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ABSTRACT

Biomass combustion in residential heating is recognized as one
of the most important sources of fine particulate matter (PM:s:
particles < 2.5 pm in aerodynamic diameter) not only in the
developing countries but also in the developed countries and in
urban environments. Epidemiological studies have revealed that
exposure to current levels of urban air inhalable particulate
matter (PMuo: particles < 10 um in aerodynamic diameter) and
PM:s increases both mortality and morbidity. In addition to size,
shape and mass concentration, the chemical composition of the
PM is important in determining the adverse health effects. One
putative factor in the outcomes induced may be traced back to
the presence of inorganic transition metals in the ultrafine
particles (particles < 100 nm in aerodynamic diameter). Zinc is
one of the main transition metals in ash emissions from biomass
combustion. It is known to induce toxic effects in animal lung as
well as in pulmonary cells. The aim of this thesis was to
compare the toxic properties of particulate samples derived
from old and modern small-scale wood combustion appliances
using in vivo and in vitro models. A specific aim was to gather
information on the possible role of zinc in these toxic effects.

Healthy mice were intratracheally exposed to emission
particles from five new and two old technology appliances. It
was found that even though the modern technology appliances
had clearly the smallest PM: (mg/M]J) emissions, they induced
the highest toxicological responses in the mouse lungs when
equal doses were compared. Ash related PM components, such
as transition metals (including Zn) of the emissions increased
the inflammatory, cytotoxic and genotoxic responses, whereas
the highest polycyclic aromatic hydrocarbon (PAH)
concentrations were associated with immunosuppressive effects
and thus low inflammatory responses.

In an attempt to verify the findings from the animal study, an
in vitro mouse macrophage cell line (RAW 264.7) was used to
characterize the role of zinc among the other chemical
components of the emissions. The first step was to duplicate as



similar combustion conditions as utilized in previous animal
experiments by using a grate combustion reactor. In the next
step, synthesized nanoparticles were made containing defined
amounts of potassium, sulfur and zinc. These constituents are
the major components forming inorganic particles during wood
combustion. Finally, the toxic role of zinc was investigated by
burning pellets containing different concentrations of added
zinc using similar pellet boiler as in the animal experiments. It
was shown that both synthetic zinc nanoparticles as well as
particles derived from combustion of zinc-enriched pellets
exhibited a toxicity profile very similar to that found after
exposure of macrophages to the particles from reactor-made
efficient combustion. Moreover, other components (potassium
and sulfur) found in efficient combustion PM emissions were
not capable of evoking toxic responses.

In conclusion, zinc has an important role in the induced toxic
effects of PM from efficient continuous wood combustion. In
contrast, high concentrations of organic compounds (i.e. PAHs)
are likely to induce immunosuppressive effects, especially from
inefficient combustion conditions. If one wishes to prevent
potential adverse health effects, more attention should be paid
to the quality of the biomass fuel as well as by ensuring efficient
combustion conditions to lower the total mass of particulate
emissions.

Universal Decimal Classification: 502.3, 504.5, 544.452, 662.613
National Library of Medicine Classification: WA 754

CAB Thesaurus: air pollutants; combustion, burning; wood;
wood smoke; particles; aerosols; chemical composition; health
hazards; toxicity; cytotoxicity; genotoxicity; inflammation,
lungs; histopathology; reactive oxygen species; metals;
transition elements, zinc; mice



TIIVISTELMA

Kotitalouksien biomassan polton tiedetddan olevan yksi
tairkeimmistd pienhiukkasten (PM:2s: hiukkaset < 2,5 pum
aerodynaaminen halkaisija) ldhteistd, ei vain kehitysmaissa,
vaan my0Os  kehittyneissi =~ maissa. = Epidemiologisissa
tutkimuksissa on havaittu kaupunki-ilman hengitettavien
hiukkasten (PMio: hiukkaset < 10 um aerodynaaminen halkaisija)
ja erityisesti pienhiukkasten lisddvan kuolleisuutta ja
sairastuvuutta. Haittavaikutusten syntyyn vaikuttaa hiukkasten
koon, muodon ja massapitoisuuden lisdksi niiden kemiallinen
koostumus. Yhdeksi haittavaikutuksia aiheuttavaksi tekijaksi on
ehdotettu ultrapienissa hiukkasissa (hiukkaset < 100 nm
aerodynaaminen halkaisija) esiintyvia siirtymametalleja. Sinkki
on yksi tdarkeimmistd biomassan poltossa vapautuvien
tuhkahiukkasten  siirtymametalleista. ~ Sinkin  tiedetddn
aiheuttavan toksisia vasteita niin koe-eldinten keuhkoissa kuin
viljellyissa keuhkosoluissa. Taman vaitoskirjan tavoitteena oli
tutkia modernien ja perinteisten puun polttolaitteiden
hiukkaspaastojen haittavaikutuksia, sekd erityisesti sinkin
osuutta todetuissa vasteissa. Tutkimukset toteutettiin kayttden
koe-eldin- ja solumallia.

Hiukkasten toksikologisia vaikutuksia tutkittiin terveilla
hiirilla, jotka altistettiin intratrakeaalisesti viidelle modernin ja
kahdelle perinteisen kotitalouskokoluokan polttolaitteen
hiukkasille. Modernien puunpolttolaitteiden paastdt olivat
pienimmadt tuotettua energiayksikkod (mg/M]J) kohti, mutta
samalla aiheuttivat voimakkaimmat toksiset vasteet hiiren
keuhkoissa kun hiukkasnaytteita annosteltiin massaperusteisesti.
Hiukkasissa olevat tuhkakomponentit kuten siirtymametallit
(mukaan lukien sinkki) liittyivat havaittuihin tulehduksen,
solukuoleman ja perimadvaurion vasteisiin. Sitd vastoin
hiukkasissa olevat polysykliset aromaattiset hiilivedyt (PAH)
liittyivat immuunivasteen estymiseen ja ndin ollen matalaan
tulehdukseen.

Eldinkokeiden  tuloksia tutkittiin  tarkemmin hiiren
makrofagisolulinjassa jotta sinkin ja muiden kemiallisten



komponenttien roolia puunpolton padstdissd ymmarrettdisiin
paremmin. Solukokeita varten valmistettiin polttoreaktorissa
samankaltaisia hiukkasia kuin eldinkokeissa oli tutkittu.
Seuraavaksi syntetisoitiin nanohiukkasia jotka sisalsivit ennalta
madrdtyn pitoisuuden kaliumia, rikkid ja sinkkid. Nama ovat
tarkeimpia komponentteja, jotka muodostavat epdorgaanisia
pienhiukkasia puunpoltossa. Lopuksi tutkittiin sinkin toksista
roolia paastohiukkasissa polttamalla pellettikattilassa koetta
varten valmistettuja pelletteja, joihin oli lisdtty tunnettuja
pitoisuuksia sinkkid. Tulokset osoittivat ettd synteettisilld
sinkki-nanohiukkasilla sekd sinkilla rikastettujen pellettien
polton hiukkasilla oli samankaltainen toksisuusprofiili kuin
tehokkaan  palamisen  naytteelli, joka oli  perdisin
polttoreaktorista. Sen sijaan muut ldhes tdydellisessd puun
palamisessa vapautuvien hiukkasten paadkomponentit (kalium ja
rikki) eivat aiheuttaneet havaittavia toksisia vasteita.

Tassa vaitoskirjassa saatujen tulosten perusteella voidaan
sanoa, ettd sinkilldi on merkittivd rooli jatkuvatoimisten
polttolaitteiden  paastohiukkasten aiheuttamien  toksisten
vasteiden synnyssd. Sitd vastoin epatdydellisessd palamisessa
vapautuvat orgaaniset yhdisteet aiheuttavat todenndkdisesti
immuunivasteen heikentymistd. Ndin ollen hiukkasten
terveyshaittojen vahentamiseksi on erityisen tarkeaa etta
kiinnitetddn enemmadn huomiota biopolttoaineiden laatuun.
Taman lisaksi on tarkeaa polttaa biopolttoaineita optimoiduissa
olosuhteissa paastojen hiukkasmassan vahentamiseksi.

Yleinen suomalainen asiasanasto: ilma - epdpuhtaudet; pienhiukkaset;
aerosolit; poltto; palaminen; biopolttoaineet;, puw; pdistot; savukaasut;
kemiallinen koostumus; terveysvaikutukset; terveyshaitat;
myrkyllisyys; tulehdus; keuhkot; happiradikaalit; metallit; sinkki; hiiret
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1 Introduction

Airborne particulate matter (PM) originates from many different
sources, e.g. traffic, industry and energy production. PM is
known to cause adverse health effects in humans (WHO 2004).
Fine particles (PM2s: particles < 2.5 pum in aerodynamic
diameter) are regarded as one of the most harmful pollutants
present in ambient air (WHO 2003; USEPA 2004; Pope &
Dockery, 2006). Residential biomass combustion is a major
source of those particles in both the developing and the
developed countries (Boman et al., 2003; Saarikoski at al., 2008;
Krecl et al., 2008; Favez et al., 2009; Ward & Lange, 2010; Zhang
et al.,, 2010). In epidemiological studies wood smoke exposure
has been linked to increased incidence of asthma and
respiratory symptoms (Boman et al., 2003; Allen et al., 2008;
Ghio, 2008; Mirabelli et al., 2009), cardiovascular effects and
increased hospital admissions of cardiorespiratory patients
(Orozco-Levi et al., 2006; Schreuder et al., 2006; Andersen et al.,
2007; Sarnat et al., 2008). Moreover, epidemiological studies
which have been conducted in the developing countries have
detected a high incidence of lung cancer in those women who
use open fire stoves indoors (Xiao et al., 2012; Hu et al., 2014).
There is also increasing evidence from both in vivo and in vitro
experiments as well as from controlled human studies,
demonstrating that exposure to fresh biomass combustion
particles is able to evoke adverse effects, including
inflammation, cytotoxic effects, genotoxic effects, oxidative
stress and arterial stiffness (Barregard et al., 2006; Sevastyanova
et al., 2007; Jalava et al., 2012; Unosson et al., 2013).

In addition to the direct health hazards, it is well known that
atmospheric aerosols can influence climate (IPCC, 2013), and
thus may cause indirect health impacts (Gabriel & Endlicher,
2011; Yardley et al.,, 2011). Wood combustion produces soot,
which warms the atmosphere by absorbing solar radiation
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(Jacobson et al, 2010). Furthermore, incomplete wood
combustion produces greenhouse gases such as nitrous oxides
and methane (Brassarda et al., 2014). Nonetheless, the usage of
fossil fuel for heat production is discouraged, since its emissions
are considered harmful to climate and the exploitation of
renewable energy sources is strongly encouraged as a way to
reduce greenhouse gas emission (EU Directive 2009/287EC; The
President’s Climate Action Plan, June 2013). This policy will
increase all kinds of biomass energy in the future.

The emissions from small-scale biomass combustion are not
only dependent on the technology used in the heating
appliance, the fuel quality and operating conditions, such as
load and the air staging settings are also key factors determining
the amount and the composition of particles being emitted from
the heater. Thus, emissions from small-scale combustion have
been demonstrated to be extremely heterogenic between
appliances (Nussbaumer, 2003; Johansson et al.,, 2003, 2004;
Sippula et al., 2007a) as well as between operation practices with
the same appliance (e.g. Jordan & Seen, 2005; Leskinen et al.,
2014).

Overall, there is only limited amount of data available on the
toxicological mechanisms behind the reported adverse health
effects of PM from small-scale wood combustion. In particular,
there is a lack of studies which would have compared the
physical and chemical properties of the PM (e.g. particle size
and morphology, number and mass concentration, chemical
composition) with their induced toxicological end points (e.g.
Kelly & Fussell, 2012). This kind of multidisciplinary data are
urgently needed to help in the new formulation of ambient air
quality standards and when targeted PM control strategies are
planned. In particular, focused restrictions on the most toxic
constituents of PM2s and their sources could protect the general
public more efficiently than adherence to the current PM mass
based standards (Mauderly et al., 2010).

This thesis studied the significance of different chemical
composition influencing the toxicity of fine PM emission from
new (NT) and old (OT) technology small-scale wood



combustion appliances. More specifically, the goal was to
increase knowledge concerning the toxicity of emissions from
NT wood combustion furnaces and to evaluate the possible
causative role of zinc in the emission PM. The investigation was
based on animal model and cell line experiments which
involved an extensive physiochemical analysis of the particles
with respect to health related toxicological endpoints. The
literature review part of this thesis concentrates on the PM
emissions from wood combustion and their toxic effects.

19
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2 Literature review

Inhalable aerosols in the air form a complex mixture of solid,
liquid and gaseous components, which have originated from a
wide range of anthropogenic and natural sources. The
particulate size distribution in ambient air and indoors usually
consists of four modes: nuclei mode (particle diameter Dp < 100
nm), Aitken mode (Dp < 0.1 um), accumulation mode (0.1 pm <
Dp <1 um) and coarse mode (Dp > 1 um) (Friedlander, 1971). In
epidemiological studies, particles are divided into ultrafine
particles (particles < 100 nm in aerodynamic diameter), fine
particles (particles < 2.5 um in aerodynamic diameter) and
coarse thoracic particles (particles < 10 pum in aerodynamic
diameter) (USEPA 2004). Each of these particle size ranges has a
distinct chemical composition, source and formation
mechanism. The ultrafine particles originate from high
temperature processes, atmospheric transformation and
combustion sources e.g. diesel engine exhaust and small-scale
combustion. These particles grow very rapidly due to
coagulation as well as through the condensation of water on
their surface. Most of the ultrafine particles gradually grow into
accumulation particles. The ultrafine particles contain sulfates,
elemental (EC) and organic carbon (OC) and trace metals that
are mostly derived from the combustion sources. The fine
particles are partly formed from ultrafine particles and originate
from coal, oil, gas, diesel and biomass combustion. Thus their
origin, the chemistry of the fine particles is related to ultrafine
particles but they contain more sulfate, nitrate and water.
Finally coarse thoracic particles arise from re-suspended
industrial and road dust, suspension from disturbed soil, tire
and brake pad as well as road wear debris, sea spray and
biogenic material. The chemical composition of coarse particles’
includes nitrates, chlorides and sulfates, oxides of crustal
elements and metals. In addition, coarse particles contain pollen



and microbe fragments as well as fungal spores (USEPA 2004,
2009).

There is an impressive body of toxicological and
epidemiological data describing both the short- and long-term
adverse effects of atmospheric PM on human health. Concerns
have been raised about fine and ultrafine particles. In
epidemiological studies, these particles have been associated
with an increased prevalence of stroke and cardiac outcomes
(Madl & Pinkerton, 2009; Mills et al, 2009; Franchini &
Mannucci, 2009, 2011). Their detrimental effects are thought to
be attributable to both reactive organic species and metals (Mills
et al.,, 2009). Moreover, there is only a limited amount of
scientific data about the toxicological properties and the related
chemical constituents of fine and ultrafine particles, which are
released from primary combustion sources e.g. small-scale
wood combustion.

Existing air quality monitoring is based on the measurement
of PMio and PMzs size fractions (WHO 2003, 2004). However, it
is known that ambient air contains several different size
fractions which all exert their own adverse health effects. Those
can be evaluated using toxicological studies. Ambient air
samples for toxicological studies are collected using high
volume cascade impactors in order to gather a sufficient PM
mass and to size segregate the collected particles (Fruin et al.,
2014). This approach makes it possible to studying toxic effects
of different size fractions and sources (Novak et al., 2014). The
same methods that are used to collect ambient air PM can be
used to collect PM directly from the combustion sources. The
emission particles coming from combustion sources are usually
very small (tens to few hundreds nm in diameter) and their
concentration in the emission gas is very high. In addition,
emissions directly after combustion source are extremely hot
and are under constant change. In order to overcome those
problems, the emissions need to be diluted, which also stabilizes
the emission and makes it possible to collect homogenous PM
sample (Giechaskiel et al., 2014). In this thesis, a previously
validated Dekati® Gravimetric Impactor (DGI) (Ruusunen et al.,
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2011) was used to collect PM from small-scale wood combustion.
In the DGI, a high flow rate of 70 1/min is used which allows a
high PM collection capacity in short collection time to enable
simultaneous chemical analyses and toxicological studies with a
variety of in vivo and in vitro methods.

2.1 CHEMICAL CHARACTERISTICS OF WOOD COMBUSTION
EMISSIONS

Wood combustion emissions affect local, regional and global
environments. At the local level, residential wood combustion is
responsible for the release of significant amount of fine PM (e.g.
Glasius et al., 2006; Hellén et al., 2008). Many chemicals are
bound to those particles e.g. polyaromatic hydrocarbons (PAHs)
as well as chlorine and many metals such as potassium, calcium,
zinc, manganese, copper, and lead (Marchand et al., 2004;
Molnar et al., 2005). Wood smoke also contains volatile organic
compounds (Mandalakis et al.,, 2005; Gaeggeler et al., 2008)
which may have negative health effects. Residential wood
combustion increases exposure to 1,3-butadiene and benzene
within those houses where wood is being used for heating
(Gustafson et al., 2007). The regional environment is affected by
biomass combustion emissions, since these reduce the air
quality. Finally, wood combustion can affect the global
environment via emissions of greenhouse gases and PM,
especially black carbon (Fountoukis et al., 2014). Black carbon
has a large light absorption capacity (Hansen & Nazarenko,
2004) and thus it is estimated to be the second-greatest
contributor to global warming after carbon dioxide (Jacobson,
2001; Ramanathan & Carmichael, 2008).

2.1.1 Effects of fuel on emissions

The chemical composition of the fuel has an important effect on
the emissions appearing after biomass combustion. The volatile
matter content in wood is high in contrast to many other solid
fuels. Wood is composed mainly of cellulose (40-45% of dry



weight), hemicellulose (20-35%) and lignin (15-30%) (Rowell,
1984). In addition, wood fuel contains water. There are also
other organic and inorganic elements and compounds which are
bound to the structure of wood. The main elements are calcium,
potassium, magnesium, manganese, sulphur, chlorine,
phosphorus, iron, aluminum and zinc (Sippula et al.,, 2007b).
However, the chemical composition of wood fuel varies
depending on species, age, habitat as well as which part of the
plant is being used as the fuel (Fogel & Cromack, 1977; Rowell,
1984; Sippula et al., 2007b). In particular, bark contains high
amounts of ash forming components including zinc (Sippula et
al., 2007b).

2.1.2 Effects of combustion technology and combustion
conditions on emission

Combustion technology and operational practice of appliances
have a major impact of physicochemical properties of the
emitted particles (Figure 1.) (e.g. Tissari et al., 2008; Kocbach
Bolling et al, 2009). It is known that residential wood
combustion in OT furnaces is a major source of PM2s emissions,
PAHs and certain gaseous pollutants such as volatile organic
compounds (VOCs) (e.g. Karvosenoja et al., 2008). Instead, if one
can achieve efficient biomass combustion, the complex carbon
compounds are reduced to COz and H20 almost completely but
that still leaves incombustible volatile alkali and transition
metals which were present in the fuel, leading to the formation
of fine fly ash particles, while the non-volatile species typically
form large ash particles (Oser et al.,, 2001; Boman et al., 2004;
Sippula et al, 2007ab). It is noteworthy that inefficient
combustion may produce equivalent amounts of inorganic ash
components as efficient combustion when the emission factor
(mg/M] fuel energy content) is taken into account (Leskinen et
al., 2014).

In general, the fine particles emitted from residential wood
combustion appliances may be divided roughly into two
characteristic classes based on the combustion -efficiency
(Obaidullah et al., 2012). When there is inefficient combustion,
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the particles are relatively large and contain carbon in a variety
of forms. The particle emissions from efficient combustion
devices are dominated by ash species such as potassium, sulfate,
chloride and many transition metals (Tissari et al., 2008;
Wiinikka et al., 2013). Those particles are usually small and their
number is far greater than the particles emerging from
inefficient combustion (Tissari et al., 2008; Kocbach Belling et al.,
2009). It should be emphasized that in real combustion
situations, the particle classes co-exist and interact (Torvela et
al., 2014).

Inefficient Efficient

Combustion efficiency

v

Fly ash
'Organic vapour

Condensation ~ C}
e.g. PAHs ®

A ‘
- ~
5 fd’ o ~ .
A A \
| | \
I r . I
I Fine ash particles (< 1 pm) |
e.g. K,80,,KCl, ZnO, |
K,C0O;, Na,S0,
o ,° /
Soot fo’o o] I
n o . /
Gas-phase reactions
Soot formation N II

Inorganic vapours ]
e.g. KOH, KCl, Zn, NaOH /

Pyrolysis products

Coarse ash
particles (> 1 um)
e.g. Ca, Si, Mg, SO,

Figure 1. Simplified scheme of particle formation during wood combustion.
Modified from Sippula et al. (2009). Abbreviation: PAHs, polyaromatic

hydrocarbons.



2.1.2.1 Inefficient wood combustion

Burning wood with a high moisture content, overloading the
furnace or providing an insufficient air supply can all cause
incomplete combustion i.e. there is a low temperature and high
PM emissions (Figure 1.) (Tissari et al., 2008). The emissions
emerging from inefficient combustion conditions are dominated
by CO, Hz, SOz, NOy, partially combusted hydrocarbons, and
different solid particles. Inefficient wood combustion produces
thousands of different organic compounds including highly
oxygenated organic species and PAH compounds (McDonald et
al., 2000; Fine et al., 2001; Schauer et al., 2001; Lee et al., 2005;
Alfarra et al., 2007; Mazzoleni et al., 2007). The organic
compounds can be present either as gases or bound to particles
(Tucker, 2001; Kliucininkas et al., 2011). PAHs are formed in the
flame when hydrocarbons polymerize (Verhoeven et al., 2013).
In addition, the aerosol from inefficient wood combustion
includes liquid or tarlike components. Those particles are
formed from organic vapors which are cooled down (Pyykonen
et al., 2007). Soot particles are the first particles to be formed in
inefficient wood combustion. Those particles are formed in the
flame from hydrocarbons. The formation of soot is a very
complex process but it is believed to happen via PAH clusters,
particle inception, surface growth and coagulation (Kozinski &
Saade, 1998; Wilson et al.,, 2013). Soot particles are a typical
characteristic of inefficient combustion, and thus while they are
likely to be emitted from old wood stoves and boilers (e.g.
Tissari et al.,, 2008), they can be emitted from any appliance
under poor combustion conditions (Hindsgaul et al., 2000;
Johansson et al., 2003; Wierzbicka et al.,, 2005; Torvela et al.,
2014).

The carbon which is present in wood combustion particles is
classified as organic (OC), elemental (EC) or inorganic carbon
(IC). The carbon in the emission samples is usually measured
using thermal optical carbon analyzer which is based on the
principle that different types of carbon-containing particles are
converted into gases under different temperature and oxidation
conditions (Han et al., 2007). OC is formed from thousands of
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organic compounds. EC, on the other hand, is characterized as
the carbon that is not organic (Kocbach Belling et al., 2009). IC is
usually calcium carbonate which is subtracted from the EC
results (Bisutti et al., 2004). Due to the low combustion
temperature, the PM from incomplete combustion is dominated
by OC (McDonald et al., 2000; Hays et al., 2003). When the
combustion temperature increases and more oxygen is available,
more EC is present in emission and there are greater numbers of
soot aggregates (Tissari et al., 2008). The size of PM from low
temperature incomplete combustion has varied between 50 to
600 nm when measured by electron microscopy (Kocbach et al.,
2005; Klippel & Nussbaumer, 2007; Torvela et al., 2014). In
contrast, soot aggregates are usually smaller and more
homogenous (20-50 nm) (Kocbach et al., 2005, Gwaze et al,,
2006; Torvela et al., 2014).

2.1.2.2 Efficient wood combustion

If one wishes to achieve efficient wood combustion, all of the
following requirements have to be met: sufficient supply of
combustible air to ensure complete oxidation, sufficiently high
temperature for chemical reaction kinetics, sufficiently long
residence time at high temperature and sufficient mixing of fuel
components and air (Sippula et al., 2007a; Tissari et al., 2008).
The combustion of wood in NT appliances, e.g. pellet- or wood
chips boilers, usually achieves those types of combustion
conditions. The emissions from those appliances are dominated
by inorganic ash particles (Figure 1.). The most abundant
components in efficient combustion PM are potassium alkali
salts, sodium, sulfate, chlorides, carbonates and transition metal
oxides (Johansson et al., 2003; Boman et al., 2004; Torvela et al.,
2014). The content of OC and EC is very low in the PM emitted
if there are efficient combustion conditions (Londahl et al., 2007;
Torvela et al., 2014).

In efficient combustion, the particles are formed from
vaporized inorganic elements, which originate from wood fuel
(Sippula et al.,, 2007a,b). The combustion temperature has a
major impact on the vaporization of inorganic compounds of



wood fuel. Thus, combustion produces more ash particles at a
high temperature than at a lower temperature (Davidsson et al.,
2002; Knudsen et al., 2004). The most highly volatile inorganic
compounds present in wood fuel are potassium, sulfur,
chlorine, sodium, zinc and calcium (Knudsen et al., 2004). Thus,
the fine fly ash from wood combustion is mainly composed of
potassium sulfate (K2SOs), potassium chloride (KCl), potassium
hydroxide (KOH) and potassium carbonate (K2COs) (Boman et
al., 2004; Sippula et al.,, 2007a; Torvela et al., 2014). The first
compound to form in fine ash particles is ZnO; this process
occurs during the very early stage of cooling of the flue gas
(Sippula et al., 2009; Torvela et al., 2014). The formation occurs
due to the oxidation of elemental Zn vapor and its subsequent
rapid nucleation due to the very low vapor pressure of ZnO.
ZnO formation is followed by the gas-to-particle conversion of
alkali sulfates, which are also produced in gas-phase reactions.
For fuels with a very low Zn content, it is believed that K2SOx
forms the first nuclei into which other chemical species can
condense (Sippula et al., 2007b). The formation of vapors of
alkali carbonates and alkali chlorides condense later as the
temperature continues to decline. The size of the PM from
efficient combustion has varied between 25-160 nm when this is
measured by electron microscopy (Mavrocordatos et al., 2002;
Torvela et al., 2014).

2.2 ADVERSE HEALTH EFFECTS OF WOOD COMBUSTION

In epidemiological studies, exposure to wood smoke has been
associated with a range of pulmonary effects, including chronic
obstructive pulmonary disease (COPD), decreased Ilung
function, cardiac events, and exacerbation of asthma as well as
increased risk of lung cancer (McGowan et al., 2002; Smith et al.,
2004; Behera & Balamugesh, 2005; Hernandez-Garduno et al.,
2004; Mannino & Buist, 2007; Qian et al., 2007; Noonan & Ward,
2012; Groom et al., 2014; Guarnieri et al., 2014). To confirm the
results obtained from epidemiological studies, markers of
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induced toxic responses from wood smoke exposure have been
studied in human volunteers in chambers as well as in animal
models. Moreover, cell cultures have been widely used to reveal
the toxic mechanisms of the wood smoke particles (Naeher et
al, 2007; Kocbach Belling et al, 2009). Furthermore,
experimental studies offer the potential to reveal information
about the mechanisms of toxicity as well as defining the relative
toxicities of different emission mixtures and distinct sources.
Several mechanisms have been proposed to explain the
associations, which have been reported in epidemiological
studies between particle exposure and adverse health effects
(Squadrito et al., 2001; Anderson et al., 2012; Martinelli et al.,
2013). Those effects include particle-induced inflammation,
oxidative stress, cytotoxic effects and genotoxic effects
(Barregard et al., 2006; Reed et al., 2006; Seagrave et al., 2006;
Naeher et al., 2007). Inflammation is considered to be the most
important factor and indeed the inflammatory potential of
ambient particles has been linked to chronic pulmonary
diseases, atherosclerosis and acute cardiac effects (Kofler et al.,
2005; Tousoulis et al., 2006; Bai et al., 2007). In addition, the
cytotoxicity of particles is involved in tissue damage in the
lungs, whereas the carcinogenic risk is primarily linked to
genotoxicity (Schwarze et al., 2006; Schins & Knaapen 2007).

2.2.1 Toxic effects of particulate matter

PM exposure triggers a variety of adverse cardiorespiratory
health effects. These effects can be clarified by studying the
toxicological mechanisms in animal and cell models. Pulmonary
inflammation and oxidative stress may be considered as the
main toxic mechanisms behind the short-term adverse effects
(Riva et al., 2011), whereas cytotoxicity and genotoxicity are the
main mechanisms behind the long-term effects (Hogg et al.,
2004). The research methods for these main toxicological
mechanisms both in vitro and in vivo are listed in Table 1.



Table 1. Research methods for toxicological studies

Endpoint Marker in vitro/in vivo Assay examples

Inflammation

Cytokines both ELISA, PCR
_Inflammat|on cells in vivo Cell differentials
influx
Immune cells both CD-proteins antibody labeling
surface markers
Oxidative stress
Lipid peroxidation both MDA detection
GSH depletion both GSH/GSSG relation
Free radicals both DCF-signal, NBT-assay
Cell death and
tissue damage
LDH both LDH-activity assay
. R Protein measurement from
Total protein in vivo BALF

TUNEL-assay, Caspase-3

Apoptosis both activation, Annexin A5-labeling

Necrosis in vitro PI-staining, Trypan blue
Genotoxity

DNA strand breaks both Single cell gel electrophoresis

Structural

chromosomal both Micronucleus test

aberrations

Abbreviations: ELISA, Enzyme-linked immunosorbent assay; PCR, polymerase chain
reaction; CD, cluster of differentiation; MDA, malondialdehyde; GSH, Reduced glutathione;
GSSG, glutathione disulfide; DCF, 2'.7'-dichlorofluorescein; NBT, Nitro blue tetrazolium
chloride; LDH, Lactate dehydrogenase, BALF; bronchoalveolar lavage fluid; TUNEL, Terminal
deoxynucleotidyl transferase dUTP nick end labeling; PI, Propidium iodide.

2.2.1.1 Inflammation

Inflammation is regarded as the main mechanism activated by
PM exposure causing respiratory and cardiovascular effects (e.g.
Gold et al., 2000; McCreanor et al., 2007, Anderson et al., 2012).
In vivo inflammation can be assessed by recognizing different
inflammatory cell types from respiratory lavage fluids or by
detecting inflammatory changes in histopathological analyses of
tissue samples (Oberdorster, 1995). In addition, the levels of
inflammatory mediators i.e. cytokines, can be measured from
the biological samples including lavage fluids and serum. In
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vitro inflammation is usually analyzed by measuring these same
mediators from the culture media of the exposed cell cultures.

Cytokines are relatively small proteins that are important in
the body's inflammatory response. The cytokine class includes
chemokines, interferons, interleukins, lymphokines and tumor
necrosis factors (Vinatier et al., 1995). Cytokines are produced
by many cell types but especially immune and epithelial cells.
The most common way to measure those proteins in biological
fluids is to utilize enzyme-linked immunosorbent assay (ELISA)
where antibodies are used to detect the desired inflammation
mediator (Lequin, 2005).

Inflammation occurs when monocytes, macrophages,
dendritic cells or epithelial cells become activated by external
stimuli to release inflammatory mediators (Silbajoris et al., 2011;
Nemmar et al., 2013). The goal of inflammation is to protect the
body not only against invading pathogens and other micro-
organisms but also any other foreign material e.g. particles
(Abbas et al., 2007). Inflammation can be roughly classified into
either acute or chronic (Driscoll et al., 1990). The body's acute
response to harmful stimuli is characterized by an increased
movement of leukocytes from the blood into the site of the
inflammation (Oberdorster et al., 1996). This mechanism is
mediated by cytokines. Chronic inflammation leads to a
progressive shift in the type of cells present at the site of
inflammation and this condition is characterized by the
simultaneous destruction and healing of the tissue (Ferrero-
Miliani et al., 2007). This type of inflammatory damage is
present in obstructive and long-term respiratory diseases, e.g.
COPD and asthma i.e. it is also, related to respiratory tissue
damage (Hogg et al., 2004).

2.2.1.2 Oxidative stress

Oxidative stress via reactive oxygen species (ROS) is a well-
known and important mechanism activated by particulate
exposure in humans (e.g. Serensen et al., 2005; Anderson et al.,
2012). Oxidative stress becomes manifested when there is an
imbalance between the amount of ROS and the cell’s ability to



scavenge these radicals or to repair the resulting damage.
Disturbances in this balance can cause toxic effects that damage
cell proteins, lipids, and DNA (Devasagayam et al., 2004). This
causes oxidative stress which is the causative factor in many
other adverse toxic mechanisms, including inflammation and
genotoxicity. Indeed, oxidative damage is associated with the
primary development of asthma and COPD (Vlahos &
Bozinovski, 2014). ROS are produced extensively in phagocytic
cells as a normal product to fight against invading pathogens.
E.g. alveolar macrophages develop a so-called respiratory burst
activity, produce reactive oxygen and nitrogen species and
release cytokines after particulate exposure (Driscoll et al., 1990).
Moreover, ROS may be directly generated from the surface of
particles and those radicals can be the source of DNA damage
and cell death (Knaapen et al., 2004, Risom et al. 2005).

There are a number of well-established methods with which
available to measure intracellular ROS that wusually are
applicable in both in vivo and in vitro. Widely used methods
involve the detection of oxidation-mediated changes in
fluorescent dyes, e.g. dihydroethidium (Zielonka et al., 2012).
Nitroblue tetrazolium (NBT) may also be used for detecting the
presence of intracellular ROS. NBT can be oxidized into purple-
blue formazan compounds that can be detected as a purple-
colored precipitate inside the cells (Freeman & King, 1972). In
addition, there are several chemiluminescent substances that are
very widely used in measuring intracellular ROS (Fingerova et
al., 2009).

2.2.1.3 Cell death and cytotoxicity
Long-term exposure to PM results airway remodeling and
chronic inflammation, which can lead development of COPD
and asthma (Hogg et al., 2004). Asbestos and tobacco smoke are
probably the best-known examples of chronic exposures which
causes cell damage in lungs (Bartal, 2005; Rastrick & Birrell,
2014).

Cell death can be assessed both in vivo and in vitro. The
detection method depends on which kind of cell death one
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wishes to measure. In necrotic cell death, the cells rapidly lose
their membrane integrity and release their contents into the
surroundings (Fink & Cookson, 2005). This process is
uncontrolled and leads to an inflammatory response. If the
exposure does not kill the cells immediately, many repair
mechanism may be activated. However should, these
mechanisms fail, the cells can undergo programmed cell death,
i.e. apoptosis. Apoptosis is characterized by cytoplasmic
shrinkage, nuclear condensation and DNA fragmentation (Fink
& Cookson, 2005). This mechanism is a controlled way in which
the organism can remove damaged cells from the tissues. There
is also a third way in which a cell can die, i.e. pyroptosis.
Pyroptotic cells have morphological features resembling both
necrosis and apoptosis but pyroptosis is a biochemically district
process (Bergsbaken et al.,, 2009). In particular, pyroptosis is
associated with antimicrobial responses evoked by immune
cells. In this process, immune cells produce cytokines and die by
bursting. Thus, the release of cytokines attracts other immune
cells to fight the infection (Fink & Cookson, 2005). Biochemically
pyroptosis is related to inflammasome activation and thus
interleukin-1 (IL-1) -family cytokines (Kepp et al., 2010).

Cell viability and cytotoxic effects of PM can be assessed by
methods, which measure the integrity of the cell membrane. The
most common way to measure necrotic or late apoptotic cells is
to use dyes, such as trypan blue or propidium iodide (PI).
Normally these compounds cannot access the healthy cells.
However, if the cell is damaged, those dyes will cross the cell
membrane and stain the cell (Lecoeur, 2002). Alternatively, the
substances that are normally only present inside cells can be
measured from cell culture medium in vitro or from lavage
fluids from in vivo experiments, revealing the impaired integrity
of the cell membrane. The compound that is most commonly
measured is lactate dehydrogenase (LDH) which is an enzyme
present in almost all cell types and tissues. Should a tissue be
badly damaged the LDH can be detected in the extracellular
matrix (Fotakis & Timbrell, 2006). Cytotoxicity can also be
monitored by measuring cellular metabolic activity. This is



usually done by measuring directly or indirectly the adenosine
triphosphate (ATP) content of the cells (Weyermanna et al,
2005). Apoptotic cells can be detected by using the terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
assay where the fragmentation of DNA is detected by labeling
the terminal ends of nucleic acids (Gavrieli et al., 1992). In
addition, the annexin A5 probe can be used to detect apoptotic
cells that express phosphatidylserine and
phosphatidylethanolamine on the cell surface (Vermes et al.,
1995). Moreover, apoptosis can be detected by measuring
proteins, which mediate this proses e.g. one widely detected
protein used for this purpose is caspase-3 (Jerome et al., 2003).

2.2.1.4 Genotoxicity

Exposure to PM can result in damage to the genetic information
i.e. genotoxic effects. Genotoxicity poses a risk for long term
adverse effects in the human body including an increased risk
for the appearance of cancers. DNA can be damaged in several
ways: e.g., single- and double-strand breaks, cross-linking, base
modifications, alkali-labile sites, and loss of excision repair,
which may lead to gene mutations and structural chromosomal
aberrations (Mazouzi et al., 2014). When a cell's DNA has been
damaged, complex pathways are triggered to prevent the
formation of permanent DNA changes. One of those repair
options is cell cycle arrest where a cell will stop its normal
division cycle to allow time repair the damaged DNA
(Mahmoud et al., 2011).

The standard in wvitro genotoxicity test batteries
recommended by regulatory agencies to detect genotoxic
carcinogens include at least two or three test procedures, such as
bacterial reverse mutation test, mammalian cell chromosome
damage test and mammalian cell mutation assay (Kirkland et
al.,, 2005). The Ames test (bacterial reverse mutation test) is a
commonly used procedure to detect two classes of mutations,
base pair substitution and small frameshifts (Mortelmans &
Zeiger, 2000) Moreover, single cell gel electrophoresis assay
(SCGE) and micronucleus assay which are conducted in
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mammalian cell lines are sensitive and frequently used methods
to detect the genotoxicity of nanoparticles (Landsiedel et al.,
2009; Oesch & Landsiedel, 2012). The SCGE assay measures
DNA strand breaks in single cells (Tice et al., 2000).
Micronucleus assay detects that an extra nucleus has been
formed during cell division (Magdolenova et al., 2014).

2.2.2 Human exposure studies with volunteers

There are still limited numbers of controlled human inhalation
exposure studies available which would have investigated the
adverse effects of wood smoke (summary in Table 2.).
Moreover, all of the summarized experiments have examined
only the short-term effects of exposure to wood smoke. In most
of those studies, conventional stove or oxygen-restricted
conditions have been used as a source of wood smoke emissions
(Barregard et al., 2006, 2008; Stockfelt et al., 2012, 2013; Unosson
et al., 2013). Generally, the responses detected from volunteers
are associated with changes in systemic inflammation, blood
coagulation and lipid peroxidation (Sallsten et al., 2006;
Barregard et al., 2006, 2008; Danielsen et al., 2008). In addition,
increases in the levels of several inflammatory markers have
been detected after exposure to wood smoke (Ghio et al., 2012a).
Moreover, it is claimed that arterial stiffness is increased after
wood smoke exposure (Unosson et al., 2013). Many previously
mentioned biomarkers are cardiovascular risk factors. However,
several of the human exposure studies have been dominated by
negative findings (Forchhammer et al., 2012a; Riddervold et al.,
2012; Benlgkke et al., 2014).
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2.2.3 Animal studies with wood smoke emissions

The in vivo wood smoke exposure studies in animal models may
be divided into short-term studies where high PM doses are
used or sub-acute and chronic studies with lower exposure
concentrations. Wood smoke-induced effects in murine models
are listed in Table 3.

Short-term exposure studies usually have a much greater
exposure level than those to which the general public is
exposed. However, the results from those studies may
demonstrate to some extent the effects that could potentially
occur as a result of lower level and longer duration exposures
(Naeher et al., 2007). In high dose wood smoke exposure studies
inflammatory responses are not always detected and in this
respect the results differ from experiments conducted with
exposure to other airborne pollutants e.g. diesel fumes (Ghio et
al., 2012b). Moreover, in many studies conducted with wood
smoke, there has been a dramatic reduction in macrophage
activity to achieve bacterial phagocytosis and intracellular
killing of gram-negative bacteria (Naeher et al, 2007). In
addition, short term exposure of animals to wood smoke has
been causing oxidative stress (Demling & LaLonde, 1990;
Demling et al., 1994; Lalonde et al., 1994; Dubick et al., 2002).
These investigations provided the first evidence that short term
wood smoke exposure could produce toxic effects and alter lung
properties.

Murine, sub-acute and chronic inhalations of wood smoke in
concentrations relevant for ambient human exposure scenarios
have induced mild inflammatory effects in the airways and also
caused systemic effects as well as decreasing lung function
(Burchiel et al., 2005; Tesfaigzi et al., 2005; Barrett et al., 2006;
Reed et al., 2006; Seagrave et al., 2006; Naeher et al., 2007). Wood
smoke PM has also been reported to be able to exacerbate
allergic inflammation and allergic sensitization, and decrease
the pulmonary macrophage functionality in terms of infection
resistance (Tesfaigzi et al., 2005; Barrett et al., 2006; Naeher et al.,
2007; Samuelsen et al., 2008; Migliaccio et al., 2013). Overall, the
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in vivo experiments indicate that wood smoke PM can induce
mild inflammatory responses, cytotoxic effects, genotoxic
effects, and oxidative stress, and compromise pulmonary
immune defense in a way that leads to an increased
susceptibility to infectious lung disease.
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2.2.4 In vitro studies conducted with wood combustion
emissions particles

There is still a paucity of toxicological data from highly
controlled combustion studies including physicochemical
characterization of the emission PM. However, in vitro
toxicological studies using both human and murine cell lines
and primary cells have demonstrated that different toxic
mechanisms are activated by emission PM, depending on the
biomass combustion efficiency (Kocbach et al., 2008a,b;
Danielsen et al., 2009; Jalava et al., 2010; Tapanainen et al., 2011;
2012). It is noteworthy that most of current in vitro data on PM
originating from small-scale wood combustion appliances is
based on commonly used furnaces which usually represent old
or conventional combustion technologies.

It has been suspected that particles derived from different
combustion conditions may induce differential pro-
inflammatory response patterns (Karlsson et al., 2006; Jalava et
al., 2010). Moreover, particles that contain high levels of soot
and PAH compounds possess a greater potency for cytotoxicity
and DNA damage than particles that contain more inorganic
compounds (Tapanainen et al., 2011, 2012; Forchhammer et al.,
2012b). There are also several studies where wood combustion
derived particles have been washed with organic solvents to
obtain an organic extract. Incubation of the cells with those
organic extracts has led to DNA damage (Danielsen et al., 2009).
There is also evidence of immunosuppression induced by
particle bound PAH compounds (Tapanainen et al., 2012). The
toxic effects induced by wood smoke particles on different cells
are collated in Table 4.
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3 Aims of the study

The overall aim of this thesis was to investigate how the
distinctive chemical composition of particulate emissions from
new and old small-scale wood combustion appliances influences
the toxicity of the emissions.

The specific aims of the individual studies are listed below.

In vivo:

1. To investigate the short-term inflammation and toxic
responses in lungs and serum of healthy mouse after exposure
to particulate samples derived from old and new small-scale
wood combustion appliances (I, II).

2. To identify the potential causative chemical compositions of
wood combustion PM inducing the inflammatory and toxic
responses in mouse (I, II).

In vitro:

3. To examine toxic responses in mouse macrophage cell line
induced by PM emerging from different combustion conditions
generated in a novel adjustable biomass combustion reactor (III).

4. To determine the toxic properties in a mouse macrophage cell
line of main compounds in the PM emitted from efficient wood
combustion (IV).

5. To use a mouse macrophage cell line to investigate the toxic
role of Zn in efficient wood combustion PM emissions (V).



4 Materials and methods

4.1 PARTICULATE MATTER SAMPLES (I-V)

4.1.1 Particulate sampler used in campaigns

The Dekati® Gravimetric Impactor (DGI, Dekati Ltd, Tampere,
Finland) was used for PM sample collection in this thesis. It has
a high flow rate of 70 1/min and it archives high collection
efficiency within relatively a short collection time, yet it is
compact in size. In the sample collection setup, a porous tube
diluter (PRD) was used to dilute and cool down the sample gas
with minimal losses of PM (Ruusunen et al.,, 2011). In the
impactor, the sampled particles will be divided into four size
fractions (Figure 2.). In addition, a bottom filter (backup filter) is
used to collect the smallest particles. The sampling system and
the cut-off points of each stage when using the flow rate of 70
l/min are presented in Figure 2.

Figure 2. The stages of the DGI impactor.

Stage 4: D50 2.5 um —"—u I T Il )
Stage3: D501.0pum | merrseyynewes |
Stage 2: D50 0.5 um %@ I
Stage 1: D50 0.2 um ——Ehnmmumg:l

Backup filter @ —__ L_rJ /“J
70 mm R ! _ ) 4
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4.1.2 Preparation of filter in the sampling campaigns

The backup filter (Fluoropore™ membrane filter, PTFE, 3.0 um,
90 mm, Millipore Corp.) was die-cut from 90 mm to 70 mm in
diameter. Other 47 mm (Fluoropore™ membrane filter, PTFE,
3.0 um, 47mm/70mm, Millipore Corp.) filters were unaltered.
Before sampling, all PTFE filters were washed with methanol (J.
T. Baker HPLC grade, Deventer, The Netherlands), dried at
+50 °C for 3 h and weighed in an analytical balance (Mettler
Toledo XP 105DR, Mettler-Toledo Inc., Columbus, OH, USA).
The dried substrates were packed in petri slides/dishes and the
larger petri dishes were sealed with parafilm. The sets of
substrates were stored at room temperature prior to DGI
sampling.

4.1.3 Particulate sampling campaigns

The  small-scale wood combustion appliances and
corresponding combustion quality are presented in Table 5. All
of the PM samplings from combustion experiments were
performed in a laboratory environment. In studies I and II,
particle sampling was conducted in Graz University of
Technology, Austria. The furnaces represented both old and
new wood combustion technologies (Kelz et al., 2010; Brunner &
Obernberger, 2009). In studies III-V, PM collections were
conducted in University of Eastern Finland, Kuopio, Finland.
Study III was done using an adjustable solid-fuel biomass
combustion reactor with a moving step-grate burner (Leskinen
et al., 2014). Study V was conducted using a pellet boiler
(Biotech GmbH, model PZ-RL 25) (Lamberg et al., 2011). The
pellet boiler was operated using optimal settings. In study IV,
PM was generated by using flame spray pyrolysis (FSP) (Méadler
et al., 2002). Table 6 shows the precursors and detected
products.



Table 5. Different small-scale wood combustion appliances and corresponding used combustion

situations. Batch combustion in stoves included all batches and burning phases.

Appliance Nominal output Fuel Combustion quality Study
Log wood boiler OT 15 kw Beech Smouldering I, 1I
Log wood boiler NT 30 kW Beech Intermediate I, 11
Stove OT 6.5 kW Beech Incomplete I, 11
Stove NT 6 kW Beech Incomplete I, 11
Tiled stove NT 4.2 kW Beech Intermediate I, II
Woodchip boiler NT 30 kW Hard-wood Efficient I, 11
Pellet boiler NT 21 kW Hard-wood Efficient I, 1I
Moving step-grate Wood chips from _ Effici_ent,
burner 40 kW spruce and mtermedlat_e and III, IV

broadleaved trees smouldering
Sawdust from pine
Pellet boiler 25 kW stem wood, added Efficient v

Zn 0, 170, 480 or
2300 mg/kg

Abbreviations: OT, old technology; NT, new technology.

Note. Combustion quality was determined using appendix 1.

Table 6. Precursor solution compositions used in flame spray pyrolysis particle synthesis (IV).

Precursor solute

K-cetylacetonate

Dimethylsulfoxide

Zn-acetate dihydrate

Formula CsH,02K CyHe0S C4H1006Zn o 2H,0
Concentration mmol/I mmol/I mmol/I

End product

ZnO [-1 [-1 30
K+S+2Zn 20 80 0.6

K+S 20 80 [-1

K 100 [-] [-]
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4.1.4 Sample extraction for chemical and toxicological analysis
The sampled PTFE were weighed and subsequently extracted
with HPLC grade methanol for 2 x 30 min in a water bath
sonicator (FinnSonic m20, Finnsonic Oy, Lahti, Finland) at
below +35 °C. The methanol extracts from the particulate-loaded
substrates (Stages 2, 1 and backup filter) of each campaign were
pooled to form the PMi sample and excess methanol was
evaporated at +35 °C in a rotary evaporator (Heidolph Laborota
4000, Schwabach, Germany) attached to a vacuum pump set at
150 mbar. The concentrated suspension was divided into 10 ml
KIMAX glass tubes as the defined amount of particulate mass
and dried under nitrogen (99.5%) flow. The resultant dried
samples were stored at -20 °C prior to the subsequent animal or
cell culture studies and chemical analysis. The same procedure
as utilized with particulate samples was adopted in the
preparation of the corresponding blank filters (Tapanainen et
al., 2011). The extraction efficiency was determined by weighing
randomly selected substrates and calculating the removed mass
from the substrates.

4.1.5 Characterization of the particles

4.1.5.1 PAH analysis

A total of 30 PAH compounds were analyzed by using a gas
chromatograph mass spectrometer (6890N GC, equipped with
5973 inert Mass Selective Detector, Agilent Technologies, CA,
USA). A HP-17-MS column was used for the separation of the
compounds. The equipment was operated with selected ion
monitoring (SIM) mode. The analysis was carried out as
described by Lamberg et al. (2011). The detection limit of the
method was 0.1 ng/mg. The sum of the known genotoxic PAH
compounds was calculated according to WHO (1998).



4.1.5.2 Element and ion analysis

In studies I and II, the determination of the chemical
composition (5i, Ca, Mg, Mn, K, Na, Zn, S) of PM: samples was
conducted by pressurized multi-step digestion of the samples
with HNOs/HF/H:BOs by Paar Multiwave 3000 (Anton Paar
GmbH, Graz, Austria) before the elemental detection with ICP-
OES or ICP-MS. The Cl concentration was measured by bomb
combustion in oxygen and absorption in NaOH with ion
chromatography (ICS 90 Dionex).

In studies III-V, elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, K,
Mg, Mn, Na, Ni, Pb, Se, Sr, V, and Zn) and ions (Cl;, Br, F;, NOs;,
SOs* and NHs") were determined from the PM: samples using
HF-HNOs acid and deionized water. The elements were
analyzed with an inductively coupled plasma mass
spectrometer (ICP-MS, Agilent 7700; method EN ISO 17294-2)
and ions were analyzed with ion chromatograph (IC, Compact
882 ICplus; anion colon Metrosep A SUPP5-150/4.0; method EN
ISO 10304-1/2) system.

4.1.5.3 Carbon analysis

In studies I and II, the contents of different carbon compounds
including OC, EC and IC in the aerosol samples were
determined with a carbon/hydrogen analyzer (LECO RC-612).
The sample was inserted into a quartz tube that was heated to
pre-defined temperatures. The temperatures ranged from
ambient temperature up to +950 °C. Carbon containing
compounds released from the sample were oxidized to CO,
which was selectively detected by infrared sensors. Carbon
released in a temperature range from +200 to +600 °C under an
inert atmosphere was designed as OC, carbon released between
+600 and +900 °C was considered as IC and carbon detected
after switching to oxidizing conditions was defined as EC.

In studies III-V, OC and EC were analyzed from the PM:
samples collected on the quartz filters from the diluted flue gas.
The sampling was carried out using a porous tube diluter and
ejector diluter in series, the sampling setup has been previously
described in more detail by Torvela et al. (2014). The analyses
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were performed with a thermal-optical carbon analyzer (model
4 L, Sun Laboratories Inc.) with the NIOSH-protocol (NIOSH,
1999).

4.1.5.3 Transmission electron microscopy analysis

In studies IV and V, transmission electron microscopy (TEM,
JEM 2100F, JEOL Ltd) and energy dispersive X-ray spectrometry
(EDS, NS7 Thermo Scientific) were used in the analysis of
single-particle morphology and composition. The samples for
TEM were collected from diluted flue gas on a holey carbon
copper grid (Agar Scientific Inc., 5147-400 Holey Carbon Film
400 Mesh Cu) with an aspiration sampler (Lyyrdnen et al., 2009).

4.2 EXPERIMENTAL DESIGN (I-V)

4.2.1 In vivo (1, II)

4.2.1.1 Sample preparation

The dry particulate and blank samples were thawed and
stabilized to room conditions for 30 min. Thereafter, 32 pl of
DMSO (Uvasol®, Merck KGaA, Darmstadt, Germany) was
added to 10 mg of particulate mass or to the corresponding
blank sample and the sample was suspended by mixing with a
glass rod. Then, 968 ul of pathogen-free water (W1503, Sigma-
Aldrich Corp., St. Louis, MO, USA) was added and the sample
was sonicated for 30 min in a water-bath sonicator (Finnsonic
m03, Finnsonic Oy, Lahti, Finland). The suspension was diluted
in pathogen-free water to obtain final concentrations of 0.5, 1.5,
5 and 7.5 mg/ml to be used in the animal exposures on the
subsequent day. The blank sample was diluted in an equal
volume of pathogen-free water to ensure that the vehicle of
particulate suspension and possible impurities in methanol
extraction were not the sources of the toxicity.



4.2.1.2 Animals

Pathogen-free male C57B1/6] mice, 8- to 9 week-old (weight 22.3
+ SEM 0.09 g) were used in all of the in vivo studies. The animals
were obtained from the breeding colony of the Laboratory
Animal Center of the University of Eastern Finland. They were
transferred from a barrier unit to a conventional animal room
two weeks before the experiments. After a one-week
acclimatization period, the animals were transferred into metal
cages and they were housed singly on aspen wood chips and
had access to water and maintenance diet ad libitum. The
animals were kept on a 12 h light/dark cycle (7 a.m. to 7 p.m.) at
room temperature (22 + 1 °C) and relative humidity of 55 + 15%
(mean + SD). The National Animal Experiment Board
(Eldinkoelautakunta, ELLA) approved all of the in wvivo
experiments and they were carried out in accordance with EU
Directive, 2010/63/EU for animal experiments. All the tested
samples and toxicological end-points are summarized in Table
7.

4.2.1.3 Exposure method and dose

Prior to intratracheal aspiration exposure, the mice were
anesthetized with vaporized 4.5% sevoflurane (Abbott, IL, USA)
and placed in a 66° upward bent position with the incisors
placed held by thin wire. The administration of particles was
performed under visual control with the tongue gently pulled
out with forceps to prevent the mouse from swallowing. The
sample was delivered onto the vocal folds with a pipette tip. The
nostrils were covered forcing the mouse to inspire the particle
suspension (1, 3, 10 or 15 pg/kg). No signs of lung overloading
with the largest mass dose (15 ug/kg) were observed. Moreover,
the doses used in this study were not higher than those usually
used to induce inflammatory responses in the rodent lungs
(Adamson et al.,, 1999; Walters et al., 2001; Schins et al., 2004,
Gerlofs-Nijland et al., 2005).
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4.2.1.4 BALF and blood collection

At the pre-defined time point, the mice were anesthetized with
pentobarbital (60 mg/kg) and exsanguinated by cardiac
puncture. The collected blood was centrifuged (1900g, 8 min) for
the separation (Capiject T-MG, Terumo, MD) of serum which
was frozen (-80 °C) prior to subsequent cytokine analysis. The
lungs were perfused with sterile saline. Thereafter, the trachea
was cannulated with polyethylene tubing and the lungs were
lavaged with two portions of sterile saline (30 ml/kg), three
times each. These two portions of BALF were combined and
kept on ice.

4.2.1.5 Experiments

Study I contained both a dose-response screening of the
particulate samples with two selected appliances and a time-
course investigation of some inflammatory parameters from
BALF (Table 7.). In study II, more extensive cytokine and
chemokine battery was investigated from the BALF and serum
of the mice at two time points (Table 7.).



Table 7. Used samples and analyzed markers in in vivo experiments

Study Samples Dose n Time- Markers
number (mg/kg) points (h)
Dose response
I Untreated animal - 4 4, 18 From BALF:
Pathogen-free water 50 ul/animal 4 4,18 Total protein,
LDH, IL-6, MIP-2
Blank 10 8 4, 18
Diesel* 10 6 4, 18
Urban air PMyg.5.5** 10 3 4, 18
LPS 40 pg/animal 3 4,18
Logwood boiler OT 1,3,10,15 6/dose 4,18
Woodchip boiler NT 1, 3,10, 15 6/dose 4,18
Histopathology
I Untreated animal - 6 24 Histopathology:
Blank 10 6 24 Inflammatory
changes,
Logwood boiler OT 10 6 24 .
particulate
Logwood boiler NT 10 6 24 matter
Stove OT 10 6 24 accumulation
Stove NT 10 6 24
Tiled stove NT 10 6 24
Woodchip boiler NT 10 6 24
Pellet boiler NT 10 6 24
Inflammation
I,1I Blank 10 6 4,18 From BALF:
Pathogen-free water 50 pl/animal 3 4,18 Total cell
. 6 number,
Logwood boiler OT 10 4,18 cell differentials,
Logwood boiler NT 10 6 4,18  total protein,
Stove OT 10 6 4, 18 LDH, SCGE
Stove NT 10 6 4,18 From serum
. 6 and BALF:
Tiled stove NT 10 4,18 IL-1B, IL-12,
Woodchip boiler NT 10 6 4,18 IFN-y, IL-6, KC,
Pellet boiler NT 10 6 4,18 IL-10, TNF-a

Abbreviations: PM, particulate matter; OT, old technology; NT, new technology; BALF,
bronchoalveolar lavage fluid; LDH, lactate dehydrogenase; SCGE, single cell gel
electrophoresis; TNF, Tumor necrosis factors; MIP, macrophage inflammatory protein; LPS,
Lipopolysaccharides; INF, Interferon; KC, Keratinocyte-derived chemokine.
*Diesel from Ruusunen et al. (2011); **Athens PM from Happo et al. (2007)
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4.2.2 In vitro (II11-V)

4.2.2.1 Sample preparation

Half an hour before the exposure, PM1 samples were dispersed
into DMSO (20 ul/mg) (Merck KGaA, Darmstadt, Germany) by
mixing with a glass rod. Thereafter pyrogen free water (W1503,
Sigma-Aldrich Corp., St. Louis, MO, USA) was added to achieve
a final PM concentration of 5 mg/ml. The PMi samples were
then kept in an ultrasonic water bath (FinnSonic M03, FinnSonic
Ltd., Lahti, Finland) for 30 min.

4.2.2.2 Cell line

RAW 264.7 mouse macrophages (ATCC, Rockville, MD, USA)
were cultured in a humid atmosphere of 5% CO: and +37 °C in
RPMI culture medium with 10% heat inactivated fetal bovine
serum (Gibco, Paisley, UK), 2 mM L-glutamine (Gibco, Paisley,
UK) and 100 U/ml penicillin/streptomycin (Gibco, Paisley, UK).
Prior to the exposure experiments, the cells were seeded at a
density of 5 x 10° cells/ml in 6-well plates (2 ml/well, Corning
Inc., New York, USA) and grown for 24 h. One hour before the
exposure, fresh complete culture medium was added to the
wells.



4.2.2.3 Experiments

Mouse macrophages were exposed to the same mass doses (15,
50, 150 and 300 pg/ml) of particles for 24 h in each study (III-V).
Exposures of the cells to the particulate samples were conducted
in three independent experiments. All experiments included
DMSO (concentration 0.3 % v/v), blank substrate (dose 150
ug/ml) and the pyrogen-free water (dose 150 ug/ml) controls.
After the 24 h exposure, the macrophages were scraped from the
wells with a cell lifter (Corning Inc.,, New York, USA) and a
sample was taken for the MTT test. The cell suspension was
centrifuged (8000 rpm, 5 min, +4 °C) to separate the cells and
particles from the cell culture medium. The supernatant was
stored at -80 °C for the analysis of inflammatory mediators. The
cells were suspended into 1 ml of PBS (Gibco, Paisley, UK) and
were used in the Pl-exclusion assay, fixed with ethanol (70%
v/v, Altia, Finland) or used in single cell gel electrophoresis. All
the used PM samples and toxicological endpoints are
summarized in Table 8.
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Table 8. Used samples and end-points in in vitro experiments.

Study Samples Dose (pg/ml) Time-point (h) Markers
111, 1V, V

Water 150 24 PI-exclusion assay,
S L
Blank 150 24
Diesel* 150 24

II1
Efficient 15, 50, 150, 300 24 MTT, cell cycle,
Intermediate 15, 50, 150, 300 24 'SI'ISS-E’, ?401%2
Smouldering 15, 50, 150, 300 24

v
Zn0 15, 50, 150, 300 24 PI-exclusion assay,
K+S 15, 50, 150, 300 24 ?T'\IHF_C(;'C'e’ ROS,
K+S+Zn 15, 50, 150, 300 24
K 15, 50, 150, 300 24
Efficient 15, 50, 150, 300 24

\
Native 15, 50, 150, 300 24 PI-exclusion assay,
Zn-low 15, 50, 150, 300 24 RS e b2
Zn-medium 15, 50, 150, 300 24
Zn-high 15, 50, 150, 300 24

Abbreviations: DMSO, Dimethyl sulfoxide; PI, propidium iodide; SCGE, single cell gel
electrophoresis; ROS, reactive oxygen species; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; TNF, Tumor necrosis factors; MIP, macrophage inflammatory
protein.

*Diesel from Ruusunen et al. (2011)
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4.3 TOXICOLOGICAL ANALYSIS (I-V)

4.3.1 Tissue damage and cell death

4.3.1.1 LDH and protein measurement (I, II)

In the in vivo studies, lactate dehydrogenase (LDH) activity and
protein concentration were analyzed from fresh BALF
supernatants. LDH was analyzed by using a cytotoxicity
detection kit (Roche Diagnostics GmbH, Germany) according to
the manufacturer's instructions. Total protein was analyzed by
using a DC Protein Assay (Bio-Rad, Hercules, California, USA).
The concentrations of LDH and total proteins were
spectrophotometrically measured from 96-well plates at
wavelengths of 492 nm and 690 nm, respectively (PerkinElmer
Victor?).

4.3.1.2 MTT-assay (I1I)

In the in vitro study the metabolic competence of the RAW 264.7
mouse macrophages was determined using the MTT-assay in
96-well-plates and calculated as a percentage of absorption of
exposed cells as compared to unexposed control cells. To ensure
methodological reliability, absorptions of emission particles
only, vehicle controls (DMSO in pyrogen free water) and blank
controls were also measured. The MTT assay measures the
colored compound, formazan, which is metabolized from MTT
[3(4,5-dimethylthiazol-2-yl)-bromide 2,5-dephenyltetrazolium].
The maximum absorbance was read at 570 nm using Victor?
Multilabel Counter (PerkinElmer, MA, USA) (Tapanainen et al.,
2011).
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4.3.1.3 PI exclusion method (IV, V)

In the in vitro studies the total amount of PI positive RAW 264.7
cells, was assayed using flow cytometry (CyAnTM ADP
Analyzer, Beckman Coulter, CA, USA). The cells were washed
once with PBS before labeling them with PI (0.5 ml PBS, 1 pg/ml
PI) for 15 min at room temperature in the dark. Thereafter, the
cells were immediately analyzed using the excitation at 488 nm
and emission at 613 + 20 nm (channel FL 3). A total of 12 000
cells were analyzed for their PI content using Summit software
version 4.3 (Beckman Coulter, CA, USA) (Jalava et al., 2012).

4.3.1.4 Cell cycle analysis (III-V)

In the in vitro studies, the cell cycle phase of the RAW 264.7 cells
was determined by PI staining of the permeabilized cells. Cells
fixed in 70% ethanol were centrifuged (400 g, 10 min), the
supernatant was discarded and the cell pellet was re-suspended
in PBS. The cell suspension was treated for 1 h with 0.15 mg/ml
ribonuclease A at +50 °C before adding PI to a final
concentration of 8 ug/ml. The cells were then incubated for
another 2 h at +37 °C in the dark before analyzing them with a
flow cytometer, excitation at 488 nm and emission at 613 + 20
nm (Channel FL3, CyAnTM ADP Analyzer, Beckman Coulter,
CA, USA). A total of 12 000 cells were analyzed for their PI
content using Summit software version 4.3 (Beckman Coulter,
CA, USA). Cells that contained fragmented DNA were labeled
as apoptotic (SubGi) (Nicoletti et al., 1991; Darzynkiewicz et al.,
1992). Possible interference with the method by the emission
particles was also tested and found to be insignificant.



4.3.2 Measurement of inflammation (I-V)

4.3.2.1 BALF cells (I, II)

In the animal studies, BALF cells were separated by
centrifugation (500 g, 10 min) and the supernatant was removed
for further analysis. The separated cell pellet was re-suspended
into 220 ul of sterile saline prior to cell counting. The total cell
number and share of dead cells were microscopically counted
from each sample by using a Biirker chamber and the trypan
blue exclusion method. The remaining cell suspension was used
for differential counting of cells by cytospin (210 pl, 500 rpm, 8
min; Megafuge, Heraeus Instruments, Germany). The slides
were fixed with May-Griinwald—-Giemsa dye. In the analysis of
cell differential, at least 300 cells were counted from each stained
cytospin slide by using a light microscope (Zeiss Axio Observer
Z1). The mean percentages for macrophages, neutrophils,
lymphocytes and other types of white blood cells were
calculated.

4.3.2.2 Histopathology (I)

The lungs of the animals that were not lavaged for BALF
collections were used in the histopathological examination.
Lungs were removed and filled with 10% phosphate buffered
formalin, which was also used in the preservation of the tissue
samples. Thereafter, the lungs were trimmed and embedded in
paraffin and cut at 5 um sections. After cutting, the tissues were
stained with hematoxylin and eosin for the subsequent
examination. The sections of both left and right lungs were
examined under a light microscope. Lesions were semi-
quantitatively scored as follows: 0 = absent, 1 = minimal, 2 =
slight, 3 = moderate and 4 = marked. The same scoring system
was applied to the particulate matter accumulation in the lumen
of bronchi and/or peribronchial area and/or in alveoli. All tissue
samples were analyzed and scored by the same, experienced
pathologist.
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4.3.2.3 ELISA method for cytokine analysis (I, III-V)

In in wvivo study I, interleukin-6 (IL-6) and macrophage
inflammatory protein-2 (MIP-2) concentrations were analyzed
from BALF of the animals. Cytokine analysis were made with
commercially available enzyme-linked immunosorbent assay
(ELISA) kits (R&D Systems, Minneapolis, MN, USA) according
to the manufacturer's instructions. Cytokine concentrations
were spectrophotometrically measured from 96-well plates at a
wavelength of 450 nm (PerkinElmer Victor®) and determined by
interpolation from the standard curve using WorkOut2™
software (version 2.0, Dazdaq, UK). In the in vitro studies III and
V, MIP-2 and TNF-a and in study IV TNF-a was measured from
cell culture medium as described above.

43.24 Electrochemiluminescence method for cytokine
analysis (II)

In the in wvivo study II, the MSD multiplex Mouse
ProInflammatory 7-Plex Assay (Ultra-Sensitive Kit K15012C,
Meso Scale Discovery) for mouse IL-1p3, IL-12, IFN-y, IL-6, KC,
IL-10, TNF-a cytokines, and chemokines was performed by
using Sector™ Imager 2400A. The assay was arranged as
follows: calibration curves were prepared in the supplied assay
diluent (mouse serum samples) or 0.9% NaCl solution with 1%
BSA (BALF samples), in a range of 10,000-2.4 pg/ml. Cytokine
and chemokine concentrations in the samples were determined
with Discovery Workbench 2006® (3.0.18) software, using the
software’s curve fitting model.



4.3.3 Genotoxicity and ROS analysis

4.3.3.1 Genotoxicity (I, II1, V)

The single cell gel electrophoresis (SCGE) assay was used to
determine DNA damage caused by the PMi samples both in
BALF cells in vivo and RAW 264.7 macrophages in vitro. The
alkaline version of the assay was conducted according to the
original version of Singh et al. (1988). The analysis of DNA
migration was conducted on ethidium bromide stained
microscope slides (100 nucleoids per analysis) using the Comet
assay IV (Perceptive Instruments Ltd., UK) image analysis
software. The comet parameter used for statistical analysis was
olive tail moment (OTM) [(tail mean - head mean) x
tail% DNA/100].

4.3.2.2 ROS analysis (III-V)

The intracellular accumulation of reactive oxygen and nitrogen
species inside RAW 264.7 macrophages was measured by flow
cytometry using logarithmic FL-1 channel. During the last 30
min of the incubation, RAW 264.7 cells were loaded with 1 uM
27'- dichlorodihydrofluorescein diacetate (H.DCFDA,;
Molecular Probes, Invitrogen Corp. Carlsbad, CA) in PBS. After
a 30-min incubation period, the cells were washed with PBS,
harvested, centrifuged, and washed one more time with 1 ml of
PBS. The cell pellet was suspended in 1 ml of PBS and the
fluorescence signal of 2',7'- dichlorodihydrofluorescein (DCF)
was analyzed in a flow cytometer. A total of 12 000 events were
analyzed per sample using the Summit software version 4.3. The
percentage of DCF positive cells was determined using Summit
software’s overlay option. The histogram overlay was
performed using water treated cells as the negative control.

61



62

4.4 STATISTICAL ANALYSIS (I-V)

4.4.1 In vivo (I, II)

All the measured values were first analyzed with Levene’s test
for equality of variances. Statistical differences in the measured
BALF and serum parameters between the particulate sample-
treated animals and blank sample treated control animals were
determined with an analysis of variance (ANOVA) and
Dunnett’s post-hoc test. In cases where Levene’s test gave values
< 0.05, the Kruskal-Wallis test was used. The differences in data
were regarded as statistically significant at p < 0.05. Differences
between the heating appliances were tested with Tukey’s honest
significant difference (HSD) or Dunnett’s C test. The extent of
histopathological lesions in the mouse lungs was tested for
statistical significance by using two-tailed Mann-Whitney test
(p < 0.05). The results of the SCGE assay were analyzed using
Student's t-test (p < 0.05). All the measured values were
analyzed with Spearman's rank correlation (two-tailed) to
examine the linear relationships between the variables.
Correlation coefficients (0) between the different variables were
regarded as statistically significant at p < 0.05 level. The
correlation analysis between chemical constituents and
measured responses were conducted at the time point showing
the clearest differences between the animal groups. All the data
were analyzed using the SPSS statistics version 17.0 (SPSS, Inc.,
Chicago, IL) or IBM SPSS statistics 19.0 (IBM®, New York, NY).

4.4.1 In vitro (III-V)

The measured responses were compared to the control and to
the corresponding blank samples with regard to particle doses.
Levene’s test for equality of variances was used for all the
samples before analyzing the data with ANOVA. Dunnett’s post
hoc test was used when results from the production of the
inflammatory mediators or the MTT test (n = 6) were analyzed.
The results from the SCGE, ROS analysis, Pl-exclusion and cell
cycle analysis were evaluated by the non-parametric Kruskal-



Wallis test (n = 3). ANOVA and Tukey’s post hoc test were used
in the analysis of differences between the combustion particles.
Differences were considered to be statistically significant at p <
0.05. The data were statistically analyzed with IBM SPSS
Statistics 19.0 (IBM®, New York, NY).
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5 Results and discussion

5.1 IN VIVO STUDIES (I, II)

5.1.1 Chemical composition of the particulate samples (I, II)
The small-scale furnaces included in this study were as follows:
pellet boiler (NT), wood chip boiler (NT), tiled stove (NT),
logwood boiler (NT), stove (NT), log wood boiler (OT) and
stove (OT). The chemical composition of the particle samples
from animal studies (I, II) is presented in Table 9. The inorganic
ash components were enriched in the emission samples from the
NT continuous combustion furnaces (pellet and wood chip
boiler), which had also the highest combustion efficiencies
(Brunner & Obernberger, 2009; Kelz et al., 2010). In particular,
there were substantial differences in the Zn concentrations
between the pellet boiler and other appliances. In addition, the
concentrations of other alkaline (K and Na) and transition
metals (Mg, Cd and Mn) were higher in the PM samples from
NT appliances. Moreover, the amounts of chloride and sulfur,
which usually form metal chlorides and sulfates in combustion
particles, were also enriched in the NT samples. In contrast,
PAH concentrations were substantially higher in the emissions
from OT furnaces. The PAHs followed the OC and EC
concentrations in the emission samples.

On the basis of many previous studies, the detected changes
in compound concentrations can be considered to be indicative
of the combustion efficiency (e.g. Tissari et al., 2008). It is clear
that the inorganic ash compounds predominate when there is
almost complete combustion whereas organic as well as
carbonaceous compounds are present in greater amounts in
conditions of incomplete combustion (Tissari et al., 2008;
Sippula et al., 2009; Lamberg et al., 2011, 2013).



Substantial differences in the burnout qualities of OT and NT
appliances were detected and those also affected the chemical
composition of emissions. Modern technology appliances had
the lowest PM1 (mg/M]) and the old technology appliances had
clearly the highest PM: (mg/M]) emissions (I, Table 1.). Many
previous in vitro studies have demonstrated that wood
combustion PM from different combustion conditions induces
highly variable toxic effects (Tapanainen et al., 2011, 2012; Jalava
et al., 2012). However, there are an extremely limited number of
animal studies dealing with toxicity of PM emissions from new
technology wood combustion appliances. Thus far, new and old
technology wood combustion appliance-derived PM has not
been studied as extensively with in vivo models as conducted in
this thesis.

Table 9. Amounts of the chemical constituents (ng/mg) in particles emitted from the seven

small-scale wood combustion appliances.

Compound LogOT StoveOT StoveNT LogNT Tiled Woodchip Pellet

EC 190000 420000 280000 50000 220000 50000 50000
oC 170000 150000 400000 70000 150000 120000 100000
Total PAHs 35000 64000 4000 3300 1800 220 1200
Ca 1140 780 1640 1780 2440 3000 4130
Cd 6 6 17 11 28 22 106
Cl 3820 6640 14400 13900 16500 15000 50300
K 19700 25500 30700 242000 175000 210000 288000
Mg 90 70 160 400 360 690 620
Mn 30 30 30 130 70 830 1830
Na 1960 1710 2910 3490 6380 3330 9720
S 3290 6310 6130 43600 51600 60400 101000
Zn 250 480 590 1520 3230 4450 25900

Abbreviations: OT, old technology; NT, new technology; EC, Elemental carbon; OC, Organic
carbon; PAHs, Polycyclic aromatic hydrocarbons.
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5.1.2 Pulmonary responses to particulate samples (I, II)

5.1.2.1 Inflammatory mediator responses (II)

The inflammatory responses assessed as cytokine and
chemokine concentrations in BALF were detected rapidly after
wood smoke PM exposure. At the 4 h time point, pro-
inflammatory cytokine IL-6 and chemokine keratinocyte-
derived chemokine (KC) responded to woodchip and pellet
boiler PM exposure (Figure 3.). At the later time point (18 h), the
IL-6 response was already diminishing but KC levels remained
at the same or even higher levels as measured at 4 h after the
exposure. Moreover, IL-13 concentrations reached a statistically
significant level 18 h after the PM exposure from the NT stove
and tiled stove. Cytokine responses seemed to be dependent on
the combustion efficiency. The PM emitted from the OT stove
and logwood boiler did not induce any changes in cytokine
concentrations. Instead, almost all of the particles from the NT
appliances induced statistically significant increases in cytokine
production. The detected inflammatory mediator responses in
mouse BALF were at a much lower level than those seen in
studies with urban air PM samples (Happo et al., 2007, 2008).
However, even these minor inflammatory effects indicate that
PM  from small-scale wood combustion possesses
physicochemical properties that can promote inflammation in
murine lungs. Chemical analysis of present PM samples showed
that high combustion efficiency leads to an enrichment of metals
in emission. Indeed, the NT stove, the woodchip boiler and the
pellet boiler samples contained the high concentrations of
transition metals (e.g. Cd, Mg, Zn).

Findings of high inflammatory responses with metal rich
wood combustion PM samples are in agreement with the
previous work of Adamson et al., (1999) and Dick et al., (2003);
these works examined the cytokine responses and neutrophil
infiltration in the lungs of mice after exposure to ambient air PM
containing high metal concentrations. With respect to the single
components of emission samples, Zn has been shown to have
important role in determining the pulmonary cell reactivity to



inhaled particles (Adamson et al., 2000; Wallenborn et al., 2009)
and oxidative stress response in lungs (Gurgueira et al., 2002;
Tao et al., 2003). Moreover, soot rich wood smoke particulate
samples as well as inhaled wood smoke from conventional
stoves have been associated with relatively low inflammatory
activity in the in vivo studies (Reed et al., 2006; Seagrave et al.,
2005, 2006) as well as in in vitro experiments (Karlsson et al.,
2006; Jalava et al., 2007; Kocbach et al., 2008a,b). This could be
due to an immunosuppressive effect caused by the PAH
compounds leading to lower inflammatory responses in mouse
lungs.

Particle-induced inflammation has been postulated to be one
of the important mechanisms for increased human
cardiovascular risk (Anderson et al., 2012). Indeed, in this thesis
elevated inflammation mediator levels were measured in mice
after exposure to PM from NT wood combustion appliances. In
particular increased levels of IL-6 could be linked to human
exposures of PM (van Eeden et al., 2001; Anderson et al., 2012).
Those results clearly indicate that the chemistry of PM is one
important factor behind toxic effects. Moreover, insolubility and
surface properties of particles may play an important role in
determining the types of inflammation response detected.
However, sub-acute or chronic toxicity was not evaluated. In
those experimental setups, soot rich samples may evoke
detectable effects by PM accumulation induced chronic
inflammation or genotoxicity.
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Figure 3. IL-6 (A), KC (B) and IL-1p (C) concentrations in bronchoalveolar
lavage fluid (BALF) at 4 and 18 h after intratracheal aspiration of a single dose
(10 mg/kg) of particulate samples from heating appliances or the
corresponding blank sample in healthy C57B1/6] mice. Each bar shows mean *
SEM (n = 5-6). The asterisks indicate statistically significant differences from
the blank control (Dunnett's C-test, p < 0.05). Abbreviations: OT, old
technology; NT, new technology; IL, Interleukin; KC, Keratinocyte-derived

chemokine.



5.1.2.2 Cells (I, IT)

Particles collected from the seven different combustion
appliances had no major effect on inflammatory cells present in
the lungs of the mice (Figure 4.). However, the numbers of
macrophages and neutrophils changed to some extent at the
later 18-h time point (Figure 4.). Indeed, the neutrophil counts
seemed to increase after dosing PM from the OT and NT stoves
as well as from the NT logwood boiler, the tiled stove, the wood
chip boiler and the pellet boiler. However, only particles
collected from the tiled stove induced a statistically significant
neutrophil infiltration in mouse lung (II, Table 3.). At the same
time, macrophage numbers were declined with most of the PM
samples, and with the pellet boiler sample this decrease reached
a statistically significant level (II, Table 3.).

These findings are in line with many previous in vivo studies
with wood combustion particles, which have observed only a
minor influx of inflammatory cells into the lungs after exposure
to PM (Seagrave et al., 2005; Tesfaigzi et al., 2005; Danielsen et
al., 2010). Moreover, there is evidence that the numbers of
macrophages decreased in rat BALF after exposure to wood
combustion emissions (Tesfaigzi et al., 2002). In that study, it
was hypothesized that macrophages may adhere strongly in the
lungs after wood smoke exposure. However, also some other
mechanisms may be responsible for the reduction in the
numbers of macrophages in BALF e.g. apoptotic or necrotic cell
death.

One of the earliest responses encountered in host defense
during acute pulmonary inflammation after exposure to
particulate matter is the production of cytokines and
chemokines by the alveolar macrophages, respiratory epithelial
cells and neutrophils (Oberdorster et al., 2002). According to the
previous in vivo findings on acute phase inflammatory
responses, the early 4 h time point was chosen as suitable for
assessing the levels of cytokines and cells in BALF after
particulate exposure (Happo et al., 2007). However, only slight
or negligible cytokine and cell responses were detected in the
present study. The low cytokine and chemokine responses may
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also explain the relatively small number of infiltrated
neutrophils in the lungs at the subsequent 18 h time point. It is
possible that the soot rich emissions from OT boiler and stove
were more insoluble and thus had very local inflammatory
activity which was not manifested in this short term study.
However, soot has been previously demonstrated to induce
oxidative stress in murine lungs in short-term inhalation
exposures studies (Chan et al, 2013; Chuang et al., 2013).
Endpoints, which could detect oxidative stress, were not
measured in the present study. In contrast, samples from NT
appliances, which probably contained highly soluble metal
sulfates and chlorides as well as insoluble metal oxides were
able to induce detectable cytokine and neutrophil influx in
mouse lungs. Transition metals are known to be capable of
producing ROS on metal oxide surfaces as well as when the
metals exist as free ions (Sarkar et al., 2014). It is possible that
the solubility differences between PM derived from different
combustion conditions were responsible for the differences in
cell migration into lungs of mice. Those results support the
epidemiological findings where a relationship has been found
between ambient air transition metal concentrations and the
measured adverse health outcomes (e.g. Lippmann & Chen,
2009).
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Figure 4. Total cell number in BALF from C57Bl/6] mice at 4 h (A) and 18 h (B)
after intratracheal aspiration of a single dose (10 mg/kg) of particulate samples
from seven heating appliances or blank sample. Each bar shows mean (n = 5-6).

Abbreviations: OT, old technology; NT, new technology.
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5.1.3 Relationships between toxic responses in vivo and the
chemical composition of the samples
The values of the correlations coefficients (Spearman’s o)
between the selected chemical constituents of the particle
samples and the detected responses in BALF and serum are
shown in Table 10. With respect to the PMi samples, both
positive and negative statistically significant correlations were
detected between the chemical constituents and the detected
toxicological parameters. The associations between the
constituents and the IL-18 or neutrophil counts displayed no
statistically significant difference. In general, inorganic elements
were associated with increased inflammation as well as
genotoxicity. Moreover, the OC concentration which also
includes PAH compounds correlated negatively with the
inflammatory markers and genotoxicity. The concentrations of
two alkali metals (Na and K) and one alkaline earth metal (Ca)
as well as transition metals (Mg, Mn, Zn and Cd) displayed
positive correlations with those of the inflammatory markers. In
addition, the amount of sulfur and chlorine levels, i.e. elements
that usually form metal chlorides and sulfates in combustion
particles (Tissari et al., 2008; Sippula et al, 2009) had also
positive correlation with the levels of inflammation and
genotoxic markers. The correlation analysis between chemical
constituents and measured responses were conducted at the
time point showing the clearest differences between the animal
groups. Due to the low response levels, the calculated
correlations need to be assessed with some caution. This is
particularly the case, with the OT samples, where some
measured cytokine values were below the detection limit.
Moreover, in some cases, there was a lack of statistical
significance between the blank control and the evoked response
(e.g. total protein and SCGE). However, most of the correlations
detected are good in agreement with those reported in previous
studies.

There was a positive correlation with transition metals and
SCGE result. Previously, in a study conducted with the same
combustion emission particles, it was found that increased



concentrations of PAH compounds were related to significant
primary genotoxicity in mouse macrophages (Jalava et al., 2012).
In contrast, in the present in vivo experiment, the extend of DNA
damage was found to correlate with ash related constituents
instead of with the level of OC. It has been shown that PAHs
can be very tightly bound to carbon black (Borm et al., 2005),
and therefore their bioavailability is limited in saline. It has also
been reported that tightly bound PAHs may become available to
form PAH- DNA adducts in in vitro, but no such effect was
found in rat lung (Borm et al., 2005). Therefore, it is quite
possible that the effective clearance mechanisms present in
mouse lung limits the bioavailability time of available PAHs i.e.
PAH concentrations are too low to evoke primary direct
genotoxic effects in the lungs with these kinds of short-term
exposures. Particles can also induce oxidant generation in an
aqueous suspension e.g. via a Haber-Weiss reaction, which is
catalyzed in the presence of available metals (e.g. Fe, Cu, Cr,
and V) (Schoonen et al., 2006; Schins & Knaapen, 2007). This is
supported by the fact that in this study the transition metal
concentration was higher in the particulate emissions from NT
appliance than from the OT furnaces (II, Table 1.). Although, Zn
cannot induce ROS production through Haber-Weiss reactions,
it can trigger mitochondrial dysfunction via several mechanisms
(Rudolf et al., 2005; Rudolf & Cervinka, 2010). Mitochondrial
damage is a well-known source of intracellular ROS (Zorov et
al., 2014). Moreover, the detected SCGE responses could also be
secondary genotoxic effects which are not induced directly by
the chemical compounds themselves, but from the reactive
oxygen species which are generated during particle-elicited
inflammation from activated macrophages and neutrophils
(Schins & Knaapen, 2007). Indeed, it has been shown that if
neutrophil influx into the lungs is blocked, this will reduce
significantly the level of pulmonary oxidative DNA damage
(Auten et al., 2002).

The reduced influx of neutrophils has been associated with
immunosuppressive effects, most likely because of the PAH-
compounds present in urban air particles (Happo et al., 2010).
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Moreover, this effect is seen with individual PAH compounds
installed in mice (Kong et al.,, 1994; Jeon et al., 2005). Indeed,
high concentrations of PAH compounds or wood smoke-rich
particulate samples are associated with reduced inflammatory
activity in murine lungs (Seagrave et al., 2006; Happo et al., 2008)
as well as with a decrease in the levels of cytokines in BALF
(Kong et al., 1994). In addition, PAH-rich samples are known to
be genotoxic (Motykiewicz et al., 1990; Sevastyanova et al., 2007)
and evoke cell cycle arrest in mouse macrophages (Jalava et al.,
2007; Longhin et al., 2013). This cellular damage could be one
mechanism for the possible immunosuppression that may
explain the low level of inflammatory responses encountered
after exposure to the samples gathered from OT appliances.
There is also another Ah-receptor (AhR) mediated mechanism
which has been postulated to explain how wood smoke can
cause immunosuppression (Migliaccio at al.,, 2013). In this
alternative, PAH compounds bind to AhR which activates
transcription factor RelB leading to a decreased ability of
macrophages to appropriately respond toward pulmonary
infections (Migliaccio at al., 2013).

Previously, Ca has been linked with increased inflammatory
responses in vivo (Happo et al., 2008) with exposure to urban air
particles. Moreover, a link between ambient sulfate
concentrations and long-term effects on mortality has been
detected in epidemiological studies (e.g., Elliott et al., 2007).
Other reports (e.g., Abrahamowicz et al., 2003) have challenged
this relationship: it has been speculated that the sulfates may act
more as a surrogate for other pollutants (e.g. metals) associated
with their presence. Indeed, installation of high doses of
residual oil fly ash (ROFA) in murine lungs caused acute lung
injury and inflammation (Ghio et al., 2002; Marchini et al., 2014).
In addition, the Utah Valley PM experiment showed similar
results as earlier mentioned ROFA experiments. Utah Valley PM
treated with Chelex, an agent that removes cations from
solution, produced no chance in the inflammation mediator IL-8.
While untreated extraction showed a significant increase in IL-8,
when compared to control (Molinelli et al., 2002). These studies



clearly showed that particles with high transition metal
concentrations can cause substantial lung injury, but it is not
known whether similar phenomena will appear in wood
combustion PM since the transition metals in wood combustion
derived PM are different from the PM used in the ROFA and
Utah Valley experiments. However, zinc that is the most
prevalent transition metal in wood combustion emission was
shown to cause pulmonary inflammation and oxidative stress in
murine models (Ho et al., 2011; Chuang et al., 2014). Indeed, a
possible mechanism for the toxic effects of PM transition metals
was postulated to be ROS generation (Li et al., 2003). Moreover,
it is possible that transition metals may synergize with organic
PM components in ROS generation (Saldiva et al., 2002).
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5.2 IN VITRO STUDIES (III-IV)

After the in vivo part of this thesis, it was clear that more
toxicological information is needed from particles derived from
efficient combustion. More specifically, the in vivo results
indicated that transition metals might be responsible for the
short term-toxic effects observed in mouse lungs. Thus, a series
of in vitro experiments was conducted to investigate the role of
the transition metals, especially zinc, in wood combustion PM
emissions. It was decided to clarify the toxicological
characteristics of PM from three different combustion situations,
to study single components from efficient combustion particles
and to determine if single components enriched in the efficient
combustion PM could enhance toxicity. First, three combustion
conditions (efficient, intermediate, and smouldering) were
generated using a grate combustion reactor in order to examine
whether one could obtain similar results as in the in vivo part of
the thesis. In the second experimental setup, synthetic
nanoparticles (NPs) which represented the main components of
efficient combustion PM were made. Based on the results from
those experiments zinc was selected for a subsequent single
component enrichment study which formed the third in vitro
study.

5.2.1 PM samples chemical composition

The concentrations of chemical compounds of PMi samples
from the biomass combustion as well as the composition of the
selected synthetic NPs are presented in Table 11. The chemical
compositions of emission particles from the three combustion
situations differed considerably from each other (Study III).
Particles emitted from the efficient combustion contained a
much higher fraction of metals than those emitted from the
intermediate or smouldering combustion situations. The most
abundant transition metals detected in the efficient combustion
PM sample were zinc, manganese and chromium. In contrast,
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there were more PAH compounds, OC and EC emitted from the
intermediate and especially in smouldering combustion
situations. The smouldering combustion sample contained the
highest concentrations of PAH compounds. Study IV
investigated NPs with either zinc oxide or potassium sulfate;
their chemical composition is also described in Table 11. Study
V examined samples from pellet combustion. The combustion of
pellets with added zinc produced the zinc-rich particles is
described in Table 11. The chemical composition of the native
pellet samples was very similar to the other pellet samples and
the efficient combustion sample, with the exception of zinc
concentration. Moreover, the synthetic K+5+Zn particle sample
contained the same amount of zinc as the native pellet PM
sample.

In real life situations, many different combustion conditions
are possible. In study III, real life situations were simulated as
follows: efficient conditions representing optimal biomass
combustion e.g., a modern continuously operated boiler;
smouldering conditions e.g. in a conventional batch combustion
and intermediate conditions representing a malfunction, a
partial load or startup/shutdown situation of a modern boiler
(Tissari et al., 2008; Sippula et al., 2009; Lamberg et al., 2011,
2013; Heringa et al., 2011). Those combustion situations
represent relatively well those present in the appliances
examined in studies I and II. In study IV the synthetic ZnO
particles were produced by FSP using an organometallic zinc
precursor and ethanol as the fuel. This leads to the formation of
ZnO NP (Height et al., 2006) similar to those that have been
detected in efficient wood combustion emission PM (Torvela et
al, 2014). Moreover, potassium sulfate (K+S+Zn) particles
containing a low amount of zinc were synthesized, as they are
commonly present in particle emissions from efficient wood
combustion (Sippula et al.,, 2012). In study V, the used pellet
materials represented real life situations. Combustion of the
native pellet was representative of good quality stem wood
pellet burning (Sippula et al., 2007b), whereas the Zn-low
sample corresponded to wood residue pellet combustion



(Sippula et al., 2007b; Chandrasekaran et al., 2012; Jones et al.,
2014). Finally, the two higher zinc-containing samples would be
more commonly encountered in waste incineration (Krook et al.,
2006; Jones et al., 2014).

The present result demonstrated that it is possible to generate
under experimental conditions PM samples, which resemble
real world wood combustion PM emissions. This was done
using adjustable combustion devices in a laboratory
environment. Moreover, nanoparticles containing defined
amounts of potassium, sulfur and zinc were synthesized to
study the major components forming inorganic particles in
wood combustion. This is important since generally wood
combustion emissions are extremely heterogeneous. It is an
advantage if one can control many of the potential confounding
factors (e.g. appliance, operation practice and fuel) in wood
combustion derived particles. Since this can help, in subsequent
toxicological analyses aimed at identifying the causative
chemical compositions behind the adverse health effects.
Moreover, when studying the single components in wood
combustion emissions the potential harmfulness of the
compound under study can be evaluated.
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5.2.2 Cell death, cell cycle arrest and ROS production

5.2.2.1 Cell death

The cytotoxicity results of RAW 264.7 macrophages as
determined with the propidium iodide (PI) exclusion assay after
24 h exposure to selected combustion particles is presented in
Figure 5A. The results are expressed as response to zinc
concentration in the cell culture medium. All samples except
K+5+Zn evoked a statistically significant increase in cell
membrane permeability, which is indicative of necrotic or late
apoptotic cell death. It is noteworthy that when the free zinc
concentration in the cell culture medium exceeded 3 ug/ml (46
uM), all PI exclusion assay responses were statistically
significant as compared to the corresponding control. When the
zinc content increased to 46 pg/ml (704 uM) virtually all of the
cells were dead. In contrast, the K+5+Zn sample did not induce
any cell death. Native pellet samples caused some toxicity at the
highest PM dose (300 pg/ml). In that case, the zinc content in the
cell culture medium was about 1 pg/ml (15 uM).

In previous in vitro studies it has been shown that Zn? ions
can induce necrotic cell death in human bronchial epithelial cells
(BEAS-2B) as well as RAW 264.7 macrophages (Xia et al., 2008).
Moreover, severe cytotoxicity has been detected after treatment
of several human and murine cell lines with ZnO NPs (Zhang et
al., 2014). Although the Zn? ion is thought to be responsible for
the evoked toxic effects, it has been shown in in vitro studies that
at least with respect of the ZnO NPs, contact with to cells is
required to induce cytotoxicity (Moos et al., 2000; Hsiao &
Huang, 2011).

When toxic effects (e.g. oxidative stress) overwhelm cellular
defense mechanisms, they will cause damage to many critical
macromolecules such as proteins, lipids, and DNA. As a
response, the cell will attempt to repair the damage and adapt to
the elevated stress. If this fails, the fate of the cell will be to
undergo either apoptotic or necrotic cell death (Fink & Cookson,
2005). The present results demonstrated that there was extensive
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cell death at Zn concentrations above 8-10 ug/ml in the cell
culture medium. This indicates that zinc caused severe failure of
cellular protective mechanisms at those concentrations. The In
vivo results in this thesis revealed decreased macrophage
numbers after exposure to PM samples originating from NT
combustion appliances that contained high Zn concentrations.
This decreased in macrophage numbers may have been caused
by cell death.

5.2.2.2 Cell cycle arrest

An experiment was conducted to determine whether particles
could disrupt normal cell cycle, this being analyzed with flow
cytometry. When the cell cycle of RAW 264.7 macrophages was
analyzed (Figure 5B), an accumulation of the cells in S-G2/M cell
cycle phase was noted. This is an indicator of cell cycle arrest in
Gz phase. Cell cycle arrest was detected when the zinc content in
cell culture medium was 9 ug/ml (138 uM). The most severe
effects on the cell cycle were observed with PMi samples
containing the highest Zn concentrations.

In line with the present results, Yin et al. (2012) found
recently that exposing RSC96 Schwann cells to 8 pg/ml (122 uM)
ZnO NPs resulted in an accumulation of cells in the G2/M phase.
Moreover, exposure to zinc sulfate was previously reported to
induce Ge-phase cell cycle arrest in human alveolar epithelial
cells (A549) at similar Zn concentrations as used in this thesis
(Konczol et al., 2012). In addition, Wong et al. (2008) have
demonstrated that Zn? ion can induce G2/M cell cycle arrest in
human bronchial epithelial cells. The mechanism behind this
phenomenon may be oxidative DNA damage induced by Zn
(Rudolf & Cervinka, 2011). It is known that damage to DNA
may stop cells from passing through the various checkpoints in
the cell cycle (King & Cidlowski, 1998). Indeed, ZnO NPs have
been reported to evoke the formation of ROS and to trigger
apoptotic cell death (Sharma et al., 2012).



5.2.2.3 ROS production

The amounts of intracellular ROS and RNS generation after the
exposures of RAW 264.7 macrophages to PM containing various
amounts of zinc are shown in Figure 5C. All the PM:1 samples
except K+5+Zn and native pellet induced a statistically
significant increase in ROS production in RAW 264.7
macrophages, at least when delivered at the highest PM dose
(300 pg/ml). The three highest Zn containing PM: samples were
the most potent in evoking oxidative stress in the macrophages.

Zinc, which is the most prevalent transition metal in the
particles emitted during wood combustion (Sippula et al.,
2007b), has been linked to ROS mediated depletion of reduced
glutathione (GSH) and Ge-cell cycle arrest (Walther et al., 2003;
Shih et al., 2008). Moreover, it has been shown that the oxidative
potential of ambient PM significantly correlates with the Zn
concentration (Zhang et al., 2008; Wang et al., 2013). In addition,
it is also known that the ZnO NPs and ionic Zn?*" can trigger
extensive oxidative stress in a variety of cell lines (Wu et al,,
2013). One putative mechanism to explain the generation of ROS
inside the cells as well as the other detected effects on cell
viability and cell cycle is that Zn?* ions reduce GSSG reductase
enzyme activity leading to a decline in the storages of GSH and
eventually to compromised ROS homeostasis in the cell
(Walther et al., 2000, 2003; Bishop et al., 2007).

Zinc is a ubiquitous contaminant of ambient air that
represents an oxidant challenge to the human lung (Wu et al,,
2013). The toxicological responses to exogenous zinc range from
cell death to cell cycle disruption and these are probably
attributable to its oxidative properties. The Zn?* cation is not
capable of ROS production by itself and thus the elevated ROS
levels must have an endogenous cellular origin, e.g. produced
by mitochondria. Moreover, there is evidence that zinc can exert
multiple oxidative effects in the lungs as well as cells during in
vitro incubation (Dineley et al., 2005; Cheng et al., 2010). At the
center of these zinc-induced oxidative properties is it’s
interactions with cellular thiols (Krezel et al., 2007). Thus, the
release of ZnO NPs or combustion-generated particles with high
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Zn concentrations into the environment would be predicted to
have negative health effects.
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Figure 5. Acute cytotoxicity (A), S-Go/M cell cycle phase (B) and reactive
oxygen species production inside cells (C) after 24 h exposure of RAW 264.7
macrophages to particulate samples from efficient combustion of wood chips
and pellets as well as flame spray pyrolysis. The columns represent means,
with error bars showing standard errors of the mean (SEM). The asterisks
indicate statistical significance compared to the blank substrate control (p <
0.05) analyzed by the nonparametric Kruskal-Wallis test. The numbers after
combustion samples represent PM doses (15, 50, 150 and 300 ug/ml) and
numbers under Zn [ug/ml] represent maximum free zinc ion concentration in
the cell culture medium.

Abbreviations: DCF, 2' 7' - dichlorodihydrofluorescein; PI, Propidium
iodide.
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5.3 METHODOLOGICAL CONSIDERATIONS

In this thesis, PM samples were collected using a Dekati®
gravimetric impactor. After collection, the gathered PM mass
was extracted from the filters using methanol and dried using
nitrogen flow. Prior to the in vivo or in vitro exposures, the PM
samples were thawed and re-suspended using DMSO and
incubation in an ultrasonic water bath. This slight amount of
DMSO is needed to detach the dried PM from the sides of the
glass tubes. It is known that DMSO can have some cell-
protecting abilities due to ROS scavenging and may increase
transportation of particles through the cell membranes and
surfaces of alveoli (Colucci et al., 2008). In addition, DMSO is
known to have both inflammatory and anti-inflammatory effects
(Colucci et al., 2008). Those properties were excluded in pilot
studies conducted both in vivo and in vitro. Moreover, DMSO is
a standard solvent in PM toxicity studies (e.g. de Kok et al.,
2006).

One important issue to be considered is that when PM is
collected in an impactor one loses all of the gaseous compounds.
Moreover, volatile and semi-volatile compounds are at least to
some extent lost during the extraction procedure. Finally, after
extraction and PM re-suspension, the particles do not return to
their original PM1 size when in vivo and in vitro exposures are
conducted. However, without direct exposure methods (e.g. at
the air-liquid interface) this is the best option available.

An intratracheal aspiration technique was used in the present
in vivo studies to deliver the PM samples to the lower airways of
mice. Naturally, this administration differs from inhalation
exposure. However, it was shown that intratracheal aspiration
and inhalation exposure can result in similar outcomes,
although there were some differences in the intensity of the
responses (Costa et al., 2006; Shvedova et al., 2008). It was
postulated that in intratracheal aspiration, the particles in the
suspension contain agglomerates, which lower their reactivity in
comparison with inhalation exposure. In this thesis, the doses
used in the in vivo experiments may seem relatively high.



However, these doses are no higher than the intratracheal
aspirated doses that have been examined previously (Adamson
et al., 1999; Walters et al,. 2001; Schins et al., 2004; Gerlofs-
Nijland et al., 2005; Happo at al., 2008). The use of relatively
high doses is necessary in order to demonstrate statistically
significant differences in toxicological endpoints between the
particulate samples. This is important especially when small
groups of healthy animals are used. The number of mice used in
the studies was kept to a minimum for ethical reasons. Mild
general anesthesia was used during the intratracheal aspiration
exposure of the animals to eliminate any possible pain and
discomfort. Overall, the animals appeared to be in good physical
condition during the experiments.

Other experiments described in this thesis were conducted
with the mouse macrophage cell line, which represents a model
to the first line of defense against particles in the lungs.
Nevertheless, the in vitro model has several limitations when
compared to the animal model, e.g. cultured cells cannot
undergo interactions with other cell types or receive signals
from nerves as well as lacking the clearance mechanism present
in the intact animal. It can however, represent a very useful tool
for clarifying toxicological mechanisms. More specifically, there
are three major reasons behind the selection of this specific cell
line. Firstly, there is a large database in our laboratory on the
responses induced and on the mechanisms activated in these
cells by different inhalable particulates. Thus, the detected
responses could be readily compared to previous data. Secondly,
a mouse model was used in animal studies. Thus it was possible
to compare the responses in vitro and in vivo in the same species.
Finally, wood smoke affects the pulmonary immune defense
and thus the lung macrophage cell line can be used to unravel
the biological mechanisms participating in this phenomenon.
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6 Conclusions

The present thesis has added to our knowledge of the toxic
properties of wood combustion derived particles and their
association with potentially harmful chemical compositions
especially zinc.

The main findings from in vivo studies:

1.

There were substantial differences in the combustion quality
of OT and NT appliances; those also affected the chemical
composition of emission PM. The OT furnaces clearly had
the highest emissions in terms of total particulate mass.
Moreover their emissions were dominated by soot and OC.
Instead, with the low emission NT appliances, the following
elements were enriched in the particles: Ca, Mg, Mn, K, Na,
Zn, S, Cl and Cd.

Short-term inflammatory, cytotoxic and genotoxic effects in
mouse lungs were seen after dosing of PM from NT
appliances. In contrast, OT appliances induced only minor
inflammatory responses in the lungs of mice. The levels of
inflammatory markers as well as extent of genotoxicity
correlated positively with the ash related constituents of
particles, whereas OC had a negative correlation with the
detected responses, potentially due to the
immunosuppressive effect of these organic compounds.

The detected responses only represent short-term effects that
reflect the acute phase of inflammation. The low
inflammatory responses evoked by the samples from OT
appliances should not be underestimated since they may
disturb the normal foreign particle clearance mechanisms
mediated via inflammatory cells. Moreover, there were large
differences in PM: total mass emissions between the old and
new combustion technologies in favor (lower emissions) of
the NT appliances.



The main findings from in vitro studies:

1. Combustion efficiency had a major effect on chemical
constitutions and subsequently on the toxicological
properties of the emitted PMi. Similarly to the in vivo results,
PM samples derived from efficient wood combustion were
cytotoxic, and caused cell cycle arrest and ROS production
inside the cells when the emissions contained transition
metals. Instead, the particles collected from the inefficient
combustion were more potent inducers of programmed cell
death and genotoxicity.

2. ZnO NPs displayed a similar toxicity profile as PM from
efficient combustion. At the same time, potassium
carbonates and sulfates, which are major components of
wood combustion particles, were found not to induce any
toxic effects.

3. Zn, when it was enriched in emission PM, was significantly
toxic. Moreover, there was a similar toxicity profile between
the efficient wood combustion PM and ZnO NPs.

In summary, it was observed that short-term inflammatory,
cytotoxic and genotoxic activities in mouse lung correlated
positively with the transition metal concentrations in the
particles whereas the levels of OC correlated negatively with the
detected responses. The toxic mechanisms of transition metals
were further examined in an in vitro model. The mechanisms
behind the detected toxic effects seemed to be oxidative stress
which damaged the cell’s DNA and lipids, leading to cell cycle
arrest, membrane damage and ultimately to cell death.

In conclusion, it was shown that the toxic potential of
efficient wood combustion PM is likely to be attributable to
certain metal species such as zinc, when there are low
concentrations of carbonaceous species in the PM. To prevent
potential adverse health effects of PM, more attention should be
paid to the contents of volatile transition metals in biomass fuels
and furthermore the use of efficient combustion should be
promoted as a way of lowering the total mass of particulate
emissions.
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