an adiabatic and isothermal
process (γ −→ 1), the absorption can be described by the equation

αabs =
8π2 f 2η

3ρc3 , (3.11)

where f is the frequency, η ja ρ are the viscosity and density of
the medium respectively and c is the speed of sound in the medium
[117].

In soft tissues, the overall absorption has been described as the
sum of four components: relaxation processes, relative movement,
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bubble mechanisms and hysteresis [113, 119]. In the relaxation pro-
cess, a temporal density change in the medium increases its internal
energy but only part of the energy is transformed back to the energy
of the propagating wave. When relative motion occurs, the internal
structures of medium such as cells are moved by the wave front and
the wave loses the corresponding energy. The bubble mechanisms
contribute a part of the wave energy to the micro bubbles in the
medium. The energy loss in hysteresis is due to the non-linearity
between the compression and compressive forces.

Scattering, refraction and reflection When a propagating wave
arrives at the interface between two materials with different acous-
tic impedances reflection, refraction and scattering may occur. Re-
flection and refraction typically occur when the target is signifi-
cantly larger than the wavelength. The boundary condition of the
wave equation (3.1) is a continuation of the pressure in the interface.
This is governed by Snell’s law

sin θi

ci
=

sin θt

ct
, (3.12)

where θi and ci are the angle and velocity of the arriving wave
respectively, and θt and ct the angle and velocity of the refracting
wave respectively. The angle θr of the reflected wave is the same in
size with θi and line symmetric with respect to the normal of the
reflecting interface. In an isotropic solid material, Snell’s law must
be applied separately to the longitudinal and transversal compo-
nents [120].

When particle velocity with respect to the normal of the reflec-
tive interface is assumed to be continuous, the relationship between
pressures of the reflected (pr) and incident (pi) waves is obtained as
a reflection coefficient

Ramp =
pr

pi
=

Z2 cos θi − Z1 cos θt

Z2 cos θi + Z1 cos θt
. (3.13)

Here θi and θr are the angles of arrival and refraction respec-
tively and Z1 and Z2 are the acoustic impedances of the interfacing
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mediums. The reflection coefficient of sound wave intensity (Rint)
is the square of Ramp; Rint=R2

amp [117].
When the target is the same as size as the wavelength or smaller,

then scattering may occur. In scattering phenomenon, the direction
of the propagating wave changes and the plane waves spread lo-
cally. The scattering properties of materials are described with the
scattering coefficient αs which depends on frequency.

The overall attenuation can be expressed as a sum of the above-
mentioned processes with the equation

α( f ) = αabs( f ) + αs( f ), (3.14)

where αabs( f ) and αs( f ) are specific frequency dependent coef-
ficients for the medium. Usually, in soft tissues, the equation

α( f ) = α0 f y, (3.15)

is valid. Here α0 and y are experimentally determined constants.
Typically (0 < y ≤ 2) [121].

3.2 GENERATION OF ULTRASOUND

Ultrasound waves can be created by several techniques: magne-
tostrictive [122–124], electrostatic [125, 126], capacitive [127] and
piezoelectric [128] devices have been developed. Joule [122] ob-
served the magnetostriction effect, i.e., a change in length occurs in
a rod of a ferromagnetic substance such as nickel, when a magnetic
field is applied along its length. In an electrostatic transducer, a
dielectric foil vibrates between the electrodes due the electrostatic
forces [126]. The capacitive ultrasonic technique is an old concept
but only recent advances in microfabrication technology have made
it possible to build practical capacitive ultrasound transducers that
can compete with their piezoelectric counterparts [127]. In a capac-
itive ultrasonic transducer, a single element consists of numerous
capacitor cells made from a metalized membrane and a silicon sub-
strate. When it is being used, an alternating voltage is applied
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between the metalized membrane and the substrate to generate ul-
trasound. In medical applications, the most common way to gener-
ate ultrasound is to exploit the piezoelectric phenomenon [118,128]
which is presented in the following section.

Piezoelectric Transducer In a direct piezoelectric effect, a piezo-
electric material builds up a charge on its surface when mechan-
ical stress is applied. In the opposite phenomenon, the indirect
piezoelectric effect, material undergoes mechanical deformation in
an electric field. [113, 118]. The reversible nature of piezoelectric
materials enables their use as a source and receiver of ultrasound.
In transmission the piezoelectric material is driven by the applied
voltage, while when receiving the electrical pulses produced by the
material are acquired.

In a simple flat (non-focused) ultrasound transducer, the piezo-
electric material is commonly located between a backing material
and a matching layer. The backing material is selected to absorb ul-
trasound pulses propagating in a backward direction. The purpose
of the matching layer is to minimize the ultrasound interactions
such as reflection between the piezoelement and the medium. [118]
A focused ultrasound transducer can be constructed by shaping the
piezoelement, adding an acoustic lens between the piezoelement
and medium or by use the of the phased array technique. Focusing
improves the lateral resolution of ultrasound and directs the ultra-
sound energy in a specific location. In the phased array technique,
the transducer includes several piezoelements and time delays are
regulated by selected electrical pulses. In contrast, when using a
concave piezoelement or an acoustic lens, this method allows fo-
cusing at different depths. The phased array technique is the most
commonly used focusing arrangement in medical ultrasonics.

3.3 ULTRASOUND IMAGING

In ultrasound imaging, the pulse-echo method is the most common
method. In this geometry, the same transducer acts as the transmit-
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ter and the receiver. With a phased ultrasound array, an ultrasound
image is constructed by collecting ultrasound signals from each el-
ement. The conventional 2D ultrasound image contains the lateral
locations in the x-axis, the depth or time of flight information in the
y-axis and the colors represent the amplitudes at the each location.

The spatial resolution of any imaging system is defined as its
ability to distinguish two points as being separate in space. The
resolution of the ultrasound image must be defined separately for
the axial and lateral dimensions. The axial resolution is the res-
olution in the direction parallel to the ultrasound beam; it is the
shortest distance between two separate targets in this direction that
can be separated. The length and frequency content of the ultra-
sound pulse determine the axial resolution as a half of the length
of the pulse. The frequency dependency of ultrasound attenuation
demands that one needs to make a compromise between the axial
resolution and imaging depth. The lateral resolution is determined
by the dimensions of the ultrasound field and this may change as a
function of distance.

3.4 ULTRASOUND ASSESSMENT OF ARTICULAR CARTILAGE

Speed of sound For human and bovine articular cartilage, SOS
values between 1580-1760 m/s have been reported [18,19,129–131].
Maturation, anatomical location and integrity affect the speed of
sound in cartilage [17, 18, 132, 133]. SOS has been reported to de-
crease when the collagen [129,134,135] or PG [18,135,136] contents
are reduced. In addition, SOS is highest when the ultrasound beam
is parallel to the orientation of collagen fibrils [137, 138]. When the
water content increases, SOS declines [134, 135]. In degenerated
cartilage, SOS values in the range of 1550-1660 m/s have been re-
ported [18, 19, 22, 129, 131].

Reflection Chérin et al. have shown that when 1) frequency inde-
pendency, 2) perpendicularity between ultrasound beam and car-
tilage surface, 3) distance long enough from the transducer to the
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surface and 4) small dimensions of the surface are assumed, then
the reflection coefficient of linear system in the frequency domain
can be calculated from the equation

Rc =
Sc(z, f )
Sr(z, f )

, (3.16)

where Sc(z, f ) and Sr(z, f ) are the reflected signals in the fre-
quency domain from the cartilage surface and a perfect reflector,
respectively. [139] Typically Sc(z, f ) and Sr(z, f ) are determined by
means of the fast Fourier transform. Chérin’s approach is benefi-
cial as the effects of the attenuation, diffraction and characteristics
of the measurement system can all be neglected.

In the dB-scale, the energy reflection coefficient is defined as

RdB
c ( f ) = 10 · log10

〈|Rc( f )|2〉 , (3.17)

where 〈. . .〉 is the mean over all scan lines of the ultrasound
image.

For cartilage, the reflection is often quantified with the inte-
grated reflection coefficient (IRC) as follows

IRC =
1

Δ f

∫
Δ f

RcdB( f )d f , (3.18)

where Δ f refers to the -6 dB frequency bandwidth. In addition,
the reflection coefficient in the time domain is often applied in the
literature. With the previous assumptions, this can be calculated as
follows

Rc =
Ac

Ar
· 100, (3.19)

where Ac and Ar are the peak-to-peak amplitudes of the signals
reflected from cartilage and perfect reflector, respectively.

In OA, the surface roughness and water content of cartilage in-
crease and the collagen content declines. This leads to a decrease
in the reflection at cartilage surface. In bovine cartilage, it has been
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reported that there is a notable difference in the reflection coeffi-
cient between the intact (IRC ≈ −27 dB, R ≈ 5%) and degenerated
(IRC ≈ −34 dB, R ≈ 2%) [16].

Backscattering Chérin et al. introduced a method for the quan-
tification of backscattering in cartilage. The backscattered energy is
defined as follows

μc =
SB(z, f )
Sr(z, f )

, (3.20)

where SB(z, f ) and Sr(z, f ) are the energy spectra of the scat-
tered sound from cartilage and reflected sound from the perfect
reflector, respectively [139]. The apparent integrated reflection co-
efficient (AIB) in the dB-scale is defined with the equation

AIB =
1

Δ f

∫
Δ f

μcdB( f )d f , (3.21)

where Δ f indicates the -6 dB frequency bandwidth of the ultra-
sound transducer.

Attenuation The ultrasound attenuation is related to the composi-
tion and structure of the cartilage [69] and the integrity of the colla-
gen cross-links [140]. Ultrasound attenuation has been reported to
decrease along with spontaneous degeneration as more and more
collagen and PGs become affected [131]. A wide range for ultra-
sound attenuation values has been reported at different frequencies
1.8-2.7 dB/mm (5-9 MHz) [131], 2.8-6.5 dB/mm (10-40 MHz) [141]
and 92-147 dB/mm (100 MHz) [140]. This agrees with the fre-
quency dependency of attenuation as stated in the equation (3.15).

Ultrasound roughness index Saarakkala et al. have introduced
the ultrasound roughness index (URI) as a quantitative measure of
the microroughness of the articular surface. When perpendicularity
between ultrasound beam and cartilage is assumed, URI is defined
as follows
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URI =

√
1
m

m

∑
i=1

(di − 〈d〉)2, (3.22)

where m is the number of the measurement points, di is the dis-
tance between the cartilage surface and the ultrasound transducer
at each measurement point and 〈d〉 is the average distance [142].
In case of non-perpendicularity, trend removal techniques can be
applied [142]. URI values of 7.4 ± 1.2 μm have been reported for
intact cartilage, whereas much higher values (24.4 ± 15.5 μm) are
found in degenerated cartilage [16].
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4 Modeling of ultrasound
propagation

The propagation of ultrasonic waves can be studied analytically or
numerically although these approaches may also be combined. In
the analytical approach, a set of acoustical equations, e.g., the con-
stitutive wave equation and Snell’s law, are utilized. Modeling is
carried out by solving these equations at each point of interest. The
better the selected equations cover the interactions in the modeled
space, the better will be the analytical results. In order to create a
realistic model of ultrasound propagation many factors for example
anisotropy, heterogeneity, non-planarity, attenuation and arbitrary
shaped pulses should be implemented. In complicated situations,
the set of equations increases and extensive computing resources
are needed. Thus, the analytical approach provides no solutions for
realistic models, making numerical methods necessary. One widely
used method is the finite difference (FD) method which can handle
relatively complex geometries with reasonable accuracy in a time
efficient manner. Furthermore, the FD algorithms are suitable for
parallelization.

The FD methods are one of several domain methods along with
finite-element, spectral element and pseudospectral methods [143].
These are less accurate compared to boundary methods that solve
integral forms, but advantageous in terms of efficiency [144]. In the
FD method, a set of discrete points in space and time form a space-
time grid in the computational domain. At each grid point, the
values of the functions representing the wave field and the material
properties of the medium are studied. FD formulae are applied to
achieve approximations for the spatial and time derivatives of the
functions in a given position. These formulae define the expres-
sion of the derivatives in terms of function values in the grid points
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in the neighborhood. Whereas the analytical approach is based
on differential equations, the FD method replaces the differential
equations with a system of discrete algebraic equations. Three fun-
damental requirements can be demanded from an FD system: con-
sistency, stability and convergence. The consistency ensures that
the original differential equations and difference equations are con-
gruent. The stability means that the error caused by a small per-
turbation in the numerical solution is bounded. Convergence re-
quires that the finite-difference solution approaches the solution of
the original partial differential equation as the increments in space
and time approach zero. The FD method can be applied either in
the time or the frequency domain [145, 146] although usually, the
time domain formulation is utilized since it is more efficient. The
fundamental theory for the FD method was established in 1928 by
Courant et al [147]. The method has been under active investigation
since the 1960’s [148–151]. The development of the FD methods has
escalated in conjunction with the increase in computational power.

4.1 FINITE DIFFERENCE TIME DOMAIN METHOD (FDTD)

The acronym FDTD was introduced by Taflove in 1980 [152]. Before
that, the FDTD method was used to solve various physical prob-
lems. A remarkable improvement occured with the discovery of
the solutions for Maxwell’s curl equations [153] on grids staggered
in space and time [149]. Maxwell’s equations are partial differential
equations that govern the relationship between electric and mag-
netic fields. The superb versatilibity of the Maxwell’s equations al-
lows the electric and magnetic fields to be replaced with the stress
and particle velocity fields [120] enabling acoustic modeling. An ex-
haustive presentation is provided in the book written by Auld [120].

The space to be modeled should be covered with a compu-
tational domain (a space-time grid) in four-dimensional (x, y, z, t)
space, where the variables x, y, z refer to Cartesian coordinates and
t is time. Consider a set of discrete points (zI , yJ , zK, tm) given by
xI = x0 + IΔx, yJ = y0 + JΔy, zK = z0 + KΔZ, tm = t0+, Δt,
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where I, J, K, m = 0, 1, 2, . . ., Δx, Δy, Δz are the spatial increments
and Δt is the time step. Often an isotropic spatial grid is used,
Δx = Δy = Δz = h. The FDTD method approximates a function
u(I, J, K, m) at a grid position (xI , yJ , zK, tm) with a grid function
U(xI , yI , zK, tm).

If one assumes function f (x) to have a continuous first deriva-
tive. The forward difference

d f
dx

(x0) =
f (x0 + h)− f (x0)

h
, (4.1)

the backward difference

d f
dx

(x0) =
f (x0)− f (x0 − h)

h
(4.2)

and the central difference

d f
dx

(x0) =
f (x0 + h)− f (x0 − h)

2h
(4.3)

are different approximations for the derivative of function f (x0).
Truncation errors can be investigated by substituting the correspond-
ing Taylor expansions for f (x0 ± h) in equations (4.1), (4.2) and (4.3).
In equations (4.1) and (4.2) the truncation errors are proportional to
h. Thus, the equations (4.1) and (4.2) are first-order approximations
to the first derivative. In addition, the equation (4.3) provides a
second-order approximation as the truncation error is proportional
to h2. Further, a commonly used second-order approximation to
the second derivative is

d2 f
dx2 (x0) =

f (x0 − h)− 2 f (x0) + f (x0 + h)
h2 . (4.4)

Consistency, stability, convergency An FD scheme is consistent if
the corresponding truncation error, i.e., the difference between par-
tial differential equation and its difference approximation vanishes
when Δt −→ 0 or Δh −→ 0. If this is true only when a certain rela-
tionship between Δt and h is met, then the FD scheme is condition-
ally consistent. An FD scheme is stable if it gives a bounded solu-
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tion when the exact solution is bounded. The von Neuman method
is the most commonly used method for stability analysis [150]. An
FD scheme is convergent if U(xI , yI , zK, tm) −→ u(I, J, K, m) when
Δt −→ 0, Δh −→ 0.

Explicity and implicity In an explicit FD scheme, the motion at
any spatial grid point can be updated for the next time step using
an explicit FD formula which uses only values of motion at previ-
ous time steps. In the case of an implicit scheme, there is no explicit
formula for updating motion only in one grid point. In an implicit
scheme, the motion at a given time level is calculated simultane-
ously at all spatial grid points from the motion values at previous
time levels. The explicit schemes are computationally simpler but
they are less accurate and may be unstable.

4.2 VISCOELASTIC WAVE EQUATION IN THE TIME DOMAIN

In homogeneous, isotropic and elastic solids, the ultrasound prop-
agation can be described by the wave equation

ρ
∂2u
∂2t

= μ∇2u + (λ + μ)∇(∇ · u), (4.5)

where ∇ is the gradient operator, ∇· is the divergence operator,
∂ is the partial differential operator, u(x, y, z, t) is a displacement
vector, t is time, ρ is density and elasticity of the medium is de-
scribed by Lamé constants λ and μ [154]. The Lamé constants can
be expressed in terms of other elastic parameters i.e. Young’s modu-
lus E and Poisson’s ν ratio, that is, λ = Eν

(1+ν)(1−2ν)
and μ = E

(2(1+ν))
.

The viscous losses can be implemented by use of the shear η and
bulk φ viscosities [155]:

μ −→ μ + η
∂

∂t
and λ −→ λ +

(
φ − 2

3
η

)
∂

∂t
. (4.6)

Substitution of equation (4.6) into equation (4.5) provides the
viscoelastic presentation
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ρ
∂2u
∂2t

=

[
μ + η

∂

∂t

]
∇2u +

[
λ + μ + φ

∂

∂t
+

η

3
∂

∂t

]
∇(∇ · u). (4.7)

An explicit FDTD solution for equation (4.7) with the use of
a forward difference approximation in time and central difference
approximation in space is provided in the publication of Delsanto
et al [156].
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5 Aims of the thesis

Quantitative methods for arthroscopic evaluation of cartilage and
subchondral bone are mostly lacking. The ultrasonic assessment of
articular cartilage and bone has shown potential in being able to
evaluate degenerative and traumatic changes. It was hypothesized
that ultrasound arthroscopy could produce diagnostic information
would be supplementary to the information provided by conven-
tional arthroscopy. Since cartilage is a highly anisotropic, hetero-
geneous and multiphasic tissue, its interaction with ultrasound is
complex. Therefore, it was hypothesized that numerical models for
ultrasound propagation in the articular cartilage would improve the
interpretation of the experimental data.

The specific aims for this thesis were:

• To investigate the feasibility of using ultrasound arhroscopy
in the simultaneous assessment of articular cartilage and sub-
chondral bone.

• To conduct ICRS grading using ultrasound imaging and to
compare the outcome with ICRS grading of visual inspection.

• To investigate numerically ultrasound reflection from artic-
ular cartilage with varying surface roughnesses, material pa-
rameters (Young’s modulus, density, longitudinal, and transver-
sal velocities) and different inclinations of the samples.

• To construct and evaluate a sample specific FDTD model of ar-
ticular cartilage containing chondrocytes, proteoglycans, col-
lagen and water.
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6 Materials and methods

This thesis consists of four independent studies (I-IV). The materi-
als and methods used in the studies are summarized in Table 6.1.
The mechanical (study I), histological (study I), microscopy (study
I) biochemical (studies I and IV), μCT-imaging (study I) and ul-
trasound (studies III and IV) data have been obtained from earlier
studies [135, 157–160]. The rest of the data is original. The ultra-
sound data used in study III has been analyzed from a different
and novel perspective.

Table 6.1: Summary of materials and methods used in studies I-IV.

Study Species and tissue Number of Methods
samples or
patients

I Human cartilage n=13 Ultrasound imaging
and bone in vitro Mechanical testing

Histological analyses
FT-IRIS
μCT-imaging

Human cartilage n=2 Ultrasound arthroscopy
and bone in vivo

II Human cartilage n=11 Ultrasound arthroscopy
and bone in vivo Pre-operative CT arthrography

III Human cartilage n=43 Ultrasound imaging
Light microscopy
FDTD-modeling

IV Bovine cartilage n=28 Ultrasound, contact technique
Light microscopy
FT-IRIS
Biochemical analyses
FDTD-modeling

Dissertations in Forestry and Natural Sciences No 174 31



Jukka Liukkonen: Ultrasound Arthroscopy of Articular Cartilage and
Subchondral Bone: Clinical and Numerical Studies

6.1 SAMPLE PREPARATION AND PROCESSING

In studies I and III human and in study IV bovine osteochondral
samples were used. After sample preparation, the osteochondral
plugs were immersed in phosphate-buffered saline (PBS) contain-
ing enzyme inhibitors (ethylenediaminetetraacetic acid dihydrate
and benzamidine HCl) and then frozen. In the in vitro experiments,
the samples were thawed and immersed in PBS supplemented with
inhibitors of proteolytic enzymes throughout the studies. In all
studies, the adjacent surrounding tissue was used for reference
analyses.

In study I, cylindrical osteochondral specimens (diam.=16 mm,
n=13) were drilled from the femoral medial condyles of human ca-
davers (24–76 years of age) with no history of joint diseases [157].

In study III, patellae (n=14) from the right knees of the cadaveric
donors (27-79 years of age) were studied [160]. Six measurement
sites on each patella were selected. The corresponding histologi-
cal sections were prepared, allowing the creation of sample-specific
models with realistic surface profiles.

In study IV, bovine patellae were studied [135]. Bovine knee
joints were opened and the lateral facets of patellae were visually
classified into four degenerative stages: healthy cartilage surface
(n=13), smooth but slightly discolored surface (n=5), superficial
cartilage defect (n=6) and deep cartilage defect (n=8). Cylindrical
(diam.=19 mm) osteochondral plugs were drilled from the prede-
termined site of the patella. In the acoustic measurements, cylin-
drical (diam.=4 mm) full-thickness cartilage samples (n=32) were
prepared from the center of the osteochondral plug.

6.2 MEASUREMENTS WITH THE ARTHROSCOPIC ULTRA-
SOUND SYSTEM IN VITRO

In study I, the samples were degassed for 40 minutes at room
temperature before the ultrasound measurements. The ultrasound
measurements were conducted using a clinical high-frequency in-
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travascular ultrasound (IVUS) device (ClearView Ultra, Boston Sci-
entific, San Jose, CA, USA), equipped with an ultrasound catheter
(diam.=2.8 mm, 9 MHz, 26-dB bandwidth 7.1–11.0 MHz).

The intravascular ultrasound radiofrequency signals were re-
corded and digitized at a sampling frequency of 250 MHz and
resolution of 8 bits using a digital oscilloscope (LeCroy, Chestnut
Ridge, NY, USA). The signals were stored for off-line analysis us-
ing custom-made LabVIEW software (Version 8.2, National Instru-
ments, Austin, TX, USA). The angle between the ultrasound catheter
and the cartilage surface was adjusted manually in order to achieve
the maximum surface reflection. Data from 10 full rotations of the
ultrasound probe were obtained in every measurement. All mea-
surements were repeated three times. The catheter was removed
from the measurement site and then readjusted between repetitions
to investigate the reproducibility of the measurements.

To determine absolute values for the reflection parameters R
and IRC of the saline-cartilage and cartilage-bone interfaces, a rub-
ber disk of known acoustic impedance was used as a reference (cal-
ibrator). In the reference measurements, the distance between the
ultrasound catheter and the disk was varied from 0.1 to 40.0 mm,
using 0.1-mm vertical sampling steps in the direction of the ultra-
sound beam. In that way, the entire distance range used in the
experimental measurements was covered.

6.3 MEASUREMENTS WITH AN ARTHROSCOPIC INDENTA-
TION INSTRUMENT

In study III the experimental data was taken from the study of
Kiviranta et al. [160] where an arthroscopic hand-held indentation
instrument [161] equipped with a miniature unfocused 10-MHz
ultrasound transducer (XMS310, diam.=3 mm, Panametrics Inc.,
Waltham, MA) had been used to measure the ultrasound reflec-
tion from the articular surfaces [160]. A hollow external sleeve was
attached to the tip of the instrument to keep the distance between
the transducer and the cartilage surface constant (3 mm) during the
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measurements.

6.4 ULTRASOUND ARTHROSCOPY

The QUI system utilized in the in vitro measurements was the same
system used for in vivo arthroscopies in Kuopio University Hospital
(study I) and in Oulu University Hospital (study II). The ultrasound
arthroscopies were performed during conventional arthroscopy of
knee joints. During the arthroscopies, the antero-lateral and antero-
medial portals were used. The ultrasound catheter was inserted
into the knee joint through one portal; it was navigated with the
help of an arthroscope inserted through the other portal. In addi-
tion to imaging, the reflection parameters (R and IRC) and backscat-
tering (AIB) were determined off-line similarly as in in vitro proce-
dure.

In study I, the patients (n=2) were referred for arthroscopic ex-
amination for surgical repair of an osteochondritis dissecans (OCD)
lesion and for evaluation of a surgically repaired anterior cruciate
ligament after a sports injury.

In study II, ultrasound images were reconstructed from the raw
ultrasound data with custom-made LabVIEW software. In the re-
construction, absolute values of Hilbert transformations, correspond-
ing to each raw signal, were plotted in polar coordinates, and sec-
tors between the values were interpolated. During the arthroscopies
(n=11), ultrasound measurements were conducted on each patient
at anatomical sites matching the pre-operative CT analysis. All
sites were also ICRS graded by means of visual inspection and me-
chanical probing [94]. The reconstructed ultrasound images were
blind coded for the ICRS grading performed by an experienced or-
thopaedic surgeon not involved in the surgical procedures.

6.5 SCANNING ULTRASOUND SYSTEM

In study I after the measurements with a clinical high frequency
intravascular ultrasound device, an UltraPAC scanning ultrasound
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system (Physical Acoustics Corporation, Princeton, NJ) was used.
The UltraPAC system consists of a 0.5 to 100-MHz ultrasound pulser-
receiver board and a 500-MHz 8-bit A/D board. A focused 5-
MHz (V307, element diam. = 25.4 mm, confocal beam diam.=600
μm, focal length=49.9 mm, focal zone=8.8 mm, measured band-
width at -6 dB = 2.7 to 6.3 MHz) or 7.5-MHz ultrasound transducer
(V321, element diam.=19.0 mm, confocal beam diam.=600 μm, fo-
cal length=50.6 mm, focal zone=8.8 mm, measured bandwidth at
-6 dB = 5.2 to 9.7 MHz) was connected to the scanning system
in a pulse-echo geometry. For each sample, two measurements
were conducted at one local position (single point measurements).
In the first measurement, the reflection from articular surface was
maximized while in the second measurement, the reflection from
cartilage-bone interface was maximized. To achieve this arrange-
ment, samples were manually inclined using two orthogonal go-
niometers (Edmund Optics Ltd, York, UK) in order to ensure that
there was a perpendicular angle of incidence of ultrasound pulse
at the investigated interface. The signal gain was adjusted manu-
ally to optimize the signal-to-noise ratio for the different interfaces.
Data acquisition and control of the ultrasound system were realized
with a custom-made LabVIEW (version 6.1, National Instruments,
Austin, TX) program. The reference measurements for 5 and 7.5
MHz transducers were conducted with a polished steel plate with
a known acoustic impedance.

6.6 MECHANO-ACOUSTIC TESTING DEVICE

In study IV, experimental data was obtained from a previous study
[135] where the measurements had been conducted using a custom-
made computer-controlled high-resolution mechano-acoustic mate-
rial testing device [161] equipped with a 500-MHz PAC-AD-500 8-
bit AD board and a 0.5- to 100-MHz PAC-IPR-100 pulser-receiver
board (Physical Acoustics Corporation, Princeton, NJ). A Panamet-
rics VM-116, contact US transducer (center frequency 10.3 MHz)
acted as the compressive platen. The speed of sound in cartilage
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was determined after equilibrium preloading (12.5 kPa) using the
pulse-echo technique. The time-of-flight was determined as the
travel time of the maximum amplitude of the US pulse back and
forth through the sample, and the cartilage thickness at preload
was determined as the distance between the compressive platens.

6.7 ULTRASOUND PARAMETERS AND ANALYSIS

In studies I and II, the reflection parameters (R and IRC) and AIB
[15, 21, 27] were determined with the arthroscopic ultrasound sys-
tem for cartilage and subchondral bone. For cartilage surface, URI
was also determined. URI was calculated from a sector profile con-
sisting of 11 signals (5 points at each side of the point perpendic-
ular to the ultrasound probe). The curvature caused by rotation
of the ultrasound probe and the natural contour of the cartilage
surface was removed from cartilage surface profiles by using the
smoothing spline-fitting technique [16]. In order to ensure normal
incidence between the ultrasound pulse and cartilage surface, the
ultrasound signal with the smallest time-of-flight (TOF) value was
selected for calculation of the reflection parameters (R and IRC)
and backscattering AIB.

In study II, the ultrasound parameters of bone (R, IRC and AIB)
were corrected with the sample specified reflection at the cartilage
surface (Rcartilage) and attenuation in cartilage. The attenuation in
cartilage was assumed to be constant (α=0.25 Np/mm) [69], and the
thickness of the cartilage was determined by assuming a constant
ultrasound speed in cartilage (1620 m/s) [69]. Computational cor-
rections for ultrasound reflection and attenuation in overlying carti-
lage were combined and varied based on values reported in earlier
studies [69]. This was done to evaluate the impact of variation in
acoustic properties of cartilage on values of ultrasound parameters
determined for underlying subchondral bone.

In study III, the experimental raw data from the earlier study
[160] were analyzed to calculate the integrated reflection coefficient
(IRC) for cartilage. The mixed linear model was used to test the
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significance of spatial variation in the IRC values separately within
the healthy and degenerated cartilage sample groups.

In study IV, experimental ultrasound data for SOS in cartilage
was obtained from a previous study [135].

6.8 MECHANICAL TESTING

A custom-made instrument equipped with a high-resolution (0.1
mm) actuator (PM500–1 A, Newport, Irvine, CA, USA) and a load
cell (0.005-N resolution) (Sensotec, Columbus, OH, USA) was used
in the mechanical measurements of cartilage [157] as a reference in
study I. The measurement control and data acquisition were car-
ried out with custom-made software (LabView, National Instru-
ments). For the determination of Young’s modulus, a stepwise
stress-relaxation protocol in indentation (indenter diam. = 1.04 mm)
geometry was used (four steps, 5% strain up to a maximum strain
of 20%) [162]. The stress-relaxation test was followed by the mea-
surement of the dynamic modulus (1-Hz sinusoidal loading, 1%
strain amplitude) [131]. The values of Young’s modulus and dy-
namic modulus were calculated by assuming cartilage to be a me-
chanically elastic and isotropic material [163].

6.9 HISTOLOGICAL ANALYSIS

In study I, the integrity of the specimens was evaluated using Man-
kin scoring [68]. Samples were randomly selected and blind-coded
before evaluation. Final Mankin score values were averaged from
the results of three independent researchers and rounded to the
nearest integer [157].

In studies III and IV, images obtained with a light microscpe
were used to construct the geometries for the numerical models.
Safranin O stained histological sections (thickness = 3 μm) were
prepared from as close as possible to the actual measurement site
and imaged using an optical microscope. In study III, the surface
profiles of the cartilage samples were obtained from the digitized
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histological sections by tracing any abrupt changes in the contrast
between the cartilage and the background. In study IV, safranin O
stained sections were used to determine the distribution of chon-
drocytes within cartilage tissue.

6.10 BIOCHEMICAL ANALYSES

The water contents of the samples used in studies I and IV, deter-
mined as the difference between the wet weight and dry weight
after freeze-drying, were obtained from previous studies [135, 158].
The proteoglycan content used in study IV, measured by determin-
ing the content of uronic acid, was from the study of Qu et al.
(2007).

6.11 FT-IRIS IMAGING

In studies I and IV PG and collagen distributions were determined
from unstained sections (thickness 5 μm) with FT-IRIS (Fourier
transform infrared spectroscopy) technique [164, 165]. The colla-
gen content was estimated by integration of the amide I region
(1710–1610 cm−1) [164]. In study IV, depth-wise PG and collagen
distributions were calculated based on data obtained in a previous
study [166].

6.12 MICRO-COMPUTED TOMOGRAPHY IMAGING

In study I, each sample was analysed using micro-scale computed
tomography (μCT) imaging (voxel size: 14.93·14.93·14.93 μm3, tube
voltage: 100 kV; SkyScan, Kontich, Belgium) to determine the struc-
ture and density of subchondral bone (volume fraction, mineral
density, surface-to-volume ratio and trabecular thickness).
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6.13 PRE-OPERATIVE CT ARTHROGRAPHY

In study II prior to the CT scan, a 20-mL dose of ioxaglate–gadopen-
tetate contrast agent mixture (105 mM Hexabrix 320, Guerbet, Rois-
sy, France, and 2.5 mM Magnevist, Bayer HealthCare Pharmaceu-
ticals, Berlin, Germany; diluted in 0.9% saline) was injected intra-
articularly. After the injection, the patient performed active flex-
ion–extension of the knee for 5 min to facilitate that there was an
even distribution of the contrast agent in the joint space. After this
exercise period, the knee joint of the patient was scanned using
a clinical 64-slice CT scanner (Discovery PET/CT 690, GE Medi-
cal Systems, Waukesha, WI, USA) with a tube voltage of 100 kV,
tube current of 160 mA and current time product 146 mAs. The
focal spot diameter and pitch were 0.7 mm and 0.53, respectively.
From the arthrographic CT images, the thickness of the subchon-
dral plate and X-ray attenuation (HU) in subchondral bone were
determined for each patient at seven anatomical locations - lateral
trochlea, medial trochlea, lateral femoral condyle, medial femoral
condyle, lateral tibial condyle, medial tibial condyle and central
patella, corresponding to the sites defined in the ICRS evaluation
system. The 3D Slicer (www.slicer.org) software was used for 3D
image analysis of subchondral bone [167].

The parameters used in the studies are summarized in Table 6.2.

6.14 FDTD MODELING

In studies III and IV, a sample-specific FDTD models for ultrasonic
measurements of articular cartilage in pulse-echo geometry were
developed. In study III, the FDTD model for ultrasound reflection
from the cartilage surface was constructed using Wave 2000 Plus
3.00 R3 software (CyberLogic Inc., New York, NY, USA). In study
IV, Wave 3000 Plus 4.20 R1 software (CyberLogic Inc., New York,
NY, USA) was used to simulate the SOS in cartilage. Wave 3000 Plus
was used for 2D simulations by limiting the grid in the y-direction
with longitudinal boundary conditions. Both softwares can solve an
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Table 6.2: Summary of parameters compared in studies I-IV.

Study and methods Parameters (unit or range)
Study I
Ultrasound R (%), IRC (dB), AIB (dB), URI (μm),

Cartilage thickness (mm)
Mechanical testing E (MPa)
Biochemical analysis Water content (%),

Uronic acid content (%)
Histological analysis Mankin score (range: 0-14)
μCT imaging Cartilage thickness (mm)

Study II
Ultrasound R (%), IRC (dB), AIB (dB), URI (μm)

Cartilage thickness (mm)
Conventional arthroscopy ICRS-grade (range: 0-4)
Preoperative CT Plate thickness (μm),

X-ray attenuation (HU)

Study III
Ultrasound R (%), IRC (dB), URI (μm)
Material parameters E (MPa), λ (MPa), μ (MPa), ν,

ρ (kg/m3), vl (m/s), vt (m/s)
Model output R (%), IRC (dB), URI (μm)

Study IV
Ultrasound SOS (m/s)
Material parameters E (MPa), λ (MPa), μ (MPa), ν,

ρ (kg/m3), vl (m/s), vt (m/s)
Model output SOS (m/s)

acoustic wave equation within each homogenous grid element and
compute the displacement vector at each time step of the simulation
based on the equation (4.7). The input signal waveforms of the
transducers were digitized from the datasheets of the transducers
used in the corresponding experimental measurements.

In study III, the model geometry was identical with the experi-
mental geometry containing a single-phasic homogeneous material
(cartilage) immersed in water. The surface roughness profiles of
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the samples, obtained from the digitized histological sections, were
implemented in the model individually for each sample. Three dif-
ferent sets of simulations were made (Table 6.3): 1) To evaluate
systematically the effect of the roughness of the cartilage surface on
the integrated reflection coefficient (IRC), seven artificial roughness
profiles (roughness = 0.0 . . . 29.7 μm) were generated with Matlab
v.7.6.0 (MathWorks Inc., Natick, MA) using a custom-made algo-
rithm. 2) The effect of the ultrasound angle of incidence was stud-
ied with three combinations of values of material parameters (ρ,
λ and μ). The above-mentioned seven artificial roughness profiles
were inclined in steps of 1◦ from -5◦ to 5◦, with the 0◦ correspond-
ing to the normal incidence of the ultrasound pulse. IRC was cal-
culated for all simulations. 3) In order to investigate the effect of
integrity of the cartilage surface, one representative digitized histo-
logical human cartilage section per sample was selected after visu-
ally evaluating all sections prepared from each sample. The section
was implemented into the model to simulate the reflection of the
ultrasound from the cartilage surfaces with visually intact appear-
ance and with different grades of surface degeneration. The vis-
cous damping parameters for cartilage were set to constant values
η = 1.75 N · s/m2 (shear viscosity) and φ = 199.7 × 10−6 N · s/m2

(bulk viscosity).

Table 6.3: Summary of material parameters used in studies III and IV.

Study / ρ λ μ

material (kg/m3) (MPa) (MPa)
III
Cartilage 1010 − 1100 2342.7 − 3306.9 3.3 − 33.4

IV
Water 1000 2241 0
Chondrocytes 1580 3410 0
PGs 1350 4120 0.017
Collagen 1350 7487 0.017
Steel 8030 100868 78170
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In study IV, sample specific simulation geometries (n=28), equiv-
alent to the experimental setup [135], were created based on histo-
logical sections with custom-made software in Matlab 2012a (Math-
Works Inc., Natick, MA). The cartilage matrix was assumed to con-
sist of chondrocytes, water and solid matrix (PG and collagen).
First, chondrocytes were implemented based on microscopic im-
ages of safranin O stained sections. The extracellular matrix was
divided into 40 depth-wise layers. The water content was imple-
mented based on biochemical analyses. The rest of the extracellular
space was assumed to be solid containing PG and collagen. PG
and collagen distributions were determined with the FT-IRIS tech-
nique and implemented as a solid matrix containing 1:3 PG and
2:3 collagen [168]. Depth-wise water content was then calculated.
The elastic parameters for PG and collagen were calculated based
on their acoustical properties as reported in the literature [129,169].
In each layer the elastic parameters of the FDTD grid were calcu-
lated as the weighted average of all components (PG, collagen and
water). Finally, SOS in each sample was determined based on the
simulated data. A summary of the model parameters is provided
in Table 6.3.

By using one sample with original a simulated SOS value of
1676 m/s the effects of PGs and collagen contents were studied
with simulations in which collagen or PGs were completely re-
moved, leaving other model features untouched. The sensitivity
of simulated SOS for changes in material parameter values ρ, λ and
μ was investigated by varying each parameter individually (change
of -10%, -5%, 5% or 10%).

6.15 STATISTICAL METHODS

Statistical analyses were conducted with SPSS software (IBM SPSS
Statistics for Windows, Version 19.0. Armonk, IBM Corp., NY,
USA). In studies II and IV, the Wilcoxon signed ranks, Kruskal-
Wallis and Mann–Whitney tests were used to compare averages.
The different scoring methods were compared with the inter-item
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correlation analysis.
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7 Results

7.1 ULTRASOUND MEASUREMENTS IN VITRO

The mean values of the ultrasound parameters measured in study I
are presented in Table 7.1. Significant linear correlations were found
between the reflection coefficients (R, IRC) of cartilage surface and
the Mankin score or Young’s modulus (|r| > 0.56, p < 0.05) (Ta-
ble 7.2). The linear correlations between the apparent integrated
backscattering (AIB) or ultrasound roughness index (URI) and the
mechanical or structural parameters of cartilage did not achieve
statistical significance (p > 0.05). Further, there were no significant
correlations between the ultrasound parameters and the collagen
content determined with FT-IRIS.

All the bone ultrasound parameters (R, IRC, AIB) correlated
significantly with the bone surface/volume-ratio (|r| > 0.70, p <

0.05) and trabecular thickness (|r| > 0.59, p < 0.05, (7.2). Fur-
thermore, a significant correlation was detected between R and
bone mineral density (r = 0.65, p < 0.05). The measurements
of reflection and backscatter parameters (R, IRC, AIB) for articu-
lar cartilage and subchondral bone tissue were highly reproducible
(sCV(%) = 0.4− 3.0), whereas the reproducibility of the ultrasound
roughness index (URI) was weaker (17.0%).

The cartilage-subchondral bone interface was visible in all of
the ultrasound measurements, which made it possible to evaluate
the thickness of the cartilage. A significant linear correlation was
found between the cartilage thickness determined with ultrasound
and μCT-imaging (r = 0.75, p < 0.01).

There were significant correlations between the 5 MHz ultra-
sound reflection coefficients (R, IRC) and the collagen content de-
termined with FT-IRIS (r > 0.57, p < 0.05). However, there were no
significant linear correlations between the ultrasound parameters
(R, IRC, AIB and URI) and the mechanical and structural parame-
ters of cartilage (Table 7.2). All the bone ultrasound parameters (R,
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IRC, AIB) determined with both the frequencies (5 MHz and 7.5
MHz) correlated significantly with the bone surface/volume-ratio
(|r| > 0.59, p < 0.05). In addition, at both frequencies the AIB and
the trabecular thickness were significantly correlated (|r| > 0.58,
p < 0.05). Furthermore, at 5 MHz the reflection coefficient of
cartilage-bone interface was significantly correlated with the tra-
becular thickness (r = 0.69, p < 0.01, Table 7.2).

There was consistency between the ultrasound reflection param-
eters of the cartilage-bone interface obtained with the laboratory
system and those estimated with the clinical device. All the re-
flection coefficients (R, IRC) determined with different instruments
were significantly correlated (r > 0.73, p < 0.01).

A significant correlation (r = −0.52, p < 0.01) between simu-
lated IRC and the roughness of the human samples was found in
study III.

Table 7.1: Values (mean±SD) of reflection parameters (R and IRC), apparent integrated
backscattering coefficient (AIB) and ultrasound roughness index (URI) determined with
ultrasound in vitro.

Cartilage Bone
Parameter Value Parameter Value
9 MHz arthroscopic ultrasound system
Rc (%) 6.7 ± 2.5 Rb (%) 23.4 ± 10.1
IRCc (dB) −23.8 ± 4.1 IRCb (dB) −21.9 ± 4.8
AIBc (dB) −45.5 ± 4.0 AIBb (dB) −43.9 ± 5.5
URIc (μm) 13.9 ± 5.2
5 MHz scanning ultrasound system
Rc (%) 6.5 ± 1.6 Rb (%) 40.1 ± 17.1
IRCc (dB) −24.1 ± 2.0 IRCb (dB) −9.0 ± 3.6
AIBc (dB) −50.7 ± 4.2 AIBb (dB) −15.5 ± 5.2
7.5 MHz scanning ultrasound system
Rc (%) 6.5 ± 2.9 Rb (%) 38.6 ± 21.7
IRCc (dB) −25.3 ± 6.4 IRCb (dB) −15.8 ± 5.9
AIBc (dB) −53.2 ± 4.0 AIBb (dB) −27.9 ± 11.6
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Table 7.2: Spearman’s correlation coefficients between ultrasound parameters (R, IRC,
AIB and URI) and tissue characteristics. The reflection coefficients of bone surface (R,
IRC) were significantly related to surface/volume ratio.

Mankin Young’s Water Uronic
score modulus content acid

Cartilage
9 MHz arthroscopic ultrasound system
Rc -0.61∗ 0.57∗ -0.37 0.52
IRCc -0.64∗ 0.56∗ -0.37 0.50
AIBc -0.09 -0.26 -0.51 -0.22
URIc 0.43 -0.18 0.18 -0.13
5 MHz scanning ultrasound system
Rc -0.41 0.50 -0.49 0.29
IRCc -0.41 0.55 -0.42 0.35
AIBc -0.11 0.19 -0.22 0.46
7.5 MHz scanning ultrasound system
Rc -0.11 0.25 -0.21 0.27
IRCc -0.20 0.35 -0.31 0.40
AIBc 0.14 0.54 -0.03 0.38

Volume Young’s Surface/volume Trabecular
fraction modulus ratio thickness

Bone
9 MHz arthroscopic ultrasound system
Rb 0.36 0.65∗ -0.88∗∗ 0.82∗∗
IRCb 0.07 0.48 -0.82∗∗ 0.72∗∗
AIBb -0.01 0.41 -0.70∗ 0.59∗
5 MHz scanning ultrasound system
Rb 0.34 0.31 -0.74∗∗ 0.69∗∗
IRCb 0.01 0.26 -0.59∗ 0.41
AIBb 0.35 0.39 -0.78∗∗ 0.72∗∗
7.5 MHz scanning ultrasound system
Rb 0.18 0.29 -0.61∗ 0.48
IRCb 0.10 0.39 -0.62∗ 0.45
AIBb 0.31 0.42 -0.68∗ 0.58∗
∗p < 0.05
∗∗p < 0.01

7.2 ULTRASOUND ARTHROSCOPIES IN VIVO

In studies I and II, all of the ultrasound arthroscopies were success-
ful, enabling evaluation of articular cartilage, subchondral bone and
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meniscus. In addition, they made it possible to achieve simultane-
ous imaging of articular cartilage and subchondral bone. This en-
abled the evaluation of cartilage thickness. In the OCD case (study
I), the lesion site was detected and its dimensions could be mea-
sured with ultrasound. Furthermore, the success of the repair op-
eration could be evaluated with ultrasound imaging. In study II,
ultrasound imaging of a particular anatomical location could not
be performed in 7 out of 77 examined regions because of the non-
optimal maneuverability and fragility of the ultrasound catheter.

The ICRS grades determined during conventional arthroscopy
and ultrasound arthroscopy differed (Table 7.4). The median values
of grades based on ultrasound images were equal to or greater than
those based on conventional arthroscopic evaluation at all anatom-
ical locations (Figure 7.1). On the basis of the inter-item correlation
analysis, there was a relatively poor agreement between the ICRS
grades determined by conventional arthroscopy and those with ul-
trasound arthroscopy was relatively poor (r = 0.57).

Reflection (R and IRC) and backscattering (AIB) values (Table
7.3) determined for cartilage were significantly (p < 0.05) lower in
group 2 (ICRS grade 2) than in groups 0 and 1 (ICRS grades 0 and
1). No significant differences were observed in ultrasound parame-
ters of subchondral bone between the sample groups with different
ICRS grades. Furthermore, there were no significant correlations
between the ultrasound parameters and subchondral plate thick-
ness or X-ray attenuation in subchondral bone.

Computational corrections After different corrections for bone
parameters (R, IRC and AIB) significant correlations were detected
(r > 0.73, p < 0.01) between uncorrected and corrected values. On
the basis of numerical simulations, the effect attenuation in cartilage
was found to be greater than the effect of reflection at the articular
surface on values of ultrasound reflection at the cartilage–bone in-
terface (Figure 7.2).
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Table 7.3: Values (mean±SD) of ultrasound reflection parameters (R and IRC), appar-
ent integrated backscattering coefficient (AIB) and ultrasound roughness index (URI)
determined with the arthroscopic ultrasound system in vivo as a function of ICRS grade.
Reflection and backscattering values determined for cartilage were significantly (p < 0.05)
lower in group 2 (ICRS grade 2) than in groups 0 and 1 (ICRS grades 0 and 1).

Ultrasound Grade
parameters 0 1 2
Cartilage
Rc (%) 3.5±2.3 2.5±1.2 1.2±0.5
IRCc (dB) -30.7±5.9 -32.9±4.0 −38.7±3.3
AIBc (dB) -44.7±8.1 -46.8±5.8 −52.0±6.7
URIc (μm) 11.5±9.0 14.6±11.2 18.2±9.8
Bone
Rb (%) 13.9±7.1 15.3±7.5 15.9±6.7
IRCb (dB) -26.7±6.5 -26.6±7.8 −23.9±5.5
AIBb (dB) -42.0±3.8 -42.3±7.9 −40.3±5.0

Table 7.4: Comparison between ICRS grades obtained by conventional and ultrasound
arthroscopies. Ultrasound arthroscopy resulted higher scores than conventional arthro-
copy.

ICRS grade Conventional Ultrasound
arthroscopy arthroscopy

0, normal 24 13
1, nearly normal 21 23
2, abnormal 22 14
3, severely abnormal 3 9
4, severely abnormal 0 3

7.3 FDTD MODELING

When the roughness of the surface of the cartilage was increased
in the model from 0 μm to 30 μm, the change in the values of the
IRC was -8 to -14 dB for any chosen combination of values of the
material parameters. In addition, a threshold was found between
the roughness values from 7.8 μm to 13.1 μm, beyond which, when
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Figure 7.1: Comparison (median values) of ICRS grades determined with ultrasound
arthroscopy (above) and conventional arthroscopy (bellow).

the roughness increased, the reflection of the ultrasound at the nor-
mal angle of incidence diminished and the angular dependence of
the reflection disappeared. The numerically evaluated IRC values
for the same samples correlated significantly with the roughness
(r = −0.52, p < 0.01). However, there was no significant correlation
between the experimentally and numerically determined values of
the IRC.

In study IV, a significant linear correlation was revealed between
the experimental and simulated SOS values (r = 0.82, p < 0.05)
(Figure 7.3). The simulated SOS values were systematically higher
(100 m/s average difference) (p < 0.05). Total removal of PG and
collagen reduced SOS values from 1676 m/s to 1660 m/s and 1518
m/s, respectively. Changes in the values of the material parameters
(ρ, λ and μ) from -10% to 10% produced -26...25 m/s changes in
SOS (Table 7.5).
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Figure 7.2: A) Ultrasound attenuation (α=0.25 Np/mm) in cartilage plays a major role
when ultrasound parameters of bone (e.g. reflection at cartilage-bone interface, y-axis in
the figures) are corrected with reflection and attenuation in cartilage. B) The attenuation
(0.1 . . . 2 Np/mm) has a major role also when cartilage thickness is constant (2.0 mm).
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Figure 7.3: Experimental and simulated SOS values. Despite the relatively strong corre-
lation the simulated SOS values were systematically higher than those determined experi-
mentally (100 m/s average difference). Simulated SOS = 0.66 × experimental SOS + 636
m/s.

Table 7.5: SOS (m/s) in cartilage as a function of changes in each material parameter. The
parameters were varied one by one, leaving the other model features unchanged.

PG Collagen
Change (%) ρ λ μ ρ λ μ

-10 1682 1669 1676 1689 1650 1676
-5 1679 1672 1676 1682 1663 1676
0 1676 1676 1676 1676 1676 1676
5 1673 1679 1676 1669 1688 1676
10 1669 1683 1676 1663 1701 1676
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8 Discussion

The first aim of this thesis was to evaluate the potential of an arthro-
scopic ultrasound technique for conducting a simultaneous assess-
ment of articular cartilage and subchondral bone in vitro and in vivo.
In study I, the feasibility of the technique was investigated with hu-
man osteochondral samples and two clinical arthroscopies. A series
of arthroscopies was conducted in study II in order to study the ad-
ditional value of arthroscopic ultrasound imaging when evaluating
the scoring of cartilage injuries and tissue integrity. The second aim
was to deepen the understanding of the interplay between ultra-
sound and cartilage properties to improve interpretation of exper-
imental ultrasound data by developing specific FDTD-models for
ultrasound propagation in cartilage.

8.1 SIMULTANEOUS ULTRASOUND ASSESSMENT OF AR-
TICULAR CARTILAGE AND SUBCHONDRAL BONE

The correlations between the ultrasound reflection parameters (R
and IRC) determined with the arthroscopic ultrasound system and
the reference parameters (Mankin score, Young’s modulus, water
content and uronic acid content) are consistent with those reported
in previous studies with the laboratory ultrasound instrumentation
in use [16, 170]. The failure to detect an association between AIB
and the structural and mechanical parameters of cartilage may be
due the fact that only minor degenerative changes were present in
the studied cartilage samples. In early-stage OA, the alterations
are limited to the surface of cartilage, and changes in ultrasound
scattering may not occur within the deeper layers of cartilage.

Ultrasound measurements through articular cartilage were found
to be moderately sensitive to degenerative changes in subchondral
bone. The backscattering (AIB) in subchondral bone tissue was sig-
nificantly related to surface/volume ratio and trabecular thickness.
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In addition, there were significant correlations between reflection
coefficients (R and IRC) of the cartilage-bone interface and sur-
face/volume ratio and trabecular thickness of subchondral bone.
The peri-articular bone tends to change early in the development
of OA. These changes include an increase in the subchondral bone
thickness, a decrease in subchondral trabecular bone mass and ad-
vancement of the zone of calcified cartilage [171]. Although there
may be no direct causal relationship between the trabecular thick-
ness and ultrasound reflection coefficient of the cartilage-bone inter-
face, an increase in trabecular thickness is often related to thicken-
ing of the subchondral plate and an increase in its degree of miner-
alization [171]. This may explain the observed correlations between
the reflection coefficients (R and IRC) and trabecular thickness. The
present findings support the feasibility of using the arthroscopic ul-
trasound technique in OA diagnosis and are in line with the previ-
ous studies favouring the use of quantitative ultrasound for diag-
nosis of degenerative changes in bone [172–174].

In the present study, cartilage thickness could be measured with
an arthroscopic 9 MHz ultrasound probe. However, the correlation
between the thickness values determined with μCT and ultrasound
(r = 0.75, p < 0.01) was not as high as reported earlier [18]. This is
probably due to the difference in the applied ultrasound frequen-
cies (9 MHz vs. 22 MHz). The lower frequency applied in the
present study limits the axial resolution resulting in ans inaccu-
racy in determining the thickness values. Moreover, the determi-
nation of cartilage thickness requires an assumption of constant ul-
trasound speed in the cartilage. The sound speed depends on the
degenerative state of cartilage tissue [135], limiting the technique’s
reliability for determination of cartilage thickness.

The lack of significant correlations between the ultrasound pa-
rameters determined with the scanning ultrasound system and the
mechanical and structural parameters of cartilage may be explained
by use of low frequencies (5-7.5 MHz vs. 9 MHz). In addition, the
transducers differ in sizes, energies and waveforms. However, the
correlations between the ultrasound parameters of bone and the
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μCT parameters that describe bone structure and density were con-
sistent with those obtained with the arthroscopic ultrasound device.
This was expected since frequencies of 5-10 MHz have been suc-
cessfully used in ultrasound studies of bone [175, 176]. The differ-
ences in the correlations for cartilage and cartilage-bone interfaces,
as measured with the applied ultrasound frequencies, may be re-
lated to the mechanical and structural properties of cartilage and
bone. In cartilage, the main scatterers are the collagen network and
chondrocytes (diam. < 20 μm) [177] whereas in bone, scattering is
mainly caused by trabecular structures (diam. > 100 μm [178].

ICRS grades obtained with ultrasound arthroscopy were higher
than those obtained with conventional arthroscopy. Furthermore,
the inter-item correlation analysis revealed that there was poor agree-
ment between the grades derived from conventional and ultrasound
arthroscopy. This was expected, as ultrasound visualizes both car-
tilage and subchondral bone, revealing additional information on
cartilage degeneration, for example, the relative depth of the lesion.
Based on the present results, the estimated lesion depth is system-
atically too shallow when assessed with conventional arthroscopy.
To avoid this problem, orthopaedic surgeons should be aware of
the limitations of conventional arthroscopy with its inherent risk of
underestimating chondral injuries.

Potentially, ultrasound arthroscopy may be considered as a quan-
titative tool to improve the poor reproducibility of conventional
arthroscopy-based ICRS grading as reported by others [12]. How-
ever, the reproducibility of ultrasound arthroscopy-based ICRS scor-
ing is still unknown and this will demand further research.

In the present study, no significant correlations were found be-
tween bone ultrasound (9 MHz) parameters and subchondral plate
thickness or X-ray attenuation in subchondral trabecular bone, as
determined with pre-operative CT-arthrography. Issues related to
the resolution of CT arthrography and limitations related to the per-
formance of the arthroscopic ultrasound probe used in the present
study may partially explain this unexpected result. In order to
overcome the challenges related to the complexity of in vivo mea-
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surement, insufficient maneuverability and transmit power of the
applied ultrasound probe, an arthroscopic ultrasound probe with
optimal catheter and transducer geometries and optimal waveform
and frequency of the transmitted pulse needs to be designed.

As attenuation in cartilage was found to be the dominant factor
affecting the quantitativeness of ultrasound measurement of bone
in study II, implementation of attenuation correction should be fur-
ther developed; whereas reflection from the cartilage surface might
be even ignored.

8.2 FDTD MODEL OF ULTRASOUND PROPAGATION IN AR-
TICULAR CARTILAGE

In study III, the change in the IRC values between the smooth
(roughness = 0 μm) and rough (roughness = 30 μm) cartilage was
roughly -8 to -14 dB, regardless of the material parameters. How-
ever, the lack of correlation (r = 0.16) between the experimental and
the modeled IRC values, indicates that the material parameters also
contribute significantly to the value of the IRC .

When the roughness of the cartilage surface was increased, the
angular dependence of the reflection (IRC) disappeared. This agrees
with previous experimental work pointing to the existence of such
a boundary value between roughnesses 4.8 and 26.9 μm [179]. This
suggests that if the angle of incidence of the ultrasound beam is
not carefully controlled in the measurements, the reliability of the
ultrasound diagnosis of the earliest OA changes in articular surface
might be compromised. With a phased array transducer, this prob-
lem could be solved by adjusting the transducer in a position which
TOFs measured with individual transducers are similar.

In study IV, the simulated and experimental SOS values were
linearly correlated. This suggests that composition and mechani-
cal properties of the samples had been successfully implemented in
the model. Previous experimental studies have shown that cartilage
composition [129] and mechanical properties [180] are significantly
related to SOS. Thus, a feasible numerical model must include suffi-
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cient information on the composition and the mechanical properties
of cartilage and be able to predict SOS based on this information.

The present model produced systematically greater SOS val-
ues than the experimentally-derived values. In the model, SOS is
directly affected by the selection of material parameters of tissue
constituents. In the present, study the values of material parame-
ters were calculated using the information from the literature as a
volume-weighted average. However, values of density and Lamé
parameters for each component (water, PG, collagen and chondro-
cyte) present in articular cartilage have not been comprehensively
reported in the literature. In the future, the input parameters of the
model could be optimized by fitting the model to the experimental
data.

Based on the simulations where the values of the material pa-
rameters were varied density of the solid matrix should be higher
or values of the first Lamé parameters should be lower to achieve
a closer agreement with experimentally determined sound speed
values. Removal of collagen caused a major change in SOS (from
1676 to 1518 m/s), implying a significant role of collagen.

Cartilage is a poroviscoelastic, inhomogeneous and anisotropic
material with a complicated composition and structure. In the cur-
rent model, articular cartilage was significantly simplified: many
characteristics such as the viscous attenuation and its detailed struc-
ture (e.g. collagen fibril network) were omitted. Implementation of
viscous attenuation would have required knowledge of bulk and
shear viscosities for each constituent.

In articular cartilage, simultaneous changes in composition (wa-
ter, PG and collagen contents) and the structure of a solid matrix
affect its acoustical properties in a complex manner. Thus, only
modeling could provide feasible means to investigate the effects
of individual constituents on SOS. The present simplified model
could only provide reliable SOS data. If one wishes to determine
more complicated ultrasound parameters (reflection, attenuation,
backscattering) then more detailed and complex models will be
needed.
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9 Conclusions

In this thesis, the feasibility of using 5-9 MHz ultrasound assess-
ment for simultaneous measurements of articular cartilage and sub-
chondral bone was investigated. Furthermore, the value of the ad-
ditional information provided by ultrasound arthroscopy on ICRS
grading was assessed. With numerical models, ultrasound reflec-
tion was investigated from varying surface roughness, material pa-
rameters (Young’s modulus, density, longitudinal, and transversal
velocities) and inclination of the samples. Finally, a sample specific
anisotropic FDTD model of articular cartilage containing chondro-
cytes, proteoglycans, collagen and water was devised and evalu-
ated.

Based on the studies included in this thesis, the following conclu-
sions may be drawn:

• Degenerative changes of articular cartilage and subchondral
bone may be detected with ultrasound arthroscopy.

• In order to harness the full potential of ultrasound arthroscopy,
an arthroscopic ultrasound probe with optimal catheter and
transducer geometries and an improved waveform and fre-
quency of the transmitted pulse needs to be designed.

• The FDTD method is a feasible way to model the effects of
varying surface roughness, cartilage constituents and ultra-
sound angle of incidence on the ultrasound reflection and
propagation.

• The numerical approach model helps to understand the roles
of cartilage constituents in ultrasound propagation.
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Millions of arthroscopies are annual-

ly performed worldwide. Arthroscopic 

diagnosis should be immediate, sensitive 

and reproducible. However, conventional 

arthroscopic evaluation of cartilage is 

subjective and poorly reproducible. In 

this thesis, the feasibility of ultrasound 

arthroscopy for diagnostics of joint 

disorders was in investigated in vitro 

and in vivo, and ultrasound interactions 

in cartilage tissue were modeled using 

finite difference time domain method. 

Ultrasound arthroscopy was found to 

provide valuable information on carti-

lage. The numerical models introduced 

in this thesis may provide significant 

help for interpretation of the results of 

ultrasound assessment of cartilage and 

subchondral bone.
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