
Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences No 149

Publications of the University of Eastern Finland

Dissertations in Forestry and Natural Sciences

isbn 978-952-61-1542-9

issnl 1798-5668

issn 1798-5668

isbn 978-952-61-1543-6 (pdf)

issnl 1798-5668

issn 1798-5676

Andrés Moreno

Re-designing Program
Animation
From tools’ roles to new learning activities

Programming animation tools aim to 

lower the cognitive barriers to learn-

ing programming by graphically 

representing the expert’s view on pro-

gramming. However, students who use 

them face the problem of not under-

standing the animations. This work 

presents the roles a programming 

animation tool, Jeliot 3, takes when 

students use the tool to understand 

new concepts. These roles have led to 

the development of conflictive anima-

tions, a novel way to engage students 

in learning with animations.

d
isser

tatio
n

s | 149 | A
n

d
r

és M
o

r
en

o
 | R

e-d
esign

in
g P

ro
gra

m
 A

n
im

a
tio

n

Andrés Moreno
Re-designing Program

Animation
From tools’ roles to new  

learning activities

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEF Electronic Publications

https://core.ac.uk/display/32426893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ANDRÉS MORENO

Re-designing Program
Animation

From tools’ roles to new learning activities

Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences

No 149

Academic Dissertation
To be presented by permission of the Faculty of Science and Forestry for public
examination in the Auditorium AU100 in Aurora Building at the University of

Eastern Finland, Joensuu, on September, 5, 2014,
at 12 o’clock noon.

School of Computing



Grano Oy

Joensuu, 2014

Editors: Profs. Pertti Pasanen, Pekka Kilpeläinen,

Kai Peiponen, and Matti Vornanen

Distribution:

University of Eastern Finland Library / Sales of publications

julkaisumyynti@uef.fi

http://www.uef.fi/kirjasto

ISBN: 978-952-61-1542-9 (printed)

ISSNL: 1798-5668

ISSN: 1798-5668

ISBN: 978-952-61-1543-6 (pdf)

ISSNL: 1798-5668

ISSN: 1798-5676

Author’s address: University of Eastern Finland
School of Computing
P.O.Box 111
FI-80101 JOENSUU
FINLAND
email: amoreno@cs.uef.fi

Supervisors: Professor Erkki Sutinen, Ph.D.
University of Eastern Finland
School of Computing
P.O.Box 111
FI-80101 JOENSUU
FINLAND
email: erkki.sutinen@uef.fi

Associate Professor Mike Joy, Ph.D.
University of Warwick
Department of Computer Science
CV4 7AL COVENTRY
UNITED KINGDOM
email: M.S.Joy@warwick.ac.uk

Reviewers: Associate Professor Michael E. Caspersen, Ph.D.
Aarhus University
Faculty of Science and Technology
C.F. Møllers Allé 8, Building 1110
DK-8000 AARHUS C
DENMARK
email: mec@cse.au.dk

Professor Carsten Schulte, Ph.D.
Freie Universität
Department of Mathematics and Computer Science
Königin-Luise-Str. 24-26
14195 BERLIN
GERMANY
email: schulte@inf.fu-berlin.de

Opponent: Professor Steven P. Reiss, Ph.D.
Brown University
Department of Computer Science
P.O.Box 1910
RI 02912-1910 RHODE ISLAND
USA
email: spr@cs.brown.edu



Grano Oy

Joensuu, 2014

Editors: Profs. Pertti Pasanen, Pekka Kilpeläinen,

Kai Peiponen, and Matti Vornanen

Distribution:

University of Eastern Finland Library / Sales of publications

julkaisumyynti@uef.fi

http://www.uef.fi/kirjasto

ISBN: 978-952-61-1542-9 (printed)

ISSNL: 1798-5668

ISSN: 1798-5668

ISBN: 978-952-61-1543-6 (pdf)

ISSNL: 1798-5668

ISSN: 1798-5676

Author’s address: University of Eastern Finland
School of Computing
P.O.Box 111
FI-80101 JOENSUU
FINLAND
email: amoreno@cs.uef.fi

Supervisors: Professor Erkki Sutinen, Ph.D.
University of Eastern Finland
School of Computing
P.O.Box 111
FI-80101 JOENSUU
FINLAND
email: erkki.sutinen@uef.fi

Associate Professor Mike Joy, Ph.D.
University of Warwick
Department of Computer Science
CV4 7AL COVENTRY
UNITED KINGDOM
email: M.S.Joy@warwick.ac.uk

Reviewers: Associate Professor Michael E. Caspersen, Ph.D.
Aarhus University
Faculty of Science and Technology
C.F. Møllers Allé 8, Building 1110
DK-8000 AARHUS C
DENMARK
email: mec@cse.au.dk

Professor Carsten Schulte, Ph.D.
Freie Universität
Department of Mathematics and Computer Science
Königin-Luise-Str. 24-26
14195 BERLIN
GERMANY
email: schulte@inf.fu-berlin.de

Opponent: Professor Steven P. Reiss, Ph.D.
Brown University
Department of Computer Science
P.O.Box 1910
RI 02912-1910 RHODE ISLAND
USA
email: spr@cs.brown.edu



ABSTRACT

Learning programming successfully requires not only the acquisi-
tion of knowledge, but also skills and attitudes. Program anima-
tion tools have been developed for students to help gaining the
required skills and knowledge by means of visualizing the various
aspects of program execution. Despite developers’ and researchers’
intentions, the learning impact of program animation tools does
not correspond to long-term efforts in developing and researching
them. While learning impact has mostly been quantitatively eval-
uated, the process in which students acquire the knowledge and
skills using program animation tools is not documented in detail.
In particular, the learning impact of Jeliot 3, a program animation
tool, has been assessed quantitatively and Jeliot 3 has proved its
effectiveness for certain cohorts of students –those not very strong
nor very weak. However, reasons and processes of why Jeliot 3 may
improve students’ learning are only suggested in previous research.

In this thesis, the challenges faced by students when using Je-
liot 3 to learn programming have been looked deeply at. The con-
ducted observations have directed the development of new proto-
types derived from Jeliot 3, and of new learning activities based on
the tool. The research follows a systems development methodol-
ogy as it is centered in the creation of an efficient artifact to teach
programming. Two qualitative studies of English and Tanzanian
students using Jeliot 3 prompted the development of several pro-
totypes: Jeliot Adaptive, Jeliot with Explanations, and Jeliot Con-
flictive Animations. Two of the prototypes, Jeliot with Explanations
and Jeliot Conflictive Animations, were empirically evaluated using
a between-subject design with pre-tests and post-tests to assess the
impact the prototypes had on the students’ learning.

The qualitative studies revealed the roles the animation tool
could take when used by a student learning a new programming
concept. Five roles were identified: empty, exploring, confusing,
teaching, and evaluating. The roles of the tool were adopted by
the students at different stages in the student’s learning path. To

promote the importance of the animations and to avoid the empty
role of the tool, conflictive animations were devised. Conflictive
animations require the student to find the errors contained in the
animation, rather than in the code. However, the empirical eval-
uation only showed a modest gain in effectiveness when learning
about class inheritance using Jeliot Conflictive Animation compared
to normal Jeliot 3. In another prototype, Jeliot with Explanations,
explanations were added to the animations produced by Jeliot 3. It
was found that the explanations were more effective when placed
after the animation, rather than before the animation.

The field of program animation has been advancing gradually
with iterations of the same idea: improving the interaction and
information of animation tools that is presented to the students.
These incremental innovations improve the learning impact of the
tools, as in the case of Jeliot with Explanations. However, new ap-
proaches, like conflictive animations, are needed to advance the
field in ways no imagined before. In this thesis, the foundation for
future activities and animations based on conflictive animations are
laid, and one of the possibilities is explored further: Jeliot ConAn.
Conflictive animations, and errors in general, need to be explored
further as a way to improve knowledge, skills and attitudes of pro-
gramming students.

Universal Decimal Classification: 004.42, 37.091.3, 378.147
INSPEC Thesaurus: computer science education; educational tech-
nology; educational computing; computer aided instruction; teach-
ing; training; programming; program visualisation; computer ani-
mation; error detection
Yleinen suomalainen asiasanasto: opetusteknologia; tietokoneavusteinen
opetus; oppimisympäristö; oppiminen; tietokoneavusteinen oppimi-
nen; tietojenkäsittely; ohjelmointi; vasta-alkajat; animaatio; visual-
isointi



ABSTRACT

Learning programming successfully requires not only the acquisi-
tion of knowledge, but also skills and attitudes. Program anima-
tion tools have been developed for students to help gaining the
required skills and knowledge by means of visualizing the various
aspects of program execution. Despite developers’ and researchers’
intentions, the learning impact of program animation tools does
not correspond to long-term efforts in developing and researching
them. While learning impact has mostly been quantitatively eval-
uated, the process in which students acquire the knowledge and
skills using program animation tools is not documented in detail.
In particular, the learning impact of Jeliot 3, a program animation
tool, has been assessed quantitatively and Jeliot 3 has proved its
effectiveness for certain cohorts of students –those not very strong
nor very weak. However, reasons and processes of why Jeliot 3 may
improve students’ learning are only suggested in previous research.

In this thesis, the challenges faced by students when using Je-
liot 3 to learn programming have been looked deeply at. The con-
ducted observations have directed the development of new proto-
types derived from Jeliot 3, and of new learning activities based on
the tool. The research follows a systems development methodol-
ogy as it is centered in the creation of an efficient artifact to teach
programming. Two qualitative studies of English and Tanzanian
students using Jeliot 3 prompted the development of several pro-
totypes: Jeliot Adaptive, Jeliot with Explanations, and Jeliot Con-
flictive Animations. Two of the prototypes, Jeliot with Explanations
and Jeliot Conflictive Animations, were empirically evaluated using
a between-subject design with pre-tests and post-tests to assess the
impact the prototypes had on the students’ learning.

The qualitative studies revealed the roles the animation tool
could take when used by a student learning a new programming
concept. Five roles were identified: empty, exploring, confusing,
teaching, and evaluating. The roles of the tool were adopted by
the students at different stages in the student’s learning path. To

promote the importance of the animations and to avoid the empty
role of the tool, conflictive animations were devised. Conflictive
animations require the student to find the errors contained in the
animation, rather than in the code. However, the empirical eval-
uation only showed a modest gain in effectiveness when learning
about class inheritance using Jeliot Conflictive Animation compared
to normal Jeliot 3. In another prototype, Jeliot with Explanations,
explanations were added to the animations produced by Jeliot 3. It
was found that the explanations were more effective when placed
after the animation, rather than before the animation.

The field of program animation has been advancing gradually
with iterations of the same idea: improving the interaction and
information of animation tools that is presented to the students.
These incremental innovations improve the learning impact of the
tools, as in the case of Jeliot with Explanations. However, new ap-
proaches, like conflictive animations, are needed to advance the
field in ways no imagined before. In this thesis, the foundation for
future activities and animations based on conflictive animations are
laid, and one of the possibilities is explored further: Jeliot ConAn.
Conflictive animations, and errors in general, need to be explored
further as a way to improve knowledge, skills and attitudes of pro-
gramming students.

Universal Decimal Classification: 004.42, 37.091.3, 378.147
INSPEC Thesaurus: computer science education; educational tech-
nology; educational computing; computer aided instruction; teach-
ing; training; programming; program visualisation; computer ani-
mation; error detection
Yleinen suomalainen asiasanasto: opetusteknologia; tietokoneavusteinen
opetus; oppimisympäristö; oppiminen; tietokoneavusteinen oppimi-
nen; tietojenkäsittely; ohjelmointi; vasta-alkajat; animaatio; visual-
isointi



Acknowledgements

These long years of research could have not ended if it were not for
the support and encouragement of the people I have close to me,
both in my head and in my heart.

This whole trip started with Erkki Sutinen’s suggesting me to
take risks in life. I took the risks back then without knowing how
hard he will try to ease them for me. The time we have spent to-
gether sharing ideas, results and conflicts on two continents have
shaped me as a researcher and as a person, and for that I am grate-
ful of the opportunity to take the risks. I want to thank Mike Joy
because he was pushing me to finish this work. All this time I knew
I could rely on his prompt and helpful feedback when I needed it
most: whenever I lost track.

I am thankful to my colleagues, brilliant and friendly minds,
from whom I have learnt a lot: Niko Myller started the trip with
me and held my hand as I delved into the academic world; Roman
Bednarik’s passion for science and attention to detail improved my
work in many ways, long days at the department felt shorter af-
ter a game or two with him; Michael Yudelson let me peek in his
adaptive world and adapted it to my purposes when I needed it;
Peng Wang helped me to think of Jeliot 3 in new ways that I had
not thought of before, his help was important to finish my research
puzzle; and Carolina Islas-Sedano planted the gaming seed in me
long time ago to only be harvested recently in our collaboration.
Many others at the department of Computer Science have made
this a rewarding trip: Ilkka, Marcus, Teemu to name a few.

I thank Carsten Schulte and Michael Caspersen for agreeing be-
ing the reviewers of my work, and providing helpful critique and
comments. I am honored and thankful to have Steven Reiss as an
opponent.

This research has been supported in parts by the Department of
Computer Science Department, University of Joensuu, Finland, by



Acknowledgements

These long years of research could have not ended if it were not for
the support and encouragement of the people I have close to me,
both in my head and in my heart.

This whole trip started with Erkki Sutinen’s suggesting me to
take risks in life. I took the risks back then without knowing how
hard he will try to ease them for me. The time we have spent to-
gether sharing ideas, results and conflicts on two continents have
shaped me as a researcher and as a person, and for that I am grate-
ful of the opportunity to take the risks. I want to thank Mike Joy
because he was pushing me to finish this work. All this time I knew
I could rely on his prompt and helpful feedback when I needed it
most: whenever I lost track.

I am thankful to my colleagues, brilliant and friendly minds,
from whom I have learnt a lot: Niko Myller started the trip with
me and held my hand as I delved into the academic world; Roman
Bednarik’s passion for science and attention to detail improved my
work in many ways, long days at the department felt shorter af-
ter a game or two with him; Michael Yudelson let me peek in his
adaptive world and adapted it to my purposes when I needed it;
Peng Wang helped me to think of Jeliot 3 in new ways that I had
not thought of before, his help was important to finish my research
puzzle; and Carolina Islas-Sedano planted the gaming seed in me
long time ago to only be harvested recently in our collaboration.
Many others at the department of Computer Science have made
this a rewarding trip: Ilkka, Marcus, Teemu to name a few.

I thank Carsten Schulte and Michael Caspersen for agreeing be-
ing the reviewers of my work, and providing helpful critique and
comments. I am honored and thankful to have Steven Reiss as an
opponent.

This research has been supported in parts by the Department of
Computer Science Department, University of Joensuu, Finland, by



the East Finland Graduate School in Computer Science and Engi-
neering (ECSE), Finland, and by the North-South-South Program,
CIMO Finland. Research reported here has taken place in Joensuu,
Finland, University of Warwick, UK, and Iringa University College,
Tanzania. Preliminary work has been done at the University of
Helsinki, Finland. In all these places I am indebted to the local
administrative teaching staff and, specially, their students, without
whom there would not have been anything to report. In Joensuu,
endless chats with my friends about life, research, and friendship
filled my evenings and lifted some of the worries from my shoul-
ders, majos, you know who you are. Elsewhere, the Jeliot family,
specially Mordechai Ben-Ari and Ronit Ben-Bassat Levy, provided
great feedback about my work that reflected positively in my moti-
vation.

I want to dedicate this work to my family, back in Spain, who
during all these years away from home have nurtured myself and
my desire to research and find answers on how people learn to
program. Finally, I want to thank my loved one, Paula, for making
me smile after sleepless nights, working against deadlines and my
own fears. She did me good because she knows best.

Helsinki August 13, 2014 Andrés Moreno García

LIST OF PUBLICATIONS

This thesis consists of the present review of the author’s work in
the field of optical interconnects and the following selection of the
author’s publications:

Paper I A. Moreno and M. Joy, “Jeliot 3 in a Demanding Educational
Setting,” Electronic Notes Theoretical Computer Science 178, 51–
59 (2007).

Paper II A. Moreno, M. Joy, and E. Sutinen, “Roles of animation tools
in understanding programming concepts,” Journal of Educa-
tional Multimedia and Hypermedia 22, 165–184 (2013).

Paper III A. Moreno, R. Bednarik, and M. Yudelson, “How to Adapt the
Visualization of Programs?,” in Proceedings of Workshop on Per-
sonalisation in E-Learning Environments at Individual and Group
Level, 11th International Conference on User Modeling (2007), pp.
65–70.

Paper IV A. Moreno, M. Joy, N. Myller, and E. Sutinen, “Layered Archi-
tecture for Automatic Generation of Conflictive Animations in
Programming Education,” IEEE Transactions on Learning Tech-
nologies 3, 139–151 (2010).

Paper V A. Moreno, E. Sutinen, and M. Joy, “Defining and Evaluat-
ing Conflictive Animations for Programming Education: The
Case of Jeliot ConAn,” in Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE ’14 (2014),
pp. 629–634.

Paper VI P. Wang, R. Bednarik, and A. Moreno, “During automatic pro-
gram animation, explanations after animations have greater
impact than before animations,” in Proceedings of the 12th Koli
Calling International Conference on Computing Education Research,
Koli Calling ’12 (2012), pp. 100–109.

Paper VII A. Moreno, E. Sutinen, and C. Islas Sedano, “A game con-
cept using conflictive animations for learning programming,”



the East Finland Graduate School in Computer Science and Engi-
neering (ECSE), Finland, and by the North-South-South Program,
CIMO Finland. Research reported here has taken place in Joensuu,
Finland, University of Warwick, UK, and Iringa University College,
Tanzania. Preliminary work has been done at the University of
Helsinki, Finland. In all these places I am indebted to the local
administrative teaching staff and, specially, their students, without
whom there would not have been anything to report. In Joensuu,
endless chats with my friends about life, research, and friendship
filled my evenings and lifted some of the worries from my shoul-
ders, majos, you know who you are. Elsewhere, the Jeliot family,
specially Mordechai Ben-Ari and Ronit Ben-Bassat Levy, provided
great feedback about my work that reflected positively in my moti-
vation.

I want to dedicate this work to my family, back in Spain, who
during all these years away from home have nurtured myself and
my desire to research and find answers on how people learn to
program. Finally, I want to thank my loved one, Paula, for making
me smile after sleepless nights, working against deadlines and my
own fears. She did me good because she knows best.

Helsinki August 13, 2014 Andrés Moreno García

LIST OF PUBLICATIONS

This thesis consists of the present review of the author’s work in
the field of optical interconnects and the following selection of the
author’s publications:

Paper I A. Moreno and M. Joy, “Jeliot 3 in a Demanding Educational
Setting,” Electronic Notes Theoretical Computer Science 178, 51–
59 (2007).

Paper II A. Moreno, M. Joy, and E. Sutinen, “Roles of animation tools
in understanding programming concepts,” Journal of Educa-
tional Multimedia and Hypermedia 22, 165–184 (2013).

Paper III A. Moreno, R. Bednarik, and M. Yudelson, “How to Adapt the
Visualization of Programs?,” in Proceedings of Workshop on Per-
sonalisation in E-Learning Environments at Individual and Group
Level, 11th International Conference on User Modeling (2007), pp.
65–70.

Paper IV A. Moreno, M. Joy, N. Myller, and E. Sutinen, “Layered Archi-
tecture for Automatic Generation of Conflictive Animations in
Programming Education,” IEEE Transactions on Learning Tech-
nologies 3, 139–151 (2010).

Paper V A. Moreno, E. Sutinen, and M. Joy, “Defining and Evaluat-
ing Conflictive Animations for Programming Education: The
Case of Jeliot ConAn,” in Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE ’14 (2014),
pp. 629–634.

Paper VI P. Wang, R. Bednarik, and A. Moreno, “During automatic pro-
gram animation, explanations after animations have greater
impact than before animations,” in Proceedings of the 12th Koli
Calling International Conference on Computing Education Research,
Koli Calling ’12 (2012), pp. 100–109.

Paper VII A. Moreno, E. Sutinen, and C. Islas Sedano, “A game con-
cept using conflictive animations for learning programming,”



(2013), in International Games Innovation Conference (IGIC), (2013),
IEEE, pp. 175–178.

Throughout the overview, these papers will be referred to by Ro-
man numerals. Publications I - VII have been included at the end
of this thesis with their copyright holders’ permission.

AUTHOR’S CONTRIBUTION

The publications selected in this dissertation are original research
papers on program animation. The author was the main contrib-
utor to all the manuscripts but of Paper I. For Papers I-V,VII, the
author has implemented the presented educational software and
collected the research data. Paper VI is based on Peng Wang’s Mas-
ter’s thesis [127] that the author guided in the implementation of
the explanations within the program evaluation tool and the empir-
ical evaluation of the modified tool.



(2013), in International Games Innovation Conference (IGIC), (2013),
IEEE, pp. 175–178.

Throughout the overview, these papers will be referred to by Ro-
man numerals. Publications I - VII have been included at the end
of this thesis with their copyright holders’ permission.

AUTHOR’S CONTRIBUTION

The publications selected in this dissertation are original research
papers on program animation. The author was the main contrib-
utor to all the manuscripts but of Paper I. For Papers I-V,VII, the
author has implemented the presented educational software and
collected the research data. Paper VI is based on Peng Wang’s Mas-
ter’s thesis [127] that the author guided in the implementation of
the explanations within the program evaluation tool and the empir-
ical evaluation of the modified tool.



LIST OF FIGURES

1.1 The main components of Systems Design Research
method . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Research process . . . . . . . . . . . . . . . . . . . . . 12

2.1 Theoretical components and their relationships . . . 28

3.1 Jeliot 3 window . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The structure of the animation frame (theatre) in Je-

liot 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 The functional structure of Jeliot 3 . . . . . . . . . . . 37

4.1 Transitions of the roles the tool takes as students use
it to learn a new concept . . . . . . . . . . . . . . . . . 46

4.2 Structure of Jeliot Adapt . . . . . . . . . . . . . . . . . 47
4.3 Screenshot of Jeliot augmented with explanations . . 50
4.4 Screenshot of Jeliot ConAn . . . . . . . . . . . . . . . 54
4.5 System structure of Jeliot ConAn . . . . . . . . . . . . 57

LIST OF TABLES

1.1 The relationship between research questions, systems
development research component, and paper includ-
ing the research method used . . . . . . . . . . . . . . 11

1.2 Summary of research methods and research ques-
tions by paper . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Mean learning gains, standard deviations, t value,
and 2-tailed p value . . . . . . . . . . . . . . . . . . . . 51

4.2 Results from testing of textbook program examples
against Jeliot ConAn . . . . . . . . . . . . . . . . . . . 58

4.3 Average and standard deviation of previous program-
ming experience, pre-test, post-test, and the differ-
ence between those two (gain) . . . . . . . . . . . . . 59

4.4 Results from the Jeliot ConAn group . . . . . . . . . . 59



LIST OF FIGURES

1.1 The main components of Systems Design Research
method . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Research process . . . . . . . . . . . . . . . . . . . . . 12

2.1 Theoretical components and their relationships . . . 28

3.1 Jeliot 3 window . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The structure of the animation frame (theatre) in Je-

liot 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 The functional structure of Jeliot 3 . . . . . . . . . . . 37

4.1 Transitions of the roles the tool takes as students use
it to learn a new concept . . . . . . . . . . . . . . . . . 46

4.2 Structure of Jeliot Adapt . . . . . . . . . . . . . . . . . 47
4.3 Screenshot of Jeliot augmented with explanations . . 50
4.4 Screenshot of Jeliot ConAn . . . . . . . . . . . . . . . 54
4.5 System structure of Jeliot ConAn . . . . . . . . . . . . 57

LIST OF TABLES

1.1 The relationship between research questions, systems
development research component, and paper includ-
ing the research method used . . . . . . . . . . . . . . 11

1.2 Summary of research methods and research ques-
tions by paper . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Mean learning gains, standard deviations, t value,
and 2-tailed p value . . . . . . . . . . . . . . . . . . . . 51

4.2 Results from testing of textbook program examples
against Jeliot ConAn . . . . . . . . . . . . . . . . . . . 58

4.3 Average and standard deviation of previous program-
ming experience, pre-test, post-test, and the differ-
ence between those two (gain) . . . . . . . . . . . . . 59

4.4 Results from the Jeliot ConAn group . . . . . . . . . . 59



Contents

1 INTRODUCTION 1
1.1 Focus of Research and Research Questions . . . . . . 4
1.2 Research Methods . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Process and Main Results . . . . . . . . . . 11

1.3.1 Summary of the results . . . . . . . . . . . . . 14
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . 17

2 LEARNING AND TEACHING PROGRAMMING 19
2.1 Theoretical Components of Learning and Teaching

Programming . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.1 Knowledge . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Mental Models . . . . . . . . . . . . . . . . . . 24
2.1.3 Skills . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Object-Oriented Concepts and Java . . . . . . . . . . . 26
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 PROGRAM ANIMATION AND ITS EVALUATION 29
3.1 Implementation of Program Animation Tools . . . . . 30
3.2 Evaluation of Program Animation Tools . . . . . . . . 32
3.3 Jeliot 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Implementation . . . . . . . . . . . . . . . . . . 36
3.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . 38

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 SUMMARY OF THE PUBLICATIONS 41
4.1 Engagement and Understanding . . . . . . . . . . . . 41

4.1.1 Students’ Knowledge and Understanding . . 42
4.1.2 Roles of Program Animation Tools . . . . . . . 44

4.2 Jeliot Adapt . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 Implementation . . . . . . . . . . . . . . . . . . 47
4.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . 48



Contents

1 INTRODUCTION 1
1.1 Focus of Research and Research Questions . . . . . . 4
1.2 Research Methods . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Process and Main Results . . . . . . . . . . 11

1.3.1 Summary of the results . . . . . . . . . . . . . 14
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . 17

2 LEARNING AND TEACHING PROGRAMMING 19
2.1 Theoretical Components of Learning and Teaching

Programming . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.1 Knowledge . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Mental Models . . . . . . . . . . . . . . . . . . 24
2.1.3 Skills . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Object-Oriented Concepts and Java . . . . . . . . . . . 26
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 PROGRAM ANIMATION AND ITS EVALUATION 29
3.1 Implementation of Program Animation Tools . . . . . 30
3.2 Evaluation of Program Animation Tools . . . . . . . . 32
3.3 Jeliot 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Implementation . . . . . . . . . . . . . . . . . . 36
3.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . 38

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 SUMMARY OF THE PUBLICATIONS 41
4.1 Engagement and Understanding . . . . . . . . . . . . 41

4.1.1 Students’ Knowledge and Understanding . . 42
4.1.2 Roles of Program Animation Tools . . . . . . . 44

4.2 Jeliot Adapt . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 Implementation . . . . . . . . . . . . . . . . . . 47
4.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . 48



4.3 Jeliot 3 and Explanations . . . . . . . . . . . . . . . . . 49
4.3.1 Implementation . . . . . . . . . . . . . . . . . . 49
4.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . 51

4.4 Jeliot ConAn . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Implementation . . . . . . . . . . . . . . . . . . 55
4.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . 56
4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . 59

4.5 Limitation of the Results . . . . . . . . . . . . . . . . . 61
4.6 Research Questions Revisited . . . . . . . . . . . . . . 61

5 CONCLUSIONS 65
5.1 New Ways for Programming Education . . . . . . . . 65

5.1.1 Conflictive Animations Game . . . . . . . . . . 66
5.1.2 Future work . . . . . . . . . . . . . . . . . . . . 66

5.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Implications for Program Visualization Devel-

opers and Researchers . . . . . . . . . . . . . . 68
5.2.2 Implications for Teachers Using Program Vi-

sualization Tools . . . . . . . . . . . . . . . . . 69
5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . 69

REFERENCES 71

ORIGINAL PUBLICATIONS 87

1 Introduction

This thesis explores the role of program animation tools in knowl-
edge creation by students and the opportunities to re-design an
existing program animation tool, Jeliot 3. With the lessons learnt
from the research, modifications to Jeliot 3 were developed and
evaluated. Finally, conflictive animations, a new direction for pro-
gramming education, are proposed to promote conceptual learning,
programming skills, and attitudinal changes in students learning
programming.

Programming education has been an issue since the first pro-
grammable computer was built. Somebody needed to teach other
people how to make the machine compute as intended. Soon uni-
versities created the first computer science degrees, a mix of math-
ematics, formal logic, physics, and engineering [118]. From that
moment, student enrolment on computer science degrees grew in
western universities till just recently, when the tech bubble exploded.
Recent reports reveal the problems that teachers have been aware
of since the beginning: college students face great challenges when
understanding the basic concepts in programming [66]. In paral-
lel with the increased number of computer scientists, programmers
started to create tools to teach programming, as if it were natural for
programmers to solve their educational problems by programming.

In 1998 Dijkstra was presented with one of those learning tools,
which used visualizations [26], and his reaction was not positive at
all. Already in 1975, Mayer [64], had devised a visual model of com-
puters that he used to teach programming concept to total novices.
His evaluation resulted in mixed results. On the one hand, the
students who used the visual model based learning material were
better in some aspects (solving problems that required interpreta-
tion). On the other hand, students in the control group were better
in other aspects (solving problems that required programming sim-
ilar problems to the one showed in the learning materials). His re-

Dissertations in Forestry and Natural Sciences No 149 1



4.3 Jeliot 3 and Explanations . . . . . . . . . . . . . . . . . 49
4.3.1 Implementation . . . . . . . . . . . . . . . . . . 49
4.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . 51

4.4 Jeliot ConAn . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Implementation . . . . . . . . . . . . . . . . . . 55
4.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . 56
4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . 59

4.5 Limitation of the Results . . . . . . . . . . . . . . . . . 61
4.6 Research Questions Revisited . . . . . . . . . . . . . . 61

5 CONCLUSIONS 65
5.1 New Ways for Programming Education . . . . . . . . 65

5.1.1 Conflictive Animations Game . . . . . . . . . . 66
5.1.2 Future work . . . . . . . . . . . . . . . . . . . . 66

5.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Implications for Program Visualization Devel-

opers and Researchers . . . . . . . . . . . . . . 68
5.2.2 Implications for Teachers Using Program Vi-

sualization Tools . . . . . . . . . . . . . . . . . 69
5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . 69

REFERENCES 71

ORIGINAL PUBLICATIONS 87

1 Introduction

This thesis explores the role of program animation tools in knowl-
edge creation by students and the opportunities to re-design an
existing program animation tool, Jeliot 3. With the lessons learnt
from the research, modifications to Jeliot 3 were developed and
evaluated. Finally, conflictive animations, a new direction for pro-
gramming education, are proposed to promote conceptual learning,
programming skills, and attitudinal changes in students learning
programming.

Programming education has been an issue since the first pro-
grammable computer was built. Somebody needed to teach other
people how to make the machine compute as intended. Soon uni-
versities created the first computer science degrees, a mix of math-
ematics, formal logic, physics, and engineering [118]. From that
moment, student enrolment on computer science degrees grew in
western universities till just recently, when the tech bubble exploded.
Recent reports reveal the problems that teachers have been aware
of since the beginning: college students face great challenges when
understanding the basic concepts in programming [66]. In paral-
lel with the increased number of computer scientists, programmers
started to create tools to teach programming, as if it were natural for
programmers to solve their educational problems by programming.

In 1998 Dijkstra was presented with one of those learning tools,
which used visualizations [26], and his reaction was not positive at
all. Already in 1975, Mayer [64], had devised a visual model of com-
puters that he used to teach programming concept to total novices.
His evaluation resulted in mixed results. On the one hand, the
students who used the visual model based learning material were
better in some aspects (solving problems that required interpreta-
tion). On the other hand, students in the control group were better
in other aspects (solving problems that required programming sim-
ilar problems to the one showed in the learning materials). His re-

Dissertations in Forestry and Natural Sciences No 149 1



Andrés Moreno: Re-designing Program Animation

sults showed promise for the idea of complementing programming
education with visual models that students may relate to.

Since then, researchers and developers have implemented soft-
ware visualization tools, which follow the path marked by Mayer.
They have tried to fulfil the promises and expectations of visual
models of computing in programming education and practice, aim-
ing at better educated students and better software produced. This
thesis focuses on the educational side of programming, where soft-
ware visualization is divided between the tools that animate gen-
eral programming paradigms, program visualization, and the tools
that focus on algorithms, algorithm visualization [46].

Program visualization tools bring to the surface the experts’
view on the machine that executes the program. This view con-
sists of visual representations and metaphors that explain how the
code is structured, in the case of UML tools, or how the code is
executed, in the case of visual debuggers. Program visualization
tools, and specially the subset of program animation tools, add the
possibility to replicate the dynamic nature of program execution,
which students need to understand to create or debug programs.

Expert programmers, who either design the visualizations or
teach using them, find the visualizations self-explanatory. They
can follow them and present them to students. What about the
students, who later will have the opportunity to engage with the
visualizations? Do they understand the visualizations? Do they
follow them? Evaluations usually report if learning has happened
after using the visualization, but one cannot imply causation unless
the process of learning with visualization tools is better explained.

Sajaniemi et al. [111] studied the impact of visualization tools in
the graphical representations of program executions that students
drew. In three separate drawing tasks, students’ representations of
program state were found to be most frequently independent of the
previous visualizations demonstrated to them. While many reasons
could explain this behaviour, it reinforces the idea that students
have a different understanding, or mental model, of the computer
than the experts. Thus, should bridges between the two under-

2 Dissertations in Forestry and Natural Sciences No 149

Introduction

standings be built via visualizations?
To check on the expectations and promises of educational vi-

sualization tools, Hundhausen et al. [42] did a meta-evaluation of
empirical evaluations of visualization tools. As in Mayer’s early
results, the evidence was certainly positive, albeit a bit mixed. The
success of visualisations depended, according to Hundhausen et al.,
on how the students engage with the tool, rather than what the stu-
dents watched. The importance of the activities done with the tools
resulted in a taxonomy of engagement modes with visualization
tools [86], which categorized engagement from no-viewing to teach-
ing, i.e., from students not using visualization tools at all to students
using the tools to teach other students.

It is implicit that, as the students use more engaging visualiza-
tion tools, their grades after using the tools will improve. Urquiza-
Fuentes and Velázquez-Iturbide [122] and Sorva [117] have reviewed
and evaluated tools in different categories of the taxonomy. Again,
their findings are mixed. Partly due to only collecting successful
evaluations of visualization tools, Urquiza-Fuentes and Velázquez-
Iturbide could not point to a higher pedagogical effectiveness of
tools in higher levels of the engagement taxonomy. However, they
recommended that certain features, not necessarily graphical, were
required for the tools to make visualizations effective, for example
explanations.

In this thesis the research and development has been based on
the program animation tool Jeliot 3, for which the author was part
of the development team. Designing and developing new tools is
in the nature of computer scientists, and when researching the is-
sue of understanding visualizations it was natural for the author to
develop new solutions based on Jeliot 3.

Jeliot 3 [75], a program visualization tool, is one of the long-
standing program visualization tools that is meant for novices. In
its decade-long history [6] several iterations and evaluations have
been made. Evaluations have pointed at the benefits of using the
tool, but also that the tool does not work the same for everyone.

One can think that mixed evaluation outcomes are expected in

Dissertations in Forestry and Natural Sciences No 149 3



Andrés Moreno: Re-designing Program Animation

sults showed promise for the idea of complementing programming
education with visual models that students may relate to.

Since then, researchers and developers have implemented soft-
ware visualization tools, which follow the path marked by Mayer.
They have tried to fulfil the promises and expectations of visual
models of computing in programming education and practice, aim-
ing at better educated students and better software produced. This
thesis focuses on the educational side of programming, where soft-
ware visualization is divided between the tools that animate gen-
eral programming paradigms, program visualization, and the tools
that focus on algorithms, algorithm visualization [46].

Program visualization tools bring to the surface the experts’
view on the machine that executes the program. This view con-
sists of visual representations and metaphors that explain how the
code is structured, in the case of UML tools, or how the code is
executed, in the case of visual debuggers. Program visualization
tools, and specially the subset of program animation tools, add the
possibility to replicate the dynamic nature of program execution,
which students need to understand to create or debug programs.

Expert programmers, who either design the visualizations or
teach using them, find the visualizations self-explanatory. They
can follow them and present them to students. What about the
students, who later will have the opportunity to engage with the
visualizations? Do they understand the visualizations? Do they
follow them? Evaluations usually report if learning has happened
after using the visualization, but one cannot imply causation unless
the process of learning with visualization tools is better explained.

Sajaniemi et al. [111] studied the impact of visualization tools in
the graphical representations of program executions that students
drew. In three separate drawing tasks, students’ representations of
program state were found to be most frequently independent of the
previous visualizations demonstrated to them. While many reasons
could explain this behaviour, it reinforces the idea that students
have a different understanding, or mental model, of the computer
than the experts. Thus, should bridges between the two under-

2 Dissertations in Forestry and Natural Sciences No 149

Introduction

standings be built via visualizations?
To check on the expectations and promises of educational vi-

sualization tools, Hundhausen et al. [42] did a meta-evaluation of
empirical evaluations of visualization tools. As in Mayer’s early
results, the evidence was certainly positive, albeit a bit mixed. The
success of visualisations depended, according to Hundhausen et al.,
on how the students engage with the tool, rather than what the stu-
dents watched. The importance of the activities done with the tools
resulted in a taxonomy of engagement modes with visualization
tools [86], which categorized engagement from no-viewing to teach-
ing, i.e., from students not using visualization tools at all to students
using the tools to teach other students.

It is implicit that, as the students use more engaging visualiza-
tion tools, their grades after using the tools will improve. Urquiza-
Fuentes and Velázquez-Iturbide [122] and Sorva [117] have reviewed
and evaluated tools in different categories of the taxonomy. Again,
their findings are mixed. Partly due to only collecting successful
evaluations of visualization tools, Urquiza-Fuentes and Velázquez-
Iturbide could not point to a higher pedagogical effectiveness of
tools in higher levels of the engagement taxonomy. However, they
recommended that certain features, not necessarily graphical, were
required for the tools to make visualizations effective, for example
explanations.

In this thesis the research and development has been based on
the program animation tool Jeliot 3, for which the author was part
of the development team. Designing and developing new tools is
in the nature of computer scientists, and when researching the is-
sue of understanding visualizations it was natural for the author to
develop new solutions based on Jeliot 3.

Jeliot 3 [75], a program visualization tool, is one of the long-
standing program visualization tools that is meant for novices. In
its decade-long history [6] several iterations and evaluations have
been made. Evaluations have pointed at the benefits of using the
tool, but also that the tool does not work the same for everyone.

One can think that mixed evaluation outcomes are expected in

Dissertations in Forestry and Natural Sciences No 149 3



Andrés Moreno: Re-designing Program Animation

any educational evaluation, small changes in instruction can have
high impact, and conversely, large changes can lead to no signifi-
cant impact. In any case, research proposes explanations and leads
to new developments.

Developing tools for software visualization is a task akin to
compiler development, even meta-programming. While the program-
ming language is fixed, the development of the tools forces to think
about the language in ways that it may not have been considered
before, thus opening new ways to visualize programs. The result
of this line of thinking leads to the nature of conflictive animation,
which is based on fine modifications to the programming language
interpretation so that it is different from the language standard.

1.1 FOCUS OF RESEARCH AND RESEARCH QUESTIONS

The focus of research reported in this thesis is divided into two
main parts. First, the thesis aims to understand the current im-
pact of program animation tools in students learning to program,
both on how the students use the tool and how the students un-
derstand new concepts. Secondly, Jeliot 3’s modular architecture
is used to design, develop and experiment with new animation
concepts. Three different software solutions are researched to in-
crease students’ engagement and understanding of programming
concepts when using program animation tools: adaptation, expla-
nations, and conflictive animations.

Benefits of program animation have been reported [8] but the
literature rarely establishes the role of animation tools in forming
students’ programming knowledge. The thesis picks up from pre-
vious reports of students failing to use program animation tools,
such as Kannüsmaki et al. [44], and presents several roles that pro-
gramming tools have in different scenarios. Two main questions
lead this part.

QUESTION 1. How do novice students engage in using Jeliot 3
when learning new programming concepts?

4 Dissertations in Forestry and Natural Sciences No 149

Introduction

Students learning to program face a complete new
set of challenges that they probably have seldom
if ever seen before: abstract and logical reasoning,
complex problem solving, debugging and tracing.
Program animation tools are meant to facilitate the
learning process by presenting a visual model of the
program execution. However, the tools and their vi-
sualization are also novel to the students and are
used in different ways to solve the learning chal-
lenges. In the process the tool takes different roles
to support learning.

QUESTION 2. How do novice students understand the visualiza-
tions provided by Jeliot 3 when learning new pro-
gramming concepts?

Teachers use program animation tools in lectures
and students use it at home to work on their as-
signments.

If the student engages with the program animation
tool, it is expected that the student improves their
understanding of the demonstrated concepts after
repeated visualizations. Research has shown that
this is not the case for every student [111]. Program
animation tools use visual metaphors to represent
the execution. The metaphor introduces new ele-
ments that the student has to comprehend at the
same time that the new concept being learnt. Thus,
when the conceptual knowledge is fragile, the stu-
dent’s understanding of both the animation and the
concept behind varies.

Derived from the first part, the second part introduces new visu-
alization concepts and pedagogical improvements that are designed
and implemented using Jeliot 3’s modular architecture. The effect
of the new versions of Jeliot in student engagement and under-
standing are evaluated in two cases.

Dissertations in Forestry and Natural Sciences No 149 5



Andrés Moreno: Re-designing Program Animation

any educational evaluation, small changes in instruction can have
high impact, and conversely, large changes can lead to no signifi-
cant impact. In any case, research proposes explanations and leads
to new developments.

Developing tools for software visualization is a task akin to
compiler development, even meta-programming. While the program-
ming language is fixed, the development of the tools forces to think
about the language in ways that it may not have been considered
before, thus opening new ways to visualize programs. The result
of this line of thinking leads to the nature of conflictive animation,
which is based on fine modifications to the programming language
interpretation so that it is different from the language standard.

1.1 FOCUS OF RESEARCH AND RESEARCH QUESTIONS

The focus of research reported in this thesis is divided into two
main parts. First, the thesis aims to understand the current im-
pact of program animation tools in students learning to program,
both on how the students use the tool and how the students un-
derstand new concepts. Secondly, Jeliot 3’s modular architecture
is used to design, develop and experiment with new animation
concepts. Three different software solutions are researched to in-
crease students’ engagement and understanding of programming
concepts when using program animation tools: adaptation, expla-
nations, and conflictive animations.

Benefits of program animation have been reported [8] but the
literature rarely establishes the role of animation tools in forming
students’ programming knowledge. The thesis picks up from pre-
vious reports of students failing to use program animation tools,
such as Kannüsmaki et al. [44], and presents several roles that pro-
gramming tools have in different scenarios. Two main questions
lead this part.

QUESTION 1. How do novice students engage in using Jeliot 3
when learning new programming concepts?

4 Dissertations in Forestry and Natural Sciences No 149

Introduction

Students learning to program face a complete new
set of challenges that they probably have seldom
if ever seen before: abstract and logical reasoning,
complex problem solving, debugging and tracing.
Program animation tools are meant to facilitate the
learning process by presenting a visual model of the
program execution. However, the tools and their vi-
sualization are also novel to the students and are
used in different ways to solve the learning chal-
lenges. In the process the tool takes different roles
to support learning.

QUESTION 2. How do novice students understand the visualiza-
tions provided by Jeliot 3 when learning new pro-
gramming concepts?

Teachers use program animation tools in lectures
and students use it at home to work on their as-
signments.

If the student engages with the program animation
tool, it is expected that the student improves their
understanding of the demonstrated concepts after
repeated visualizations. Research has shown that
this is not the case for every student [111]. Program
animation tools use visual metaphors to represent
the execution. The metaphor introduces new ele-
ments that the student has to comprehend at the
same time that the new concept being learnt. Thus,
when the conceptual knowledge is fragile, the stu-
dent’s understanding of both the animation and the
concept behind varies.

Derived from the first part, the second part introduces new visu-
alization concepts and pedagogical improvements that are designed
and implemented using Jeliot 3’s modular architecture. The effect
of the new versions of Jeliot in student engagement and under-
standing are evaluated in two cases.

Dissertations in Forestry and Natural Sciences No 149 5



Andrés Moreno: Re-designing Program Animation

QUESTION 3. How can new features be implemented in Jeliot 3
using its modular architecture in a way that facili-
tates its usage in diverse learning scenarios?

Jeliot 3 was designed to be modular, so new fea-
tures could be added easily, unlike it predecessor
Jeliot 2000. This ease of adding new features to Je-
liot, allows for quick prototyping of new solutions
to overcome difficulties and problems that teachers
and students find when using Jeliot 3. Through
the addition of several features, a refined process
of ideation, conceptualization, implementation and
evaluation is crystallized in the development of Je-
liot ConAn, a new version of Jeliot 3 that creates
erroneous animations.

The thesis answers a final question that combines both parts of
the research into a single track.

QUESTION 4. What effect has the newly implemented features on
students’ engagement and understanding of new pro-
gramming concepts?

1.2 RESEARCH METHODS

As presented in the research questions, the thesis aims to answer
questions related to two main topics: design and implementation
of visualization tools and evaluation of visualization tools. Each of
the two topics feeds each other with the results of the other topic.

The focus of the research is in the development of visualization
tools. As such, systems development research methodology was
chosen for the research [91]. Four main components of the method-
ology can be defined, see Figure 1.1: system development itself, theory
building, observation and experimentation. Observation aims to get
an understanding of the field, while experimentation aims to vali-
date the theories built or the developed systems. Theory building
includes the development of new ideas, concepts or models. In

6 Dissertations in Forestry and Natural Sciences No 149

Introduction

contrast to classical epistemological questions, the task of this the-
sis is not to enquire into what is true, but rather what is effective, as
proposed by Hevner [38].

Systems development defends the use of other methodologies to
answer the questions in each of the components. In this thesis, then,
Question 3 corresponds to the system development component and
new visualization tools have been prototyped, so that they could be
fed to the other three components.

The observation (Questions 1 and 2) and experimentation (Ques-
tion 4) components link with classical education research, in which
one uses either qualitative or quantitative methods according to the
research question posed. On the one hand, quantitative methods
reflect a positivist view of reality: a unique reality exists and can be
evaluated and measured. On the other hand, qualitative researchers
aim to explore the meaning of the observed reality. These partic-
ular observations depend on the observer: qualitative researchers
acknowledge the subjective interpretation of reality.

To answer these three questions (Questions 1,2 and 4) I have
taken a mixed methods approach, in which the method is chosen
depending on the question being asked, similar to the pragmatic
approach taken by Sorva [117]. A mixed methods approach recog-
nises the fact that different phenomena may be elicited by different
means. As well, the power of combining qualitative and quantita-
tive methods is increased by the triangulation of the results [8, 58].

The questions related to the observation component (Questions
1 and 2), are better suited to be answered with qualitative research
methods, as they provide a deeper understanding of the field. They
were used to explore the students’ understanding of programming
constructs and the previously undefined roles a programming vi-
sualization tool takes when learning them. Two experiments were
carried out with different students. In both of the experiments stu-
dents were asked to explain a certain programming concept just
taught. In turn, the analysis of their verbal answers revealed the
role the tool had in their learning. Verbal data have been used be-
fore to investigate problem solving and mental models [20, 29]. Ver-

Dissertations in Forestry and Natural Sciences No 149 7



Andrés Moreno: Re-designing Program Animation

QUESTION 3. How can new features be implemented in Jeliot 3
using its modular architecture in a way that facili-
tates its usage in diverse learning scenarios?

Jeliot 3 was designed to be modular, so new fea-
tures could be added easily, unlike it predecessor
Jeliot 2000. This ease of adding new features to Je-
liot, allows for quick prototyping of new solutions
to overcome difficulties and problems that teachers
and students find when using Jeliot 3. Through
the addition of several features, a refined process
of ideation, conceptualization, implementation and
evaluation is crystallized in the development of Je-
liot ConAn, a new version of Jeliot 3 that creates
erroneous animations.

The thesis answers a final question that combines both parts of
the research into a single track.

QUESTION 4. What effect has the newly implemented features on
students’ engagement and understanding of new pro-
gramming concepts?

1.2 RESEARCH METHODS

As presented in the research questions, the thesis aims to answer
questions related to two main topics: design and implementation
of visualization tools and evaluation of visualization tools. Each of
the two topics feeds each other with the results of the other topic.

The focus of the research is in the development of visualization
tools. As such, systems development research methodology was
chosen for the research [91]. Four main components of the method-
ology can be defined, see Figure 1.1: system development itself, theory
building, observation and experimentation. Observation aims to get
an understanding of the field, while experimentation aims to vali-
date the theories built or the developed systems. Theory building
includes the development of new ideas, concepts or models. In

6 Dissertations in Forestry and Natural Sciences No 149

Introduction

contrast to classical epistemological questions, the task of this the-
sis is not to enquire into what is true, but rather what is effective, as
proposed by Hevner [38].

Systems development defends the use of other methodologies to
answer the questions in each of the components. In this thesis, then,
Question 3 corresponds to the system development component and
new visualization tools have been prototyped, so that they could be
fed to the other three components.

The observation (Questions 1 and 2) and experimentation (Ques-
tion 4) components link with classical education research, in which
one uses either qualitative or quantitative methods according to the
research question posed. On the one hand, quantitative methods
reflect a positivist view of reality: a unique reality exists and can be
evaluated and measured. On the other hand, qualitative researchers
aim to explore the meaning of the observed reality. These partic-
ular observations depend on the observer: qualitative researchers
acknowledge the subjective interpretation of reality.

To answer these three questions (Questions 1,2 and 4) I have
taken a mixed methods approach, in which the method is chosen
depending on the question being asked, similar to the pragmatic
approach taken by Sorva [117]. A mixed methods approach recog-
nises the fact that different phenomena may be elicited by different
means. As well, the power of combining qualitative and quantita-
tive methods is increased by the triangulation of the results [8, 58].

The questions related to the observation component (Questions
1 and 2), are better suited to be answered with qualitative research
methods, as they provide a deeper understanding of the field. They
were used to explore the students’ understanding of programming
constructs and the previously undefined roles a programming vi-
sualization tool takes when learning them. Two experiments were
carried out with different students. In both of the experiments stu-
dents were asked to explain a certain programming concept just
taught. In turn, the analysis of their verbal answers revealed the
role the tool had in their learning. Verbal data have been used be-
fore to investigate problem solving and mental models [20, 29]. Ver-

Dissertations in Forestry and Natural Sciences No 149 7



Andrés Moreno: Re-designing Program Animation

Systems
Development

Observation Experimentation

Theory
Building

Figure 1.1: The main components of Systems Design Research method, modified from
Nunamaker et al. [91]

8 Dissertations in Forestry and Natural Sciences No 149

Introduction

bal protocols provide more data from the interventions than written
feedback and can reflect the thinking process subjects go through
when coming with an explanation, answer, or description.

In the first experiment, two possible uses of Jeliot 3 were sug-
gested, as a debugger and as a learning aid, and their importance
evaluated by interviewing students after using the tool. The in-
terviews were transcribed and analysed looking for patterns of the
usefulness of Jeliot 3 and how students had used it.

To understand better the roles of Jeliot 3 as a learning aid, in
the following evaluation, six students from a programming course
were randomly sampled. From the transcriptions of their learning
sessions, roles were inferred from transcriptions using an induc-
tive category generation process, a similar technique also used by
Eckerdal [28]. Qualitative data were obtained by capturing the on-
going visualization and, in parallel, students’ descriptions of that
visualization. This technique is a combination of the interview
methods that Fleury [32] and Holmboe [40] used to elicit program-
ming knowledge from students. Fleury asked students in the inter-
views whether a given program will work and and why they think
so [32]. Holmboe led the interviews with a simpler set of questions
phrased like “What is ...” followed by a programming concept [40].
The result of the combination is adapted to the dynamic nature of
animations with the question “What happens next?”, which was
used as a prompt in Paper II.

For the experimentation component, Question 4, quantitative
methods have been preferred as they can better answer the what’s
effective question. I have investigated the learning effects of two
experiments that used modified versions of Jeliot 3. Specifically,
the design chosen has been single-factor, between-subjects experi-
ments. Data were gathered by means of pre-tests and post-tests,
and feedback questionnaires. Pre-tests and post-tests have been
previously used in research on the educational impact of visualiza-
tions, e.g. Hansen et al. [37]. Moreover, Hundhausen et al. suggest in
their meta-study that this kind of evaluation is more likely to find
an impact if it exists [42] than a single post-test measurement. How-

Dissertations in Forestry and Natural Sciences No 149 9



Andrés Moreno: Re-designing Program Animation

Systems
Development

Observation Experimentation

Theory
Building

Figure 1.1: The main components of Systems Design Research method, modified from
Nunamaker et al. [91]

8 Dissertations in Forestry and Natural Sciences No 149

Introduction

bal protocols provide more data from the interventions than written
feedback and can reflect the thinking process subjects go through
when coming with an explanation, answer, or description.

In the first experiment, two possible uses of Jeliot 3 were sug-
gested, as a debugger and as a learning aid, and their importance
evaluated by interviewing students after using the tool. The in-
terviews were transcribed and analysed looking for patterns of the
usefulness of Jeliot 3 and how students had used it.

To understand better the roles of Jeliot 3 as a learning aid, in
the following evaluation, six students from a programming course
were randomly sampled. From the transcriptions of their learning
sessions, roles were inferred from transcriptions using an induc-
tive category generation process, a similar technique also used by
Eckerdal [28]. Qualitative data were obtained by capturing the on-
going visualization and, in parallel, students’ descriptions of that
visualization. This technique is a combination of the interview
methods that Fleury [32] and Holmboe [40] used to elicit program-
ming knowledge from students. Fleury asked students in the inter-
views whether a given program will work and and why they think
so [32]. Holmboe led the interviews with a simpler set of questions
phrased like “What is ...” followed by a programming concept [40].
The result of the combination is adapted to the dynamic nature of
animations with the question “What happens next?”, which was
used as a prompt in Paper II.

For the experimentation component, Question 4, quantitative
methods have been preferred as they can better answer the what’s
effective question. I have investigated the learning effects of two
experiments that used modified versions of Jeliot 3. Specifically,
the design chosen has been single-factor, between-subjects experi-
ments. Data were gathered by means of pre-tests and post-tests,
and feedback questionnaires. Pre-tests and post-tests have been
previously used in research on the educational impact of visualiza-
tions, e.g. Hansen et al. [37]. Moreover, Hundhausen et al. suggest in
their meta-study that this kind of evaluation is more likely to find
an impact if it exists [42] than a single post-test measurement. How-

Dissertations in Forestry and Natural Sciences No 149 9



Andrés Moreno: Re-designing Program Animation

ever, they warned that the pre-test may be considered as part of the
learning and impact the results. In the studies presented here, the
impact of the pre-test can be partly disregarded as the pre-test is
the same for all the subjects, and the pre-test is presented shortly
before the treatment.

Data gathered for the qualitative and quantitative methods were
augmented with students’ descriptions of animations. These de-
scriptions were written by the students next to printed screenshots
of Jeliot, and collected after watching the animations and answer-
ing the post-test or verbally describing a similar animation. To my
knowledge, this kind of data has not been analysed before to study
students’ understanding of programming constructs, nor the ani-
mation itself. Vainio and Sajaniemi used the opposite approach —
analysis of students’ drawings of programming concepts — with
interesting results [123]. In the experiments presented here, written
descriptions were considered necessary to complement the qualita-
tive verbal descriptions as students could have trouble watching the
animation and talking at the same time, two cognitively demanding
tasks. Quantitive test scores benefited from the insights provided
by students’ descriptions. Descriptions forced students to use their
programming knowledge to describe the visualizations.

To evaluate the engagement levels provided by the new pro-
gram visualization concepts, and to answer Question 4, heuristic
analysis has been used with conflictive animations concept. Nielsen
proposed heuristic evaluation as a low-cost and fast method for
finding usability problems [89]. Here, it has been adapted to eval-
uate the fun-factor of animations and to increase the students’ en-
gagement with the animations.

In all empirical evaluations, ecological validity of the results has
been of utmost importance, resulting in sacrificing statistical signif-
icance when not enough experiment subjects could be found. Eval-
uations were done in situations in which the author could have con-
trol, e.g. being the teacher, so that the experimental sessions were
positioned at the right time in the students’ process of learning pro-
gramming. This way, the results are ecologically valid in the sense

10 Dissertations in Forestry and Natural Sciences No 149

Introduction

Table 1.1: The relationship between research questions, systems development research com-
ponent, and paper including the research method used

Research
Ques-
tion

Systems de-
velopment
component

Method Paper(s)

1 Observation Qualitative evaluation I, II
2 Observation Qualitative evaluation I, II
3 Systems de-

velopment
Prototyping III,IV,V,VII

4 Experimentation Quantitative eval-
uation, Heuristic
Analysis

IV, VI, VII

that they are obtained from a learning scenario as close as possi-
ble to a real one. Thus, they can be generalized to other similar
learning scenarios. The empirical evaluation described in Paper 6
was carried out by Peng Wang and ecological validity could not be
ensured.

Regarding the theory building component of systems develop-
ment research, it is embedded in all the papers included in this
dissertation. My research builds new theories, models and artifacts
either as a precursor for empirical results or as a by-product of the
research, thus theory building is intertwined in the research pro-
cess.

Tables 1.1 and 1.2 summarize and link the research papers, re-
search methods and papers presented in this thesis.

1.3 RESEARCH PROCESS AND MAIN RESULTS

The research process has been mostly linear, with some branching
and pruning, rather than iterative. Figure 1.2 shows a schema of
the process that I explain herein.

Dissertations in Forestry and Natural Sciences No 149 11



Andrés Moreno: Re-designing Program Animation

ever, they warned that the pre-test may be considered as part of the
learning and impact the results. In the studies presented here, the
impact of the pre-test can be partly disregarded as the pre-test is
the same for all the subjects, and the pre-test is presented shortly
before the treatment.

Data gathered for the qualitative and quantitative methods were
augmented with students’ descriptions of animations. These de-
scriptions were written by the students next to printed screenshots
of Jeliot, and collected after watching the animations and answer-
ing the post-test or verbally describing a similar animation. To my
knowledge, this kind of data has not been analysed before to study
students’ understanding of programming constructs, nor the ani-
mation itself. Vainio and Sajaniemi used the opposite approach —
analysis of students’ drawings of programming concepts — with
interesting results [123]. In the experiments presented here, written
descriptions were considered necessary to complement the qualita-
tive verbal descriptions as students could have trouble watching the
animation and talking at the same time, two cognitively demanding
tasks. Quantitive test scores benefited from the insights provided
by students’ descriptions. Descriptions forced students to use their
programming knowledge to describe the visualizations.

To evaluate the engagement levels provided by the new pro-
gram visualization concepts, and to answer Question 4, heuristic
analysis has been used with conflictive animations concept. Nielsen
proposed heuristic evaluation as a low-cost and fast method for
finding usability problems [89]. Here, it has been adapted to eval-
uate the fun-factor of animations and to increase the students’ en-
gagement with the animations.

In all empirical evaluations, ecological validity of the results has
been of utmost importance, resulting in sacrificing statistical signif-
icance when not enough experiment subjects could be found. Eval-
uations were done in situations in which the author could have con-
trol, e.g. being the teacher, so that the experimental sessions were
positioned at the right time in the students’ process of learning pro-
gramming. This way, the results are ecologically valid in the sense

10 Dissertations in Forestry and Natural Sciences No 149

Introduction

Table 1.1: The relationship between research questions, systems development research com-
ponent, and paper including the research method used

Research
Ques-
tion

Systems de-
velopment
component

Method Paper(s)

1 Observation Qualitative evaluation I, II
2 Observation Qualitative evaluation I, II
3 Systems de-

velopment
Prototyping III,IV,V,VII

4 Experimentation Quantitative eval-
uation, Heuristic
Analysis

IV, VI, VII

that they are obtained from a learning scenario as close as possi-
ble to a real one. Thus, they can be generalized to other similar
learning scenarios. The empirical evaluation described in Paper 6
was carried out by Peng Wang and ecological validity could not be
ensured.

Regarding the theory building component of systems develop-
ment research, it is embedded in all the papers included in this
dissertation. My research builds new theories, models and artifacts
either as a precursor for empirical results or as a by-product of the
research, thus theory building is intertwined in the research pro-
cess.

Tables 1.1 and 1.2 summarize and link the research papers, re-
search methods and papers presented in this thesis.

1.3 RESEARCH PROCESS AND MAIN RESULTS

The research process has been mostly linear, with some branching
and pruning, rather than iterative. Figure 1.2 shows a schema of
the process that I explain herein.

Dissertations in Forestry and Natural Sciences No 149 11



Andrés Moreno: Re-designing Program Animation

Kannusmäki et al.

Paper I
Learning &
debugging

Paper III
Jeliot Adapt

Paper II
Roles of viz. tools

Paper VI
Jeliot Annotated

Papers IV, V
Jeliot ConAn

Paper VII
Conflictive game

Figure 1.2: Research process graph

12 Dissertations in Forestry and Natural Sciences No 149

Introduction

Table 1.2: Summary of research methods and research questions by paper

Paper Method Research Questions

I Qualitative evaluation 1, 2
II Qualitative evaluation 1, 2
III Constructive research 3
IV Constructive research

and quantitative evalu-
ation

3, 4

V Constructive research 3
VI Quantitative research 4
VII Constructive research,

Heuristic Analysis
3

The work started from the realization that some students re-
fused to use program animation tools and that some of those who
used them found them too complex to benefit from [44]. The first
idea considered for investigation was to consider a smart version of
Jeliot 3 [3]. The first experiment, reported in Paper I and carried out
at the University of Warwick (UK), aimed to find ways on how to
adapt Jeliot 3 to cater for different kinds of students and situations.
The experiment revealed that some students indeed have problems
understanding and viewing the animations. Specially, they were
not able to explain the meaning of animations they had seen sev-
eral times before. While adaptation was thought to be a possible
solution it was not clear from the study how to apply it.

Anyway, collaborating with the Personalized Adaptive Web Sys-
tems Lab from the University of Pittsburgh (USA), the first adap-
tation features for program animation were designed and imple-
mented in Jeliot 3 (Paper III). Under closer inspection the adap-
tive solution was discarded and not evaluated due to the minimal
increase in engagement it would provide compared to the work
needed to provide adaptation features to a large set of Java con-

Dissertations in Forestry and Natural Sciences No 149 13



Andrés Moreno: Re-designing Program Animation

Kannusmäki et al.

Paper I
Learning &
debugging

Paper III
Jeliot Adapt

Paper II
Roles of viz. tools

Paper VI
Jeliot Annotated

Papers IV, V
Jeliot ConAn

Paper VII
Conflictive game

Figure 1.2: Research process graph

12 Dissertations in Forestry and Natural Sciences No 149

Introduction

Table 1.2: Summary of research methods and research questions by paper

Paper Method Research Questions

I Qualitative evaluation 1, 2
II Qualitative evaluation 1, 2
III Constructive research 3
IV Constructive research

and quantitative evalu-
ation

3, 4

V Constructive research 3
VI Quantitative research 4
VII Constructive research,

Heuristic Analysis
3

The work started from the realization that some students re-
fused to use program animation tools and that some of those who
used them found them too complex to benefit from [44]. The first
idea considered for investigation was to consider a smart version of
Jeliot 3 [3]. The first experiment, reported in Paper I and carried out
at the University of Warwick (UK), aimed to find ways on how to
adapt Jeliot 3 to cater for different kinds of students and situations.
The experiment revealed that some students indeed have problems
understanding and viewing the animations. Specially, they were
not able to explain the meaning of animations they had seen sev-
eral times before. While adaptation was thought to be a possible
solution it was not clear from the study how to apply it.

Anyway, collaborating with the Personalized Adaptive Web Sys-
tems Lab from the University of Pittsburgh (USA), the first adap-
tation features for program animation were designed and imple-
mented in Jeliot 3 (Paper III). Under closer inspection the adap-
tive solution was discarded and not evaluated due to the minimal
increase in engagement it would provide compared to the work
needed to provide adaptation features to a large set of Java con-

Dissertations in Forestry and Natural Sciences No 149 13



Andrés Moreno: Re-designing Program Animation

structs.
The first experiment served as a base for a second one, carried

out at Tumaini University (TZ) and described in Paper II. This time,
the role of Jeliot 3 was explored more deeply to understand the is-
sues discovered in Paper I. To overcome the difficulties of students
using Jeliot as a learning aid, two solutions were implemented and
evaluated. One solution, adding explanations, was natural and al-
ready done in other animation systems. The other, creating conflic-
tive animations, was innovative and with lots of potential to change
the computer science education field.

One Master’s student, Peng Wang, implemented and evaluated
the solution with explanations under my guidance [127]. Given
that explanations are already proven to be effective for multimedia
learning [65], the evaluation focused on the point of time that the
explanation would be shown to the student: before or after the
explained step of the animation.

The idea of conflictive animation was introduced first in 2007 [77]
and developed further in Papers IV (system design) and V (empir-
ical evaluation carried out at the University of Joensuu (FI), with a
pilot at the University of Helsinki (FI)).

Finally, aiming to take the idea of conflictive animations fur-
ther and to overcome students’ criticisms, a new activity merging
conflictive animations and games was conceived and presented in
Paper VII.

All the steps taken in the process have led to concrete results
that are summarized in the following section and, in more detail,
in Chapter 4, which includes the limitations inherent to the results
(Section 4.5).

1.3.1 Summary of the results

1. Engagement and understanding

(a) Understading of new programming concepts with Je-
liot 3

14 Dissertations in Forestry and Natural Sciences No 149

Introduction

Description Students face problems when using Jeliot 3
to understand new concepts. While students may
finally comprehend the topics explained by Jeliot 3,
they have difficulties to link the visualization with
the concept being explained, partly due to their pre-
vious fragile knowledge.

Validity Two experiments in completely different set-
tings have informed this qualitative result.

(b) Roles of program visualization tools

Description Program visualization tools can take five
changing roles as students use them to understand
new concepts: empty role, explanatory, confusing,
teaching, and evaluating.

Validity One qualititave experiment was used to infer
the roles. Results depended in the previous knowl-
edge and understanding of the author at that time.
However, the analysis process was guided and re-
viewed by the supervisors of this thesis at every step
to ensure that the roles inferred followed logically
from students’ protocols.

2. Jeliot Adapt

(a) Adapting visualizations of a whole programming lan-
guage is hard

Description The development work carried out in Jeliot
Adapt was abandon due the difficulty of automat-
ically adapting the visualization of every step de-
pending on the students’ changing knowledge.

Validity The result is only pertinent to Jeliot 3, but the
fact that there are not adaptive visualization tools
that cover a whole programming language seem to
support the result.

3. Jeliot ConAn

Dissertations in Forestry and Natural Sciences No 149 15



Andrés Moreno: Re-designing Program Animation

structs.
The first experiment served as a base for a second one, carried

out at Tumaini University (TZ) and described in Paper II. This time,
the role of Jeliot 3 was explored more deeply to understand the is-
sues discovered in Paper I. To overcome the difficulties of students
using Jeliot as a learning aid, two solutions were implemented and
evaluated. One solution, adding explanations, was natural and al-
ready done in other animation systems. The other, creating conflic-
tive animations, was innovative and with lots of potential to change
the computer science education field.

One Master’s student, Peng Wang, implemented and evaluated
the solution with explanations under my guidance [127]. Given
that explanations are already proven to be effective for multimedia
learning [65], the evaluation focused on the point of time that the
explanation would be shown to the student: before or after the
explained step of the animation.

The idea of conflictive animation was introduced first in 2007 [77]
and developed further in Papers IV (system design) and V (empir-
ical evaluation carried out at the University of Joensuu (FI), with a
pilot at the University of Helsinki (FI)).

Finally, aiming to take the idea of conflictive animations fur-
ther and to overcome students’ criticisms, a new activity merging
conflictive animations and games was conceived and presented in
Paper VII.

All the steps taken in the process have led to concrete results
that are summarized in the following section and, in more detail,
in Chapter 4, which includes the limitations inherent to the results
(Section 4.5).

1.3.1 Summary of the results

1. Engagement and understanding

(a) Understading of new programming concepts with Je-
liot 3

14 Dissertations in Forestry and Natural Sciences No 149

Introduction

Description Students face problems when using Jeliot 3
to understand new concepts. While students may
finally comprehend the topics explained by Jeliot 3,
they have difficulties to link the visualization with
the concept being explained, partly due to their pre-
vious fragile knowledge.

Validity Two experiments in completely different set-
tings have informed this qualitative result.

(b) Roles of program visualization tools

Description Program visualization tools can take five
changing roles as students use them to understand
new concepts: empty role, explanatory, confusing,
teaching, and evaluating.

Validity One qualititave experiment was used to infer
the roles. Results depended in the previous knowl-
edge and understanding of the author at that time.
However, the analysis process was guided and re-
viewed by the supervisors of this thesis at every step
to ensure that the roles inferred followed logically
from students’ protocols.

2. Jeliot Adapt

(a) Adapting visualizations of a whole programming lan-
guage is hard

Description The development work carried out in Jeliot
Adapt was abandon due the difficulty of automat-
ically adapting the visualization of every step de-
pending on the students’ changing knowledge.

Validity The result is only pertinent to Jeliot 3, but the
fact that there are not adaptive visualization tools
that cover a whole programming language seem to
support the result.

3. Jeliot ConAn

Dissertations in Forestry and Natural Sciences No 149 15



Andrés Moreno: Re-designing Program Animation

(a) Extended Engagement Taxonomy with Conflicts

Description The engagement taxonomy from Naps et
al. [86] has been duplicated to consider the engage-
ment levels that conflicts allow in visualization tools.

Validity This is a theoretical result that can guide future
developments of tools using conflicts or errors.

(b) Jeliot ConAn

Description An architecture for creating conflicts in pro-
gram visualization tools and prototype of Jeliot Co-
nAn were built to automatically create conflicts on a
set of programming concepts.

Validity The prototype was tested on existing book ex-
amples and found to automatically animate most of
them without changing them.

(c) Jeliot ConAn does not improve students’ understanding

Description When compared to a normal Jeliot 3 activ-
ity, debugging a small program using the anima-
tion, Jeliot ConAn students did not significally im-
prove their understanding of the programming con-
cept. Anecdotal evidence show that Jeliot ConAn
helped with students’ meta-cognitive skills.

Validity A small size experiment did not provide sta-
tistical strength to the result. As well, experiment
group had not used Jeliot ConAn before, nor intro-
duced to the error based teaching.

4. Jeliot 3 and Explanations

(a) Explanations in Jeliot 3 help students when placed after
the animation

Description A version of Jeliot 3 that adds explanations
to the naimation steps was developed together with
a Master’s student. An experiment found that stu-
dents apprehended more of the explained concept

16 Dissertations in Forestry and Natural Sciences No 149

Introduction

and its animation when the explanation is placed
just after the step being explained.

Validity A small size experiment that yielded significant
results. A larger size experiment should be done to
validate the results.

1.4 ORGANIZATION OF THE THESIS

The rest of the thesis is divided as follows: Chapter 2 introduces
the field of programming education and summarizes the theories
that I have used. Chapter 3 describes the field of program ani-
mation, though program and algorithm visualization tools are also
discussed. The research and implementation methods of these tools
divide that chapter. A special section in that chapter is devoted to
Jeliot 3, the tool used in this research process. Chapter 4 summa-
rizes the results that are presented in the papers of the thesis. The
thesis concludes with Chapter 5, in which new openings for pro-
gramming animation, and programming education in general, are
presented. As well, recommendations are given for the developers
of visualization tools and programming teachers.

Dissertations in Forestry and Natural Sciences No 149 17



Andrés Moreno: Re-designing Program Animation

(a) Extended Engagement Taxonomy with Conflicts

Description The engagement taxonomy from Naps et
al. [86] has been duplicated to consider the engage-
ment levels that conflicts allow in visualization tools.

Validity This is a theoretical result that can guide future
developments of tools using conflicts or errors.

(b) Jeliot ConAn

Description An architecture for creating conflicts in pro-
gram visualization tools and prototype of Jeliot Co-
nAn were built to automatically create conflicts on a
set of programming concepts.

Validity The prototype was tested on existing book ex-
amples and found to automatically animate most of
them without changing them.

(c) Jeliot ConAn does not improve students’ understanding

Description When compared to a normal Jeliot 3 activ-
ity, debugging a small program using the anima-
tion, Jeliot ConAn students did not significally im-
prove their understanding of the programming con-
cept. Anecdotal evidence show that Jeliot ConAn
helped with students’ meta-cognitive skills.

Validity A small size experiment did not provide sta-
tistical strength to the result. As well, experiment
group had not used Jeliot ConAn before, nor intro-
duced to the error based teaching.

4. Jeliot 3 and Explanations

(a) Explanations in Jeliot 3 help students when placed after
the animation

Description A version of Jeliot 3 that adds explanations
to the naimation steps was developed together with
a Master’s student. An experiment found that stu-
dents apprehended more of the explained concept

16 Dissertations in Forestry and Natural Sciences No 149

Introduction

and its animation when the explanation is placed
just after the step being explained.

Validity A small size experiment that yielded significant
results. A larger size experiment should be done to
validate the results.

1.4 ORGANIZATION OF THE THESIS

The rest of the thesis is divided as follows: Chapter 2 introduces
the field of programming education and summarizes the theories
that I have used. Chapter 3 describes the field of program ani-
mation, though program and algorithm visualization tools are also
discussed. The research and implementation methods of these tools
divide that chapter. A special section in that chapter is devoted to
Jeliot 3, the tool used in this research process. Chapter 4 summa-
rizes the results that are presented in the papers of the thesis. The
thesis concludes with Chapter 5, in which new openings for pro-
gramming animation, and programming education in general, are
presented. As well, recommendations are given for the developers
of visualization tools and programming teachers.

Dissertations in Forestry and Natural Sciences No 149 17



Andrés Moreno: Re-designing Program Animation

18 Dissertations in Forestry and Natural Sciences No 149

2 Learning and Teaching Pro-
gramming

University teachers have struggled for the last decades trying to
find the right combination of teaching methods, materials and tools
to improve the grades of their programming students. These stu-
dents enroll in programming courses at their beginning of the com-
puter science or engineering degrees. Their knowledge, skills and
attitudes clash with those that teachers expect from them. The
teachers’ teaching performance and students’ learning is evaluated
using students’ grades as a proxy. The results have not been good:
programming courses face high failure and dropout rates. Two
studies concisely reflect the problem. A study on students’ pro-
gramming skills by McCracken et al. [66] assessed the skills of stu-
dents from several institutions and countries. Their findings pointed
to students not having the expected skills after their programming
course, according to them the lack of problem solving skills were
to blame. Later on, Lister et al. [59] explored the issue of the lack
of program comprehension and tracing skills of students, funda-
mental to debugging [96], and, according to Lister et al., a prerequi-
site for problem solving. They found that students lacked program
comprehension and tracing skills. Because of these results, apart
from the fact that researchers happened to find what they were
looking for, computer science educators and researchers have not
yet found the elements for successful teaching and learning of pro-
gramming at universities.

The rest of this chapter introduces the theoretical elements and
the previous research that sustain the theory building, observation,
and experimentation components of this research; these compo-
nents are presented in Chapter 4. Interested readers can refer to
Sorva’s dissertation [117] for a deeper presentation of the theoreti-

Dissertations in Forestry and Natural Sciences No 149 19



Andrés Moreno: Re-designing Program Animation

18 Dissertations in Forestry and Natural Sciences No 149

2 Learning and Teaching Pro-
gramming

University teachers have struggled for the last decades trying to
find the right combination of teaching methods, materials and tools
to improve the grades of their programming students. These stu-
dents enroll in programming courses at their beginning of the com-
puter science or engineering degrees. Their knowledge, skills and
attitudes clash with those that teachers expect from them. The
teachers’ teaching performance and students’ learning is evaluated
using students’ grades as a proxy. The results have not been good:
programming courses face high failure and dropout rates. Two
studies concisely reflect the problem. A study on students’ pro-
gramming skills by McCracken et al. [66] assessed the skills of stu-
dents from several institutions and countries. Their findings pointed
to students not having the expected skills after their programming
course, according to them the lack of problem solving skills were
to blame. Later on, Lister et al. [59] explored the issue of the lack
of program comprehension and tracing skills of students, funda-
mental to debugging [96], and, according to Lister et al., a prerequi-
site for problem solving. They found that students lacked program
comprehension and tracing skills. Because of these results, apart
from the fact that researchers happened to find what they were
looking for, computer science educators and researchers have not
yet found the elements for successful teaching and learning of pro-
gramming at universities.

The rest of this chapter introduces the theoretical elements and
the previous research that sustain the theory building, observation,
and experimentation components of this research; these compo-
nents are presented in Chapter 4. Interested readers can refer to
Sorva’s dissertation [117] for a deeper presentation of the theoreti-

Dissertations in Forestry and Natural Sciences No 149 19



Andrés Moreno: Re-designing Program Animation

cal discussion.

2.1 THEORETICAL COMPONENTS OF LEARNING AND TEACH-
ING PROGRAMMING

Different learning theories emphasize different components of the
learning process and, at the same time, they promote different
kinds of activities to support the development of those aspects. Be-
haviourism postulates that knowledge, or learnt behaviour, can be
transferred from an instructor to the learner by means of repeat-
ing the information or stimuli. This implies the assumption that
there is only one possible understanding and that the instructor
possesses it. Learning programming conventions, syntax rules, and
other basic programming knowledge is well suited to this theory.

With multiple-choice questions, a teachers and evaluators get
an authoritative answer to whether the student has learnt the topic.
Moreover, automatic grading and fairness have also been mentioned
as a benefit [51]. These properties have led researchers to add
multiple-choice questions to several tools for teaching computer sci-
ence [85]. As Kuechler and Simkin mention, multiple-choice ques-
tion only capture one dimension of learning [51]. Other methods
and theories are needed.

Cognitive theories try to open the black box that the brain rep-
resents for behaviourists. Cognitive psychologists aim to formu-
late (or invent) the structures and processes that support and make
people learn. Specially for programming, their idea of mental mod-
els [90] is quite relevant as it also captures the dynamic nature of
programs.

Resources that support the creation and modification of men-
tal models have been guided by cognitive constructivism theory. The
focus of social constructivism is on students constructing their own
knowledge and advancing through their individual Zone of Proxi-
mal Development with the help of teachers and peers. The teacher’s
mission is to guide and scaffold students’ learning. Students con-
struct their knowledge mainly by means of exploration, and they

20 Dissertations in Forestry and Natural Sciences No 149

Learning and Teaching Programming

are encouraged to express what they have found. In this setting,
errors and misunderstandings are accepted, and even encouraged,
as solving them will help the students create solid knowledge [113].

Constructivist acceptance of diverging understandings or men-
tal models presents a problem for programming education. Nei-
ther the computer nor the compiler is flexible as to how the pro-
gram runs the student’s code. It is still necessary that students
should reliably acquire the foundational knowledge of computers
and programming, and put aside their misunderstandings and mis-
conceptions [5]. As a consequence, computer science educators and
researchers have been trying to improve students’ learning by cre-
ating new ways to interact and engage with the material they pro-
duce.

Researchers in constructivism have promoted cognitive conflict
as a way to promote conceptual changes [112] and to correct stu-
dents’ misconceptions. This approach has been successfully used in
physics education [57] and programming [62]. Students are asked
to explain an empirical observation, and their incorrect explana-
tions are challenged with further empirical observations that they
cannot explain or refute. Students are more open to changing their
conceptions when an alternative and correct explanation is given.
In their learning programming experiment, Ma et al. used visual-
izations to present the correct model of object assignment [62].

Three main taxonomies have been developed to assess students’
understanding or to organize learning outcomes: Bloom’s [13], Gagne’s
learning outcomes [33], and the structured of observed learning out-
come (SOLO) taxonomies [12]. Bloom’s and Gagne’s taxonomies
start with the basic knowledge or information acquisition, and pro-
gress towards more demanding skills. SOLO is a more recent de-
velopment and delves into the ability of students to manipulate
knowledge. The higher levels of the taxonomy are when students
can relate different concepts and when they can produce new con-
cepts based on the ones they have learnt. Bloom’s and the SOLO
taxonomies have been used in programming education to compare
novice and experts understanding of code [60] and design assess-

Dissertations in Forestry and Natural Sciences No 149 21



Andrés Moreno: Re-designing Program Animation

cal discussion.

2.1 THEORETICAL COMPONENTS OF LEARNING AND TEACH-
ING PROGRAMMING

Different learning theories emphasize different components of the
learning process and, at the same time, they promote different
kinds of activities to support the development of those aspects. Be-
haviourism postulates that knowledge, or learnt behaviour, can be
transferred from an instructor to the learner by means of repeat-
ing the information or stimuli. This implies the assumption that
there is only one possible understanding and that the instructor
possesses it. Learning programming conventions, syntax rules, and
other basic programming knowledge is well suited to this theory.

With multiple-choice questions, a teachers and evaluators get
an authoritative answer to whether the student has learnt the topic.
Moreover, automatic grading and fairness have also been mentioned
as a benefit [51]. These properties have led researchers to add
multiple-choice questions to several tools for teaching computer sci-
ence [85]. As Kuechler and Simkin mention, multiple-choice ques-
tion only capture one dimension of learning [51]. Other methods
and theories are needed.

Cognitive theories try to open the black box that the brain rep-
resents for behaviourists. Cognitive psychologists aim to formu-
late (or invent) the structures and processes that support and make
people learn. Specially for programming, their idea of mental mod-
els [90] is quite relevant as it also captures the dynamic nature of
programs.

Resources that support the creation and modification of men-
tal models have been guided by cognitive constructivism theory. The
focus of social constructivism is on students constructing their own
knowledge and advancing through their individual Zone of Proxi-
mal Development with the help of teachers and peers. The teacher’s
mission is to guide and scaffold students’ learning. Students con-
struct their knowledge mainly by means of exploration, and they

20 Dissertations in Forestry and Natural Sciences No 149

Learning and Teaching Programming

are encouraged to express what they have found. In this setting,
errors and misunderstandings are accepted, and even encouraged,
as solving them will help the students create solid knowledge [113].

Constructivist acceptance of diverging understandings or men-
tal models presents a problem for programming education. Nei-
ther the computer nor the compiler is flexible as to how the pro-
gram runs the student’s code. It is still necessary that students
should reliably acquire the foundational knowledge of computers
and programming, and put aside their misunderstandings and mis-
conceptions [5]. As a consequence, computer science educators and
researchers have been trying to improve students’ learning by cre-
ating new ways to interact and engage with the material they pro-
duce.

Researchers in constructivism have promoted cognitive conflict
as a way to promote conceptual changes [112] and to correct stu-
dents’ misconceptions. This approach has been successfully used in
physics education [57] and programming [62]. Students are asked
to explain an empirical observation, and their incorrect explana-
tions are challenged with further empirical observations that they
cannot explain or refute. Students are more open to changing their
conceptions when an alternative and correct explanation is given.
In their learning programming experiment, Ma et al. used visual-
izations to present the correct model of object assignment [62].

Three main taxonomies have been developed to assess students’
understanding or to organize learning outcomes: Bloom’s [13], Gagne’s
learning outcomes [33], and the structured of observed learning out-
come (SOLO) taxonomies [12]. Bloom’s and Gagne’s taxonomies
start with the basic knowledge or information acquisition, and pro-
gress towards more demanding skills. SOLO is a more recent de-
velopment and delves into the ability of students to manipulate
knowledge. The higher levels of the taxonomy are when students
can relate different concepts and when they can produce new con-
cepts based on the ones they have learnt. Bloom’s and the SOLO
taxonomies have been used in programming education to compare
novice and experts understanding of code [60] and design assess-

Dissertations in Forestry and Natural Sciences No 149 21



Andrés Moreno: Re-designing Program Animation

ments [119].
The next sections will describe three components or aspects

that are important for both education and programming learning:
knowledge, mental models, and skills. Skills are sometimes re-
ferred as being a component of knowledge but here they are con-
sidered as an independent component.

2.1.1 Knowledge

In this section we define knowledge as the facts and information
acquired through learning.

One classification useful for programming is the one that distin-
guishes between procedural and declarative knowledge. Declarative
knowledge is the most simple one and refers to the retention of a
single statement or item of knowledge, and it is usually taught by
behaviourist means. Procedural knowledge is the knowledge re-
quired to do something and usually involves remembering a num-
ber of steps or acquiring a mental model. For example, in program-
ming, declarative knowledge would be knowing what a keyword
stands for, whereas procedural knowledge will be needed to pro-
gram a while loop.

From a constructivist point of view, Holmboe [39] developed a
“cognitive framework for knowledge in informatics” that combines
both types of knowledge. He developed his framework by analyz-
ing people’s understanding of object orientation. For him, knowl-
edge is structured in four categories: from hunches, or first attempts
to understanding a concept, to holistic knowledge. In between, he
describes two other categories which are at the same level, practical
knowledge and theoretical knowledge. Practical knowledge is achieved
when students can relate the program to reality and explain it using
object oriented concepts. Theoretical knowledge is akin to declara-
tive knowledge.

Holistic knowledge is the result of interconnecting practical and
theoretical knowledge. At this stage, students have accommodated
the knowledge and can operate with it; or in constructivism terms,

22 Dissertations in Forestry and Natural Sciences No 149

Learning and Teaching Programming

the learnt concept is now part of their first order language. Holm-
boe’s proposal for programming education is simple: combine the-
ory with practice in an authentic scenario. However, he acknowl-
edges that it is unrealistic to expect students to have holistic knowl-
edge after just passing a programming course.

Holmboe’s classification aligns well with the SOLO taxonomy
levels — pre-structural, uni-structural, multi-structural, relational
and extended abstract [11]. However Holmboe’s classification ac-
knowledges better the practical aspect of programming because its
holistic knowledge demand authentic experiences. In the SOLO
taxonomy, the outcomes relate to a task, normally set up by the
teacher.

In Paper II, Holmboe’s [39] categories are used to character-
ize students’ understanding of programming concepts, especially
his hunches category. In Paper II the categories from Perkins and
Martin are also used to trace the evolving knowledge of the stu-
dents and how the tool modifies it [96]. Perkins and Martin de-
composed the fragile knowledge that recent students make use of
when programming. They worked with several students as the stu-
dents solve a programming exercise. Along with the intervention
the researchers gave strategic prompts to strengthen students’ frag-
ile knowledge. These prompts included more information relative
to the animation than normal prompts.

Perkins and Martin described four kinds of fragile knowledge in
practice — partial, inert, misplaced and conglomerated. Partial knowl-
edge is self-explanatory and reveal incomplete knowledge. Inert
knowledge is the one that students have but do not use when
needed. Misplaced knowledge represents knowledge that the stu-
dent applies but is not relevant in the current context, whereas con-
glomerated knowledge represents those cases when students’ code
contains “disparate elements” that are not supposed to be together.

Fragile knowledge and troublesome knowledge [95] have sparked
the idea of threshold concepts [67]. By investigating the learning pro-
cess of students in several fields, a set of concepts appears to be
common to them in the sense that they are: “transformative (oc-

Dissertations in Forestry and Natural Sciences No 149 23



Andrés Moreno: Re-designing Program Animation

ments [119].
The next sections will describe three components or aspects

that are important for both education and programming learning:
knowledge, mental models, and skills. Skills are sometimes re-
ferred as being a component of knowledge but here they are con-
sidered as an independent component.

2.1.1 Knowledge

In this section we define knowledge as the facts and information
acquired through learning.

One classification useful for programming is the one that distin-
guishes between procedural and declarative knowledge. Declarative
knowledge is the most simple one and refers to the retention of a
single statement or item of knowledge, and it is usually taught by
behaviourist means. Procedural knowledge is the knowledge re-
quired to do something and usually involves remembering a num-
ber of steps or acquiring a mental model. For example, in program-
ming, declarative knowledge would be knowing what a keyword
stands for, whereas procedural knowledge will be needed to pro-
gram a while loop.

From a constructivist point of view, Holmboe [39] developed a
“cognitive framework for knowledge in informatics” that combines
both types of knowledge. He developed his framework by analyz-
ing people’s understanding of object orientation. For him, knowl-
edge is structured in four categories: from hunches, or first attempts
to understanding a concept, to holistic knowledge. In between, he
describes two other categories which are at the same level, practical
knowledge and theoretical knowledge. Practical knowledge is achieved
when students can relate the program to reality and explain it using
object oriented concepts. Theoretical knowledge is akin to declara-
tive knowledge.

Holistic knowledge is the result of interconnecting practical and
theoretical knowledge. At this stage, students have accommodated
the knowledge and can operate with it; or in constructivism terms,

22 Dissertations in Forestry and Natural Sciences No 149

Learning and Teaching Programming

the learnt concept is now part of their first order language. Holm-
boe’s proposal for programming education is simple: combine the-
ory with practice in an authentic scenario. However, he acknowl-
edges that it is unrealistic to expect students to have holistic knowl-
edge after just passing a programming course.

Holmboe’s classification aligns well with the SOLO taxonomy
levels — pre-structural, uni-structural, multi-structural, relational
and extended abstract [11]. However Holmboe’s classification ac-
knowledges better the practical aspect of programming because its
holistic knowledge demand authentic experiences. In the SOLO
taxonomy, the outcomes relate to a task, normally set up by the
teacher.

In Paper II, Holmboe’s [39] categories are used to character-
ize students’ understanding of programming concepts, especially
his hunches category. In Paper II the categories from Perkins and
Martin are also used to trace the evolving knowledge of the stu-
dents and how the tool modifies it [96]. Perkins and Martin de-
composed the fragile knowledge that recent students make use of
when programming. They worked with several students as the stu-
dents solve a programming exercise. Along with the intervention
the researchers gave strategic prompts to strengthen students’ frag-
ile knowledge. These prompts included more information relative
to the animation than normal prompts.

Perkins and Martin described four kinds of fragile knowledge in
practice — partial, inert, misplaced and conglomerated. Partial knowl-
edge is self-explanatory and reveal incomplete knowledge. Inert
knowledge is the one that students have but do not use when
needed. Misplaced knowledge represents knowledge that the stu-
dent applies but is not relevant in the current context, whereas con-
glomerated knowledge represents those cases when students’ code
contains “disparate elements” that are not supposed to be together.

Fragile knowledge and troublesome knowledge [95] have sparked
the idea of threshold concepts [67]. By investigating the learning pro-
cess of students in several fields, a set of concepts appears to be
common to them in the sense that they are: “transformative (oc-

Dissertations in Forestry and Natural Sciences No 149 23



Andrés Moreno: Re-designing Program Animation

casioning a significant shift in the perception of a subject), irreversible
(unlikely to be forgotten, or unlearned only through considerable effort),
and integrative (exposing the previously hidden interrelatedness of some-
thing).” [67]. In programming, Sorva [117] proposes three main
threshold concepts: program dynamics, information hiding, object
interaction, “and possibly addressable memory”.

2.1.2 Mental Models

Mental models are mental representations or beliefs of real things
[43], be it a computer or some physics phenomenon. By having
mental models, people comprehend the world and knowledge around
them and operate with them. While similar to Holmboe’s idea of
holistic knowledge [39], mental models can be incomplete, unreal-
istic and evolving [90]. The goal of students is to create a viable
mental model [61], that is, a mental model that can sufficiently ex-
plain the concept and succesfully apply it to solve new problems.

Importantly for programming education, mental models can
also be run by their owners. Students and programmers execute
their code in their head according to their own mental model. A
student’s mental model relates to a notional machine that the pro-
gramming language or the teacher conveys. The notional machine
is a set of rules that the computer virtually operates under [27]. It
is the job of the teacher to make sure that an adequate notional
machine is presented to the student.

The lack of a viable mental model is at the source of plenty of
students’ misconceptions.

2.1.3 Skills

After students have acquired some minimal knowledge of program-
ming, and they need to put that knowledge to use, two main skills
are necessary: problem solving [105] and debugging [35]. First, stu-
dents use their problem solving skills to devise a solution that uses
their knowledge. Later, when running their program, the debug-
ging skill becomes important as students try to find their own errors

24 Dissertations in Forestry and Natural Sciences No 149

Learning and Teaching Programming

in the code. Naturally, the errors can be due to several causes, such
as fragile knowledge, misunderstanding of the problem and oth-
ers. Unfortunately, and as mentioned before, two working group
reports [59, 66] point to the lack of these two skills as the reason
why so many students fail to learn programming.

Indeed, teaching problem solving skills has been neglected in
introductory programming courses, or at least not explicitly taught,
even if students are expected to learn it [66]. However, the impor-
tance of the skill was already noted by Mayer [64] and Riley [105].
To teach the skill, Riley [105] asked students to write a problem
definition and to continue the process by writing the algorithm in
pseudo-language. Thompson [120] presented a way to teach the
skill (How to program it) following Polya’s How to solve it method,
which added the reflection part once the problem is solved [99].
More recently, new approaches [10, 30] show the instructors solv-
ing the problems step by step, revealing the process and the miss-
steps they take when programming. In their report, McCracken et
al. suggest that successful students are mastering the programming
knowledge required to pass the course, but not learning the skills
of programming [66].

Debugging incorporates several important skills such as pro-
gram tracing and program comprehension. In Lister et al.’s work-
ing group report [59], the authors claimed that students’ lack of
problem solving skills was not a cause but a symptom. The re-
quired viable mental model for programming, which tracing and
proper program comprehension would reinforce, was missing. In
summary, students could barely start programming, or answering
multiple choice questions, if they could not understand the pro-
gram they were working with.

The importance of tracing [96] as a pre-requisite for program-
ming [124] is seen in computer tests all around. Teachers ask all
the time what will be the output of certain program snippet if exe-
cuted. The ability to correctly trace a program by a student reveals
the students’s grasp of a notional machine, and that their mental
model of it is a viable one for the task at hand.

Dissertations in Forestry and Natural Sciences No 149 25



Andrés Moreno: Re-designing Program Animation

casioning a significant shift in the perception of a subject), irreversible
(unlikely to be forgotten, or unlearned only through considerable effort),
and integrative (exposing the previously hidden interrelatedness of some-
thing).” [67]. In programming, Sorva [117] proposes three main
threshold concepts: program dynamics, information hiding, object
interaction, “and possibly addressable memory”.

2.1.2 Mental Models

Mental models are mental representations or beliefs of real things
[43], be it a computer or some physics phenomenon. By having
mental models, people comprehend the world and knowledge around
them and operate with them. While similar to Holmboe’s idea of
holistic knowledge [39], mental models can be incomplete, unreal-
istic and evolving [90]. The goal of students is to create a viable
mental model [61], that is, a mental model that can sufficiently ex-
plain the concept and succesfully apply it to solve new problems.

Importantly for programming education, mental models can
also be run by their owners. Students and programmers execute
their code in their head according to their own mental model. A
student’s mental model relates to a notional machine that the pro-
gramming language or the teacher conveys. The notional machine
is a set of rules that the computer virtually operates under [27]. It
is the job of the teacher to make sure that an adequate notional
machine is presented to the student.

The lack of a viable mental model is at the source of plenty of
students’ misconceptions.

2.1.3 Skills

After students have acquired some minimal knowledge of program-
ming, and they need to put that knowledge to use, two main skills
are necessary: problem solving [105] and debugging [35]. First, stu-
dents use their problem solving skills to devise a solution that uses
their knowledge. Later, when running their program, the debug-
ging skill becomes important as students try to find their own errors

24 Dissertations in Forestry and Natural Sciences No 149

Learning and Teaching Programming

in the code. Naturally, the errors can be due to several causes, such
as fragile knowledge, misunderstanding of the problem and oth-
ers. Unfortunately, and as mentioned before, two working group
reports [59, 66] point to the lack of these two skills as the reason
why so many students fail to learn programming.

Indeed, teaching problem solving skills has been neglected in
introductory programming courses, or at least not explicitly taught,
even if students are expected to learn it [66]. However, the impor-
tance of the skill was already noted by Mayer [64] and Riley [105].
To teach the skill, Riley [105] asked students to write a problem
definition and to continue the process by writing the algorithm in
pseudo-language. Thompson [120] presented a way to teach the
skill (How to program it) following Polya’s How to solve it method,
which added the reflection part once the problem is solved [99].
More recently, new approaches [10, 30] show the instructors solv-
ing the problems step by step, revealing the process and the miss-
steps they take when programming. In their report, McCracken et
al. suggest that successful students are mastering the programming
knowledge required to pass the course, but not learning the skills
of programming [66].

Debugging incorporates several important skills such as pro-
gram tracing and program comprehension. In Lister et al.’s work-
ing group report [59], the authors claimed that students’ lack of
problem solving skills was not a cause but a symptom. The re-
quired viable mental model for programming, which tracing and
proper program comprehension would reinforce, was missing. In
summary, students could barely start programming, or answering
multiple choice questions, if they could not understand the pro-
gram they were working with.

The importance of tracing [96] as a pre-requisite for program-
ming [124] is seen in computer tests all around. Teachers ask all
the time what will be the output of certain program snippet if exe-
cuted. The ability to correctly trace a program by a student reveals
the students’s grasp of a notional machine, and that their mental
model of it is a viable one for the task at hand.

Dissertations in Forestry and Natural Sciences No 149 25



Andrés Moreno: Re-designing Program Animation

Program comprehension skills do depend on students’s previ-
ous knowledge. Pennington [94] specified two kinds of knowledge
needed for program comprehension: text-structure knowledge and
plan knowledge [115], which loosely translates to declarative and
procedural knowledge.

2.2 OBJECT-ORIENTED CONCEPTS AND JAVA

Object-oriented programming (OOP) made its major appearance in
higher education in the last decade: industry demanded it and it
appealed to educators and researchers. Java was usually the lan-
guage of choice due to its purer object orientation, when compared
to C++, wide support, and extensive libraries, among others.

Proponents of the object oriented paradigm aimed to improve
program comprehension and design by relating programming ob-
jects to real-world objects that can be decomposed into its parts
and properties. Several authors [25, 93] argue that what makes ob-
ject orientation better is also what complicates learning for novices:
being able to abstract from the real world the behaviour of objects.

Additionally, Sajaniemi and Kuittinen [110] summarized the re-
search carried out in programming and object-orientation on ed-
ucation. They noted the differences in notation (or syntax), and
notional machine between imperative and object oriented program-
ming added to the extra difficulty of teaching and learning OOP
[110, 130]. The notation in OOP, especially Java, includes an exten-
sive new vocabulary that the student has not seen before (see List-
ings 2.1 and 2.2). The notional machine focuses on message passing
rather than step-wise execution. These factors make novices focus
on extraneous programming elements that worsen their program
comprehension and their mental model execution.

Listing 2.1: Hello world program in Java

publ ic c l a s s HelloWorld {
publ ic s t a t i c void main ( S t r i n g [ ] args ) {

System . out . p r i n t l n ( " Hello , world ! " ) ;
}

26 Dissertations in Forestry and Natural Sciences No 149

Learning and Teaching Programming

}

Listing 2.2: Hello world program in Python

p r i n t ( " Hello , world ! " )

Ragonis and Ben-Ari [102] elicited the new kind of misconcep-
tions that object oriented programming produce. The importance of
class design in OOP courses means that program execution flow is
not sufficiently explained, or is only explained later in the course.
They advocate for teachers tools to reveal the link between class
design and program execution flow, the static and the dynamic.
Benaya and Zur [9] mentioned other problems of students’ under-
standing the finer details of the Java notional machine, e.g. the
process of object creation involving the invocation of superclass.

Be it the demand of tools that try to overcome these difficulties,
be it the fact that educational programs support better graphics and
can be easily distributed across the world, many of visualization
tools have appeared [6, 22, 50, 92, 117]. Teachers have a wide range
of tools and research to choose their toolkit of choice. Still, the
caution teachers apply when using the tools is unwarranted [7],
and results in the perpetuation of the problems found.

2.3 SUMMARY

The three components mentioned before are not isolated and their
boundaries are not clear. Figure 2.1 describes my interpretation of
the relationship between the components.

The chapter has given a small recapitulation of the theories and
the components of learning to program. Researchers have tried to
devise models, or to describe knowledge representations, of stu-
dents learning programming. Their goal is certainly a worthwhile
pursuit to refine or contradict previous results. In my research I
have selected from different sources those theories and results that
allow me to describe the purported benefits of program animation
and Jeliot 3, see the next Chapter. This theories are also the base for
the evaluation and re-design of Jeliot 3, summarized in Chapter 4.

Dissertations in Forestry and Natural Sciences No 149 27



Andrés Moreno: Re-designing Program Animation

Program comprehension skills do depend on students’s previ-
ous knowledge. Pennington [94] specified two kinds of knowledge
needed for program comprehension: text-structure knowledge and
plan knowledge [115], which loosely translates to declarative and
procedural knowledge.

2.2 OBJECT-ORIENTED CONCEPTS AND JAVA

Object-oriented programming (OOP) made its major appearance in
higher education in the last decade: industry demanded it and it
appealed to educators and researchers. Java was usually the lan-
guage of choice due to its purer object orientation, when compared
to C++, wide support, and extensive libraries, among others.

Proponents of the object oriented paradigm aimed to improve
program comprehension and design by relating programming ob-
jects to real-world objects that can be decomposed into its parts
and properties. Several authors [25, 93] argue that what makes ob-
ject orientation better is also what complicates learning for novices:
being able to abstract from the real world the behaviour of objects.

Additionally, Sajaniemi and Kuittinen [110] summarized the re-
search carried out in programming and object-orientation on ed-
ucation. They noted the differences in notation (or syntax), and
notional machine between imperative and object oriented program-
ming added to the extra difficulty of teaching and learning OOP
[110, 130]. The notation in OOP, especially Java, includes an exten-
sive new vocabulary that the student has not seen before (see List-
ings 2.1 and 2.2). The notional machine focuses on message passing
rather than step-wise execution. These factors make novices focus
on extraneous programming elements that worsen their program
comprehension and their mental model execution.

Listing 2.1: Hello world program in Java

publ ic c l a s s HelloWorld {
publ ic s t a t i c void main ( S t r i n g [ ] args ) {

System . out . p r i n t l n ( " Hello , world ! " ) ;
}

26 Dissertations in Forestry and Natural Sciences No 149

Learning and Teaching Programming

}

Listing 2.2: Hello world program in Python

p r i n t ( " Hello , world ! " )

Ragonis and Ben-Ari [102] elicited the new kind of misconcep-
tions that object oriented programming produce. The importance of
class design in OOP courses means that program execution flow is
not sufficiently explained, or is only explained later in the course.
They advocate for teachers tools to reveal the link between class
design and program execution flow, the static and the dynamic.
Benaya and Zur [9] mentioned other problems of students’ under-
standing the finer details of the Java notional machine, e.g. the
process of object creation involving the invocation of superclass.

Be it the demand of tools that try to overcome these difficulties,
be it the fact that educational programs support better graphics and
can be easily distributed across the world, many of visualization
tools have appeared [6, 22, 50, 92, 117]. Teachers have a wide range
of tools and research to choose their toolkit of choice. Still, the
caution teachers apply when using the tools is unwarranted [7],
and results in the perpetuation of the problems found.

2.3 SUMMARY

The three components mentioned before are not isolated and their
boundaries are not clear. Figure 2.1 describes my interpretation of
the relationship between the components.

The chapter has given a small recapitulation of the theories and
the components of learning to program. Researchers have tried to
devise models, or to describe knowledge representations, of stu-
dents learning programming. Their goal is certainly a worthwhile
pursuit to refine or contradict previous results. In my research I
have selected from different sources those theories and results that
allow me to describe the purported benefits of program animation
and Jeliot 3, see the next Chapter. This theories are also the base for
the evaluation and re-design of Jeliot 3, summarized in Chapter 4.

Dissertations in Forestry and Natural Sciences No 149 27



Andrés Moreno: Re-designing Program Animation

Declarative knowl. Procedural knowl.

Theoretical knowl.

Notation

Practical knowl.

Notional machine

Mental model

Tracing
Program

comprehension

Debugging

Holistic knowl.

apprehendsexpressed using

requires

requires requires

Figure 2.1: Theoretical components and their relationships. Bi-directional linkages mean
that the components are closely related.

28 Dissertations in Forestry and Natural Sciences No 149

3 Program Animation and its
Evaluation

Program visualization (PV) is one of the tools proposed to help stu-
dents in learning programming. By visualizing a notional machine,
PV tools should help students in creating a viable mental model.
The graphical features and step by step execution support the de-
velopment of their tracing and debugging skills.

Program visualization is one of the fields of software visual-
ization related to education, the other field closely related is algo-
rithm visualization. While program visualization usually focuses
in conveying the details of programming constructs and program
execution, algorithm visualization focuses on algorithms and data
structures. The visualization term allows for both dynamic and
static representations. This work focuses on program animation,
which is equivalent to dynamic program visualization. Examples
of each field are the Transparent Prologue Machine for static pro-
gram visualization [15] and JHAVÉ for algorithm visualization [85],
MatrixPro for algorithm animation [45], and, of course, Jeliot 3 for
program animation [6].

As part of a workshop, I reviewed a set of visualization tools
with a focus on human computer interaction that had been eval-
uated at that time (2007) [69]. The review pointed to the need of
more user studies to develop a set of guidelines for future visual-
ization tools. A more recent review of tools can be found in Sorva’s
dissertation [117]. On one hand, his review makes apparent the
increasing number of tools developed, and on the other hand the
lack of proper studies and the abundance of anecdotal-based rec-
ommendations.

Despite the growing numbers of tools and their moderately pos-
itive educational outcomes, the use of visualization tools in pro-
gramming education is not yet widespread. Ben-Bassat Levy and

Dissertations in Forestry and Natural Sciences No 149 29



Andrés Moreno: Re-designing Program Animation

Declarative knowl. Procedural knowl.

Theoretical knowl.

Notation

Practical knowl.

Notional machine

Mental model

Tracing
Program

comprehension

Debugging

Holistic knowl.

apprehendsexpressed using

requires

requires requires

Figure 2.1: Theoretical components and their relationships. Bi-directional linkages mean
that the components are closely related.

28 Dissertations in Forestry and Natural Sciences No 149

3 Program Animation and its
Evaluation

Program visualization (PV) is one of the tools proposed to help stu-
dents in learning programming. By visualizing a notional machine,
PV tools should help students in creating a viable mental model.
The graphical features and step by step execution support the de-
velopment of their tracing and debugging skills.

Program visualization is one of the fields of software visual-
ization related to education, the other field closely related is algo-
rithm visualization. While program visualization usually focuses
in conveying the details of programming constructs and program
execution, algorithm visualization focuses on algorithms and data
structures. The visualization term allows for both dynamic and
static representations. This work focuses on program animation,
which is equivalent to dynamic program visualization. Examples
of each field are the Transparent Prologue Machine for static pro-
gram visualization [15] and JHAVÉ for algorithm visualization [85],
MatrixPro for algorithm animation [45], and, of course, Jeliot 3 for
program animation [6].

As part of a workshop, I reviewed a set of visualization tools
with a focus on human computer interaction that had been eval-
uated at that time (2007) [69]. The review pointed to the need of
more user studies to develop a set of guidelines for future visual-
ization tools. A more recent review of tools can be found in Sorva’s
dissertation [117]. On one hand, his review makes apparent the
increasing number of tools developed, and on the other hand the
lack of proper studies and the abundance of anecdotal-based rec-
ommendations.

Despite the growing numbers of tools and their moderately pos-
itive educational outcomes, the use of visualization tools in pro-
gramming education is not yet widespread. Ben-Bassat Levy and

Dissertations in Forestry and Natural Sciences No 149 29



Andrés Moreno: Re-designing Program Animation

Ben-Ari found out that the main drivers behind the acceptance, or
rejection, of tools by the teachers are the “integrating [of] the tools
with other learning materials and on addressing the role of the
teacher in the use of software by the students” [7]. Later they found
out that the teachers’ lack of control when using the tools was also
hindering the usage of the tools. Knobeldorsf et al. studied the same
problem but from the students’ point of view: students do not use
the available visualization tools [48]. They suggest that the issue
is a complicated one: some students do not use a tool because the
tool has not yet been internalized, and others because the tools and
the concepts have already been internalized [48]. Two ways to get
out of this conundrum are proposed and evaluated in Papers III, IV
and VII.

3.1 IMPLEMENTATION OF PROGRAM ANIMATION TOOLS

Roman and Cox [106] extracted three roles of people involved in
program visualization, the programmer who writes the program to
be visualized, the animator who defines and constructs the map-
pings, and the viewer who actually uses the visualization. In this
thesis I will focus on automatic program animation where the stu-
dent takes the roles of programmer and viewer, while the animator
is automated. In other approaches the student is also the animator
by coding the animation, e.g. the Leonardo development environ-
ment [23]. In other approaches, it is the teacher who tailors the
visualization of each program by annotating the source code fed to
the animation engine, e.g. VIP [125], Ville [103] and PlanAni [108].
Annotations are not shown to the students and thus the animation
may appear to the students as automated.

Plenty of tools make use of the debugger metaphor and are
augmented with graphical representations to create visual debuggers
of programs [68, 107]. While not animated, visual debuggers are
usually automatic and developers of visual debuggers face similar
challenges than for program animation tools.

Two styles guide the implementation of program animation tools

30 Dissertations in Forestry and Natural Sciences No 149

Program Animation and its Evaluation

that automatically generate the animation. One is based on the gen-
eration of an intermediate code that traces the execution of the pro-
gram, and the other is based on event-listener architecture, where
messages are passed as execution advances [70].

The main characteristics of the event-listener approach are that
it provides a clean separation between the program being executed
and its animation. JAVAVIS is an example of an event-listener based
tool for Java programs [92], where the program is compiled and the
Java Virtual Machine produces the execution events as the program
is executed through the Java Debugging Interface. The use of com-
piled code limits the detail of the animation as the Java Virtual Ma-
chine only passes information regarding the method calls and their
results.

A refinement of the event-listener approach is the observer ar-
chitecture for program visualization [52]. In the observer architec-
ture, the program to be animated is decomposed into components,
and they become observable objects by being linked to a visualiza-
tion object. The visualization object observes the components and
creates the visualization according to the changes in those compo-
nents. This solution implements elegantly the history of changes
and allows for a re-wind feature. The same drawback of the event-
listener approach applies here as the reason of the changes are not
visualized.

To gather more information from the execution, other program-
ming animation tools run the code through a dynamic interpreter
of the abstract syntax tree of a program. The interpreter does not
compile the program to machine code and run it, but instead it
parses the source code and traverses the tree it creates. For pro-
gram animation purposes the interpreter is modified to produce
intermediate code as it traverses the tree. Jeliot 3 is an example of
an interpreter based program animation tool.

Price et al. [101] noted that intelligence in automatic systems was
low. As the system designer takes all the visualization decisions
when the tool was programmed, the tool can adapt little to the pro-
gram being visualized. For Java-oriented tools, that usually means

Dissertations in Forestry and Natural Sciences No 149 31



Andrés Moreno: Re-designing Program Animation

Ben-Ari found out that the main drivers behind the acceptance, or
rejection, of tools by the teachers are the “integrating [of] the tools
with other learning materials and on addressing the role of the
teacher in the use of software by the students” [7]. Later they found
out that the teachers’ lack of control when using the tools was also
hindering the usage of the tools. Knobeldorsf et al. studied the same
problem but from the students’ point of view: students do not use
the available visualization tools [48]. They suggest that the issue
is a complicated one: some students do not use a tool because the
tool has not yet been internalized, and others because the tools and
the concepts have already been internalized [48]. Two ways to get
out of this conundrum are proposed and evaluated in Papers III, IV
and VII.

3.1 IMPLEMENTATION OF PROGRAM ANIMATION TOOLS

Roman and Cox [106] extracted three roles of people involved in
program visualization, the programmer who writes the program to
be visualized, the animator who defines and constructs the map-
pings, and the viewer who actually uses the visualization. In this
thesis I will focus on automatic program animation where the stu-
dent takes the roles of programmer and viewer, while the animator
is automated. In other approaches the student is also the animator
by coding the animation, e.g. the Leonardo development environ-
ment [23]. In other approaches, it is the teacher who tailors the
visualization of each program by annotating the source code fed to
the animation engine, e.g. VIP [125], Ville [103] and PlanAni [108].
Annotations are not shown to the students and thus the animation
may appear to the students as automated.

Plenty of tools make use of the debugger metaphor and are
augmented with graphical representations to create visual debuggers
of programs [68, 107]. While not animated, visual debuggers are
usually automatic and developers of visual debuggers face similar
challenges than for program animation tools.

Two styles guide the implementation of program animation tools

30 Dissertations in Forestry and Natural Sciences No 149

Program Animation and its Evaluation

that automatically generate the animation. One is based on the gen-
eration of an intermediate code that traces the execution of the pro-
gram, and the other is based on event-listener architecture, where
messages are passed as execution advances [70].

The main characteristics of the event-listener approach are that
it provides a clean separation between the program being executed
and its animation. JAVAVIS is an example of an event-listener based
tool for Java programs [92], where the program is compiled and the
Java Virtual Machine produces the execution events as the program
is executed through the Java Debugging Interface. The use of com-
piled code limits the detail of the animation as the Java Virtual Ma-
chine only passes information regarding the method calls and their
results.

A refinement of the event-listener approach is the observer ar-
chitecture for program visualization [52]. In the observer architec-
ture, the program to be animated is decomposed into components,
and they become observable objects by being linked to a visualiza-
tion object. The visualization object observes the components and
creates the visualization according to the changes in those compo-
nents. This solution implements elegantly the history of changes
and allows for a re-wind feature. The same drawback of the event-
listener approach applies here as the reason of the changes are not
visualized.

To gather more information from the execution, other program-
ming animation tools run the code through a dynamic interpreter
of the abstract syntax tree of a program. The interpreter does not
compile the program to machine code and run it, but instead it
parses the source code and traverses the tree it creates. For pro-
gram animation purposes the interpreter is modified to produce
intermediate code as it traverses the tree. Jeliot 3 is an example of
an interpreter based program animation tool.

Price et al. [101] noted that intelligence in automatic systems was
low. As the system designer takes all the visualization decisions
when the tool was programmed, the tool can adapt little to the pro-
gram being visualized. For Java-oriented tools, that usually means

Dissertations in Forestry and Natural Sciences No 149 31



Andrés Moreno: Re-designing Program Animation

that every data structure (e.g. a list) except for arrays is displayed as
an object. Also, the user cannot change the parameters of the visu-
alization, what is shown and how it is shown in the screen. In Paper
III we propose an architecture to automatically adapt the contents
of the visualization according to the student’s current knowledge.

If the system is not automatic, then it is implied that the teacher,
or student, tailors the visualization [23, 103, 125]. To tailor the vi-
sualization, special libraries allow for annotations to be included
in the visualized programs. This non-automatic solution results in
personalized visualizations, but often they are too time-consuming
and not preferred by the teachers [98]

3.2 EVALUATION OF PROGRAM ANIMATION TOOLS

Hundhausen et al. conducted a meta-study of visualization tools
that collected 24 studies of controlled experiments [42]. In their
study, both program and algorithm visualization tools were con-
sidered. They wanted to answer two questions: which theories and
factors better predict the success of visualization tools, and which
measurement is most sensitive to the learning benefits of visualiza-
tion tools. They noted that certainly the results were mixed, with
the same number of significant and non-significant results on the
positive impact of the tools in learning. From the analysis, cogni-
tive constructivism is the most robust theory, as the experiments
based on that theory yield significant results. The caveat is that for
the experiments in cognitive constructivism the effort and time of
students in the experiment group is more important than the con-
tent of the visualization [42]. This finding has led to researchers
focusing on how the students interact with the animation, rather
than what the animation shows.

Naps et al. devised the engagement taxonomy [86] which pro-
posed seven categories in which students could engage with visu-
alization tools in learning. The taxonomy included a category for
when no visualization was used: non-viewing. The others represent
the active visualization engagement categories:

32 Dissertations in Forestry and Natural Sciences No 149

Program Animation and its Evaluation

1. Viewing. The student views the visualization. According to
Lauer [56], viewer can be:

(a) Passive: teachers take the conducting role and explains
the graphical components in the visualization, and they
will also explain the steps if the visualization consists of
an animation;

(b) Active: students watch the visualization by themselves.

2. Responding. Students are asked to answer questions as the
visualization is demonstrated. In the case of animations, they
may be asked to guess what happens next in the animation.

3. Changing. Students have to change the appearance of an ex-
isting visualization.

4. Constructing. Students create the visualization from scratch.

5. Presenting. Students present their own visualizations to their
peers.

The engagement taxonomy has recently been used as yardstick for
evaluations of visualization tools. Urquiza-Fuentes and Velázquez-
Iturbide report in a long-term study that the increasing engagement
of the student does not always lead to increased grades [121]. How-
ever, the drop-out rates of the students were lower after using the
more engaging tool, also there were learning improvements when
using engaging visualizations for learning complex topics.

Knobelsdorf et al. suggest that most of the tools and studies are
expert and teacher centered [48]. Almost none of them has been
developed by having the student in center. Novice students only
participate in the final evaluation of the tool, and thus the tools
may not reflect their needs and understanding. They propose “to
investigate how students use a visualization tool regularly for their
programming assignments and how they interact with the tool in
the process of internalization” [48]. A similar line of research is
presented in Paper II, where the roles the animation tool can take
for the student are presented.

Dissertations in Forestry and Natural Sciences No 149 33



Andrés Moreno: Re-designing Program Animation

that every data structure (e.g. a list) except for arrays is displayed as
an object. Also, the user cannot change the parameters of the visu-
alization, what is shown and how it is shown in the screen. In Paper
III we propose an architecture to automatically adapt the contents
of the visualization according to the student’s current knowledge.

If the system is not automatic, then it is implied that the teacher,
or student, tailors the visualization [23, 103, 125]. To tailor the vi-
sualization, special libraries allow for annotations to be included
in the visualized programs. This non-automatic solution results in
personalized visualizations, but often they are too time-consuming
and not preferred by the teachers [98]

3.2 EVALUATION OF PROGRAM ANIMATION TOOLS

Hundhausen et al. conducted a meta-study of visualization tools
that collected 24 studies of controlled experiments [42]. In their
study, both program and algorithm visualization tools were con-
sidered. They wanted to answer two questions: which theories and
factors better predict the success of visualization tools, and which
measurement is most sensitive to the learning benefits of visualiza-
tion tools. They noted that certainly the results were mixed, with
the same number of significant and non-significant results on the
positive impact of the tools in learning. From the analysis, cogni-
tive constructivism is the most robust theory, as the experiments
based on that theory yield significant results. The caveat is that for
the experiments in cognitive constructivism the effort and time of
students in the experiment group is more important than the con-
tent of the visualization [42]. This finding has led to researchers
focusing on how the students interact with the animation, rather
than what the animation shows.

Naps et al. devised the engagement taxonomy [86] which pro-
posed seven categories in which students could engage with visu-
alization tools in learning. The taxonomy included a category for
when no visualization was used: non-viewing. The others represent
the active visualization engagement categories:

32 Dissertations in Forestry and Natural Sciences No 149

Program Animation and its Evaluation

1. Viewing. The student views the visualization. According to
Lauer [56], viewer can be:

(a) Passive: teachers take the conducting role and explains
the graphical components in the visualization, and they
will also explain the steps if the visualization consists of
an animation;

(b) Active: students watch the visualization by themselves.

2. Responding. Students are asked to answer questions as the
visualization is demonstrated. In the case of animations, they
may be asked to guess what happens next in the animation.

3. Changing. Students have to change the appearance of an ex-
isting visualization.

4. Constructing. Students create the visualization from scratch.

5. Presenting. Students present their own visualizations to their
peers.

The engagement taxonomy has recently been used as yardstick for
evaluations of visualization tools. Urquiza-Fuentes and Velázquez-
Iturbide report in a long-term study that the increasing engagement
of the student does not always lead to increased grades [121]. How-
ever, the drop-out rates of the students were lower after using the
more engaging tool, also there were learning improvements when
using engaging visualizations for learning complex topics.

Knobelsdorf et al. suggest that most of the tools and studies are
expert and teacher centered [48]. Almost none of them has been
developed by having the student in center. Novice students only
participate in the final evaluation of the tool, and thus the tools
may not reflect their needs and understanding. They propose “to
investigate how students use a visualization tool regularly for their
programming assignments and how they interact with the tool in
the process of internalization” [48]. A similar line of research is
presented in Paper II, where the roles the animation tool can take
for the student are presented.

Dissertations in Forestry and Natural Sciences No 149 33



Andrés Moreno: Re-designing Program Animation

The experimental studies on automatic program animation and
visual debuggers have yielded usually positive results, if sometimes
due to the extra time spent learning by the subjects — as Hund-
hausen et al. detected [42]. VINCE [107] and OGRE [68] are two
visual debuggers that, when students use them, they learn better
than those who do not use them.

The animation tool PlanAni bases its animation on the roles of
variables [108] and studies have focused both on the benefits of the
roles of the variables and on the impact of the animation on the
students’ learning. One of the benefits of the tool is that the use of
roles is good for communication between teacher and student [109].
Nevalainen and Sajaniemi [87, 88] compared different versions of
the tool to find the most beneficial factor for learning. An animated
version, a static version of PlanAni, and a textual version with ex-
planations about roles were given to the students to interact with.
The final finding was that the students’ knowledge about the roles
of variables did not depend on the animation nor on the graphical
representation.

3.3 JELIOT 3

Jeliot 3 belongs to a family of visualization tools that include algo-
rithm animation (Eliot [53] and Jeliot I [36]) and program animation
tools (Jeliot 2000 [8] and Jeliot 3 [76]). In this section we summarize
the history of Jeliot, but a more complete review of the history of
Jeliot has been published by Ben-Ari et al. [6].

Jeliot 2000 was the first to focus on program animation and the
predecessor to Jeliot 3, and they share many features. After Jeliot
I, many of the design choices of Jeliot 2000 were meant to support
novices in their learning. Common to the family is the use of a the-
ater metaphor [53] to explain the visualization components (actors)
and the execution steps (script). In the program animation branch
of the family, the program (script) is only self animated (the direc-
tor is the tool). In the algorithm animation branch, the user can also
take the role of the director and choose what to animate and how.

34 Dissertations in Forestry and Natural Sciences No 149

Program Animation and its Evaluation

Figure 3.1: Jeliot 3 window

Jeliot 3 development was guided by technical necessities. Je-
liot 2000’s implementation of the animation was tightly coupled to
the source code interpreter. As the need to animate more object-
oriented concepts arose, the limitation was apparent, and a new
modular architecture for Jeliot 3 was implemented [70, 82]. The next
section describes the architecture, and Papers III, IV, and VI present
the modifications proposed and implemented using the current ar-
chitecture.

Jeliot 3’s interface is divided into two main components, see
Figure 3.3. The left-hand side panel is the editing panel and con-
sists of the editor menu bar, containing buttons to access text-edit
functions, and the editor itself. The right-hand side panel is the ani-
mation area, the theater, where visualization occurs. On the bottom,
the control buttons are represented using a VCR remote controller

Dissertations in Forestry and Natural Sciences No 149 35



Andrés Moreno: Re-designing Program Animation

The experimental studies on automatic program animation and
visual debuggers have yielded usually positive results, if sometimes
due to the extra time spent learning by the subjects — as Hund-
hausen et al. detected [42]. VINCE [107] and OGRE [68] are two
visual debuggers that, when students use them, they learn better
than those who do not use them.

The animation tool PlanAni bases its animation on the roles of
variables [108] and studies have focused both on the benefits of the
roles of the variables and on the impact of the animation on the
students’ learning. One of the benefits of the tool is that the use of
roles is good for communication between teacher and student [109].
Nevalainen and Sajaniemi [87, 88] compared different versions of
the tool to find the most beneficial factor for learning. An animated
version, a static version of PlanAni, and a textual version with ex-
planations about roles were given to the students to interact with.
The final finding was that the students’ knowledge about the roles
of variables did not depend on the animation nor on the graphical
representation.

3.3 JELIOT 3

Jeliot 3 belongs to a family of visualization tools that include algo-
rithm animation (Eliot [53] and Jeliot I [36]) and program animation
tools (Jeliot 2000 [8] and Jeliot 3 [76]). In this section we summarize
the history of Jeliot, but a more complete review of the history of
Jeliot has been published by Ben-Ari et al. [6].

Jeliot 2000 was the first to focus on program animation and the
predecessor to Jeliot 3, and they share many features. After Jeliot
I, many of the design choices of Jeliot 2000 were meant to support
novices in their learning. Common to the family is the use of a the-
ater metaphor [53] to explain the visualization components (actors)
and the execution steps (script). In the program animation branch
of the family, the program (script) is only self animated (the direc-
tor is the tool). In the algorithm animation branch, the user can also
take the role of the director and choose what to animate and how.

34 Dissertations in Forestry and Natural Sciences No 149

Program Animation and its Evaluation

Figure 3.1: Jeliot 3 window

Jeliot 3 development was guided by technical necessities. Je-
liot 2000’s implementation of the animation was tightly coupled to
the source code interpreter. As the need to animate more object-
oriented concepts arose, the limitation was apparent, and a new
modular architecture for Jeliot 3 was implemented [70, 82]. The next
section describes the architecture, and Papers III, IV, and VI present
the modifications proposed and implemented using the current ar-
chitecture.

Jeliot 3’s interface is divided into two main components, see
Figure 3.3. The left-hand side panel is the editing panel and con-
sists of the editor menu bar, containing buttons to access text-edit
functions, and the editor itself. The right-hand side panel is the ani-
mation area, the theater, where visualization occurs. On the bottom,
the control buttons are represented using a VCR remote controller

Dissertations in Forestry and Natural Sciences No 149 35



Andrés Moreno: Re-designing Program Animation

metaphor (DVR would be a more current term). They allow the
user to compile the code, and to run the animation. Next to the
control buttons, the console is displayed, which prints out the mes-
sages and system output. When the animation starts, the theater
drapes open and the editor is blocked during the animation. The
Java notional machine defined by Jeliot 3 is visible once the anima-
tion starts.

The theater, see Figure 3.2, is divided into several areas that
represent parts of the memory and the processing unit. Program
execution will update the theater with new actors (variables, meth-
ods, constants, ...) which will be displayed as boxes and moved
around according to the source code.

Method
Frame
Area

Constants
Area

Instance
Area

Expression
Evaluation

Area

Figure 3.2: The structure of the animation frame (theatre) in Jeliot 3.

3.3.1 Implementation

The modularity requirement of Jeliot 3 was one of the main reasons
of developing Jeliot 3 to improve the system structure and design.
The modular design, see Figure 3.3, was described in Myller’s Mas-

36 Dissertations in Forestry and Natural Sciences No 149

Program Animation and its Evaluation

ter’s thesis [82]:

“The structure of Jeliot 3 is shown in 3.3. The user interacts
with the user interface and creates the source code of the pro-
gram (1). The source code is sent to the interpreter and the
intermediate code is extracted during the execution of the code
(2 and 3). The intermediate code is interpreted and the direc-
tions are given to the visualization engine (4 and 5). The user
can control the animation by playing, pausing, rewinding or
playing step-by-step the animation (6). Furthermore, the user
can give input data, for example, an integer or a string, to the
program executed by the interpreter (6, 7 and 8). ”

��

��

User

User interface

�

�

�

�

Source code
of the program

Interpretation
of the program

�

�

�

�

Intermediate
presentation

of the program
execution

Visualization
engine

Intermediate
presentation
Interpreter

�

�

�

1.

�
2.

�
3.

�

4.

�
5.

�
6.

�
7.

�
�

�
�

�
�

��

8.

Figure 3.3: The functional structure of Jeliot 3. From Myller’s Master’s Thesis [82].

The intermediate presentation of the program execution, be-
tween steps 3 and 4, was defined with an intermediate code called

Dissertations in Forestry and Natural Sciences No 149 37



Andrés Moreno: Re-designing Program Animation

metaphor (DVR would be a more current term). They allow the
user to compile the code, and to run the animation. Next to the
control buttons, the console is displayed, which prints out the mes-
sages and system output. When the animation starts, the theater
drapes open and the editor is blocked during the animation. The
Java notional machine defined by Jeliot 3 is visible once the anima-
tion starts.

The theater, see Figure 3.2, is divided into several areas that
represent parts of the memory and the processing unit. Program
execution will update the theater with new actors (variables, meth-
ods, constants, ...) which will be displayed as boxes and moved
around according to the source code.

Method
Frame
Area

Constants
Area

Instance
Area

Expression
Evaluation

Area

Figure 3.2: The structure of the animation frame (theatre) in Jeliot 3.

3.3.1 Implementation

The modularity requirement of Jeliot 3 was one of the main reasons
of developing Jeliot 3 to improve the system structure and design.
The modular design, see Figure 3.3, was described in Myller’s Mas-

36 Dissertations in Forestry and Natural Sciences No 149

Program Animation and its Evaluation

ter’s thesis [82]:

“The structure of Jeliot 3 is shown in 3.3. The user interacts
with the user interface and creates the source code of the pro-
gram (1). The source code is sent to the interpreter and the
intermediate code is extracted during the execution of the code
(2 and 3). The intermediate code is interpreted and the direc-
tions are given to the visualization engine (4 and 5). The user
can control the animation by playing, pausing, rewinding or
playing step-by-step the animation (6). Furthermore, the user
can give input data, for example, an integer or a string, to the
program executed by the interpreter (6, 7 and 8). ”

��

��

User

User interface

�

�

�

�

Source code
of the program

Interpretation
of the program

�

�

�

�

Intermediate
presentation

of the program
execution

Visualization
engine

Intermediate
presentation
Interpreter

�

�

�

1.

�
2.

�
3.

�

4.

�
5.

�
6.

�
7.

�
�

�
�

�
�

��

8.

Figure 3.3: The functional structure of Jeliot 3. From Myller’s Master’s Thesis [82].

The intermediate presentation of the program execution, be-
tween steps 3 and 4, was defined with an intermediate code called

Dissertations in Forestry and Natural Sciences No 149 37



Andrés Moreno: Re-designing Program Animation

MCode [70]. The MCode represented the steps taken by the Java
interpreter and was meant to be general enough to represent the
execution of other programming languages. Proving the modular-
ity design, independent researchers replaced the Java interpreter
and created versions of Jeliot for C++ [47] and Python [31]. The
modular design allowed for the creation of different interpreters
that will produce different visualizations (step 4). An approach to
this feature was used by Myller to automatically add questions to
the visualization in Jeliot 3 [83].

3.3.2 Evaluation

As said before, it was the research done in the algorithm anima-
tion branch of the Jeliot family that started the development of the
program animation. Lattu et al. [55] did preliminary research on
Jeliot I with two groups of students learning to program, one from
a university and another from a high school. On one hand, Lattu
et al. found that novices struggled with the complexity of Jeliot I
interface and that teachers could not use the tool to teach basic
programming concepts like control flow [55]. On the other hand,
students appreciated the animations of values moving according to
the algorithm. Further research by Lattu et al. [54] mentions flex-
ibility as a key property of visualization tools so that they can be
used as demonstration programs.

In the program animation branch, Ben-Bassat Levy et al. studied
the usefulness of Jeliot 2000 [8]. They concluded that the support
provided by Jeliot 2000 was valuable to teach mediocre students or
those who had difficulties with understanding programming ab-
stract concepts. They found out that Jeliot 2000, with its predefined
visualization behavior, provided a common language between stu-
dents and teachers. In their experiment, the impact of the tools was
limited to students with better understanding of programming.

Kannusmäki et al. carried out the first experiment with Jeliot 3 [44].
In that experiment, Jeliot 3 was used by online education students.
In the qualitative analysis of the students’ weekly feedback, weak,

38 Dissertations in Forestry and Natural Sciences No 149

Program Animation and its Evaluation

as in weaker than mediocre, students self-assessed themselves as
having learnt programming concepts using Jeliot 3. Not trusting
students’ self-assessment, Papers I and II have compared students’
self-assessed knowledge with their actual knowledge as elicited
from the program animation.

In the study of Kannusmäki et al., students could be divided
into two groups, one that used Jeliot 3 at some point while working
on the exercise and the other one that preferred a standard Java
toolchain [44]. Strong and mediocre students mostly used another
development environment and did not like Jeliot 3. Complaints
from the students were varied: too slow, too detailed, not standard
Java. It was proposed to develop Jeliot 3 further to allow students
to tailor the animation according to their knowledge. In Paper III,
I explore the idea of automatically tailoring the visualization, in
other words, adapting it to the students’ knowledge.

Bednarik used eye-tracking recording to compare the strategies
used by novices and experts when using Jeliot 3 for program com-
prehension and debugging [2]. In a study focusing on program
comprehension, he found out that as novices repeteadly used Je-
liot 3 to understand what a program did, they changed the focus of
their attention from the animation to the source code. Experts, on
the contrary, did not need repeated visualizations, and could rea-
son the program’s purpose by mostly looking at the animation [4].
In contrast to the novices, experts had read the code before the ani-
mation, and used the animation to fine-tune their answers.

Myller et al. investigated the effect of visualizations in collabora-
tive learning settings [84]. In the process they extended the engage-
ment taxonomy adding four more categories and modifying two of
them: controlled viewing (students choose what to view), entering
input (students enter input that modifies the execution and visual-
ization of the program), modifying (students change the visualiza-
tion by modifying the program or data structure), and reviewing
(feedback on the animation is expected from the students) [84].

After finding the status of students’ mental models on assign-
ment (only 17% held a viable one) [61], Ma et al. investigated the

Dissertations in Forestry and Natural Sciences No 149 39



Andrés Moreno: Re-designing Program Animation

MCode [70]. The MCode represented the steps taken by the Java
interpreter and was meant to be general enough to represent the
execution of other programming languages. Proving the modular-
ity design, independent researchers replaced the Java interpreter
and created versions of Jeliot for C++ [47] and Python [31]. The
modular design allowed for the creation of different interpreters
that will produce different visualizations (step 4). An approach to
this feature was used by Myller to automatically add questions to
the visualization in Jeliot 3 [83].

3.3.2 Evaluation

As said before, it was the research done in the algorithm anima-
tion branch of the Jeliot family that started the development of the
program animation. Lattu et al. [55] did preliminary research on
Jeliot I with two groups of students learning to program, one from
a university and another from a high school. On one hand, Lattu
et al. found that novices struggled with the complexity of Jeliot I
interface and that teachers could not use the tool to teach basic
programming concepts like control flow [55]. On the other hand,
students appreciated the animations of values moving according to
the algorithm. Further research by Lattu et al. [54] mentions flex-
ibility as a key property of visualization tools so that they can be
used as demonstration programs.

In the program animation branch, Ben-Bassat Levy et al. studied
the usefulness of Jeliot 2000 [8]. They concluded that the support
provided by Jeliot 2000 was valuable to teach mediocre students or
those who had difficulties with understanding programming ab-
stract concepts. They found out that Jeliot 2000, with its predefined
visualization behavior, provided a common language between stu-
dents and teachers. In their experiment, the impact of the tools was
limited to students with better understanding of programming.

Kannusmäki et al. carried out the first experiment with Jeliot 3 [44].
In that experiment, Jeliot 3 was used by online education students.
In the qualitative analysis of the students’ weekly feedback, weak,

38 Dissertations in Forestry and Natural Sciences No 149

Program Animation and its Evaluation

as in weaker than mediocre, students self-assessed themselves as
having learnt programming concepts using Jeliot 3. Not trusting
students’ self-assessment, Papers I and II have compared students’
self-assessed knowledge with their actual knowledge as elicited
from the program animation.

In the study of Kannusmäki et al., students could be divided
into two groups, one that used Jeliot 3 at some point while working
on the exercise and the other one that preferred a standard Java
toolchain [44]. Strong and mediocre students mostly used another
development environment and did not like Jeliot 3. Complaints
from the students were varied: too slow, too detailed, not standard
Java. It was proposed to develop Jeliot 3 further to allow students
to tailor the animation according to their knowledge. In Paper III,
I explore the idea of automatically tailoring the visualization, in
other words, adapting it to the students’ knowledge.

Bednarik used eye-tracking recording to compare the strategies
used by novices and experts when using Jeliot 3 for program com-
prehension and debugging [2]. In a study focusing on program
comprehension, he found out that as novices repeteadly used Je-
liot 3 to understand what a program did, they changed the focus of
their attention from the animation to the source code. Experts, on
the contrary, did not need repeated visualizations, and could rea-
son the program’s purpose by mostly looking at the animation [4].
In contrast to the novices, experts had read the code before the ani-
mation, and used the animation to fine-tune their answers.

Myller et al. investigated the effect of visualizations in collabora-
tive learning settings [84]. In the process they extended the engage-
ment taxonomy adding four more categories and modifying two of
them: controlled viewing (students choose what to view), entering
input (students enter input that modifies the execution and visual-
ization of the program), modifying (students change the visualiza-
tion by modifying the program or data structure), and reviewing
(feedback on the animation is expected from the students) [84].

After finding the status of students’ mental models on assign-
ment (only 17% held a viable one) [61], Ma et al. investigated the

Dissertations in Forestry and Natural Sciences No 149 39



Andrés Moreno: Re-designing Program Animation

use of Jeliot 3 and cognitive conflict to improve students’ mental
models [62]. When compared to a bespoke tool for teaching as-
signment, Jeliot 3 did not improve students’ mental models. The
lack of textual explanation was considered as an important factor,
explanations were included in the bespoke tool. The idea of adding
explanations to Jeliot 3 had been around for a while, and in Paper
VI we investigate the temporal placement of explanations: after or
before the concept being explained.

Čisar et al. carried out the largest study on the effectiveness of
Jeliot 3 in programming education with 400 students [63]. They
could assert that there was a significant difference between the con-
trol group, no visualization, and the experiment group, Jeliot 3, in
the test at the end of the course. A similar study, albeit smaller,
also found Jeliot being beneficial to students of programming [41].
Hongwarittorrn and Krairit also checked students’ attitude towards
OOP after the course. Jeliot did not have an effect on the students’
attitudes [41].

3.4 SUMMARY

This chapter has summarized the relevant research and develop-
ment literature in program visualization software, in particular au-
tomatic program animation tools. It has also briefly introduced
Jeliot 3, the tool on which my design research process has focused.

Papers III, VI, and specially Paper IV, focus on stretching the
modular design of Jeliot 3 and finding out if its architecture can
adapt to implement features suggested by the above literature and
by the findings presented in Papers I, II and V.

40 Dissertations in Forestry and Natural Sciences No 149

4 Summary of the Publica-
tions

In this chapter, the main findings are presented and discussed. The
chapter comprises two main parts. First, results from the obser-
vation component are presented in Section 4.1, which summarizes
the findings related to the students’ engagement with Jeliot 3 and
their understanding of OOP concepts and the animations of Jeliot 3.
The following sections, 4.2–4.4, present the siblings of Jeliot 3 that
have been developed and evaluated during my research. Those sec-
tions correspond to the systems development and experimentation
components of the research.

The limitations of the findings and results presented in the first
four sections of this chapter are considered in Section 4.5. Finally,
the research questions are revisited and answered, Section 4.6.

4.1 ENGAGEMENT AND UNDERSTANDING

This qualitative research explores the impact that Jeliot 3 and its an-
imations have on students’ understanding of programming, and in
more detail when they are learning object-oriented concepts. This
section summarizes Papers I and II, which report two different
studies.

From my point of view, using examination or test results as
a measurement of understanding was not enough, and interviews
and verbal protocols were used to bring forth students’ understand-
ing. The same verbal protocols were used to recognize the roles
Jeliot 3 took when being used by the students.

Dissertations in Forestry and Natural Sciences No 149 41



Andrés Moreno: Re-designing Program Animation

use of Jeliot 3 and cognitive conflict to improve students’ mental
models [62]. When compared to a bespoke tool for teaching as-
signment, Jeliot 3 did not improve students’ mental models. The
lack of textual explanation was considered as an important factor,
explanations were included in the bespoke tool. The idea of adding
explanations to Jeliot 3 had been around for a while, and in Paper
VI we investigate the temporal placement of explanations: after or
before the concept being explained.

Čisar et al. carried out the largest study on the effectiveness of
Jeliot 3 in programming education with 400 students [63]. They
could assert that there was a significant difference between the con-
trol group, no visualization, and the experiment group, Jeliot 3, in
the test at the end of the course. A similar study, albeit smaller,
also found Jeliot being beneficial to students of programming [41].
Hongwarittorrn and Krairit also checked students’ attitude towards
OOP after the course. Jeliot did not have an effect on the students’
attitudes [41].

3.4 SUMMARY

This chapter has summarized the relevant research and develop-
ment literature in program visualization software, in particular au-
tomatic program animation tools. It has also briefly introduced
Jeliot 3, the tool on which my design research process has focused.

Papers III, VI, and specially Paper IV, focus on stretching the
modular design of Jeliot 3 and finding out if its architecture can
adapt to implement features suggested by the above literature and
by the findings presented in Papers I, II and V.

40 Dissertations in Forestry and Natural Sciences No 149

4 Summary of the Publica-
tions

In this chapter, the main findings are presented and discussed. The
chapter comprises two main parts. First, results from the obser-
vation component are presented in Section 4.1, which summarizes
the findings related to the students’ engagement with Jeliot 3 and
their understanding of OOP concepts and the animations of Jeliot 3.
The following sections, 4.2–4.4, present the siblings of Jeliot 3 that
have been developed and evaluated during my research. Those sec-
tions correspond to the systems development and experimentation
components of the research.

The limitations of the findings and results presented in the first
four sections of this chapter are considered in Section 4.5. Finally,
the research questions are revisited and answered, Section 4.6.

4.1 ENGAGEMENT AND UNDERSTANDING

This qualitative research explores the impact that Jeliot 3 and its an-
imations have on students’ understanding of programming, and in
more detail when they are learning object-oriented concepts. This
section summarizes Papers I and II, which report two different
studies.

From my point of view, using examination or test results as
a measurement of understanding was not enough, and interviews
and verbal protocols were used to bring forth students’ understand-
ing. The same verbal protocols were used to recognize the roles
Jeliot 3 took when being used by the students.

Dissertations in Forestry and Natural Sciences No 149 41



Andrés Moreno: Re-designing Program Animation

4.1.1 Students’ Knowledge and Understanding

In the first study, a group of six students volunteered to intensive
progamming tutoring using Jeliot 3 at University of Warwick (UK),
the tutored group, and their understanding of Jeliot 3 was compared
to those students that used Jeliot 3 without guidance, the normal
group. The original purpose of this set up was to have a first hand
account of how the tutored students used Jeliot 3. However, the
interesting results were only when their understanding was com-
pared with the other group.

According to one of the research hypothesis, the two students
from the tutored group should have shown a greater vocabulary
and understanding than the four from the normal group. After the
basic object oriented concept was explained and practiced in the
course all of them where asked to verbally explain what goes on in
the Jeliot screen when an object is created. The description of the
two groups showed a similar level of detail when describing the
animation, and they also showed several misconceptions about the
object creation animation. Only two of the normal group students
were correct in their explanation of Jeliot 3 animation. All of the
students were positive of Jeliot 3 and claimed it had helped them
to understand arrays and objects. Sorva would say that arrays and
objects have been transliminal concepts [116], or concepts used to
overcome a threshold concept [67], in this case addressable memory.
Jeliot 3, then, is a valuable tool for students when grounding their
knowledge.

In the second study, the issue of understanding during one whole
programming course was explored at Iringa University College, Tu-
maini University (Tanzania). Six Tanzanian students were selected
to participate in three individual sessions at different points of the
12-week long course. Each individual session covered one topic.
Array creation, method calling, and object creation were the topics
selected as their execution is complex and Jeliot 3 animation details
all the steps. Students had to watch the animation at least twice
per topic. Each time, students were asked to describe what was

42 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

happening in the screen, similarly to what was asked to the English
students at the end of the experiment. The goal of the intervention
was to observe the evolution of their knowledge of programming
concepts and of the Jeliot 3 animations.

Students did suffer when explaining the animations, and their
descriptions were not very verbose. As well, the animations were
confusing the students, and when students tried to narrate the ani-
mation they showed a mix of conglomerated and misplaced knowl-
edge [96]. For example one student confused the array concept with
its depiction in Jeliot 3 that also shows the length of the array. Thus,
this student confused the array with one of its properties. In Paper
I, it is reasoned that this confusion could be explained by Holmboe’s
interpretation of Vygotsky’s ideas on language and learning [40].

“One possible reason is that for simpler concepts, a student’s
previous vocabulary is enough to describe what happens on
the screen and in the program. For more complex concepts,
students are still assimilating the concept, and the terms re-
quired to describe the concept do not form part of the stu-
dents’ first order language (composed of the words that are
self-explanatory). ”

Together, these studies highlight the positive and negative as-
pects of Jeliot 3. Some of the outcomes are due to the philoso-
phy behind the tool: the notional machine is useful to understand
the concepts. However, even with the tool, the fine details of the
notional machine are lost on the students, even with considerable
tutor support.

Other outcomes are related to the practical implementation of
the tool: its features and their usability. The animations of Jeliot 3
and its easy user interface are good to attract novice students with-
out programming experience. The animation is a drawback when
the same concept is visualized several times. Without added expla-
nations students will either ignore the animation, or will be con-
fused with it. As it is said in Paper I:

Dissertations in Forestry and Natural Sciences No 149 43



Andrés Moreno: Re-designing Program Animation

4.1.1 Students’ Knowledge and Understanding

In the first study, a group of six students volunteered to intensive
progamming tutoring using Jeliot 3 at University of Warwick (UK),
the tutored group, and their understanding of Jeliot 3 was compared
to those students that used Jeliot 3 without guidance, the normal
group. The original purpose of this set up was to have a first hand
account of how the tutored students used Jeliot 3. However, the
interesting results were only when their understanding was com-
pared with the other group.

According to one of the research hypothesis, the two students
from the tutored group should have shown a greater vocabulary
and understanding than the four from the normal group. After the
basic object oriented concept was explained and practiced in the
course all of them where asked to verbally explain what goes on in
the Jeliot screen when an object is created. The description of the
two groups showed a similar level of detail when describing the
animation, and they also showed several misconceptions about the
object creation animation. Only two of the normal group students
were correct in their explanation of Jeliot 3 animation. All of the
students were positive of Jeliot 3 and claimed it had helped them
to understand arrays and objects. Sorva would say that arrays and
objects have been transliminal concepts [116], or concepts used to
overcome a threshold concept [67], in this case addressable memory.
Jeliot 3, then, is a valuable tool for students when grounding their
knowledge.

In the second study, the issue of understanding during one whole
programming course was explored at Iringa University College, Tu-
maini University (Tanzania). Six Tanzanian students were selected
to participate in three individual sessions at different points of the
12-week long course. Each individual session covered one topic.
Array creation, method calling, and object creation were the topics
selected as their execution is complex and Jeliot 3 animation details
all the steps. Students had to watch the animation at least twice
per topic. Each time, students were asked to describe what was

42 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

happening in the screen, similarly to what was asked to the English
students at the end of the experiment. The goal of the intervention
was to observe the evolution of their knowledge of programming
concepts and of the Jeliot 3 animations.

Students did suffer when explaining the animations, and their
descriptions were not very verbose. As well, the animations were
confusing the students, and when students tried to narrate the ani-
mation they showed a mix of conglomerated and misplaced knowl-
edge [96]. For example one student confused the array concept with
its depiction in Jeliot 3 that also shows the length of the array. Thus,
this student confused the array with one of its properties. In Paper
I, it is reasoned that this confusion could be explained by Holmboe’s
interpretation of Vygotsky’s ideas on language and learning [40].

“One possible reason is that for simpler concepts, a student’s
previous vocabulary is enough to describe what happens on
the screen and in the program. For more complex concepts,
students are still assimilating the concept, and the terms re-
quired to describe the concept do not form part of the stu-
dents’ first order language (composed of the words that are
self-explanatory). ”

Together, these studies highlight the positive and negative as-
pects of Jeliot 3. Some of the outcomes are due to the philoso-
phy behind the tool: the notional machine is useful to understand
the concepts. However, even with the tool, the fine details of the
notional machine are lost on the students, even with considerable
tutor support.

Other outcomes are related to the practical implementation of
the tool: its features and their usability. The animations of Jeliot 3
and its easy user interface are good to attract novice students with-
out programming experience. The animation is a drawback when
the same concept is visualized several times. Without added expla-
nations students will either ignore the animation, or will be con-
fused with it. As it is said in Paper I:

Dissertations in Forestry and Natural Sciences No 149 43



Andrés Moreno: Re-designing Program Animation

“The number of repetitions of the same animation may desen-
sitize students to the importance of the animation itself, and
reduce it to a “movie of moving boxes”. They were able to
follow the boxes, and discover when they have been misplaced,
but whilst this is useful to identify bugs, the underlying mean-
ing of the animation may not have been assimilated.”

For these reasons solutions were sought, modifying both the
philosophy behind Jeliot 3 and some of its features: Jeliot Adapt,
Paper III, Jeliot ConAn, Papers IV and V, and Jeliot with Explana-
tions, Paper VI.

4.1.2 Roles of Program Animation Tools

In Paper I, it was postulated that learning aid and debugger were
the roles Jeliot 3 could take and classified students’ answers in the
interview according to these two roles. Students answers fit in those
categories.

As stated before, for several students and for several threshold
concepts, Jeliot 3 helped them understand the concepts. Jeliot 3
animations were used as scaffolding to progress through the zone of
proximal development [126], i.e. as a learning aid. For example one
student said:

“It [Jeliot 3] is really useful because you can follow it, go
through the code [...]. It is helping me to understand how I
create objects. [...] It clarifies things, rather than just being a
white screen.”

In this study I also sought to find out whether the students used
the tool differently if they had had some extra tutoring. Unfortu-
nately, the experiment set up did not led to any insights.

In the second study, Paper II, I analyzed the roles the tool had
during students learning. From the recordings, the notes, and the
tests from the sessions I induced four different roles Jeliot 3 took
while being used to understand the animation and program a small
task. The roles were described in Paper II as:

44 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

Empty role We say that the tool has an empty role when the stu-
dent does not actively visualize the animation, or when the vi-
sualization changes neither the student’s knowledge nor their
attitude in an appreciable way.

Exploring role Animation tools have an exploratory role when they
prompt the student to explore or to discover the meaning of
the animation and the animated concept through an active
visualization.

Confusing role The confusing role of an animation tool is often an
unintended one. Animations are made to clarify or to serve
as a learning tool. It occurs when the student cannot answer
the questions that the active visualization provokes.

Teaching role An animation tool will have a teaching role when it
has successfully been used for learning by the student. This
role is expected for any animation tool, as learning through
animations is the final goal.

Evaluating role The animation tools have an evaluating role when
students use them to evaluate or assert their own knowledge.

In the analysis, it is claimed that the tool could take several
roles at the same time, and that with time the predominant role is
evaluating. Figure 4.1 depicts the transitions between roles found
in the data. The loops in the transitions represent when a student
gets stuck in one phase of the learning. The goal of the tool is
to make the student progress, so that he or she uses the tool in
the evaluating role. From the students’ descriptions, it was inferred
that the tool was evaluating their knowledge when students tried to
guess what will happen next. It is my interpretation that if students
were describing the animation step after it had happened, then the
tool was in a teaching role, i.e. students were trying to understand
the notional machine and forming their mental model.

I consider the confusing role as crucial, as it can indicate that
the student is in the zone of proximal development [126]. With

Dissertations in Forestry and Natural Sciences No 149 45



Andrés Moreno: Re-designing Program Animation

“The number of repetitions of the same animation may desen-
sitize students to the importance of the animation itself, and
reduce it to a “movie of moving boxes”. They were able to
follow the boxes, and discover when they have been misplaced,
but whilst this is useful to identify bugs, the underlying mean-
ing of the animation may not have been assimilated.”

For these reasons solutions were sought, modifying both the
philosophy behind Jeliot 3 and some of its features: Jeliot Adapt,
Paper III, Jeliot ConAn, Papers IV and V, and Jeliot with Explana-
tions, Paper VI.

4.1.2 Roles of Program Animation Tools

In Paper I, it was postulated that learning aid and debugger were
the roles Jeliot 3 could take and classified students’ answers in the
interview according to these two roles. Students answers fit in those
categories.

As stated before, for several students and for several threshold
concepts, Jeliot 3 helped them understand the concepts. Jeliot 3
animations were used as scaffolding to progress through the zone of
proximal development [126], i.e. as a learning aid. For example one
student said:

“It [Jeliot 3] is really useful because you can follow it, go
through the code [...]. It is helping me to understand how I
create objects. [...] It clarifies things, rather than just being a
white screen.”

In this study I also sought to find out whether the students used
the tool differently if they had had some extra tutoring. Unfortu-
nately, the experiment set up did not led to any insights.

In the second study, Paper II, I analyzed the roles the tool had
during students learning. From the recordings, the notes, and the
tests from the sessions I induced four different roles Jeliot 3 took
while being used to understand the animation and program a small
task. The roles were described in Paper II as:

44 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

Empty role We say that the tool has an empty role when the stu-
dent does not actively visualize the animation, or when the vi-
sualization changes neither the student’s knowledge nor their
attitude in an appreciable way.

Exploring role Animation tools have an exploratory role when they
prompt the student to explore or to discover the meaning of
the animation and the animated concept through an active
visualization.

Confusing role The confusing role of an animation tool is often an
unintended one. Animations are made to clarify or to serve
as a learning tool. It occurs when the student cannot answer
the questions that the active visualization provokes.

Teaching role An animation tool will have a teaching role when it
has successfully been used for learning by the student. This
role is expected for any animation tool, as learning through
animations is the final goal.

Evaluating role The animation tools have an evaluating role when
students use them to evaluate or assert their own knowledge.

In the analysis, it is claimed that the tool could take several
roles at the same time, and that with time the predominant role is
evaluating. Figure 4.1 depicts the transitions between roles found
in the data. The loops in the transitions represent when a student
gets stuck in one phase of the learning. The goal of the tool is
to make the student progress, so that he or she uses the tool in
the evaluating role. From the students’ descriptions, it was inferred
that the tool was evaluating their knowledge when students tried to
guess what will happen next. It is my interpretation that if students
were describing the animation step after it had happened, then the
tool was in a teaching role, i.e. students were trying to understand
the notional machine and forming their mental model.

I consider the confusing role as crucial, as it can indicate that
the student is in the zone of proximal development [126]. With

Dissertations in Forestry and Natural Sciences No 149 45



Andrés Moreno: Re-designing Program Animation

initial

exploratory

confusing

no-role

teaching

evaluating

Figure 4.1: Transitions of the roles the tool takes as students use it to learn a new concept,
modified from Paper II

appropriate support at that stage the tool will reveal its teaching
and evaluating role.

Finally, the activity used to elicit students’ descriptions, view
an animation and comprehend a program may have increased the
presence of the exploring and evaluating roles. If the student had
been using the animation tool for debugging purposes, those roles
would have been secondary.

While the roles described here could be the basis of adaptation
of animation tools, I did not pursue this approach in Paper III, Jeliot
Adapt. The work and analysis resulting in the roles happened after
the planning and development of Jeliot Adapt, which followed a
more classical adaptation, e.g. Brusilovsky et al. [18].

46 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

Jeliot editor
Java

interpreter
Question
generator

Animation
generator

Jeliot theater

Local UM
CUMULATE

server

Questions

source MCode

MCode

graphical primitives

reports

enquires

updates

creates

requests

Figure 4.2: Structure of Jeliot Adapt from Paper III

4.2 JELIOT ADAPT

The Jeliot Adapt prototype aimed to tailor the animation steps to
the student’s own goals, knowledge and skills. The work was pre-
sented in Paper III. The animation steps would be sped up or hid-
den according to the student’s current status of knowledge. The
status of knowledge would be stored in a so called user model
(UM). The user model would be remote and shared between dif-
ferent learning tools that will feed it with data regarding student’s
progress [131].

4.2.1 Implementation

Jeliot 3 had been previously improved by the addition of stop-and-
think questions [83], which could be generated automatically. The
prototype included that new module and added the components
to communicate with the remote online user model, see Figure 4.2.
In Paper III, the proposed adaptation was limited to the display of
the automatically generated question. If the concept of the ques-
tion had not been mastered by the student, as estimated by the
user model, the question would be displayed. Depending on the
correctness of the answer the user model would be updated locally

Dissertations in Forestry and Natural Sciences No 149 47



Andrés Moreno: Re-designing Program Animation

initial

exploratory

confusing

no-role

teaching

evaluating

Figure 4.1: Transitions of the roles the tool takes as students use it to learn a new concept,
modified from Paper II

appropriate support at that stage the tool will reveal its teaching
and evaluating role.

Finally, the activity used to elicit students’ descriptions, view
an animation and comprehend a program may have increased the
presence of the exploring and evaluating roles. If the student had
been using the animation tool for debugging purposes, those roles
would have been secondary.

While the roles described here could be the basis of adaptation
of animation tools, I did not pursue this approach in Paper III, Jeliot
Adapt. The work and analysis resulting in the roles happened after
the planning and development of Jeliot Adapt, which followed a
more classical adaptation, e.g. Brusilovsky et al. [18].

46 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

Jeliot editor
Java

interpreter
Question
generator

Animation
generator

Jeliot theater

Local UM
CUMULATE

server

Questions

source MCode

MCode

graphical primitives

reports

enquires

updates

creates

requests

Figure 4.2: Structure of Jeliot Adapt from Paper III

4.2 JELIOT ADAPT

The Jeliot Adapt prototype aimed to tailor the animation steps to
the student’s own goals, knowledge and skills. The work was pre-
sented in Paper III. The animation steps would be sped up or hid-
den according to the student’s current status of knowledge. The
status of knowledge would be stored in a so called user model
(UM). The user model would be remote and shared between dif-
ferent learning tools that will feed it with data regarding student’s
progress [131].

4.2.1 Implementation

Jeliot 3 had been previously improved by the addition of stop-and-
think questions [83], which could be generated automatically. The
prototype included that new module and added the components
to communicate with the remote online user model, see Figure 4.2.
In Paper III, the proposed adaptation was limited to the display of
the automatically generated question. If the concept of the ques-
tion had not been mastered by the student, as estimated by the
user model, the question would be displayed. Depending on the
correctness of the answer the user model would be updated locally

Dissertations in Forestry and Natural Sciences No 149 47



Andrés Moreno: Re-designing Program Animation

and propagated to the central user model, called CUMULATE [131].
Further work on the adaptation prototype was carried out to imple-
ment more advanced adaptive features, but not reported in Paper
III.

In a following prototype, the user model would also be updated
when the different concepts were animated by Jeliot 3, indicating
that the student has watched that animation. Together with the
questions and the visualizations, a more accurate model could be
built, to decide whether to omit the steps of the animation.

This line of development was stopped due to several reasons:
the complexity of the implementation grew exponentially as more
concepts were added to the adaptation, and the previous studies
had failed to determine that a certain number of repeated visual-
izations implied that the student created a viable mental model of
the execution.

4.2.2 Evaluation

Due to the early end of the development of the tool, it was not eval-
uated. However, in Paper III we laid the ground for future empiri-
cal evaluations following Brusilovsky et at.’s layered approach [18],
and suggesting a mixed methods approach.

Interestingly, we proposed the use of eye-tracking technology
to evaluate the adaptive Jeliot 3, in a similar way to that which
Bednarik proposed [1]. If evaluation was successful, eye-movement
data could also serve as a source for the user model. That way
the user model could make the distinction between what Jeliot 3
displays and what the student looks at, and have a more accurate
picture of the student’s understanding.

4.2.3 Discussion

Brusilovsky et al. [17] criticized the detailed approach of Jeliot 3 to
animations as “shallow” when compared to single concept visual-
ization tools, such as the adaptive explanatory visualization tool

48 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

WADEIn II [19]. Their reason was that single concept tools can ex-
pand the visualization with explanations and detailed assessments
related to that concept. I concur with them in that adapting for a
single concept it is easier that making it general, it would have been
hard to adapt all the animations in Jeliot 3. However, further work
is needed to make Jeliot 3 beneficial for all kinds of students, even
those who may be taken aback due to its “simplicity”. As well,
Myller’s automatic questions for Jeliot 3 [83], and the automatic ex-
planations presented here require fresh approaches to be relevant
to all students.

4.3 JELIOT 3 AND EXPLANATIONS

From my research, and others people’s research, the need and bene-
fits of extending Jeliot 3 with explanations was clear. Brusilovksy et
al. already presented a program visualization system that included
them [16, 129] Thus, in our case we focused on investigating how to
properly design the feature for better learning impact. I supervised
Wang’s implementation work on the feature and his Master’s the-
sis [127], which included an empirical evaluation. Paper VI contains
a report on the evaluation.

Our prototype, see Figure 4.3, included a concise explanation
and a more detailed explanation. The concise explanation was al-
ways displayed and it explained the animation at each step. The
extended explanation included a theoretical description of the con-
cept and it was displayed on the students’ demand. The explana-
tion window was a separate one and it was open on the top-right
corner. Explanations used in the prototype were taken from Ra-
posa’s Java textbook [104].

4.3.1 Implementation

The implementation of the explanations used the modular design of
Jeliot 3. The theater interpreter processed the intermediate code to
produce the animation and display the explanation. Explanations

Dissertations in Forestry and Natural Sciences No 149 49



Andrés Moreno: Re-designing Program Animation

and propagated to the central user model, called CUMULATE [131].
Further work on the adaptation prototype was carried out to imple-
ment more advanced adaptive features, but not reported in Paper
III.

In a following prototype, the user model would also be updated
when the different concepts were animated by Jeliot 3, indicating
that the student has watched that animation. Together with the
questions and the visualizations, a more accurate model could be
built, to decide whether to omit the steps of the animation.

This line of development was stopped due to several reasons:
the complexity of the implementation grew exponentially as more
concepts were added to the adaptation, and the previous studies
had failed to determine that a certain number of repeated visual-
izations implied that the student created a viable mental model of
the execution.

4.2.2 Evaluation

Due to the early end of the development of the tool, it was not eval-
uated. However, in Paper III we laid the ground for future empiri-
cal evaluations following Brusilovsky et at.’s layered approach [18],
and suggesting a mixed methods approach.

Interestingly, we proposed the use of eye-tracking technology
to evaluate the adaptive Jeliot 3, in a similar way to that which
Bednarik proposed [1]. If evaluation was successful, eye-movement
data could also serve as a source for the user model. That way
the user model could make the distinction between what Jeliot 3
displays and what the student looks at, and have a more accurate
picture of the student’s understanding.

4.2.3 Discussion

Brusilovsky et al. [17] criticized the detailed approach of Jeliot 3 to
animations as “shallow” when compared to single concept visual-
ization tools, such as the adaptive explanatory visualization tool

48 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

WADEIn II [19]. Their reason was that single concept tools can ex-
pand the visualization with explanations and detailed assessments
related to that concept. I concur with them in that adapting for a
single concept it is easier that making it general, it would have been
hard to adapt all the animations in Jeliot 3. However, further work
is needed to make Jeliot 3 beneficial for all kinds of students, even
those who may be taken aback due to its “simplicity”. As well,
Myller’s automatic questions for Jeliot 3 [83], and the automatic ex-
planations presented here require fresh approaches to be relevant
to all students.

4.3 JELIOT 3 AND EXPLANATIONS

From my research, and others people’s research, the need and bene-
fits of extending Jeliot 3 with explanations was clear. Brusilovksy et
al. already presented a program visualization system that included
them [16, 129] Thus, in our case we focused on investigating how to
properly design the feature for better learning impact. I supervised
Wang’s implementation work on the feature and his Master’s the-
sis [127], which included an empirical evaluation. Paper VI contains
a report on the evaluation.

Our prototype, see Figure 4.3, included a concise explanation
and a more detailed explanation. The concise explanation was al-
ways displayed and it explained the animation at each step. The
extended explanation included a theoretical description of the con-
cept and it was displayed on the students’ demand. The explana-
tion window was a separate one and it was open on the top-right
corner. Explanations used in the prototype were taken from Ra-
posa’s Java textbook [104].

4.3.1 Implementation

The implementation of the explanations used the modular design of
Jeliot 3. The theater interpreter processed the intermediate code to
produce the animation and display the explanation. Explanations

Dissertations in Forestry and Natural Sciences No 149 49



Andrés Moreno: Re-designing Program Animation

Figure 4.3: Screenshot of Jeliot augmented with explanations from Paper VI

were linked with the animation and they were only shown at the
corresponding animation step [127]. Several libraries and designs
for the explanation windows were tested. The final result can be
seen in Figure 4.3.

4.3.2 Evaluation

The evaluation focused on the effect of the temporal placement of
the explanation regarding the animated concept. In the between
subject study, thus, there were two levels in the primary factor. In
one level the explanation was first and in the other the animation
was first. We did not consider the possibility of explanation and
animation at the same time.

The study was carried out at the University of Eastern Finland
in Joensuu, and 18 students volunteered to participate, 15 male and
3 female. The experiment consisted of students attending one indi-
vidual session. The students watched the animations correspond-
ing to three programming concepts: 1) object initialization and

50 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

Table 4.1: Mean learning gains, standard deviations, t value, and 2-tailed p value

Q 1 Q 2 Q 3 Mean gain

Animation-first (N=10) 0.18 (0.23) 0.06 (0.13) 0.19 (0.20) 0.15
Explanation-first (N=8) 0.00 (0.00) 0.07 (0.12) 0.00 (0.00) 0.02

t value 2.250 -0.139 2.732 2.413
p value (2-tailed) 0.039 0.891 0.015 0.028

“this” keyword, 2) reference return and assignment, and 3) garbage
collection. They watched the animation twice: the first time with-
out explanations, and the second time with the explanations shown
according to the condition. A pre-test and post-test were handed
at the beginning and at the end of the session respectively to mea-
sure students understanding and record their vocabulary. The tests
were identical and included one question for each concept (Q1, Q2,
and Q3). The scores of the pre-test (score1) and post-test (score2)
were graded from 0 to 5, and we measured the learning gain in the

study as Learning gain =
score2 − score1

max − score1
, where max is the maxi-

mum score possible.
Table 4.1 contains the main result of the experiment. The statis-

tical tests show that there are significant “differences in the learning
contingent with the temporal arrangement of animations and expla-
nations” [128]. The animation-first students significantly improved
their knowledge of the concepts on two concepts: object initializa-
tion and “this” keyword, and garbage collection.

The analysis of the written answers indicated that students from
the animation-first group did improve their vocabulary by acquir-
ing the vocabulary from the explanations. Explanation-first stu-
dents rarely improved their answers or they vocabulary.

4.3.3 Discussion

Classical studies of multimedia learning as those of Moreno and
Mayer [81] have demonstrated the impact of what they call the con-
tiguity principle. That is, information given using, for example,

Dissertations in Forestry and Natural Sciences No 149 51



Andrés Moreno: Re-designing Program Animation

Figure 4.3: Screenshot of Jeliot augmented with explanations from Paper VI

were linked with the animation and they were only shown at the
corresponding animation step [127]. Several libraries and designs
for the explanation windows were tested. The final result can be
seen in Figure 4.3.

4.3.2 Evaluation

The evaluation focused on the effect of the temporal placement of
the explanation regarding the animated concept. In the between
subject study, thus, there were two levels in the primary factor. In
one level the explanation was first and in the other the animation
was first. We did not consider the possibility of explanation and
animation at the same time.

The study was carried out at the University of Eastern Finland
in Joensuu, and 18 students volunteered to participate, 15 male and
3 female. The experiment consisted of students attending one indi-
vidual session. The students watched the animations correspond-
ing to three programming concepts: 1) object initialization and

50 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

Table 4.1: Mean learning gains, standard deviations, t value, and 2-tailed p value

Q 1 Q 2 Q 3 Mean gain

Animation-first (N=10) 0.18 (0.23) 0.06 (0.13) 0.19 (0.20) 0.15
Explanation-first (N=8) 0.00 (0.00) 0.07 (0.12) 0.00 (0.00) 0.02

t value 2.250 -0.139 2.732 2.413
p value (2-tailed) 0.039 0.891 0.015 0.028

“this” keyword, 2) reference return and assignment, and 3) garbage
collection. They watched the animation twice: the first time with-
out explanations, and the second time with the explanations shown
according to the condition. A pre-test and post-test were handed
at the beginning and at the end of the session respectively to mea-
sure students understanding and record their vocabulary. The tests
were identical and included one question for each concept (Q1, Q2,
and Q3). The scores of the pre-test (score1) and post-test (score2)
were graded from 0 to 5, and we measured the learning gain in the

study as Learning gain =
score2 − score1

max − score1
, where max is the maxi-

mum score possible.
Table 4.1 contains the main result of the experiment. The statis-

tical tests show that there are significant “differences in the learning
contingent with the temporal arrangement of animations and expla-
nations” [128]. The animation-first students significantly improved
their knowledge of the concepts on two concepts: object initializa-
tion and “this” keyword, and garbage collection.

The analysis of the written answers indicated that students from
the animation-first group did improve their vocabulary by acquir-
ing the vocabulary from the explanations. Explanation-first stu-
dents rarely improved their answers or they vocabulary.

4.3.3 Discussion

Classical studies of multimedia learning as those of Moreno and
Mayer [81] have demonstrated the impact of what they call the con-
tiguity principle. That is, information given using, for example,

Dissertations in Forestry and Natural Sciences No 149 51



Andrés Moreno: Re-designing Program Animation

verbal and visual means should be as spatially and temporally con-
tiguous as possible. Moreno and Mayer did not find significant dif-
ferences in the temporal arrangement of the textual explanations.
Moreover, Clark and Mayer [21] suggested adding the explanation
at the beginning of the animation. Other program visualization
tools have included explanations but have had them in a corner and
simultaneous to the animation [103, 117]. Here, the results contra-
dict those of Moreno and Mayer [81] and also discourage the use
of simultaneous explanations in favor of explanations shown after
the animation. This study does not investigate the viability of the
students’ mental model, but the acquisition of vocabulary is a step
in the right direction towards being able to understand complex
concepts which students cannot manipulate [40].

4.4 JELIOT CONAN

MatrixPro, an algorithm simulation tool [45], was the first to in-
clude the possibilty of errors in a visualization. In an interesting
exercise, the tool asks students to construct an incorrect data struc-
ture. However, that kind of exercise was not further researched,
and the possibilities have not been explored until now. The idea of
conflictive animations for programming starts with the assumption
of the importance of errors in programming, and in education in
general. In papers IV and V the idea of conflictive animations is
presented, implemented and evaluated.

According to Paper V, errors have been used in education for im-
proving three key aspects of learning: conceptual knowledge [34, 114],
student skills [34] and student attitudes [14, 100]. In programming,
Ma et al. have used students’ errors as a way to sparkling cognitive
conflicts [62]. Bennedsen and Caspersen proposed that students
should be exposed to the errors that occur during the program-
ming process [10]. Ma et al. used animations to correct students’
understandings and Bennedsen and Caspersen used pre-recorded
videos of a programmer working in a development task.

In Moreno et al. [78], we defined conflictive animations as:

52 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

“those [animations] that deliberately do not reproduce what
the animated code or algorithm is programmed to perform.”

In that sense, animations are wrong and students cannot trust
them. This contrasts with the use of errors by Ma et al. [62]. Here
it is the animation creating the conflict, albeit the student does not
know when the conflict happens.

The original engagement taxonomy did not account for conflic-
tive animations [86]. Thus, to list the possible kinds of activities that
conflictive animations prompt, a new conflictive dimension can be
added to the taxonomy with the same categories but with different
interpretations.

1. Viewing. With conflictive animations, viewing the visualiza-
tion can be done in two ways.

(a) Passive. The teacher takes the conducting role and ex-
plains the steps in the animation, highlighting the con-
flictive steps and explaining the reasons.

(b) Active. Students watch the animation by themselves,
looking for an error that has already been explained.

2. Responding. Students are asked to spot the error or errors
in the animation. Identifying the error does not necessarily
mean that the student has wholly grasped the concept, but at
least that they have a functional mental model of the program
execution or algorithm.

3. Changing. From a given conflictive animation students should
correct the error in the animation, usually by modifying the
animation. This error may have been spotted by them or
marked by the teacher in advance. Correcting the conflict re-
quires a good understanding of the concept behind it and of
the graphical representation.

4. Constructing. In this case, students purposely create several
conflictive animations of a given concept. These animations
can reflect how their understanding of the concept has evolved.

Dissertations in Forestry and Natural Sciences No 149 53



Andrés Moreno: Re-designing Program Animation

verbal and visual means should be as spatially and temporally con-
tiguous as possible. Moreno and Mayer did not find significant dif-
ferences in the temporal arrangement of the textual explanations.
Moreover, Clark and Mayer [21] suggested adding the explanation
at the beginning of the animation. Other program visualization
tools have included explanations but have had them in a corner and
simultaneous to the animation [103, 117]. Here, the results contra-
dict those of Moreno and Mayer [81] and also discourage the use
of simultaneous explanations in favor of explanations shown after
the animation. This study does not investigate the viability of the
students’ mental model, but the acquisition of vocabulary is a step
in the right direction towards being able to understand complex
concepts which students cannot manipulate [40].

4.4 JELIOT CONAN

MatrixPro, an algorithm simulation tool [45], was the first to in-
clude the possibilty of errors in a visualization. In an interesting
exercise, the tool asks students to construct an incorrect data struc-
ture. However, that kind of exercise was not further researched,
and the possibilities have not been explored until now. The idea of
conflictive animations for programming starts with the assumption
of the importance of errors in programming, and in education in
general. In papers IV and V the idea of conflictive animations is
presented, implemented and evaluated.

According to Paper V, errors have been used in education for im-
proving three key aspects of learning: conceptual knowledge [34, 114],
student skills [34] and student attitudes [14, 100]. In programming,
Ma et al. have used students’ errors as a way to sparkling cognitive
conflicts [62]. Bennedsen and Caspersen proposed that students
should be exposed to the errors that occur during the program-
ming process [10]. Ma et al. used animations to correct students’
understandings and Bennedsen and Caspersen used pre-recorded
videos of a programmer working in a development task.

In Moreno et al. [78], we defined conflictive animations as:

52 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

“those [animations] that deliberately do not reproduce what
the animated code or algorithm is programmed to perform.”

In that sense, animations are wrong and students cannot trust
them. This contrasts with the use of errors by Ma et al. [62]. Here
it is the animation creating the conflict, albeit the student does not
know when the conflict happens.

The original engagement taxonomy did not account for conflic-
tive animations [86]. Thus, to list the possible kinds of activities that
conflictive animations prompt, a new conflictive dimension can be
added to the taxonomy with the same categories but with different
interpretations.

1. Viewing. With conflictive animations, viewing the visualiza-
tion can be done in two ways.

(a) Passive. The teacher takes the conducting role and ex-
plains the steps in the animation, highlighting the con-
flictive steps and explaining the reasons.

(b) Active. Students watch the animation by themselves,
looking for an error that has already been explained.

2. Responding. Students are asked to spot the error or errors
in the animation. Identifying the error does not necessarily
mean that the student has wholly grasped the concept, but at
least that they have a functional mental model of the program
execution or algorithm.

3. Changing. From a given conflictive animation students should
correct the error in the animation, usually by modifying the
animation. This error may have been spotted by them or
marked by the teacher in advance. Correcting the conflict re-
quires a good understanding of the concept behind it and of
the graphical representation.

4. Constructing. In this case, students purposely create several
conflictive animations of a given concept. These animations
can reflect how their understanding of the concept has evolved.

Dissertations in Forestry and Natural Sciences No 149 53



Andrés Moreno: Re-designing Program Animation

Figure 4.4: Screenshot of Jeliot ConAn from Paper IV

5. Presenting. At this level, students are asked to present their
own conflictive animations and try to deceive peers into think-
ing it is a correct animation. This activity introduces added
motivation in the form of competition among peers. As a side
effect, students may delve into the more obscure features of
the algorithm or programming concept.

Jeliot ConAn (Conflictive Animation) is a tool to automatically
produce conflictive animations from teachers’ or students’ source
code. The otherwise not very active Viewing category becomes
more engaging when conflicts are added. Students using Jeliot Co-
nAn advance the animation step by step and when following the
animation they have to identify the step that produces the conflict
and signal it pressing the “Error” button. Figure 4.4 shows Jeliot
ConAn after the user has correctly identified the error. The student
has to answer a question to avoid random guesses.

54 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

4.4.1 Implementation

In Paper IV, I proposed a layered implementation of automatic con-
flictive animations based on the modular design of Jeliot 3. Before
the animation is shown to the students several system components,
or layers, of an automatic animation tool are capable of creating the
following conflicts.

Source code layer The tool can transparently modify the source
code to be animated.

Parser layer The parser can change the meaning or order of execu-
tion of operators.

Tree interpreter layer The interpretation of the abstract syntax tree
by the language interpreter can be modified to change the
choice of methods to be executed. This layer holds most of
the information in an easy way to be manipulated, and, thus,
it is a good source for the automatic generation of conflicts.

Intermediate code layer A new intermediate code interpreter can
be added to the tool to produce a completely different anima-
tion. However, this layer lacks most of the execution context
and it is not a good source of conflicts: the execution context
would have to be reproduced in this layer to create conflicts
that are consistent with the ongoing animation.

Visualization layer The visualization layer has even less informa-
tion about the program running, but an easy way to create
conflicts is by changing the icons of operations, or names of
methods being displayed. In any case, the execution and other
values would be consistent and correct.

The Jeliot ConAn prototype creates conflicts at the tree interpreter
layer, and the intermediate code layer is modified to keep track of
the generated conflicts. For demonstration purposes another proto-
type has been created that creates the conflicts in the parser layer.

To develop Jeliot ConAn, the Jeliot 3 system structure, see Fig-
ure 3.3, was modified and new modules were incorporated, see

Dissertations in Forestry and Natural Sciences No 149 55



Andrés Moreno: Re-designing Program Animation

Figure 4.4: Screenshot of Jeliot ConAn from Paper IV

5. Presenting. At this level, students are asked to present their
own conflictive animations and try to deceive peers into think-
ing it is a correct animation. This activity introduces added
motivation in the form of competition among peers. As a side
effect, students may delve into the more obscure features of
the algorithm or programming concept.

Jeliot ConAn (Conflictive Animation) is a tool to automatically
produce conflictive animations from teachers’ or students’ source
code. The otherwise not very active Viewing category becomes
more engaging when conflicts are added. Students using Jeliot Co-
nAn advance the animation step by step and when following the
animation they have to identify the step that produces the conflict
and signal it pressing the “Error” button. Figure 4.4 shows Jeliot
ConAn after the user has correctly identified the error. The student
has to answer a question to avoid random guesses.

54 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

4.4.1 Implementation

In Paper IV, I proposed a layered implementation of automatic con-
flictive animations based on the modular design of Jeliot 3. Before
the animation is shown to the students several system components,
or layers, of an automatic animation tool are capable of creating the
following conflicts.

Source code layer The tool can transparently modify the source
code to be animated.

Parser layer The parser can change the meaning or order of execu-
tion of operators.

Tree interpreter layer The interpretation of the abstract syntax tree
by the language interpreter can be modified to change the
choice of methods to be executed. This layer holds most of
the information in an easy way to be manipulated, and, thus,
it is a good source for the automatic generation of conflicts.

Intermediate code layer A new intermediate code interpreter can
be added to the tool to produce a completely different anima-
tion. However, this layer lacks most of the execution context
and it is not a good source of conflicts: the execution context
would have to be reproduced in this layer to create conflicts
that are consistent with the ongoing animation.

Visualization layer The visualization layer has even less informa-
tion about the program running, but an easy way to create
conflicts is by changing the icons of operations, or names of
methods being displayed. In any case, the execution and other
values would be consistent and correct.

The Jeliot ConAn prototype creates conflicts at the tree interpreter
layer, and the intermediate code layer is modified to keep track of
the generated conflicts. For demonstration purposes another proto-
type has been created that creates the conflicts in the parser layer.

To develop Jeliot ConAn, the Jeliot 3 system structure, see Fig-
ure 3.3, was modified and new modules were incorporated, see

Dissertations in Forestry and Natural Sciences No 149 55



Andrés Moreno: Re-designing Program Animation

Figure 4.5. From Paper V, the generation of conflictive animations
is as follows.

“The generation of conflicts starts when the user enters the
source code for a program (1) that is sent for interpretation by
the conflicting version of DynamicJava. The interpreter pro-
duces the intermediate code for the execution. At some point,
the interpreter will misinterpret a statement in the program
according to preprogrammed behavior—for example, an over-
ridden method may be called instead of the overriding method.
This misinterpretation will produce an alternative execution
that is reflected in the MCode. The resulting intermediate code
is surrounded by specific MCode instructions marking the be-
ginning and the end of the conflictive part (3). At this time,
the conflict object will have been created (4) containing all the
relevant information of that conflict (location, method called,
class information, etc.). This MCode is sent to the intermedi-
ate code interpreter (5), which will interpret the intermediate
code line by line as the animation progresses step by step.”

4.4.2 Evaluation

Jeliot ConAn was tested in two different ways. First the imple-
mentation was tested for coverage, and, secondly, the educational
impact was studied with a between subject study.

The implementation of Jeliot ConAn made it easy to create new
conflictive animations. In the prototype, three conflictive concepts
were developed: conflictive method overriding, conflictive implicit
super call, and conflictive for update statements. The automatic
ability to produce conflicts was tested by systematically collecting
example programs from 5 Java textbooks and 1 website, and run-
ning them in Jeliot ConAn. In total 27 programs were found, 12
demonstrating inheritance concepts and 15 for loops, see Table 4.2.
Of the 27 programs, 3 were not able to automatically produce con-
flictive animations due to the implementation. 16 could be ani-
mated straight away to produce conflictive animations, and an extra

56 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

Source code
of the

program

Conflictive
interpretation
of the program
code done by
DynamicJava

Intermediate
code of the

faulty
program
execution

User interface
Visualization

engine
Intermediate

code
interpreter

1

2 3

4

5

6

Conflict

Conflict
manager

7

9

10

8

User

Developer

Figure 4.5: System structure of Jeliot ConAn from Paper V

Dissertations in Forestry and Natural Sciences No 149 57



Andrés Moreno: Re-designing Program Animation

Figure 4.5. From Paper V, the generation of conflictive animations
is as follows.

“The generation of conflicts starts when the user enters the
source code for a program (1) that is sent for interpretation by
the conflicting version of DynamicJava. The interpreter pro-
duces the intermediate code for the execution. At some point,
the interpreter will misinterpret a statement in the program
according to preprogrammed behavior—for example, an over-
ridden method may be called instead of the overriding method.
This misinterpretation will produce an alternative execution
that is reflected in the MCode. The resulting intermediate code
is surrounded by specific MCode instructions marking the be-
ginning and the end of the conflictive part (3). At this time,
the conflict object will have been created (4) containing all the
relevant information of that conflict (location, method called,
class information, etc.). This MCode is sent to the intermedi-
ate code interpreter (5), which will interpret the intermediate
code line by line as the animation progresses step by step.”

4.4.2 Evaluation

Jeliot ConAn was tested in two different ways. First the imple-
mentation was tested for coverage, and, secondly, the educational
impact was studied with a between subject study.

The implementation of Jeliot ConAn made it easy to create new
conflictive animations. In the prototype, three conflictive concepts
were developed: conflictive method overriding, conflictive implicit
super call, and conflictive for update statements. The automatic
ability to produce conflicts was tested by systematically collecting
example programs from 5 Java textbooks and 1 website, and run-
ning them in Jeliot ConAn. In total 27 programs were found, 12
demonstrating inheritance concepts and 15 for loops, see Table 4.2.
Of the 27 programs, 3 were not able to automatically produce con-
flictive animations due to the implementation. 16 could be ani-
mated straight away to produce conflictive animations, and an extra

56 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

Source code
of the

program

Conflictive
interpretation
of the program
code done by
DynamicJava

Intermediate
code of the

faulty
program
execution

User interface
Visualization

engine
Intermediate

code
interpreter

1

2 3

4

5

6

Conflict

Conflict
manager

7

9

10

8

User

Developer

Figure 4.5: System structure of Jeliot ConAn from Paper V

Dissertations in Forestry and Natural Sciences No 149 57



Andrés Moreno: Re-designing Program Animation

Table 4.2: Results from testing of textbook program examples against Jeliot ConAn

Result Inheritance For Loop

Automatic generation 3 13
Automatic generation with minor changes 2 0
Automatic generation with major changes 1 0
No generation due to example program 5 0
No generation due to conflictive animation
implementation

1 2

Total 12 15

5 required modifications. The remaining 5 concepts did not contain
code that executed any of the conflictive concepts developed.

Those results indicated the little effort required by teachers to in-
corporate conflictive animations to their toolbox using readily avail-
able examples.

Given students’ difficulties in understanding Jeliot 3’s anima-
tions of object oriented concepts, I evaluated the impact of one
learning session on inheritance concepts with students using Je-
liot 3. Eighteen students from the University of Eastern Finland
(Joensuu) took part in a between subject study (11 male, 7 female).
The control group used Jeliot 3 to find the bugs in two computer
programs. The experiment group used Jeliot ConAn to find the
conflicts in conflictive animations. The programs from both groups
were similar.

Students completed two identical knowledge tests at the begin-
ning and at the end of session with identical multiple-choice ques-
tions. As well, they wrote down the description of an object cre-
ation. Tables 4.3 and 4.4 show the main results. Normality test
for the group distribution failed and non-parametric statistical tests
were chosen, Wilcoxon Signed-rank and Mann-Whitney tests.

According to these results the impact of conflictive animations
regarding students’ conceptual knowledge is not statistically sig-

58 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

Table 4.3: Average and standard deviation of previous programming experience, pre-test,
post-test, and the difference between those two (gain)

Group Prog. experience Pre-test Post-test Gain

Jeliot 3 (N=9) 2.73 (σ 1.56) 3.00 (σ 2.52) 2.89 (σ 2.31) -0.11 (σ 1.34)
Jeliot ConAn (N=9) 3.11 (σ 1.36) 1.38 (σ 2.91) 2.16 (σ 2.54) 0.78 (σ 1.28)

Table 4.4: Results from the Jeliot ConAn group are analyzed regarding their improvement
in the concepts demonstrated with conflictive animations

Concept Number of
questions

Maximum
gained
points possi-
ble

Accumulated
gained
points

Number of
students
finding the
conflict

p-value

Method Overloading 2 18 0 2 NA
Constructor 3 22 4 3 0.25
General object-oriented 5 20 1 NA 1

nificant, but it exists. Students from the experimental group had
improved their knowledge, if only by half a point, after interacting
with the conflictive animations for 40 minutes.

Regarding the graphical questionnaire, which consisted of 11
questions, the difference was not statistically significant (Mann-
Whitney Rank Sum test, p-value=0.62). However, the average score
result for this questionnaire was higher in the control group, 6.82
points, than in the experimental group, 4.82. As a side note, previ-
ous programming experience showed a correlation with the graph-
ical questionnaire results in both groups (Spearman’s test: Jeliot 3
group p-value= 0.03; Jeliot ConAn group p-value=0.12). Expert
students described better the animation than non-expert students.
There was no correlation between the gain and the experience in
any of the groups.

4.4.3 Discussion

The engagement taxonomy, which has been augmented as part of
this dissertation, partly reflects the roles that were identified in the
study presented in Section 4.1. The engagement taxonomy presents
what students are expected or asked to do with the tool, while the

Dissertations in Forestry and Natural Sciences No 149 59



Andrés Moreno: Re-designing Program Animation

Table 4.2: Results from testing of textbook program examples against Jeliot ConAn

Result Inheritance For Loop

Automatic generation 3 13
Automatic generation with minor changes 2 0
Automatic generation with major changes 1 0
No generation due to example program 5 0
No generation due to conflictive animation
implementation

1 2

Total 12 15

5 required modifications. The remaining 5 concepts did not contain
code that executed any of the conflictive concepts developed.

Those results indicated the little effort required by teachers to in-
corporate conflictive animations to their toolbox using readily avail-
able examples.

Given students’ difficulties in understanding Jeliot 3’s anima-
tions of object oriented concepts, I evaluated the impact of one
learning session on inheritance concepts with students using Je-
liot 3. Eighteen students from the University of Eastern Finland
(Joensuu) took part in a between subject study (11 male, 7 female).
The control group used Jeliot 3 to find the bugs in two computer
programs. The experiment group used Jeliot ConAn to find the
conflicts in conflictive animations. The programs from both groups
were similar.

Students completed two identical knowledge tests at the begin-
ning and at the end of session with identical multiple-choice ques-
tions. As well, they wrote down the description of an object cre-
ation. Tables 4.3 and 4.4 show the main results. Normality test
for the group distribution failed and non-parametric statistical tests
were chosen, Wilcoxon Signed-rank and Mann-Whitney tests.

According to these results the impact of conflictive animations
regarding students’ conceptual knowledge is not statistically sig-

58 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

Table 4.3: Average and standard deviation of previous programming experience, pre-test,
post-test, and the difference between those two (gain)

Group Prog. experience Pre-test Post-test Gain

Jeliot 3 (N=9) 2.73 (σ 1.56) 3.00 (σ 2.52) 2.89 (σ 2.31) -0.11 (σ 1.34)
Jeliot ConAn (N=9) 3.11 (σ 1.36) 1.38 (σ 2.91) 2.16 (σ 2.54) 0.78 (σ 1.28)

Table 4.4: Results from the Jeliot ConAn group are analyzed regarding their improvement
in the concepts demonstrated with conflictive animations

Concept Number of
questions

Maximum
gained
points possi-
ble

Accumulated
gained
points

Number of
students
finding the
conflict

p-value

Method Overloading 2 18 0 2 NA
Constructor 3 22 4 3 0.25
General object-oriented 5 20 1 NA 1

nificant, but it exists. Students from the experimental group had
improved their knowledge, if only by half a point, after interacting
with the conflictive animations for 40 minutes.

Regarding the graphical questionnaire, which consisted of 11
questions, the difference was not statistically significant (Mann-
Whitney Rank Sum test, p-value=0.62). However, the average score
result for this questionnaire was higher in the control group, 6.82
points, than in the experimental group, 4.82. As a side note, previ-
ous programming experience showed a correlation with the graph-
ical questionnaire results in both groups (Spearman’s test: Jeliot 3
group p-value= 0.03; Jeliot ConAn group p-value=0.12). Expert
students described better the animation than non-expert students.
There was no correlation between the gain and the experience in
any of the groups.

4.4.3 Discussion

The engagement taxonomy, which has been augmented as part of
this dissertation, partly reflects the roles that were identified in the
study presented in Section 4.1. The engagement taxonomy presents
what students are expected or asked to do with the tool, while the

Dissertations in Forestry and Natural Sciences No 149 59



Andrés Moreno: Re-designing Program Animation

roles of the tools expands on what the tool actually sparks in stu-
dents’ learning process. Jeliot 3, as has been used in the studies
here, can be considered as belonging to the active viewing level
in the engagement taxonomy. However, as we have seen, the tool
takes different roles as students try to understand a new topic when
viewing the animation, and modifying the code that produces the
animation. The fact that one of the roles the tool can take is con-
fusing has resulted in exploring that idea further by developing a
confusing responding tool, Jeliot ConAn, as per the augmented en-
gagement taxonomy. This design aimed to lead students to use
Jeliot 3 in the teaching and evaluating roles, as consequences of the
now forced confusing role.

The implementation and the results presented here are only a
first step towards a better understanding of the roles of errors for
learning in animations and other visualizations. The implementa-
tion only covers automatic program visualization, which is quite
general and flexible for several learning scenarios. However, not
all the activities presented in the extended engagement taxonomy
are covered by Jeliot 3. Creating more conflictive exercises in Ma-
trixPro, or supporting conflictive simulations with UUhistle, would
enable new activities, one of them presented in Paper VII.

Of the three key aspects of learning that errors can impact (con-
ceptual knowledge, student skills, and student attitudes), the study
presented here shows some improvements in students’s conceptual
knowledge and skills after using conflictive animations in Jeliot 3
when compared to using Jeliot 3 as a debugging tool. Some evi-
dence points that conflictive animations made students more aware
of their gaps in understanding, and maybe in a painful way: “con-
flictive animation students” were less confident in their knowledge,
and less comfortable using the tool. The experienced discomfort by
the students can be a reflection of the confusing role of the tool, and
thus positive towards learning as it is theorized in Figure 4.1.

60 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

4.5 LIMITATION OF THE RESULTS

The results presented here are the product of the research carried
out around Jeliot 3. While being one popular program animation
tool, it is not the only one. Observing students’ reaction and de-
scription of animations produced by other tools, and even other
programming paradigms, would have led to more generalizable re-
sults. However, the theater metaphor in Jeliot 3 is present in newer
program visualization tools like UUhislte [117], which already in-
cludes explanations and the option for the student to simulate the
program execution.

Regarding the experiments, the low number of subjects may
threaten the statistical reliability of the quantitative experiments.
To improve ecological validity and in order to evaluate the effect of
Jeliot 3 in students’ learning, it is noted that teachers and students
should have used it before [8]. Due to the difficulties to arrange
programming courses which used Jeliot 3 as a tool, I resorted to
evaluate those courses that I was either teaching or assisting at, ex-
cept for Paper VI. In those courses, I used Jeliot to explain the main
concepts to small groups. This improved ecological validity but not
so powerful statistical test could be used.

4.6 RESEARCH QUESTIONS REVISITED

In light of the summary of the publications above, it is time to re-
visit the research questions that have guided this research. The
answers are based on the already presented results and take into
consideration their limitations.

QUESTION 1. How do novice students engage in using Jeliot 3
when learning new programming concepts?

QUESTION 2. How do novice students understand the visualiza-
tions provided by Jeliot 3 when learning new pro-
gramming concepts?

Dissertations in Forestry and Natural Sciences No 149 61



Andrés Moreno: Re-designing Program Animation

roles of the tools expands on what the tool actually sparks in stu-
dents’ learning process. Jeliot 3, as has been used in the studies
here, can be considered as belonging to the active viewing level
in the engagement taxonomy. However, as we have seen, the tool
takes different roles as students try to understand a new topic when
viewing the animation, and modifying the code that produces the
animation. The fact that one of the roles the tool can take is con-
fusing has resulted in exploring that idea further by developing a
confusing responding tool, Jeliot ConAn, as per the augmented en-
gagement taxonomy. This design aimed to lead students to use
Jeliot 3 in the teaching and evaluating roles, as consequences of the
now forced confusing role.

The implementation and the results presented here are only a
first step towards a better understanding of the roles of errors for
learning in animations and other visualizations. The implementa-
tion only covers automatic program visualization, which is quite
general and flexible for several learning scenarios. However, not
all the activities presented in the extended engagement taxonomy
are covered by Jeliot 3. Creating more conflictive exercises in Ma-
trixPro, or supporting conflictive simulations with UUhistle, would
enable new activities, one of them presented in Paper VII.

Of the three key aspects of learning that errors can impact (con-
ceptual knowledge, student skills, and student attitudes), the study
presented here shows some improvements in students’s conceptual
knowledge and skills after using conflictive animations in Jeliot 3
when compared to using Jeliot 3 as a debugging tool. Some evi-
dence points that conflictive animations made students more aware
of their gaps in understanding, and maybe in a painful way: “con-
flictive animation students” were less confident in their knowledge,
and less comfortable using the tool. The experienced discomfort by
the students can be a reflection of the confusing role of the tool, and
thus positive towards learning as it is theorized in Figure 4.1.

60 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

4.5 LIMITATION OF THE RESULTS

The results presented here are the product of the research carried
out around Jeliot 3. While being one popular program animation
tool, it is not the only one. Observing students’ reaction and de-
scription of animations produced by other tools, and even other
programming paradigms, would have led to more generalizable re-
sults. However, the theater metaphor in Jeliot 3 is present in newer
program visualization tools like UUhislte [117], which already in-
cludes explanations and the option for the student to simulate the
program execution.

Regarding the experiments, the low number of subjects may
threaten the statistical reliability of the quantitative experiments.
To improve ecological validity and in order to evaluate the effect of
Jeliot 3 in students’ learning, it is noted that teachers and students
should have used it before [8]. Due to the difficulties to arrange
programming courses which used Jeliot 3 as a tool, I resorted to
evaluate those courses that I was either teaching or assisting at, ex-
cept for Paper VI. In those courses, I used Jeliot to explain the main
concepts to small groups. This improved ecological validity but not
so powerful statistical test could be used.

4.6 RESEARCH QUESTIONS REVISITED

In light of the summary of the publications above, it is time to re-
visit the research questions that have guided this research. The
answers are based on the already presented results and take into
consideration their limitations.

QUESTION 1. How do novice students engage in using Jeliot 3
when learning new programming concepts?

QUESTION 2. How do novice students understand the visualiza-
tions provided by Jeliot 3 when learning new pro-
gramming concepts?

Dissertations in Forestry and Natural Sciences No 149 61



Andrés Moreno: Re-designing Program Animation

These two questions aimed to understand better visualizations,
especially the animations produced by Jeliot 3, while they are used
by the students. In this research, first we postulated that Jeliot 3
main uses were as a learning tool and as debugger. Later, the roles
were investigated and four were identified, exploring, confusing,
teaching, and evaluating — plus an extra empty one for when the
tool have no role.

The defined roles explain what what the students went through
while visualizing an animation they did not fully understand. A
linear path from exploring to evaluating roles would be desired, in
other words, from initially trying to understand the animation to
using the animation to check on their own knowledge. However,
students followed several paths, as shown in Figure 4.1, that not
always ended in evaluating, or even teaching. In my understand-
ing, from students’ descriptions, Jeliot 3 failed to untangle students’
fragile knowledge, specially the misplaced an conglomerated kinds
of fragile knowledge (see Section 2.1.1). That is, for some of the
weaker students the confusing role of the tool was neither reme-
died by special tutoring, nor repeated visualizations. Students with
a more solid understanding of Java followed a more direct path
towards using the tool for evaluating their knowledge.

QUESTION 3. How can new features be implemented in Jeliot 3
using its modular architecture in a way that facili-
tates its usage in diverse learning scenarios?

With the modular design of Jeliot 3, a new system has been de-
veloped from Jeliot 3, Jeliot ConAn, and the current one has added
two versions, Jeliot with Explanations and Jeliot Adapt. The mod-
ular architecture has resulted in a system that can be modified to
add new features without removing current ones. Explanations, a
needed feature, were added by Wang [127]. However, the flexibil-
ity of Jeliot 3 to automatically animate programs complicates the
efforts to adapt the animation in a meaningful and complete way.

The layered implementation of conflictive animations in Jeliot
ConAn is an example of how the architecture of Jeliot 3 allows for

62 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

new features that require the interaction of several modules.
Jeliot with Explanations is meant to be used when students are

on their own, maybe after the teachers have explained the anima-
tions or the concepts, in other words, in an active viewing role as
per the engagement taxonomy [56, 86]. Jeliot ConAn can be used in
more diverse learning scenarios, viewing and responding, though
not all of the ones listed in the conflict-extended engagement tax-
onomy.

QUESTION 4. What effect have the newly implemented features
on students’ engagement and understanding of new
programming concepts?

The effect of explanations and conflictive animations were over-
all positive for students’ understanding. The explanations, together
with the animation, improved students understanding after a short
session. However, there was a difference in the effectiveness due to
the temporal arrangement of the explanations. Explanations before
animation resulted in better written descriptions of the program-
ming concepts by the students.

Conflictive animations, as implemented in Jeliot ConAn, did
not have a significant effect in understanding. As well, students
using Jeliot ConAn reported discomfort, which may have lead to
lower engagement. In any case, Jeliot ConAn users were resorting
to learning material when trying to find the errors, which did not
happen when students tried to debug a program with Jeliot 3. This
result indicates that students improved their meta-cognition and
evaluated their knowledge while using Jeliot ConAn.

Dissertations in Forestry and Natural Sciences No 149 63



Andrés Moreno: Re-designing Program Animation

These two questions aimed to understand better visualizations,
especially the animations produced by Jeliot 3, while they are used
by the students. In this research, first we postulated that Jeliot 3
main uses were as a learning tool and as debugger. Later, the roles
were investigated and four were identified, exploring, confusing,
teaching, and evaluating — plus an extra empty one for when the
tool have no role.

The defined roles explain what what the students went through
while visualizing an animation they did not fully understand. A
linear path from exploring to evaluating roles would be desired, in
other words, from initially trying to understand the animation to
using the animation to check on their own knowledge. However,
students followed several paths, as shown in Figure 4.1, that not
always ended in evaluating, or even teaching. In my understand-
ing, from students’ descriptions, Jeliot 3 failed to untangle students’
fragile knowledge, specially the misplaced an conglomerated kinds
of fragile knowledge (see Section 2.1.1). That is, for some of the
weaker students the confusing role of the tool was neither reme-
died by special tutoring, nor repeated visualizations. Students with
a more solid understanding of Java followed a more direct path
towards using the tool for evaluating their knowledge.

QUESTION 3. How can new features be implemented in Jeliot 3
using its modular architecture in a way that facili-
tates its usage in diverse learning scenarios?

With the modular design of Jeliot 3, a new system has been de-
veloped from Jeliot 3, Jeliot ConAn, and the current one has added
two versions, Jeliot with Explanations and Jeliot Adapt. The mod-
ular architecture has resulted in a system that can be modified to
add new features without removing current ones. Explanations, a
needed feature, were added by Wang [127]. However, the flexibil-
ity of Jeliot 3 to automatically animate programs complicates the
efforts to adapt the animation in a meaningful and complete way.

The layered implementation of conflictive animations in Jeliot
ConAn is an example of how the architecture of Jeliot 3 allows for

62 Dissertations in Forestry and Natural Sciences No 149

Summary of the Publications

new features that require the interaction of several modules.
Jeliot with Explanations is meant to be used when students are

on their own, maybe after the teachers have explained the anima-
tions or the concepts, in other words, in an active viewing role as
per the engagement taxonomy [56, 86]. Jeliot ConAn can be used in
more diverse learning scenarios, viewing and responding, though
not all of the ones listed in the conflict-extended engagement tax-
onomy.

QUESTION 4. What effect have the newly implemented features
on students’ engagement and understanding of new
programming concepts?

The effect of explanations and conflictive animations were over-
all positive for students’ understanding. The explanations, together
with the animation, improved students understanding after a short
session. However, there was a difference in the effectiveness due to
the temporal arrangement of the explanations. Explanations before
animation resulted in better written descriptions of the program-
ming concepts by the students.

Conflictive animations, as implemented in Jeliot ConAn, did
not have a significant effect in understanding. As well, students
using Jeliot ConAn reported discomfort, which may have lead to
lower engagement. In any case, Jeliot ConAn users were resorting
to learning material when trying to find the errors, which did not
happen when students tried to debug a program with Jeliot 3. This
result indicates that students improved their meta-cognition and
evaluated their knowledge while using Jeliot ConAn.

Dissertations in Forestry and Natural Sciences No 149 63



Andrés Moreno: Re-designing Program Animation

64 Dissertations in Forestry and Natural Sciences No 149

5 Conclusions

“I was recently exposed to a demonstration
of what was pretended to be an educational

software for an introductory programming course.
With its “visualizations” on the screen it was

such an obvious case of curriculum infantilization...”
– Edsger W. Dijkstra

In this thesis, Jeliot 3 has been evaluated in real contexts to ob-
serve how students use it to learn new concepts using the anima-
tions. Following a systems development research approach, these
observations have resulted in the development of several systems.
Experimental evaluation of these systems have not been conclusive
and more evaluations are needed to measure the impact of the new
developments. In particular, this thesis has opened the interesting
path of conflictive animations, and highlighted the possibilities of
errors in programming education.

In this chapter, the previous results and discussions are trans-
formed into recommendations and opportunities for future research.

5.1 NEW WAYS FOR PROGRAMMING EDUCATION

As Postman says, anytime we are teaching, or developing educa-
tional software, we need to asks ourselves what is the end of ed-
ucation. Programming education at university level have focused
very much on formal learning. In this case, the end has been creat-
ing a solid foundation for the rest of the computer science studies.
Formal learning usually involves a teacher and a set of declarative
knowledge that teachers believe students have to learn. This ap-
proach can be behind the troubles in current programming courses.
In parallel, younger children in schools are learning to program by
creating games and robots with friendly tools, e.g., Scratch, Alice
and AgentSheets. Attempts have been made to bring these tools to

Dissertations in Forestry and Natural Sciences No 149 65



Andrés Moreno: Re-designing Program Animation

64 Dissertations in Forestry and Natural Sciences No 149

5 Conclusions

“I was recently exposed to a demonstration
of what was pretended to be an educational

software for an introductory programming course.
With its “visualizations” on the screen it was

such an obvious case of curriculum infantilization...”
– Edsger W. Dijkstra

In this thesis, Jeliot 3 has been evaluated in real contexts to ob-
serve how students use it to learn new concepts using the anima-
tions. Following a systems development research approach, these
observations have resulted in the development of several systems.
Experimental evaluation of these systems have not been conclusive
and more evaluations are needed to measure the impact of the new
developments. In particular, this thesis has opened the interesting
path of conflictive animations, and highlighted the possibilities of
errors in programming education.

In this chapter, the previous results and discussions are trans-
formed into recommendations and opportunities for future research.

5.1 NEW WAYS FOR PROGRAMMING EDUCATION

As Postman says, anytime we are teaching, or developing educa-
tional software, we need to asks ourselves what is the end of ed-
ucation. Programming education at university level have focused
very much on formal learning. In this case, the end has been creat-
ing a solid foundation for the rest of the computer science studies.
Formal learning usually involves a teacher and a set of declarative
knowledge that teachers believe students have to learn. This ap-
proach can be behind the troubles in current programming courses.
In parallel, younger children in schools are learning to program by
creating games and robots with friendly tools, e.g., Scratch, Alice
and AgentSheets. Attempts have been made to bring these tools to

Dissertations in Forestry and Natural Sciences No 149 65



Andrés Moreno: Re-designing Program Animation

what is called “Introductory Computer Science”, or CS0, and the
results are encouraging, lowering drop-out levels and broadening
the interest of students in computer science. Eventually, the tran-
sition to formal learning is done and the struggles reappear. That
change of paradigm can be confusing, and it would be better to
have a cross-cutting paradigm that will be used during the whole
computer science degree.

In this thesis, I have explored the idea of errors as a useful
resource for programming in the form of conflictive animations.
Eventually, a whole computer science curricula could be designed
around them. In the research presented, students learnt by finding
the errors in conflictive animations. However, students complained
of not being comfortable using the tool. In order to develop further
the conflictive animation idea, a conflictive game is proposed and
described in Paper VII and summarized next.

5.1.1 Conflictive Animations Game

The conflictive animation game presented in Paper VII aims to in-
crease the engagement of the student by having them construct-
ing the conflictive animation. The game part is when they have to
find the errors in other students’ animations. An environment akin
to Peerwise [24] can be used to promote the best animations. In
Peerwise, students answer and rate other students’ multiple choice
questions. In our game, the animations will be rated and errors
found by the students.

5.1.2 Future work

The conflictive animations game is a concept that still needs to be
developed and researched, but it should be seen as the first step to
combine errors and games for computing education. Further work
should clarify how to expand the combination of errors and games
to the curricula. On one hand, having student deal with errors can
improve their knowledge, skills and attitudes, as said in Paper V.
On the other hand, games are great for motivation and engagement.

66 Dissertations in Forestry and Natural Sciences No 149

Conclusions

The eye-tracking evaluation suggested for Jeliot Adapt could be
the method to further evaluate Jeliot ConAn and Jeliot with Expla-
nations. Jeliot ConAn activities are meant for novice students pay-
ing more attention to the animation, eye-tracking data could easily
confirm that. The empirical results of the evaluation of Jeliot with
Explanations, students learn better when explanations are shown
before the visualization, needs to be explored further. Eye-tracking
data can serve to compare the different strategies students follow
when being displayed the explanations.

The impact studies of Jeliot ConAn and Jeliot with Explanations
would benefit from experiments that include a large sample of sub-
jects and that last for an entire course of introduction to program-
ming. However, in the case of Jeliot ConAn, given that it is a new
concept and more needs to be understood, more qualitative studies
are warranted to understand students’ attitude towards conflictive
animation and its role in their learning.

The definition of the roles that Jeliot 3 took with novices can be
the basis for the design of a smart user interface. Jeliot 3 options
and visualizations could change depending on the current under-
standing of the student. Students’ verbal descriptions, after being
analyzed via voice or text recognition, could be the basis of the
adaptation.

In the experiment with Jeliot with Explanations, the data col-
lected showed that students who watched explanations before the
visualization gave better descriptions of the animations. The vocab-
ulary they used in their answers was also closer to the one used in
the explanations. These two phenomena are an indication of better
learning; however, further research is needed to compare the via-
bility of the mental models of the two groups after the intervention.
The experiment as it was may be only testing for students’ recall
rather than understanding.

Recent theoretical developments present TPACK as a framework
to study the interaction of technological knowledge with pedagog-
ical and content knowledge [49]. TPACK makes explicit the link-
ages between the different types of knowledge that teachers require

Dissertations in Forestry and Natural Sciences No 149 67



Andrés Moreno: Re-designing Program Animation

what is called “Introductory Computer Science”, or CS0, and the
results are encouraging, lowering drop-out levels and broadening
the interest of students in computer science. Eventually, the tran-
sition to formal learning is done and the struggles reappear. That
change of paradigm can be confusing, and it would be better to
have a cross-cutting paradigm that will be used during the whole
computer science degree.

In this thesis, I have explored the idea of errors as a useful
resource for programming in the form of conflictive animations.
Eventually, a whole computer science curricula could be designed
around them. In the research presented, students learnt by finding
the errors in conflictive animations. However, students complained
of not being comfortable using the tool. In order to develop further
the conflictive animation idea, a conflictive game is proposed and
described in Paper VII and summarized next.

5.1.1 Conflictive Animations Game

The conflictive animation game presented in Paper VII aims to in-
crease the engagement of the student by having them construct-
ing the conflictive animation. The game part is when they have to
find the errors in other students’ animations. An environment akin
to Peerwise [24] can be used to promote the best animations. In
Peerwise, students answer and rate other students’ multiple choice
questions. In our game, the animations will be rated and errors
found by the students.

5.1.2 Future work

The conflictive animations game is a concept that still needs to be
developed and researched, but it should be seen as the first step to
combine errors and games for computing education. Further work
should clarify how to expand the combination of errors and games
to the curricula. On one hand, having student deal with errors can
improve their knowledge, skills and attitudes, as said in Paper V.
On the other hand, games are great for motivation and engagement.

66 Dissertations in Forestry and Natural Sciences No 149

Conclusions

The eye-tracking evaluation suggested for Jeliot Adapt could be
the method to further evaluate Jeliot ConAn and Jeliot with Expla-
nations. Jeliot ConAn activities are meant for novice students pay-
ing more attention to the animation, eye-tracking data could easily
confirm that. The empirical results of the evaluation of Jeliot with
Explanations, students learn better when explanations are shown
before the visualization, needs to be explored further. Eye-tracking
data can serve to compare the different strategies students follow
when being displayed the explanations.

The impact studies of Jeliot ConAn and Jeliot with Explanations
would benefit from experiments that include a large sample of sub-
jects and that last for an entire course of introduction to program-
ming. However, in the case of Jeliot ConAn, given that it is a new
concept and more needs to be understood, more qualitative studies
are warranted to understand students’ attitude towards conflictive
animation and its role in their learning.

The definition of the roles that Jeliot 3 took with novices can be
the basis for the design of a smart user interface. Jeliot 3 options
and visualizations could change depending on the current under-
standing of the student. Students’ verbal descriptions, after being
analyzed via voice or text recognition, could be the basis of the
adaptation.

In the experiment with Jeliot with Explanations, the data col-
lected showed that students who watched explanations before the
visualization gave better descriptions of the animations. The vocab-
ulary they used in their answers was also closer to the one used in
the explanations. These two phenomena are an indication of better
learning; however, further research is needed to compare the via-
bility of the mental models of the two groups after the intervention.
The experiment as it was may be only testing for students’ recall
rather than understanding.

Recent theoretical developments present TPACK as a framework
to study the interaction of technological knowledge with pedagog-
ical and content knowledge [49]. TPACK makes explicit the link-
ages between the different types of knowledge that teachers require

Dissertations in Forestry and Natural Sciences No 149 67



Andrés Moreno: Re-designing Program Animation

to teach in a certain context. TPACK surveys assess the teachers’
self-awareness and confidence on using technology in their teach-
ing practice. This framework and associated tools can complement
the work carried out here and the work of Ben-Bassat Levy [7] in
studying the use, or lack of it, of visualization tools by program-
ming teachers. In particular, it would be interesting to find out how
explicitly teaching the roles of visualization tools to teachers can
increase the teachers’ Technological Pedagogical Content Knowledge as
measured by TPACK instruments, and how it will reflect in the
adoption of tools by teachers to teach programming.

5.2 IMPLICATIONS

The research presented here translates to practical implications for
developers and teachers involved in program visualization.

5.2.1 Implications for Program Visualization Developers and Re-
searchers

Developers and researchers of program visualization tools, and even
any educational visualization tools, should accommodate for the
different roles the tool takes with the students using it. Different
roles require different support to smoothen student’s path towards
the evaluating role. Concept explanations given at the confusing
role is the most obvious one as implemented in Paper VI. The ex-
ploring role of the tool could be supported with contextual help that
displays when students move the cursor to the graphical blocks of
the visualization.

Tackling adaptation in program visualization is better done in
small conceptual steps, and not aiming to cover the language con-
structs and concepts. How to combine students’ own programs
with adaptation is still an open question.

Finally, researchers should not be afraid of exploring innovative
ways to move the program visualization field further. Here, con-
flictive animations and a game were presented, but still many other

68 Dissertations in Forestry and Natural Sciences No 149

Conclusions

unconventional solutions are around that are fun for students and
fun for the developers and researchers.

5.2.2 Implications for Teachers Using Program Visualization Tools

Jeliot 3, and other program visualization tools, usually represent
faithfully the complexity of program execution and lots of fine de-
tails are not fully grasped by the students. In this case, that ability
is very powerful and complete, but risks in students not having the
knowledge, skills or attitudes to grasp the information [97]. Teach-
ers should make sure that the graphical blocks of the visualization
are understood before student can proceed with the animations.

Jeliot ConAn re-enforces the roles of errors in education and
brings confusion. Teachers should be free to explore how to use er-
rors and confusions in their lectures to keep students’ attention. Er-
rors and confusion can make students discomfortable, but learning
should prepare students to accept discomfort for a greater good.

5.3 CONCLUDING REMARKS

The research carried out here has opened more doors than it has
closed. Through the active research and development of Jeliot 3,
the roles that Jeliot 3 takes have been defined, and several siblings
have come to light and have been empirically evaluated. The final
outcome is that more research and development in program anima-
tion and in Jeliot is necessary.

Dissertations in Forestry and Natural Sciences No 149 69



Andrés Moreno: Re-designing Program Animation

to teach in a certain context. TPACK surveys assess the teachers’
self-awareness and confidence on using technology in their teach-
ing practice. This framework and associated tools can complement
the work carried out here and the work of Ben-Bassat Levy [7] in
studying the use, or lack of it, of visualization tools by program-
ming teachers. In particular, it would be interesting to find out how
explicitly teaching the roles of visualization tools to teachers can
increase the teachers’ Technological Pedagogical Content Knowledge as
measured by TPACK instruments, and how it will reflect in the
adoption of tools by teachers to teach programming.

5.2 IMPLICATIONS

The research presented here translates to practical implications for
developers and teachers involved in program visualization.

5.2.1 Implications for Program Visualization Developers and Re-
searchers

Developers and researchers of program visualization tools, and even
any educational visualization tools, should accommodate for the
different roles the tool takes with the students using it. Different
roles require different support to smoothen student’s path towards
the evaluating role. Concept explanations given at the confusing
role is the most obvious one as implemented in Paper VI. The ex-
ploring role of the tool could be supported with contextual help that
displays when students move the cursor to the graphical blocks of
the visualization.

Tackling adaptation in program visualization is better done in
small conceptual steps, and not aiming to cover the language con-
structs and concepts. How to combine students’ own programs
with adaptation is still an open question.

Finally, researchers should not be afraid of exploring innovative
ways to move the program visualization field further. Here, con-
flictive animations and a game were presented, but still many other

68 Dissertations in Forestry and Natural Sciences No 149

Conclusions

unconventional solutions are around that are fun for students and
fun for the developers and researchers.

5.2.2 Implications for Teachers Using Program Visualization Tools

Jeliot 3, and other program visualization tools, usually represent
faithfully the complexity of program execution and lots of fine de-
tails are not fully grasped by the students. In this case, that ability
is very powerful and complete, but risks in students not having the
knowledge, skills or attitudes to grasp the information [97]. Teach-
ers should make sure that the graphical blocks of the visualization
are understood before student can proceed with the animations.

Jeliot ConAn re-enforces the roles of errors in education and
brings confusion. Teachers should be free to explore how to use er-
rors and confusions in their lectures to keep students’ attention. Er-
rors and confusion can make students discomfortable, but learning
should prepare students to accept discomfort for a greater good.

5.3 CONCLUDING REMARKS

The research carried out here has opened more doors than it has
closed. Through the active research and development of Jeliot 3,
the roles that Jeliot 3 takes have been defined, and several siblings
have come to light and have been empirically evaluated. The final
outcome is that more research and development in program anima-
tion and in Jeliot is necessary.

Dissertations in Forestry and Natural Sciences No 149 69



Andrés Moreno: Re-designing Program Animation

70 Dissertations in Forestry and Natural Sciences No 149

References

[1] R. Bednarik, “Potentials of eye-movement tracking in adap-
tive systems,” in Proceedings of the Fourth Workshop on the Eval-
uation of Adaptive Systems (2005), pp. 1—8.

[2] R. Bednarik, Methods to analyze visual attention strategies:
Applications in the studies of programming, PhD thesis (Uni-
versity of Joensuu, Department of Computer Science and
Statistics, 2007), Available at ftp://cs.joensuu.fi/pub/
Dissertations/bednarik.pdf.

[3] R. Bednarik, A. Moreno, N. Myller, and E. Sutinen, “Smart
program visualization technologies: Planning a next step,” in
Advanced Learning Technologies, 2005. ICALT 2005. Fifth IEEE
International Conference on (IEEE, 2005), pp. 717–721.

[4] R. Bednarik and M. Tukiainen, “An eye-tracking method-
ology for characterizing program comprehension processes,”
in Proceedings of the 2006 symposium on Eye tracking research &
applications, ETRA ’06 (2006), pp. 125–132.

[5] M. Ben-Ari, “Constructivism in Computer Science Educa-
tion,” Journal of Computers in Mathematics and Science Teaching
20, 45–73 (2001).

[6] M. Ben-Ari, R. Bednarik, R. Ben-Bassat Levy, G. Ebel,
A. Moreno, N. Myller, and E. Sutinen, “A decade of research
and development on program animation: The Jeliot experi-
ence,” Journal of Visual Languages & Computing 22, 375–384
(2011).

[7] R. Ben-Bassat Levy and M. Ben-Ari, “We work so hard and
they don’t use it: acceptance of software tools by teachers,”
SIGCSE Bulletin 39, 246–250 (2007).

Dissertations in Forestry and Natural Sciences No 149 71



Andrés Moreno: Re-designing Program Animation

70 Dissertations in Forestry and Natural Sciences No 149

References

[1] R. Bednarik, “Potentials of eye-movement tracking in adap-
tive systems,” in Proceedings of the Fourth Workshop on the Eval-
uation of Adaptive Systems (2005), pp. 1—8.

[2] R. Bednarik, Methods to analyze visual attention strategies:
Applications in the studies of programming, PhD thesis (Uni-
versity of Joensuu, Department of Computer Science and
Statistics, 2007), Available at ftp://cs.joensuu.fi/pub/
Dissertations/bednarik.pdf.

[3] R. Bednarik, A. Moreno, N. Myller, and E. Sutinen, “Smart
program visualization technologies: Planning a next step,” in
Advanced Learning Technologies, 2005. ICALT 2005. Fifth IEEE
International Conference on (IEEE, 2005), pp. 717–721.

[4] R. Bednarik and M. Tukiainen, “An eye-tracking method-
ology for characterizing program comprehension processes,”
in Proceedings of the 2006 symposium on Eye tracking research &
applications, ETRA ’06 (2006), pp. 125–132.

[5] M. Ben-Ari, “Constructivism in Computer Science Educa-
tion,” Journal of Computers in Mathematics and Science Teaching
20, 45–73 (2001).

[6] M. Ben-Ari, R. Bednarik, R. Ben-Bassat Levy, G. Ebel,
A. Moreno, N. Myller, and E. Sutinen, “A decade of research
and development on program animation: The Jeliot experi-
ence,” Journal of Visual Languages & Computing 22, 375–384
(2011).

[7] R. Ben-Bassat Levy and M. Ben-Ari, “We work so hard and
they don’t use it: acceptance of software tools by teachers,”
SIGCSE Bulletin 39, 246–250 (2007).

Dissertations in Forestry and Natural Sciences No 149 71



Andrés Moreno: Re-designing Program Animation

[8] R. Ben-Bassat Levy, M. Ben-Ari, and P. A. Uronen, “The Jeliot
2000 program animation system,” Computers & Education 40,
1–15 (2003).

[9] T. Benaya and E. Zur, “Understanding Object Oriented Pro-
gramming Concepts in an Advanced Programming Course,”
in Informatics Education - Supporting Computational Thinking,
Vol. 5090, R. T. Mittermeir and M. M. Systo, eds. (Springer
Berlin Heidelberg, 2008), pp. 161–170.

[10] J. Bennedsen and M. E. Caspersen, “Exposing the Program-
ming Process,” in Reflection on the Teaching of Programming,
J. Bennedsen, M. E. Caspersen, and M. Kölling, eds. (Springer,
2008), pp. 6–16.

[11] J. Biggs and C. Tang, Teaching for Quality Learning at Univer-
sity: what the student does, 3 ed. (Open University Press, 2007).

[12] J. B. Biggs and K. F. Collis, Evaluating the quality of learning:
The SOLO taxonomy (structure of the observed learning outcome)
(Academic Press (New York), 1982).

[13] B. Bloom and D. Krathwohl, Taxonomy of Educational Objec-
tives, Handbook 1: Cognitive Domain (Longman, 1984).

[14] R. Borasi, “Capitalizing on Errors as "Springboards for In-
quiry": A Teaching Experiment,” Journal for Research in Math-
ematics Education 25, 166–208 (1994).

[15] M. Brayshaw and M. Eisenstadt, “A Practical Graphical
Tracer for Prolog,” International Journal of Man-Machine Studies
35, 597–631 (1991).

[16] P. Brusilovsky, “Explanatory visualization in an educational
programming environment: Connecting examples with gen-
eral knowledge,” in Human-Computer Interaction, Vol. 876,
B. Blumenthal, J. Gornostaev, and C. Unger, eds. (Springer
Berlin Heidelberg, 1994), pp. 202–212.

72 Dissertations in Forestry and Natural Sciences No 149

References

[17] P. Brusilovsky, J. Grady, M. Spring, and C.-H. Lee, “What
should be visualized?: faculty perception of priority topics
for program visualization,” SIGCSE Bulletin 38, 44–48 (2006).

[18] P. Brusilovsky, C. Karagiannidis, and D. Sampson, “The ben-
efits of layered evaluation of adaptive applications and ser-
vices,” in Workshop on Empirical Evaluation of Adaptive Systems
(2001), pp. 1–8.

[19] P. Brusilovsky and T. D. Loboda, “WADEIn II: a case for
adaptive explanatory visualization,” SIGCSE Bulletin 38, 48–
52 (2006).

[20] M. T. H. Chi, “Quantifying qualitative analyses of verbal
data: A practical guide,” Journal of Learning Sciences 6, 271–
315 (1997).

[21] R. C. Clark and R. E. Mayer, E-learning and the science of in-
struction: Proven guidelines for consumers and designers of multi-
media learning, 3rd edition ed. (Wiley. com, 2011).

[22] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-D tool for in-
troductory programming concepts,” Journal of Computing Sci-
ences in Colleges 15, 107–116 (2000).

[23] P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi,
“Reversible Execution and Visualization of Programs with
LEONARDO,” Journal of Visual Languages & Computing 11, 125
– 150 (2000).

[24] P. Denny, A. Luxton-Reilly, and J. Hamer, “The PeerWise Sys-
tem of Student Contributed Assessment Questions,” in Pro-
ceedings of the Tenth Conference on Australasian Computing Edu-
cation - Volume 78, ACE ’08 (2008), pp. 69–74.

[25] F. Détienne, “Assessing the cognitive consequences of the
object-oriented approach: A survey of empirical research on
object-oriented design by individuals and teams,” Interacting
with Computers 9, 47–72 (1997).

Dissertations in Forestry and Natural Sciences No 149 73



Andrés Moreno: Re-designing Program Animation

[8] R. Ben-Bassat Levy, M. Ben-Ari, and P. A. Uronen, “The Jeliot
2000 program animation system,” Computers & Education 40,
1–15 (2003).

[9] T. Benaya and E. Zur, “Understanding Object Oriented Pro-
gramming Concepts in an Advanced Programming Course,”
in Informatics Education - Supporting Computational Thinking,
Vol. 5090, R. T. Mittermeir and M. M. Systo, eds. (Springer
Berlin Heidelberg, 2008), pp. 161–170.

[10] J. Bennedsen and M. E. Caspersen, “Exposing the Program-
ming Process,” in Reflection on the Teaching of Programming,
J. Bennedsen, M. E. Caspersen, and M. Kölling, eds. (Springer,
2008), pp. 6–16.

[11] J. Biggs and C. Tang, Teaching for Quality Learning at Univer-
sity: what the student does, 3 ed. (Open University Press, 2007).

[12] J. B. Biggs and K. F. Collis, Evaluating the quality of learning:
The SOLO taxonomy (structure of the observed learning outcome)
(Academic Press (New York), 1982).

[13] B. Bloom and D. Krathwohl, Taxonomy of Educational Objec-
tives, Handbook 1: Cognitive Domain (Longman, 1984).

[14] R. Borasi, “Capitalizing on Errors as "Springboards for In-
quiry": A Teaching Experiment,” Journal for Research in Math-
ematics Education 25, 166–208 (1994).

[15] M. Brayshaw and M. Eisenstadt, “A Practical Graphical
Tracer for Prolog,” International Journal of Man-Machine Studies
35, 597–631 (1991).

[16] P. Brusilovsky, “Explanatory visualization in an educational
programming environment: Connecting examples with gen-
eral knowledge,” in Human-Computer Interaction, Vol. 876,
B. Blumenthal, J. Gornostaev, and C. Unger, eds. (Springer
Berlin Heidelberg, 1994), pp. 202–212.

72 Dissertations in Forestry and Natural Sciences No 149

References

[17] P. Brusilovsky, J. Grady, M. Spring, and C.-H. Lee, “What
should be visualized?: faculty perception of priority topics
for program visualization,” SIGCSE Bulletin 38, 44–48 (2006).

[18] P. Brusilovsky, C. Karagiannidis, and D. Sampson, “The ben-
efits of layered evaluation of adaptive applications and ser-
vices,” in Workshop on Empirical Evaluation of Adaptive Systems
(2001), pp. 1–8.

[19] P. Brusilovsky and T. D. Loboda, “WADEIn II: a case for
adaptive explanatory visualization,” SIGCSE Bulletin 38, 48–
52 (2006).

[20] M. T. H. Chi, “Quantifying qualitative analyses of verbal
data: A practical guide,” Journal of Learning Sciences 6, 271–
315 (1997).

[21] R. C. Clark and R. E. Mayer, E-learning and the science of in-
struction: Proven guidelines for consumers and designers of multi-
media learning, 3rd edition ed. (Wiley. com, 2011).

[22] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-D tool for in-
troductory programming concepts,” Journal of Computing Sci-
ences in Colleges 15, 107–116 (2000).

[23] P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi,
“Reversible Execution and Visualization of Programs with
LEONARDO,” Journal of Visual Languages & Computing 11, 125
– 150 (2000).

[24] P. Denny, A. Luxton-Reilly, and J. Hamer, “The PeerWise Sys-
tem of Student Contributed Assessment Questions,” in Pro-
ceedings of the Tenth Conference on Australasian Computing Edu-
cation - Volume 78, ACE ’08 (2008), pp. 69–74.

[25] F. Détienne, “Assessing the cognitive consequences of the
object-oriented approach: A survey of empirical research on
object-oriented design by individuals and teams,” Interacting
with Computers 9, 47–72 (1997).

Dissertations in Forestry and Natural Sciences No 149 73



Andrés Moreno: Re-designing Program Animation

[26] E. W. Dijkstra, “On the cruelty of really teaching computing
science,” (1988), circulated privately.

[27] B. du Boulay, “Some Difficulties of Learning to Program,”
Journal of Educational Computing Research 1, 57–73 (1986).

[28] A. Eckerdal, Novice Programming Students’ Learning of Concepts
and Practise, PhD thesis (Uppsala University, Division of Sci-
entific Computing, Numerical Analysis, 2009), Available at
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9551.

[29] K. Ericsson and H. Simon, Protocol Analysis: Verbal Reports As
Data (MIT Press, 1984).

[30] K. Falkner and E. Palmer, “Developing authentic problem
solving skills in introductory computing classes,” SIGCSE
Bulletin 41, 4–8 (2009).

[31] O. Feder, “Adding Multiple Language Support to Je-
liot 3,” (2008), Available at https://code.google.
com/p/jeliot3/source/browse/branches/PEliot/doc/
PEliotDocumentation.doc.

[32] A. E. Fleury, “Programming in Java: student-constructed
rules,” SIGCSE Bulletin 32, 197–201 (2000).

[33] R. M. Gagne, “Learning outcomes and their effects: Useful
categories of human performance.,” American Psychologist 39,
377 (1984).

[34] C. Große and A. Renkl, “Finding and Fixing Errors in Worked
Examples: Can this Foster Learning Outcomes?,” Learning
and Instruction 17, 612–634 (2007).

[35] L. Gugerty and G. M. Olson, “Comprehension differences
in debugging by skilled and novice programmers,” in Papers
presented at the first workshop on empirical studies of programmers
on Empirical studies of programmers (1986), pp. 13–27.

74 Dissertations in Forestry and Natural Sciences No 149

References

[36] J. Haajanen, M. Pesonius, E. Sutinen, J. Tarhio, T. Terasvirta,
and P. Vanninen, “Animation of user algorithms on the Web,”
in Visual Languages, 1997. Proceedings. 1997 IEEE Symposium on
(IEEE, 1997), pp. 356–363.

[37] S. R. Hansen, N. H. Narayanan, and D. Schrimpsher, “Help-
ing learners visualize and comprehend algorithms,” Interac-
tive Multimedia Electronic Journal of Computer-Enhanced Learn-
ing 2, 10 (2000).

[38] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design sci-
ence in information systems research,” MIS Quaterly 28, 75–
105 (2004).

[39] C. Holmboe, “A cognitive framework for knowledge in in-
formatics: the case of object-orientation,” in ITiCSE ’99: Pro-
ceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on
Innovation and technology in computer science education (1999),
pp. 17–20.

[40] C. Holmboe, “A framework for knowledge: Analysing
high school students’ understanding of data modelling,” in
12th Workshop of the Psychology of Programming Interest Group
(2000), pp. 267–279.

[41] N. Hongwarittorrn and D. Krairit, “Effects of program vi-
sualization (Jeliot 3) on students’ performance and attitudes
towards java programming,” in The SPRING 8th Interna-
tional conference on Computing, Communication and Control Tech-
nologies (2010), Available at http://www.iiis.org/CDs2010/
CD2010IMC/CCCT\_2010/Abstract.asp?myurl=TA750PM.pdf.

[42] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A Meta-
Study of Algorithm Visualization Effectiveness,” Journal of Vi-
sual Languages and Computing 13, 259–290 (2002).

[43] P. Johnson-Laird, Mental models: Towards a cognitive science
of language, inference and consciousness (Cambridge University
Press, Cambridge, 1983).

Dissertations in Forestry and Natural Sciences No 149 75



Andrés Moreno: Re-designing Program Animation

[26] E. W. Dijkstra, “On the cruelty of really teaching computing
science,” (1988), circulated privately.

[27] B. du Boulay, “Some Difficulties of Learning to Program,”
Journal of Educational Computing Research 1, 57–73 (1986).

[28] A. Eckerdal, Novice Programming Students’ Learning of Concepts
and Practise, PhD thesis (Uppsala University, Division of Sci-
entific Computing, Numerical Analysis, 2009), Available at
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9551.

[29] K. Ericsson and H. Simon, Protocol Analysis: Verbal Reports As
Data (MIT Press, 1984).

[30] K. Falkner and E. Palmer, “Developing authentic problem
solving skills in introductory computing classes,” SIGCSE
Bulletin 41, 4–8 (2009).

[31] O. Feder, “Adding Multiple Language Support to Je-
liot 3,” (2008), Available at https://code.google.
com/p/jeliot3/source/browse/branches/PEliot/doc/
PEliotDocumentation.doc.

[32] A. E. Fleury, “Programming in Java: student-constructed
rules,” SIGCSE Bulletin 32, 197–201 (2000).

[33] R. M. Gagne, “Learning outcomes and their effects: Useful
categories of human performance.,” American Psychologist 39,
377 (1984).

[34] C. Große and A. Renkl, “Finding and Fixing Errors in Worked
Examples: Can this Foster Learning Outcomes?,” Learning
and Instruction 17, 612–634 (2007).

[35] L. Gugerty and G. M. Olson, “Comprehension differences
in debugging by skilled and novice programmers,” in Papers
presented at the first workshop on empirical studies of programmers
on Empirical studies of programmers (1986), pp. 13–27.

74 Dissertations in Forestry and Natural Sciences No 149

References

[36] J. Haajanen, M. Pesonius, E. Sutinen, J. Tarhio, T. Terasvirta,
and P. Vanninen, “Animation of user algorithms on the Web,”
in Visual Languages, 1997. Proceedings. 1997 IEEE Symposium on
(IEEE, 1997), pp. 356–363.

[37] S. R. Hansen, N. H. Narayanan, and D. Schrimpsher, “Help-
ing learners visualize and comprehend algorithms,” Interac-
tive Multimedia Electronic Journal of Computer-Enhanced Learn-
ing 2, 10 (2000).

[38] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design sci-
ence in information systems research,” MIS Quaterly 28, 75–
105 (2004).

[39] C. Holmboe, “A cognitive framework for knowledge in in-
formatics: the case of object-orientation,” in ITiCSE ’99: Pro-
ceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on
Innovation and technology in computer science education (1999),
pp. 17–20.

[40] C. Holmboe, “A framework for knowledge: Analysing
high school students’ understanding of data modelling,” in
12th Workshop of the Psychology of Programming Interest Group
(2000), pp. 267–279.

[41] N. Hongwarittorrn and D. Krairit, “Effects of program vi-
sualization (Jeliot 3) on students’ performance and attitudes
towards java programming,” in The SPRING 8th Interna-
tional conference on Computing, Communication and Control Tech-
nologies (2010), Available at http://www.iiis.org/CDs2010/
CD2010IMC/CCCT\_2010/Abstract.asp?myurl=TA750PM.pdf.

[42] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A Meta-
Study of Algorithm Visualization Effectiveness,” Journal of Vi-
sual Languages and Computing 13, 259–290 (2002).

[43] P. Johnson-Laird, Mental models: Towards a cognitive science
of language, inference and consciousness (Cambridge University
Press, Cambridge, 1983).

Dissertations in Forestry and Natural Sciences No 149 75



Andrés Moreno: Re-designing Program Animation

[44] O. Kannusmäki, A. Moreno, N. Myller, and E. Sutinen, “What
a novice wants: students using program visualization in dis-
tance programming course,” in Proceedings of the Third Pro-
gram Visualization Workshop (PVW’04) (2004), pp. 126–133.

[45] V. Karavirta, A. Korhonen, L. Malmi, and K. Stalnacke, “Ma-
trixPro - a tool for demonstrating data structures and algo-
rithms ex tempore,” in Advanced Learning Technologies, 2004.
Proceedings. IEEE International Conference on (2004), pp. 892–
893.

[46] A. Kerren and J. T. Stasko, “Algorithm Animation - Introduc-
tion,” in Revised Lectures on Software Visualization, International
Seminar (2002), pp. 1–15.

[47] S. Kirby, B. Toland, and C. Deegan, “Program Visualisation
tool for teaching programming in C,” in Proceedings of the
International Conference on Education, Training and Informatics,
ICETI (2010), Available at http://www.iiis.org/CDs2010/
CD2010IMC/ICETI\_2010/PapersPdf/EB134TP.pdf.

[48] M. Knobelsdorf, E. Isohanni, and J. Tenenberg, “The rea-
sons might be different: why students and teachers do not
use visualization tools,” in Proceedings of the 12th Koli Calling
International Conference on Computing Education Research, Koli
Calling ’12 (2012), pp. 1–10.

[49] M. Koehler and P. Mishra, “What is technological peda-
gogical content knowledge (TPACK)?,” Contemporary Issues in
Technology and Teacher Education 9, 60–70 (2009).

[50] M. Kölling, “The Greenfoot Programming Environment,”
Transactions on Computing Education 10, 14:1–14:21 (2010).

[51] W. L. Kuechler and M. G. Simkin, “How well do multiple
choice tests evaluate student understanding in computer pro-
gramming classes?,” Journal of Information Systems Education
14, 389–400 (2003).

76 Dissertations in Forestry and Natural Sciences No 149

References

[52] A. Kumar and S. Kasabov, “Observer Architecture of Program
Visualization,” Electronic Notes in Theoretical Computer Science
178, 153–160 (2007).

[53] S.-P. Lahtinen, E. Sutinen, and J. Tarhio, “Automated Anima-
tion of Algorithms with Eliot,” Journal of Visual Languages &
Computing 9, 337–349 (1998).

[54] M. Lattu, V. Meisalo, and J. Tarhio, “A visualisation tool as
a demonstration aid,” Computers & Education 41, 133 – 148
(2003).

[55] M. Lattu, J. Tarhio, and V. Meisalo, “How a Visualization Tool
Can Be Used - Evaluating a Tool in a Research & Development
Project,” in Proceedings of the 12th workshop of the Psychology of
Programming Interest Group (2000).

[56] T. Lauer, “Reevaluating and refining the engagement taxon-
omy,” SIGCSE Bulletin 40, 355–355 (2008).

[57] M. Limón, “On the cognitive conflict as an instructional strat-
egy for conceptual change: a critical appraisal,” Learning and
Instruction 11, 357–380 (2001).

[58] R. Lister, “Mixed methods: positivists are from Mars, con-
structivists are from Venus,” SIGCSE Bulletin 37, 18–19 (2005).

[59] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer,
M. Lindholm, R. McCartney, J. E. Moström, K. Sanders,
O. Seppälä, B. Simon, and L. Thomas, “A multi-national
study of reading and tracing skills in novice programmers,”
SIGCSE Bulletin 36, 119–150 (2004).

[60] R. Lister, B. Simon, E. Thompson, J. L. Whalley, and C. Prasad,
“Not seeing the forest for the trees: novice programmers and
the SOLO taxonomy,” SIGCSE Bulletin 38, 118–122 (2006).

[61] L. Ma, J. Ferguson, M. Roper, and M. Wood, “Investigating
the viability of mental models held by novice programmers,”
SIGCSE Bulletin 39, 499–503 (2007).

Dissertations in Forestry and Natural Sciences No 149 77



Andrés Moreno: Re-designing Program Animation

[44] O. Kannusmäki, A. Moreno, N. Myller, and E. Sutinen, “What
a novice wants: students using program visualization in dis-
tance programming course,” in Proceedings of the Third Pro-
gram Visualization Workshop (PVW’04) (2004), pp. 126–133.

[45] V. Karavirta, A. Korhonen, L. Malmi, and K. Stalnacke, “Ma-
trixPro - a tool for demonstrating data structures and algo-
rithms ex tempore,” in Advanced Learning Technologies, 2004.
Proceedings. IEEE International Conference on (2004), pp. 892–
893.

[46] A. Kerren and J. T. Stasko, “Algorithm Animation - Introduc-
tion,” in Revised Lectures on Software Visualization, International
Seminar (2002), pp. 1–15.

[47] S. Kirby, B. Toland, and C. Deegan, “Program Visualisation
tool for teaching programming in C,” in Proceedings of the
International Conference on Education, Training and Informatics,
ICETI (2010), Available at http://www.iiis.org/CDs2010/
CD2010IMC/ICETI\_2010/PapersPdf/EB134TP.pdf.

[48] M. Knobelsdorf, E. Isohanni, and J. Tenenberg, “The rea-
sons might be different: why students and teachers do not
use visualization tools,” in Proceedings of the 12th Koli Calling
International Conference on Computing Education Research, Koli
Calling ’12 (2012), pp. 1–10.

[49] M. Koehler and P. Mishra, “What is technological peda-
gogical content knowledge (TPACK)?,” Contemporary Issues in
Technology and Teacher Education 9, 60–70 (2009).

[50] M. Kölling, “The Greenfoot Programming Environment,”
Transactions on Computing Education 10, 14:1–14:21 (2010).

[51] W. L. Kuechler and M. G. Simkin, “How well do multiple
choice tests evaluate student understanding in computer pro-
gramming classes?,” Journal of Information Systems Education
14, 389–400 (2003).

76 Dissertations in Forestry and Natural Sciences No 149

References

[52] A. Kumar and S. Kasabov, “Observer Architecture of Program
Visualization,” Electronic Notes in Theoretical Computer Science
178, 153–160 (2007).

[53] S.-P. Lahtinen, E. Sutinen, and J. Tarhio, “Automated Anima-
tion of Algorithms with Eliot,” Journal of Visual Languages &
Computing 9, 337–349 (1998).

[54] M. Lattu, V. Meisalo, and J. Tarhio, “A visualisation tool as
a demonstration aid,” Computers & Education 41, 133 – 148
(2003).

[55] M. Lattu, J. Tarhio, and V. Meisalo, “How a Visualization Tool
Can Be Used - Evaluating a Tool in a Research & Development
Project,” in Proceedings of the 12th workshop of the Psychology of
Programming Interest Group (2000).

[56] T. Lauer, “Reevaluating and refining the engagement taxon-
omy,” SIGCSE Bulletin 40, 355–355 (2008).

[57] M. Limón, “On the cognitive conflict as an instructional strat-
egy for conceptual change: a critical appraisal,” Learning and
Instruction 11, 357–380 (2001).

[58] R. Lister, “Mixed methods: positivists are from Mars, con-
structivists are from Venus,” SIGCSE Bulletin 37, 18–19 (2005).

[59] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer,
M. Lindholm, R. McCartney, J. E. Moström, K. Sanders,
O. Seppälä, B. Simon, and L. Thomas, “A multi-national
study of reading and tracing skills in novice programmers,”
SIGCSE Bulletin 36, 119–150 (2004).

[60] R. Lister, B. Simon, E. Thompson, J. L. Whalley, and C. Prasad,
“Not seeing the forest for the trees: novice programmers and
the SOLO taxonomy,” SIGCSE Bulletin 38, 118–122 (2006).

[61] L. Ma, J. Ferguson, M. Roper, and M. Wood, “Investigating
the viability of mental models held by novice programmers,”
SIGCSE Bulletin 39, 499–503 (2007).

Dissertations in Forestry and Natural Sciences No 149 77



Andrés Moreno: Re-designing Program Animation

[62] L. Ma, J. D. Ferguson, M. Roper, I. Ross, and M. Wood, “Using
cognitive conflict and visualisation to improve mental models
held by novice programmers,” in SIGCSE ’08: Proceedings of
the 39th SIGCSE technical symposium on Computer science educa-
tion (2008), pp. 342–346.

[63] S. Maravić Čisar, D. Radosav, R. Pinter, and P. Čisar, “Effec-
tiveness of Program Visualization in Learning Java: a Case
Study with Jeliot 3,” International Journal of Computers Com-
munications Control 6, 669–682 (2011).

[64] R. E. Mayer, “Different problem-solving competencies estab-
lished in learning computer programming with and without
meaningful models,” Journal of Educational Psychology 67, 725–
734 (1975).

[65] R. E. Mayer, Multimedia Learning (Cambridge University
Press, 2001).

[66] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Ha-
gan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I. Utting, and
T. Wilusz, “A multi-national, multi-institutional study of as-
sessment of programming skills of first-year CS students,”
SIGCSE Bulletin 33, 125–180 (2001).

[67] J. H. Meyer and R. Land, “Threshold concepts and trouble-
some knowledge (2): Epistemological considerations and a
conceptual framework for teaching and learning,” Higher Ed-
ucation 49, 373–388 (2005).

[68] I. Milne and G. Rowe, “OGRE: Three-Dimensional Program
Visualization for Novice Programmers,” Education and Infor-
mation Technologies 9, 219–237 (2004).

[69] A. Moreno, “Algorithm Animation,” in Human-Centered Vi-
sualization Environments, Vol. 4417, A. Kerren, A. Ebert, and
J. Meyer, eds. (Springer Berlin Heidelberg, 2007), pp. 295–
309.

78 Dissertations in Forestry and Natural Sciences No 149

References

[70] A. Moreno, “Intermediate Code in Program Animation Soft-
ware,” MSc thesis (Department of Computer Science, 2012).

[71] A. Moreno, R. Bednarik, and M. Yudelson, “How to Adapt
the Visualization of Programs?,” in Proceedings of Workshop
on Personalisation in E-Learning Environments at Individual and
Group Level, 11th International Conference on User Modeling
(2007), pp. 65–70.

[72] A. Moreno and M. Joy, “Jeliot 3 in a Demanding Educational
Setting,” Electronic Notes in Theoretical Computer Science 178,
51–59 (2007).

[73] A. Moreno, M. Joy, N. Myller, and E. Sutinen, “Layered
Architecture for Automatic Generation of Conflictive Anima-
tions in Programming Education,” Learning Technologies, IEEE
Transactions on 3, 139–151 (2010).

[74] A. Moreno, M. Joy, and E. Sutinen, “Roles of animation tools
in understanding programming concepts,” Journal of Educa-
tional Multimedia and Hypermedia 22, 165–184 (2013).

[75] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visu-
alizing Program with Jeliot 3,” in Proceedings of the Interna-
tional Working Conference on Advanced Visual Interfaces, AVI
2004 (2004), pp. 373–380.

[76] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visu-
alizing Program with Jeliot 3,” in Proceedings of the Interna-
tional Working Conference on Advanced Visual Interfaces, AVI
2004 (2004), pp. 373–380.

[77] A. Moreno, E. Sutinen, R. Bednarik, and N. Myller, “Conflic-
tive animations as engaging learning tools,” in Seventh Baltic
Sea Conference on Computing Education Research (Koli Calling
2007), Vol. 88, CRPIT (2007), pp. 203–206.

[78] A. Moreno, E. Sutinen, R. Bednarik, and N. Myller, “Conflic-
tive animations as engaging learning tools,” in Seventh Baltic

Dissertations in Forestry and Natural Sciences No 149 79



Andrés Moreno: Re-designing Program Animation

[62] L. Ma, J. D. Ferguson, M. Roper, I. Ross, and M. Wood, “Using
cognitive conflict and visualisation to improve mental models
held by novice programmers,” in SIGCSE ’08: Proceedings of
the 39th SIGCSE technical symposium on Computer science educa-
tion (2008), pp. 342–346.

[63] S. Maravić Čisar, D. Radosav, R. Pinter, and P. Čisar, “Effec-
tiveness of Program Visualization in Learning Java: a Case
Study with Jeliot 3,” International Journal of Computers Com-
munications Control 6, 669–682 (2011).

[64] R. E. Mayer, “Different problem-solving competencies estab-
lished in learning computer programming with and without
meaningful models,” Journal of Educational Psychology 67, 725–
734 (1975).

[65] R. E. Mayer, Multimedia Learning (Cambridge University
Press, 2001).

[66] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Ha-
gan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I. Utting, and
T. Wilusz, “A multi-national, multi-institutional study of as-
sessment of programming skills of first-year CS students,”
SIGCSE Bulletin 33, 125–180 (2001).

[67] J. H. Meyer and R. Land, “Threshold concepts and trouble-
some knowledge (2): Epistemological considerations and a
conceptual framework for teaching and learning,” Higher Ed-
ucation 49, 373–388 (2005).

[68] I. Milne and G. Rowe, “OGRE: Three-Dimensional Program
Visualization for Novice Programmers,” Education and Infor-
mation Technologies 9, 219–237 (2004).

[69] A. Moreno, “Algorithm Animation,” in Human-Centered Vi-
sualization Environments, Vol. 4417, A. Kerren, A. Ebert, and
J. Meyer, eds. (Springer Berlin Heidelberg, 2007), pp. 295–
309.

78 Dissertations in Forestry and Natural Sciences No 149

References

[70] A. Moreno, “Intermediate Code in Program Animation Soft-
ware,” MSc thesis (Department of Computer Science, 2012).

[71] A. Moreno, R. Bednarik, and M. Yudelson, “How to Adapt
the Visualization of Programs?,” in Proceedings of Workshop
on Personalisation in E-Learning Environments at Individual and
Group Level, 11th International Conference on User Modeling
(2007), pp. 65–70.

[72] A. Moreno and M. Joy, “Jeliot 3 in a Demanding Educational
Setting,” Electronic Notes in Theoretical Computer Science 178,
51–59 (2007).

[73] A. Moreno, M. Joy, N. Myller, and E. Sutinen, “Layered
Architecture for Automatic Generation of Conflictive Anima-
tions in Programming Education,” Learning Technologies, IEEE
Transactions on 3, 139–151 (2010).

[74] A. Moreno, M. Joy, and E. Sutinen, “Roles of animation tools
in understanding programming concepts,” Journal of Educa-
tional Multimedia and Hypermedia 22, 165–184 (2013).

[75] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visu-
alizing Program with Jeliot 3,” in Proceedings of the Interna-
tional Working Conference on Advanced Visual Interfaces, AVI
2004 (2004), pp. 373–380.

[76] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visu-
alizing Program with Jeliot 3,” in Proceedings of the Interna-
tional Working Conference on Advanced Visual Interfaces, AVI
2004 (2004), pp. 373–380.

[77] A. Moreno, E. Sutinen, R. Bednarik, and N. Myller, “Conflic-
tive animations as engaging learning tools,” in Seventh Baltic
Sea Conference on Computing Education Research (Koli Calling
2007), Vol. 88, CRPIT (2007), pp. 203–206.

[78] A. Moreno, E. Sutinen, R. Bednarik, and N. Myller, “Conflic-
tive animations as engaging learning tools,” in Seventh Baltic

Dissertations in Forestry and Natural Sciences No 149 79



Andrés Moreno: Re-designing Program Animation

Sea Conference on Computing Education Research (Koli Calling
2007), Vol. 88, CRPIT (2007), pp. 203–206.

[79] A. Moreno, E. Sutinen, and C. Islas Sedano, “A game con-
cept using conflictive animations for learning programming,”
in Games Innovation Conference (IGIC), 2013 IEEE International
(2013), pp. 175–178.

[80] A. Moreno, E. Sutinen, and M. Joy, “Defining and Evaluat-
ing Conflictive Animations for Programming Education: The
Case of Jeliot ConAn,” in Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE ’14 (2014),
pp. 629–634.

[81] R. Moreno and R. E. Mayer, “Cognitive principles of multi-
media learning: The role of modality and contiguity.,” Journal
of educational psychology 91, 358 (1999).

[82] N. Myller, “The Fundamental Design Issues of Jeliot 3,” MSc
thesis (Department of Computer Science, 2004), Available at
http://cs.uef.fi/jeliot/pub/theses.php.

[83] N. Myller, “Automatic Generation of Prediction Questions
during Program Visualization,” Electronic Notes in Theoretical
Computer Science 178, 43 – 49 (2007), Proceedings of the Fourth
Program Visualization Workshop (PVW 2006).

[84] N. Myller, R. Bednarik, E. Sutinen, and M. Ben-Ari, “Extend-
ing the Engagement Taxonomy: Software Visualization and
Collaborative Learning,” Transactions on Computing Education
9, 7:1–7:27 (2009).

[85] T. L. Naps, J. R. Eagan, and L. L. Norton, “JHAVÉ - an envi-
ronment to actively engage students in Web-based algorithm
visualizations,” SIGCSE Bulletin 32, 109–113 (2000).

[86] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleis-
cher, C. Hundhausen, A. Korhonen, L. Malmi, M. McNally,
S. Rodger, and J. Á. Velázquez-Iturbide, “Exploring the role

80 Dissertations in Forestry and Natural Sciences No 149

References

of visualization and engagement in computer science educa-
tion,” in ITiCSE-WGR ’02: Working group reports from ITiCSE on
Innovation and technology in computer science education (2002),
pp. 131–152.

[87] S. Nevalainen and J. Sajaniemi, “An experiment on short-term
effects of animated versus static visualization of operations on
program perception,” in Proceedings of the second international
workshop on Computing education research, ICER ’06 (2006), pp.
7–16.

[88] S. Nevalainen and J. Sajaniemi, “An experiment on the short-
term effects of engagement and representation in program
animation,” Journal of Educational Computing Research 39, 395–
430 (2008).

[89] J. Nielsen, “Finding Usability Problems Through Heuristic
Evaluation,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’92 (1992), pp. 373–380.

[90] D. Norman, Chap 1 in Some Observations on Mental Models
(Lawrence Erlbaum Associates, Inc., New Jersey, 1983).

[91] J. F. Nunamaker, Jr., M. Chen, and T. D. M. Purdin, “Sys-
tems development in information systems research,” Journal
of Management Information Systems 7, 89–106 (1990).

[92] R. Oechsle and T. Schmitt, “JAVAVIS: Automatic Program
Visualization with Object and Sequence Diagrams Using the
Java Debug Interface (JDI),” in Revised Lectures on Software Vi-
sualization, International Seminar (2001), pp. 176–190.

[93] R. Or-Bach and I. Lavy, “Cognitive activities of abstraction
in object orientation: an empirical study,” SIGCSE Bulletin 36,
82–86 (2004).

[94] N. Pennington, “Stimulus structures and mental representa-
tions in expert comprehension of computer programs,” Cog-
nitive Psychology 19, 295–341 (1987).

Dissertations in Forestry and Natural Sciences No 149 81



Andrés Moreno: Re-designing Program Animation

Sea Conference on Computing Education Research (Koli Calling
2007), Vol. 88, CRPIT (2007), pp. 203–206.

[79] A. Moreno, E. Sutinen, and C. Islas Sedano, “A game con-
cept using conflictive animations for learning programming,”
in Games Innovation Conference (IGIC), 2013 IEEE International
(2013), pp. 175–178.

[80] A. Moreno, E. Sutinen, and M. Joy, “Defining and Evaluat-
ing Conflictive Animations for Programming Education: The
Case of Jeliot ConAn,” in Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE ’14 (2014),
pp. 629–634.

[81] R. Moreno and R. E. Mayer, “Cognitive principles of multi-
media learning: The role of modality and contiguity.,” Journal
of educational psychology 91, 358 (1999).

[82] N. Myller, “The Fundamental Design Issues of Jeliot 3,” MSc
thesis (Department of Computer Science, 2004), Available at
http://cs.uef.fi/jeliot/pub/theses.php.

[83] N. Myller, “Automatic Generation of Prediction Questions
during Program Visualization,” Electronic Notes in Theoretical
Computer Science 178, 43 – 49 (2007), Proceedings of the Fourth
Program Visualization Workshop (PVW 2006).

[84] N. Myller, R. Bednarik, E. Sutinen, and M. Ben-Ari, “Extend-
ing the Engagement Taxonomy: Software Visualization and
Collaborative Learning,” Transactions on Computing Education
9, 7:1–7:27 (2009).

[85] T. L. Naps, J. R. Eagan, and L. L. Norton, “JHAVÉ - an envi-
ronment to actively engage students in Web-based algorithm
visualizations,” SIGCSE Bulletin 32, 109–113 (2000).

[86] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleis-
cher, C. Hundhausen, A. Korhonen, L. Malmi, M. McNally,
S. Rodger, and J. Á. Velázquez-Iturbide, “Exploring the role

80 Dissertations in Forestry and Natural Sciences No 149

References

of visualization and engagement in computer science educa-
tion,” in ITiCSE-WGR ’02: Working group reports from ITiCSE on
Innovation and technology in computer science education (2002),
pp. 131–152.

[87] S. Nevalainen and J. Sajaniemi, “An experiment on short-term
effects of animated versus static visualization of operations on
program perception,” in Proceedings of the second international
workshop on Computing education research, ICER ’06 (2006), pp.
7–16.

[88] S. Nevalainen and J. Sajaniemi, “An experiment on the short-
term effects of engagement and representation in program
animation,” Journal of Educational Computing Research 39, 395–
430 (2008).

[89] J. Nielsen, “Finding Usability Problems Through Heuristic
Evaluation,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’92 (1992), pp. 373–380.

[90] D. Norman, Chap 1 in Some Observations on Mental Models
(Lawrence Erlbaum Associates, Inc., New Jersey, 1983).

[91] J. F. Nunamaker, Jr., M. Chen, and T. D. M. Purdin, “Sys-
tems development in information systems research,” Journal
of Management Information Systems 7, 89–106 (1990).

[92] R. Oechsle and T. Schmitt, “JAVAVIS: Automatic Program
Visualization with Object and Sequence Diagrams Using the
Java Debug Interface (JDI),” in Revised Lectures on Software Vi-
sualization, International Seminar (2001), pp. 176–190.

[93] R. Or-Bach and I. Lavy, “Cognitive activities of abstraction
in object orientation: an empirical study,” SIGCSE Bulletin 36,
82–86 (2004).

[94] N. Pennington, “Stimulus structures and mental representa-
tions in expert comprehension of computer programs,” Cog-
nitive Psychology 19, 295–341 (1987).

Dissertations in Forestry and Natural Sciences No 149 81



Andrés Moreno: Re-designing Program Animation

[95] D. Perkins, “The many faces of constructivism.,” Educational
leadership 57, 6–11 (1999).

[96] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, , and R. Sim-
mons, “Conditions of Learning in Novice Programmers,”
in Studying the Novice Programmer, J. C. Spohrer and E. I.
Soloway, eds. (Ablex Publishing Company, 1989), pp. 261–
279.

[97] M. Petre, “Why looking isn’t always seeing: readership skills
and graphical programming,” Communications of the ACM 38,
33–44 (1995).

[98] S. Pollack and M. Ben-Ari, “Selecting a visualization system,”
in Proceedings of the third program visualization workshop (2004),
pp. 134–140.

[99] G. Polya, How to Solve It (Princeton University Press, 1971).

[100] N. Postman, Chap The Fallen Angel in The End of Education
(Vintage, 1996).

[101] B. A. Price, R. M. Baecker, and I. S. Small, “A Principled Tax-
onomy of Software Visualization,” Journal of Visual Languages
& Computing 4, 211–266 (1993).

[102] N. Ragonis and M. Ben-Ari, “On understanding the statics
and dynamics of object-oriented programs,” SIGCSE Bulletin
37, 226–230 (2005).

[103] T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski, “Effec-
tiveness of Program Visualization: A Case Study with the
ViLLE Tool.,” Journal of Information Technology Education 7, 15–
32 (2008).

[104] R. F. Raposa, Java in 60 Minutes A Day (Wiley, 2003).

[105] D. D. Riley, “Teaching problem solving in an introductory
computer science class,” SIGCSE Bulletin 13, 244–251 (1981).

82 Dissertations in Forestry and Natural Sciences No 149

References

[106] G. Roman and K. Cox, “A taxonomy of program visualization
systems,” Computer 26, 11–24 (1993).

[107] G. Rowe and G. Thorburn, “VINCE—an on-line tutorial tool
for teaching introductory programming,” British Journal of Ed-
ucational Technology 31, 359–369 (2000).

[108] J. Sajaniemi and M. Kuittinen, “Program animation based on
the roles of variables,” in Proceedings of the 2003 ACM sympo-
sium on Software visualization, SoftVis ’03 (2003), pp. 7–ff.

[109] J. Sajaniemi and M. Kuittinen, “An Experiment on Using
Roles of Variables in Teaching Introductory Programming,”
Computer Science Education 15, 59–82 (2005).

[110] J. Sajaniemi and M. Kuittinen, “From procedures to objects:
A research agenda for the psychology of object-oriented pro-
gramming education,” Human Technology 4, 75–91 (2008).

[111] J. Sajaniemi, M. Kuittinen, and T. Tikansalo, “A study of
the development of students’ visualizations of program state
during an elementary object-oriented programming course,”
Journal on Educational Resources in Computing 7, 3:1–3:31 (2008).

[112] P. H. Scott, H. M. Asoko, and R. H. Driver, “Teaching for con-
ceptual change: A review of strategies,” in Research in Physics
Learning: Theoretical Issues and Empirical Studies (1991), pp.
71–78.

[113] J. P. Smith, III, A. A. diSessa, and J. Roschelle, “Misconcep-
tions Reconceived: A Constructivist Analysis of Knowledge
in Transition,” The Journal of the Learning Sciences 3, 115–163
(1993-1994).

[114] J. P. Smith III, A. A. Disessa, and J. Roschelle, “Misconcep-
tions reconceived: A constructivist analysis of knowledge in
transition,” The journal of the learning sciences 3, 115–163 (1994).

Dissertations in Forestry and Natural Sciences No 149 83



Andrés Moreno: Re-designing Program Animation

[95] D. Perkins, “The many faces of constructivism.,” Educational
leadership 57, 6–11 (1999).

[96] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, , and R. Sim-
mons, “Conditions of Learning in Novice Programmers,”
in Studying the Novice Programmer, J. C. Spohrer and E. I.
Soloway, eds. (Ablex Publishing Company, 1989), pp. 261–
279.

[97] M. Petre, “Why looking isn’t always seeing: readership skills
and graphical programming,” Communications of the ACM 38,
33–44 (1995).

[98] S. Pollack and M. Ben-Ari, “Selecting a visualization system,”
in Proceedings of the third program visualization workshop (2004),
pp. 134–140.

[99] G. Polya, How to Solve It (Princeton University Press, 1971).

[100] N. Postman, Chap The Fallen Angel in The End of Education
(Vintage, 1996).

[101] B. A. Price, R. M. Baecker, and I. S. Small, “A Principled Tax-
onomy of Software Visualization,” Journal of Visual Languages
& Computing 4, 211–266 (1993).

[102] N. Ragonis and M. Ben-Ari, “On understanding the statics
and dynamics of object-oriented programs,” SIGCSE Bulletin
37, 226–230 (2005).

[103] T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski, “Effec-
tiveness of Program Visualization: A Case Study with the
ViLLE Tool.,” Journal of Information Technology Education 7, 15–
32 (2008).

[104] R. F. Raposa, Java in 60 Minutes A Day (Wiley, 2003).

[105] D. D. Riley, “Teaching problem solving in an introductory
computer science class,” SIGCSE Bulletin 13, 244–251 (1981).

82 Dissertations in Forestry and Natural Sciences No 149

References

[106] G. Roman and K. Cox, “A taxonomy of program visualization
systems,” Computer 26, 11–24 (1993).

[107] G. Rowe and G. Thorburn, “VINCE—an on-line tutorial tool
for teaching introductory programming,” British Journal of Ed-
ucational Technology 31, 359–369 (2000).

[108] J. Sajaniemi and M. Kuittinen, “Program animation based on
the roles of variables,” in Proceedings of the 2003 ACM sympo-
sium on Software visualization, SoftVis ’03 (2003), pp. 7–ff.

[109] J. Sajaniemi and M. Kuittinen, “An Experiment on Using
Roles of Variables in Teaching Introductory Programming,”
Computer Science Education 15, 59–82 (2005).

[110] J. Sajaniemi and M. Kuittinen, “From procedures to objects:
A research agenda for the psychology of object-oriented pro-
gramming education,” Human Technology 4, 75–91 (2008).

[111] J. Sajaniemi, M. Kuittinen, and T. Tikansalo, “A study of
the development of students’ visualizations of program state
during an elementary object-oriented programming course,”
Journal on Educational Resources in Computing 7, 3:1–3:31 (2008).

[112] P. H. Scott, H. M. Asoko, and R. H. Driver, “Teaching for con-
ceptual change: A review of strategies,” in Research in Physics
Learning: Theoretical Issues and Empirical Studies (1991), pp.
71–78.

[113] J. P. Smith, III, A. A. diSessa, and J. Roschelle, “Misconcep-
tions Reconceived: A Constructivist Analysis of Knowledge
in Transition,” The Journal of the Learning Sciences 3, 115–163
(1993-1994).

[114] J. P. Smith III, A. A. Disessa, and J. Roschelle, “Misconcep-
tions reconceived: A constructivist analysis of knowledge in
transition,” The journal of the learning sciences 3, 115–163 (1994).

Dissertations in Forestry and Natural Sciences No 149 83



Andrés Moreno: Re-designing Program Animation

[115] E. Soloway and K. Ehrlich, “Empirical studies of program-
ming knowledge,” Software Engineering, IEEE Transactions on
595–609 (1984).

[116] J. Sorva, “Reflections on threshold concepts in computer pro-
gramming and beyond,” in Proceedings of the 10th Koli Calling
International Conference on Computing Education Research, Koli
Calling ’10 (2010), pp. 21–30.

[117] J. Sorva, Visual Program Simulation in Introductory Program-
ming Education, PhD thesis (Aalto University, Department
of Computer Science and Engineering, 2012), Available at
http://lib.tkk.fi/Diss/2012/isbn9789526046266/.

[118] M. Tedre, The Development of Computer Science: A Socio-
cultural Perspective, PhD thesis (University of Joensuu, De-
partment of Computer Science, 2006), Available at http://
epublications.uef.fi/pub/urn\_isbn\_952-458-867-6/.

[119] E. Thompson, A. Luxton-Reilly, J. L. Whalley, M. Hu, and
P. Robbins, “Bloom’s taxonomy for CS assessment,” in Pro-
ceedings of the tenth conference on Australasian computing educa-
tion - Volume 78, ACE ’08 (2008), pp. 155–161.

[120] S. Thompson, “Where do I begin? A problem solving ap-
proach in teaching functional programming,” in Programming
Languages: Implementations, Logics, and Programs, Vol. 1292,
H. Glaser, P. Hartel, and H. Kuchen, eds. (Springer Berlin
Heidelberg, 1997), pp. 323–334.

[121] J. Urquiza-Fuentes and J. Velázquez-Iturbide, “Toward the
effective use of educational program animations: The roles
of student’s engagement and topic complexity,” Computers &
Education 67, 178–192 (2013).

[122] J. Urquiza-Fuentes and J. A. Velázquez-Iturbide, “A Survey
of Successful Evaluations of Program Visualization and Algo-
rithm Animation Systems,” Transactions on Computing Educa-
tion 9, 9:1–9:21 (2009).

84 Dissertations in Forestry and Natural Sciences No 149

References

[123] V. Vainio and J. Sajaniemi, “Factors in novice programmers’
poor tracing skills,” SIGCSE Bulletin 39, 236–240 (2007).

[124] A. Venables, G. Tan, and R. Lister, “A closer look at trac-
ing, explaining and code writing skills in the novice pro-
grammer,” in Proceedings of the fifth international workshop on
Computing education research workshop, ICER ’09 (2009), pp.
117–128.

[125] A. T. Virtanen, E. Lahtinen, and H.-M. Järvinen, “VIP, a vi-
sual interpreter for learning introductory programming with
C++,” in Proceedings of The Fifth Koli Calling Conference on Com-
puter Science Education (2005), pp. 125–130.

[126] L. S. Vygotsky, “Mind in society,” (1978).

[127] P. Wang, “Exploring impact of the order of explanations
and animations in Jeliot 3,” MSc thesis (University of East-
ern Finland, School of Computing, 2012), Available at http:
//cs.uef.fi/jeliot/pub/theses.php.

[128] P. Wang, R. Bednarik, and A. Moreno, “During auto-
matic program animation, explanations after animations have
greater impact than before animations,” in Proceedings of the
12th Koli Calling International Conference on Computing Educa-
tion Research, Koli Calling ’12 (2012), pp. 100–109.

[129] G. Weber and P. Brusilovsky, “ELM-ART: An Adaptive Ver-
satile System for Web-based Instruction,” International Journal
of Artificial Intelligence in Education 12, 351–384 (2001).

[130] S. Wiedenbeck, V. Ramalingam, S. Sarasamma, and C. Corri-
tore, “A comparison of the comprehension of object-oriented
and procedural programs by novice programmers,” Interact-
ing with Computers 11, 255–282 (1999).

[131] M. Yudelson, P. Brusilovsky, and V. Zadorozhny, “A User
Modeling Server for Contemporary Adaptive Hypermedia:

Dissertations in Forestry and Natural Sciences No 149 85



Andrés Moreno: Re-designing Program Animation

[115] E. Soloway and K. Ehrlich, “Empirical studies of program-
ming knowledge,” Software Engineering, IEEE Transactions on
595–609 (1984).

[116] J. Sorva, “Reflections on threshold concepts in computer pro-
gramming and beyond,” in Proceedings of the 10th Koli Calling
International Conference on Computing Education Research, Koli
Calling ’10 (2010), pp. 21–30.

[117] J. Sorva, Visual Program Simulation in Introductory Program-
ming Education, PhD thesis (Aalto University, Department
of Computer Science and Engineering, 2012), Available at
http://lib.tkk.fi/Diss/2012/isbn9789526046266/.

[118] M. Tedre, The Development of Computer Science: A Socio-
cultural Perspective, PhD thesis (University of Joensuu, De-
partment of Computer Science, 2006), Available at http://
epublications.uef.fi/pub/urn\_isbn\_952-458-867-6/.

[119] E. Thompson, A. Luxton-Reilly, J. L. Whalley, M. Hu, and
P. Robbins, “Bloom’s taxonomy for CS assessment,” in Pro-
ceedings of the tenth conference on Australasian computing educa-
tion - Volume 78, ACE ’08 (2008), pp. 155–161.

[120] S. Thompson, “Where do I begin? A problem solving ap-
proach in teaching functional programming,” in Programming
Languages: Implementations, Logics, and Programs, Vol. 1292,
H. Glaser, P. Hartel, and H. Kuchen, eds. (Springer Berlin
Heidelberg, 1997), pp. 323–334.

[121] J. Urquiza-Fuentes and J. Velázquez-Iturbide, “Toward the
effective use of educational program animations: The roles
of student’s engagement and topic complexity,” Computers &
Education 67, 178–192 (2013).

[122] J. Urquiza-Fuentes and J. A. Velázquez-Iturbide, “A Survey
of Successful Evaluations of Program Visualization and Algo-
rithm Animation Systems,” Transactions on Computing Educa-
tion 9, 9:1–9:21 (2009).

84 Dissertations in Forestry and Natural Sciences No 149

References

[123] V. Vainio and J. Sajaniemi, “Factors in novice programmers’
poor tracing skills,” SIGCSE Bulletin 39, 236–240 (2007).

[124] A. Venables, G. Tan, and R. Lister, “A closer look at trac-
ing, explaining and code writing skills in the novice pro-
grammer,” in Proceedings of the fifth international workshop on
Computing education research workshop, ICER ’09 (2009), pp.
117–128.

[125] A. T. Virtanen, E. Lahtinen, and H.-M. Järvinen, “VIP, a vi-
sual interpreter for learning introductory programming with
C++,” in Proceedings of The Fifth Koli Calling Conference on Com-
puter Science Education (2005), pp. 125–130.

[126] L. S. Vygotsky, “Mind in society,” (1978).

[127] P. Wang, “Exploring impact of the order of explanations
and animations in Jeliot 3,” MSc thesis (University of East-
ern Finland, School of Computing, 2012), Available at http:
//cs.uef.fi/jeliot/pub/theses.php.

[128] P. Wang, R. Bednarik, and A. Moreno, “During auto-
matic program animation, explanations after animations have
greater impact than before animations,” in Proceedings of the
12th Koli Calling International Conference on Computing Educa-
tion Research, Koli Calling ’12 (2012), pp. 100–109.

[129] G. Weber and P. Brusilovsky, “ELM-ART: An Adaptive Ver-
satile System for Web-based Instruction,” International Journal
of Artificial Intelligence in Education 12, 351–384 (2001).

[130] S. Wiedenbeck, V. Ramalingam, S. Sarasamma, and C. Corri-
tore, “A comparison of the comprehension of object-oriented
and procedural programs by novice programmers,” Interact-
ing with Computers 11, 255–282 (1999).

[131] M. Yudelson, P. Brusilovsky, and V. Zadorozhny, “A User
Modeling Server for Contemporary Adaptive Hypermedia:

Dissertations in Forestry and Natural Sciences No 149 85



Andrés Moreno: Re-designing Program Animation

An Evaluation of the Push Approach to Evidence Propaga-
tion,” in User Modeling 2007, Vol. 4511, C. Conati, K. McCoy,
and G. Paliouras, eds. (Springer Berlin Heidelberg, 2007), pp.
27-36.

86 Dissertations in Forestry and Natural Sciences No 149

Original publications

Dissertations in Forestry and Natural Sciences No 149 87



Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences No 149

Publications of the University of Eastern Finland

Dissertations in Forestry and Natural Sciences

isbn 978-952-61-1542-9

issnl 1798-5668

issn 1798-5668

isbn 978-952-61-1543-6 (pdf)

issnl 1798-5668

issn 1798-5676

Andrés Moreno

Re-designing Program
Animation
From tools’ roles to new learning activities

Programming animation tools aim to 

lower the cognitive barriers to learn-

ing programming by graphically 

representing the expert’s view on pro-

gramming. However, students who use 

them face the problem of not under-

standing the animations. This work 

presents the roles a programming 

animation tool, Jeliot 3, takes when 

students use the tool to understand 

new concepts. These roles have led to 

the development of conflictive anima-

tions, a novel way to engage students 

in learning with animations.

d
isser

tatio
n

s | 149 | A
n

d
r

és M
o

r
en

o
 | R

e-d
esign

in
g P

ro
gra

m
 A

n
im

a
tio

n

Andrés Moreno
Re-designing Program

Animation
From tools’ roles to new  

learning activities


