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Respiratory and cardiac motion 

artefacts degrade image quality 

in positron emission tomography 

imaging and may significantly affect 

the qualitative and quantitative 

evaluation of images. At worst, 

misguided interpretation may lead 

to wrong diagnosis and inadequate 

or unnecessary treatment. Thus, 

effective methods to compensate 

the adverse effects of motion are 

called for in clinical practice. This 

thesis shows that bioimpedance 

techniques can be effectively utilized 

for respiratory motion compensation 

by respiratory and dual gating of 

oncologic and cardiac PET imaging.
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ABSTRACT 

Respiratory and cardiac motion artefacts degrade image quality 
in positron emission tomography (PET) imaging and may 
significantly affect the qualitative and quantitative evaluation of 
images. At worst, misguided interpretation may lead to wrong 
diagnosis and inadequate or unnecessary treatment. The aim of 
this thesis was to study the feasibility of the bioimpedance-
based measurement technique for respiratory and cardiac 
motion compensation in PET imaging. 

An optimized bioimpedance measurement configuration 
for simultaneous measurement of respiratory and cardiac gating 
signals was first determined based on computational modelling. 
The configuration was further validated against reference 
methods for monitoring respiration and cardiac contractions. 
The feasibility of bioimpedance techniques for gating in clinical 
settings was evaluated in oncologic and cardiac PET studies. 

Respiratory and cardiac bioimpedance measurements 
were found to have a high degree of correlation and good 
agreement with reference methods in monitoring respiration 
and cardiac contractions. In oncologic PET studies, 
bioimpedance-based respiratory gating resulted in a significant 
increase of the observed metabolic activity of lesions and a 
decrease of their volume. In cardiac PET studies, dual gating 
was found to show a significant narrowing effect on the 
observed myocardial wall thickness compared to plain cardiac 
gating. 

This thesis shows that bioimpedance techniques can be 
effectively utilized for respiratory motion compensation by 
respiratory and dual gating of PET imaging. Further 
development of bioimpedance-based respiratory motion 
compensation should be mainly directed to enhancing the 
sensitivity and linearity of the measurement configuration. 
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1 Introduction  

Positron emission tomography (PET) imaging is susceptible to 
respiratory and cardiac motion artefacts due to the long image 
acquisition time. Respiratory and cardiac motion leads to image 
blur, which may distract qualitative image interpretation [55, 89, 
91, 105, 121, 140] or distort the measurement of quantitative 
parameters, such as standardized uptake values (SUV) in 
oncologic imaging [89, 105]. As SUV parameters, for example, 
can be used in cancer staging and treatment response evaluation 
[105, 138, 156], the misinterpretation of images or quantitative 
parameters may, at worst, lead to misguided diagnosis, 
resulting in inadequate or unnecessary treatment. 
 The significance of motion artefacts and their 
minimization in PET are widely recognized. Cardiac motion is 
conventionally compensated utilizing gating based on 
electrocardiography (ECG) measurement. Respiratory motion 
compensation methods are based on three techniques. Gating is 
the sorting of reconstructable PET data according to the 
respiratory phase using direct or surrogate measurement of 
respiration [22, 24, 38, 46, 61, 73, 76, 89, 91, 105, 124, 125, 143, 
158]. Motion correction techniques utilise motion data in the 
image reconstruction [20, 26, 49, 55, 67, 84, 85]. Specialized 
imaging techniques are based on breath-holding [71, 98, 99, 102, 
107, 142, 160]. 

Despite extensive research, respiratory motion 
compensation methods have only been adopted slowly in 
clinical routine. Criticism has been expressed, for example, 
about the inadequacy of chest wall motion-based gating 
methods to follow lung motion [79] and inconsistency in gating 
[45]. On the other hand, direct airway measurements have been 
criticized for low patient tolerability [106]. In addition, data-
driven methods may depend on radiopharmaceutical uptake, 
patient body habitus, or scanner geometry [29]. Further, there 
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are still relatively few clinical studies on motion correction 
methods with patient data, and breath-hold methods require 
good co-operation with the patient. Importantly, when 
simultaneous gating of respiration and cardiac function, that is 
dual gating, is pursued, the above-mentioned methods require a 
separate ECG system to enable versatile inclusion of cardiac 
gating. 

Transthoracic bioimpedance techniques can be utilized 
in the evaluation of respiration [10, 48, 64, 93, 126, 129] and 
cardiac contractions [6, 23, 83, 113, 114]. Respiratory 
bioimpedance measurements reflect the change of thorax air 
content and shape as well as internal organ motion due to 
respiration [10]. They are used, for example, for apnoea 
detection as well as monitoring of intrathoracic fluid 
accumulations, such as lung oedema [10, 52, 128, 163]. Cardiac 
bioimpedance measurements, on the other hand, have been 
used to study the varying impedance due to changes in thoracic 
blood volume and flow [113], which are caused by cardiac 
contractions. Cardiac bioimpedance measurements are used for 
non-invasive detection of stroke volume, cardiac contractility, 
diastolic dysfunction, arrhythmias and systolic time intervals 
[13, 23, 81, 83, 113]. Importantly, when using bioimpedance 
methods, both respiratory and cardiac measurements can be 
conducted from the same measurement configuration using four 
standard ECG electrodes. 

In spite of the potential feasibility of bioimpedance 
measurements for gating, only a few studies exist on the 
utilization of the bioimpedance technique in medical imaging: 
Cho et al. [33] and Conwell et al. [35] studied bioimpedance-
based respiratory gating in myocardial perfusion single-photon 
emission computed tomography (SPECT) imaging. However, 
Cho et al. studied the method with healthy male volunteers and 
Conwell et al. imaged patients in the upright sitting posture, 
both of which are unusual for typical nuclear medicine studies. 
In addition, preliminary studies have been conducted on 
bioimpedance-based respiratory gating in other imaging 
modalities [101, 115]. 
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The aim of the present thesis was to evaluate the 
feasibility of bioimpedance measurements for respiratory and 
cardiac motion compensation of PET imaging. First, an 
optimized electrode configuration was determined according to 
computational measurement sensitivity analysis (study I) and 
validated against the reference methods of pneumotachograph 
volume spirometry and ECG in volunteer measurements (study 
II). Bioimpedance respiratory gating was evaluated in oncologic 
PET imaging (study III). Further, integrated bioimpedance 
respiratory gating and ECG cardiac gating was evaluated in 
dual-gated cardiac PET (study IV). 
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2 Positron emission 
tomography 

Positron emission tomography (PET) is a physiological imaging 
modality, which can be utilized to obtain clinically necessary 
diagnostic information based on tissue metabolism. The 
principle of PET was introduced in the 1950's, but wider clinical 
use started in the 1990's [119]. The benefits of PET, such as 
quantitative image information, and the intensive development 
of scanners, e.g. in terms of spatial resolution, have led to 
continuing growth in the demand for PET studies. Hybrid 
imaging systems, which enable the fusion of PET images with 
computed tomography (CT) or magnetic resonance (MRI) 
images that contain high resolution anatomical information, 
offer valuable tools in accurate anatomical localization of 
functional PET results. PET is widely used in oncologic, cardiac 
and neurologic imaging. 

2.1 PRINCIPLES OF PET 

Nuclear medicine imaging is based on the detection of emission 
photons produced by a radiopharmaceutical. Radiopharma-
ceuticals consist of radioactive nuclides and biological substrate 
molecules. PET radionuclides are positron emitters, which 
typically have short half-lives; thus they often require on-site 
production in the form of a cyclotron or disposable generator 
(Table 2.1). Biological substrates take part in natural metabolic 
processes and thus determine radiopharmaceutical distribution 
in the body. 18F-Fluorodeoxyglucose (18F-FDG or FDG for short) 
is the most commonly used PET radiopharmaceutical (Table 
2.1), largely due to the relatively long half-life of 18F, which 
allows the use of FDG outside cyclotron sites. FDG is 
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metabolized similarly to glucose, but its metabolite (FDG-6-
phosphate) [36] remains trapped within the cell. As the 
concentration of the metabolite in the cell grows in proportion to 
the glucose metabolic rate of the cell, FDG uptakes represent the 
extent and distribution of glucose metabolism in the tissue [157]. 
FDG studies are used, for example, in oncology to highlight 
tumours with increased glucose metabolism; in cardiology they 
are used to study the viability or inflammatory activity of the 
myocardium [15, 157, 161]. 
 
Table 2.1: Typical PET radionuclides with related half-lives (T1/2), maximum kinetic 
energy (Emax) and positron range (Rpos) as well as examples of radiopharmaceuticals 
[16, 51, 133, 150, 159, 162]. 

Radionuclide/ 
Radiopharmaceutical 

T1/2 
[min] 

Emax 
[MeV] 

Rpos 
[mm] 

Target of 
application 

Cyclotron-produced    
11C 20.4 0.96 4.1  
11C-methionine 

 
  Brain and prostate 

cancer 
13N 9.98 1.19 5.4  
13N-ammonia 

 
  Myocardial perfusion 

and blood flow 
15O 2.03 1.70 8.0  
15O-water 

 
  Myocardial perfusion 

and blood flow 
18F 110 0.69 2.4  
18F-fluorodeoxyglucose 

 

  Tumour targeting, 
myocardial viability, 
cerebral glucose 
metabolism, 
infection and 
inflammation 

Generator-produced    
68Ga 68.0 1.90 9.0  
68Ga-DOTA-conjugates 

 

  Somatostatin 
receptor imaging, 
neuroendocrine 
tumours  

82Rb 1.25 3.36 17  
82Rb-chloride 

 
  Myocardial perfusion 

and viability 
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PET imaging is based on the detection of annihilation 
events, which originate from a radiopharmaceutical typically 
administered by an intravenous injection. Annihilation follows 
as the positron, emitted by the neutron-deficient radionuclide as 
a consequence of �+ decay, dissipates most of its kinetic energy 
in tissue interactions and finally annihilates itself in an incidence 
with an electron [116]. Due to annihilation, positron and 
electron mass, and , are converted into electromagnetic 
energy  according to mass-energy equivalence 
 

 (2.1) 
 
where  is the speed of light. The result is two 511 keV photons 
emitted in opposite directions due to the conservation of 
momentum. 

Annihilation photons are detected by the detector ring in 
the PET system (Figure 2.1). After a valid detection of a 
coincidence event, the location of annihilation can be estimated 
on a line, or more precisely a volume, between photon detectors, 
that is, the line of response (LOR) [119]. For PET image 
formation, acquisition and reconstruction of LOR data from 
multiple angles and radial offsets of the imaged object are 
required. 
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Figure 2.1:  Annihilation photons are conventionally absorbed into detector elements 
(DEs), transformed into electrical signal, and amplified by photomultiplier tubes 
(PMTs). In the most recent systems, the electrical signal is produced by semiconductor 
detectors. Scattered photons are rejected in pulse height analysers (PHA), which 
discriminate photon energies outside an accepted range of, for example, 350-650 keV 
[116]. Valid coincidences, whose annihilation photons are detected in the timing 
circuit within a 5-12 ms coincidence time window [119], are recorded for each line of 
response (LOR) by the counter [116]. Figure modified from [116]. 

2.2 PHYSICAL CHARACTERISTICS OF PET 

The validity of LOR evaluation is inherently reduced by 
noncolinearity, positron range and parallax error, or depth-of-
interaction effect, all of which contribute to the characteristic 
blur of PET images. Noncolinearity follows from the 
conservation of momentum. The positron may still possess 
kinetic energy at the instant of annihilation; thus, the 
annihilation photons may depart up to 0.5� from the expected 
180� angle (Figure 2.2A) [116, 119]. Noncolinearity causes an 
image blur  related to the diameter  of the detector ring 
 

 (2.2) 
 

PATIENT

PMTDE

PMTDE PHA

PHA

TIMING
CIRCUIT COUNTER

LOR
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Root-mean-square positron range  , that is the linear 
distance travelled by the positron before annihilation, depends 
on the initial kinetic energy of the positron. The maximum 
positron range in water varies between 2.4 and 17 mm with the 
most common radionuclides (Figure 2.2A) (Table 2.1). LOR can 
also be mispositioned due to parallax error, which may occur if 
the photon arrives at the detector at an oblique angle. The 
photon may then be absorbed in the adjacent detector and not 
the one it arrived at, leading to incorrect determination of the 
LOR (Figure 2.2B) [87]. Parallax error is strongest in the 
periphery of the detector ring. 

 

 
Figure 2.2:  In A, positron P is emitted from the neutron-deficient nucleus N. 
Detected coincidence photons are connected by the line of response, LOR. The distance 
travelled by the positron before annihilation (positron range, ) and the noncolinear 

(NC) deviation determine limits for the inherent spatial resolution of the PET. In B, 
LOR is defined incorrectly (solid arrow) due to parallax error, which follows from 
photon penetration to adjacent detector elements (dashed arrow). Figure modified from 
[116]. 

 
The size of the detector crystal determines the intrinsic 

spatial resolution of the detector , which is often quantified 
determining the full-width half-maximum (FWHM) of the point 
spread function (PSF). PSF is the position spectrum of a point 
source in a fixed distance from the detector [87]. PSF is skewed 
on the edge of the detector ring by the parallax effect [116]. 
Finally, PET system resolution  is determined as 
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  (2.3) 

 
Modern PET systems have been reported to have spatial 
resolutions of 4.4-5.9 mm when measured using standardized 
NEMA NU 2-2007 protocol and 18F [17, 68, 103]. 

The essential information in PET acquisition consists of 
true events, that is, coincidence events that originate from the 
same annihilation (Figure 2.3A). Single events (Figure 2.3B), on 
the other hand, may increase system dead time leading to pulse 
pile-up and loss of events. These, in turn, result in 
radiopharmaceutical uptake underestimation at high counting 
rates. Dead time losses are minimized by correction models 
based on the observed count rates of different radio-
pharmaceutical concentrations [32]. In case a true event is 
detected temporally close to a single event or another true event, 
such multiple coincidence detection leads to rejection of 
detected events [116]. 
 

 
Figure 2.3: True coincidence (A), single (B), random (C) and scattered (D) events. In 
single events, the other photon is directed out of the detector circle or has an energy too 
low for detection. In random events, the detection is related to different annihilations. 
With scattered events, the detection is based on the same annihilation but is falsely 
positioned due to Compton scattering. Figure modified from [116]. 

 
Random (Figure 2.3C) and scattered (Figure 2.3D) events  

produce undesired background noise in PET images; they 
reduce contrast and are detrimental to quantification as they are 
not related to real radiopharmaceutical accumulation [116]. 
Random events can be corrected to some extent from the PET 
data by statistical estimation according to element-wise singles 
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rate detection in the PET system or by using a delay circuit in 
coincidence detection [116]. Scatter correction is done by using 
models that are based either on a function fitting to events that 
have been detected outside known activity distributions, scatter 
window subtraction, or 3D scatter modelling of uncorrected PET 
data [116]. 

In addition to dead time, random event and scattered 
event corrections, the photon detection efficiency of all detector 
block pairs, that is LORs, in the PET system has to be uniform. 
Detector nonuniformity, caused by differences in physical 
dimensions, geometry and electronics of detectors, is corrected 
by normalization using a uniform plane or cylinder source and 
deriving normalization correction factors for each detector pair 
or detector of the system [116]. 

PET data corrections are typically included in the image 
reconstruction. The development of fast detector materials, e.g. 
lutetium oxyorthosilicate (LSO), lutetium yttrium oxyortho-
silicate (LYSO) as well as gadolinium oxyorthosilicate (GSO), 
and electronic circuits has improved the time resolution of 
photon detection and enabled estimation of the annihilation 
location on the LOR. This time-of-light (TOF) method is based 
on the time difference between the two annihilation photon 
detections. In addition, PSF correction, which is used to improve 
spatial image resolution especially on the periphery of the image 
where the PSF is most skewed and broad, can be incorporated in 
the reconstruction algorithms. 

2.3 ATTENUATION CORRECTION 

Annihilation photons are prone to interact with tissue while 
traversing it. The interaction mostly occurs through Compton 
scattering leading to change in photon direction and decrease of 
photon energy [116].  Thus, some photons are not detected, or 
they are attenuated. The effect of photon attenuation can be seen 
as pronounced radiopharmaceutical uptake on the surface of the 
imaged object, whereas uptake deeper in the object is 
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suppressed (Figure 2.4) [116]. Attenuation correction (AC) is 
used to account for the unequal attenuation properties in 
different parts of the imaged object. 
 

 
Figure 2.4: Homogeneous quality control phantom image without (A) and with (B) 
attenuation correction. 
 
 Attenuation correction (AC) can be performed 
computationally assuming constant attenuation throughout a 
homogenous object. This approach is sometimes used for 
phantom or brain studies [116]. However, if the imaged object is 
more heterogeneous, as the human thorax for example, more 
accurate estimation of photon attenuation is needed. Photon 
attenuation can be measured performing a transmission scan 
using either external ring or rod sources, e.g. of 68Ge, or CT 
acquisition [116, 155]. At present, CT is preferred due to the 
speed and the capability of producing high-resolution 
attenuation maps with nearly no statistical uncertainty [155]. 
 A CT image is based on the detected attenuation of X-
rays that traverse the patient. In CT acquisition, an X-ray tube 
rotates around the patient transmitting X-rays, which are 
detected on the opposite side of the gantry. The CT image 
represents the pixel-wise effective linear attenuation 
coefficients, , throughout the imaged volume. However, 
attenuation coefficients acquired with the continuous energy 
spectrum of CT have to be scaled to 511 keV to derive 
attenuation correction estimation for PET acquisition (Figure 2.5) 
[155]. 
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Figure 2.5: Bilinear conversion model from CT-derived linear attenuation coefficients, 
presented in Hounsfield units, to attenuation coefficients at 511 keV. The slope of the 
air-water section is not sensitive to CT acquisition voltage whereas the slope of the 
water-bone part depends on CT voltage. Figure modified from [155]. 
 
 As the MRI scan in PET/MR systems does not provide 
direct information on attenuation, the attenuation correction 
map in these systems has been initially determined based on 
specific MR sequences and subsequent segmentation of, for 
example, 2-5 tissues with designated linear attenuation 
coefficients [37, 72, 95, 151]. In addition, other approaches, such 
as atlas and machine learning as well as PET emission data- 
based methods, are being actively investigated [41, 62, 104]. 
However, it has been reported that MR-based attenuation 
correction may lead to substantial and region-dependent 
underestimation of quantitative PET values [7, 44, 72].  

2.4 RECONSTRUCTION OF PET DATA 

Modern PET scanners utilize 3D acquisition; that is, although 
the detector ring consists of multiple element rows, photon 
detection is possible with all detector element combinations 
[116]. The prerequisite for 3D acquisition is LOR-based 
electronic collimation, which is characteristic for PET, as 
opposed to absorptive collimators used in other nuclear 
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medicine instruments [116]. The advantage of 3D acquisition is 
the high sensitivity, which enables a high signal-to-noise ratio 
(SNR), short imaging times and small injected patient doses 
[116].  

The acquired PET data is typically stored in the 
histogram mode as the number of events detected in each LOR. 
On the other hand, list-mode (LM) acquisition can be used to 
collect information on the detection location and the time of the 
detection of the annihilation photons; this enables flexible post-
processing of the data [116]. 

Regardless of the format, data is transformed into 
sinograms prior to image reconstruction. Basically, sinograms 
are 2D representations of the data in matrix form, where rows 
illustrate the radionuclide accumulation of the object in all 
projections and columns represent its radial distance from the 
image centre [116]. Similar representations can also be found for 
3D cases [40]. 
 Analytic reconstruction methods, most importantly 
filtered backprojection (FBP), are conventional in medical 
imaging. However, FBP has some drawbacks such as inaccurate 
modelling of PET detector geometry, leading to nonuniform 
sensitivity [116]. FBP neither accounts for positron range nor 
noncolinearity [116]. Further, FBP assumes noise-free data and 
weighs all LORs equally; this may result in streak artefacts, as 
the assumption rarely holds for PET data [116]. 
 Iterative image reconstruction, as an alternative to 
analytic methods, is performed in repeated cycles. The 
reconstruction begins with an initial guess of the image. Second, 
projection profiles of the initial guess image can be computed 
using simple forward projection algorithms. However, 
sophisticated approaches include modelling of PET system 
properties, such as noncolinearity, detector characteristics and 
positron range, to the profile computation step, enabling higher 
quantitative accuracy and spatial resolution [116]. The 
computed projection profiles are compared to the measured 
ones and adjusted to minimize their mutual difference. This 
adjustment is done under the conditions of maximum likelihood 
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or expectation maximization methods, for example, to minimize 
or maximize the related cost function.  Similar comparison and 
adjustment cycles, iterations, are conducted until the required 
match with the measured activity distribution is achieved. 
Computationally intensive iterative methods are typically more 
time-consuming than analytic methods. However, they can be 
sped up by dividing the projection angles into smaller groups 
and by conducting parallel calculations using, for example, 
ordered subsets expectation maximization (OS-EM) algorithms. 
Iterative reconstruction methods are able to produce higher 
spatial resolution and signal-to-noise ratio than backprojection 
images; this is due to better statistics and system modelling [116]. 

2.5 MOTION ARTEFACTS IN PET 

A standard static PET image acquisition typically requires at 
least 90 seconds per bed position. The long imaging time 
predisposes image acquisition to motion that originates from 
patient respiration and cardiac function as well as in some cases 
from patient movement. The movement of the whole patient is 
rare and minimized by fixation and ensuring patient 
comfortability. In case significant whole patient movement is 
observed, the image acquisition is typically repeated. 

Respiratory and cardiac motion is inevitable during the 
imaging procedure. The mean respiratory motion of lung and 
liver lesions as well as the heart is largest in the cranial-caudal 
direction and smaller in lateral and anterior-posterior directions 
(Table 2.2). Cardiac contraction itself has been reported to cause 
an approximately 8-10 mm cranial-caudal and 8-24 mm lateral 
cycle-wise shift in the myocardium [154]. Further, when there 
are oncologic lesions in the proximity of the myocardium, their 
motion has been estimated to reach 4 mm due to cardiac 
contractions [130]. Additionally, even a 5 mm hysteresis, that is, 
a different transition path of lesion in inspiration and expiration, 
may occur in respiratory motion [130]. All these motions are 
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noteworthy when compared to the 4.4-5.9 mm spatial resolution 
of modern scanners [17, 68]. 

 
Table 2.2: Overview of respiratory motion extents of lesions and the myocardium. The 
motion extent is expressed as mean ± standard deviation. 

Observer Subject Modality Motion extent 

Seppenwoolde et al. 
[130] 

Lung tumours Fluoroscopy CC: 12 ± 2 mm 
AP: 2.2 ± 1.9 mm 
LAT: 1.2 ± 0.9 mm 

Kitamura et al. [75] Liver tumours Fluoroscopy CC: 9 ± 5 mm 
AP: 5 ± 3 mm 
LAT: 4 ± 4 mm 

Plathow et al. [117] Lung tumours, 
lowest third of 
the lungs 

MRI CC: 9.5 ± 4.9 mm 
AP: 6.0 ± 2.8 mm 
LAT: 6.1 ± 3.3 mm 

Schechter et al. [132] Heart Biplane 
angiography 

CC: 4.9 ± 1.9 mm 
AP: 1.3 ± 1.8 mm 
LAT: 0.4 ± 2.0 mm 

Livieratos et al. [91] Centroid of 
cardiac blood 
pool 

PET CC: 8.5 ± 4.8 mm  
AP: 2.4 ± 0.9 mm 
LAT: 2.5 ± 2.2 mm 

Martinez-Möller et 
al. [96] 

Inferior 
myocardial wall 

PET CC: 5.5 ± 2.2 mm 
3D: 5.8 ± 2.2 mm 

MRI: magnetic resonance imaging, PET: positron emission tomography, CC: cranial-
caudal, AP: anterior-posterior, LAT: lateral, 3D: three-dimensional motion. 

 
Respiratory motion is a significant error source in 

oncologic PET imaging. Motion leads to image blurring and 
thus to reduced image quality (Figure 2.6) [89, 105]. The effect is 
similar to the partial volume effect (PVE), which arises from the 
limited spatial resolution and pixel-wise image representation of 
the PET system, both of which lead to image blurring [135]. In 
general, small lesions are more sensitive to respiratory motion 
artefacts than large ones [89]. Further, large motion amplitudes 
as well as highly varying respiratory patterns emphasize 
artefacts and the proximity to the diaphragm increases the effect 
of motion [89]. 
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Figure 2.6: Schematic image of the thorax with lung and liver lesions without (A) and 
with (B) motion. Lesions (black) are evidently blurred in B, and the visibility of the 
small liver lesion is compromised. The figure is created using image processing and is 
based on arbitrary motion. Figure modified from [89]. 
 

 In addition to its effect on the qualitative, visual 
interpretation of lesions, motion may distort quantitative 
evaluation, which in oncologic FDG studies is often based on the 
semi-quantitative standardized uptake value (SUV) and the 
diameter or volume of the lesion [105]. SUV is determined as the 
ratio of activity concentration measured in a voxel and injected 
dose [119]. In addition, the ratio is normalized using either the 
body mass, lean body mass or body surface area of the patient; 
of these, the use of lean body mass has been recommended [153]. 
Motion may lead to the underestimation of SUV and 
overestimation of volume [105]. Variance in SUV measurements 
may jeopardize the reliability of PET follow-up studies as SUV 
is widely used for cancer staging and treatment response 
evaluation [105, 138, 156]. Similarly to oncologic imaging, 
motion blur distorts cardiac PET imaging. Physiological motion 
may hinder the detection of coronary plaques [140] and degrade 
the quality of myocardial images [91] as well as the 
quantification of myocardial uptake estimates [121]. 
 Together with motion during PET data acquisition, the 
coregistration of PET data and the CT attenuation correction 
(CTAC) map is important. PET data is recorded over many 
cycles of respiration and cardiac function. However, a standard 
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CTAC scan captures only an instant of the respiratory and 
cardiac state. Thus, PET and CT image fusion accuracy may be 
poor and lead to a mismatched attenuation map [47, 74, 112]. 
Mismatched attenuation map may pose attenuation correction 
artefacts such as the under- or overestimation of SUV [89]. In 
contrast to standard CTAC, a more reliable attenuation 
correction may be achieved using a four-dimensional CT scan 
(4D CT), which records CT data continuously during the 
respiratory cycle. The 4D CT can be used to reconstruct an 
averaged attenuation map over the whole respiratory cycle [74, 
89, 112]. The most accurate attenuation correction can often be 
achieved when gated 4D CT, which is phase-matched with the 
gated PET image, is used for the generation of the attenuation 
map [74]. The drawback of 4D CT, however, is that it cannot be 
used on all patients due to a higher radiation burden compared 
to the standard clinical low-dose attenuation correction CT. 

2.6 MOTION COMPENSATION IN PET 

The significance of motion artefacts and their minimization in 
PET/CT are widely recognized. The importance of motion 
correction keeps growing as the spatial resolution of imaging 
systems evolves and images become more prone to motion 
artefacts. In addition, there is great demand for motion 
compensation, that is, the recovery of high spatial accuracy. This 
is due to the development of advanced radiotherapy techniques, 
such as intensity-modulated radiotherapy, which require precise 
target localization and enable treatment margin reductions [79]. 

2.6.1 Cardiac gating 
Cardiac motion is universally taken into account using 
electrocardiographic (ECG) gating [27, 157]. ECG measures the 
electrophysiological function of the heart. The electrical 
activation of the heart originates in the sinus node. At first, the 
activation spreads to the atria, causing atrial contraction and 
filling of the ventricles. After a short delay in the 
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atrioventricular node, the activation propagates to the ventricles, 
leading to the contraction of the ventricles and the ejection of 
blood to systemic and pulmonary circulation.  Importantly, the 
onset of ventricle contraction with the associated electrical 
depolarization can be seen as a QRS complex in the ECG signal 
(Figure 2.7A) [94]. The R wave of a QRS complex is commonly 
used as a timing trigger in medical imaging gating applications 
[27, 157]. In the medical imaging context, ECG is typically 
measured using the Mason-Likar modification of the limb leads 
measurement (Figure 2.7B) [97]. 

 
Figure 2.7: (A) ECG cycle with marked QRS complex. (B) Mason-Likar ECG 
measurement configuration, where the right and left arm electrodes (RA and LA) and 
the left leg electrode (LL) are positioned on both infraclavicular fossa and left iliac crest 
[97]. Figure modified from [94]. 
 
 In ECG gating, cardiac cycles are divided into temporal 
bins according to the detected R waves (Figure 2.8). ECG-gated 
image data is formed by reconstructing an image of each 
mutually corresponding data bin and arranging these images in 
a series. This image series, though it suffers from reduced SNR 
due to data partition into bins, presents an averaged cardiac 
cycle and can be used for the determination of functional cardiac 
parameters, such as the ejection fraction.  
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Figure 2.8: Principle of cardiac gating. RR intervals are divided into mutually 
corresponding time bins, which are used to reconstruct images. Each image 
corresponds to a certain phase in the cardiac cycle. 

2.6.2 Respiratory gating methods 
The approximate volume of normal respiration is 500 ml [59, 60]. 
However, total lung volume may vary in the range of 1000-6000 
ml between residual volume and total lung capacity [59, 60]. 
Lung volume changes are linked with the motion of the thorax 
as the inward-outward motion of the ribs as well as the 
lengthening and shortening of the chest cavity due to 
diaphragm movement. 

Respiratory volume can be determined by integrating an 
airflow measurement, which is commonly performed using a 
pneumotachograph (PNT) (Figure 2.9). PNTs are clinically 
accurate and have an approximately linear pressure-flow 
relationship [120]. The PNT element is typically heated to 
prevent the condensation of water vapour into the element as 
condensed water affects the flow resistance of the PNT [120]. 
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Figure 2.9: The measurement of pressure difference is performed with a pneumo-
tachograph and face mask. The flow output is integrated to obtain a volume curve.   
 

Respiratory gating is based on PET data sorting 
according to the respiratory phase, similarly to cardiac gating. 
Thus, the PET data of only mutually matching phases of 
respiration are used in the image reconstruction. The division 
can be made in time or amplitude and is conventionally 
performed in bins of equal duration or height [38] (Figure 2.10). 
However, in general, amplitude-based gating methods are 
preferred due to their robustness against variations in 
respiratory cycle length and depth [38, 139]. By division of the 
data into bins, the respiratory motion within a bin is essentially 
smaller than in the non-gated study thus enabling the reduction 
of motion blur and yielding a potentially more accurate 
definition of quantitative parameters. The drawback of gating is 
the decreased SNR, which follows from lower image statistics 
due to the omission and partition of the PET data. The 
decreased SNR of gating studies is typically compensated by 
extending image acquisition time. To optimize the relationship 
of small intra-bin motion and decreased SNR, specialized 
amplitude gating methods have been introduced. Such methods 
are typically based on histogramming the respiratory amplitude 
data and utilization of the part of the respiratory cycle which 
has the least motion, typically end-expiration [50, 90, 143]. This 
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approach potentially enables a high degree of data, and SNR, 
preservation with small intra-bin motion. 

 

 
 
Figure 2.10: Time- (A) and amplitude-based (B) respiratory gating. The figure 
illustrates how end-expiratory image data is gathered in typical respiratory gating 
approaches. 

 
Respiratory gating is often based on a surrogate 

respiration measurement of chest wall motion (CWM) by 
camera tracking or a measurement belt [24, 38, 76, 89, 91, 105]. 
Current commercial implementations, such as Real-time 
Position Management (RPM) by Varian Medical Systems (Palo 
Alto, CA, USA) and AZ-733V by Anzai Medical Co. (Tokyo, 
Japan), are based on CWM measurement (Figure 2.11). However, 
direct airflow measurement methods can also be used in 
respiratory gating [22, 46, 158]. Recently, methods that 
determine respiratory motion solely from the acquired PET data 
have been introduced. These are also referred to as data-driven 
methods and are based on centre-of-mass tracking, inhomo-
geneous sensitivity of the scanner or spectral analysis, for 
example [24, 28, 61, 73, 124, 125]. 

In addition to plain respiratory gating, dual gating 
methods, which integrate respiratory gating with cardiac gating, 
have been introduced [76, 80, 96, 140, 141].  Dual gating methods 
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are based on simultaneous acquisition of respiratory and cardiac 
gating signals and the division of the data into bins, considering 
both respiratory and cardiac phases. This results in images with 
minimized cardiac and respiratory motion. On the other hand, 
dual-gated images have a low SNR, as for example in the case of 
8 cardiac bins and 3 respiratory bins, one dual gated bin may 
contain only 1/24 of the whole acquisition data. 

 

 
Figure 2.11: RPM (A) and AZ-733V (B) gating devices. RPM tracks the motion of a 
box with reflective markers (a) on the patient’s thorax by infrared camera (b). AZ-
733V uses a pressure sensor belt (c) to measure chest wall motion (CWM). The motion 
signal is recorded by a wave deck (d). 

 
Despite the drawback of data omission and the resulting 

decreased SNR or lengthened acquisition times, at present 
gating methods are the most versatile and widely used means of 
respiratory artefact compensation. However, despite their 
availability, gating methods have entered clinical routine slowly. 
This may be related to the complicated and cumbersome use of 
these techniques. 
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 Studies generally show a good relation between CWM 
and internal organ motion [14, 54, 63, 65]. However, some 
studies have reported that the measurement of a single external 
landmark may be an inaccurate surrogate for internal organ 
motion and have notable intersubject variability [63, 79]. In 
addition, current scanner controlling trigger implementations 
may suffer from inaccuracies and be incoherent between 
different manufacturers [45, 110]. Direct airflow measurements, 
on the other hand, may not be tolerated by patients in long 
acquisitions [106]. The most significant challenge with PET raw 
data-based data-driven gating methods is the performance 
dependency on the radiopharmaceutical uptake characteristics 
as well as on the patient habitus and scanner geometry [29]. 

2.6.3 Motion correction methods 
In contrast to respiratory gating methods, which omit part of the 
data, the primary aim and advantage of motion correction 
methods is the utilization of all acquired PET data, thus 
maintaining a high SNR. The main idea of motion correction 
methods is to utilize motion information which is recorded or 
computed during the image acquisition in the reconstruction of 
a single motion-free image. 

Image registration methods fuse gated images together 
using an optical flow algorithm [39, 77, 78] or regularization 
algorithms [8, 9]. Methods that are based on a time-varying 
system matrix use motion information from pre-reconstructed 
images during the final reconstruction [49, 85], whereas event 
rebinning methods utilize the information prior to 
reconstruction [26, 84]. Joint reconstruction methods incorporate 
motion estimation and image reconstruction [20, 55, 67]. 

Non-rigid motion correction methods (time-varying 
system matrix and joint-reconstruction) can generally be 
considered more versatile than rigid (rebinning) methods, 
especially when the whole image volume is to be corrected 
instead of a smaller volume of interest which contains single 
organs [85]. Alternatively, registration methods have been 
criticized for lower image quality [5, 85] although comparable 
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image quality between a registration and a joint reconstruction 
method has also been reported [5, 118]. So far, studies on motion 
correction methods have mostly been methodological with very 
few patients. None of the methods presented has established a 
foothold in clinical practice.  

2.6.4 Breath-hold methods 
In addition to PET data processing in terms of gating and 
motion correction, dedicated imaging techniques have been 
utilized to limit the PET data acquisition to a certain respiratory 
phase to avoid respiratory motion artefacts. In oncologic PET 
imaging, the inclusion of end-inspiratory CT in the imaging 
protocol has been recommended for the better detectability of 
small nodules [3]. Deep-inspiration breath-hold (DIBH) 
techniques have also been introduced in the field of PET [71, 98, 
99, 102, 107, 142]. In addition, expiratory breath-hold has been 
suggested [160]. These breath-hold methods have been reported 
to improve quantification and coregistration between PET and 
CT. However, the breath-holding manoeuvre is not suitable for 
all patients as a high level of patient cooperation is required and 
even a 20-s breath-hold may be impossible with patients 
suffering from lung diseases, such as emphysema or pulmonary 
fibrosis [142]. 
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3 Bioimpedance 

3.1 ELECTRICAL PROPERTIES OF TISSUES 

The electrical bioimpedance of a tissue determines the ability of 
the tissue to withstand electrical current. In the biomedical 
context, bioimpedance properties of tissues (Table 3.1) are 
typically described utilizing conductivity and permittivity 
 

  (3.1) 
 
where  is admittivity, the inverse of impedivity;  
conductivity, the inverse of resistivity;  an imaginary 
unit;  angular frequency at frequency ;  = 8.854187817·10-12 
F/m permittivity of free space; and  relative permittivity [58]. 
The resistive properties of tissues are defined by the intra- and 
extracellular media of cells, whereas dielectric properties are 
defined by capacitive cell membranes. However, often in 
bioimpedance applications, it is assumed that the electrical 
properties of tissues are dominated by resistivity. This 
approximation is valid when [108] 
 

  << 1  (3.2) 

 
However, according to Equation 3.2, neglecting capacitive 
effects is slightly controversial. For example, when the values 
for muscle and deflated lung given in Table 3.1 are used, the left 
side of the equation approximately equals 0.13. On the other 
hand, it has been stated that resistivity is the dominant 
component, even at a frequency as high as 10 MHz [58]. 
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Table 3.1. Tissue conductivities and relative permittivities at 100 kHz [4, 53]. 
Tissue Conductivity 

[S/m],  
Relative 
permittivity,  

Blood 0.70 5100 

Cancellous bone 0.084 470 

Fat 0.024 93 

Myocardium 0.22 9800 

Lung, deflated 0.27 5100 

Lung, inflated 0.11 2600 

Muscle 0.36 8100 

 
Tissues are considered to be volume conductors that 

have continuous distribution of electrical properties. Due to 
anisotropy, the electrical properties may vary significantly in 
different directions. The human thorax can be modelled as a 
finite piece-wise homogenous volume conductor, in which 
organs are modelled as homogenous volume conductors [94]. 
Importantly, the electrical properties of the thorax vary in time 
due to changes in blood volume and flow following the cardiac 
cycle as well as the respired air following the respiratory state [6, 
10, 11, 48, 56, 64, 81, 94, 113, 114, 129]. 

3.2 BIOIMPEDANCE MEASUREMENT 

Bioimpedance measurement is based on Ohm’s law 
 

  (3.3) 

 
which defines impedance  as the ratio of measured voltage  
and the known injection current . The current is typically in the 
milliamp range at a frequency of 20-100 kHz [94]. The current is 
never higher than 10 mA as defined in the EN 60601-1 standard. 
In conventional bioimpedance measurements, two electrodes 
are used for current injection. The voltage induced by the 
current can be measured utilizing the same two electrodes as for 
current injection (two-electrode method) or a separate pair of 
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electrodes (four-electrode method) [109]. However, different 
electrode pairs for current injection and voltage pick-up are 
preferred in order to achieve increased robustness for 
movement artefacts and distortions in contact impedance [10, 
109, 123, 144]. 
 Bioimpedance measurement is used to define the 
electrical impedance of a body part or tissue between the 
electrodes. The measurement sensitivity is highest near the 
electrode circumference and reaches deeper into the measured 
volume when the electrode distance is increased (Figure 3.1) [58]. 
However, also in the case of large electrode separation, relative 
sensitivity remains highest in the surface of the volume 
conductor near the electrodes [58]. 

 
Figure 3.1: Measurement sensitivity reaches deeper in the tissue in the case of a large 
electrode distance (B) compared to a small electrode distance (A). The solid lines 
between the black electrodes represent schematic isosensitivity lines. Figure modified 
from [58]. 
 

In computational models, measurement sensitivity  in 
the ’th element using a voltage measurement electrode pair  
and a current injection pair   (Figure 3.2) can be computed in 
the discretized form as the susceptibility of observing a voltage 
change  between measurement electrodes , by the 
conductivity change n��  
 

  (3.4) 

 
 In a larger volume of interest, such as the human body or 
certain organs, for example the heart or lungs, the sensitivity of 

A B
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a measurement configuration can be determined as the sum of 
its element-wise sensitivities, 
 

  (3.5) 

 
Interestingly, in terms of measurement sensitivity, the electrode 
locations of the current injection and voltage pick-up electrodes 
are interchangeable according to the reciprocity theorem of 
Helmholtz [94]. 
 

 
Figure 3.2: Schematic representation of thoracic bioimpedance measurement.  
illustrates current feed,  voltage measurement,  conductivity of element  and , 

,  as well as  different volumes of interest in the volume conductor. 
 

 The measurement sensitivity can be calculated, for 
example, by utilizing the complete electrode model (CEM) of 
electrical impedance tomography (EIT). There are also other 
electrode models for EIT, such as the continuum, gap and shunt 
models [144]. However, the continuum and gap models have 
been found to overestimate measured resistivities since they 
ignore the shunting effect of the electrodes and electrode contact 
impedances [30, 134, 144]. The shunt model takes into account 
the shunting effect, but as it still ignores electrode contact 
impedances, it has been reported to underestimate resistivities 
[134, 144].  CEM is very accurate as it considers both the effects 
of electrode contact impedances and the shunting effect on the 
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electrode-tissue interface [30, 134]. CEM is defined by the 
governing equation 
 

  (3.6) 
 
where  is the conductivity distribution,  the electric potential 
distribution,  an arbitrary point, and  the volume conductor. 
In CEM, the voltage of the electrodes and electrical current 
behaviour on the boundary are determined by 

  

  (3.7) 

 

  (3.8) 

 

  (3.9) 

 
where  is the effective contact impedance on ‘th electrode ,  
the outward unit normal of the boundary of the volume 
conductor,  the measured potential on the ‘th electrode,  the 
boundary of the electrode,  the number of electrodes, and  the 
injected current on the ‘th electrode. Further, for a unique 
solution 
 

  (3.10) 

 
and 
 

  (3.11) 

 
are required. 
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3.3 BIOIMPEDANCE APPLICATIONS 

Major application areas of bioimpedance measurements are 
dynamic measurements in impedance cardiography (ICG) and 
impedance pneumography. ICG is based on the measurement of 
varying impedance due to changes in blood volume and flow in 
the thorax following cardiac contraction (Figure 3.3) [113]. Blood 
has low impedivity in contrast to other tissues; thus, an 
increased amount of blood in the thorax following the systole 
can be detected as a decrease of the impedance of the thorax 
[113] (Figure 3.3B). ICG can be used in non-invasive detection of 
stroke volume, cardiac contractility, diastolic dysfunction, 
arrhythmias and systolic time intervals [13, 23, 81, 83, 113]. 
 

 
Figure 3.3: Conventional ICG measurement configuration with one strip electrode 
pair for current injection  and voltage measurement  (A). An impedance 
cardiography signal is typically presented as the change of impedance , in which the 
decrease of impedance is conventionally illustrated as upward deflection, or the time 
derivative of impedance   [113] (B). In B an ECG signal is provided as a temporal 

reference. Figure modified from [113]. 
 

Impedance pneumography is used to monitor 
respiratory function with transthoracic bioimpedance 
measurements (Figure 3.4). The measurement reflects the 
varying lung air content [10, 56]. In addition, everything that has 
an effect on the current pathways in the thorax during 
respiration, that is, the change in thorax shape and organ motion, 
affects impedance pneumography measurement [10, 12, 92]. As 
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the signal is measured essentially from the same location as ICG, 
signal processing is required to eliminate cardiogenic oscillation 
to obtain a smooth respiratory signal (Figure 3.4). Impedance 
pneumography applications include apnoea detection and 
respiratory flow measurements as well as monitoring of 
intrathoracic fluid accumulations such as lung oedema [10, 52, 
128, 163]. 

 

 
Figure 3.4: Horizontal impedance pneumography measurement configuration using 
one pair of current injection  and voltage measurement  spot electrodes (A). The 
impedance change signal  can be used to monitor the respiratory phase (B). 
  

Other applications of bioimpedance include impedance 
spectroscopy techniques, which can be potentially used for 
measuring body composition in neonates and athletes and as a 
tool in nutritional and epidemiologic research [21, 66, 88, 100]. 
Further, image-producing electrical impedance tomography 
(EIT) methods have been introduced for the monitoring of 
ventilation, blood perfusion and gas exchange in the lungs [1], 
for example. Some specific applications of EIT include 
mammographic imaging as well as evaluation of intrathoracic 
fluid accumulations and regional lung ventilation [2, 31, 148]. 

A B

expiration
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4 Aims of the present study 

The main objective of this thesis was to thoroughly evaluate the 
feasibility of bioimpedance measurements for respiratory and 
cardiac motion compensation during PET imaging by gating. 
More specifically, the objectives were divided into four studies: 
 
I To determine an optimized bioimpedance electrode 

configuration on the upper thorax for simultaneous 
respiratory and cardiac bioimpedance signal 
measurement. 

 
II To validate the optimized measurement configuration 

against reference methods in monitoring respiration and 
cardiac contractions. 

 
III To evaluate the feasibility of bioimpedance measurement 

in respiratory gating of oncologic PET imaging using the 
optimized measurement configuration. 

 
IV To evaluate the feasibility of integrated bioimpedance 

and ECG measurement in dual gating of cardiac PET 
using a II bipolar ECG limb lead-based measurement 
configuration. 
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5 Materials and methods 

This thesis consists of four studies. The first two studies (I and II) 
focus on the determination and validation of the bioimpedance 
measurement configuration. The other two studies concentrate 
on the evaluation of the bioimpedance-based gating applications 
in oncologic (III) and cardiac (IV) PET studies. All the study 
data is original. 

5.1 MEASUREMENT SENSITIVITY OPTIMIZATION 

The measurement sensitivity optimization study (I) was 
conducted using a finite element method (FEM) model of a 
normal-weighted male upper thorax, which was based on CT 
images. The model consisted of 36,819 tetrahedral elements and 
contained general tissue, the lungs, the heart and the spine 
(Figure 5.1), whose electrical properties were characterized by 
conductivities of 0.1584 S/m, 0.1895 S/m, 0.5200 S/m and 0.0839 
S/m, respectively [4, 53]. Further, 54 electrodes (area 430 mm2, 
separation 15 mm) were modelled on the anterior surface of the 
model. The effective electrode contact impedance was matched 
with the general tissue conductivity, resulting in 0.00545 Ωm2 
[30, 149]. An electrical sinusoidal current of 1 mA at 100 kHz 
was used in the optimization computations. 
 The measurement sensitivity ( ) optimization in this 
study was based on the forward problem solution. The node-
wise sensitivity distribution was computed in discretized form 
based on the electrical potential fields of the current injection 
and voltage measurement electrode pairs as well as the Jacobian 
of the basis functions [145]. The computations were conducted 
with previously validated algorithms [147, 149]. 
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Figure 5.1: Schematic presentation of the computational model, with the lungs, heart 
and spine as inhomogeneities. 
 
 The sensitivity for the volume of the lungs and the heart 
was defined as the sum of the absolute values of nodal 
sensitivities in the corresponding volumes in altogether 43,792 
four-electrode configurations. The consistency of the 
optimization results through the respiratory and cardiac cycles 
was further evaluated in the group of the most sensitive 
configurations by repeating the analyses for 25 different 
conductivities. In this additional analysis, the conductivities 
were varied between the inflated and deflated lung (0.10735-
0.27161 S/m) as well as the systolic and diastolic heart (0.4590-
0.5810 S/m).  

5.2 SUBJECTS 

All volunteer and patient measurements included in this thesis 
(Table 5.1) were performed in accordance with the Declaration 
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of Helsinki. The studies were approved by the Ethical 
Committee of Kuopio University Hospital, and informed 
consent was obtained from all subjects. In addition, a 
declaration on the clinical use of the physiological signal 
measurement equipment was made to the Finnish National 
Supervisory Authority for Welfare and Health. The electrical 
safety of the measurement equipment was verified by the 
Medical Device Service and Maintenance Unit of Kuopio 
University Hospital prior to the measurements. 
 Twelve healthy volunteers were recruited from the staff 
of Kuopio University Hospital and the University of Eastern 
Finland for the verification and validation of the optimized 
bioimpedance measurement configuration. Six of these subjects 
were included in study I as test subjects. The whole study 
population was included in study II. 
  
Table 5.1. Subject demographics. The values are presented as mean ± standard 
deviation. BMI = body mass index, F = female, M = male. 

Study N (F/M) Age [y] BMI [kg/m2] 

I 6 (3/3) 41.2 ± 12.7 24.5 ± 3.4 

II 12 (6/6) 40.1 ± 12.8 24.6 ± 3.0 

III 11 (4/7) 64.5 ± 10.0 26.2 ± 5.0 

IV 11 (6/5) 66.2 ± 10.5 24.4 ± 3.7 

 
 In study III, 12 patients who were referred to an 
oncologic whole body 18F-FDG or 18F-FDOPA (18F-
flourodihydroxyphenylalanine) PET/CT scan due to suspected 
disease in the lungs or upper abdomen were recruited for the 
study. However, one patient was excluded from the analysis as 
all the parts of the study could not be finished due to a clinical 
schedule conflict. 
 For study IV, 25 patients referred to either myocardial 
viability, cardiac sarcoidosis or oncologic 18F-FDG PET study 
were recruited. Thirteen of these patients were excluded from 
the analyses due to absent, very low or non-uniform uptake. 
One patient was excluded from the analysis due to unsuccessful 
bioimpedance measurement, in which the respiratory 
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component was very small and reliable respiratory gating was 
prevented by a large cardiac component. 

5.3 PHYSIOLOGICAL SIGNAL MEASUREMENTS 

All physiological signals in the studies (I-IV), except for the 
clinically used respiratory gating signal in study III, were 
acquired with an MP150 based modular measurement device 
(Biopac Systems, Goleta, CA, USA). 
 In healthy volunteer measurements for studies I and II, 
ECG and lung volume signals were recorded via an MP35 
system (Biopac Systems, Goleta, CA, USA) (Figure 5.2A, Table 
5.2). Bioimpedance signals were recorded using an EBI100C 
electrobioimpedance amplifier (Biopac Systems, Goleta, CA, 
USA) with a 400 μA current feed at 100 kHz. All measurement 
signals were routed via an MP150 system to enable 
simultaneous sampling (Figure 5.2A). Bioimpedance signals 
were recorded with three different electrode configurations 
determined in the sensitivity optimization study (I) (Figure 
5.3A-C). However, the optimized configuration was slightly 
modified by shifting it downward and moving the electrodes on 
the right side lateral to the mamillae (Figure 5.3A). This was 
done in order to obtain an electrode placement which could be 
applied similarly for female and male subjects. ECG signals 
were recorded from the II bipolar limb lead utilizing MP35. ECG 
electrodes were located on the right and left clavicular fossa and 
on the left iliac crest. The respiratory volume was derived via 
the MP35 by integrating the respiratory flow signal.  This signal 
was recorded with a facemask, a heated pneumotachograph 
(PNT) (A Fleisch No. 3, Lausanne, Switzerland) and an SS40L 
differential pressure sensor (Biopac Systems, Goleta, CA, USA). 
The measurements were conducted with the subject in the 
supine posture for each bioimpedance measurement 
configuration. The subjects followed a predefined three-phased 
breathing pattern, which consisted of 2 minutes of calm 
uncontrolled normal breathing, 1 minute of slow (0.1 Hz) and 
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deep audio-instructed breathing as well as 1 minute of fast 
(0.333 Hz) audio-instructed breathing. 
 

 
Figure 5.2: In studies I and II, ECG and respiratory flow were measured with an 
MP35 system (A). ECG was acquired directly with the MP35, whereas respiratory 
flow was measured using an SS40L differential pressure sensor. Bioimpedance was 
measured with an EBI100C electrobioimpedance amplifier. All signals were routed via 
an MP150 system (A). In studies III and IV, bioimpedance was measured with an 
EBI100C electrobioimpedance amplifier (B). This measurement set-up was 
supplemented with the ECG100C for the measurement of ECG in study IV (dashed 
line in B). 
 
Table 5.2. Biopac measurement system acquisition settings with manufacturer- 
announced nominal cut-off frequencies [18]. All filters are implemented using analog 
single pole roll-off filters, except for the 65 Hz low pass filter of MP35, which is a 
digital 2nd order Butterworth filter. 

Study Signal Biopac 

module 

High 

pass 

Low 

pass 

Sampling 

frequency 

I & II BioimpedanceA-C EBI100C None 100 Hz 200 Hz 

 ECG MP35 0.05 Hz 65 Hz 200 Hz 

 Lung volume MP35 None 65 Hz 200 Hz 

III BioimpedanceA EBI100C None 100 Hz 1 kHz 

IV BioimpedanceD EBI100C 0.05 Hz 100 Hz 1 kHz 

 ECG ECG100C 0.05 Hz 35 Hz 1 kHz 

Superscripts A-D denote measurement configurations presented in Figure 5.2. 
 
 In study III, bioimpedance was measured with similar 
settings as in I and II (Table 5.2) using the optimized electrode 
configuration determined in study I (Figure 5.3A) and the 
EBI100C amplifier (Figure 5.2B). Parallel with the Biopac system, 
the respiration of patients was recorded with the Real-Time 

MP150MP150

MP150MP35

MP150 SS40LECG MP150EBI100C

MP150MP150

MP150EBI100C MP150ECG100C
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Position Management (RPM) system, which tracks the vertical 
displacement of a box with reflective markers using an infrared 
tracking camera at a sampling frequency of 40 Hz. The box was 
placed on the thorax, on the location of largest motion. 
 

 
Figure 5.3: Schematic representation of measurement electrode locations in the 
optimized configuration (A) as well as in the most sensitive configurations for 
respiratory (B) and cardiac (C) measurement. Configurations A-C follow from the 
results of study I. Configuration D mimics II limb lead ECG locations. Current 
injection and voltage measurement electrodes are marked with  and , respectively. 
 
 In study IV, both bioimpedance and ECG were 
measured from the same four electrodes that were located in the 
proximity of the right clavicular fossa and on the left flank on 
the level of the lowest ribs, thus mimicking the II limb lead 
configuration (Figure 5.3D). The current feed was the same as in 
studies I-III. Bioimpedance and ECG measurement leads were 
attached to common electrodes with custom-made cable 
connectors (Tuomo Savolainen, Department of Applied Physics, 
University of Eastern Finland). Bioimpedance and ECG signals 
were recorded with the EBI100C and ECG100C bioimpedance 
and electrocardiogram amplifiers (Table 5.2, Figure 5.2B). 

5.4 CLINICAL PET STUDIES 

In study III, the PET/CT image data was acquired with a 
Discovery D690 scanner (GE Medical Systems, Milwaukee, WI, 
USA) at the Turku PET Centre, Turku University Hospital. The 
scanner was equipped with a 64-slice CT and 157 mm axial field 

A B C D
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of view in PET. The clinical study, to which the patients were 
referred, was conducted first with 2-minute PET bed positions 
and a helical low-dose CT (120 kV, 10-80 mA) utilizing Smart 
mA and Auto mA dose adaptation (GE Medical Systems, 
Milwaukee, WI, USA). Following the clinical scan, a 10-minute 
list-mode (LM) acquisition was run over one bed position 
accompanied with a 4D CT (80 kV, 30 mA). PET data was 
reconstructed with a 3D OSEM algorithm (2 iterations, 24 
subsets), which featured corrections for randoms, scatter, 
attenuation, dead time and normalization. In addition, a 1-4-1 
weighted average filter was applied in the axial direction, 
accompanied by a 6.0 mm Gaussian filter in the transaxial plane. 
The PET image matrix size was 256 x 256 x 47, and the 
corresponding pixel size was 2.73 mm x 2.73 mm x 3.27 mm. 
PET reconstructions were carried out with the GE Research 
Gating Tool (RGT). All CT data was reconstructed iteratively 
(AsIR, GE Medical Systems, Milwaukee, WI, USA) into 512 x 512 
images. The bioimpedance measurement was run 
simultaneously with the 10-minute LM PET acquisition and was 
temporally synchronized with the LM acquisition using external 
triggers fed to the Biopac system and the PET scanner. The 
triggers were generated by a custom-made signal 
generator/delayer (Pekka Tiihonen, Diagnostic Imaging Centre, 
Kuopio University Hospital). Nine images were reconstructed 
from each patient. The non-gated, or static, image was the 
baseline of parameter comparisons. Eight respiratory-gated 
images were reconstructed using either amplitude- or time-
based gating, bioimpedance or the RPM system, or different 
attenuation correction methods. Attenuation correction in 
respiratory-gated PET reconstructions was based either on 
averaged AC maps over the whole respiratory cycle (A-CTAC) 
or gated AC maps (G-CTAC), which were matched to the 
respiratory phase of the PET data. The gating of the AC maps 
was based on RPM measurements in all reconstructions since 
the bioimpedance measurement device could not be interfaced 
with the scanner in a patient study. 
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 In study IV, the PET/CT image data was acquired with a 
Biograph mCT scanner (Siemens Healthcare, Erlangen, 
Germany) at the Department of Nuclear Medicine, Klinikum 
rechts der Isar der Technischen Universität München; and the 
Department of Clinical Physiology, Nuclear Medicine and 
Clinical Neurophysiology, Kuopio University Hospital. The 
scanner was equipped with a 128-slice CT and had a PET axial 
field of view of 216 mm. In case the subject was referred to a 
myocardial viability or cardiac sarcoidosis study, a 20-minute 
dual-gated list-mode scan over one bed position was acquired as 
part of the clinical protocol. In case the subject was referred to 
an oncologic study, a 10- or 20-minute additional LM scan over 
one bed position was acquired, depending on the physical 
condition of the patient. PET images were reconstructed using a 
clinical 3D OSEM algorithm (3 iterations, 21 subsets) with TOF 
and PSF corrections (UltraHD, Siemens Healthcare, Erlangen, 
Germany) into transaxial images of 512 x 512 corresponding to a 
pixel size of 1.59 mm x 1.59 mm to obtain dense sampling for 
activity line profile measurements. The axial pixel size was 3.0-
5.0 mm, depending on the clinical study. No post-reconstruction 
filter was applied. Attenuation correction was based on a 
standard low-dose CT of the clinical study, with real-time 
angular and topogram-based CARE Dose4D (Siemens 
Healthcare, Erlangen, Germany) dose adaptation (reference 
voltage 120 kV, reference current 30 mA). CT images (512 x 512) 
were reconstructed with filtered back projection due to the 
extended field of view option utilized in the scanner. 
Bioimpedance and ECG measurements were synchronized with 
the LM data similarly to study III. Four images were 
reconstructed in study IV: static containing all the acquired data 
as well as respiratory-gated, cardiac-gated and dual-gated; in 
the last three, the data for the reconstruction was selected 
according to bioimpedance and ECG measurements. 
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5.5 DATA ANALYSIS 

5.5.1 Signal analysis 
All signal analyses were performed with Matlab 2007b (The 
Mathworks, Inc., Natick, MA, USA). 

In the sensitivity optimization study (I), the electrode 
configuration having the highest simultaneous sensitivity in the 
anatomical volumes of both the lungs and the heart was 
identified by an exhaustive search. Specifically, it was required 
that both lungs contribute at least with a proportion of 45% to 
the overall lung sensitivity to obtain a comprehensive 
measurement of lung status. In addition, the most sensitive 
configuration for the volume of the lungs and the most sensitive 
configuration for the volume of the heart were determined. 
 Bioimpedance measurements of healthy volunteers were 
used to evaluate the computational sensitivity optimization 
results in the time and frequency domains (I). Following the 
preprocessing of the signal with 5th order Butterworth high 
(0.05 Hz) and low (10 Hz) pass filters and zero-averaging, the 
respiratory and cardiac components were separated with band 
pass filters. The respiratory pass band was fixed between 50% of 
the respiration rate and 90% of the heart rate. The cardiac pass 
band was fixed between 90% of the heart rate and 10 Hz. In the 
time domain analysis, the mean peak-to-peak amplitude of the 
respiratory and cardiac cycles was determined. In the peak-to-
peak analysis, cycles visually observed to be clearly deviant 
were manually excluded. In the frequency domain analysis, the 
power of the signal was computed as an integral of the 
periodogram estimate on the respiratory and cardiac pass bands. 
Both analyses were performed for each configuration and 
breathing pattern. 
 In study II, respiratory signals acquired with 
bioimpedance and PNT were compared. Both signals were high- 
pass filtered (0.05 Hz) to remove baseline fluctuation and drift. 
A 1000-ms moving average filter was used to smooth the 
cardiogenic oscillation in the bioimpedance signal in order to 
separate the respiratory component. The PNT signal was 
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smoothed with a 5th order Butterworth low-pass filter (0.5 Hz) 
(Ernst 1999). Further, both bioimpedance and PNT signals were 
zero-averaged and normalized for comparison. The end-
inspiratory and end-expiratory peaks were detected with a 
constant threshold peak detection algorithm, which enabled the 
comparison of mutual peak-to-peak amplitudes and durations 
of respiratory cycles. 

A temporal interval comparison was also conducted for 
cardiac signals. The onsets of the cardiac cycle (Z peaks) were 
separated from the bioimpedance signal, based on the algorithm 
by Pan and Tompkins [111]: The cardiac band was separated 
from the bioimpedance signal by 5th order Butterworth high 
(0.6 Hz) and low (20 Hz) pass filters, after which the signal was 
difference-filtered, cubed and moving average (100 ms) filtered. 
Corresponding events (R waves) were detected from the ECG 
signal by 5-30 Hz band bass filtering, difference filtering, 
squaring and moving average (100 ms) filtering the ECG signal. 
Z peaks and R waves were detected with a constant threshold 
peak detection algorithm for the evaluation of cardiac interval 
detection. In addition to correlation and agreement analyses of 
respiratory and cardiac signals, the temporal consistency of the 
signals was evaluated by calculating the difference between the 
observed end-expiratory instants of measured respiratory 
signals (bioimpedance vs. PNT) as well as Z peaks and R waves 
(bioimpedance vs. ECG). 
 In study III, the cardiac component was first extracted 
from the bioimpedance measurement using 5th order 
Butterworth high (0.6 Hz) and low (20 Hz) pass filters. 
Subsequently, the respiratory component of the bioimpedance 
signal was separated by subtracting the cardiac component from 
the measurement signal. The remaining respiratory signal was 
smoothed with a 100-ms moving average filter. Non-
physiological drift or baseline variation, which occurred in five 
measurements, was compensated by trend removal. The trend 
was estimated using a long (50,000 ms) moving average filter. 
Respiratory bins were determined cycle-wise from the 
bioimpedance measurement. Largely deviant cycles were 
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excluded from the binning. In amplitude gating, the cycle 
deviation from mean peak-to-peak amplitude was not allowed 
to exceed 2 standard deviations. Further, it was a requisite that 
the positive and negative peaks of the cycles do not deviate by 
more than 1 standard deviation from the mean of the respective 
peaks. In time gating, it was an additional requirement that the 
cycle duration differ less than two standard deviations from the 
mean cycle duration. Valid respiratory cycles were divided 
either to 5 bins of equal height (amplitude gating, Figure 5.4A) 
or 5 bins of equal duration (time gating, Figure 5.4B). 
Bioimpedance-based respiratory binning closely mimicked the 
binning performed by the RPM system, which was used for 
comparison in this study. 
 

 
Figure 5.4: Bin limits in amplitude (A) and time (B) gating of study III. The 
respiratory-gated image was reconstructed using the end-expiratory bin, which was 
bin 5 in amplitude gating and bin 3 in time gating. 
 
 In study IV, the respiratory component of the 
bioimpedance signal was processed similarly to that in study III, 
except for the cardiac pass band, which was 1-20 Hz. The ECG 
signal processing was performed as in study II. The respiratory 
bins were determined according to global amplitude bins over 
the whole measurement. As opposed to study III, no limits for 
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cycle characteristics were thus used in study IV. On the other 
hand, the upper limit of respiratory bin 1 was determined by the 
mean of the detected positive peaks, with one standard 
deviation added. Similarly, the lower limit of bin 5 was 
determined as the mean of the detected negative peaks 
subtracted by one standard deviation. The range between these 
limits was divided into 5 bins of equal height (Figure 5.5A). 
Cardiac bins were determined dividing the R-R interval into five 
equitemporal bins (Figure 5.5B). LM files corresponding to the 
bins were generated for the reconstruction from the original 
study LM file by custom-built software (Sebastian Fürst, 
Department of Nuclear Medicine, Technische Universität 
München). 
 

 
Figure 5.5: Bin limits in respiratory (A) and cardiac (B) gating used in study IV. The 
respiratory-gated image was reconstructed from the data corresponding to the end-
expiratory bin (respiratory bin 5), the cardiac-gated image corresponding to end-
diastolic bin (cardiac bin 5) and the dual-gated image corresponding to end-expiration 
and end–diastole (respiratory bin 5 and cardiac bin 5). 

5.5.2 Image analysis 
In study III, the peak and maximum metabolic uptake (SUVpeak 
and SUVmax), volume (SUVvol), target-to-background ratio (TBR) 
and displacement of lesions were determined with a clinical AW 
Workstation (GE Medical Systems, Milwaukee, WI, USA). 
SUVmax was determined as the maximum uptake value of a 
voxel in the target. SUVpeak was determined according to 
PERCIST criteria in a 1 cm3 volume sphere centred on the hottest 
point in the tumour [153]. SUV parameters were normalized 
according to lean body mass. SUVvol was determined as the 

420 430 440 450 460 470
-0.2

-0.1

0

0.1

0.2

0.3

time [s]

im
pe

da
nc

e 
[ �

]

440 440.5 441 441.5 442
-0.5

0

0.5

1

1.5

2

time [s]

po
te

nt
ia

l [
m

V
]

A B

1

2

3

4

5

5 1 2 3 4 5 1 2 3 4 5 1



Materials and methods 

65 
 

volume of the lesion delineated by the SUV threshold inside the 
range of 50-70% of SUVmax. The percentage threshold was 
chosen for each patient based on visual assessment of the uptake 
intensity and surrounding biological uptakes, such as the 
myocardium, to provide a reliable delineation of the volume. 
TBR was computed as the ratio of the mean SUV in SUVvol and 
the mean of the biological background, which was measured on 
the flank of the patient, where no specific uptake was observed. 
The SUV-related parameters were determined in end-expiratory 
bins of amplitude (bin 5) and time (bin 3) gating. The motion 
between inspiration and expiration was estimated in cranial-
caudal (DISP CC) and anterior-posterior (DISP AP) directions by 
measuring the displacement of the central part of the lesion, 
defined using a 90% SUV threshold (Figure 5.6). The 
displacement was measured between bins 1 and 5 in amplitude 
gating and bins 3 and 5 in time gating. 
 

 
Figure 5.6: The measurement of the cranial-caudal (DISP CC) and anterior-posterior 
(DISP AP) displacements of tumours in study III. Tumour motion between 
inspiration and expiration was estimated by measuring the displacement of the central 
part of the tumour (quadrangle), which was delineated using a 90% threshold of the 
maximum standardized uptake value (SUVmax). The volume of the gross tumour is 
illustrated with a dashed line.  
 
 In study IV, the effect of respiratory gating was 
evaluated in left ventricular volume and myocardial wall 
thickness measurements. Left ventricular volume was measured 
using QPS PET software (Cedars-Sinai Medical Center, Los 

inspiration

expiration

DISP CC
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Angeles, CA, USA). Myocardial wall thickness was measured 
from lateral wall basal to papillary muscles in three adjacent 
activity line profiles. Myocardial wall thickness was estimated 
by the full-width half-maximum (FWHM) of the Gaussian, 
which was fitted to the line profile. In addition, respiratory-
originated cardiac displacement was measured in cranial-caudal, 
anterior-posterior, and lateral, directions between inspiration 
and expiration. Displacement was estimated from the peaks of 
Gaussians, which were fitted into inferior, anterior and lateral 
myocardial wall activity line profiles in end-inspiration and 
end-expiration. Further, an estimate for the overall displacement 
of the myocardium  was calculated as  
 

  (5.1) 

 
where ,  and are cranial-caudal, anterior-posterior 
and lateral displacements, respectively. The activity line profiles 
were acquired with the HybridViewer software version 2.1 
(Hermes Medical Systems AB, Stockholm, Sweden). 

5.6 STATISTICAL ANALYSIS 

In the studies of this thesis, the normality of the data was tested 
using the Shapiro Wilk test. As the majority of the data was not 
normally distributed, non-parametric methods were used in the 
analyses. The statistical difference between the methods studied 
was determined using Wilcoxon signed rank sum test (studies I-
IV). The agreement between bioimpedance-based methods and 
reference methods, PNT volume spirometry and ECG, was 
evaluated with a non-parametric modification of Bland-Altman 
analysis (study II) [19]. In addition, Pearson correlation was 
used to estimate linear association in studies II-IV. Statistical 
analysis was conducted in the IBM SPSS Statistics version 17.0 
and 19.0 (IBM Corporation, Armonk, NY, USA) and Matlab 
2007b (The Mathworks, Inc., Natick, MA, USA).
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6 Results 

6.1 THE OPTIMIZED BIOIMPEDANCE CONFIGURATION 

In study I, three electrode configurations were determined: (1) 
the optimized electrode configuration having high sensitivity 
for the lung and cardiac regions as well as a balanced 
contribution from both lungs to total lung sensitivity. (2) the 
most sensitive configuration for the lung region with low 
sensitivity in the cardiac region. (3) the most sensitive 
configuration for the cardiac region with low sensitivity in the 
lung region (Table 6.1, Figure 6.1).  
 
Table 6.1: Sensitivity optimization results. The figures inside brackets in the lung 
region sensitivity column illustrate the origin of the measurement sensitivity from the 
left and the right lung, respectively. 

Electrode 

configuration 

Electrode 

locations 

(Figure 6.1) 

Sensitivity for the 

lung region 

[mVm/S] 

Sensitivity for the 

cardiac region 

[mVm/S] 

(1) Optimized A 
78.6 

(54% / 46%) 
13.9 

(2) Lung region B 
105.0 

(45% / 55%) 
4.6 

(3) Cardiac region C 
5.4 

(70% / 30%) 
13.9 
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Figure 6.1: The optimized electrode configuration (A), the most sensitive 
configuration for the lung region (B) and the most sensitive configuration for the 
cardiac region (C) as determined in the computational sensitivity study. 
 

According to the sensitivity computations (Table 6.1), the 
optimized measurement configuration achieves 75% and 69% of 
the lung and cardiac region sensitivities, respectively, compared 
to the specialized configurations for the lung and cardiac 
regions. Moreover, when the lung and heart sensitivities were 
altered to simulate possible changes by respiration and cardiac 
function, the respective relative sensitivities remained high, 
resulting in 69-79% in lung region sensitivity and 62-78% in 
cardiac region sensitivity. However, despite the high and 
balanced contribution of both lungs, the most sensitive 
measurement volume is on the body surface covering mainly 
the anterior section of the lungs (Figure 6.2). 

 

 
Figure 6.2: The sensitivity distribution on two transaxial slices between the current 
injection and voltage measurement electrodes in the computational phantom. The 
units of the axes and the sensitivity bar are m and mVm/S, respectively. The outlines 
of inhomogeneities (heart, lungs and spine) are illustrated with white lines. 

A B C
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6.2 VALIDATION OF THE MEASUREMENT CONFIGURATION 

The sensitivity computation results were verified with 
physiological measurements, which were evaluated in the time 
and frequency domains (study I). Interestingly, the optimized 
configuration produced significantly higher peak-to-peak 
amplitudes and frequency content in measurements of both 
respiration and cardiac function with all breathing patterns 
when the study population of all 12 volunteers was analysed 
(Table 6.2, unpublished results). 
 
Table 6.2: The ratio of mean peak-to-peak amplitude (time domain) and frequency 
content (frequency domain) between configurations A-C (Figure 5.3) in the analyses of 
respiratory and cardiac signals in 12 volunteers. The optimized configuration (A) 
produced significantly (Wilcoxon, p ≤ 0.005) larger peak-to-peak amplitudes and 
higher frequency content in all the studied parameters with all respiratory patterns 
compared to configurations B and C. NORM, SLOW and FAST refer to calm, 
uncontrolled normal breathing as well as audio-guided slow- and fast-paced breathing. 

  Time domain analysis [%] Frequency domain analysis [%] 

 Respiration Cardiac Respiration Cardiac 

B/A, NORM  75 80 59 67 

C/A, NORM 46 46 24 20 

B/A, SLOW 67 81 45 61 

C/A, SLOW 57 46 39 20 

B/A, FAST 71 79 50 61 

C/A, FAST 50 44 27 18 

 
 For respiratory gating applications, it is important that 
the depth and temporal phase of respiration can be accurately 
defined. In cardiac gating, the temporal phase is important. The 
unprocessed transthoracic bioimpedance measurement contains 
the high-amplitude, low-frequency respiratory component, 
which is typically dominant; and the low-amplitude, high-
frequency cardiac component, which can be separated by signal 
processing (Figure 6.3). When the optimized measurement 
configuration was used, the respiratory component was seen to 
accurately follow the trace of the simultaneously recorded PNT 
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volume signal (Figure 6.3B). Moreover, respiratory peak-to-peak 
amplitudes and cycle durations were found to have a high 
degree of correlation and good agreement between the 
bioimpedance and PNT measurements (Table 6.3, Figure 6.4). 
The cardiac signal separated from the measurement by the 
optimized electrode configuration and properly processed 
mainly corresponded well with the ECG measurement (Figure 
6.3C). In these cases, the intervals between the Z peaks had a 
high temporal correlation and good agreement with the R-R 
intervals detected from simultaneous ECG measurements. 
However, strong occasional suppression of Z peaks was 
observed in three subjects; this prevented the detection and 
comparison of cardiac intervals during their occurrence. 
 

 
Figure 6.3: Unprocessed bioimpedance signal (A), separated respiratory component of 
bioimpedance signal (black line) and PNT volume signal (red line) (B) as well as 
processed cardiac component of the bioimpedance signal (black line) and processed 
ECG signal (red line) (C). In B, signals are normalized for comparison. In C, signal 
amplitudes have been matched to facilitate comparison.  
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Table 6.3: Correlation and Bland Altman analysis results for the comparison of the 
optimized bioimpedance electrode configuration and the reference methods. R_PP, 
R_CD and C_CD refer to respiratory peak-to-peak amplitudes, respiratory cycle 
duration and cardiac cycle duration, respectively. NORM, SLOW and FAST refer to 
uncontrolled normal breathing as well as audio-guided slow- and fast-paced breathing. 

Parameter 
Linear 

correlation 

Mean 

difference 

Lower 95% 

limit of 

agreement 

Upper 95% 

limit of 

agreement 

R_PP NORM r = 0.949 -2.6% -19.2% 14.2% 

R_PP SLOW r = 0.961 1.0% -7.3% 10.4% 

R_PP FAST r = 0.944 -19.5% -32.2% -4.5% 

R_CD NORM r = 0.999 0.7 ms -75 ms 75 ms 

R_CD SLOW r = 0.998 -2.5 ms -240 ms 185 ms 

R_CD FAST r = 0.971 -0.4 ms -65 ms 55 ms 

C_CD NORM r = 0.998 0.03 ms -20 ms 20 ms 

C_CD SLOW r = 0.997 0.1 ms -20 ms 20 ms 

C_CD FAST r = 0.971 3.8 ms -40 ms 25 ms 
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Figure 6.4: Correlation (A, C, E) and Bland-Altman (B, D, F) plots of normalized 
respiratory peak-to-peak amplitudes (A, B), respiratory cycle duration (C, D) and 
cardiac cycle duration (E, F) between the bioimpedance and reference methods. In the 
Bland-Altman plots, the bias between the methods is presented with a dashed black line. 
The solid grey lines illustrate the 95% limits of agreement. 
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6.3 BIOIMPEDANCE-BASED RESPIRATORY GATING IN 
ONCOLOGIC PET 

In the oncologic PET study (III), 15 lesions were analysed for 
SUVmax. Of these, 13 were analysed for SUVvol, TBR, DISP CC 
and DISP AP and 11 for SUVpeak. Two lesions were excluded due 
to their shape, which prevented reliable volume measurement 
and another two as they did not meet the size criteria of 
PERCIST for SUVpeak. 

Bioimpedance-based respiratory gating generally 
enhanced the visibility of lesions with both amplitude- and 
time-based gating. The edges of lesions became sharper, and 
especially small lesions could be observed more easily (Figure 
6.5). 

 

Figure 6.5: Non-gated (A), amplitude- (B) and time-based (C) RPM-gated as well as 
amplitude- (D) and time-based (E) bioimpedance-gate PET/CT images of a patient 
with liver lesions. The patient was imaged with 18F-FDG. In the gated images, the 
outlines of the uptakes are sharper and more detailed. The effect of gating is seen 
specifically as the improved visibility of the small lesion (white arrow). SUVmax of the 
small lesion is 4.2 in A, 4.8 in B, 5.6 in C, 6.4 in D and 6.1 E. In this case, 
bioimpedance gating results in higher increase in visibility and SUVmax than the RPM 
method. 

In the study population, a 6.0-6.8 mm and 1.9-2.6 mm 
mean displacement of the target lesion was observed in the 
cranial-caudal and anterior-posterior directions using 
bioimpedance-based respiratory gating (Table 6.4). Respiratory 
motion compensation by bioimpedance-based respiratory 
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gating led to a significant increase (p ≤ 0.05, Wilcoxon) in 
SUVpeak, SUVmax and TBR compared to the non-gated image 
using all studied gating methods (Table 6.4, Figure 6.6A). On the 
other hand, the AC technique, based either on A-CTAC or G-
CTAC, had a minor, non-significant, effect on SUVpeak (Figure 
6.6A), SUVmax and TBR. Compared to the non-gated study, the 
decrease of SUVvol was significant in all the gating methods, 
except for the amplitude-based gating with G-CTAC (Table 6.4, 
Figure 6.6B). Similarly to SUV-related parameters, the two AC 
techniques applied did not have a significant effect on SUVvol. 

 

 
Figure 6.6: Mean SUVpeak (A) and SUVvol (B) in the non-gated study and 
bioimpedance-gated studies. Standard deviations of measurements and statistical 
significances of differences are illustrated with error bars and square brackets, 
respectively. * refers to a statistically significant (p ≤ 0.05) and NS to non-significant 
difference. BIO, AMP and TIME refer to bioimpedance-, amplitude-and time-based 
gating. G-CTAC and A-CTAC refer to computed tomography-based attenuation 
correction, which is based on averaged and gated 4D CT. 
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 Compared to the clinically widely used RPM respiratory 
gating method, the differences between the methods were non-
significant in all the parameters studied (Figure 6.7). In addition, 
an excellent correlation (r2 = 0.87-0.99) was observed in SUVpeak 

(Figure 6.8A, unpublished results), SUVmax and TBR between the 
methods. In SUVvol measurements, the correlation in amplitude-
based gating schemes was higher (r2 = 0.95) (Figure 6.8B) than in 
time-based gating (r2 = 0.68-0.74). 
 

 
Figure 6.7: The difference between bioimpedance (BIO) and RPM gating methods was 
non-significant in the parameters studied. Here, SUVpeak and SUVvol with averaged 
CT-based attenuation correction (A-CTAC) are presented as an example. The use of A-
CTAC in the comparison rules out the possible bias caused by the gated attenuation 
correction (G-CTAC). * refers to a statistically significant (p ≤ 0.05) and NS to a non-
significant difference. BIO, RPM, AMP and TIME refer to bioimpedance-, RPM-, 
amplitude- and time-based gating, respectively.  
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Figure 6.8: Scatter plots illustrating good correlation in measurements of SUVpeak and 
SUVvol between bioimpedance- and RPM-based gating using A-CTAC. 

6.4 COMBINED BIOIMPEDANCE-BASED RESPIRATORY AND 
ECG-BASED CARDIAC GATING IN CARDIAC PET 

In the cardiac PET study population (study IV), in the case of 
one patient, the bioimpedance measurement was unsuccessful. 
The respiratory component of the bioimpedance signal 
measurement was very small, and the large cardiac component 
prevented reliable respiratory gating (Figure 6.9). Thus, this 
patient was excluded from the analysis, and the analysis was 
performed with eleven patients. 

In the eleven patients of this study, the observed linear 
mean myocardial displacement due to respiration was 6.0 ± 2.9 
mm in the cranial-caudal, 2.3 ± 1.4 mm in the anterior-posterior, 
and 2.6 ± 1.8 mm in the lateral, directions. The estimated overall 
respiratory displacement of the myocardium was 7.6 ± 3.3 mm. 
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Figure 6.9: The unprocessed bioimpedance measurement signal (A) and processed 
respiratory gating signal in the case of unsuccessful bioimpedance measurement, in 
which the respiratory component was very small and a large cardiac component 
prevented reliable respiratory gating. 
 
 The left ventricular volume showed a statistically 
significant (p < 0.05, Wilcoxon) 4 ± 3 ml decrease between the 
cardiac- and dual-gated images and a statistically non-
significant 4 ± 5 ml decrease between the static and respiratory-
gated images (Table 6.5). However, in the example volume 
curves of two patients with the highest myocardial uptake, 
minor differences were seen between the cardiac- and dual-
gated image sets (Figure 6.10). The study population for the 
analysis of the left ventricular volume was limited to six patients 
as five patients had an uptake too low to enable consistent 
delineation of the myocardium in all the image series. 
 
Table 6.5: Left ventricular volumes (LVVs) and myocardial wall thicknesses (MWTs) 
in the cardiac PET study population. The results are presented as mean ± standard 
deviation. 

Parameter static respiratory cardiac dual 

LVV [ml] 110 ± 69 114 ± 73 138 ± 78 141 ± 79 

MWT [mm] 14.9 ± 2.8 14.4 ± 2.7 11.3 ± 1.3 9.3 ± 1.3 
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Figure 6.10: The form of cardiac-gated (red line) and dual-gated (black line) left 
ventricular volume curves are similar in the two patients with the highest myocardial 
uptake. In case A, the stroke volume and ejection fraction are 84 ml and 31% in 
cardiac gating and 80 ml and 29% in dual gating. In B, these measures are 58 ml 
(50%) and 60 ml (49%), respectively.  The main distinction between the curves can be 
seen in the offset. 
 

Combined bioimpedance- and ECG-based dual gating 
had a significant (p < 0.05, Wilcoxon) effect on the narrowing of 
the observed myocardial wall thickness compared to plain 
cardiac gating (Table 6.5, Figure 6.11A). In addition, the 
narrowing caused by dual-gating had a considerable correlation 
(r2 = 0.58) with the estimated overall displacement of the 
myocardium (Figure 6.11B). Bioimpedance-based respiratory 
gating alone, on the other hand, had a statistically significant (p 
< 0.05, Wilcoxon) but small effect on the narrowing of the 
observed myocardial wall thickness compared to static, non-
gated images (Table 6.5, Figure 6.11A). 

Despite the statistically significant effect of dual-gating 
on left ventricular volume and myocardial wall thickness, the 
visual effect may not be as clear. Compared to cardiac gating, 
dual gating reduces blur and may assist in the distinguishing of 
structures (Figure 6.12). 
 
 
 
 
 
 

1 2 3 4 5 6 7 8
180

200

220

240

260

280

cardiac frame

le
ft 

ve
nt

ric
ul

ar
 v

ol
um

e 
[m

l]

1 2 3 4 5 6 7 8
50

60

70

80

90

100

110

120

130

cardiac frame

le
ft 

ve
nt

ric
ul

ar
 v

ol
um

e 
[m

l]

A B



Tuomas Koivumäki: The Bioimpedance Technique in Respiratory- and Dual-Gated 
Positron Emission Tomography Imaging 

 

 
 
80 

 
 

 
Figure 6.11: Myocardial wall activity profile as measured from static (solid red line), 
respiratory-gated (dashed red line), cardiac-gated (dashed black line) and dual-gated 
(solid black line), images (67 year-old female patient) (A). The scatter plot of overall 
displacement and the difference in myocardial wall thickness between dual- and 
cardiac-gated images (B). 
 
  

 
Figure 6.12: Transaxial slice of the cardiac- (A) and the dual-gated (B) 18F-FDG study. 
The myocardium and the papillary muscle are more precisely delineated in the dual-
gated image. In exchange for the reduced blur, the noise is higher in the dual-gated 
image due to the rejection of coincidence data outside end-inspiration and end-diastole.
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7 Discussion 

In this thesis, an optimized bioimpedance measurement 
configuration for the simultaneous measurement of the 
anatomic volumes of the lungs and the heart was determined 
according to measurement sensitivity analysis (I). Further, the 
optimized measurement configuration was validated against 
two reference methods, PNT spirometry and ECG in the 
monitoring of respiration and cardiac contractions (II). Finally, 
the feasibility of bioimpedance–based respiratory measurements 
for the gating of PET was evaluated in a clinical setting. Plain 
respiratory gating was studied in oncologic PET using the 
optimized measurement configuration (Figure 5.3A) (III). The 
simultaneous use of bioimpedance-based respiratory gating and 
ECG-based cardiac gating was evaluated using the II limb lead 
mimicking measurement configuration in cardiac PET (Figure 
5.3D) (IV). 

7.1 DETERMINATION AND VALIDATION OF THE OPTIMIZED 
BIOIMPEDANCE MEASUREMENT CONFIGURATION 

According to the measurement sensitivity analysis (study I), the 
optimized electrode configuration was located on the anterior 
upper thorax at the height of the 4th and 5th intercostal spaces 
in the proximity of the mamillae (Figure 6.1A). This is a 
plausible intermediate estimate as, similar to study I, it has been 
reported that high sensitivity in cardiac bioimpedance 
measurements is achieved with regional measurements in the 
proximity of the heart [70] and that lateral configurations are 
most suitable for respiratory bioimpedance measurements [93, 
126, 129]. However, direct comparison to other studies on 
optimizing simultaneous respiratory and cardiac measurement 
into one measurement configuration cannot be made as, to the 
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best of the present author’s knowledge, there are no other 
studies on the topic. 
 The measurement sensitivity of the optimized 
configuration was high compared to the most sensitive 
configurations for the lungs and the heart, resulting in 75% and 
67% proportional sensitivity, respectively. In addition, the 
proportional sensitivities for both lung and heart volumes 
remained high (> 62%) throughout the respiratory and cardiac 
cycles as estimated by conductivity variation. The high 
measurement sensitivity of the optimized measurement 
configuration was verified in physiological measurements with 
volunteers (study I). Partly inconsistent with the computational 
modelling, the slightly modified optimized measurement 
configuration (Figure 5.3A) was found to produce superior, 
significantly larger peak-to-peak amplitudes and higher 
frequency content in the monitoring of both respiration and 
cardiac function when compared to configurations which were 
determined solely for respiratory (Figure 5.3B) and cardiac 
measurements (Figure 5.3C) (study I). However, the approach of 
measurement sensitivity and time as well as frequency domain 
analyses is slightly different. Measurement sensitivity (equation 
3.4) analysis shows what configuration should be used to 
measure the highest voltage change for an incremental 
conductivity change in a certain conductivity distribution. On 
the other hand, time and frequency domain analyses reflect the 
impedance change during the whole course of the respiratory 
and cardiac cycles. 

The limitation of the computational sensitivity 
optimization study is the simplicity of the model: the model is 
static, and the dynamic changes of thorax geometry or the 
motion of the internal organs during respiration have not been 
directly modelled. However, the effect of dynamic changes was 
evaluated by altering lung and heart conductivities as it has 
been suggested that the effect of organ movements can be 
approximated by varying tissue conductivities [146]. Another 
limitation in the model was the lack of modelled 
haemodynamics or blood perfusion, for example in lung tissue. 
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The lungs and the aorta have, nonetheless, been reported to 
have an important role in ICG measurement [83, 114]. The lack 
of haemodynamics and lung perfusion modelling may have 
resulted in some bias in favour of electrode configurations in the 
vicinity of the anatomical location of the heart when cardiac 
measurement sensitivity was considered. These aspects may 
have also contributed to the inconsistencies observed between 
the results of the modelling part and the physiological 
measurement part in study I. 

The results of the optimized measurement configuration 
validation study (II) show that bioimpedance-based respiratory 
and cardiac measurements have an excellent linear correlation 
with reference methods in peak-to-peak amplitude (respiratory 
measurements) and physiological cycle duration (respiratory 
and cardiac measurements) during three different breathing 
patterns. According to the Bland Altman analysis, the bias 
between the measurements was generally small and the limits of 
agreement were adequately narrow. With each parameter 
studied, the largest bias and the widest limits of agreement were 
found either during slow- or fast-paced breathing (Table 6.3). 
On the other hand, slow- and fast-paced breathing represent 
extreme breathing conditions. In slow-paced breathing, 
volunteers breathed utilizing their whole vital capacity. This is 
not typical during image acquisition, except possibly in single 
breaths. Fast-paced breathing, on the other hand, was found to 
be very fast when volunteers tried to maintain their normal 
breathing depth. 

In addition to the correlation and agreement results, 
there was good temporal agreement between the bioimpedance 
and reference methods. The time instants of positive respiratory 
peaks differed on average 45 ms between the measurement 
methods, which is approximately 1% of the mean interval length 
observed in the study (4.6 s). In cardiac measurements, the Z 
peaks were detected on average with a 128 ± 20 ms delay 
compared to the R waves of the ECG measurement. This follows 
from the fact that R waves originate from the spreading 
electrical activity in the heart and Z peaks represent the flow 
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and distribution of blood following the contraction. The 
deflection, which in this study is termed Z peak, has been timed 
to follow the first heart sound, which is related to the closing of 
atrioventricular valves, and to precede aortic closure [83]. 

The findings of study II are corroborated by other 
reports. There are other studies, albeit implemented with 
different measurement configurations, which have reported that 
bioimpedance measurements can be used for the monitoring of 
respiration [48, 64, 129]. In addition, there are studies which 
suggest that bioimpedance measurements can be utilized in the 
determination of temporal cardiac events [13, 83]. Despite the 
temporal accuracy of cardiac bioimpedance measurements, the 
suppression of Z peaks, which occurred in three patients in 
study II, was identified as a potential limitation, considering the 
use of bioimpedance in cardiac-gating applications. Since ECG 
signals are excellent in providing information on the instant of 
cardiac contraction and are in everyday use in clinics, ECG was 
chosen as the cardiac gating method in study IV. 

7.2 EVALUATION OF BIOIMPEDANCE-BASED TECHNIQUES IN 
RESPIRATORY AND DUAL GATING OF PET 

The bioimpedance-based respiratory measurement technique 
was found feasible in quantifying respiratory-induced 
displacement of lesions and the myocardium during PET 
imaging using the optimized (III) and the II limb lead 
mimicking (IV) measurement configuration, respectively. In 
both the oncologic (III) and cardiac (IV) PET studies, very 
similar mean displacements were found for lesions and the 
myocardium in the cranial-caudal (oncologic 6.0-6.8 mm, 
cardiac 6.0 mm) and anterior-posterior directions (oncologic 1.9-
2.6 mm, cardiac 2.6 mm). The observed displacements are in line 
with previous reports on detected motion in oncologic [24, 130] 
and cardiac [27, 91, 96] studies using different gating methods. 
Importantly, the observed displacement extents are noteworthy, 
when compared to the approximately 4.4-5.9 mm spatial 
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resolution of the scanners used [17, 68]. Small differences in 
reported displacements may result from different gating 
methods (amplitude or time), gating or reconstruction 
parameters (number of bins, matrix size, filter), characteristics of 
respiratory signal measurements (type of measurement, 
inaccuracies) as well as individual breathing patterns and 
characteristics of patients, for example.  
 In the oncologic study (III), significantly higher SUVpeak 
(17.7-22.9%), SUVmax (19.8-24.1%) and TBR (21.5-24.6%) and 
lower SUVvol (16.5-20.8%) were observed in bioimpedance-based 
respiratory-gated oncologic PET studies compared to non-gated 
studies. Other researchers have reported comparable changes in 
SUVmax and SUVvol, though higher individual changes have also 
been published [89, 105]. 

In cardiac studies (IV), statistically significant but minor 
narrowing (4%) of the observed myocardial wall thickness was 
observed when respiratory-gated images were compared to 
non-gated images. On the other hand, significant narrowing 
(17%) was noted when dual- and cardiac-gated images were 
compared. Compared to the study of Büther et al. [27], which 
also analysed the effect of respiratory gating on myocardial wall 
thickness, a clearly smaller mean change was observed between 
non-gated and respiratory-gated images in study IV (0.5 mm vs. 
1.8-2.4 mm). Between cardiac- and dual-gated images, the 
change was similar to the results of Büther et al. [27] (1.9 mm vs. 
1.8-2.4 mm). However, it should be noticed that Büther et al. 
measured the change in the anterior wall, whereas the lateral 
wall was measured in study IV. In addition, Büther et al. 
utilized more bins (8 vs. 5) and did not use attenuation 
correction. In the case of cardiac measurements, it should also be 
considered that the motion is far from rigid and may involve 
rotation and twist, which may cause uncertainty in linear 
measurements. 

According to the left ventricular volume analysis in 
study IV, the benefit of dual gating over cardiac gating may be 
limited in the study of left ventricular volume parameters. The 
analysis of end-diastolic volumes without (cardiac-gated images) 
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and with (dual-gated images) respiratory gating showed that 
the mean difference in volumes between these gating methods 
was approximately 4 ml (3%). The two cases with the highest 
myocardial radiopharmaceutical uptake further suggest that in 
the determination of stroke volume and ejection fraction, the 
difference (2-4 ml, 1-2%-unit) may be even smaller. 

Clinically, the largest potential of respiratory gating in 
PET may be seen in oncologic imaging. Respiratory gating can 
improve the visibility of lesions, help to define their motion and 
aid in more accurate delineation of the treatment volume for 
radiotherapy [86, 122]. Respiratory gating may also improve co-
registration between images from PET and other modalities, 
such as MRI [25]. In addition, respiratory gating methods and 
devices can be used in more accurate delivery of radiotherapy 
and avoidance of normal tissues, for example, in non-small cell 
lung cancer and breast cancer [34, 131]. In cardiac PET studies, 
the most probable use for respiratory gating is in the study of 
small targets, such as coronary plaques [43, 140], or the small 
uptakes in cardiac sarcoidosis. 

In study III, the use of either averaged or gated CT as the 
basis for attenuation correction was not found to produce a 
significant difference in the results. This is corroborated by the 
finding that attenuation correction which is based on gated CT 
is more effective in reducing motion artefacts in some but not all 
cases when compared to attenuation correction which is based 
on averaged attenuation correction [74]. 

According to the parameters in the oncologic PET (III) 
study, the bioimpedance method has a good correlation with the 
widely used RPM method. Interestingly, apart from SUVpeak and 
SUVmax in amplitude-based gating with averaged attenuation 
correction, bioimpedance-based gating produced larger mean 
changes in the parameters studied compared to the RPM 
method. However, the differences are minor and statistically 
non-significant. The differences between bioimpedance and 
RPM methods in observed lesion displacement were mostly 
small. However, in time-based gating, a significantly larger 
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cranial-caudal displacement was observed using bioimpedance 
gating compared to the RPM method. 

In the comparison between the bioimpedance and RPM 
techniques, it has to be underlined that there is a quintessential 
difference between them. RPM measures only the vertical 
displacement of the marker block whereas transthoracic 
bioimpedance measurement is affected by transthoracic 
electrical conductivity changes resulting from changing thorax 
shape and air volume in the lungs as well as shifts in organ 
positions. In addition, the gating signal processing and 
formation of bins were not exactly the same in terms of signal 
processing and cycle rejection criteria, which may also have 
contributed to the small observed differences between the 
techniques.  On the other hand, in the case of bioimpedance 
signals, these were adjusted to resemble RPM processing very 
closely.  This was evaluated to ensure a relevant level of 
similarity in the processing to enable side-by-side evaluation of 
the bioimpedance and RPM techniques. 

7.3 TECHNICAL AND FUTURE ASPECTS OF BIOIMPEDANCE 
GATING 

The separation of respiratory and cardiac components from the 
bioimpedance signal in studies I-IV was performed using 
division in the frequency space. Further, the respiratory signal 
was smoothed with a moving average filter (II-IV). The 
drawback of operating in the frequency space is that the 
harmonics of the respiratory component overlap with the 
cardiac frequency band [42, 137]. Thus, straightforward filtering 
in the frequency space may not fully retain the morphology of 
the respiratory and cardiac components. However, according to 
the results of the signal validation study (II), the form of the 
signal is adequately preserved though frequency space filtering 
is used. This is corroborated by Grant et al. [57], who have 
reported that frequency space division is sufficient for the 
separation of bioimpedance signal components. However, with 
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one patient in study IV, the filtering proved to be insufficient for 
the separation of the respiratory component; this led to the 
exclusion of the patient from the study population. In this case, 
the cardiac component remained too dominant after signal 
processing, leading to unsuccessful respiratory gating. One 
solution to further smooth the signal is to use a moving average 
filter with a long window as in study II (1000 ms). On the other 
hand, a shorter (100 ms) window was chosen for studies III and 
IV in order to minimally affect the morphology of the 
respiratory waveform. A more effective means for suppressing 
cardiac oscillations from the respiratory signal might be the use 
of adaptive filtering based on detected cardiac events, as 
suggested by Seppä et al. [127], for example. 

In some cases in patient studies (III-IV), the respiratory 
amplitude was very low. Apart from the one case mentioned 
above in study IV, the low amplitude was still sufficient for 
respiratory gating.  In addition, the inversion of signal was 
observed in two cases in study III and study IV. In inverted 
cases, the association between lung volume and transthoracic 
impedance change is negative; that is, an increase in lung 
volume is observed as a decrease of impedance. Signal inversion 
is a severe case of non-linearity between lung volume and 
transthoracic bioimpedance changes. Non-linearity is more 
typically noticed as low measurement sensitivity in shallow 
respiratory volumes, while in larger volumes the relationship of 
lung volume and transthoracic impedance change is clear and 
linear [92, 126]. Interestingly, body mass index has been 
reported to correlate negatively with lung volume [69]. Lung 
volume does not necessarily correlate with respiratory depth 
but as being overweight may decrease respiratory volumes, the 
probability of non-linear behaviour of bioimpedance 
measurements may be elevated in overweight patients. It has 
also been reported that the more caudally the bioimpedance 
measurement electrodes are located on midaxillary lines, the 
more prone the measurement is for non-linearity [92, 126]. 
Considering the occasionally encountered low respiratory 
amplitudes and signal inversion, a relevant aim for future work 
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is to further develop the measurement configuration to achieve 
a high and constant measurement sensitivity and linearity. A 
possible alternative for the measurement configuration would 
be the electrode configuration introduced by Seppä et al. [126], 
where measurement electrodes are located horizontally on the 
thorax and the arms in the proximity of the axilla. 

Further, multiple-channel bioimpedance [136, 152] as 
well as EIT [57] and magnetic induction tomography [137] 
techniques have been introduced for more precise 
measurements of the dynamic electrical properties of the thorax. 
However, as these methods either require multiple 
measurement electrodes, possibly around the chest of the 
patient, or considerable modifications to the scanner in terms of 
inductive coils, these methods may not be attractive for clinical 
use. Despite the complexity of the measurement set-up, 
Pengpan et al. [115] have introduced EIT in motion 
compensation during cone-beam CT image acquisition. 
 Amplitude and time gating methods were compared in 
study III. Amplitude gating showed larger compensation of 
SUVpeak and TBR compared to time gating, whereas in SUVmax 
and SUVvol time gating resulted in larger compensation. In 
addition, larger displacement was seen in amplitude gating 
compared to time gating. Generally, the differences between the 
gating methods are small and non-significant (p > 0.05), except 
in the measurement of cranial-caudal displacement, in which 
the mean difference is small (0.8 mm) but significant (p < 0.05). 
Thus, according to these results, neither of the two conventional 
gating methods has a clear advantage over the other in 
bioimpedance-based respiratory gating. However, previous 
reports encourage the use of amplitude gating as different parts 
of respiratory cycles may be incorrectly binned in the same bin 
due to varying cycle lengths in time gating, which may lead to 
overlap of motion in the bins and thus to more blur in the 
images [38, 139]. Amplitude gating methods may also ensure 
higher count statistics and thus also a higher SNR, as the bin of 
interest is typically chosen from end-expiration, often the 
longest and slowest respiratory state. For example, in study III, 
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the five-bin division preserved on average 27% of the data in 
amplitude gating and 13% in time-based gating. Considering the 
inversion of the signal, which was encountered with some 
patients, histogram-based gating methods introduced by Fin et 
al. [50], Liu et al. [90] and van Elmpt et al. [143] would be very 
attractive for bioimpedance gating. Histogram methods are 
robust against signal inversion, since they select the bin 
according to the count preservation criterion of 35% [143], for 
example, and minimize the motion within the bin. The 
drawback of histogram-based gating is that it may require the 
acquisition of the whole measurement signal before gating and 
thus prevent prospective gating. On the other hand, according 
to Didierlaurent et al. [45], retrospective gating should be 
favoured as it is more robust than prospective gating, which 
may be based on inaccurate triggering. Triggering inaccuracies 
have been reported, for example, with the RPM system [45]. 
Inaccurate triggering may have contributed also to the 
differences between the bioimpedance and RPM time gating 
methods seen in study III. 

An important advantage of the bioimpedance technique 
is that both bioimpedance-based respiratory gating and ECG-
based cardiac gating signals can be acquired simultaneously 
using the same measurement electrodes. This simple 
measurement set-up has the potential to facilitate patient 
preparation and thus to improve work flow. These are 
important qualities when considering the attractiveness of the 
method in clinical practice. The use of one set of electrodes 
minimizes the amount of additional equipment during image 
acquisition. For example, the presently widely used RPM and 
Anzai AZ-733 systems require a separate ECG system to enable 
dual gating. The advantage of the measurement interface (the 
electrodes) is that it remains attached to the patient during 
movement. The measurement configuration can thus be set up 
and tested prior to the radiopharmaceutical injection, although 
the patient is required to move between preparation and image 
acquisition. Thus the typically time-consuming patient set-up at 
the scanner can potentially be shortened, which will reduce the 
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radiation burden of the employees. Further, the discomfort of 
the patient due to the measurement interface is assumed to be 
low since standard ECG electrodes, which patients may already 
be familiar with, are used in the measurements. 

Biopac EBI100C was sufficient for the measurements of 
the present thesis. However, as the amplifier has some black box 
solutions which the user cannot modify and as the analysis of its 
technical properties may be difficult, a logical step would be the 
development of a specific in-house bioimpedance amplifier. 
Thus, the occasional baseline drift observed in study III could 
possibly be more frequently avoided. In addition, the 0.05 Hz 
high-pass filter of the amplifier, which was used in study IV, 
causes a small delay in the measurement signal. Further, online 
high-pass filtering was found to modify the baseline of the 
signal in long apnoeic periods and in cases of highly varying 
respiratory depth. As the results of study IV are in line with 
those of previous studies, the effects of a high-pass filter were 
not assumed to be significant in this study population. However, 
the use of an online high-pass filter should be avoided in 
bioimpedance gating applications. 

In addition to PET, the bioimpedance respiratory gating 
technique, as it is, is applicable in nuclear medicine and CT 
imaging, which allow retrospective gating. However, if 
prospective gating is considered, for example in the triggering 
of CT or linear accelerators, refinements of electrode 
configuration in terms of sensitivity and linearity as well as of 
signal processing are recommended. From the electromagnetic 
compatibility point of view, a systematic study of the 
compatibility of bioimpedance measurements with implanted 
electronic devices, such as cardiac pacemakers, should be 
conducted. This is despite the fact that Kyle et al. [82] have 
reported that there are no known cases, in which bioimpedance 
measurements have affected or disturbed cardiac pacemakers. 
There is demand for a systematic study also in the scientific 
community [35]. 
 From the gating point of view, a signal-wise comparison 
of the most typical respiratory measurement methods would be 
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of interest, since none of the presently widely used methods 
measures the actual respiratory volume. A majority of the 
respiratory gating methods studied, except for airway 
measurement, are based on the monitoring of a surrogate for 
respiration, typically chest wall motion. Only data-driven 
methods actually measure the observed respiratory motion. 
However, these computational methods may not function if 
sufficient uptake is not present. A comprehensive comparison of 
different gating methods would thus be very interesting in 
order to discover the most significant differences between the 
methods. In this context, it would also be interesting to 
extensively study the minimum requirements for respiratory 
motion information to allow effective gating. At the same time, 
the reproducibility of gating should be precisely defined if gated 
image sets are used in follow-up studies. 
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8 Summary and conclusions 

In the present thesis, the feasibility of bioimpedance 
measurements for respiratory and cardiac motion compensation 
in PET imaging by gating was studied. The thesis includes 
mathematical modelling, volunteer measurements as well as 
patient measurements during oncologic and cardiac PET studies. 
 
The main findings of this thesis can be summarized as follows: 
I According to the anatomical model, the optimized 

electrode configuration for the measurement of lung and 
cardiac volumes is located on the 4th and 5th intercostal 
spaces contralaterally in the proximity of the mamillae. 

II When the optimized electrode configuration is used, the 
respiratory component of the bioimpedance signal 
follows the PNT volume spirometry trace accurately. 

II When the optimized electrode configuration is used, the 
cardiac component of the bioimpedance signal has a high 
temporal association with the ECG measurement. 
However, due to the occasional suppression of Z peaks, 
the use of ECG is recommended for cardiac gating. 

III/IV Bioimpedance-based respiratory gating was found to 
effectively detect lesion and myocardium displacement 
as well as to compensate changes caused by motion in 
SUVpeak, SUVmax, SUVvol and TBR in oncologic studies and 
in myocardial wall thickness in cardiac studies. A minor 
influence was also observed in left ventricular volume 
measurements. 

III/IV The optimized and II limb lead mimicking electrode 
configurations are feasible for respiratory gating signal 
acquisition, but further refinement in terms of 
measurement sensitivity and linearity is warranted. 

IV Bioimpedance-based respiratory gating can be 
successfully integrated with ECG gating. 
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Respiratory and cardiac motion 

artefacts degrade image quality 

in positron emission tomography 

imaging and may significantly affect 

the qualitative and quantitative 

evaluation of images. At worst, 

misguided interpretation may lead 

to wrong diagnosis and inadequate 

or unnecessary treatment. Thus, 

effective methods to compensate 

the adverse effects of motion are 

called for in clinical practice. This 

thesis shows that bioimpedance 

techniques can be effectively utilized 

for respiratory motion compensation 

by respiratory and dual gating of 

oncologic and cardiac PET imaging.
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