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Over 200 million people worldwide 

suffer from osteoporosis. Osteoporo-

sis is currently diagnosed based on 

the bone mineral density (BMD) of 

the femur or lumbar spine measured 

with dual-energy X-ray absorpti-

ometry (DXA). However, the BMD 

measured with two-dimensional DXA 

is only a moderate predictor of frac-

ture risk. In this thesis, novel image 

analysis and mechanical simulation 

methods are presented which enable 

automatic estimation of the three-

dimensional shape and morphology 

of the femur, as well as the femoral 

fracture strength from single DXA 

image. The developed methodology 

may improve the fracture risk predic-

tion of the femur and the diagnostics 

of osteoporosis in the future.
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ABSTRACT

It is estimated that over 200 million people worldwide have osteo-
porosis. At present, osteoporosis is diagnosed by measuring bone
mineral density (BMD) from the femoral neck or the lumbar spine
with Dual-Energy X-Ray Absorptiometry (DXA). However, BMD
measured with DXA is only a moderate predictor of fracture risk. It
does not take into account any other factors than BMD which could
affect the bone quality such as bone geometry or architecture.

This thesis develops and describes methods to reconstruct the
3D shape and internal density distribution of the proximal femur
from a single 2D DXA image. Subsequently, a numerical mechani-
cal model is created using the reconstructed shape. The model en-
ables an estimation of the mechanical characteristics and strength
of the femur. The strength information accounts for both BMD and
geometrical aspects of the femur, and therefore it has a high po-
tential to improve the prediction of the fracture risk. Two of the
developed reconstruction methods were based on an average femo-
ral template and feature-based registration between the template
and DXA image. The third developed method was based on a
statistical shape and density template and intensity-based registra-
tion. Feature-based reconstruction techniques were faster whereas
intensity-based reconstruction enabled a fully automatic procedure
that produced the input for the mechanical simulation. The feature-
and intensity-based methods displayed rather similar accuracies.
The femoral surface was reconstructed with mean accuracy of one
millimeter.

A method which estimates the 3D orientation of a proximal fe-
mur in a 2D radiograph was developed. The orientation was es-
timated with three times higher accuracy compared with that of a
trained naked human eye. Thus, the method may be able to dif-
ferentiate the amount of rotations between two different image sets
or to correct the misalignment of the femur in DXA images during
feature-based 2D-to-3D reconstruction.

Numerical models need to be validated. Therefore, the sur-
face strains of composite femurs were measured with digital im-
age correlation (DIC) technique during a mechanical compression
test. DIC optically traces the displacements and deformations on
the surface of the object under loading. The DIC data could reveal,



differentiate and explain sample-to-sample differences between the
composite femurs. The surface strains measured with DIC data pro-
vides around 50000 spatial measurement points at each time point
and therefore generates substantial data for validation of mechani-
cal models.

All of the methods developed and evaluated in this thesis may
significantly contribute to development of improved diagnostics
methods for osteoporosis in the future.

National Library of Medicine Classification: QT 34.5, QT 36, WE 103,
WE 250, WN 200
Medical Subject Headings: Bone and Bones; Bone Density; Femur; Hip
Fractures; Osteoporotic Fractures; Osteoporosis/diagnosis; Biomechani-
cal Phenomena; Absorptiometry, Photon; Tomography, X-Ray Computed;
Image Processing, Computer-Assisted; Numerical Analysis, Computer-
Assisted; Finite Element Analysis; Computer Simulation

Yleinen suomalainen asiasanasto: luu; luuntiheys; reisiluu; osteoporoosi
- - diagnoosi; röntgentutkimus; fotoniabsorptiotekniikka; tietokonetomo-
grafia; biomekaniikka; simulointi; numeeriset menetelmät
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1 Introduction

The primary responsibility of the skeleton is to bear loads. Its other
functions include protection and support of the internal organs,
blood production and mineral reserving. In order to maintain its
endurance, optimal strength and lightness throughout life, bone
continuously undergoes remodeling [1–4]. Normal activity results
in microscopic fractures in the bone which are dissolved and re-
placed by new intact bone [1]. Bone also responds to external forces
by increasing its mass when the loads increase and by decreasing
its mass when the forces are reduced [1]. However, due to aging
or some symptoms, the balance between the bone resorption and
formation may be disturbed. This can lead to reduced bone mass
and strength [5].

Osteoporosis is defined as a disease where skeletal strength is
impaired and the fracture risk is increased [5–7]. Osteoporotic frac-
ture affects loss of mobility and self-determination and therefore
leads to a major loss of quality of life [8]. It has been estimated
that over 200 million people worldwide have osteoporosis [9, 10].
Hence, it is the most common metabolic bone disease. In the Eu-
ropean Union, about 30 % of all women over 50 are affected by os-
teoporosis [11]. In 2000, the number of osteoporotic fractures in the
European Union was estimated to have been 3.1-3.7 million [12,13].
This resulted in direct costs of e32 billion to the health care ser-
vices [10, 13]. Furthermore, the progressively aging population, es-
pecially in the developed countries, leads to an increase in osteo-
porosis prevalence [14, 15], and it is estimated that in 2050 the cost
of osteoporotic fractures in Europe will rise to €76.8 billion [13].
Hence, effective diagnostics, prevention and treatment will be es-
sential in the successful osteoporosis management.

Current osteoporosis diagnostics is largely based on measure-
ments of bone mineral density (BMD), using dual energy X-ray ab-
sorptiometry (DXA) of the hip or the lumbar spine [5, 16]. The
BMD value is compared with the mean value of the healthy young
population in the region, and the result is converted to a T-score
value [5, 10], which forms the basis of the individual’s fracture
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risk. Paradoxically, although DXA-based BMD is a good measure of
bone density, it is only a moderate predictor of fracture risk [17,18].
It has been demonstrated that only 30 % of all low-energy fractures
can be explained by changes in BMD alone [19]. This indicates
that better methods, including different types of information in ad-
dition to BMD, are needed for prediction. Bone quality includes
all characteristics that increase the bone’s resistance to fracture, in-
cluding BMD, bone architecture, geometry, turnover and mineral-
ization [20–22].

One way to assess resistance of bone to fracture is to estimate the
ultimate strength of bone. Usually this is done with finite element
(FE) modeling, where the geometry is based on 3D images of the
femur obtained from clinical quantitative CT (QCT) devices [23–33].
It has been shown that FE analysis of the bone can explain at least
20 % more of the variance in femur strength than DXA alone [29].
However, QCT imaging is expensive and depending on the imaging
settings, it may result in about 300 times larger radiation doses than
DXA imaging [34]. Therefore, there is a clear need to develop a
method that could assess bone strength accurately without 3D CT
images.

Since the DXA images are two-dimensional, they lack informa-
tion on the direction of tissue depth. Consequently, it is not possible
to develop a 3D femur model using DXA alone. Templates which
include information of general femur shapes, density distribution
and their variation in population in all three dimensions could be
helpful. Earlier, the femoral shape has been reconstructed using
prior information from CT images and one or several 2D radio-
graphic images [35–39]. However, many of these methods require
more than one radiological image [35, 37], and they are not based
on the DXA image [36, 40]. There is still no method that would
automatically reconstruct both femoral shape and internal density
from a single DXA image and combines it with FE modeling that
can automatically calculate the strength of the femur.

The aim of this thesis is to improve methods for assessing bone
strength and fracture risk, based on a combination of DXA images
and FE modeling. This thesis also introduces the digital image cor-
relation method [41], which can be used to evaluate strains at the
bone surface during loading of the proximal femur. This strain data
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can be used to validate FE simulations. The underlying hypothe-
sis of this study is that 3D geometry and the inner architecture of
the femur can be estimated from 2D DXA images. A further hy-
pothesis is that the result of strength analysis correlates with the
true strength of the femur. The final hypothesis is that the analyzed
strength and strain of the femur are highly related to an individual’s
fracture risk. Therefore, the developed method must be capable of
assessing the maximum load that the femur can withstand before
fracture.

Dissertations in Forestry and Natural Sciences No 147 3
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2 Bone

Bone is a optimized composite material that has high stiffness and
strength combined with the lightness of wood [1]. Due to its high
strength, bone is able to resist heavy compressive loads, tensions
and torsions, whereas its light weight enables quick sprints and
leaps [21,42]. Since bone is a living material, it can constantly mod-
ify its strength and weight by varying its shape, structure and com-
position. Thereby, bone optimally adapts to the existing mechan-
ical environment [1, 43]. These natural processes are called bone
formation, modeling and remodeling [1]. If bone fails under a high
impact load, for example in a car accident or when slipping on ice,
it almost instantly begins a repair process in order to restore its
weight-bearing ability [1].

2.1 BONE COMPOSITION

Bone is a composite material constructed mainly of mineral and col-
lagen. The collagen represents an organic matrix which is stiffened
by crystals of calcium and phosphate-based mineral hydroxyap-
atite [20]. The organic matrix is responsible for the tensile and shear
strengths of bone whereas the mineral matrix carries the compres-
sive loads [1]. Together, organic and mineralized matrices form stiff
composite material with high endurance against both tensile and
compressive forces. An increase in the mineral density increases
the stiffness of bone but sacrifices its ductility [20]. In human bone,
around 60 % is mineral [20], 30 % is organic matrix, and the rest is
mainly blood vessels, cells and water [1].

2.2 BONE BIOLOGY AND REMODELING

Bone has three main cell types: osteoclasts, osteoblasts and osteo-
cytes. Osteoclasts resorb or dissolve bone. The osteoblast family
consists of osteoblasts that form bone, but also of the osteocytes
that help to maintain bone, and bone lining cells that cover the
bone surface (Figure 2.1) [1].
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Figure 2.1: Parts of proximal femur, structure of bone and bone cells. Part of the image
is a modified version from [44] according to Creative Commons Attribution 3.0 Unported
license [45]
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Osteoclasts are large cells with many nuclei. The human osteo-
clasts have a diameter of 15 to 20 μm [1]. Osteoclasts originate from
the macrophage lineage, which are types of blood cells that are
dedicated to dissolving bacteria, harmful foreign particles or other
cells or tissue [46]. Osteoclast precursors are monocytes which are
formed in the red bone marrow and then released to the blood
circulation [47]. Osteoclasts resorb underlying bone by releasing
hydrogen ions and several hydrolytic enzymes which dissolve the
mineral and organic components of the bone matrix [46]. After
completion of this process, they deactivate themselves or undergo
apoptosis based on which regulation signals they receive from other
cells [20]. Osteoclasts are regulated by several hormones, including
the parathyroid hormone (PTH) and calcitonin [48]. Osteoclasts
and osteoblasts also regulate themselves since osteoclast activity is
also mediated by the interaction of the molecules osteoprotegerin
and RANK ligand which are produced by osteoblasts [49]. These
molecules also regulate osteoclast differentiation [49].

Osteoblasts are cells with a single nucleus. They originate from
the mesenchymal stem cells, which are precursors of different con-
nective tissues [48]. Mesenchymal stem cells are located at the pe-
riosteum and bone marrow, and they can differentiate into many
other celltypes, e.g., osteoblasts, cartilage cells and fat cells [48].
Osteoblasts are located at the bone surface, where they synthesize
new bone. Since individual osteoblasts cannot create new bone
themselves, they function together and organize themselves into
bone forming units or bone multicellular units (BMUs) called os-
teons [20]. When osteoblasts create new bone, they synthesize col-
lagen and other proteins, which form the organic matrix of bone [1].
Then hydroxyapatite and a small amount of other minerals together
form the mineralized bone matrix [1]. During bone formation, those
osteoblasts that become surrounded by the bone matrix differenti-
ate into osteocytes. Other osteoblasts remain on the surface of the
new bone and differentiate into bone lining cells. The rest of the
osteoblasts remain as such or undergo apoptosis [48]. Osteoblasts
have receptors for vitamin D, estrogen and PTH, and they secrete
factors such as RANK-ligand which activates osteoclasts [50].

Osteocytes are bone cells which are surrounded by the bone
matrix. With their long branches they connect to other osteocytes

Dissertations in Forestry and Natural Sciences No 147 7
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and lining cells [20]. They are believed to be the bone sensing cells,
i.e., one of their properties is to sense strains inside bone. They
secrete growth factors which activate lining cells or stimulate the
osteoblasts [20]. It is believed that they are able to direct both bone
remodeling according to strain direction and repair damage due to
fatigue [51].

Lining cells cover the whole bone surface. They are differenti-
ated from osteoblasts and are flat-shaped. Lining cells can release
calcium from bone by activating osteoclasts if the calcium concen-
tration is too low in blood. They also protect bone from dissolv-
ing chemicals and detect hormones which initiate bone remodel-
ing [1, 20, 48].

2.3 BONE STRUCTURE

Based on their general appearance, bones can be classified into
short, flat or long [1]. Short bones, such as vertebral bodies, have
about similar lengths in all directions, and their shape varies from
cuboidal to irregular. Flat and long bones, such as the femur or
scapula, have one or two dimensions that are much longer than the
others. Long bones, such as the femur, consist of a tubular dia-
physis at the middle and expanded meta- and epiphyses at both
ends (Figure 2.1) [1]. Cartilage covers these bone ends so that in-
side joints there is almost frictionless connection to other bones.
The other long bone surfaces, except for the connection points with
tendons, ligaments and connection points of joint-enclosing mem-
branes, are covered by a periosteum [1].

The tubular diaphysis and thin surfaces of epiphyses and meta-
physes consist of cortical bone, and the rest of the bone tissue is
trabecular bone, as shown in Figure 2.1. In the mature human
skeleton, around 80 weight percent is cortical bone [1]. Cortex and
trabecular bone have a similar matrix composition and nano struc-
ture. However, cortical bone is much more dense and has lower
porosity (~10 %) [1, 21] than trabecular bone, which consists of in-
terconnected small rod- and plate-like elements. The porosity of
human trabecular bone is between 50-90 % [1, 52], and the pores
between the rods and plates are filled with bone marrow, similarly
as the interior of the diaphysis. Since the surface-to-volume ratio
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is higher in trabecular bone than in cortical bone, it undergoes a
higher remodeling rate [1]. Therefore, trabecular bone responds to
altered mechanical stimuli faster than cortical bone. The spongy
structure in trabecular bone may also absorb load energies [20, 53].

At the microscopic level, cortical bone consists of cylindrical
units called osteons [1,54] (Figure 2.1). At the center of each osteon
there is a Harvesian canal which includes blood vessels, lymphatic
vessels and occasionally nerves. The canaliculi, which branch ra-
dially from the central canal, include the processes of osteocytes
[20, 55]. The Harvesian canals connects periosteal and endosteal
surfaces [1]. Osteons are distinguished and bounded by cement
lines [54], which define the remodeling lines of bone [20].

2.4 BIOMECHANICAL PROPERTIES OF BONE

The bones in our body bear the loads which the body experiences
during everyday life [42, 56]. The mechanical properties of bone
can be characterized using mechanical tests where bone is com-
pressed, stretched, twisted or indented. These properties may dif-
fer depending on the geometrical scale of interest [57]. The result is
typically viewed by presenting the forces as a function of the defor-
mations [48, 58]. The data can also be transformed into stresses σ
and strains ε, which are geometry-free measures (Figure 2.2). The
stress is defined as the applied force divided by the area of the
sample, whereas strain is the deformation of the sample divided
by its original length [59]. Thus these are material properties rather
than structural properties. If the bone is exposed to only a small or
moderate stress, it behaves elastically, i.e., it is able to return to its
original shape when the load is released. The curve at the elastic
region is a straight line, and the coefficient of the slope is called
the elastic or Young’s modulus E, and it represents the intrinsic
stiffness of the bone. The region where the deformations of the
bone are permanent is called the plastic region, which is separated
from the linear region by the Yield point. Bone strength refers to
the force or stress where the bone ultimately fails, i.e., the stress,
where the bone reaches its maximum stress, after which it declines
rapidly. Ductility describes how much the bone is able to deform at
the plastic region before it reaches its ultimate failure. Toughness
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describes how much work is needed to break the bone, i.e., how
much energy it can absorb, and it is calculated as the area under
the stress-strain curve.
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Figure 2.2: The stress-strain curve of bone is divided into elastic region, where bone recov-
ers to its original shape after loading, and plastic region, where deformations are perma-
nent. These two regions are separated by the yield point.

Typical ultimate strengths and Young’s moduli of human cor-
tical bone are presented in table 2.1. The ultimate strength and
Young’s modulus are also dependent on the strain rate. When
the strain rate grows from extremely slow to high impact strains
(from 0.001 to 1000 1/s) the ultimate tensile strength approximately
triples and the Young’s modulus doubles [58, 60]. Thus, bone has
viscoelastic properties [61,62], but within the range of physiological
loading bone viscoelasticity can often be neglected [63, 64].

Table 2.1: Material properties of femoral cortical bone, where σC is the ultimate compressive
strength, σT is the ultimate tensile strength and E is the Young’ modulus [58, 65]

σC (MPa) σT (MPa) E (GPa)
Longitudinal 193 133 17.0

Transverse 133 51 11.5
Shear 68 3.3
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The femoral strength is measured by loading the whole bone or
part of it until fracture. The loading conditions can mimic those
found during the stance phase as the femur is loaded axially [66–
70], or a fall on the side when the load direction is lateral [71–74]. In
both loading scenarios, the load is directed to the femoral head and
the shaft is constrained with a holder. In side-fall loading, also the
lateral side of the major trochanter is supported. In experiments,
the angle between the diaphysis and load vector typically varies
from 0◦ [75, 76] to 15-25◦ [29, 69], and the loading rate varies from
very low (0.5mm/min [26]) to a physiological loading rate (30mm/s
[64]).

2.5 OSTEOPOROSIS

Osteoporosis is defined by the World Health Organization (WHO)
as ”a systemic skeletal disease characterized by low bone mass
and microarchitectural deterioration of bone tissue with a conse-
quent increase in bone fragility and susceptibility to fracture” [77].
Thus, low bone mass is an important factor for increased fracture
risk. However, other factors of bone quality, such as geometry, mi-
crostructure and bone composition, also contribute to skeletal fra-
gility [6, 7, 20, 78, 79]. Osteoporotic fragility fractures occur most
commonly at the wrist, spine and hip [8] of which hip fracture ex-
hibits the highest mortality rate. Among 65 years old women, the
mortality rate at 6-months after a hip fracture increases from a base-
line of 1.5 % to 7.5 %, and the mortality rate of men increases even
more [80].

In osteoporotic bone, the BMU remodeling is out of balance,
i.e., more bone is being resorbed by osteoclasts than is formed by
osteoblasts [21]. This imbalance may result from increased bone re-
sorption, decreased bone formation or a combination of both pro-
cesses.

Women above 50 comprise the largest osteoporotic patient pop-
ulation. This is mostly a result of the decline in estrogen lev-
els after menopause, which both increases the imbalance between
bone resorption and formation and increases the number of BMUs
[21, 81]. Therefore, 80 % of hip fractures occur in women and 90 %
of hip fractures occur in individuals older than 50 [81]. Since the
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surface-to-volume ratio is higher in trabecular bone than in cortical
bone, the imbalanced bone remodeling affects trabecular bone more
quickly [20]. Therefore, increased porosity and decreased number
of trabeculae per volume unit are more prevalent at an early stage
of osteoporosis than changes in the cortical bone [1, 20]. Most of
the osteoporotic fractures occur in regions with high amounts of
trabecular bone and a thin cortical shell, such as at the epiphysis of
the wrist, the femoral neck or the spine [82].

2.5.1 Risk factors and prediction of fracture

More than 80 risk factors for osteoporosis have been recognized
[83,84]. These can be divided into risk factors related to bone mass,
clinical risk factors, geometrical risk factors and microarchitectural
risk factors. Many of these can be used for fracture prediction.

Osteoporosis results in a lower bone mass. The current golden
standard to diagnose osteoporosis and to predict fractures is to
measure the areal BMD at the femoral neck or lumbar spine with
DXA imaging (see section 3.2) [7,13,16,85–87]. The measured BMD
is compared to healthy subjects and a T or Z score is calculated [16].
In the T score, the patient’s BMD is compared to that of healthy
young adult females and in the Z score, the patient’s BMD is com-
pared to the BMD of persons of the same age and gender [5]. The
following thresholds are used to diagnose osteoporosis [5, 16]:

1. Normal: BMD is above -1 standard deviation (SD) of the av-
erage adult healthy young females. (T-Score ≥ -1)

2. Low bone mass (osteopenia): BMD is between minus one and
minus 2.5 SD of young healthy adult females (-1 > T-score ≥
-2.5)

3. Osteoporosis: BMD is below 2.5 SD of the reference mean of
young adult females. (T-score < -2.5)

4. Severe or established osteoporosis: BMD is below 2.5 SD of
the mean of reference standard of young adult females and
the patient has a history of at least one fragility fracture.

When the BMD at the femoral neck decreases by one SD, the
hip fracture risk increases 2.6-fold [16]. In addition, an accelerated
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rate of BMD loss increases the fracture risk. If the loss in BMD
at the femoral neck in men is over -0.034 g/cm2 in 4.6 years, the
fracture risk is 6.3-fold compared to men who maintained their
BMD over time [88]. The ability of BMD to predict fractures is
generally the same as the ability of blood cholesterol to predict
heart diseases or the ability of blood pressure to predict the risk
of stroke [81, 89]. However, BMD alone is only a moderate predic-
tor of fractures. Trochanteric femoral fractures are better associated
with low BMD whereas, e.g., for cervical fractures the femoral ge-
ometry seems to play a significant role [90]. BMD explains around
half of the bone strength [91, 92]. More than half of the patients
with fragility fractures are classified as being osteopenic, not os-
teoporotic [19, 93]. BMD’s ability to discriminate between fracture
and non-fracture groups is moderate. The discrimination ability is
usually indicated with the area under the receiver operator char-
acteristic (ROC) curve (AUC) , and BMD has typically a value be-
tween 0.6-0.75 [84]). Therefore, DXA alone is not sufficient to de-
termine which individual will experience a fragility fracture. Thus,
the predictive ability of DXA alone is not cost-effective enough to
recommend its use in population screening studies [89].

Several clinical risk factors have been identified for fragility frac-
tures that are independent of BMD including history of fracture,
demographic and physical characteristics, use of other medication
such as glucocorticoids, family history of fracture, cigarette smok-
ing, ample alcohol consumption, and low bodyweight [81, 84]. Age
is the most significant risk factor, even greater than BMD. Within
women aged 55-85, the impact of age on the fracture risk is 11 times
higher than the impact of BMD [94]. With respect to the other risk
factors, parental hip fracture and use of glucocorticoids are strong
predictors, whereas smoking and alcohol consumption are milder
risk factors for fragility fractures [84]. Physical condition and mus-
cle strength are associated with fracture probability since they affect
the individual’s probability to fall [95, 96].

FRAX is a fracture risk assessment tool developed by WHO [97].
In FRAX, the clinical risk factors, with or without BMD, are com-
bined to form a multivariate Poisson regression model. This returns
a 10-year prediction for the fracture risk. FRAX’s ability to discrimi-
nate between people with or without fragility fracture in the future
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varies depending on whether BMD is included in the regression
model. When BMD is not used in the model, the AUC is around
0.65, and it increases up to 0.75 when the BMD is included [98].
When BMD is not included in FRAX, it is less able to discriminate
hip fractures than BMD alone, but the discrimination ability in-
creases slightly over that of BMD alone when the BMD is included
into the FRAX model [98].

The geometry of the proximal femur has been shown to play
a significant role in fracture risk [99], especially in cervical osteo-
porotic fractures [90]. Different geometrical parameters, such as the
thickness of the femoral neck and shaft cortices, and especially the
femoral neck-shaft angle and hip axis length, can discriminate frac-
ture and control groups [90, 100, 101]. Interestingly, a large neck-
shaft angle is associated with both increased fracture risk and a
more urban lifestyle [99, 102]. The structure of bone has also been
shown to correlate with bone strength and fracture risk [103–106].
However, most of the current fracture risk prediction tools, such as
FRAX, do not take account of hip geometry. Usually, geometrical
parameters have to be measured manually, which makes them less
suitable for clinical use.

2.5.2 Treatment of osteoporosis

The consequences of osteoporosis can be managed with lifestyle
modifications, which include maintenance of mobility and stability
in order to prevent falls, the cessation of smoking and reduction
of alcohol consumption, and prevention of deficiency of nutrition.
Especially, an appropriate amount of vitamin D and calcium intake
are recommended for every patient with osteoporosis [8, 107].

Osteoporosis treatment can be divided into antiresorptive drugs
and anabolic drugs. Bisphosphonates, such as alendronate, rise-
dronate and zoledronate, reduce the number of BMUs and amount
of resorption of bone at each BMU by guiding osteoclasts to apop-
tosis [107]. Raloxifene inhibits bone resorption by having estrogenic
actions on bone [81]. Denosumab inhibits RANK ligand which is
one of the primary signals for bone resoption [8]. Anabolic drugs,
such as the parathyroid hormone, induce the activity of osteoblasts
and therefore bone formation [8].
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3 Radiographic methods for
prediction of fragility frac-
tures

3.1 X-RAY ABSORPTIOMETRY

Wilhelm Röntgen discovered X-rays and their ability to pass mate-
rials opaque to visible light in 1895 [108,109]. A few weeks after the
discovery, X-rays were used for medical imaging for the first time
when he imaged his wife’s hand [108].

In modern native X-ray imaging, an X-ray tube emits radiation
which is directed through the patient. The portion of attenuated
radiation at each location is measured with an X-ray film or a digital
detector. When radiation interacts with atoms in the penetrated
matter, the x-rays attenuate as

I(x) = I0e−μx (3.1)

where I is the intensity at location x, I0 is the initial intensity and μ
is the linear attenuation coefficient, which depends on the density
and atomic number of the material. The radiation dose of a single
lumbar vertebrae or pelvis radiograph is around 0.7 mSv [34].

3.2 DUAL ENERGY X-RAY ABSORPTIOMETRY

DXA is a method which is used to measure a patient’s areal (2D)
BMD or bone mineral content (BMC) quantitatively. It is the golden
standard to diagnose osteoporosis. In DXA imaging, two X-ray
images are taken using two different X-ray energies. For example,
with the GE Lunar Prodigy instrument (GE Lunar, Madison, WI),
the mean energy levels are 38 and 70 keV [110]. Therefore, it is
possible to solve mathematically the contribution of bone and soft
tissue in the X-ray attenuation. Since the amounts of fat and lean
tissue vary from patient to patient, the attenuation coefficient of soft

Dissertations in Forestry and Natural Sciences No 147 15



Sami Väänänen: Functional imaging of proximal femur

tissue is first calculated at a location adjacent to bone:

I ′1 = I ′0,1e−Mlαl,1 e−Mfαf,1

I ′2 = I ′0,2e−Mlαl,2 e−Mfαf,2 ,
(3.2)

where I ′i and I ′0,i are attenuated and unattenuated intensities at a
location adjacent to bone for two different energy levels, Mj is the
areal mass for lean (l) and fat (f), and α is the attenuation coefficient
specific for each energy level and material. The ratio between the
fat and lean tissue can be solved from a pair of equations (3.2) to
obtain the attenuation coefficient for soft tissue αs. Subsequently,
areal BMD can be calculated from the measurements at bone site

I1 = I0,1e−Mbαb,1 e−Msαs,1

I2 = I0,2e−Mbαb,2 e−Msαs,2 ,
(3.3)

where b denotes bone and s denotes soft tissue. Finally, BMD, i.e.,
Mb, is

BMD =
ln

(
I2

I0,2

) (
αs,1
αs,2

)
− ln

(
I1

I0,1

)

αb,1 − αb,2

(
αs,1
αs,2

) . (3.4)

The errors due to geometric magnification during imaging are
automatically corrected in current DXA devices (such as GE Lunar
Prodigy and iDXA). Therefore a reconstructed DXA image is a par-
allel projection of the 3D object. The radiation dose of a total body
scan is 0.004 mSv in older GE Lunar Prodigy instrument. In newer
iDXA instrument this has increased to 0.03 mSv due to higher res-
olution (0.25 × 0.30mm versus 1.05x0.60 mm). However, this is still
less than one twelfth of that delivered in a hip radiograph [34].

3.3 COMPUTED TOMOGRAPHY

In CT imaging, a X-ray tube and detector are rotated around the pa-
tient and a sequence of X-ray images are taken from different direc-
tions around the patient [111]. In early days, pencil or fan-shaped
X-ray beams were used, but modern CT devices commonly use spi-
ral multi-detector or cone beam geometries [112]. A 3D attenuation
map is reconstructed from the acquired images. Conventionally, the
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reconstruction has been performed with back projection techniques.
However, the use of iterative reconstruction methods is increasing
since they enable the application of image correction techniques not
possible with back projection. Reconstruction quality depends on
the number of projections and the signal-to-noise ratio in each pro-
jection, which both are related to the radiation dose on the patient.
Usually, the attenuation is presented as Hounsfield units (HUs),
where -1000 is defined for air and 0 for water.

In QCT imaging, a CT calibration phantom is imaged at the
same time with the patient. The phantom is used to compare the ra-
diodensity of an unknown material to the radiodensity of dipotas-
sium phosphate or hydroxyapatite, which are the most common
calibration materials. The volumetric BMD of the object can be cal-
culated from this relation. When volumetric BMD is known, it can
be related to the mechanical properties of bone by using experimen-
tally found relationships, e.g., to its Young’s modulus (E) [113–118].
Thereafter, this information can be used in FE modeling. One of the
most widely used relations [115] is

E = 8920ρ1.83
ash (3.5)

where ρash denotes the ash density of bone.
Several parameters derived from QCT, such as femoral neck

cross-sectional area, femoral neck axis length and volumetric tra-
becular BMD at the neck or trochanter, have been shown to correlate
with the strength of the proximal femur [119–121].

DICOM standard

Digital Imaging and Communications in Medicine (DICOM) is the
standard for handling, storing, printing and transmitting informa-
tion in medical imaging. DICOM images include both the medical
image and information about the patient and the imaging parame-
ters.

Figure 3.1 presents the coordinate system for 3D images in the
DICOM standard [122]. This coordinate system is used in study
V. The origin of the DICOM coordinates is placed arbitrarily and it
is usually constrained on the device in use. The directions of the
coordinate axes are constrained to the patient and therefore it is
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called the patient-based coordinate system. X-axis points from the
right hand to the left hand, Y-axis from anterior to posterior and Z-
axis from the toes to head. Therefore, if the patient is turned from
the supine to the lateral position during imaging, also the X and Y
coordinates turn 90 degrees related to the imaging device. In the
DICOM standard, field ImagePositionPatient defines the location
of the center of the pixel in the upper-left corner of each 2D image
slice. Field PatientPosition describes the positioning of the patient
in the imaging device. The orientation of the image related to the
patient coordinate system is defined in field ImageOrientationPa-
tient. It is a 6x1 vector which the three first elements define the
direction of the first row of the image and last three elements de-
fine the direction of the first column of the image according to the
dicom coordinates.
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Figure 3.1: Coordinates used in DICOM standard. The origin is arbitrary. X, Y and Z
axes are from the right hand to the left hand, from anterior to posterior and from inferior
to superior. DICOM standard defines the center of top left pixel of a slice with these
coordinates. Then it defines the orientation of the slice as the direction of first row and first
column.

3.4 ULTRASOUND METHODS FOR OSTEOPOROSIS DIAG-
NOSIS

Ultrasound is also commonly used to determine bone quality. Ra-
diographic methods mainly measure the BMD in two or three di-
mensions, whereas ultrasound information may be related more to
the bone structure and the organic and inorganic composition [123].
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Most commonly, the speed of sound and ultrasound attenuation are
measured in heel, partly since it is an easy location to access and
because its trabecular structure responds to bone loss in osteoporo-
sis [124]. The agreement between calcaneal ultrasound measure-
ment and fracture risk has been found to be similar than in femoral
DXA based BMD, but the patient groups they classify as high risk
partly differ [125]. In principle, ultrasound back-scatter methods
allow measurements at osteoporotic fracture sites such as at the
hip [126, 127].

Dissertations in Forestry and Natural Sciences No 147 19



Sami Väänänen: Functional imaging of proximal femur

20 Dissertations in Forestry and Natural Sciences No 147



4 Mathematical Methods

Several mathematical methods were utilized in the present studies.
They are shortly introduced in following sections.

4.1 LANDMARK POINTS

Landmark points are commonly used in morphometrics. They are
points which preserve their correspondence between and within
object populations [128]. Therefore, the location of a landmark can
be recognized from all images taken from similar objects. In other
disciplines, landmarks may be called by different names, e.g., an-
chor points, control points or markers. Landmarks are commonly
divided into three classes [128]:

1. Anatomical landmarks are locations which are biologically
meaningful in an organism. An example is the tip of the mi-
nor trochanter in the proximal femur.

2. Mathematical landmarks are located in an image according to
a mathematical or geometrical property of the object’s shape
or intensity. An example is the center of the femoral head,
where the center is defined by fitting a ball inside the head.

3. Pseudo landmarks are points which are placed based on ana-
tomical or mathematical landmarks. They can be placed for
example with equal spacing on the surface of an object be-
tween two anatomical landmarks.

4.2 GENERALIZED PROCRUSTES ANALYSIS

Generalized Procrustes analysis (GPA) removes similarity transfor-
mations, i.e., translations, rotations, reflections and scaling, between
landmark sets [129]. Let Xi be the set of landmarks in p dimensions
for the i:th patient or sample, and let P(i)

j be the j:th row of the Xi,
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i.e., the j:th landmark. Then GPA minimizes the sum of square

e =
n

∑
j=1

m

∑
u<v

∥∥∥P(u)
j − P(v)

j

∥∥∥2
. (4.1)

where ‖·‖ is the Euclidean vector norm. In other words, GPA min-
imizes the sum of the distances from each landmark to the same
landmark in the other objects.

The difference between ordinary and generalized Procrustes ana-
lysis is that in the GPA, the rotation is not aligned according to one
of the samples but according to the average rotation when symme-
try in the alignment is preserved.

In ordinary Procrustes analysis, the landmarks are aligned by
first setting the mean of each column of Xi to zero in order to re-
move translation. Then the scale of each Xi is set to unity by nor-
malizing the average distance from the origin to P(i)

j to one. Finally,
the landmark sets are rotated to the position of one of the land-
mark sets by using a rotation matrix Ri = UVT, where U and V are
calculated with singular value decomposition (SVD)

X1Xi = USVT, i �= 1. (4.2)

In GPA, an average rotation matrix is calculated between the land-
mark sets with several iterations.

4.3 THIN-PLATE SPLINE

Thin-Plate Spline (TPS) is an elegant tool for describing deforma-
tion in a whole image when the movements of n landmark points
from location Pi to location Vi are known. In 1D, TPS is equivalent
to cubic splines. It extends to 2D or 3D with only small modifica-
tions [130, 131].

TPS deformation is analogous to deformations in a thin metal
plate. It minimizes the energy that is needed to bend the metal
plate on the point constraints, i.e., landmarks [130]. The bending
energy of a metal sheet with small deformations follows a bihar-
monic equation Δ2U = 0, where U is the solution of the equation:
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U(r) = |r|3 in 1D, (4.3)

U(r) = r2 log(r2) in 2D, and (4.4)

U(r) = |r| in 3D, (4.5)

where r is the Cartesian distance from the origin [130].
The TPS mapping F(X) maps X from R

p to R
p, where p is

the dimension of the problem, i.e., if X is X = [x], X = [x, y] or
X = [x, y, z], then accordingly F(X) = fx(X), F(X) = [ fx(X), fy(X)]
or F(X) = [ fx(X), fy(X), fz(X)]. The calculation of TPS mapping
F(X) requires a few steps. First, the distance between two land-
marks is defined as rij = |Pi − Pj|. The TPS transformation is con-
structed from two parts: a non-linear part where the bending en-
ergy is introduced and a linear transformations which introduces
no work against elastic force. Matrix K forms the non-linear part
and it includes the values of U for all paired combinations of the
landmarks in their original position

K =

⎡
⎢⎢⎢⎣

0 U(r12) · · · U(r1n)
U(r21) 0 · · · U(r1n)

...
...

. . .
...

U(rn1) U(rn2) · · · 0

⎤
⎥⎥⎥⎦ . (4.6)

Matrix B forms the linear part which allows bending-free global
rotations, translations, scaling and shearing of the object

B =

⎡
⎢⎢⎢⎣

1 P1
1 P2
...

...
1 Pn

⎤
⎥⎥⎥⎦ . (4.7)

The non-linear and linear parts can be combined as

L =

[
K B
BT O

]
, (4.8)

where O is a matrix including zeroes and T means matrix transpose.
When the landmarks at transformed locations V (size n × p, non-
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linear deformations) are combined with p × p + 1 matrix of zeroes
(introduces linear transformations) Y = (VT|O)T, the non-linear
and linear coefficients of TPS mapping (W and A) can be calculated
[130] by inverting L as

[W|A] = [L−1Y]T. (4.9)

Hence, W and A include the coefficients of the bending and similar-
ity transformations, and therefore their sizes are p×n and p× p+ 1,
respectively.

With help of the above equations the TPS mapping F(X) =
[ f1(X), . . . , fp(X)] in any point X along dimension j is defined as

fj(X) = Aj[1|X]T +
n

∑
i=1

wjiU (|Pi − X|) , j = 1, . . . p, (4.10)

where Aj is the jth row of A and wji is the element at jth row and ith
column of W . In other words, F(X) defines where a point X moves
to when the landmark points P are moved to the corresponding
locations V, and the energy needed for bending is minimized. Proof
for this theory can be found from [130].

Especially during optimization, it may be beneficial to change
the direction of TPS mapping and role of landmark points P and
V. In this formulation, the TPS map describes from which location
the intensities or other information on the original image must be
taken when the location is known in the result image. The benefits
in this formulation are as follows. The locations of the points X in
the result image can be determined to form a grid since they do not
move. Secondly, if TPS is used several times, the inverse of L needs
to be calculated only once since now source landmark points do not
move. Lastly, it can be showed [131] that Vi in TPS is differentiable,
which enables to use gradient-based optimization algorithms with
TPS.

In Figure 4.1, a set of landmarks is located at the 2D contour
of the femur. In the second image, the femoral neck-shaft angle
is decreased by 10◦, and the landmarks at the femoral head are
moved accordingly. In addition, the landmark at the lateral side of
the distal shaft is moved one centimeter in the lateral direction. The
rest of the second image is deformed according to the deformation
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field f (X) from TPS.

Figure 4.1: Image of a proximal femur before and after it is deformed with TPS. Deforma-
tion is defined by rotating the neck axis by 10 ◦ and by moving the landmark at the lateral
side of the distal shaft one centimeter in the lateral direction. The grid in the second image
has also been deformed according to the deformation field calculated with TPS

4.4 PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) aims to simplify multivariate
data. It is a statistical technique which describes a set of correlated
variables with a smaller number of linearly independent variables
called principal components, eigenvalues or modes. PCA was first
invented by Karl Pearson in 1901 [132] and later invented inde-
pendently by Hotelling [133]. Many research fields have their own
name for PCA. Mathematically, PCA is an orthogonal linear trans-
formation that maps the data into a new coordinate system. In
this new coordinate system, the first coordinate axis is aligned with
the direction of the largest variance of the data. The second axis
is orthogonal to the first one, and aligned with the second largest
direction of variation, and so on.

In PCA, observation data is collected into one matrix X, where
each row includes the data of one variable, e.g., from one sensor,
and each column includes data from one object. X is centralized by
diminishing the mean value of the observations from each row of
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X. The principal components of the matrix X are usually calculated
with SVD

X = USVT (4.11)

where U and V are the right- and left-hand eigenvectors and there-
fore orthonormal matrices, and the diagonal matrix S includes the
eigenvalues. The many effective algorithms for solving SVD explain
its popularity. The principal components of X can be calculated
with

Y = UTX (4.12)

and if a set of principal components Y is given, then the original
observation can be reconstructed by X = UY.

The strength of PCA is that when the SVD is truncated (which
means that only L from the most significant principal components
(YL) are used) the resulting observation matrix XL = UYL is the
nearest possible matrix to X with rank L. The matrix XL is the
nearest to X in the sense that the Frobenius norm between the X
and XL is the smallest possible one [134].

4.5 STATISTICAL SHAPE AND APPEARANCE MODELS

The shape and density of human organs vary between individuals.
Statistical shape modeling (SSM) is a method that interprets this
variation seen in medical images [135–137]. SSM contains a statis-
tical model of the shape, which represents any shape of the object
with a vector of a few varying scalar values. If also density informa-
tion is included into the model, it is called the statistical appearance
model (SAM) [138]. Both SSM and SAM are mathematically based
on PCA.

In SSM, the shape of the object is represented with a set of points
called nodes. In 2D, they are distributed over the contour of the
object and in 3D over the surface of the object. The nodes are con-
nected in 2D with lines called edges which produce the contour. In
3D, the triangles called faces produce the surface. This description
of the average object is then deformed to the shape of each individ-
ual object in the training set of SSM, for example, with the help of
landmarks and TPS. SSM requires that the node sets are isotopo-
logical, i.e., the anatomical location of each node is preserved in all
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individual shapes.

Each isotopological coordinate of each node of SSM represents
one measurement or variable in PCA. Therefore, for a 3D object
with m nodes and n samples or images, the size of the observation
matrix X = [x1, x2, · · · , xn] is 3m × n, where xi is the ith individ-
ual. The translation, scaling and rotation between the nodes can
be removed with GPA. Finally, the mean value of each coordinate
between the individuals x must be removed from X. After PCA is
applied to X, it can be represented as

X = x + UY, (4.13)

and each individual can be approximated using the equation

xi = x + Uyi, (4.14)

where U and Y originate from PCA. Variable Y has size L × n ,
where L is the number of shape parameters, and it includes the
values of shape parameters for each individual in the training set
of SSM. The values of Y are easier to interpret if they are scaled
with SD of the samples, i.e., shape parameter b for an individual is

b = y/ SD(Y). (4.15)

The appearance can be included into the model by adding nodes
also inside each object and by representing the interior with trian-
gles in 2D and with tetrahedrons in 3D, which are called elements.
A density value for each element gim can be captured when the
digital image is treated as a step function and it is integrated over
each element [116]. The q density values can be set after the node
coordinates in X, when the size of X is 3m + q × n. Since nodes
and densities have different scales, X needs additional normaliza-
tion X, i.e., X = X/ SD(X). Otherwise the usage of PCA is similar
as described earlier and follows the equation 4.14. A few instances
of SAM of the proximal femur are presented in Figure 4.2.
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Figure 4.2: Three first modes of variation for the shape and density of a femoral SAM,
when the mode values are varied between -3 and +3 standard deviations.

4.6 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) represents a machine learning
technique, which is designed to mimic the function of the central
nervous system of a human being. ANN can be used for exam-
ple for function fitting, pattern recognition, data clustering or time
series analysis. The first ANN that combined the function of hu-
man brains and mathematical logic was introduced in 1943 [139].
However, nowadays the development of ANN has moved far from
its living counterpart and its recent development has been mostly
based on the theories of signal processing and statistics [140].

The strength of ANN is that it is able to approximate any mul-
tidimensional nonlinear function [141]. ANN is also noise tolerant
and is able to learn without supervision [140]. This means that no
prior information or model about the modeled system is needed.
Simply a large input and output data will suffice. The ANN’s cores
are (artificial) neurons that are interconnected together (Figure 4.3).
Each neuron takes in one or multiple signals, which come from in-
puts or from other neurons, weights them with positive or negative
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Figure 4.3: (a) A neuron of ANN has three main parts: synapses (inputs), accumulator
and activation function. In the accumulator, the inputs are weighted with positive or
negative weights and thereafter summed together with a bias term. The sum is then fed to
an activation function which produces the output signal of the neuron. (b) An ANN with
simple multilayer perceptor architecture. This ANN has three inputs, three neurons in the
first hidden layer, four neurons in the second hidden layer and one neuron in the output
layer.
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weight and then sums them up. The resulting summed signal is
then augmented or reduced by an activation function, which shape
can be for example linear bipolar, thresholding or sigmoidal, de-
pending on the architecture of the ANN [140].

Connections between the inputs, neurons and output(s) form
the network. The most widely used and the oldest architecture of
ANN is multilayer perceptor (MLP) [142]. In this topology, the neu-
rons are aligned into layers and each neuron in a layer is connected
only with the neurons in the layers next to it (Figure 4.3). The bene-
fit of this kind of architecture is that it is implemented in all neural
networks software, including Matlab, although other architectures
also exist. For example, in the bridged multilayer perceptor, the
neurons are connected over layers and in a fully connected cascade
architecture, the neurons are set into series such that all neurons
are connected with each other and with the input and output [142].
The benefit of these architectures compared with MLP architecture
is that less neurons and connections between neurons are needed
to model a complex system. As a downside, all ANN software are
not able to train these other types of architectures [142, 143].

Normal feed-forward ANN (which means that ANN does not
include feed-back loops) is most commonly trained with the error
back propagation method [141]. In this method, ANN is set parallel
with the modeled system and the error e, for example, the mean
square error, between the output of ANN and the original system is
calculated. The error e can be presented as a function of all weights
w of all the neurons e(wi), i = 1 . . . M where M is the number of
neurons times the number of weights in one neuron. The error e
can then be minimized, for example with the method of steepest
descent or the Levenberg-Marquardt algorithm [141].

4.7 GENETIC ALGORITHM

Genetic algorithm (GA) is a computational method that solves both
constrained and unconstrained optimization problems. It is based
on natural selection and evolution, first introduced by Charles Dar-
win [144]. During optimization, GA utilizes processes found in
nature such as inheriting, mutation, selection and recombination
[145].
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GA usually starts with a random population of individuals. In
practice, an individual i is a vector of scalar values xi, which is of-
ten called the chromosome. The function F, which one optimizes,
is a function of x, and therefore F(xi) gives a score for an indi-
vidual i. The scores are then used to rank the individuals. Based
on a selection rule, some of the best individuals are defined as the
elite and fed as children to the next iteration round. The worst in-
dividuals are abandoned and the rest of the children are created
by recombining the parents. Some of the parents are mutated dur-
ing recombination based on a stochastic rule in order to create new
combinations. In addition, new random children can be created.
The iteration is continued until one of the stopping criteria, such as
maximum number of iterations or a score below a set threshold, is
achieved [145, 146].

4.8 DIGITAL IMAGE CORRELATION

In a digital image correlation (DIC) technique, the surface strains
of an object under loading are measured optically [41, 147]. The
surface is covered with a random dot or some other optically visu-
alizable pattern, and the object is imaged with one or several digital
cameras (Figure 4.4). First, the initially captured image is divided
into small elements each of which has unique patterns. Then sur-
face images are captured at constant time intervals during loading.
At each time interval, the captured image is correlated with the
initial or previous image in order to obtain element displacements.
If two or more cameras are used, the recorded displacements are
not restricted to 2D, but the 3D surface and thus 3D displacements
of the object can be reconstructed. The 3D element locations are
computed from the stereo view of the cameras using rules obtained
from stereography ( [41]).

The strains can be calculated from surface displacements. For
each traced point, the two closest neighbors are found and triangles
are formed by combining these points. Rigid transformations are
removed by first transforming both initial and deformed triangles
into an xy plane such that the base vertex moves to the origin and
the vector from the base vertex to the first neighbor is aligned with
the x-axis. Thereafter, motion between the vertices (P and Q ) at the
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Figure 4.4: DIC principle. Two cameras track the object surface during loading. The
surface has been painted with a pattern which makes it possible to track surface movements
during stress. When the tracked points are divided into triangles, the strains on the surface
can be calculated.

initial triangle and vertices (p and q ) at the deformed triangle can
be described with linear mapping φ as

φ1 = a11X1 + a12X2
φ2 = a21X1 + a22X2

, (4.16)

where

A =

(
a11 a12
a21 a22

)
=

(
p1 q1
p2 q2

)(
P1 Q1
P2 Q2

)−1

. (4.17)

Then deformation gradient tensor F can be calculated as

F =
∂φ

∂X
= ∇φ. (4.18)

The right Cauchy-Green deformation tensor C is

C = FTF. (4.19)
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Finally, the Lagrangian strain tensor E can be calculated as

E =
1
2
(C − I) . (4.20)

In E, the strains in the directions of the x- and y-axes are E11 = εxx
and E22 = εyy, respectively, and the shear strain is E12 = E21 = εxy
[147]. All other strains can be calculated from these strains. For
example, the first and second principal strains are the eigenvalues
of E, and they describe the amount of strain in the directions of the
highest (tensile) and lowest (compressive) strain. Von Mises strain
εv, which gives a measure of total strain, can be calculated as

εv =

(
1
2

[
(εxx − εyy)

2 + (εyy − εzz)
2

+ (εzz − εxx)
2 + 6(ε2

xy + ε2
yz + ε2

zx)
]) 1

2

,

(4.21)

which in a 2D case can be simplified to

εv =
√

ε2
xx − εxxεyy + ε2

yy + 3ε2
xy. (4.22)

If the vertices are close to each other, they are noise-sensitive; this
noise can be reduced by using spatial averaging for the calculated
strains.

Even though DIC is a well recognised method in other dis-
ciplines [148, 149], it is not widely used in biomechanics. It is
more common to measure surface strains only locally with strain
gauges [26, 66, 150, 151]. Recently, the strains of the proximal femur
have been measured in 2D [152], but unfortunately 2D strains only
provide a qualitative validation of 3D FE models. In 3D, strains
have been measured in rat femurs [153] and in one composite fe-
mur [154]. Recently, human cadaver femurs were measured with
DIC in the side-fall configuration [155].

4.9 FINITE ELEMENT MODELING

In addition to experimental tests, the mechanical behavior can be
studied by using numerical modeling. The first finite element (FE)
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model of bone was developed at the beginning of the 1970s [156].
In FE modeling, the geometry is divided into small regions called
elements, which are assembled together. Usually, these elements
are tetrahedra or hexahedra, and inside an element, the material
properties are constant. Each element can experience three different
compressive or tensile stresses or strains and six shear stresses or
strains. Hooke’s law mathematically describes the relation between
the stresses and strains for a linear elastic material as

σi,j =
3

∑
k=1

3

∑
l=1

cijklεkl , (4.23)

where i and j are 1, 2 or 3, and cijkl is the elastic coefficient. Since
the elements are small, the shear stresses are symmetric (for stresses
σij = σji, when i �= j); this symmetry yields in total six different
strains and stresses. In the tensor form, equation (4.23) would be

�σ = C�ε (4.24)

where �σ = (σ11, σ22, σ33, σ12, σ13, σ23)T, �ε = (ε11, ε22, ε33, ε12, ε13, ε23)T

and C is the stiffness matrix.

In the case of linear isotropy, the material has the same proper-
ties in any direction, when the stiffness matrix has a reduced form

C =
E

(1 + ν)(1 − 2ν)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1 − 2ν 0 0
0 0 0 0 1 − 2ν 0
0 0 0 0 0 1 − 2ν

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(4.25)
where E is Young’s modulus and ν is Poisson’s ratio. Since the
shear (G) and bulk (K) moduli can be expressed with Young’s

modulus and the Poisson’s ratio
(

G = E
2(1+ν)

, K = E
3(1−2ν)

)
, two

independent variables describe a linear isotropic material.

A common flow diagram describing the procedure required for
the construction of an FE model of a whole bone is presented in
Figure 4.5.
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Figure 4.5: Common flow diagram of FEM construction.

Imaging and segmentation

The first step in the building of an FE model is to acquire the ge-
ometry of the object. Provided that the model is built based on
a CT or MR image, the object must be extracted from the image
by segmentation. The outer surface is necessary although internal
structures such as the boundary between the cortical and trabecu-
lar bone are important. If the image quality is good and the bor-
der between the object and the surrounding tissue is well-defined,
the segmentation can be done automatically by utilizing threshold-
ing, basic image processing tools, Boolean operations and regional
properties, among others. Otherwise, manual segmentation may be
needed.

Meshing

In meshing, the segmented geometry is divided into a collection
of simple subdomains called elements, with vertice points that are
called nodes. The adjacent faces of the neighboring elements must
share their vertices. The size of the elements can be constant over
the whole geometry. However, to reduce the computational effort,

Dissertations in Forestry and Natural Sciences No 147 35



Sami Väänänen: Functional imaging of proximal femur

the element size can be varied from site to site depending on how
exact the calculations are needed in that specific region. For exam-
ple, in the femur, the element size is often smaller in the epiphyses
than in the diaphysis [25]. Several commercial or open source tools
such as Mimics (Materialise, Leuven, Belgium), Hypermesh (Altair
Engineering, Inc., USA), Ansys ICEM (Ansys Inc., Cannonsburg,
PA, USA) or CGAL mesher, can be used for mesh generation.

There are many metrics which can be used to measure tetrahe-
dral mesh quality. These measures are often normalized using a
scale ranging between 0 and 1. Then, the measure approaches zero
for a poorly-shaped tetrahedron and attains the maximum value of
unity for the regular tetrahedron. The solid angle of a vertex of a
tetrahedron defines the area which is bordered on the surface of a
unit sphere when the sphere is centered at the vertex and the other
vertices are projected on its surface. The minimum solid angle θmin
is the smallest of these [157]. The solid angle can have values be-
tween 0 and 2π and therefore it can be scaled on [0, 1].

Other common metric is the radius ratio ρ, which is the ratio be-
tween inradius and circumradius of a tetrahedron [157]. The aspect
ratio of a triangle is defined as the length of the longest edge di-
vided by the orthogonal distance from the edge to the third vertex.
The aspect ratio can have values between 1 and infinity [158, 159].
As a rule of thumb, aspect ratios over 40 are usually closely exam-
ined but numeric round-off errors should start to appear only when
the aspect ratio exceeds 1000 [159].

Material properties

In order to extract material properties for a bone FE model, the
vBMD values of a 3D QCT image can be converted to Young’s mod-
uli values based on experimentally determined relationships [160],
such as that described in equation (3.5). Several strategies are used
for extracting a Young’s modulus value from an image for each el-
ement. The simplest approach is to find the closest voxel for each
element or to calculate a weighted average of the closest neigh-
bors [118]. A more sophisticated, and often more accurate, ap-
proach is to treat the image as a piece-wise linear 3D equation and
to calculate numerical integral over this equation or its approxima-
tion at the region of each element [116, 117].
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Boundary conditions

The mechanical environment is applied to an FE model by altering
its boundary conditions. Boundary conditions describe restrictions
of the movement and the displacements or forces that are directed
on the object. For example, if the aim of the simulation is to repro-
duce a mechanical testing experiment, the forces and displacements
recorded during the experiment are applied to the model.

Solving

When the boundary conditions are known, an FE solver calculates
the partial differential equation, which describes the mechanics of
the model. It finds the best solution for all elements where the nodal
values match between adjacent elements. For example, Ansys and
Abaqus are commonly used in biomechanics to solve the simulated
mechanical conditions imposed on the model.

Evaluation of the FE result

Evaluation of the results depend on the purpose of the modeling.
For example, it can be a validation of the model against an ex-
periment, finding a deeper understanding about the internal forces
in bone, or predicting the behavior of bone under extreme condi-
tions [161]. Part of the evaluation is the visualization of the stresses
and strains on the surface or in the intersection of the femur. For
validation, the stiffness of the whole geometry or surface strains of
the model can be compared with those from an experiment with
similar boundary conditions and proper surface strain measure-
ments, such as strain gauges or DIC [64, 162].

Modal assurance criterion (MAC) compares displacements be-
tween two models or between a model and an experiment with a
large amount of data [163,164]. The comparison is performed glob-
ally, and MAC returns one scalar value which is comparable with
correlation coefficients. The MAC value is more sensitive to large
differences and relatively insensitive to small ones [165]. The MAC

Dissertations in Forestry and Natural Sciences No 147 37



Sami Väänänen: Functional imaging of proximal femur

is calculated as

MAC(φ
(1)
i , φ

(2)
j ) =

(
(φ

(1)
i )Tm(k)φ

(2)
j

)2

(
(φ

(1)
i )Tm(k)φ

(2)
i

) (
(φ

(1)
j )Tm(k)φ

(2)
j

) (4.26)

where φ
(1)
i is the displacement vector of the ith timestep of model 1,

φ
(2)
j is the displacement vector of the jth timestep of model 2, and

m(k) is the diagonal of the mass matrix. When the nodes between
the models are matched by finding the nearest neighbor between
each node, k is 1 in (4.26), and when the nodes are matched by
interpolating their values from model 1 to model 2, the value of k is
2 [159]. If the mass matrix is not available, such as in the stationary
case, all displacements have equal weight [159].

4.10 3D SHAPE RECONSTRUCTION BASED ON 2D IMAGES

If the 3D shape of the object is reconstructed based on the 2D image,
the same analyses and interpretation techniques which are usually
valid only with CT or MR images can also be used with 2D im-
ages [166]. Therefore, methods which register the pre-captured 3D
image or a shape model and 2D image(s) have been explored [166].
However, most commonly, the aim of these methods is to perform
an intra-subject registration where pre-interventional CT or MRI
image is aligned with intra-interventional 2D image(s), most com-
monly using rigid registration [166–169]. These kinds of meth-
ods are critical, for example, for image-guided endoscopy [170]
and image-guided surgery [171]. However, they are not suitable
for reconstructing a new unknown 3D shape, even though simi-
lar sub-parts are used in both approaches, such as the correspon-
dence calculation between the 3D and 2D images during the regis-
tration [166].

Reconstruction of the 3D femoral shape and density based on
solely 2D information is not possible. Instead, some prior infor-
mation is needed. A straightforward way to implement this infor-
mation is to use rules regarding shape. For example, these can be
that the shaft is defined to be circular [172] or the femoral head
can be defined to be a half sphere [40]. A more common ap-

38 Dissertations in Forestry and Natural Sciences No 147



Mathematical Methods

proach is to use a general shape template, which includes informa-
tion about the average shape of the object, or to utilize a statistical
model which includes information about both the average shape
and the shape variations between individual objects. The shape for
a general shape template can be obtained with visual evaluation
where the bone in a training set with the most average features
is chosen [35, 173–175]. Another option is to choose a bone with
the most average shape parameters [40, 176] or based on similarity
measures between the training bones and the bone in the 2D im-
age [38]. One can also use the mean shape of the training bones
as the template [36]. The SSMs [177–180] and SAMs [181, 182] are
the most common statistical models used as templates. The infor-
mation about the density distribution can be implemented in SAMs
voxel by voxel [182–184], or by giving a density value for each el-
ement or node in SAM [185]. The density variation inside each
element can also be described with a function, for example, with
the Bernstein polynomial [181, 186, 187].

The general shape or SSM template and 2D image(s) can be
registered by using features usually identified as landmarks [36]
or extracted bone contours [35, 173, 175, 176, 179]. On the contrary,
SAM-based templates are usually registered using intensity based
registration [39, 181, 188]. In intensity-based registration, the simi-
larity between digitally reconstructed radiographs [189] (described
in more detail in section 6.4.1) created from the 3D template and the
2D images is maximized. Intensity-based registration has also been
used with SSM-based templates, but in that situation the density
information in the SSM has to be implemented based on an average
distribution [190] or it is based on the cortical thickness [191].

Usually, at least two projections from the object are used in the
2D-to-3D reconstruction [35, 173, 175–177, 179, 186]. Two or more
projections enable some information in all three dimensions about
the shape and the density of the object. On the contrary, when
reconstruction is based only on one projection [36,38,40,182], no in-
formation is available about the direction perpendicular to the pro-
jection plane. Therefore, the reconstruction relies fully on a priori
information about this direction. On the other hand, the benefits
are that the dose during imaging can be minimized and also de-
vices where multi-view imaging is not possible can be used for the
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reconstruction. In general, including a second projection in the re-
construction significantly increases its accuracy, whereas adding a
third or additional projections provides only a marginal additional
improvement in the accuracy [183,190]. Most commonly, the recon-
struction is done using X-ray images [36,38,40,173,175–177,179,180],
but also DXA-based methods have been introduced [35, 182]. Pro-
jected CT images have been used as reference images [186] mostly
to evaluate some methodological aspects.
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5 Aims of the present study

The main aim of this thesis was to develop a method that would be
able to reconstruct the 3D shape and internal density of the proxi-
mal femur from a single 2D DXA image.

The specific aims of this thesis were:

• To evaluate the accuracy of the reconstruction and its effect
on the outcome of FE modeling

• To develop a method that would be able to estimate 3D rota-
tion of the femur in a 2D radiograph

• To evaluate the strength of the proximal femur by measuring
full surface strains with the digital image correlation method

• To automatize the method to reconstruct the 3D shape of the
proximal femur and to further automatize the development
of patient-specific FE simulations based on the reconstructed
shape.
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6 Materials and Methods

This thesis consists of five independent studies (I-V). Materials and
methods used in the studies are summarized in table 6.1.

Table 6.1: Materials, imaging and methods used in studies I-V. The samples/subjects used
for the different image-sets are divided into sets A-F.

Study Samples Imaging Method
I,II Proximal cadaver

femurs (A)
CT,
(DXA)

Training and testing of
2D-to-3D reconstruction and
FE analysis

III Proximal cadaver
femurs (A)

CT Training set for estimation of
femoral 3D orientation

Cadaver femurs (B) CT Training set for estimation of
femoral 3D orientation

Femurs from
clinical subjects (C)

CT Testing set for estimation of
femoral 3D orientation

IV Composite femurs
(D)

CT, DIC Mechanical testing experi-
ment

V Proximal cadaver
femurs (A)

CT,
DXA

Training and testing of
2D-to-3D reconstruction and
FE analysis

Pelvises from clini-
cal subjects (E)

CT Training of 2D-to-3D recon-
struction

Pelvises and fe-
murs from clinical
subjects (F)

CT,
DXA

Testing of 2D-to-3D recon-
struction and FE analysis

6.1 SUBJECTS, SAMPLES AND IMAGING

The material sets have been summarized in table 6.2. All sets were
imaged with a CT device. The CT devices and the parameter set-
tings used during imaging are listed in table 6.3.

Dissertations in Forestry and Natural Sciences No 147 43



Sami Väänänen: Functional imaging of proximal femur

Cadaver proximal femurs (A)

Sample set A consisted of proximal cadaver femurs (Table 6.2),
which have been collected at Kuopio University Hospital starting
from 2008. Ethical approval for the collection of samples was granted
by the National Authority for Medicolegal Affairs (permission num-
ber: 5783/04/044/07). None of the cadavers had any pre-existing
conditions that might have affected bone metabolism. The collec-
tion of the femurs continued during the studies and therefore the
number of samples increased from study I-II to study III and V.
The femurs were scanned using a CT device (Table 6.3). A CT cal-
ibration phantom (Mindways Software Inc.,Austin, TX, USA) with
known dipotassium phosphate (K2HPO4) content was scanned si-
multaneously with the bones. It was first used to calibrate the CT
numbers to BMD and thereafter the BMD values were mapped to
Young’s moduli using equation (3.5). The femurs were also im-
aged with GE Lunar Prodigy DXA scanner (GE Healthcare, Madi-
son, WI) using resolution 1.05 × 0.60mm. In addition, eleven of the
newest bones were imaged with GE Lunar iDXA DXA scanner with
resolution 0.25 × 0.30mm.

Table 6.2: Samples used in studies I-V. The sample sets were: (A) cadaver proximal femurs,
(B) cadaver femurs, (C) femurs from clinical subjects, (D) composite femurs, (E) pelvises
from clinical subjects and (F) pelvises and femurs from clinical subjects.

Study Samples n Ages Gender BMD
mean±SD M F (g/cm2)
(min-max)

I,II A 18 52 ± 15 (26-82) 16 2 0.869 ± 0.165
III A 24 52 ± 15 (18-82) 20 4 0.897 ± 0.171

B 9 - - -
C 19 - 6 4 -

IV D 6 - - -
V A 37 49 ± 16 (18-82) 33 4 0.892 ± 0.160

E 47 89 ± 8 (39-74) 29 19 -
F 14 75 ± 3 (69-78) 0 14 0.785 ± 0.105
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Table 6.3: CT devices and their imaging parameters used in studies I-V. The sample sets
were: (A) cadaver proximal femurs, (B) cadaver femurs, (C) femurs from clinical subjects,
(D) composite femurs, (E) pelvises from clinical subjects and (F) pelvises and femurs from
clinical subjects. Radiation dose is measured with volumetric CT dose index (CTDIvol)

Sample Device Tube Exposure CTDIvol Reso-
set Voltage (mAs) (mGy) lution

(kV) (mm)
A Siemens Defini-

tion AS
120 210 16 0.4-0.6

B Siemens Defini-
tion Flash

120 300 29 0.4-0.2

C Siemens Defini-
tion AS+

120 52 4 0.7-0.8

D Siemens Defini-
tion Flash

120 300 29 0.2-0.3

E Philips Ingenu-
ity CT

140 63 6 0.5-0.9

F Philips Prece-
dence 6P

120 100 - 0.7-2.0

Second cadaver femur set (B)

The second cadaver femur set (B) was collected at the Erasmus Uni-
versity Medical Center in Rotterdam (Table 6.2). The set of nine
femurs originated from seven donors. The bones were imaged with
a CT scanner (Table 6.3). No medical history was available.

Femurs of clinical subjects (C)

The third set (C) included hip CT images from clinical subjects (Ta-
ble 6.3). The subjects were originally imaged for vascular examina-
tion. Both left and right femurs in the ten CT images were used,
except one femur that was partly outside the field of view and was
therefore excluded from the set.

Composite femurs (D)

Six fourth generation medium-sized left composite femurs (D)
(model number: 3403) from Sawbones (Pacific Research Laborato-
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ries, Inc., Vashon Island, WA, USA) were acquired for a mechanical
testing experiment. The bones were imaged with a CT scanner (Ta-
ble 6.3).

Pelvises of clinical subjects (E)

Pelvises of 32 total hip arthroplasty patients (E) were imaged with
a CT scanner (Table 6.3) prior to operation. The CT images of the
pelvises contralateral to the arthroplasty were used in study V.

Pelvises and femurs of clinical subjects (F)

The last set (F) included left pelvises and femurs of 14 women from
Osteoporosis Risk Factor and Prevention Study (OSTPRE) cohort
[192, 193]. The left hips of the subjects were imaged with a CT
device (Table 6.3) and with GE Lunar Prodigy DXA scanner [127].
The study was approved by Kuopio University Ethical Committee
(Decision 80/2008).

Preprocessing of the CT images

In studies I-III, the cadaver femurs were segmented with a custom-
made software written in Matlab, where the size of the voxels were
equalized in the images by resizing them to isotropic voxels of size
0.6 mm and the femurs were segmented using threshold of 1285
HU (0.89 g/cm3). Thereafter, uniform femur images were created
by filling the gaps on the femur surface with an image closing op-
eration. Thereafter the gaps in the interior were filled with a hole
detection algorithm in Matlab.

The proximal cadaver femurs were preprocessed again for study
V. The images were resized to isotropic voxel size of 0.4 mm and
segmented using Mimics (version 15.1, Materialize, Belgium). The
CT images of the clinical subjects in studies III and V were also
segmented using Mimics.
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Figure 6.1: Landmarks on the 3D femur from different views (a-d). The 2D landmarks in
studies I and III (e-f). Landmarks on the pelvis from different views (g-i).
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6.2 LANDMARKS

6.2.1 3D landmarks

After segmentation, a set of landmarks was placed on the proximal
femurs using semiautomatic software in Matlab. First the center of
the distal shaft, the tips of the minor trochanter, the head and the
proximal trochanter were located manually from the 3D rendering
of the femoral surface. Thereafter the femoral shaft was aligned
vertically. Subsequently, the code placed all other landmarks auto-
matically. The landmark locations are presented in Figure 6.1 and
the locations are listed in detail in the original studies II, III and V.

In studies I-II and IV, the first 27 landmarks were used for the
femur. In study III, landmarks 28–36 were added onto the boundary
between the neck and trochanter to capture the effect of rotation on
the width of the projected major trochanter. In study V, landmark
37 was included into the set of the first 27 landmarks in order to
guarantee smooth mesh warping during building of the femoral
statistical appearance model (SAM) in the region of the superior
trochanter.

The landmarks 1-12 and 14-17 on the pelvis were set manually
using a custom-made graphical user interface in Matlab. Land-
marks 13 and 18-20 were set automatically based on the manual
landmarks and surface features. The landmarks are presented in
Figure 6.1.

6.2.2 2D landmarks

Two-dimensional landmarks were set on the projected CT images of
the femur and on the DXA images of the cadaver femurs. In study
I six anatomical landmarks were set on the contour (Figure 6.1) and
then mathematical landmarks were placed between them. In study
II, the femoral 2D landmarks 1–27 were set on the projected CT im-
ages and DXA images semi-automatically. The locations of the 2D
landmarks corresponded to the projected locations of the 3D land-
marks. In study III, the 2D landmarks were set on the projected
femoral CT images by projecting the 3D landmarks to 2D. The pro-
jected landmarks near the contour were moved automatically on the
contour to two-dimensional anatomical locations. The landmarks in
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study III were also set manually with help of 2D active appearance
model for a random subset of projections to evaluate the difference
between the manually and automatically set locations. The effect of
altering the method of landmark setting on the estimated rotation
was not significant.

6.3 TEMPLATES

6.3.1 Average templates

Several bone templates were created during these studies. In study
I, two 2D images on the coronal plane called offset and depth im-
ages were used to describe the 3D shape of the proximal femur. The
intensity in the offset image represented the distance from a coro-
nal plane to the posterior surface of the femur, and the intensity
in the depth image represented the thickness of the femur in the
anterior-posterior direction. The average shape of the femurs in the
training set was calculated by first removing the similarity transfor-
mations between the 2D landmarks of the femurs with generalized
Procrustes analysis (GPA) and then by averaging the location of
each landmark. The average template was then created by warping
each offset and depth image to the average shape with thin-plate
splines (TPS) and thereafter by averaging the intensities between
the images. This template described only the average shape of the
femurs.

The template in study II was created similarly as in study I ex-
cept that GPA and TPS were used in 3D. This means that the av-
erage locations of the landmarks were calculated in 3D. Thereafter,
each 3D CT image was deformed to the mean shape with TPS and
the average BMD value between the femurs was calculated for each
voxel. Therefore, the template in study II described both average
shape and average 3D bone mineral density distribution for the fe-
murs.

6.3.2 SAM templates

In addition to the average shape, SAM also describes the variation
of the shape and internal density of the object. In study III, both 3D
and 2D SAMs were created. In 3D, the average shape of the femurs
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was first created similarly as in study II. Then an average mesh with
roughly 100 000 nodes and 600 000 tetrahedral elements was created
with iso2mesh open source software [194]. The mesh was warped
to the shape of each femur and a vBMD value for each element was
extracted from its 27-neighborhood in the CT image. Thereafter,
the SAM was constructed as described in section 4.5. The SAM of
the pelvis in study V was created similarly as the femoral SAM in
study III.

Since in study V the FE models were created based on the fem-
oral SAM, there were high demands on its mesh quality. There-
fore, it was created with Hypermesh (11.0, Altair Engineering, Inc.,
Troy, USA) mesh generation software with high quality four node
tetrahedral elements (283 000 nodes, 1 637 000 elements, maximum
edge length of 1.5 mm). Thereafter, the mesh was deformed to the
shape of each femur in the training set and the vBMD values were
captured for the elements with numerical integration of the vBMD
field using Bonemat software [117,195]. Subsequently, the SAM was
built (section 4.5).
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Figure 6.2: Percentage of the variation explained as a function of number of used modes
for different SAMs which were used in the studies.

The compactness of the SAMs varied between the models (Fig-
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ure 6.2). The two-dimensional femoral SAM from study III and the
3D femoral SAM in study V were the most compact ones, i.e., the
least number of modes were needed to explain a certain percentage
of the total variation of the shape. On the other hand, the SAM of
the pelvis was the least compact one. The SAM of the pelvis was
built based on the CT images from the clinical subjects. Therefore,
the radiation dose had to be smaller than with cadaver femurs. This
decreased the signal-to-noise ratio in the texture of the pelvis im-
ages, which most likely had an effect on the SAM by decreasing its
compactness.

6.4 RECONSTRUCTION OF 3D SHAPE FROM 2D IMAGE

The main aim of this thesis was to develop methods which can re-
construct the 3D shape and internal density distribution of a proxi-
mal femur based on a 2D image, i.e., to perform a 2D-to-3D recon-
struction. All developed reconstruction methods included a step
where a digitally reconstructed radiograph (DRR) created from the
3D template of the femur was equalized with the base 2D image
referred to as the reference image.

6.4.1 Digitally reconstructed radiograph

The DRR was created differently for a 3D image, such as a CT im-
age or a voxel-based template, than for a mesh. For a 3D image,
the DRR was created by scaling the intensity in each voxel to BMC
and then by projecting the template in the anterior-posterior direc-
tion by tracing magnification-free rays which went through the 3D
image. Therefore, for a 3D image I presented in DICOM coordinate
system, the BMC of DRR in position q = (q1, q2) is

DRR(q) =
n

∑
i=1

I(q1, i, q2) (6.1)

where n is the number of voxels in the anterior-posterior direction.
Thereafter, DRR can be scaled to areal BMD.

In study V, the template was mesh-based since it was created
by sampling a femoral SAM. The DRR was created from the mesh
by first converting the mesh to a 3D image. A 3D image, which
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enclosed the mesh, was created and the voxels which enclosed a
node or the center of an element were determined. Intensity values
for the determined voxels were mapped from the corresponding
element centers or from their nodes. Since the resulting image was
sparse, the gaps were filled with image closing operation using a
properly-sized mask during the operation. The intensity values for
these new object voxels were copied from their closest voxel with an
intensity value. Thereafter, the DRR was calculated with equation
(6.1).

6.4.2 Reconstruction of the 3D femoral shape and internal den-
sity from 2D reference image

In studies I-II the estimation, or reconstruction, was done by placing
the 2D landmarks on the 2D reference image. Thereafter, the fem-
oral average template was deformed to the shape of the reference
image with TPS. Subsequently, the internal vBMD of the template
was normalized such that the areal BMDs of the DRR created from
the template and the BMD of the reference image agreed in each
pixel.

In study V, the 3D shape was reconstructed by registering the
SAMs of the femur and pelvis simultaneously to the reference im-
age of the clinical subject. The optimal translations, rotations, scale
and mode values of the SAMs were found by minimizing the sum
of the absolute difference (SAD) between the DRR of the SAMs and
the reference image. In a reference image of the hip, the acetabulum
partly overlaps with the femoral head. Therefore, SAM of the pelvis
was included. If this overlapping is not treated correctly during the
registration, then the reconstruction results in too high BMD values
in the femoral head. During reconstruction, the genetic algorithm
in Matlab, which was used as the optimization algorithm, created
a population of instances from the SAMs (Figure 4 in the original
study V). Then the DRRs were created from the instances and a cost
function was calculated between the DRR and the reference image.
The cost function was the sum of three parts: SAD, mesh quality
and anatomical position.

During reconstruction and creation of DRR, the 17 most signifi-
cant modes of the femoral SAM and the 5 ones of the SAM of pelvis
were varied to fit the models to the DXA image. For the femoral
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SAM 95 % of the variation was explained by 17 modes and for the
SAM of the pelvis 5 modes explained 37 % of the variation (Fig-
ure 6.2). Seventeen most significant mode values were used in the
femoral SAM since this number was found to be sufficient for the
reconstruction method in an initial test with cadaver femurs. The
SAM of pelvis was only used to take into account the overlaying
bones in the DXA image. Therefore, the reconstruction of the fe-
mur should be the main focus and the pelvis should reserve only a
few parameters in the reconstruction process. Hence, only the first
5 modes were used since based on visual evaluation they were able
to describe the main alteration in the shape of the pelvis.

The SAD was calculated at the region Ω which covered the ac-
etabulum, the distal part of the pelvis and the proximal femur. The
cost was defined as the value of SAD in g/cm2 divided by the num-
ber of pixels covered by the bones in the region Ω.

The mesh quality was defined with the scaled minimum solid
angle (αmin) [157] (section 4.9). It was calculated using the imple-
mentation in the iso2mesh toolbox [194]. The cost was defined as
percentage of the elements with αmin lower than 0.5.

In order to maximize the accuracy of the registration at the re-
gion of the hip joint, three landmarks were set to the joint space of
the hip in the reference image. The distance from these points to
the contour of the femoral head in the DRR was calculated. In addi-
tion, an arch of a circle was set on these three landmarks in the joint
space and the distances from the arch to the landmarks 1, 2 and 6 of
the SAM of the pelvis were calculated along the coronal plane. One
additional landmark was set to the tip of the minor trochanter in the
reference image and the distance between this landmark and land-
mark 4 in the femoral SAM was calculated after landmark 4 was
projected onto the contour of the DRR. The cost of the anatomical
position was the sum of these distances in millimeters diminished
by one and scaled by 0.05. Diminishing one millimeter from the
distances allowed some tolerance in the position and scaling nor-
malized this cost to the same scale with other costs.

6.4.3 Evaluation of the reconstruction accuracy

In studies I and II, the shape was reconstructed by deforming the
template to the shape of the projection obtained from the CT image.

Dissertations in Forestry and Natural Sciences No 147 53



Sami Väänänen: Functional imaging of proximal femur

The 18 proximal femurs were divided into training and test sets,
nine bones each, and the template was created based on the training
femurs. In study I, the effect on reconstruction was evaluated when
the number of bones used for the template was varied from one to
nine. Study II included two test cases. In the first test case, the
effect of the reconstruction method itself was evaluated by using
solely the CT image of the estimated bone to construct the training
set. In the second test case, the template was created based on the
nine training bones and the reconstruction was evaluated with the
nine test bones. In study II, the reconstruction was also performed
using the DXA images of the femurs in the test set, i.e., DXA images
of the femurs were used as reference images.

In study V, the femoral SAM was constructed using 34 proximal
cadaver femurs (three femurs were excluded from the set since their
shafts were too short for SAM). The SAM of the pelvis was con-
structed using 32 CT image sets of the pelvises of clinical subjects.
The reconstruction accuracy was evaluated with a test set, which
included DXA images of the hips of 13 clinical subjects. However,
in order to see how the errors in the estimation accumulated dur-
ing reconstruction, the method was also evaluated with the cadaver
proximal femur using the leave-one-out test. In this test, one SAM
was built for each set of 33 cadaver femurs and the projections of
the CT images and the DXA images served as reference image.

The reconstruction accuracy was evaluated by comparing the re-
constructed femoral shape with the shape from the CT image of the
same femur. Therefore, the reconstructed shape and the CT images
were superimposed with the ICP algorithm. In studies I, II and
V, the volumetric difference between the shapes and the mean and
maximum point-to-surface distances between the surfaces of the CT
image and reconstruction were calculated. These parameters were
calculated at the region of whole femur and at different parts of the
femur, i.e., at the head, neck, trochanter and shaft. In study I, the re-
constructed BMD inside the femur varied in the coronal plane but
was constant in the anterior-posterior direction. On the contrary,
the BMD distribution was reconstructed in 3D in studies II and
V. Therefore, in these studies, the average difference in the vBMD
reconstruction was calculated for the whole proximal femur and
for each sub-region. In study II, the difference was calculated by
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computing the mean of the voxel-by-voxel absolute differences. In
study V, the vBMDs were compared element-by-element between
the isotopological reconstructed mesh and the mesh that was di-
rectly warped to the shape of the test femur.

6.5 MECHANICAL SIMULATION OF PROXIMAL FEMUR

The effect of the 2D-to-3D reconstruction errors on the mechanics
of the femur was evaluated. Linear elastic FE models with isotropic
material properties were created based on the reconstructed shapes.
Their stiffness, strains and stresses were compared with those from
the FE models created using the CT image of same femurs. A load
equal to force during the stance phase was directed on the femoral
head [196]. In studies I and II, the load was 2.25 times the body
weight. The force was directed to femoral head 12.5◦ medial from
the shaft axis direction. In study V, the load was 1.5 times body
weight and 10◦ [197] medial from shaft axis. The movement of the
nodes at the distal shaft were constrained in all directions. In stud-
ies I and II, the mesh was created by meshing the voxel-based re-
constructed images and CT images with about 65000 elements and
15000 nodes with iso2mesh open source meshing software [194] in
Matlab. In study V, the SAM created isotopological FE meshes au-
tomatically. The same isotopological mesh was also warped to the
shape of each test femur, and these meshes were used as the ref-
erence FE model. Isotopogical mesh means that each node in all
meshes is located in the same anatomical location. Around 283000
nodes and 1600000 elements were used in the mesh. In study V
modal assurance criterion (MAC) was calculated between the refer-
ence and reconstruction-based FE models in addition to other pa-
rameters.

In study V, the element quality was globally good in all automat-
ically generated patient-specific isotopological meshes. However, in
some meshes a few elements (4 ± 6, median 0, maximum 29) were
distorted, which led to zero-volume elements. FE solvers cannot
handle these elements. Therefore, an automatic Matlab algorithm
was iteratively used to enhance their quality:

1. The algorithm called Ansys to import the mesh and to deter-
mine excessively distorted elements (using the CHECK com-
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mand)
2. If zero-volume elements were detected, one of the nodes was

moved by a distance equal to 1/3 of its distance to the nearest
adjacent node not belonging to the treated element. The node
to be moved and its direction were defined according to:

(a) If two coincident nodes were found, one of the two was
moved towards the direction normal to the largest ele-
ment face of the adjacent elements

(b) If one node was lying on the face of the element formed
by the other 3 nodes, the node was moved along the neg-
ative normal of that face

6.6 ROTATION OF FEMUR IN 2D RADIOGRAPHS

The orientation of a femur in a 2D radiograph is an essential infor-
mation both in clinical diagnostics and for 2D-to-3D reconstruction
methods. In clinics, the misalignment of femur may lead to incor-
rect interpretation of the radiographs. On the other hand, a 2D-
to-3D reconstruction method which does not take account of the
3D orientation internally requires external estimation of the orien-
tation. Therefore, in study III, a method that estimates the 3D orien-
tation of a femur in a 2D image was developed. In the method, the
shape and intensity of the femur in a 2D image was parametrized
with 2D SAM and the relation between the parameters and known
rotations in the training set was described with a linear regression
or ANN. A benefit in ANN, compared to a linear regression, is that
it is able to utilize also non-linear relations in the regression. To
build a training set that is large enough for ANN, a 3D SAM was
constructed from 33 cadaveric femurs. Then the SAM was sampled
500 times by varying the ten first modes randomly between ±2 SD
to produce 500 artificial femurs. Variation of the mode values was
limited to ±2 SD since growing the variation range over ±2 SD lead
to rough surface on the sample bones. This indicated that the shape
was not any more realistic. Ten first modes explained 75 % of the
total variation of the model (Figure 6.2). It was decided that this
number of modes were enough since it resulted to sufficient alter-
ation in the bone shapes. The test set included 19 femurs, which
were segmented from clinical CT images.
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Both the artificial femurs in the training set and the femurs in
the test set were rotated in three different directions and a DRR was
created in each orientation:

1. ±20◦ with 2◦ division around the shaft axis (internal/external
rotation).

2. ±10◦ with 2◦ division around the medial-lateral axis (flex-
ion/extension of hip).

3. by simultaneous rotation around both axes, i.e. ±16◦ with
4◦ division around the shaft axis and ±8◦ with 4◦ division
around the medial-lateral axis.

A DRR set with internal/external rotation (rotation type 1) was cre-
ated also for the original proximal femurs in the training set.

The 2D SAMs in study III were built by using an active shape
model toolkit (Manchester University, Manchester, UK) [135, 138].
For each rotation type, one 2D SAM was created based on the arti-
ficial femurs. Thirty first modes, which explained 98 % of the vari-
ation in the set, were extracted for each DDR in the training set.
A fourth statistical 2D SAM was build based on the DRR set of
the original proximal femurs. The four 2D SAMs were registered
to DRRs of the corresponding test set and the mode values were
extracted also for them.

The effect of rotation on mode values of the 2D statistical shape
and appearance models were evaluated with the help of the original
training femurs. The 3D femurs were rotated around shaft axes in
±10◦ with 2◦ division and DRRs were created. The 2D landmarks
of the projections were set based on 3D landmarks. Then the 2D
active shape and appearance models were created with Cootes soft-
ware and mode values for each projection were extracted. The effect
of rotation in each mode was evaluated by comparing the standard
deviation of the mode value due to rotation (mean of standard de-
viations of each bone due to rotation) against total variance of the
mode value.

A linear regression model was trained with the mode values of
the SAM of the original proximal femurs and with the correspond-
ing known rotations. To avoid over fitting, an optimal number of
coefficients for the linear regression was found with the leave-one-
out test by adding modes with the highest correlation to the model
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as long as the accuracy of the estimation increased and maximum
was found. As a result, the 16 the most significant modes that ex-
plained 96 % of the total variation of the 2D SAM were used in the
linear regression model.

Three different ANNs were trained with the mode values from
the three SAMs of the artificial femurs and with known rotation
angles. The least varying modes had no significant effect on the
prediction accuracy of the rotation. Therefore, it was decided that
all 30 modes were used with the ANN. The structure of the used
ANNs was multi-layer perceptor (MLP) with 40 nodes and two hid-
den layers, which showed good performance in a preliminary test.
Finally, the linear regression and the ANNs were used to predict
the rotations in the DRRs of the test sets.

6.7 MECHANICAL TESTING AND MEASUREMENT OF SUR-
FACE STRAINS ON COMPOSITE FEMUR

In study IV, six composite femurs were cut 150 mm below the minor
trochanter and the distal shafts were aligned vertically and embed-
ded to epoxy in depth of 50 mm. The anterior surfaces were sprayed
for DIC with white background and then with black speckle pat-
tern. Lastly, the bones were imaged with a CT scanner (Table 6.3).

The bones were mechanically tested under axial compression
(Figure 6.3). The distal shafts were constrained with a clamp.
The load was measured with a load cell (20 kN Zwick, accuracy
±0.27 %) from the femoral head, while the table where the distal
shaft was attached moved upward with a constant displacement
rate of 1.0 mm/min (±0.15 %). The displacement of the table and
the load from the load cell were recorded.

During mechanical testing, two cameras (4 MPixels, Limess,
Krefeld, Germany) with a frame rate of 4 Hz recorded the anterior
surface of the composite femurs. The 3D surfaces, local displace-
ments and strains were calculated from the stereo view of the cam-
eras using DIC software VIC-3D 2007 (Correlated Solutions, Inc.,
USA).

The 3D surfaces were reconstructed from DIC data and were
registered with iterative closest point algorithm written in Mat-
lab to the orientation of the initial CT image of the corresponding
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Figure 6.3: Six composite femurs were tested under axial compression until fracture. The
anterior surface was recorded with two cameras for DIC. Pan angle of the middle point
between the cameras was 22◦ ± 2.2◦ towards medial from the anterior view. The surface
displacements and strains were calculated from the DIC data.

composite femur. The accuracy of the surface reconstruction was
evaluated. The first and second principal strains were analyzed
one frame before fracture. To evaluate the inter-sample variation,
the von Mises strains were plotted and evaluated for those frames
where all bones were under equal load of 4.9 kN and where all
bones were under an equal maximum von Mises strain of 1.7 %.
The local von Mises strains were investigated against force in the
head-neck junction, i.e., site for the highest strains. The noise in
the DIC data was analyzed. The initial CT images of the compos-
ite femurs were co-registered with Analyze software (Analyze 10.0,
Analyze direct, Inc., KS, USA).

6.8 STATISTICAL ANALYSES

The limit of statistical significance in all statistical tests was set to
p < 0.05.

In study I, Kruskal-Wallis test in SPSS software (v. 14.0, SPSS
Inc., Chicago, IL, USA) was used to evaluate whether the recon-
struction accuracy of the femoral shape was dependent on the num-
ber of femurs in the training set.

In studies I, II and V, linear Pearson’s correlation tests between
the stresses and strains of the FE models were calculated with Mat-
lab (v. 7.6, Mathworks, Inc., Natick, MA)
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In study III, the significance of the difference between the esti-
mation accuracy of the rotation of the linear regression model and
ANN was tested using the paired Wilcoxon signed rank test (Mat-
lab).
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7 Results

7.1 RECONSTRUCTION OF FEMORAL SHAPE AND INTER-
NAL DENSITY FROM 2D REFERENCE IMAGE

The reconstruction accuracy of the shape of the cadaver proximal
femurs for the methods in studies I, II and V is presented in Figure
7.1. The accumulation of the mean surface difference in study V
is presented in Figure 7.2. The reconstruction accuracy of the 3D
vBMD (studies II and V) is presented in table 7.1. As shown in Fig-
ure 7.3, the methods used in studies II and V could both reconstruct
the 3D density distribution of the femur and distinguish the main
parts of the femur such as the cortical and trabecular bone.

Figure 7.1: Mean volumetric difference, and mean and maximum distance difference be-
tween the reconstructed shape of the proximal cadaver femur and the original shape from
a CT image in the region of the whole proximal femur, neck and trochanter. The shape was
estimated using the methods presented in study I, II and V. Projection of the CT image
(Proj), or DXA image from Prodigy or iDXA instrument was used as the reference image
in the reconstruction. The difference in the accuracy between the methods in studies II and
V and the effect of different reference images were minor.
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Figure 7.2: Accumulation of the mean surface difference between the original CT image
and estimated shape at different regions of the femur. Accumulation of the mean surface
difference were evaluated as follows: First the correct (truncated) mode values were given
for the SAM (SAM), then the cadaver proximal femurs were reconstructed by recreating
them such that the training set of the SAM included the tested femur (Rec). Subsequently
the leave-one-out examination was done by excluding the tested bone from the test set
(Leave). Lastly, the reference images of the clinical subjects, where both pelvis and femur
were included, served as the test set (Clin). Projected CT or DXA image from Prodigy or
iDXA scanner was used as the reference image.

Table 7.1: Difference in the vBMD between the reconstructed shape of the proximal cadaver
femurs and original QCT in the region of the whole bone, neck and trochanter (mean ±
SD). The shape and vBMD was estimated using the method in study II or V. The projection
of the CT image or DXA image from Prodigy or iDXA scanner was used as a reference
image in the estimation.

Study Reference Difference in vBMD (mg/cm3)
image Wholebone Neck Trochanter

II Proj 120 ± 8 124 ± 6 131 ± 10
Prodigy 140 ± 11 163 ± 21 161 ± 14

V Proj 176 ± 77 132 ± 18 194 ± 122
Prodigy 178 ± 77 132 ± 20 189 ± 114

iDXA 210 ± 86 127 ± 18 182 ± 98
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Figure 7.3: Representative examples of the estimated shapes and vBMDs using methods
in study II and V. Both methods were able to estimate the vBMD in all three directions
and were able to distinguish the trabecular and cortical bone. In study II, the shape was
reconstructed based on the projected CT whereas in study V the shape was reconstructed
using a DXA image of the hip of a postmenopausal woman. The method over estimated
the BMD values since the training set consisted of middle-aged males with higher BMD
values than that of the test subject.

7.2 MECHANICAL CHARACTERISTICS OF RECONSTRUCTED
FEMUR

The stiffness, which was defined as the ratio between the load on
the femoral head and the displacement of the head, was compared
between CT-based models and models built based on the recon-
structed shape, with the projection of the CT image as a reference
image:

• In work I, the difference in stiffness was 31 ± 25 %, r2 = 0.83

• In work II, the difference in stiffness was −7± 16 %, r2 = 0.83

• In work V, the difference in stiffness was 3 ± 18 %, r2 = 0.78

When the FE analysis was based on clinical DXA images, a linear
regression between the stiffnesses of CT-based and DXA-based FE
models was y = 1.36x + 54.5 with correlation R2 = 0.85 (Figure
7.4).

The MAC value between the reconstruction-based and CT-based
FE models in study V was 0.978 ± 0.016 when projected CT was
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Figure 7.4: (a) Stiffness between CT projection-based and CT-based FE models and (b)
stiffness between DXA-based and CT-based FE models. Evaluation was done with CT
images and DXA images of clinical subjects (set F)

used as reference image and 0.977 ± 0.019 when DXA image from
Prodigy was used as reference image.

7.3 ESTIMATION OF ROTATION IN FEMORAL 2D IMAGE

The effect of rotation on the mode values is presented in Figure
7.5. All modes of both the statistical shape and the appearance
models were affected by rotation but none of the modes were fully
explained by the rotation. The first three modes in the shape and
appearance models were equally related to rotation. The fourth
mode was the first mode that differed between the models with
regards to the rotation. The results suggest that the appearance
model is more affected by rotation than the shape model.

Sixteen modes were included in the linear regression-based pre-
dictive model. The used modes were chosen based on the corre-
lation between the modes and the rotations. The number of used
modes was based on the prediction accuracy of the rotations as a
function of number of modes evaluated with leave-one-out test. The
linear regression predicted the rotation around the shaft axis with
an accuracy of 4.6 ± 3.4◦ when the method was trained with ca-
daver femurs and tested with leave-one-out test. The accuracy was
4.9 ± 5.2◦ when the method was trained with artificial femurs and
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Figure 7.5: Amount of rotation in the 20 first modes of the 2D statistical shape model (a)
and the 2D SAM (b) created from DRRs of CT images of cadaver proximal femurs and
femurs of clinical subjects (total of 52 images). Blue bars describe mode variation (SD)
related to rotation, yellow is the variation not related to rotation and sum of yellow and
blue bars describe total variation of the modes. The DRRs were created after the femurs
were rotated around shaft axis (medial/lateral rotation) between ±10◦ and with division
of 2◦.
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Figure 7.6: Four bone projections derived from estimation of rotation where ANN was
trained with artificial femurs and prediction was tested with clinical femurs. Images B
D, and C E are projected from the same bones with different rotations. Images B and
C, had same estimated rotation, and D and E had same true rotation. In images B and
C, the neck length, size of the contour of the minor trochanter and distance from neck-
trochanter boundary to the most lateral point are nearly equal. In images D and E these
measures differ extensively. Reprinted from Publication Journal of Biomechanics, Vol 45,
Väänänen, S. P., Isaksson, H., Waarsing, E., Zadpoor, A. A., Jurvelin, J. S., & Weinans,
H., Estimation of 3D rotation of femur in 2D hip radiographs, pp. 2279-2283, Copyright
(2012), with permission from Elsevier.
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tested with clinical femur (Figure 3 in study III). When the ANN
was trained with artificial femurs and tested with clinical femurs,
the accuracy of the prediction was 4.0 ± 3.4◦ (Figure 7.6). Hence,
ANN was more accurate than linear regression (p  = 0.018). ANN
predicted the rotation around the medial-lateral axis with mean ab-
solute error of 2.2 ± 1.5◦ and both rotation simultaneously with ac-
curacies of 2.4 ± 2.0◦ and 4.9 ± 4.1◦.

7.4 SURFACE STRAINS IN COMPOSITE FEMUR

All fractures of the composite femurs during mechanical testing
were instant cracks. Therefore DIC with 4 Hz frame rate was not
able to capture images during the ongoing fracture process. The
fractures were located at the neck-trochanter junction except in one
bone, which fractured below minor trochanter. An air cavity located
in the lateral cortex next to the neck axis was the most probable
cause for this atypical fracture pattern. The shape of the femurs and
the thickness of the cortex were highly similar between all femurs
(supplementary Figure 1 in the study IV). In most regions these
differences were in the same order of magnitude as the voxel size
in the CT images.

The load-displacement curves agreed well between the bones in
the linear region except in bone 4, which was clearly stiffer than the
other bones (Figure 7.7). The fracture load varied between 4954 and
6747 N among the bones. The yield properties of bone 2 differed
from those of the other femurs, since its ductility after reaching the
yield point was higher than in the other bones. This higher ductility
is also present in the measured strains since the other bones frac-
tured when the maximum von Mises strain reached 2 % (Figure 7.7)
whereas bone 2 reached Von Mises strain of 4 % before it fractured.

It seems that the local temporal disturbance in the DIC data
was due to the curvature of the surface, and not related to the

1Reprinted from Publication Journal of Biomechanics, Vol 46, Väänänen, S.
P., Amin Yavari, S., Weinans, H., Zadpoor, A. A., Jurvelin, J. S., & Isaksson, H.,
Repeatability of digital image correlation for measurement of surface strains in
composite long bones, pp. 1928-1932, Copyright (2013), with permission from
Elsevier.
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Figure 7.7: (a): Load-displacement curves under axial compression for all six composite
bones (B1-B6). The variation in the fracture load and the slopes of the linear region were
11 % and 26 %, respectively. (b): the von Mises strains within the ROI at the head-neck
junction where the strains were highest as a function of force for all bones. Five bones
reached 2 % strain before fracture. The bone 2 was able to bear almost two times higher
strains before fracture. Furthermore, its strain-versus-force response was nonlinear at high
strains.1
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Figure 7.8: DIC data and its temporal disturbance in a representative femur. (A): The
location of two points 1 and 2. B shows original DIC data and C shows data filtered by
fitting a fifth order polynomial on the signal at the points 1 and 2, respectively. Residual
at each location was calculated by subtracting the fitted curve from the original DIC data.
(D): shows the result when the residuals of points 1 and 2 were correlated with all other
points. Residuals of points near each other were highly correlated. E shows the RMS value
of the residual. Largest RMS values were found from regions where the angle between the
surface and the image plane in DIC was high. (F): Average registration error between the
DIC surface and the CT image surface. The registration error was less than 0.4 mm at the
weight bearing regions. The registration was least accurate at the most anterior points of
the head and major trochanter.1
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strain levels. The disturbance in the data increased with increas-
ing angle between the DIC surface and the image plane (Figure
7.8). On the surfaces parallel to the imaging plane, the disturbance
was around 5 με whereas on regions with a large angle, the dis-
turbance increased to 30 με. Auto-correlations calculated from the
temporal disturbance indicated that the temporal disturbance was
noise since it was memory-free. The surface reconstructed with DIC
agreed well with the surface captured with CT (Figure 7.8). The av-
erage difference between the surfaces was less than 0.4 mm in most
regions. The largest differences were found at the most anterior
location of the head and trochanter.

The highest first principal strains, i.e., tensile strains, and von
Mises strains were found at the superior head-neck junction (sup-
plementary Figure 2 in study IV) and the lowest second principal
strains, i.e., the compressive strains were located in the inferior neck
region. When all bones were loaded with equal force, the inter-
bone variation of the von Mises strain at the region of high strains
was 20-25 % both in the linear range and near fracture (Figure 4 in
the original publication). In the case of equal maximum strain, the
variation in the other regions were 5-10 %. When the strain value
decreased below a threshold value 0.3 %, the variation of strain in-
creased over 40 % in both cases.
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8 Discussion

The aim of this thesis was to develop methods that could improve
the diagnostics of osteoporosis and the prediction of fracture risk,
based on the current gold standard method DXA imaging. There-
fore, in studies I, II and V, methods were developed that can re-
construct the 3D shape and internal density of the proximal femur
with the aid of single 2D image. Then, an FE model which calcu-
lates the mechanical characteristics of the femur was created based
on the reconstructed bone shapes. The femoral strength estimated
based on a DXA image includes the contributions of the femoral
geometry, structure and density. Therefore, it has a good potential
to improve the prediction of the fracture risk of a patient compared
with prediction based on BMD measured with DXA.

Studies III and IV support the developed methods in the three
other studies. In study III, a method that could estimate the 3D
orientation of the femur in a 2D image was developed. This method
is necessary if the 2D-to-3D reconstruction methods developed in
studies I and II are to be used for clinical DXA images since they
do not account for the possible misalignment of the femur during
imaging. In study IV, strain distributions on the anterior surface of
composite femurs were measured with the DIC technique during a
destructive mechanical test. The measurement of strains with DIC
can provide important validation data for DXA-based FE models
for future studies.

8.1 RECONSTRUCTION TECHNIQUES OF FEMORAL SHAPE
FROM 2D REFERENCE IMAGE

In studies I, II and V, three different methods were developed to
reconstruct the 3D surface of the proximal femur from one 2D ref-
erence image in order to create patient-specific FE models based on
the reconstructed shapes. Projected CT images or DXA images were
used as the reference images. Studies I and II utilized an average
template which described the average shape of the proximal femur
in the training set. The template was warped to the shape of a ref-
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erence image by aligning anatomical two-dimensional features, i.e.,
landmarks, between the template and the reference image. Since
the template in study I was constructed from two 2D images, the
offset and depth images, it included no information about the 3D
density distribution. On the other hand, the template in study II
was constructed fully in 3D; therefore it was able to estimate the
BMD distribution in all three directions. In study V, the template
was based on a SAM, so for this reason it included prior informa-
tion about both the average shape and density distribution of the
proximal femur and their variation within the population. The ge-
netic algorithm was used in study V to register the template to the
reference image by minimizing the difference between the reference
image and projection of the template. Consequently, the methods in
study V should intuitively reconstruct non-regular 3D shapes more
accurately than the other two methods.

In studies II and V the shapes of the proximal cadaver femurs
were reconstructed with similar accuracy (point-to-surface distance
1.0 mm), and they were more accurate than the method used in
study I (Figure 7.1). Thus, methods based on a 3D template are su-
perior to methods where several 2D images are used as the template
to reconstruct the 3D surface. An advantage of the method intro-
duced in study I is that it is computationally much lighter than the
other methods since only 2D deformations are needed during the
reconstruction. The accuracy of the DXA image-based reconstruc-
tion of the femurs of clinical subjects was 1.4 mm. In the cadaver
femurs, used to compare the methods used in studies II and V, dis-
eases that may affect bone metabolism were excluded. This most
likely excluded also pathological bone shapes, and this fact account
for the similar accuracy between general template-based and SAM-
based reconstruction methods.

The results in the literature regarding different femoral shape
reconstruction techniques are not always directly comparable with
each other. In most studies, the reconstructed shape is compared
with the true shape obtained from CT or MRI images. However,
since the imaging resolution varies and different training and test
sets are used, the accuracy is affected as well. Most authors re-
port the mean point-to-surface distance between the reconstructed
shape and the true CT images, whereas some provide details only
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about the similarity between the reconstructed and true 3D shape
parameters [181, 186]. When only one DXA or X-ray image is used
for the reconstruction, the mean point-to-surface distance varies be-
tween 1.1 and 3.0 mm in literature [36, 38, 40, 184, 198]. Thus, the
current findings are among the most accurate presented in the lit-
erature. In general, SAM-based methods [182, 184, 198] seem to
achieve more accurate reconstruction than general template-based
methods [36,38,40], even though the methods in this thesis showed
similar accuracy.

All methods reconstructed the 3D shape more accurately in the
more symmetrical areas such as at the head and neck than in the
irregular areas, e.g., at the trochanter. This finding has been con-
firmed in other studies [38, 182]. It supports the usage of shape
reconstruction methods since the neck and head areas are the most
important for fracture prediction. In fact, the trochanteric fractures
are more strongly related to BMD of the femur than the cervical
fractures [90]. Therefore, BMD measured with DXA may detect
increased trochanteric fracture risk, whereas cervical fractures are
strongly dependent on geometry and thus their risk could best be
identified with DXA-based FE models.

Compared with projected CT images, DXA images have a lower
signal-to-noise ratio. In addition, DXA images from the Prodigy
scanner have much lower resolution than the images from the iDXA
scanner. However, an unanticipated finding was that changing the
reference image had only a very minor effect on the reconstruction
accuracy (Figure 7.1 and Figure 7.2). Clearly, all reference images
used contained enough information about the 2D shape for recon-
struction. In that respect, other sources of errors, such as the lack
of information in the third direction, were dominant. The results
suggest (Figure 7.2) that the SAM creation, re-creation of the shape
through 2D-to-3D reconstruction, and a non-optimal training set
are the major sources of error. The training set of the SAM was
more optimal for the leave-one-out test than for the test set of clini-
cal subjects. This was because the training set consisted of the prox-
imal femurs of middle-aged males but the latter test set included
the femurs of postmenopausal women. Therefore, the results of
the latter test represent the extreme limits for the reconstruction er-
ror. Presumably, the accuracy will increase when a more optimal
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training set is used for postmenopausal women.

The methods in studies II and V were able to distinguish the
main features in the femur such as the cortical and trabecular bone.
The differences between the estimated and true vBMDs were mod-
erate (140-210 mg/cm3). Only Whitmarsh and co-authors [182, 198]
have reported average error in the reconstruction of the vBMD
voxel by voxel. Their reported reconstruction accuracy was some-
what higher than the accuracy presented in the present study (72-
81 mg/cm3). Whitmarsh evaluated the accuracy using 1 mm3 vox-
els. In study II, the size of the voxels in the evaluation was ≤
0.22 mm3 which leads to a less averaged evaluation. In study V, the
vBMD was evaluated element-wise, leading to even more detailed
assessment since the elements were smaller than voxels in study II.
A standardized method to evaluate differences in the density distri-
bution would help in a comparison of the performance of different
reconstruction techniques.

The method used in study V had the advantage that it also ac-
counted for the possible misalignment of the femur during imag-
ing. Misalignment should be considered since the position of the
proximal femur during DXA imaging may not be constant due to
varying positioning of the patient and varying anteversion angle of
the femur. The anteversion angle in the normal population varies
with SD over nine degrees [199]. The misalignment encountered
in the femoral images can also be corrected in the method devised
in study II if the orientation of the femur is first estimated using
the methods presented in study III. In one of the tests the misalign-
ment was corrected when the DXA images of the cadaver femurs
were used as the reference image. However, the correction of the
orientation had a little effect on the accuracy of the reconstruction.
This was most likely since the cadaver femurs were well aligned
during imaging.

The second advantage of the method developed in study V was
that it simultaneously aligns the SAMs of the pelvis and femur and
the reference image. Therefore, the method can estimate the shape
and density of the femur even though the pelvis and femur over-
lap at the joint in the DXA images of clinical subjects. This ap-
proach was advantageous, since the head was the most accurately
estimated part of femur (Figure 7.2). In other studies, the head re-
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gion has been extrapolated on the basis of the shapes of the other
regions of the femur and this led to the largest errors in head [182].

In the clinical setting, an automated reconstruction method of
the 3D shape is useful as it does not increase the work load. In
studies I and II, the method needs 27 landmarks in the reference
image. Landmark positioning in studies I and II was partly au-
tomated, but some landmarks required manual adjustment when
used with DXA images. The method deviced in study V was used
to estimate the femoral shape and produced the FE mesh automat-
ically. However, in an attempt to increase the accuracy in some
regions, three landmarks were set manually on the joint space and
an additional one to the contour of the minor trochanter. By pre-
senting a second cost function in this region, manual landmarking
may become unnecessary.

If the methods presented in studies I, II and V are used to re-
construct femoral shapes within a population, several templates
are needed. Study V suggests that these methods could improve
their accuracy if separate templates for different genders and eth-
nic groups are in use.

8.2 MECHANICAL CHARACTERISTICS OF RECONSTRUCTED
FEMUR

In studies I, II and V, an FE model built using the reconstructed
shape was compared with the corresponding QCT-based FE model.
In study I, the Young’s modulus values in the models varied in
2D whereas in studies II and V the moduli in the models var-
ied in 3D. Correlation of the stiffness between the QCT-based and
reconstruction-based models in all studies was over r2 = 0.78. It
was highest for DXA-based FE model in study V (r2 = 0.85). This
shows good agreement between the models. The MAC value be-
tween the models in study V was 0.98 which manifests an accurate
match between the local displacements. Therefore the present re-
sults are encouranging and highlight the good agreement for the
FE model obtained from the reconstructed shapes and the results
from experimental tests. This will be verified in the future stud-
ies. In the literature, FE analysis after the 2D-to-3D reconstruc-
tion has been presented in only a few studies. Langton and co-
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authors [200] reported good agreement (r2 = 0.804) between the
stiffness of reconstruction-based FE models and experimental fail-
ure loads. This agrees with the present findings. Galibarov and
co-authors [38] showed that the error in the FE-predicted surface
strains increases linearly with errors in surface reconstruction.

Since the present aim was to evaluate how the errors from the
reconstruction affected the outcome of the FE modeling, the FE
models included only linear isotropic material properties and a
simulated stance load. Results from earlier studies have demon-
strated that bone behaves highly linearly under physiological load-
ing rates [64]. When the model is used for prediction of the fracture,
yield and fracture criteria and fall-related loading conditions must
be included into the model.

The benefit of patient-specific FE analysis, as compared with
measurement of BMD only, is that it incorporates automatically the
contributions of the patient’s distinctive geometry. With FE ana-
lysis, one can directly calculate the strength of the bone and eval-
uate different loading or fall scenarios to identify the most fragile
site of the femur. This may be useful in guiding individuals to take
appropriate actions to avoid osteoporotic fractures.

8.3 ORIENTATION OF FEMUR IN 2D IMAGE

8.3.1 Amount of rotation in modes

The effect of bone rotation on the modes of femoral 2D statistical
shape and appearance models was evaluated. The results showed
that all modes were affected by rotation, but none of the modes
were solely explained by this parameter (Figure 7.5). This fact
makes the interpretation of the 2D mode values more challenging,
for example, when a 2D SAM is used to analyze femoral shape
or when a mode is related to a measure of diagnostic indicator of
osteoarthritis, such as joint space width or Kellgren and Lawrence
score [201]. The changes in the mode values may relate to different
orientation or to true changes in the shape. In order to separate the
variations in true shape from artificial differences related to changes
in the orientation, a 3D SAM-based 2D-to-3D registration method
can be used.
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8.3.2 Estimation of rotation

Since no mode value itself was able to describe rotation (Figure
7.5), two predictive models were created: linear regression model
and ANN. The benefit with the linear regression model is that a
moderately sized training set is sufficient to train it, whereas ANN
needs a large training set. A total of 300 artificial femurs were
enough to produce sufficient results with ANN. However, in or-
der to guarantee a robust convergence of the training, 500 artificial
femurs were included in the final training set. A drawback with
the linear regression model is that it only utilizes linear relations
between the input parameters and outcome, whereas ANN also ac-
counts for nonlinearity. This partly explains why ANN was about
20 % (p = 0.018) more accurate predictor of rotation than the linear
regression. The mean absolute error for the prediction with ANN
around the shaft axis was 4.0◦. In comparison, orthopedic surgeons
can estimate rotation of the femur with a mean accuracy of 12.1◦

(SD 7.1◦) [202]. Whitmarsh and co-authors [182] reported that fem-
oral 3D SAM which was aligned to DXA image estimated the 3D
rotation around the shaft axis with accuracy of 3.0◦. However, the
scale of the true rotations was not reported. The true rotation was
found by aligning a CT image of the evaluated femur to the DXA
image, by using the same optimization and similarity measure that
was used with the SAM. This may have influenced the accuracy.

Interestingly, the rotation around the medial-lateral axis (2.2◦)
was predicted more accurately than the rotation around the shaft
axis. The same has also been reported earlier [182]. This may be ex-
plained by the shape variations in the femur. The width of the major
trochanter and the size of the contour of the minor trochanter may
vary greatly between two 2D projections of femurs even though the
true rotation is kept constant between them (see D and E in Figure
7.6). On the contrary, even though the true rotation differs signifi-
cantly between two femurs, their appearance in the projections may
be very similar (Figure 7.6 B and C). In the vertical direction, the
variation in shape is less dramatic which implies that the changes
in the appearance are mostly due rotation.

This method has a good potential to reveal differences in the
position between two bone sets, and it can also support the 2D-
to-3D conversion. For example, the method could differentiate two

Dissertations in Forestry and Natural Sciences No 147 75



Sami Väänänen: Functional imaging of proximal femur

groups with different standing positions during X-ray imaging, e.g.,
due to pain or some other functional limitation. It can also be use-
ful when one wants to correct errors due to rotation in parameters
derived from hip X-ray images.

8.4 SURFACE STRAINS ON PROXIMAL COMPOSITE FEMUR
MEASURED WITH DIC

Experimental measurements and numerical models describing the
femur mechanics have positive synergies [161]. Numerical models
usually allow a faster and more cost-effective approach to evalu-
ate different geometries and loading conditions. However, accu-
rate experimental data is critical if one wishes to validate the mod-
els. Therefore, an experimental evaluation of bone mechanics with
the relatively new technique DIC was a natural part of this thesis
project. This was conducted to capture the surface strains of whole
proximal femur.

In study IV, six presumably identical composite femurs were
loaded axially using a constant displacement rate until fracture.
The fractures occurred instantaneously regardless of the low dis-
placement rate used in the test. The fracture patterns on the femurs
were nearly identical in all bones. However, the fracture location
through the neck-trochanter junction was slightly more lateral than
that typically reported for human cadaver femurs subjected to an
axial load [68, 203].

The fracture loads in human cadaver femurs under axial load
have been reported to vary between 3000 N to 13000 N [29,204]. The
fracture load is clearly related to the bone quality, the loading an-
gle and the shaft length [64]. Typically, when the shaft lengths and
load angles are fixed, the fracture load varies around 30 % between
different cadavers [29]. Therefore, the fracture loads for compos-
ite bones were within the variation of human cadaver bones, and,
as expected, the variability of fracture loads (11 %) was smaller in
composite bones than in human cadaver bones. This shows that
composite bones can be more useful than cadaver bones when con-
ducting technical repeatability analyzes.

In DIC, the thickness of the paint layer is a fraction of a mil-
limeter and the stiffness of the paint is low in comparison with the
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stiffness of the bones. Therefore, the reinforcing effect of the paint
can be considered as negligible. This is a clear benefit in the DIC
technique over the use of strain gauges. In fact, strain gauges have
been reported to affect the strains on the femur. Depending on
the measurement site, their reinforcement effect may decrease the
actual strains from 1 up to 15 % [70, 205]. Another benefit is that
DIC can measure the displacements and calculate the strains on
the whole imaged surface. Therefore, it provides 10000-50000 inde-
pendent measurements, whereas strain gauges provide only local
strains in a maximum of 10-15 locations. When high-speed cam-
eras are used, DIC can also achieve the same temporal resolution as
strain gauges.

The RMS value of the disturbance in the temporal DIC signal
was between 5-30 με. The amount of disturbance was related to the
angle between the DIC surface and the image plane. The DIC soft-
ware in use provided no filtering in the temporal space. If smooth
temporal behavior of the strains can be assumed, then the distur-
bance level can be efficiently reduced by filtering it in the time do-
main (Figure 7.8).

The highest von Mises strains were found at the superior head-
neck junction where the strains were mostly tensile. For the ma-
jority of the bones, the highest strains were around 2 % at the mo-
ment of the fracture. One bone was an exception since its maxi-
mum strain at the time of fracture was almost two times higher and
its yield-to-fracture phase was longer than that encountered in the
other bones. However, since this bone was not an outlier in terms
of any other parameters, its strain bearing ability and ductility were
properties of its material. In addition, one bone was stiffer than the
other bones. Taken together, this highlights that caution is needed
when using composite bones for validation purposes.

Under the same load, the inter-sample variation (SD/mean) of
the surface strains was 20-25 %. The inter-sample variation was
much higher for strain values below 0.3 %, probably due to the
smaller signal-to-noise ratio. When the strain values were normal-
ized by the maximum strain value, the inter-sample variation was
5-10 %.

The maximum load of the femur during normal stance is ob-
tained in about 0.33s [196] which leads to a physiological loading
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rate of ∼2.0 mm/s [64]. The frame rate of the DIC device (4 Hz)
limited the usable loading rates. However, the strains on the femur
are highly linear at physiological loading rates [64]. Some non-
linearity takes place at moderate loading rates of 0.5 mm/s [206],
but the non-linearity is still relatively low at very low loading rates
(0.5 mm/min) [26]. In addition, it has been proposed that this non-
linearity is mostly due to micro-fractures preceding the macro scale
fracture, and thus not to non-linearity in the actual material [64].
High-speed cameras enable the use of physiological loading rates
with DIC, and make it possible to capture the strains occuring dur-
ing fracture.

The DIC technique provides superior datasets for validation of
finite element models (10000-50000 data points) [162]. However, it
must be noted that DIC measures only surface strains, whereas the
strains calculated by finite element models are three-dimensional
[154].
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9 Summary and conclusions

In this thesis, a method to reconstruct the 3D surface and internal
density distribution of a proximal femur based on one 2D image,
and a method to estimate the 3D orientation of a femur in a 2D im-
age were developed and evaluated. In addition, the surface strains
of composite femurs were measured during a mechanical compres-
sion test. The validity of the developed methods and their outputs
were critically discussed.

The main conclusions from this thesis may be summarized as fol-
lows:

• The 3D shape and the internal density distribution of a prox-
imal femur can be accurately reconstructed by using a priori
information and one DXA image.

• The reconstructed 3D shape provides a valid input for patient-
specific mechanical simulation intended to predict the strength
of the femur.

• 2D SAM and ANN-based predictive model can estimate the
3D rotation of a femur in 2D radiographs with three times
higher accuracy compared with visual analysis of trained ex-
pert. Therefore, the method has a good potential to differ-
entiate the amount of femur rotations between two different
image sets.

• Measurement of the surface strains on the whole surface of
the femur during mechanical testing provides accurate infor-
mation about the mechanical characteristics of femur. The
measured strains can reveal, differentiate, and explain sample-
to-sample differences.

• All these methods have potential to contribute to the diagno-
sis of osteoporosis in the future.
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Over 200 million people worldwide 

suffer from osteoporosis. Osteoporo-

sis is currently diagnosed based on 

the bone mineral density (BMD) of 

the femur or lumbar spine measured 

with dual-energy X-ray absorpti-

ometry (DXA). However, the BMD 

measured with two-dimensional DXA 

is only a moderate predictor of frac-

ture risk. In this thesis, novel image 

analysis and mechanical simulation 

methods are presented which enable 

automatic estimation of the three-

dimensional shape and morphology 

of the femur, as well as the femoral 

fracture strength from single DXA 

image. The developed methodology 

may improve the fracture risk predic-

tion of the femur and the diagnostics 

of osteoporosis in the future.
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