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ABSTRACT

A hyperspectral sensor provides the possibility of recording a large

number of spectral bands. However, considering a specific applica-

tion some bands will be redundant and complicate data processing

and transmission. To avoid these problems, feature selection meth-

ods have been used to select a subset of hyperspectral bands in a

post-processing phase. Furthermore, current hyperspectral sensors

capture lower spatial resolution imagery when compared with im-

ages captured using multispectral sensors. Efficient high-altitude,

high spatial resolution data acquisitions are only feasible with the

use of multispectral sensors. Here, it was assumed that in the fu-

ture some hyperspectral sensors will be designed in such a way that

imaging band position could be defined in the pre-flight setup. This

approach can be used to remove redundant bands before the actual

data collection phase. Alternatively, multispectral sensors could be

designed with the optimized narrow / broadband spectral sensi-

tivities needed for specific applications. In these contexts, using

training hyperspectral data a suitable subset of bands can be found

by using feature selection methods. There is, however, a need to

investigate whether these selected bands or optimized spectral sen-

sitivities provide a reasonable classification performance.

In this dissertation, a sparse regression-based feature selection

method was used in the selection of hyperspectral bands in the 400–

1000 nm wavelength range. In band selection, the effects of the spa-

tial scale and balance in the training samples were evaluated. The

band selection results showed that the use of a balanced plot-level

scale dataset and sparse logistic regression with the Bayesian reg-

ularization feature selection method provided the minimum eight

selected bands. The selected hyperspectral band positions were re-

lated to the Leica Airborne Digital Sensor (Leica Geosystems) sen-

sitivity position and optimized 4 and 5-band multispectral sensor

systems were proposed. Using the selected hyperspectral bands

and simulated responses (standard multispectral sensor sensitivi-

ties and optimized sensitivities) the classification of the Scots pine



(Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.) and

deciduous birch (Betula pubescens Ehrh. and Betula pendula Roth) tree

species was investigated using plot- and pixel-level scale datasets.

In simulations hyperspectral radiance data were used and in the

band selection estimated reflectance data were used. The classi-

fication performance of selected bands was investigated by either

matching and changing the view-illumination geometry condition

of the datasets used in the band selection and the classification.

In addition, these results were compared with the results obtained

using 64 AisaEAGLE II hyperspectral bands in the 400–1000 nm

wavelength range.

The tree species classification results suggested that the classifi-

cation performance of the optimized systems was remarkably im-

proved (4–13%) when compared with the results obtained for simu-

lated responses via standard multispectral sensor systems. For the

plot-level scale dataset, the proposed 4 and 5-band multispectral

sensor systems provided a similar tree species classification perfor-

mance as the use of all 64 hyperspectral bands.

For the pixel-level scale dataset, the simulated response of the

4 and 5-band optimized multispectral sensor system classification

accuracies was lower than with results obtained using all 64 hy-

perspectral bands. The eight selected bands provided, however,

similar (difference 1–2%) or improved classification performance

when compared with the results obtained using all 64 hyperspectral

bands throughout the view-illumination geometry conditions. The

obtained tree species classification results support the approach of

designing optimized or tunable spectral imaging systems.

Universal Decimal Classification: 004.83, 004.93, 535.33, 582.091

Library of Congress Subject Headings: Remote sensing; Spectral imag-

ing; Multispectral imaging; Wavelengths; Image analysis; Classification;

Trees; Scots pine; Norway spruce; Birch; Support vector machines; Dis-

criminant analysis; Regression analysis; Aerial surveys in forestry

Yleinen suomalainen asiasanasto: kaukokartoitus; ilmakuvaus; spektriku-

vaus; kuva-analyysi; luokitus; puulajit; mänty; kuusi; koivu; regressio-

analyysi; koneoppiminen
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1 Introduction

Remote sensing of forest is currently possible with airborne opti-

cal sensors that include active (airborne laser scanning) or passive

spectral imaging technology. The data obtained with an active sen-

sor are efficient for probing target object shape [3, 4], vegetation

density and forest parameters related to tree height [5, 6]. Passive

imaging sensor data are useful for target identification and classifi-

cation [6–8].

Currently, widely used passive multispectral sensors have 3–4

spectral bands and a panchromatic band. The role of multispectral

sensors is mainly in tree species identification, and detailed tree

species classification is important in forest inventories for technical,

ecological, and economic reasons [9]. However, the spectral sensi-

tivities of multispectral sensors have not been optimized for forestry

applications but mainly for surveying and mapping purposes. Con-

sequently, there is greater interest in using airborne hyperspectral

sensor data in research and applications. A hyperspectral sensor

can capture informative data on tens to hundreds of bands, and

several studies show that the use of hyperspectral data yields a rea-

sonably accurate vegetation classification [10–16].

In Finland, 87% of the land is classified as forest land [17], and

national forest inventories have been conducted since 1921 [18].

The commercially important tree species are Scots pine, Norway

spruce, and broadleaf species (mainly birch), which constitute 97%

of the total stand volume [17]. In Finland, forest management plans

are based on attributes compiled by field work and multi-source

(LiDAR and multispectral sensors) data. Several airborne multi-

spectral sensors data have been used in tree species classification

[19–21]. Few studies have examined hyperspectral data measured

at ground-level in tree species classification [15,16,22] and airborne

hyperspectral data for estimating forest stand attributes [23, 24].

Airborne hyperspectral data have also been used to investigate tree
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species classification in boreal forest [12]. There is limited research

work of using airborne hyperspectral data from Finland to inves-

tigate supervised tree species (pine, spruce and birch) classifica-

tion. Previously, seventeen band airborne AISA imaging spectrom-

eter data has been use for classification of vegetation and soil ar-

eas [25, 26]. Furthermore, airborne measured hyperspectral data

have been used for timber volume estimation [27], classify peatland

biotopes [28] and mapping forest land fertility [29].

There are several factors which disturb forest remote sensing

data collected by a sensor. There is often a presence of gases, par-

ticles, and clouds between the forest and sensor system. The forest

objects on the Earth’s surface interact with the transmitted and scat-

tered sunlight by absorbing or reflecting the light differently at dif-

ferent wavelengths. Because objects reflect light differently, they can

be differentiated on the basis of their spectral signatures. However,

in forest remote sensing foliage optical properties, canopy structure,

the properties of the underlying ground and view-illumination ge-

ometry condition affect how vegetation reflects light [30, 31].

1.1 RESEARCH PROBLEM

Airborne hyperspectral data have been used in investigating tree

species classification [10, 10, 11, 32]. However, a larger number of

bands may result in high processing costs and a delay in online

data transmission and communication. Likewise, a problem often

noted in the study of classification using hyperspectral data [33–35]

was the large number of features (bands) in hyperspectral data and

the small set of training data; thus difficult to obtain reliable classi-

fication results. This phenomenon is called the Hughes effect [36].

Furthermore, current hyperspectral sensors capture lower spatial

resolution images compared with those captured using multispec-

tral sensors. In Finland, there is scarcity of proper (clear, cloud-free

sky) weather conditions. Likewise, national regulations for collect-

ing aerial images for mapping recommend that the solar elevation

during the imaging campaign be 33◦ above the horizon [37]. This

2 Dissertations in Forestry and Natural Sciences No 177
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limits the effective hours of flight campaign per day; in other words,

for efficient high-altitude, high spatial resolution data acquisitions.

Efficient high-altitude, high spatial resolution data acquisition

is only feasible with the use of multispectral sensors. This is an

important property of multispectral devices in reducing the costs

of flight campaigns. However, the available multispectral sensors

are general-purpose sensors, and their few discretely located spec-

tral band sensitivities are not optimized for tree species classifica-

tion. Therefore, to improve data classification performance there is

a need for the application specific optimized bands.

The research done in this work is aimed to support devel-

opment of sensor that allow efficient imaging and high accurate

tree species classification. Previously, the development of a pro-

grammable imaging spectrometer was discussed to change sen-

sor spectral characteristics and the signal-to-noise ratio (SNR) to

fit specific application requirements [38]. Therefore, Dell’Endice et

al. [38], presented software to generate a spectral binning pattern

to optimize an imaging spectrometer spectral characteristic. Sim-

ilarly, it can be assumed that in the future hyperspectral sensors

will be designed to tuned (define) the imaging band position in ad-

vance (a pre-flight setup) depending on the application need. Al-

ternatively, multispectral sensors could be designed with optimized

narrow and broadband sensitivities.

This thesis supports the development of efficient sensors by

identifying several narrow and broadband multispectral character-

istics that could be suitable for accurate tree species classification.

Identification of these system was based on using several compu-

tational techniques and hyperspectral modeling data. The research

problem regarding the use of airborne hyperspectral data to de-

fine optimized bands for the classification of the Scots pine (Pi-

nus sylvestris L.), Norway spruce (Picea abies(L.) H. Karst.), and de-

ciduous birch (Betula pubescens Ehrh. and Betula pendula Roth) tree

species is addressed as follows.

Dissertations in Forestry and Natural Sciences No 177 3
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1.1.1 Simulated Multispectral Sensor Responses

The evaluation of tree species classification performance using var-

ious airborne multispectral sensor data is expensive due to the cost

of imaging. Using accurate spectral sensitivity information from

airborne multispectral sensors and airborne hyperspectral data,

multispectral sensor responses can be simulated and evaluated in

classification. This approach also allows to evaluate arbitrary spec-

tral response systems. In this thesis, using imaged airborne ra-

diance hyperspectral data, standard (existing) and proposed opti-

mized 4 and 5-band multispectral sensor systems, sensor responses

were simulated and tree species classification performance evalu-

ated.

1.1.2 Hyperspectral Band Selection

Feature selection methods have been used to select a subset of

hyperspectral bands in data post-processing phase to reduce the

hyperspectral data dimensionality. Previously, Pal [39] evaluated

the band selection performance of three sparse logistic regression-

based feature selection methods and Support Vector Machines Re-

cursive Feature Elimination (SVM-REF) and suggested that the

sparse logistic regression method [40] offered the best band selec-

tion results and the selected bands provided better classification

results than the use of all hyperspectral bands. In this thesis, sparse

regression-based feature selection methods were chosen for band

selection. To our knowledge these methods have not been used for

band selection for tree species classification. In the application of

these methods, each regression coefficient corresponded to a hy-

perspectral band. Due to the property of sparseness, the regression

coefficient of several bands had a value of zero and bands with a

zero regression coefficient value were discarded. The remaining

bands with a non-zero regression coefficient were selected. Here,

band selection was performed using pixel- and plot-level datasets

and balance in training samples.

Previous research has not addressed the question of whether the
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selected hyperspectral bands can be realized as physical bands with

multispectral sensitivities or whether the selected band positions

are related to the sensitivity positions of the existing multispectral

sensor sensitivities. Here, the selected hyperspectral band positions

were related to the sensitivity positions of the existing multispectral

sensor system and used as information to define an optimized 4 and

5-band multispectral sensor system.

1.1.3 Assessment of Selected Bands

During the flight campaign, forest atmospheric and imaging view-

illumination geometry conditions constantly change and affect im-

aged data and pose difficulties in band selection. Likewise, it is

difficult to obtain reliable ground information that is similar to

all the imaging view-illumination geometry conditions. The col-

lected ground information may only provide information on spe-

cific imaging view-illumination geometry conditions. In the con-

text of defining optimized bands, the selected bands (obtained from

specific imaging view-illumination geometry conditions data) used

in tree species classification performance have to be evaluated in

order to provide reasonably accurate classification results, even

though the selected bands are suboptimal with respect to the view-

illumination geometry conditions of the training and test datasets

used in classification. In this thesis, band selection was performed

using the plot-level scale (plot size 10.5 m × 10.5 m) hyperspectral

reflectance data collected from the images acquired in the morning.

Using the selected bands, pixel-level scale (pixel size 0.3 m × 0.3 m,

and 0.5 m × 0.5 m) tree species classifications were investigated for

the data imaged in the morning and afternoon.

The addressed research problems and results have been pre-

sented in scientific publications [P1], [P2] and [P3].

Dissertations in Forestry and Natural Sciences No 177 5
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2 Passive Airborne Imaging

In passive airborne imaging, the reflected information collected by

the imaging sensor in the visible to shortwave infrared wavelength

range originates from the sun. Longwave infrared imaging relies

on the thermal emission of the object in a scene rather than on

sunlight to create an image [41]. Some of the radiometric quantities

associated with a light beam used in this dissertation are irradiance,

radiance, and reflectance, and we define these following [41–43].

Irradiance refers to the incident light energy per unit time per

unit area on the surface, and its unit is the watt per meter square

(Wm−2). The irradiance per wavelength of the light is termed as

spectral irradiance and a unit in nanometer is given as Wm−2nm−1.

Radiance is the irradiance per solid angle of the observation or the

direction of the propagation of the light. The measuring unit for

the solid angle is the steradian (sr), defined as the area of the radial

projection of a surface element to the surface of the sphere with

radius ’r’. The unit for spectral radiance is given as Wm−2nm−1sr−1.

Radiance from the object surface does not distinguish between the

light illuminating or the light reflected from the surface [41].

Reflectance is a quantity which characterizes the fraction of in-

cident light reflected from an object [41]. Surface reflectance in-

formation can be used to characterize properties of an object and

is useful in many spectral-based pattern recognition applications.

For example, in remote sensing the atmospheric and illumination

conditions affect the collected radiance data, and the reflectance in-

formation can be used in comparing images taken from different

flight campaigns.

2.1 OPTICAL RADIATION MODEL

Solar irradiance that reaches the top of the atmosphere is also called

exo-atmospheric solar irradiance. Some of this exo-atmospheric so-

Dissertations in Forestry and Natural Sciences No 177 7
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lar irradiance transmitted through the Earth’s atmosphere reaches

the surface, some scatters and some is absorbed. The transmittance

is governed by the Earth’s atmosphere, and is a function of wave-

length. The transmitted and scattered irradiance by the atmosphere

interacts with the object surface and an imaging sensor senses the

reflected radiance traveling through the atmosphere. Generally, the

reflected radiance information sensed by the imaging sensor in so-

lar reflective remote sensing has three significant radiation compo-

nents (Fig. 2.1), the un-scattered surface reflected radiance, down-

scattered surface reflected (the effect of skylight) and up-scattered

path radiance [7].

a b c

Figure 2.1: General surface reflected radiance component seen by

sensor in solar reflective remote sensing a) Un-scattered b) Down-

scattered and c) path-scattered. Figure adapted from [7].

When considering the Lambertian surface (perfectly diffuse re-

flecting surface) model, the total radiance component in the visible

to shortwave infrared range sensed by the airborne imaging sensor

can be presented as (2.1) [7],

R(λ) = r(λ)
lo(λ)τs(λ)τv(λ)

π
cos(Θ)+ r(λ)

l(λ)τv(λ)

π
+Rs(λ), (2.1)

where lo(λ) is the exo-atmospheric solar irradiance, l(λ) the irra-

diance at the surface due to skylight, τs(λ) the atmospheric trans-

mittance along the solar path, τv(λ) the atmospheric transmittance

along the sensor view path, r(λ) the spectral reflectance (Lamber-

tian) of the object, Θ the angle between the surface normal and

the solar incident angle and Rs(λ) is the path-scattered radiance
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at-sensor component. Furthermore, the dependence on the spatial

location is not explicitly written in the model (2.1). All objects on

the Earth’s surface might not have a Lambertian surface, and for a

non-Lambertian surface, the term r(λ)/π in (2.1) is replaced by the

bi-directional reflectance distribution function of the incident and

view angles [7].

With the development of optical sensing technology, different

airborne optical sensors have been developed to sense the total re-

flected radiance component. These optical sensors capture reflected

radiance in one to hundreds of spectral bands. Assuming a fixed

geometry the interaction of reflected radiance R(λ) (2.1) with a n-

band sensor system can be modeled as,

Xi =
∫

Λ
R(λ)τc(λ)si(λ)dλ, i = 1, . . . , n, (2.2)

where Λ is the wavelength range, λ the wavelength variable, Xi

the spectral response of the ith band, n the number of bands, τc(λ)

transmittance of camera optics (lens, filter), R(λ) the reflected spec-

tral radiance from object surface and si(λ) is the ith spectral sensi-

tivity function. Spectral sensitivity functions are positioned contin-

uously or discretely in a given wavelength range.

2.2 PANCHROMATIC AND MULTISPECTRAL IMAGING

SENSOR

The difference between a panchromatic and multispectral imaging

sensor depends on the number of wavelength bands sensed in a

given wavelength range. A panchromatic sensor has only one band

for a given wavelength range. A multispectral sensor has a few

narrow and discretely located bands in a given wavelength range.

Some of the widely used multispectral sensors in forest remote

sensing include the Vexcel Ultracam-D (UCD) [44], Intergraph-Z/I

Digital Mapping Camera (DMC) [45] and Leica Airborne Digital

Sensor (ADS) [46]. These multispectral sensors have four spectral

bands and a panchromatic band. Properties of these multispectral
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sensors are presented in Table 2.1. The normalized sensor sensi-

tivities (maximum peak value 1) of these multispectral sensors are

presented Fig. 2.2. The potential of these multispectral sensors in

tree species classification have been investigated [3, 19–21], and 75–

85% overall accuracies have been reported for Scots pine, Norway

spruce and deciduous birch when using imaged data in summer.

Furthermore, Holmgren, et al. [3] presented accuracy around 91%

using multispectral sensor data imaged in autumn.

2.3 HYPERSPECTRAL IMAGING SENSOR

The hyperspectral imaging sensor sensed informative data on tens

or hundreds of narrow bands. Airborne hyperspectral imaging sen-

sors such as HyMap [49], Airborne Visible/Infrared Imaging Spec-

trometer (AVIRIS) [50], Compact Airborne Spectrographic Imager

(CASI) [51] and the Airborne Imaging Spectrometer for Applica-

tions (AISA) [52] have been used in remote sensing and tree species

classification [10, 11, 13]. However, current hyperspectral imaging

sensors archived a lower spatial resolution when compared with the

multispectral imaging sensor data obtained at the same altitude.

In this dissertation, the AisaEAGLE II hyperspectral sensor [53]

was used for airborne measurements. AisaEAGLE II is an airborne

sensor based on the pushbroom principle; it is manufactured by

Specim, Spectral Imaging Ltd., Finland [53]. The sensor operates

in the visible to near-infrared (VNIR) spectral range (400–1000 nm)

with a 1024-pixel swath width and a 12 µm pixel size. The sensor

electronics outputs using 12 bits. The minimum width of a spectral

channel of the sensor is 1.2 nm, and the optimal spectral resolution

of the sensor is 3.3 nm. The sensor has 516 channels with a 30

Hz sampling rate [54]. These channels can be combined to 258 (2x

binning), 129 (4x) and 64 (8x) channels to obtain higher sampling

rates [54]. The example of a hyperspectral cube of a forest plot

(forest area 10.5 m × 10.5 m of single-tree species) is shown in

Fig. 2.3, and corresponding forest plot mean radiance spectrum and

estimated reflectance spectrum are presented in Fig. 2.4.
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(a) Sensitivities of the Vexcel UltraCam-D (UCD) [44].
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(b) Sensitivities of the Z/I Digital Mapping camera (DMC) [45].
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(c) Sensitivities of the Leica ADS40 [46] (ADS).

Figure 2.2: Spectral sensitivities of the three multispectral systems.

Sensitivities are normalized to a maximum peak value of 1.
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Figure 2.3: Spectral cube of a forest plot.
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Figure 2.4: Mean at-sensor radiance and estimated reflectance spec-

trum.

2.4 ATMOSPHERIC CORRECTION

In airborne imaging, the components of the Earth’s atmosphere

(gases, particles, and clouds) scatter and absorb the light from the

sun. This affect the reflected radiance spectra collected at the sen-

sor. These effects must be corrected to obtain band selection and

classifier data in the same [55].

Using the calibrated at-sensor radiance data, atmospheric and

illumination effects can be reduced so that at-sensor radiance data
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are transformed into reflectance data on the Earth’s surface. To

reduce the atmospheric and illumination effects and estimate the

reflectance image in several studies different relative and absolute

correction atmospheric methods have been used [7,54,56–61]. Rela-

tive and absolute correction atmospheric methods assume a reduc-

tion of the atmospheric and illumination effects that are indepen-

dent of the viewing direction.

2.4.1 Absolute Correction Method

In absolute correction methods, radiative transfer codes, physically

based correction methods are used to reduce the atmospheric effect

and estimate the reflectance of the imaged data. Moderate Resolu-

tion Atmospheric Transmission (MODTRAN) or Second Simulation

of a Satellite Signal in the Solar Spectrum (6S) [7, 62, 63] are two ex-

amples.

Software packages are available for absolute atmospheric cor-

rection, for example, Atmospheric Removal Program (ATREM) [64],

Atmospheric and Topographic Correction (ATCOR, from ReSe Ap-

plications Schläpfer, Langeggweg 3, Switzerland), Atmospheric

Correction Now (ACORN, from Analytical Imaging and Geo-

physics LLC, CO, USA) and Fast Line-of-sight Atmospheric Analy-

sis of Spectral Hypercubes (FLAASH) [65]. These programs reduce

the effects of atmospheric attenuation, topographic conditions and

other characteristics in an image. These correction programs uti-

lize a physical method (e.g., MODTRAN) to model the atmospheric

gas absorption, scattering effects required for data correction. The

ATCOR-4 program has been previously used in atmospheric correc-

tion for AisaEAGLE II hyperspectral data [54]. The program takes

radiance data and a physical parameter as the input and returns the

corrected data. Similarly, the atmospheric correction performance

of the three programs (ATREM, ACORN, and FLAASH) has been

evaluated using the AVIRIS hyperspectral sensor data described by

Kruse [66]. The author suggested that the three methods produce

comparable atmospheric correction results and are quite similar in
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their basics and operation [66].

2.4.2 Relative Correction Method

In addition to the absolute correction method to reduce the at-

mospheric effect, different relative correction methods have been

used [7, 56, 57]. Applying relative correction methods for atmo-

spheric correction are computationally less expensive than absolute

correction methods. Relative correction methods are sometimes re-

ferred to as normalization techniques [7]. Some of the methods

used in remote sensing studies are the following:

Internal Average Relative Reflectance (IARR): In IARR, the correc-

tion is performed so that first average spectrum of the entire image

is calculated. Next, each pixel in an image is divided by the calcu-

lated average spectrum to obtain the reflectance of the image rela-

tive to the average spectrum. However, this method is not suitable

for the correction of vegetation areas because the averaged spec-

trum may include spectral features that are related to the vegetation

rather than just the effects of atmospheric and solar irradiance [57].

Flat Field Correction: In the flat field approach, the reflectance

spectra are estimated so that a spectrum from each pixel in a scene

is divided wavelength-wise by the mean spectrum of a known tar-

get area within the scene. The target area is assumed to be a spa-

tially homogeneous, spectrally uniform, high reflectance area in the

scene [7, 56]. The drawback of the method is that it is strongly

scene-dependent [67]. Furthermore, in applying this method effect

from solar irradiance and a solar path atmospheric transmittance

are assumed to decrease, but the effect of view path radiance and

topographic conditions still exist in the corrected data [7].

Empirical Line Method: This method assumes that there is one or

more specially made calibration targets or a natural homogenous

area within the image. The reflectance spectra of these targets are

measured on the ground. Similarly, the radiance spectra of the tar-

gets recorded by sensors are extracted from the images. Then the

radiance data over the surface targets are linearly regressed against
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the ground-measured reflectance spectra in order to calculate the

gain (slope) and offset (intercept) values for each band. These de-

rived values are then applied to an image to estimate the surface

reflectance [7, 58]. On applying this method, solar irradiance, so-

lar path atmospheric transmittance and view path radiance are as-

sumed to decrease, but the topographic effect is still present in the

corrected data [7].
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3 Hyperspectral Imaging

Campaign

The AisaEAGLE II hyperspectral sensor [53] was used in airborne

measurements over the Hyytiälä forest area in southern Finland

(61.50’ N, 24.20’ E) on July 22nd, 2011, between 9:44 and 10:38

(morning) and 13:10 and 13:22 (afternoon) local time. The camera

field of view at the time of measurement was 35.8◦. The measure-

ments were performed using an 8x binning mode [68], resulting

in a 64 discrete channel in VNIR (400–1000 nm) (Table 3.1) with

a full-width-at-half-maximum (FWHM) of approximately 9.3 nm.

The sensor electronics work with 12 bits and the imaged data were

stored as 16 bit unsigned integers.

3.1 REMOTE SENSING DATA

During the morning flight campaign, nine imaging strips (B1, B2,

B3, B4, B5, B6a, B6b, B7, and B8) were imaged at an altitude of

approximately 1000 m; these are collectively called B-Line strips

(Fig. 3.1a). In addition, the B-Line strips were imaged in two flight

directions. Five strips (B1, B2, B4, B6a, and B7) were imaged from

southeast (SE) to northwest (NW), and four strips (B3, B5, B6b, and

B8) were imaged from NW to SE. Likewise, in the afternoon, three

strips (D1, D2, and D3) were imaged at an altitude of approximately

650 m; these are collectively called D-Line strips (Fig. 3.1b). This

change in altitude was done to maximize the spatial resolution.

Each pixel in an imaged strip from the B-Line and D-Line mea-

sured approximately 0.5 m × 0.5 m and approximately 0.3 m × 0.3

on the ground, respectively. In the D-Line, the D1 strip was imaged

over a south to north flight direction; the D2 strip was imaged from

northwest to southeast, and the D3 strip was imaged from north-
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east to southwest. The D3 strip was partly affected by the presence

of clouds. The image data acquisition details of the B- and D-Line

strips are presented in Table 3.2. In the B4 and D1 strips, a 50%

reflective 5 m × 5 m diffuse reference target [69] was placed on the

ground.

Considering the position of the sun (Fig. 3.2a) and normal of

the plane, when imaging B-Line strips and the D1 strip (D-Line),

for the nadir view sensor, the solar plane is in a horizontal across-

track direction and forest on either side of nadir view are equally

illuminated. For D2 and D3 strips (D-Line), the solar plane is along

(parallel) the across-track direction. One side of the nadir view can

be highly illuminated compared with the other; this increases the

within-species spectral variation.

Table 3.1: AisaEAGLE II [53] hyperspectral bands and correspond-

ing peak wavelength (WL) value in nanometers with a full-width-

at-half-maximum (FWHM) of approximately 9.3 nm.

Band WL Band WL Band WL Band WL Band WL

1 408.39 14 524.20 27 644.58 40 766.61 53 890.52

2 417.03 15 533.20 28 653.92 41 776.14 54 900.04

3 425.67 16 542.20 29 663.26 42 785.68 55 909.57

4 434.33 17 551.37 30 672.60 43 795.22 56 919.11

5 443.24 18 560.69 31 681.95 44 804.76 57 928.67

6 452.24 19 570.01 32 691.29 45 814.30 58 938.22

7 461.23 20 579.33 33 700.65 46 823.84 59 947.78

8 470.23 21 588.65 34 710.04 47 833.37 60 957.33

9 479.23 22 597.97 35 719.42 48 842.89 61 966.89

10 488.22 23 607.29 36 728.81 49 852.42 62 976.44

11 497.22 24 616.61 37 738.19 50 861.94 63 986.00

12 506.21 25 625.93 38 747.58 51 871.47 64 995.55

13 515.21 26 635.25 39 757.07 52 880.99

The digital number of the acquired images were first radio-

metrically corrected to the radiance using calibration coefficients

provided by the manufacturer and the CaliGeo software [68] by

SPECIM. Each pixel in a corrected image was further geometrically

rectified into the WGS84 UTM zone 35 coordinate system using
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Table 3.2: Image data acquisition and field data of tree plots corre-

sponding to the B– and D–Line image strips. F. H = Flight heading,

F. Dir = Flight direction, F. A = Flight altitude, F. S = Flight speed,

Az = Solar azimuth, Ev = Solar elevation, No. P. = Number of plots

and GSD=Ground sampling distance.

Strip
Time F H

F. Dir
F. A F. S Az Ev Total

No.P

No.P No.P No.P GSD

UTC +3 [◦] [m] [kn] [◦] [◦] Pine Spruce Birch [m]

B1 9:44 297 SE–NW 952 105 111 33.5 65 46 17 2 0.5

B2 9:48 290 SE–NW 965 125 112 33.9 54 19 11 24 0.5

B3 9:59 244 NW–SE 972 105 115 35.2 49 15 12 22 0.5

B4 10:05 291 SE–NW 983 125 116 35.8 65 26 33 6 0.5

B5 10:10 245 NW–SE 949 105 117 36.3 72 31 27 14 0.5

B6a 10:21 290 SE–NW 975 120 120 37.5 54 14 14 26 0.5

B6b 10:25 244 NW–SE 975 110 121 37.9 58 18 14 26 0.5

B7 10:32 290 SE–NW 967 130 123 38.5 64 29 23 12 0.5

B8 10:38 245 NW–SE 967 105 125 39.1 96 56 26 14 0.5

D1 13:10 359 S–N 661 125 173 48.3 23 12 5 6 0.3

D2 13:15 242 NW–SE 656 115 175 48.4 13 7 3 3 0.3

D3 13:17 232 NE–SW 662 125 176 48.4 15 2 12 1 0.3

PARGE [70] software from the ReSe Company. A one-meter grid-

sized digital elevation model (DEM) [71] and navigation data were

used in the geometrical rectification.

3.2 FIELD DATA

The plots (i.e., the forest area) containing the trees of interest in B-

and D-Line strips were identified by a photo interpretation expert

who combined a visual inspection with additional ground infor-

mation. The photo interpretation was based on the Vexcel Ultra-

CamXp RGB images (pixel size approximately 15 cm) acquired on

June 28th, 2010, at 16.00 local time from a flight altitude of 2.5 km.

The identified forest plots contained only single-tree species (e.g.,

Fig. 3.2b). In the plot identification process, the mean, maximum

and 95th percentile of the height distribution was estimated using

LiDAR data imaged in the same forest area in 2010 and 2011. The
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(a) Hyytiälä forest area B–Line imaging strips acquired in the morning

(nine imaging strips: B1, B2, B3, B4, B5, B6a, B6b, B7 and B8). Five strips

(B1, B2, B4, B6a and B7) were measured in the flight direction southeast

(SE) to northwest (NW). Similarly, four strips (B3, B5, B6b and B8) were

measured in the flight direction NW to SE.

(b) Hyytiälä forest area D–Line imaging strips acquired in the afternoon.

D–Line strips were imaged in three different flight directions: D1 south to

north, D2 northwest to southeast and D3 northeast to southwest.

Figure 3.1: Hyytiälä forest area and imaged strip in the morning

and afternoon.
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(a) Polar plot of solar elevation and solar azimuth position for data imaged

in the morning (Southeast (SE) to Northwest (NW) and vice versa) and

afternoon.

(b) RGB representation of the sample strip with tree plot (forest area) dis-

tribution. Identified tree plots in the strip are marked with the colored

boxes: Pine (red), spruce (green) and birch (yellow).

Figure 3.2: Polar plot of a solar elevation, solar azimuth and RGB

representation of a sample imaged strip.
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difference in the mean and maximum heights of the LiDAR points

(2010 and 2011) was used to remove the identified plots where har-

vesting operations began after 2010. Finally, each plot was checked

to determine in which hyperspectral imaged strips the plot was vis-

ible. In detail, the plot identification process is presented in [P1 and

P3]. Altogether, 577 plots (254 pine plots, 177 spruce plots and 146

birch plots) were identified from the B-Line and 51 plots (21 pine

plots, 20 spruce plots and 10 birch plots) were identified from the

D-Line imaged strips. From the identified plots, tree information

was collected by drawing a 21 pixel × 21 pixel window around the

plot center and tree species spectra (441 pixels) inside the window

were extracted. This procedure produced an area of 10.5 m × 10.5

m (2–10 trees) for each identified forest plot in the B–line and 6.3 m

× 6.3 m (2–5 trees) for those identified in the D-Line strips. Further-

more, the forest structures of the tree species plots extracted from

the strips ranged from young to mature stands, where the LiDAR

mean tree height varied between 2.3–24.5 m in the B-Line and 4.4–

21.5 m in the D-Line strips. In addition, these extracted pixels come

from sunlit and shaded regions of the vegetated and non-vegetated

pixels.

3.3 DATA PREPARATION FOR EXPERIMENT

The B-Line and D-Line strips were measured at different times of

the day, and the imaging and view-illumination geometry condi-

tion varied among the acquired images (see Fig. 3.2a). The ex-

tracted forest plot datasets were hyperspectral radiance data that

are influenced by solar irradiance and atmospheric effects. These

influences were corrected here using a 50% reflecting white refer-

ence surface placed on one strip in each B- and D-Line case (B4 strip

in B-Line, D1 strip in D-Line) and the flat field correction method.

We assumed that the two spectral radiance vector features from the

reference targets represented the atmospheric and illumination con-

ditions in other strips in the sets (B- and D-Line) because imaging

was performed at the same flight altitude over a small geographical
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area within a one hour time window.

In further processing, pixel- and plot-level scale datasets were

prepared for use in the band selection and tree species classifica-

tion. To prepare the plot-level dataset, the mean spectrum of the

plot was chosen as the classification feature because the species in-

formation in the plot was homogeneous and was assumed to rep-

resent the plot-level spectral characteristics. The plot-level dataset

was prepared using 577 mean plot spectra collected from the B–

Line strips. Furthermore, this dataset was prepared with and with-

out extracting the vegetation pixels in a plot. Vegetation pixels in

a plot were extracted using Normalized Difference Vegetation In-

dex (NDVI) [72] thresholding. In the NDVI calculation, the bands

with peak wavelength value 814 nm and 691 nm were used. All

pixels with an NDVI value greater than 0.7 were considered vege-

tation. The plot-level dataset was prepared using the hyperspectral

radiance and reflectance data.

To prepare the pixel-level scale dataset, the estimated reflectance

data for the identified tree species plots were first denoised as dis-

cussed in section 3.4. From the denoised dataset, vegetation pix-

els were extracted by applying NDVI thresholding. A dataset (BL)

was prepared from the extracted vegetation pixels identified in tree

species plots in the nine B-Line strips (Table 3.3). Subsequently,

two pixel-level datasets were prepared using the extracted vege-

tation pixels from the tree species plots identified in the B-Line

strips (Table 3.3). This step was performed to include varying view-

illumination geometries conditions. In the first dataset, all vegeta-

tion pixels from the identified tree plots in the first two strips (B1

and B2) imaged from southeast to northwest, were combined and

called the BL1 dataset. The second dataset contained all vegetation

pixels from the last two strips (B7, B8), measured from northwest to

southeast and vice versa and was called the BL2 dataset. Similarly, a

dataset was assembled from the vegetation pixels extracted from all

the identified tree species plots in the D-Line strips (Table 3.3) and

called the DL dataset. The plot and pixel-level scale datasets used

in the band selection and tree species classification are summarized
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in Table 3.4.

3.4 NOISE REMOVAL

Noise is present in the airborne hyperspectral data from different

sources. Different methods have been presented to denoise hyper-

spectral data [73–76]. In the thesis, noise in the reflectance data was

estimated using the hyperspectral signal identification by minimum

error (HySime) method presented in [74]. This noise estimation was

based on the correlation between bands and the multiple regression

theory [77]. For the algorithm to work noise type needs to be as-

sumed. Here, assuming additive noise (zero-mean gaussian inde-

pendent and identically distributed), a noise signal was estimated.

Denoising was performed by subtracting the estimated noise from

the data. The same denoising technique has been used in [78] be-

fore applying different band selection methods. From the observed

result, Latorre-Carmona, et al. [78] suggested that this denoising re-

duces regression error and improves band selection performance in

choosing a band selection method where the selection criterion uses

the information given by the whole dataset rather than a distance

criterion between sample neighbors. In this thesis, band selection

and classification results based on this denoised dataset are pre-

sented in [P2] and [P3].

3.5 REDUCTION OF VIEW-ILLUMINATION GEOMETRY

CONDITION EFFECT

The datasets (BL1, BL2, and DL) used in this thesis belong to dif-

ferent imaging view-illumination geometry conditions. Tree crown

reflectance is dependent on the view-illumination conditions, and

the method used (flat field) for atmospheric correction assumes a

reduction in atmospheric and solar irradiance effects that is inde-

pendent of the viewing direction. Generally, a surface can be char-

acterized with the Bidirectional Reflectance Distribution Function

(BRDF) model [79]. Accurate modeling and correcting the BRDF
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effect on the forest canopy surface to a known accuracy is diffi-

cult [80]. Previous studies used a normalization process to reduce

illumination effects so that each pixel (spectral vector) was divided

by its L1-norm for field-measured hyperspectral reflectance [81] and

airborne-measured hyperspectral radiance data [12] to obtain a unit

length vector. Furthermore, to reduce view-illumination geometry

condition effect on airborne multispectral reflectance data Heikki-

nen, et al. [20] divided each pixel by its L2-norm. In this thesis, it is

assumed that imaging from different view-illumination geometry

conditions caused scale differences, and the estimated reflectance

is normalized (the spectral vector was divided by its L2 norm) to

obtain a unit length vector. The use of reflectance and normalized

reflectance data for tree species classification was studied in [P3].

Table 3.3: Number of tree species pixels in the datasets, BL, BL1,

BL2 and DL the LiDAR plot mean tree height range.

Dataset Mean Height [m] Pine Spruce Birch

BL 2.3–24.5 80,959 54,945 64,272

BL1 4.1–24.5 16,064 8,298 11,441

BL2 6.8–19.7 28,321 15,588 11,435

DL 4.4–21.5 5,853 7,942 4,407

Dissertations in Forestry and Natural Sciences No 177 25



Paras Pant: Optimizing Spectral Bands of Airborne Imager for Tree
Species Classification

Table 3.4: Summary of dataset used in classification and band se-

lection.

Study Scale Dataset Remarks Publication

Tree species

Classifica-

tion

Plot
577 Plot mean

spectra

Radiance data with /

without vegetation pixel

extraction

P1,P2

Pixel
BL, BL1, BL2 and

DL

Reflectance data with

vegetation pixel extrac-

tion

P2, P3

Band selec-

tion

Plot
577 Plot mean

spectra

Reflectance data with

vegetation pixel extrac-

tion

P2, P3

Pixel BL

Reflectance data with

vegetation pixel extrac-

tion

P2
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4 Hyperspectral Band Selec-

tion

A hyperspectral sensor captures information via tens or hundreds

of spectral bands. However, previous studies [33,77] have suggested

that it is difficult to obtain reliable classification results when there

are a large number of available features (bands) and a small set of

training data. This phenomenon is termed the Hughes effect [36].

Thus, when using hyperspectral data in classification, a reduction

in dimensionality must be considered. To reduce hyperspectral

data dimensionality, feature extraction [16, 74, 77, 82, 83] and fea-

ture selection [11, 12, 35, 39, 78] methods have been used. In feature

extraction, hyperspectral data are mapped to a lower dimensional

space to compute new features [15, 16, 77].

Likewise, in the feature selection approach, a subset of origi-

nal features is identified which is useful for separating the classes

(objects) and reducing data dimensionality [35, 84]. In hyperspec-

tral band selection, feature selection is used to select a subset of

bands. However, in studies using the subset of hyperspectral bands

for data classification, there has been no discussion on whether the

selected hyperspectral bands could be realized as physical multi-

spectral bands or if the selected band positions had any relation to

the band positions of the existing multispectral sensitivity systems.

In this thesis, it is assumed that discretely selected band position

could be used as a tool to define optimized multispectral sensor

sensitivity or considered as an optimized band.

The feature selection methods have been categorized as filter,

wrapper and embedded methods based on whether the method

used a classification algorithm to evaluate a generated subset of fea-

tures [35, 84, 85]. The filter approach was used as a post-processing

step to select a feature, and the method did not use a classifica-

tion algorithm to evaluate selected features. This method maxi-
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mizes an evaluation function and uses a search criterion to choose

a subset of features. The wrapper method utilizes the feature se-

lection algorithm as a black box. This approach finds the score for

possible subsets of features according to their data discriminative

power [86] and the best performing subset of features is output.

In the embedded method, feature selection is a part of the classi-

fication process, and feature selection and classification cannot be

separated [35, 84, 85].

In hyperspectral remote sensing to select a subset of bands dif-

ferent filter [10,35,78,87], wrapper [35,39,78] and embedded [35,39]

feature selection methods can be used. Similarly, for band selec-

tion, the analysis of second-derivative spectra [87,88], interclass dis-

tances [10, 78], correlation coefficients [35, 78, 87], information the-

ory measures [78, 87], regression-based methods [39, 78] and pat-

tern classifier methods [35] have been used. Previously, Pal [39]

investigated the band selection performance of three sparse logis-

tic regression-based methods and indicated that the sparse logistic

regression-based method of Cawley and Talbot [40] gives the best

band selection results. Furthermore, this showed that the selected

bands provided improved classification results than by using all

bands and bands selected by other methods. To our knowledge,

this method has not been previously used for the band selection

in tree species classification. In this dissertation, the sparse logis-

tic regression method [40] and two sparse regression-based feature

selection methods were used in band selection. The sparse regres-

sion approach allowed us to obtain a sparse representation of the

regression model via an L1-penalty term.

For a given training data of size m as the input, {(x1, y1), (x2, y2),

. . . (xm, ym)} ⊂ R
p × R, with xi ∈ R

p and yi is the response of the

ith observation, the following minimization problem is solved:

β̂ = argmin
β

{
m

∑
i=1

L(yi, xT
i β) + γ ‖ β ‖1}, (4.1)

where
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xi =




xi1

xi2
...

xip




, β =




β1

β2
...

βp




and

‖ β ‖1=
p

∑
j=1

|β j|, (4.2)

β j = (β1, β2, . . . , βp) represents the regression coefficient to be es-

timated. In model (4.1) the first term L(yi, f (xi)) is a loss function

which measures the fit of the function to the given training data.

The second term ‖ β ‖1 is the L1-norm penalty (4.1) of the regres-

sion coefficient vector, and the term γ ‖ β ‖1 is called the regulariza-

tion term, in which γ is the regularization parameter that controls

the strength of the L1-norm penalty. This penalization shrinks some

coefficients to a value of zero, resulting in the sparse representation

of a regression model.

We related the regression coefficient to a hyperspectral band.

Due to the properties of the sparseness, several band regression co-

efficients with a value of zero were discarded. The remaining bands

with non-zero regression coefficients were considered as selected

features or bands.

4.1 SPARSE LINEAR REGRESSION

In general, the linear regression model for a given training set (S)

of size m, where S = {(x1, y1), (x2, y2), . . . (xm, ym)} ⊂ R
p × R with

xi ∈ R
p and yi ∈ {0, 1, 2} a response of the ith sample is given as

yi = xT
i β + ε where E[ε] = 0 (4.3)

The regression coefficients are often estimated using the least

squares, in which the regression coefficients are selected to mini-

mize the squared error loss,

SE =
m

∑
i=1

(yi − xT
i β)2. (4.4)
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β
1

β
2

β

Figure 4.1: Estimation picture of lasso contour for error and con-

strain function. The area inside the diamond is the constraint re-

gions |β1| + |β2| ≤ t, and the ellipse are the contours of the least

squares error function [90].

When solving for sparse linear regression, the loss function

L(yi, xT
i β) in (4.1) is replaced by the squared error loss (4.4), and

the minimization problem (4.1) is given as,

β̂ = argmin
β

{
m

∑
i=1

(yi − xT
i β)2 + γ ‖ β ‖1} (4.5)

and β̂ j = (β1, β2, . . . , βp)T is the estimated regression coefficient

vector.

This model formulation (4.5) is called LASSO (Least Abso-

lute Selection and Shrinking Operator) [89, 90], where the L1-norm

penalty is added to the linear regression problem. The estimated

regression coefficients are constrained (∑
p
j=1 |β j| ≤ t) [90] so that

the coefficient vectors of the L1-norm penalty lies in a specific geo-

metric shape centered on the origin (see Fig. 4.1). Due to constraint

solving (4.5) some of the estimated regression coefficients become

zero, resulting in a sparse solution.
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4.2 SPARSE LOGISTIC REGRESSION

In a two-class (C1, C2) problem, xi ∈ R
p is a vector of measure-

ments and yi ∈ {0, 1} is associated with the binary class level of

the ith sample. The logistic regression model attempts to estimate

the posterior probability of the class membership based on a linear

combination of the input features and is given as,

p(y = 1|xi; β) =
1

1 + exp{−xT
i β}

, (4.6)

where p(y = 1|x; β) is the conditional probability that input sample

xi is in class C1. The conditional probability that input sample xi

belongs to class C2 is given as,

p(y = 0|xi; β) = 1 −
1

1 + exp{−xT
i β}

=
exp{−xT

i β}

1 + exp{−xT
i β}

=
1

1 + exp{xT
i β}

. (4.7)

In a logistic regression, the regression coefficient vector β is esti-

mated using the likelihood function [91–94]. Let us suppose a train-

ing set (S) of size m, where S = {(x1, y1), (x2, y2), . . . (xm, ym)} ⊂

R
p × {0, 1} where xi ∈ R

p and yi ∈ {0, 1} is a response of the

ith observation. If the training set S represents an independent and

identically distributed (i.i.d.) sample of a Bernoulli distribution, the

likelihood function is given as,

L(yi|xi; β) =
m

∏
i=1

π(xi)
yi{1 − π(xi)}

1−yi , (4.8)

where yi = (y1, . . . , ym)T and π(xi) = p(y = 1|xi; β).

The regression coefficient vector β can be estimated by maxi-

mizing the log-likelihood of the training sample or its equivalent

by minimizing the negative log-likelihood [40, 92, 93]. In this study,
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the negative log-likelihood was minimized and is given as,

ℓ = −log L(yi|xi; β)

= −
m

∑
i=1

{yilog π(xi) + (1 − yi)log (1 − π(xi)}; (4.9)

this can be transformed into

ℓ =
m

∑
i=1

log{1 + exp(−y′ix
T
i β)}, (4.10)

where

y′i =

{
1 if yi = 1

− 1 if yi = 0

In the logistic regression, due to the nonlinearity of the logistic

sigmoid function, there is no closed-form solution [94]. A Newton

method can be used to compute the regression coefficient vector

beta [94]. In the Newton method, the first and second derivatives

of an objective function are computed. Thus, after minimizing the

negative log-likelihood (4.10) with respect to individual regression

parameters, its first and second derivatives are computed to find

the solution.

This logistic regression model solution is dense, and the regres-

sion coefficient β is never exactly zero. Thus, selection of the most

informative regression coefficient is difficult. To solve this prob-

lem, a sparse logistic regression model [90, 95] can be formulated

by adding the regularization term to the negative log-likelihood

function (4.10) and the modified model is presented as follows,

β̂ = argmin
β

(ℓ+ γ ‖ β ‖1). (4.11)

The addition of a regularization term (4.11) to the negative log-

likelihood (4.10) can also be seen as the placement of a Laplacian

prior [96] over the regression coefficient vector β. To solve (4.11),

different methods have been proposed [93, 95, 97–99].

In (4.5) and (4.11), the regularization parameter γ controls the

strength of the penalty. For γ = 0 , β̂ is the same as solving for
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the linear regression least square fit in (4.5) and the negative log-

likelihood in the case of logistic regression (4.11). Similarly, when

γ = ∞, then β̂ = 0. Thus, when solving (4.5) and (4.11) for β̂

(regression coefficient) the regularization parameter γ is selected

between these two extremes.

The addition of L1-norm penalization raises two issues concern-

ing how the objective function can be minimized and how to choose

the free regularization parameter γ, because the selection of a dif-

ferent γ provides a different model solution [90, 95]. To solve the

problem of model selection, a cross-validation routine can be ap-

plied to select a model solution with a γ value that provides a min-

imum error. In this thesis, the solution to the objective function (4.5

and 4.11) was found using the coordinate descent approach pre-

sented in [97, 98]. From the solutions, such a model solution was

selected where the γ value provides the minimum error.

4.3 SPARSE LOGISTIC REGRESSION WITH BAYESIAN REG-

ULARIZATION

In (4.5) and (4.11), the regularization parameter γ controls the re-

sults and needs to find the best γ value, which minimizes error.

Thus, there is a need for a model selection stage to find the best

γ. Cawley and Talbot [40] discussed the elimination of the model

selection stage in the sparse logistic regression and introduced a

Bayesian approach in which the need for a regularization param-

eter γ in (4.11) was eliminated. They stated that minimization of

(4.11) provided a Bayesian interpretation, and the posterior distri-

bution of the logistic regression coefficient (β) was given as,

p(β|S, γ) ∝ p(S|β)p(β|γ), (4.12)

where S is the training sample. The prior over the logistic regres-

sion coefficient (β) is given by the separable Laplace distribution

as,

p(β|γ) = (
γ

2
)N exp{−γ ‖ β ‖1}, (4.13)
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where N is the number of the non-zero logistic regression coeffi-

cient. According to Cawley and Talbot [40] the regularization pa-

rameter was eliminated using an analytical approach [96] in which

the prior distribution over the logistic regression coefficient is given

by marginalization over γ

p(β) =
∫

p(β|γ)p(γ)dγ. (4.14)

Because γ is a scale parameter, Cawley and Talbot [40] stated that

the improper Jeffrey’s prior [100] p(γ) ∝ 1/γ provides the appro-

priate ignorance prior, corresponding to the uniform prior over the

logγ. Substituting (4.13) in (4.14) and noting that γ is strictly posi-

tive we obtain,

p(β) = (
1

2
)N

∫ ∞

0
γN−1 exp{−γ ‖ β ‖1}dγ. (4.15)

Using the Gamma integral
∫ ∞

0
xν−1e−µxdx = Γ(ν)

µν [101] Cawley and

Talbot [40] showed

p(β) =
1

2N

Γ(N)

(‖ β ‖1)N
⇒ −logp(β) ∝ Nlog ‖ β ‖1 . (4.16)

This calculation gives the revised optimization function for the

sparse logistic regression (4.11) with Bayesian regularization

β̂r = argmin
β

{ℓ+ Nlog ‖ β ‖1}. (4.17)

Furthermore, they [40] state that the differentiation of (4.11) and

(4.17) gives

∇β̂ = ∇ℓ+ γ∇ ‖ β ‖1 and ∇β̂r = ∇ℓ+ γ̃∇ ‖ β ‖1, (4.18)

where

γ̃ =
1

1/N ∑
N
j=1 |β j|

. (4.19)

From the gradient descent viewpoint, the minimization of (4.17) ef-

fectively becomes equivalent to the minimization of (4.11) so that
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the regularization parameter in (4.11) is constantly modified as

given in (4.19). This procedure eliminates the need for a user-

defined regularization parameter. The details of the method can be

found in [40]. To solve the modified sparse logistic regression with

Bayesian regularization, Cawley and Talbot [40] introduced minor

modifications into the sparse logistic regression solution described

by Shevade et al. [95], who used the Gauss-Seidel method.
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5 Classifiers

In the classification of airborne multispectral and hyperspectral

data, several classifiers have been used [3,9–11,20,21,34,35,102]. For

example, discriminant analysis (DA), maximum likelihood (ML),

spectral angle mapper (SAM), support vector machine (SVM), Ra-

dial basis function (RBF) neural networks, K-nn classifier. Among

the classifiers, Melgani and Bruzzone, and Camps-Valls and Bruz-

zone [34, 102] suggested that SVM is a promising classifier for re-

mote sensing application as it is robust in regard to noise and high

data dimension and less sensitive to the Hughes phenomenon. Fur-

thermore, in several studies [10,34,102–104] improved classification

results with SVM classifiers have been presented when compared

with the classification results obtained from other classifiers.

In this dissertation, tree species classification was studied using

reflectance data corresponding to the selected hyperspectral bands,

simulated responses of standard and optimized multispectral sen-

sors and full spectral reflectance features corresponding to the 64

AisaEAGLE II hyperspectral bands. Tree species classification was

evaluated using the DA and SVM classifiers. The DA classifier was

chosen for the experiments due to its simplicity in construction.

5.1 DISCRIMINANT ANALYSIS

Discriminant analysis is a supervised classifier that has been widely

used to solve the machine learning problem for object classifica-

tion. Linear discriminant analysis (LDA) and quadratic discrimi-

nant analysis (QDA) are widely used discriminant analysis meth-

ods.

Let us assume we have a multi-class problem and for class label

k, where k = 1, 2, . . . , k, the Bayes rule minimizes the total error of

the classification by assigning each object to class k, which has a

height conditional probability [91, 94, 105]. To estimate this, we can
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follow the idea of discriminant analysis. If we have many classes

and an input training data of size m, {x1, x2, . . . xm} ⊂ R
p with

xi ∈ R
p and assuming that the data within each class follow a

normal distribution, then the conditional probability is given as

p(x|k) =
1

(2π|Σk|)1/2
exp{−

1

2
(x − µk)

TΣ−1
k (x − µk)}, (5.1)

where µk and Σk are the mean vector and covariance matrix, respec-

tively, of class k. Taking the logarithm of ( 5.1) for differing prior

class probabilities πk, the optimal discriminant analysis classifica-

tion rule is given as

fx(k) = max
k=1,2..K

{(x−µk)
TΣ−1

k (x−µk)− 2log(πk)+ log(|Σk|)}, (5.2)

where µk = 1
mk

∑
mk
i=1 xk and πk = mk

m , mk is the number of training

data in each class and m the total number of training data. The

covariance matrix of m-samples in each class k is defined as

Σk =
1

mk
∑(xk − µk)(xk − µk)

T. (5.3)

The basic difference between the two classifiers LDA and QDA is

how the covariance information is obtained. In LDA Σk = Σ ∀ k,

Σ is covariance information computed combining the training sam-

ples in all classes and the linear discriminant function is defined

as

δk(x) = xTΣ−1µk −
1

2
µT

k Σ−1µk + log(πk). (5.4)

In QDA, the covariance matrix Σk is calculated using training sam-

ples for each class k.

One of the problems in using these classifiers (LDA and QDA)

for hyperspectral data is that when estimating the covariance matri-

ces, it is possible that the covariance matrix is ill-conditioned due to

the high-dimensionality of the data and, therefore, difficult to use

in (5.4).
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5.2 SUPPORT VECTOR MACHINE

The support vector machine (SVM) is also a supervised classifier

and has been used to classify remote sensing data [10, 16, 20, 33–

35]. The SVM detects the separating hyperplane by maximizing the

margin between the classes [106, 107].

Let us assume we have a binary classification problem and a

training data of size m, {(x1, y1), (x2, y2), . . . , (xm, ym)} ⊂ R
p × R

with xi ∈ R
p and response variable yi ∈ {0, 1}). In the SVM frame-

work the data are mapped to some feature space F with a feature

map

Φ : R
p → F (5.5)

and the decision function is written as

f (x) = sign(wTΦ(x) + b), (5.6)

where b is a bias term and (wTΦ(x)+ b) = 0 defines the hyperplane

in the feature space. Then f (xi) ≥ 1 when yi = 1 and f (xi) ≤ 0

when yi = 0.

Assuming that the two classes are not separable in the feature

space, in the SVM framework the classification model is derived as

the solution to the minimization problem. As a minimization prob-

lem, we used the C–SVM and least-squares support vector machine

(LS–SVM) formulation of SVM.

5.2.1 C–SVM

C-SVM solves the nonlinear classification problem using quadratic

programming. In C-SVM, the minimization problem is given as,




min
w,b,ζ

(w, ζ) =
1

2
wTw + C

m

∑
i=1

ζi

s.t. yi[w
TΦ(xi) + b] = 1 − ζi i = 1, . . . , m

and ζi ≥ 0 i = 1, . . . , m

(5.7)

where the term wTw/2 corresponds to the margin parameter and

ζm
i represents the slack variable. This indicates the misclassification
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of the sample xi when ζi > 1 [16]. The parameter C controls the

tradeoff between the margin maximization and the tolerable clas-

sification errors. The solution is obtained by solving the quadratic

programming problem using the dual space of Lagrange multipli-

ers and the property

K(x, z) = Φ(x)TΦ(z), (5.8)

where kernel K defines the mapping Φ : R
p → F of input sam-

ples x and z ∈ R
p to the feature space F [106, 107]. The decision

function for the C-SVM becomes

f (x) = sign

[
Ns

∑
i=1

αiyiK(x, xi) + b

]
, (5.9)

where Ns is the number of the support vector. The training data

corresponding to the non-zero αi is called the support vector [107],

αi represents the calculated Lagrange multipliers and K is the se-

lected positive definite kernel function [106, 107].

5.2.2 Least Squares Support Vector Machine (LS–SVM)

In simplifying the SVM formulation LS–SVM as a least-squares cost

function has been proposed [107,108]. The formulation of LS–SVM

is given as a minimization problem [107, 108] and is defined as fol-

lows:





min
w,b,e

(w, e) =
1

2
wTw + γ

1

2

m

∑
i=1

e2
i

s.t. yi[w
TΦ(xi) + b] = 1 − ei, i = 1, . . . , m

(5.10)

where wTw/2 corresponds to the margin between classes, (w b) is

the parameter of the linear approximation, γ > 0 a regularization

parameter similar to parameter C in ( 5.7) and ei is the error of the

ith sample. This formulation (5.10) consists of equality rather than

inequality constraints in ( 5.7) and takes into account a squared er-

ror with a regularization term similar to the ridge regression [107].
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To solve the optimization problem in ( 5.10), a Lagrangian function

can be constructed [107].

The solution to the formulation ( 5.10) is obtained by solving the

linear set of equations using the dual space of Lagrange multipliers

and the property K(x, z) = Φ(x)TΦ(z), where kernel K defines the

mapping Φ : R
p → F of input samples x and z ∈ R

p to the feature

space F . The LS–SVM classifier is then constructed as follows:

f (x) = sign

[
N

∑
i=1

αiyiK(x, xi) + b

]
, (5.11)

where N is the number of the support vector, αi represents the cal-

culated Lagrange multipliers and K is the selected positive definite

kernel function [107].

LS–SVM has drawbacks when compared with C–SVM. C–SVM

leads to a sparse representation, i.e., the support vectors are a sub-

set of the original training sample. In the case of LS–SVM every

training data point is a support vector because none of the αi val-

ues are exactly zero [107].

In this thesis, LS–SVM and C–SVM were applied via a fea-

ture map a radial basis function (RBF) kernel defined as K(x, z) =

exp(− ‖ x − z ‖2
2 /σ2) for σ > 0. The hyperparameter C or γ

and the kernel parameter σ were estimated with the selected train-

ing dataset and a 10-fold cross validation. The three tree species

(pine, spruce, birch) classification was conducted using the multi-

class one-against-one method [109].
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6 Experiments

In this thesis, Scots pine, Norway spruce and deciduous birch tree

species classifications were evaluated using simulated responses

and selected hyperspectral bands. Sensor responses were simulated

using measured hyperspectral data, the spectral sensitivity of three

existing multispectral sensors and two optimized multispectral sen-

sor system. In band selection estimated reflectance data were used

assuming they represent the spectral signature of the tree species

since single-tree species forest plots were extracted. These classi-

fication results were compared with the results obtained by using

all 64 band AisaEAGLE II hyperspectral radiance and reflectance

data, depending on the use of the simulated response or selected

bands. The tree species classification was investigated at pixel- and

plot-level scales. In the plot-level scale Leave-one-out (LOO) clas-

sification was evaluated together with a case in which the training

and test data were selected from different view direction datasets.

Using the selected bands obtained from specific view-illumination

geometry condition datasets, the pixel-level scale tree species classi-

fication was studied in cases where the view-illumination geometry

conditions of the datasets used in band selection and classification

either closely match or deviate.

6.1 HYPERSPECTRAL BAND SELECTION

Three different sparse regression-based feature selection meth-

ods (sparse linear regression (SLinR), Sparse Logistic Regression

(SLogR) and Sparse Logistic Regression with Bayesian Regulariza-

tion (SLogBR)) were used to select subset of bands. The band selec-

tion results for the use of these three methods are presented in [P3]

using the balanced plot mean dataset (300 i.e. 100 × 3 plot mean

spectra).

Using SLinR ( 4.5) 39 spectral bands were selected. Similarly,
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using SLogR ( 4.11) 17 spectral bands were selected. When using

SLogBR, the minimum number of bands was selected. An addi-

tional advantage of the method is that it avoids the model selec-

tion stage. The band selection performance of SLogBR was fur-

ther evaluated using pixel- and plot-level datasets in the case of an

imbalanced and balanced dataset. Using SLogBR with plot- and

pixel-level datasets in balanced and imbalanced cases resulted in

the selection of 8–11 narrow bands. The detailed band selection

results for SLogBR are presented in [P2].

6.2 OPTIMIZED MULTISPECTRAL SENSOR SENSITIVITIES

Existing airborne multispectral sensors are general purpose remote

sensing sensors and discretely located sensor sensitivities are not

optimized for tree species classification. In this thesis, optimized 4

and 5-band multispectral sensor sensitivities were proposed either

by repositioning the existing sensitivity or adding an extra sensi-

tivity function in the standard 4-band Leica ADS system. The Le-

ica ADS system was selected for the band modification because it

lacks sensitivity in the wavelength range of 690–800 nm (red-edge),

where the NIR band in UCD and DMC is extended to encompass

the red-edge and NIR range (see Fig. 2.2 on page 12). Although the

Leica ADS system (Fig. 2.2c on page 12) lacks sensitivity in the red-

edge range, it has been reported that certain Leica systems exhibit

an additional band in the wavelength range of 705–755 nm [46];

however, that sensitivity information was unavailable. In optimiza-

tion, the NIR sensitivity function in the Leica ADS sensor was first

replicated and relocated to achieve sensitivity in the 691–785 nm

range so that there was no overlap with other existing Leica ADS

bands (see Fig. 6.1a). This new sensitivity has the same FWHM as

the NIR sensitivity in the Leica ADS system and a peak value at 719

nm. This proposed 5-band multispectral sensor system is referred

to as ADS*. The motivation for this approach was based on simula-

tion work presented in [16], which was based on the hyperspectral

data measure on the ground and idealized Leica ADS sensitivities,
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where the importance of the red-edge band for the classification

of tree species has been presented. Similarly, the importance of

the red-edge band has been emphasized in previous band selection

studies on utilizing hyperspectral data for tree species classifica-

tion [6, 10, 11].
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(a) The five band system ADS* proposed in [P1]. The four solid lines are

the Leica ADS40 bands and the dashed line is the added fifth band.
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(b) The dotted curve is the ADS40 red band and the dashed dot curve is

the repositioned or added band of the proposed 4 and 5-band multispectral

system ADS-S and ADS-S*, respectively, proposed in [P2].

Figure 6.1: Repositioned/added band in the Leica ADS40 system.

Furthermore, the selected band position obtained using a sparse

logistic regression with the Bayesian regularization method [40] was

used to modify one Leica ADS multispectral band with broadband

characteristics. To achieve this goal, the positions of the selected

narrow bands were related to the Leica multispectral sensitivity po-

sitions. The selected red-edge bands were positioned in locations
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where the Leica ADS lacked sensitivity (see figures [P2]). Based

on this finding, it was assumed that the positions of the selected

bands could be useful in defining new sensitivity or repositioning

the existing sensitivity in the Leica ADS. Using the position infor-

mation of the selected narrow bands, the Leica ADS sensitivity was

modified in two ways to define an optimized multispectral sensor

system. First, the sensitivity function of the red band of Leica ADS

was repositioned for effective sensitivity starting from the position

of 681 nm (see Fig. 6.1b, dashed dot curve). This repositioning was

based on the position of the selected narrow bands in the red-edge

range of 681–776 nm. This proposed optimized 4-band multispec-

tral sensor system was referred to as ADS-S. Second, extra sensitiv-

ity was added to the Leica ADS system rather than redefining the

location of the existing sensitivity. To achieve this goal, a 5-band

multispectral sensor system was defined where the four original

Leica ADS sensitivity functions and an additional sensitivity func-

tion was defined (see Fig. 6.1b). This additional sensitivity function

represented the same repositioned sensitivity function as in ADS-S.

The proposed 5-band multispectral sensor system was referred to

as ADS-S*.

6.3 SIMULATION OF SENSOR RESPONSES

The evaluation of tree species classification performance with dif-

ferent airborne multispectral sensor data is expensive due to the

cost of imaging. Using airborne radiance hyperspectral data and

accurate multispectral sensor sensitivity information, multispectral

sensor responses can be simulated and tree species classification

performance can be evaluated. Previously, using simulated re-

sponses tree species classification has been studied using hyper-

spectral data (tree species reflectance and midday condition solar

irradiance) measured on the ground, with idealized Leica ADS80

sensitivity [16].

For the purposes of this study, the multispectral sensor re-

sponses were simulated using airborne measured hyperspectral
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(AisaEAGLE II) radiance data and accurate sensor sensitivity in-

formation for three airborne multispectral sensors, namely, Vexcel

Ultracam-D (UCD) [44], the Intergraph-Z/I Digital Mapping Cam-

era (DMC) [45], the Leica Airborne Digital Sensor (ADS) [46] (see

Fig. 2.2) and the proposed optimized 4 and 5-band multispectral

sensor sensitivity information by applying the weighted integration

model ( 2.2).

For the simulation of responses ( 2.2), the discrete representation

R̂ was used for the hyperspectral radiance R, and the representation

ŝi was used for the discretely located spectral sensitivity si. The dis-

crete representation of radiance R corresponds to the peak locations

of the hyperspectral bands as defined in Table 3.1. The discretely

located sensor sensitivity functions for the ADS (Fig. 2.2c) and the

UCD (Fig. 2.2a) were obtained from the sensor manufacturer. The

DMC (Fig. 2.2b) sensor sensitivities were manually digitized from

the sensitivity information presented in [45]. In all the cases, the

sensor sensitivity functions are a product of the lens properties, the

filters and the sensitivity of the CCD [45, 46]. In the simulations,

each sensor system sensitivity was scaled to have a maximum peak

value of 1 (see Fig. 2.2).

Furthermore, the available discretely located sensor sensitivities

were linearly interpolated to have values in wavelength locations

that correspond to the peak locations of the hyperspectral bands

(Table 3.1). The integration ( 2.2) was then approximated by using

a discrete sum,

Xi =
64

∑
j=1

R̂(λj)ŝi(λj), (6.1)

with sampling locations λ1, . . . , λ64 corresponding to the band

peaks (Table 3.1). Using this approach, the responses for all of the

pixel locations in the tree plots were simulated.

Dissertations in Forestry and Natural Sciences No 177 47



Paras Pant: Optimizing Spectral Bands of Airborne Imager for Tree
Species Classification

6.4 PLOT- AND PIXEL-LEVEL TREE SPECIES CLASSIFICA-

TION

The Scots pine, Norway spruce and deciduous birch tree species

classifications were evaluated for pixel- and plot-level scale

datasets. With these datasets, the classification results were inves-

tigated using simulated responses of the standard and proposed

optimized multispectral sensor, the selected hyperspectral bands,

and all 64 hyperspectral band features. The classification accuracy

and kappa value [110] were calculated to evaluate the classification

performance.

6.4.1 Simulated Sensor Responses

In [P1], using the plot-level scale dataset, tree species classification

was studied using the DA and C-SVM classifiers and the simulated

response of the widely used 4-band multispectral sensors (ADS,

UCD and DMC) and the proposed 5-band multispectral sensor

ADS* (see Fig. 6.1a). The QDA, LOO accuracy for the simulated

4-band responses of ADS, UCD and DMC was similar (the total

LOO accuracy had a difference of approximately 1%). For the sim-

ulated 4-band responses, the LOO accuracy of the SVM was 2–5%

higher than the accuracy obtained using QDA. However, using hy-

perspectral data, the QDA classifiers were ill-conditioned and in

many cases led to poor tree species classification performance due

to the smaller number of available plots (training data size) and the

larger hyperspectral data dimensionality. In such cases, the SVM

results were not affected by the size of the training data. In cases

where QDA failed, the LDA classification results were calculated

and presented.

The simulated responses of the proposed 5-band multispectral

sensor ADS* yielded similar (a difference of approximately 1%)

LOO results for the QDA and SVM classifiers. In all of the experi-

ments, the simulated 5-band responses produced a 5–13% higher

classification accuracy than the 4-band responses of ADS, UCD

and DMC. Furthermore, the simulated responses of the proposed
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5-band sensor system produced classification accuracy similar to

those obtained using 64 band AisaEAGLE II hyperspectral radiance

data.

The use of training and test data from the different view di-

rection showed that the accuracy of the simulated 5-band response

(ADS*) was high and stable, similar to the results obtained using

all 64 hyperspectral bands. However, the accuracy of the simulated

standard 4-band responses was lower and varied among the sen-

sors.

Similarly, in [P2] the simulated responses of the proposed 4-

band (ADS-S) and 5-band (ADS-S*) tree species classification were

studied. When using the plot-level scale dataset, the simulated re-

sponse of the proposed 4 and 5-band multispectral sensor provided

a tree species classification performance that was similar to those

obtained using all 64 hyperspectral bands.

Furthermore, when using the simulated response of the pro-

posed 5-band (ADS*), the pixel-level classification accuracy was im-

proved by approximately 2% versus the simulated responses stan-

dard 4-band ADS. Similarly, the simulated responses of the pro-

posed 4-band (ADS-S) and 5-band (ADS-S*) provide approximately

4% improved tree species classification compared with the results

obtained by using the simulated responses of the standard 4-band

ADS. These classification results were lower (approximately 7%)

than the results obtained by using all 64 hyperspectral bands.

6.4.2 Selected Hyperspectral Bands

For band selection hyperspectral reflectance data were used. Using

different spatial scales and balance conditions for the training sam-

ples (pixel- and plot-level scales), 8–11 hyperspectral bands were se-

lected using sparse logistic regression with the Bayesian regulariza-

tion method [40]. The results are presented in [P2]. A minimum of

eight bands was selected using a balanced plot-level scale dataset.

With the selected bands, the pixel-level scale tree species classifica-

tion was evaluated by selecting approximately 1% of the total data
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in the training while the remaining data were test set. Because the

training dataset was selected randomly, each classification experi-

ment was repeated 10 times, and the average classification result

is presented. Despite the differences in the selected band combi-

nations, similar tree species classification accuracies were obtained

at the pixel-level. The classification results obtained with the 8–11

selected bands in the pixel- and plot-level scale datasets were sim-

ilar to those obtained using all 64 hyperspectral bands. To assess

the similarity in the classification results obtained between selected

bands and using all 64 hyperspectral bands, a non-inferior and dif-

ference in the results were computed using the method described

in [111]. Furthermore, in [P2] the use of the first five selected nar-

row bands for the balanced dataset improved (approximately 3%

higher) the pixel-level tree species classification compared with the

results obtained using the simulated responses of the proposed 4

and 5-band multispectral sensor system.

6.4.3 Assessment of Selected Bands under Changing View-

Illumination Geometry Conditions

Forest canopy reflectance varies with changes in the imaging view-

illumination geometry condition. Furthermore, with a change in

view direction different parts of the crowns are observed and affect

the reflectance signal. In the context of defining an optimized band,

it must be determined whether the selected band obtained with

specific view-illumination geometry conditions and spatial scale in

the dataset provide a reasonably accurate tree species classification

despite deviations in the spatial and view-illumination geometry

conditions of the datasets used for the band selection and classifica-

tion. The classification results obtained using eight selected bands

(obtained with plot-level scale reflectance data and morning view-

illumination geometry conditions) and all 64 band hyperspectral

reflectance were evaluated. Furthermore, the results were evalu-

ated using pixel-level scale reflectance and a normalized reflectance

dataset.
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In the experiments described in [P3], when the tree species clas-

sification was performed using eight the selected bands and morn-

ing (BL1, BL2) datasets, i.e., classifier training and test sets, the

view-illumination geometry conditions matched those of the data

for band selection, and accuracy and kappa above 94% and 0.89,

respectively, was obtained. When the afternoon (DL) dataset was

used in the classification, the view-illumination geometry condi-

tions of the band selection and classification dataset differed; we

obtained accuracy and kappa, 93% and 0.89, respectively. Further-

more, tree species classification results using selected bands (39,

17 and 8) were evaluated and compared. We obtained the simi-

lar results (accuracy difference < 1%) on using 39, 17 and 8 se-

lected bands. These results showed that suboptimal band selec-

tion (with respect to view-illumination geometry conditions) still

provides reasonable (accuracy approximately 93% and kappa 0.90)

classification results. Furthermore, when comparing the classifica-

tion results for the reflectance and normalized reflectance dataset,

a similar (difference 1–2%) classification result was obtained. In

addition, results in [P3] indicated that there was no significant dif-

ference between the results obtained with selected bands (39,17,8)

and using all 64 hyperspectral bands, when classifier training and

test dataset view-illumination geometry condition match.

When there was a small difference in the solar azimuth (< 15◦),

the solar elevation (< 6◦) and the imaging view-illumination ge-

ometry conditions between the classifier training and test dataset

(when using BL1 and BL2 dataset for training / test) an accuracy

of approximately 90% was observed. However, a significant de-

crease in the accuracy was observed (approximately 26%) for the

reflectance dataset when there were larger differences in the solar

azimuth (> 48◦), solar elevation (> 9◦) and viewing-illumination

geometry conditions between the classifier training and test dataset

(i.e., using the data imaged in the morning and in the afternoon

datasets as training and test). Moreover, when a larger differ-

ence in the view-illumination geometry conditions between clas-

sifier training and test dataset occurred, the normalization of the
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reflectance vectors to unit vectors improved the accuracy (approxi-

mately 13%) compared with results obtained using reflectance data.

We assumed that changes in view-illumination geometry condi-

tions caused scale changes in the spectral reflectance, and that nor-

malization reduced the scale; therefore, the classification perfor-

mance was improved.

Furthermore, the classification result with the eight bands pro-

vide similar (difference <1%) or 4% (on average) improved overall

accuracy than the classification results obtained with all 64 hyper-

spectral bands. In addition, when using all 64 hyperspectral bands

deviation in the classification results was higher than in results

obtained using selected bands. These results suggest that some

of the hyperspectral bands are problematic with respect to view-

illumination geometry condition changes in the dataset and con-

tribute to lowering classification accuracy.
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7 Discussion and Conclu-

sions

The aim of this thesis was to define optimized spectral bands in

the 400–1000 nm wavelength range that accurately classify Scots

pine, Norway spruce and deciduous birch tree species. The tree

species classification performance was evaluated using simulated

multispectral responses (via existing multispectral sensor sensitivi-

ties and optimized sensitivities) and selected hyperspectral bands.

The classification results were compared with the results obtained

using all 64 AisaEAGLE II hyperspectral bands in the 400–1000 nm

wavelength range. Classifications were performed using support

vector machines and discriminant analysis classifiers with pixel-

and plot-level scale data.

The results presented in this dissertation are based on the air-

borne measured line-array imaging AisaEAGLE II hyperspectral

sensor data on the wavelength ranging from 400–1000 nm. The

hyperspectral data were collected from the forest in Hyytiälä, Fin-

land, which has been widely used in developing methodology for

aerial remote sensing [9, 19, 20, 29, 71, 112–115]. Single tree species

forest plots were extracted from the acquired images.

The focus of [P1] was to compare the tree species classification

performance of the simulated responses of three widely used mul-

tispectral sensors (Leica ADS40, Vexcel UltraCam-D (UCD), and

Intergraph-Z/I Digital Mapping Camera (DMC)). The simulations

with Leica ADS sensitivities were most similar to the data acquired

using real Leica sensors because the Leica ADS and the hyperspec-

tral sensor rely on the same line-scanning principle. Simulations

with the UCD and DMC sensitivities correspond to a hypothetical

line-scanning sensor with these spectral sensitivity shapes (Fig. 2.2).

The simulations apply here to the level of spectral sensitivities and,

therefore, do not give information on the performance of complete
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sensor systems. All 4-band standard multispectral sensors provided

a similar classification performance for plot-level scale data.

Based on the previous recommendation in [16] (based on

ground level hyperspectral measurements), a 5-band optimized

multispectral sensitivity was proposed with four original Leica

ADS40 sensitivity and one additional red-edge sensitivity function.

Using plot-level scale data, the tree species classification perfor-

mance of this proposed 5-band sensor system was significantly im-

proved (5–13% points) compared with simulated responses of stan-

dard 4-band multispectral sensor systems. In addition, the clas-

sification performance of the simulated response of the proposed

5-band sensor system was similar (approximately 99%) to the per-

formance of 64 bands AisaEAGLE II hyperspectral system. How-

ever, for the pixel-level scale dataset, classification accuracy for the

proposed 5-band was lower than that obtained using all 64 hyper-

spectral bands. This finding was expected because the pixel-level

classification is more complex than the plot-level classification due

to increasing variability (effects of shadows and background).

We considered methods for selecting hyperspectral bands and

the use of selected band in tree specie classification was evalu-

ated. In [P2], band selection results using the sparse logistic regres-

sion with the Bayesian regularization method [40] was presented

for pixel- and plot-level scale data in balanced conditions. Mini-

mum eight bands was selected using the balanced (balancing the

class sizes in the training dataset) plot-level dataset. Furthermore,

the band selection performance of other regression-based meth-

ods, sparse linear regression [98] and sparse logistic regression [95],

were evaluated using the balanced plot-level scale dataset and pre-

sented in [P3]. These methods resulted in 39 and 17 selected bands.

In previous logistic regression-based classification, the imbalance in

number of training samples in each class affects logistic regression

performance [116]. It was also validated in our experiments ([P2])

that balancing the number of training samples in each class lead

to a smaller number of selected bands than when compared to the

bands selection with imbalanced training data.
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Previously, hyperspectral band selection had been per-

formed [10,11,35]. Whether the selected hyperspectral bands could

be considered physical multispectral bands or whether the selected

band positions had any relation to the existing multispectral sen-

sor sensitivity position had not been addressed. In [P2] the band

selection outcome obtained using the method in [40] was related to

the 4-band Leica ADS40 multispectral sensor sensitivity positions,

and modified 4 and 5-band broadband multispectral sensor systems

were proposed. Only one Leica ADS band position was modified

because tuning all Leica bands for tree species classification is un-

reasonable. Using the simulated response of the proposed 4 and

5-band multispectral sensor systems, tree species classification was

improved when compared with results obtained via the standard

4-band sensor system. Furthermore, in the experiments [P2], it be-

came clear that the first five hyperspectral bands that were selected

with the balanced data set provided a better classification result

than the proposed 4 and 5-band system. This result was expected

since the proposed system was based on the Leica ADS, and we

only modified one Leica ADS sensitivity position.

When defining an optimized band the selected bands should

provide a reasonably accurate tree species classification perfor-

mance despite differences in the view-illumination geometry condi-

tions of the datasets used for the classification and band selection.

In all the experiments presented in [P3] we demonstrate that the

selected eight bands (optimized bands) resulted in similar (1–2%

difference) or improved tree species discrimination than those ob-

tained using all 64 hyperspectral bands and the 39 and 17 selected

bands throughout the view-illumination geometry conditions.

In this thesis, hyperspectral data were acquired at the peak of

the growing season, where differences between species are likely

to be difficult to identify. Therefore, the classification results pre-

sented in the thesis could be improved if the data were acquired

at different stages of phenology. For example, in previous stud-

ies, imaging in autumn [3] and using multi-temporal imaging [117]

suggest improved tree species classification performance.
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The optimized bands are sensitive to forest types, structure, and

temporal spectral changes in vegetation. The results presented in

this thesis using the selected hyperspectral bands and the simu-

lated responses of the proposed 4 and 5-band multispectral systems

suggest that optimized or tunable spectral imaging systems with a

small number of bands will enable the extraction of adequate in-

formation for tree species classification. Therefore, it is possible

to find suitable application-specific band combinations for certain

geographic areas.
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tinen, J. Hyyppä, J. Suomalainen, and A. Kukko, “Radio-

metric calibration and characterization of large-format digital

photogrammetric sensors in a test field,” Photogrammetric En-

gineering & Remote Sensing 74, 1487–1500 (2008).
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This thesis concentrated on optimiz-

ing and selecting spectral bands of 

airborne imagers for pine, spruce 

and birch tree species classification. 

Band optimizations and selections 

were performed in 400-1000 nm 

wavelength range using simulations 

based on airborne measured hyper-

spectral image data. Classification 

results were presented using simu-

lated responses of proposed 4 and 

5-band multispectral systems and 

selected hyperspectral bands via 

sparse regression-based feature se-

lection methods. Results suggest that 

4-8 multi or hyperspectral bands can 

be used to achieve accurate classifi-

cation of the tree species.
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