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Abstract 

The composition and structure of bone and articular cartilage 
(AC) change during development, and in response to physical 
exercise or pathology. Fourier-transform infrared 
microspectroscopy (FTIR-MSP) has a great potential for 
determining the molecular composition, concentration and 
spatial distribution of biochemical compounds in bone and AC. 
Usually, univariate parameters are used to analyze infrared 
spectra. However, their use is restricted to some tissue 
components due to the complex overlapping infrared spectra.  
 
Unsupervised multivariate cluster analysis plays an important 
role in many areas of science and has been used successfully for 
classification and discrimination of various biological tissues, 
fluids and cells based on spectral differences. This technique can 
be used to group samples objectively based on their spectral 
features, and it does not rely on knowledge or expertise of the 
operator. Earlier, such multivariate methods as principal 
component regression and partial least squares were 
successfully applied to FTIR-MSP of AC to estimate a true 
quantitative concentration and spatial variations of its main 
components using pure chemical spectral libraries. However, no 
previous studies had investigated compositional changes in 
bone and AC with FTIR-MSP and unsupervised cluster analysis.  
 
This thesis work demonstrates the feasibility of clustering to 
capture subtle differences in infrared spectra of bone and AC. In 
particular, it could reveal the variations in different age groups 
of maturing bone, in normal and repaired AC with good 
accuracy. Further, it could be used to identify histological zones 
in intact AC. The results also demonstrated the improvements in 
performance of fuzzy clustering in comparison to “hard” and 
hierarchical clustering methods. This method calculates the 



 
 

strength of connection between each spectrum and obtained 
clusters. Thus, provided that the boundaries between tissue 
regions and disease stages are not sharp, fuzzy clustering allows 
meticulous investigation of continuously changing features. 
This study also introduces an algorithm for processing FTIR-
MSP using cluster analysis.  
 
Taken together, this thesis provides a basis for future studies 
towards employing multivariate cluster analysis and FTIR-MSP 
in medical diagnostics of musculoskeletal diseases, such as 
osteoporosis and osteoarthritis. 
 
 
National Library of Medicine Classification: QY 90, WE 200, WE 300 
 
Medical Subject Headings: Bone and Bones; Cartilage, Articular; Aging; 
Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Cluster 
Analysis; Multivariate Analysis; Classification; osteoporosis/diagnosis; 
osteoarthritis/diagnosis 
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1 Introduction  

The composition and structure of biological tissues change with 
growth, maturation, disease, trauma and physical activity [1]. 
Bone and articular cartilage (AC) are connective tissues, which 
cooperate together to provide mechanical strength and support 
for body motion. Each tissue has a unique structure and 
composition. Characterization and prediction of tissue behavior 
under specific circumstances are important in the diagnostics 
and monitoring of the tissue health. 
 
AC cushions the bones in joints, allowing the joints to move 
smoothly without pain. In general, bone and AC consist of cells 
and extracellular matrix (ECM), which is secreted by the cells. 
ECM comprises protein fibers (collagen) and ground substance, 
containing proteoglycans (PGs) and hyaluronic acid [2, 3].  
 
Bone matrix is mineralized (60% of dry weight) by calcium 
phosphate that makes bone a hard tissue, providing it with 
rigidity and compressive strength [4]. The organic matrix is 
dominated by type I collagen fibers (40% of dry weight) and this 
confers resilience to bone. There are four different types of cells 
in bone that synergistically support tissue development, growth 
and remodeling [4]. The blood supply regulates the bone life 
cycle by supplying nutrients, and it also transports waste 
products away from the bone. Disruption of the blood vessels 
network in injury can lead to impaired bone healing [4]. 
 
1, in contrast, is an avascular tissue with a distinct layered 
organization [2]. The composition and structure of AC 
constituents change with depth and determine the unique 
functional properties of AC, such as its compressive strength 
and tensile resistance. Only 5-10% of dry weight is occupied by 
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AC cells, the chondrocytes, which produce collagen and PGs. 
The size, morphology and arrangement of the cells vary 
accordingly to their depth in AC [2]. Fine collagen fibers, 
predominantly of type II, occupy 50-75% of AC dry weight and 
provide AC with flexibility and high tensile strength. PGs (15-
30% of dry weight) play an important role in compressive 
strength of AC and contribute to its low permeability [5]. 
 
The lack of a blood supply means that AC has a low ability to 
heal itself after injury and progressive degeneration over time 
often results in the development of osteoarthrosis (OA) [2, 6, 7]. 
The metabolism of bone depends on the activity of cells and is 
regulated by several hormones. Metabolic activity changes 
throughout life, and formation and growth are the most active 
during childhood. Loss of bone mass, measured clinically as the 
change in bone mineral density (BMD), is progressive with age. 
It is considered as a serious risk factor for bone fragility [8]. 
Disorders of bone metabolism lead to bone diseases, like 
osteoporosis (OP) or osteomalacia [1, 4, 9]. Even very subtle 
compositional deviations may be the evidence of early 
symptoms of tissue disease and, therefore, should ideally be 
identified as early as possible to allow successful treatment. 
Later, the follow-up is essential for identifying proper healing 
and, if relevant, making a decision about supplemental 
treatments.  
 
Sensitive techniques are required to rapidly determine 
alterations in the composition and the structure of bone and AC. 
Most of the recent imaging modalities for monitoring tissue 
health, like magnetic resonance imaging (MRI) and ultrasound 
[10-13], may be qualitative in nature, with too low resolution for 
detailed investigation of the tissue composition. Quantitative 
biochemical analysis permits a precise measurement of 
composition of the tissue, but is not able to provide spatial 
distribution of the tissue components.  
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Fourier transform infrared (FTIR) imaging and 
microspectroscopy (FTRI-MSP) have been applied successfully 
in bone and AC research both for assessment of tissue 
composition and spatial organization [14-18]. By using 
univariate or multivariate analyzing techniques, FTIR-MSP can 
reveal minor variations in tissue composition [19-21]. Total and 
relative collagen, PG, mineral contents, mineral-to-matrix ratio 
and mineral crystallinity can be evaluated by quantitative 
assessment1 of areas under the particular regions of infrared 
spectra [15, 17, 22]. However, utilization of several variables in 
the analysis permits the complex, unsupervised assessment of 
the subtle changes occurring in the FTIR spectra. These changes 
correspond to the alterations of the tissue’s absolute or relative 
composition. Multivariate analysis techniques have been used 
successfully to investigate quantitative, as well as qualitative, 
changes in the infrared spectra and to discriminate biological 
tissues, fluids and cells based on their spectral differences [21, 
23].  
 
The main aim of this thesis is to examine the potential of using 
FTIR-MSP to investigate the advantages of cluster analysis for 
detecting quantitative and qualitative changes in composition of 
bone and AC. The first two studies examined the potential of 
cluster analysis to differentiate bone of different ages. 
Furthermore, the most accurate clustering method was 
determined. The following two studies focused on the changes 

                                                      
1 Terms “quantitative” and “qualitative” are used in this thesis to sub-
divide two types of analysis. Cluster analysis represents “qualitative” 
analysis, since it takes in use only qualitative features of infrared 
spectra, e.g, its shape. “Quantitative” analysis follows clustering and 
implies an estimation of areas under the infrared peaks and their ratios 
and comparison of these values between different clusters. Although 
an integrated absorbance indicates no concentration of tissue 
components in real units, it correlates with true concentration 
according to Lambert-Beer law. No true quantitative assessment of 
component’s concentration in bone and AC, like calibration with pure 
chemicals, was conducted.  
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in the composition of normal and repaired AC. Cluster analysis 
was used to reveal the histological structure of AC in two 
species. Finally, healthy and repaired AC were differentiated 
based on subtle changes in FTIR spectra. Thus, this thesis 
represents a foundation for future studies towards employing 
cluster analysis and FTIR-MSP in medical diagnostics of 
cartilage and bone diseases. 
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2 Bone and articular 
cartilage 

This chapter describes structure and composition of bone and 
cartilage tissues. Moreover, alterations in bone during its 
development, as well as evaluation of a repair of AC are 
reviewed. 

2.1 BONE 

2.1.1 Composition and functions of bone  
 
Bone is a hard tissue; nevertheless, it is metabolically very active 
and dynamic, constantly adapting its shape and structure to the 
mechanical forces applied on the tissue. The main functions of 
bone are to provide mechanical support, to protect organs and 
bone marrow from damage, to transform muscle contractions 
into motions, to act as a mineral reservoir and to produce most 
of the blood components, e.g. red blood cells [24]. 
 
At the micromolecular level, bone tissue consists of an organic 
(20% of wet weight) and an inorganic (65%) matrix that can 
amount to 90% of the tissue volume, water (10%), and cells [4]. 
The mechanical properties of bone are closely associated with 
the structure, volume fraction of the bone and its ECM. Collagen 
accounts for 90% of the organic matrix and provides bone with 
its tensile strength and the ECM for the deposition of mineral 
[25, 26]. There is predominantly collagen type I in bone, but a 
small amount of types III and V are also present [4, 26]. 
 
Most of the minerals in the body are located in the inorganic 
matrix (mainly as hydroxyapatite crystals) of the bone, which 
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provide bone with resistance to compression, stiffness and 
strength [4]. Mineralization of bone occurs in the organic matrix 
as a transformation from soluble to solid phases of crystals [4]. 
 
There are four types of cells present in bone: osteoblasts, 
osteocytes, osteoclasts, and undifferentiated mesenchymal stem 
cells [4, 24]. Osteoblasts are densely packed rounded cells lying 
on the surface of bones. They synthesize the bone organic 
matrix, whereas other cells, osteoclasts, are responsible for the 
bone resorption. They are developed from the osteoclast 
precursor cells when stimulated by specific hormones and 
growth factors [4]. The most abundant and long-living cells in 
bone are osteocytes (90% of the total number of cells). They are 
surrounded by the bone matrix [4]. Altogether these cells form a 
complex network and are responsible for the sensitive 
mechanism of bone remodeling and coordination of bone life 
cycle.  
 

2.1.2 Structure of bone 
 
At the macromolecular level, the central fatty bone marrow is 
surrounded by two primary forms of bone tissue: first, 
trabecular (or cancellous) and then cortical (or compact) bone [4] 
(Figure 2.1). The bone marrow produces blood cells and 
comprises a net of blood vessels. The integrity of these vessels is 
crucial for bone health. Both types of bone have similar 
compositions and material properties, but the cortical bone has a 
higher density and lower porosity [24]. There are more cells per 
volume unit in the cortical bone and they are closely 
surrounded by the matrix. Cells in the cancellous bone are 
located on the surface of the trabeculae, which forms a porous 
net.  
 
Cortical bone surrounds the bone marrow and cancellous bone. 
It provides support for the thin layer of the subchondral bone 
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(SB), which underlies AC in joints. SB can be subdivided into the 
SB plate and trabecular bone.  
 

 
 
Figure 2.1: Schematic representation of bone structure (modified from [27]), 
showing A) the location and B) closer view of cortical and trabecular bone. 
Articular cartilage covers the ends of a long bone.  

 

2.1.3 Developing bone 
 
Bone is a metabolically very active tissue, especially at young 
ages. In addition to modeling and remodeling during growth 
and maturation, physical activity, hormonal factors, bone 
diseases and artificial implants can influence the bone 
metabolism [1, 4]. In estimation, 10–15% of the bone in the 
whole body is replaced with new bone every year [24]. 
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When the skeleton is newly formed, it consists of woven (or 
primary) bone, which is later almost entirely replaced by the 
lamellar (or secondary) bone [4]. Woven bone has an irregular 
structure of collagen fibrils and a very high rate of metabolic 
activity. Mineralization is a relatively fast process once it begins; 
and most of the mineral forms within hours. It results in the 
formation of strong and rigid lamellar bone with highly 
organized collagen structure and high BMD. Defects in the bone 
mineralization process can lead to osteomalacia, or a low rate 
mineralization. And under these conditions bone will weaken 
and be easily deformed.  
 
In general, the structure, composition and mechanical properties 
of bone change with age [26]. Aging affects different types of 
bone differently [28]. Cancellous bone has a higher rate of 
metabolic activity and remodeling than cortical bone, and, thus, 
responds more quickly to mechanical loads [4]. A decrease in 
density of the cancellous bone can be detected earlier than an 
increase in porosity of the cortical bone [4]. Age-related 
fractures occur more often in the cancellous bone sites. A 
reduction of the mechanical strength of bone correlates with the 
decrease in collagen content [26].  
 
The metabolism of bone collagen is the most active in SB. This is 
indicated by the gradual arrangement of the collagen network 
and remodeling of SB during maturation [8, 29-32]. There are 
studies describing biochemical changes in the levels of mineral, 
collagen, and collagen cross-links during growth and 
maturation of equine SB [30, 32]. According to these 
observations, major and rapid changes in equine SB occur 
during the first months of life after which further adaptation 
becomes slower, and skeletal maturation in horses is reached 
around the age of four years. 
 
BMD, collagen content, amount of collagen cross links, mineral 
content and mechanical strength have been shown to increase in 
cortical bone during early growth in rabbits [33, 34]. Moreover, 
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maturation of the collagen network was followed by the 
mineralization process, which continued after the collagen 
network had become totally mature. The bone growth rate 
differs among locations in the body and depends on the gender 
and physical activity of a subject [28, 35]. Moreover, an age-
related loss of bone mass and reduction in bone strength has 
been revealed in the elderly [4, 26]. This process was 
accompanied by thinning of the trabeculae in cancellous bone 
and increasing porosity in cortical bone [4].  

2.2  ARTICULAR CARTILAGE 

2.2.1 Composition and histological structure 
 
AC is a thin layer (usually less than 3 mm)[36] of soft tissue that 
plays an important role in reducing friction and distributing 
loads across the joint surface. It contains no nerves or blood 
vessels [2]. The chondrocytes, AC cells that are responsible for 
the maintenance and repair of cartilage, are surrounded by an 
ECM consisting primarily of water, type II collagen, PGs, and 
glycoproteins [2, 7]. Water is a major component in cartilage, 
comprising 60-80% of its total weight [7]. The collagen in AC, 
which is mostly of type II, is represent as a meshwork of thin 
oriented fibers (15-22% of the AC wet weight) [7]. They provide 
tensile and shear resistance for the AC. PG (4-7% of the AC wet 
weight) is composed of a protein core and highly negatively 
charged glycosaminoglycans (GAGs). PGs contribute to the 
compressive stiffness of the tissue, mostly because of their 
charge and ability to attract water. 
 
The thickness of AC varies between anatomical locations and 
species. It can be sub-divided into four main histological zones 
based on the orientation of the collagen fibrils, distinctive 
shapes of the cells and the biochemical composition of the ECM, 
i.e., superficial zone (SZ), middle zone (MZ), deep zone (DZ), 
and calcified zone [2, 7](Figure 2.2).  
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Figure 2.2: Histological structure of AC (adapted from [37]). A) Schematic 
image demonstrating chondrocytes organization; B) Cross-sectional 
illustration of collagen fiber architecture. 
 
 
Thickness of the zones varies between species and joints [2]. The 
collagen fibers in the thin SZ (10-20% of the total AC thickness) 
are oriented in parallel to the AC surface. This arrangement 
helps cartilage to distribute the forces during mechanical 
loading. The SZ has the lowest PG content; PG content increases 
with depth in the cartilage and has reaches its zenith in the DZ. 
In the MZ (approximately 60% of total thickness) collagen fibrils 
are mostly randomly organized while in the DZ they are 
oriented perpendicular to the AC surface. The size and activity 
of chondrocytes also vary with depth from the small size and 
relatively inactive cells in the SZ to clusters of more active cells 
in the DZ. The tidemark, the line separating the calcified 
cartilage zone, is characterized by the absence of PGs, and by 
having rounded chondrocytes and perpendicular collagen fibers 
in the calcified matrix [2]. This unique spatial distribution 
defines the main functional properties of AC. When a force is 
applied to the joint, AC deforms, which causes flow of the tissue 
fluid and results in a swelling pressure [7]. Network of collagen 
fibers balances the swelling pressure of the water-PG gel, 
creating a composite with unique biomechanical properties.  
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2.2.2 Cartilage repair 
 
Although AC has a highly organized layered structure and can 
resist high compressive stresses, it can be damaged either 
mechanically or chemically [7]. Injury or diseases lead to 
deterioration of AC and the formation of focal lesions in the 
tissue. Without treatment, small lesions increase in size with 
time and may result in full thickness lesions reaching the SB 
plate [38]. The avascular nature of AC and the immobility of 
chondrocytes result in a tissue with very limited capacity to heal 
spontaneously [7, 36, 38]. When the defects penetrate into the 
bone, a blood clot is formed, initiating inflammation and more 
extensive reparative processes [7, 36]. Small (<3 mm in diameter) 
osteochondral defects can heal partially, remaining stable or 
developing distinctive degradation patterns over time [7, 38]. 
However, larger defects (>6mm) or small partial-thickness 
defects lack the ability to completely heal [6, 7]. Therefore, much 
effort has been exerted into finding ways to repair AC defects. 
This leaded to the introduction of several surgical techniques 
focused primarily on transplantation of new viable cells capable 
of chondrogenesis and/or on improving access to a vascular 
supply [7]. Many methods have been examined in animal and 
clinical studies with various degrees of success. Drilling, 
shaving of AC, implantation of autologous chondrocytes (ACI), 
mesenchymal stem cells embedded in various gels, implants 
and growth stimulating factors have all been described in the 
literature [7, 36, 38, 39]. Some of these techniques were claimed 
to produce good quality cartilage and have entered into clinical 
practice (like ACI [40, 41]). However, long-term follow-up of the 
treatment revealed no complete filling of defects. Some reports 
have described the continuous replacement of fibrous tissue 
with fibrocartilaginous tissue (FC) showing high collagen type I 
to type II ratio. Later, a partial replacement with hyaline-like 
cartilage has been reported, which in most cases was followed 
by the onset of degenerative changes occurring as early as 10-12 
weeks after implantation [7, 40, 42]. The degradation of repaired 
AC was attributed to cell death, poor integration of repaired 
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tissue with surrounding normal tissue and filling of the 
superficial layer of AC with FC, which structure and 
morphology are rather dissimilar to AC [38, 39]. 
 
Collagen content, integrity and orientation of collagen fibers, as 
well as PG content are crucial determinants of the AC integrity 
[2]. It is necessary to monitor the repaired tissue to understand 
the mechanisms of the healing process and to evaluate repair 
quality. Special guidelines for repair studies have been 
developed [43] with the aim being to standardize the 
experimental setup and assessment. The structure, composition, 
integrity and organization of the repaired tissue have been 
evaluated using histological staining and scoring, as well as 
polarized light microscopy (PLM) [18, 43, 44]. Several other 
imaging techniques proved their utility in the non-invasive 
evaluation of AC, e.g. high resolution MRI [10, 45], optical 
coherence tomography (OCT) [46], ultrasound imaging [11, 13] 
and infrared fiber optic probe (IFOP) [47, 48]. Experimental 
human and animal studies employed imaging techniques and 
revealed an increase in collagen integrity during the stage of 
early repair [49, 50]. Nonetheless, the structure of the collagen 
network and distribution of PG and collagen across the AC 
differed from that found in intact tissue [50, 51].  
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3 Fourier Transform 
Infrared Microspectroscopy 

This chapter describes the basic principles and advantages of the 
spectroscopic imaging technique used to collect data from bone 
and AC. Further, an overview of the applications of FTIR-MSP 
in bone and cartilage research will be presented, followed by a 
review of the multivariate data analysis methods used to 
analyze FTIR-MSP data. 

3.1 BASIC PRINCIPLES OF FTIR-MSP 

Fourier transform infrared microspectroscopy (FTIR-MSP) is a 
vibrational spectroscopic technique that is capable of producing 
biochemical microscopic images of tissue sections. In FTIR-MSP, 
the fraction of infrared light intensity (amount of energy) 
transmitted through the sample is measured point-by-point 
from the microscopic section at each frequency in the mid-
infrared region of electromagnetic spectra (500-4000 cm-1) 
(Figure 3.1), producing an interferogram. Additionally, a 
background spectrum is measured at a sample-free area, which 
is then subtracted from the original spectra in order to remove 
any instrument and mounting substrate characteristics from the 
spectral information of the true sample [52]. Fourier 
transformation is applied to the corrected interferogram at each 
pixel to obtain the desired infrared spectra [52]. Thus, a three-
dimensional data matrix with two spatial and one spectral 
dimension is produced as an output. 
 
The absorption spectra (ABS) is calculated later from the 
transmittance spectra (TR) according to eq. 3.1 [52]:  
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 (3.1) 
 
where I and I0 are the intensity of radiation transmitted from or 
incident to the sample, respectively. 

 

 
 
Figure 3.1: Process of acquiring infrared spectra. Infrared energy is emitted 
by the source and is transmitted (TR) through or reflected off the sample 
surface. The beam is then passed to the detector, which measures an 
interferogram signal. Fourier transform is then applied, and the signal is 
converted into absorption (ABS). A spectral matrix with two spatial (x,y) and 
one spectral (λ) dimensions is constructed, consisting of a spectrum at each 
coordinate (x,y). 
 

 
The infrared ABS shows the absorption bands, which originate 
from the interaction between specimen molecules and the 
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energy of infrared radiation. Different motions of the molecules, 
such as rotation and vibration, can be discriminated in the 
spectra [1, 52] (Figure 3.2).  
 
 

 
 
Figure 3.2: Schematic representation of different types of molecular vibrations 
 
 
Different atoms and molecules absorb infrared energy and 
undergo particular motions at a specific wavelength [1, 52-54]. 
Thus, the groups and structures of the molecules can be 
identified from the infrared spectrum by accessing the position 
of a particular infrared band (Table 3.1) [54, 55]. Hence, the 
infrared spectrum can be thought of as a fingerprint of the 
underlying molecular structure.  
 
 
 
 

  



16 

Table 3.1: Characteristic assignment of infrared bands 

Wavenumber 
(cm-1) 

Band 
assignment 

Description 

1202 
amide III 

(AIII) 

CH2 wagging vibration from the glycine 
backbone and proline sidechain [56] 

1228-1230 
SO3- asymmetric stretching vibration of 
sulfated GAGs [57] / 
CN stretching/ NH bending [58] 

1340  
CH2 side chain vibrations of collagen 
[15, 56] 

1514 amide II 
(AII) 

 

C-N stretching/N-H bending/ C-C 
stretching of collagens [15, 56, 58] 1548-1550 

1638-1644 

amide I (AI) 
 

C=O 
stretching 
[15, 56] 

β-sheet [56, 58], amide I 
from proteoglycans [15] 
O–H bending of water 
[56] 

1659-1660 
possibly non-reducible 
collagen cross-links [15, 
59] 

1660-1668 
310 Helix [56]  
/ β-Turn [58] 

1692 β-sheet [56, 58] 

1677, 1695   
possibly reducible 
collagen cross-links [15, 
59] 

1030 

carbohydrate 
(CHO)/ 

phosphate 

C-O 
stretching 
vibrations of 
the 
carbohydrate 
residues in 
collagen and 
PGs [56] 

 

1062 
SO3

- symmetric 
stretching vibration of 
sulfated GAGs [57] 

1080  

850-890 carbonate 
out-of-plane bending modes of CO3

2- 

[22] 
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When a complex biological specimen is measured, the infrared 
spectra represent the superposition of vibrational modes of the 
molecules [52, 55]. Therefore, biochemical composition, 
molecular structures and concentrations, conformations, and 
molecular interactions can be analyzed from the infrared 
absorption spectra at each pixel. The protein and mineral 
constituents of the biological tissues, such as bone and AC, 
produce intense, structure sensitive infrared modes.  
 
Other advantages of the FTIR-MSP are that it is non-destructive 
and requires no staining to reveal the spatial organization and 
concentration of the tissue constituents [60]. Instead, the map of 
a particular component is constructed by cutting the spectral 
cube in the spectral dimension at a specific wavelength, or 
integrating over the spectral region [52](Figure 3.3).  
 

 
 
Figure 3.3: Absorption maps, constructed by integrating the area under the 
amide I absorption peak of the infrared spectra. The images show the spatial 
distribution and concentration of collagen, and different structure of samples 
in subchondral bone obtained from horses. Articular cartilage tissue can be 
seen at the top as a light-blue area, containing less collagen. 
 
 
Moreover, the technique practically has no restrictions related to 
the origin of the sample or its state and the specimen requires no 
or very little preparation before measurements [52, 60].  
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Therefore, FTIR-MSP has been successfully used in various 
fields of science due to its outstanding features, like speed, 
sensitivity, simplicity for identification, quality control, 
quantitative analysis and differentiation [19, 21, 53-55, 61]. 

3.2 PRACTICAL CONSIDERATIONS FOR FTIR-MSP 
MEASUREMENTS 

Despite the obvious advantages of FTIR-MSP, there are also 
several important points one must consider before conducting 
the measurements [60]. The biological samples must be 
thoroughly prepared. First, the tissue section must be thin 
enough for transmission measurements. Usually, 2-5 μm and 5-
10 μm thick sections are used when bone or AC is measured, 
respectively [22, 61, 62]. The uniformity of sample thickness is a 
critical issue when conducting quantitative analysis [60]. 
However, this aspect is not so critical when qualitative analysis 
is conducted after vector normalization of spectra. Second, soft 
biological samples must be either cryosectioned or embedded 
into resin, usually paraffin, after formalin fixation and 
decalcification [60, 62]. Hard plastic, such as polymethyl 
methacrylate (PMMA), can be used without decalcification of 
hard tissues [62]. Third, only dehydrated materials can be 
successfully measured with FTIR-MSP due to the high overlap 
of water infrared vibrations with the most information-rich 
regions in the infrared spectra [52]. Last, special infrared 
transparent windows must be used to avoid any extra 
contribution of the infrared absorption of the mounting material 
to the sample spectra.  
 
The quality of the spectral data is an important consideration for 
conducting a multivariate analysis; thus, the signal-to-noise 
ratio (SNR) of the spectra must be as high as possible [55]. To 
achieve this goal, high spatial resolution, spectral resolution and 
adequate averaging of several scans are required, and this 
unfortunately can considerably increase the measurement times 
[60].  
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The next essential complication one must overcome during the 
measurement is to remove any contributions of water vapor and 
carbon dioxide (CO2) from the sample surrounding air. 
Therefore, sample chamber need to be purged with N2-gas or 
dried air and the concentration of water vapor is continuously 
monitored. Moreover, the temperature in the laboratory should 
be kept constant to standardize the measurement conditions 
over time [60].  

3.3 FTIR-MSP OF BONE AND CARTILAGE  

The specific ability of FTIR-MSP to reveal composition and 
structural organization of the complex tissues makes it capable 
of providing information on chemical alterations in tissue 
composition, e.g. that resulting from natural processes, like 
aging or degradation [53, 63]. When the tissue is affected by a 
disease, its structure and composition may change, and it 
evokes changes in the infrared spectra. Sensitive analysis 
techniques can reveal those subtle specific “fingerprint” changes 
[64]. Furthermore, the sensitivity and specificity of FTIR-MSP 
for identifying the nature of the specimen permit the 
discrimination of different types of sample materials. These 
advantages make FTIR-MSP a useful tool in biomedical research 
[19, 53].  

 
The assessment of the tissue quality is a critical issue when 
investigating bone-related diseases like OP [65]. One aspect of 
bone quality is its composition. FTIR-MSP has been used to 
determine the local chemical composition, the relative amounts 
of bone constituents, their molecular nature, distribution, and 
orientation [1, 14, 16, 22, 59, 64, 66-68]. The most intensive peaks 
in the FTIR-MSP spectra of bone are produced by the mineral 
(carbonate and phosphate) and collagen protein (amide I (AI) 
and amide II (AII) collagen) constituents (Figure 3.4).  
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Figure 3.4: Examples of typical FTIR spectra of bone and cartilage. The 
absorption bands of interest are indicated.  
 
Both the quantity and quality of bone components and their 
ratios can be assessed and analyzed from FTIR-MSP data [1, 63]. 
The mineral-to-matrix ratio Ph/AI is calculated as the ratio 
between the integrated areas under phosphate (900-1200 cm-1) 
and amide I (1584-1720 cm-1) infrared bands. These areas are 
directly proportional to the amount of mineral and collagen, 
respectively. Ph/AI has been used as a measure of BMD; it 
describes whether the bone tissue is normal, or hyper- or 
hypomineralized [1]. The mineral maturity (or crystallinity) is 
accessed as a ratio of the 1030/1020 cm-1 sub-bands under the 
phosphate peaks, which are determined with second derivative 
analysis. In addition, the maturity of collagen (crosslinks) can be 
accessed from the ratio of sub-bands intensities at 1660/1690 cm-1 
[59].  
 
The age-dependent changes in infrared spectral parameters of 
healthy and diseased human bone have earlier been 
summarized by Boskey et al. [14, 22]. In addition, significant 
correlations have been reported between absorption bands and 
their relative intensity in organic bone matrix with aging [22, 
31]. Based on the quantitative analysis, it has been shown that 
the AI and AII components of proteins undergo frequency and 
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intensity changes as a result of changes in the protein secondary 
structure. Both the collagen and mineral content increase 
rapidly during the development and growth of bone, and 
remain more stable during adult life. Later, Paschalis et al. [1] 
demonstrated how FTIR-MSP and FTIR imaging can provide 
information related to bone quality. In particular, changes of 
crystallinity and spatial variation of collagen crosslink ratio 
parameters allowed discrimination between normal and 
osteoporotic bone.  
 
In cartilage research, FTIR-MSP has been proved to be efficient 
in imaging the spatial distribution and in estimation of the 
concentration of the two main solid components of AC, i.e., 
collagen and PG, in healthy and diseased cartilage [15, 17, 22, 48, 
69-72]. Estimated collagen and PG contents are analyzed by 
calculating the integrated area under the AI peak and ratio of 
CHO/AI, respectively. Moreover, the collagen integrity, or the 
absorbance at the 1338 cm-1, has been utilized to estimate the 
extent of degenerative cartilage [22]. Importantly, decreasing 
collagen, PG contents and collagen integrity parameter, as well 
as altered collagen fibril organization, have been shown to 
correlate with the progression of OA [48-50, 73]. These changes 
were detected in laboratory studies with FTIR imaging and in 
vivo with IFOP [48, 49] and have been shown to correlate well 
with the histological assessment.  
 
Moreover, the sensitivity of FTIR-MSP at detecting the 
orientation of collagen fibers in AC has been demonstrated 
when polarized light was used  [15, 18, 44, 50, 51, 74]. The 
studies revealed changes in the intensities of the major collagen-
specific infrared bands, like AI and AII peaks, when the 
measurements were affected by the linear polarization or when 
a sample with anisotropic properties was rotated [15, 18, 44, 51, 
74, 75]. This behavior was attributed to the dichroism of the two 
amide bands molecular vibrations, causing transitional 
moments, which were almost perpendicular to each other [44, 
51]. These properties have been used for the estimation of the 
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orientation of collagen fibrils and determination of the AC zonal 
organization by quantifying the ratio of AI/AII integrated 
absorbencies [15, 18, 51]. In addition, FTIR-MSP has been 
successfully used in the investigation of protein secondary 
structure, proteins concentrations, stability and dynamic 
properties [58]. 

 
The power of FTIR-MSP to describe spatial and compositional 
changes in AC can be utilized in the assessment of the quality of 
repair AC tissue after surgery or a natural healing process. One 
study has shown the potential of FTIR imaging to characterize 
the structure of repair cartilage at the molecular level [76]. Kim 
et al. [10] conducted a short term follow-up of enzymatic 
treatment of surgically created AC osteochondral defects with 
FTIR imaging and correlated FTIR-derived quantitative 
parameters with T2 mapping parameters of MRI. They could 
detect changes in the collagen and PG contents with time and 
treatment using FTIR-MSP [10].   

3.4 ANALYSIS METHODS IN FTIR-MSP 

The most widely used analytical techniques in FTIR studies are 
those that access only one variable at a time, or so-called 
univariate analysis methods [20]. They permit the estimation of 
the quantity or concentration of tissue constituents by 
quantifying the areas under specific infrared peaks and their 
ratios.  
 
Univariate analysis methods are simple, but their sensitivity has 
been reported to be restricted [71]. Moreover, when complex 
tissues like bone or AC are analyzed it may be essential to use 
more complicated multivariate analysis techniques to improve 
the specificity of parameters. Multivariate analysis methods, in 
contrast to their univariate counterparts, can process a large 
region of the spectrum at a time. Univariate methods require 
one to define a specific part of the spectrum in the calculations. 
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In contrast, multivariate methods use all available information 
and reveal regions of spectra with discriminate spectral features. 
Thus, the use of multivariate methods is essential when one 
wished to analyze complex overlapping spectra. 
 
A number of data analysis techniques used to obtain similarities 
or dissimilarities in spectra were employed in FTIR research. 
The most commonly used multivariate methods in biomedical 
research are as follows: curve fitting, principal component 
analysis (PCA), linear discriminant analysis (LDA) [77, 78], 
artificial neural networks, partial least squares regression (PLS) 
[20, 21, 64, 73], principal component regression (PCR) [72, 79]. 
 
The absorption peaks generally consist of overlapping signals 
(sub-peaks) from different constituents. Curve-fitting can help 
to isolate these sub-peaks. With this technique, PG-specific sub-
peaks have been identified in the FTIR-MSP spectra of bovine 
AC. They correlated with results obtained in histology [71]. In 
bone research, curve-fitting has been used to detect the 
underlying phosphate bands and to estimate 
crystallinity/maturity.  
 
All other methods on the list belong to the pattern recognition 
techniques, and have been employed in diagnostics to detect 
diseases and their stages [21, 23], as well as in differentiating 
between types of microorganisms and tissues [21]. PLS and PCR 
can predict one unknown feature based on data obtained during 
the learning phase on a test set of samples. With use of these 
methods, one can estimate relative concentrations of collagen or 
chondroitin sulfate in native [72, 79] and digested AC [17], as 
well as their distribution in different cartilage layers [73]. Li et 
al. detected a correlation of IFOP values with the Collins visual 
grading scale of cartilage [47].  
 
The multivariate methods can be either unsupervised or 
supervised [64]. Unsupervised methods, in contrast to the 
supervised, require no a priori knowledge about the structure 
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and labeling of the data points. This feature is useful when the 
grouping of samples must be undertaken based solely on the 
spectral features and not on any knowledge or special expertise 
of the operator [64]. By studying detailed differences in the 
overall shape or position of the infrared absorption peaks, it is 
possible to extract novel information about the molecular 
structure. 
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4 Cluster analysis 

This chapter provides an insight into the classification of 
clustering approaches and their algorithms. Moreover, the pros 
and cons associated with the different methods are assessed, 
and cluster validity is considered. Finally, the applications of 
cluster analysis in bone and cartilage research are reviewed.  

4.1 PRINCIPLES OF CLUSTER ANALYSIS 

 
Clustering is a technique for statistical data analysis, used in 
many fields, e.g., image analysis and pattern recognition. 
Cluster analysis is a generic name for a wide variety of 
discrimination procedures [80, 81]. In these techniques, 
“clusters”, or classes, are formed as groups from highly similar 
entities. Discrimination is an important task in many medical 
applications and serves two goals: to differentiate between 
diseases, which require different treatments, and to provide a 
basis for aetiology [82]. When no a priori information on class 
labels is used during clustering, this clustering is called 
unsupervised.  
 
Discrimination of objects by clustering is done based on 
differences in their properties, expressed in numbers or textual 
features. In FTIR-MSP, an infrared spectrum can be thought as a 
set of features, which describe properties of an object, e.g., a 
composition of bone or AC. Thus, the input data matrix is a 
[n,p] multivariate matrix X, which contains columns of variable 
values for each of objects in a row (eq.4.1) 
 

  (4.1) 
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where  is a number of an object,  is a number of a 
variable and  gives the value of the jth variable of ith object. 
In terms of spectra, this matrix represents n spectra of 
dimension p.  
 
The similarity (distance) between the objects is calculated to 
evaluate how close or far objects are to each other. Many 
different distance measures can be used to estimate similarity 
[80]. The choice is dependent on the type of the variables 
(categorical or continuous), whether objects were measured 
once or repeated measurements were performed, and whether  
the distances were measured between individual objects or 
between groups of objects [82]. The most commonly used 
measure for continuous data is the Euclidean distance measure 
[80, 83] (eq. 4.2).  
 

 (4.2) 
 
where  and  are the kth variable value of the p-dimensional 
observations for objects i and j. This measure is interpreted as a 
physical distance between two points in the Euclidean space.  
 
The calculated distances between n objects are presented in the 
form of a dissimilarity matrix (eq. 4.3): 
 

 (4.3) 

 
The larger the distance , the less similar objects i and j are 
from each other. This matrix is used by clustering algorithms to 
construct clusters.  
 
In most clustering applications, data is partitioned in disjoint 
clusters, where an individual object belongs to a single cluster 
[82]. However, in some situations, overlapping clusters can 
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provide a more reliable solution [82]. In general, clustering 
methods are divided into hierarchical and partitional, and into 
“hard” and fuzzy approaches [80, 83]. The grouping of 
clustering methods into ‘‘hard’’ or fuzzy is based on the number 
of clusters to which the object can belong simultaneously [83]. In 
fact, “hard” clustering methods are a special case of fuzzy 
methods. In this situation, each object is given a membership 
degree value of 0 (no membership) or 1 (full membership). 
Instead, in the fuzzy approach, the object can be assigned to 
multiple clusters with a membership degree somewhere 
between 0 and 1.  
 
Hierarchical cluster analysis (HCA) is conducted in two 
approaches: agglomerative and divisive. In divisive clustering, 
all objects are first assigned to the same clusters and at each step 
they split into groups until every object is in its own cluster. In 
the agglomerative clustering, which is used more frequently, the 
clusters are generated by a sequence of merging operations. The 
algorithm starts by initializing each data vector as a separate 
cluster. Two clusters are merged at each step by applying some 
rule to compare distances from the matrix D. The process is 
repeated until the desired number of clusters is obtained. 
Different rules for characterization of similarity between pairs of 
objects are used to construct clusters. Among them, Ward’s 
algorithm of minimum-variance [84] is one of the most popular 
and, in general, highly efficient [85]. Instead of operating on 
pairs of clusters in a sequence, it first computes distances 
between all possible pairs of clusters and the overall variance 
produced by this partition. The combination of clusters with the 
lowest variance is then chosen [83].  
 
A dendrogram is computed in order to visualize the obtained 
structure of clustering. Dengrogram is a tree with objects located 
at the ends of branches. The length of the branch corresponds to 
the distance between the clusters. The desired number of 
clusters is obtained by “cutting” the tree at a certain level. The 
optimal cutting level could be determined finding the greatest 
jump between the stages of clustering construction, namely, the 
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branches’ length. A large jump indicates that lower and upper 
stage clusters are relatively far apart from each other, and the 
tree is cut at the level of these long branches [83]. Thus, 
hierarchical clustering requires no setting for a number of 
clusters before running the algorithm. This could be beneficial 
when no information is available beforehand about the structure 
of the data [83].  
 
In partitional clustering approach, a single partition instead of 
the clustering structure is constructed [86]. A common feature of 
the methods in this group is the start of the clustering procedure 
from an initial solution. This can be a random choice or initial 
guess defined by the user [83]. It uses an iterative algorithm to 
update the selected initial cluster centers randomly. 
Unfortunately, the final solution could be sensitive to the initial 
setup [83]. This type of clustering requires that the number of 
clusters has to be defined in advance. Thus, one needs to try to 
guess the possible structure of the data and give the number of 
clusters as an input to the clustering algorithm. One can also run 
the algorithm several times using different number of clusters 
and select that one, which produces the smallest total variance 
of the final clustering structure.   
 
Partitional clustering has advantages over the hierarchical 
approach, when a large set of data is clustered. In this case, the 
construction of the dendrogram becomes computationally very 
complex, both in terms of space and time [83]. Moreover, in 
partitional methods, the objects can change clusters during the 
computation. In this respect, this type of clustering is more 
dynamic.  
 
The most frequently used presentation of the clusters is a 
computation of the clusters’ centroids. The means of the clusters 
can be used to interpret the differences between the obtained 
data classes. In the case of FTIR-MSP, clustering regroups the 
spectra with similar spectral characteristics. Hence, ideally, 
spectra in different classes can demonstrate different spectral 
(chemical) signatures. 
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Additionally, if clustering is done point-by-point on an image of 
size a*b*p, where a*b=n is a total number of objects and p is a 
dimensionality as stated in X (eq. 4.1.), clustering maps could be 
constructed using the cluster memberships. The false color 
coding is used to visualize the assignment of the object to a 
particular cluster. These maps are useful when one is analyzing 
a structured entity, such as a section of a tissue. 

4.2 “HARD” CLUSTERING METHODS 

In this thesis, the two commonly used “hard” clustering 
methods are described, i.e., partitional k-means analysis and 
agglomerative HCA.  
 
In the computer science and pattern recognition community, the 
k-means clustering algorithm is well known as the generalized 
Lloyd algorithm or “hard” c-means algorithm [83].  
 

Algorithm 4.1 Basic K-means algorithm 
  
Select k points as initial centroids 
REPEAT 
 Compute distances between each point and all centroids 

Form k clusters by assigning each point to its closest 
centroid  

 Re-compute centroids 
UNTIL  

Centroids do not change or total error changes less than 
a predefined minimum 

 
The algorithm starts with a random solution (or predefined by 
the user initial partition). It classifies the data points into a 
predefined number of classes by iteratively recomputing means 
of clusters until the criteria are satisfied. The criterion function, 
which is most frequently used by the partitional clustering 
methods, is minimizing a sum of squared errors (SSE) [86]. To 
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compute the SSE, the error of each object in a partition L is 
calculated as the Euclidean distance between the object x and its 
closest centroid c and then the sum of values are found [80] (eq. 
4.4): 
 

  (4.4) 
 

where k is the total number of clusters in the partition L,  is a 
particular cluster , and i is an object assigned to the 
cluster j. The sign  denotes the Euclidean distance measure.  
 
In this case, interclass variance has a maximum value, and the 
intraclass variance is minimal. The output of the algorithm 
includes the cluster membership map and the centroids of each 
cluster. Centroids are calculated as an average value of all 
objects in the cluster [83]. The popularity of the k-means 
algorithm can be traced to its easy implementation and a low 
time complexity. The larger the number of objects being used, 
the longer the computational procedure will take [81]. This 
method inherits properties from the group of partitional 
clustering methods, such as sensitivity to the initial partition 
[86]. This sometimes leads to convergence to a local instead of 
global minimum of the criterion function. However, this 
disadvantage could be overcome by repeating clustering several 
times with different initial solutions and selecting the best 
clustering solution with the minimum SSE. In this case, the 
number of runs needs to be large enough to enable convergence 
to the global minima, but also adequate in terms of the time 
spent. Another critical issue is the sensitivity of k-means to 
outliers. It is recommended that any outliers should be 
identified and removed before clustering is run [83, 86]. 
Moreover, k-means and its variations tend to have limits in 
finding some type of clusters in the data. To deal with this 
problem, one should either accept that clustering sometimes 
cannot identify “natural” clusters in the data, or try a larger 
number of clusters [83].  
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The second type of “hard” clustering used in this thesis project 
is the agglomerative HCA. HCA represents a sequence of 
partitions where each partition is nested into the next partition 
in a sequence [86]. It groups data patterns recursively into a tree 
(i.e., dendrogram). The basic HCA is: 
 

 
Algorithm 4.2 Basic agglomerative HCA 
  
Compute proximity matrix P using matrix D (eq. 4.3.)  
REPEAT 
 Merge the closest two clusters i and j  
 Update P 
UNTIL  
 Only one cluster remains 

 
The proximity matrix in this notation denotes the dissimilarity 
measure, which can be defined differently based on the choice 
of pairs of objects or clusters [80, 83]. In terms of proximity 
between the objects, single link, complete link or group average 
approaches are defined. The distance between two closest, two 
furthest points in clusters or between averages pairwise 
distances between points from different clusters are considered, 
respectively. When each cluster is represented by a centroid, 
instead of the set of objects, the proximity is defined as a 
distance between the cluster centroids. Ward’s method selects 
the cluster pair to be merged so that the merge increases the SSE 
value by the least extent.  
 
HCA has no global objective function and in this way it differs 
from the partitional methods. However, it encounters no 
problems with local minima or difficulties in selecting the initial 
solution. The computational complexity of agglomerative 
methods is their main disadvantage. When the time and space 
complexities for k-means clustering are O(nkl) and O(k+n), 
respectively, for agglomerative clustering they become non-
linear, or O(n2logn) and O(n2) [80, 81, 83, 86]. Here, l is the 
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number of iterations taken by the algorithm to converge. In 
addition, they are quite sensitive to noise and outliers [86]. 

4.3 FUZZY C-MEANS 

FCM clustering belongs to the group of partition-based 
clustering methods. It seeks to minimize an objective function 
by exploiting the fact that each object has some graded 
membership to each cluster [86]. The clustering criterion allows 
each object to be assigned to multiple clusters. The algorithm 
starts from an initial (random or defined by the user) partition 
by selecting class membership matrix U (eq. 4.5): 
 

 (4.5) 

 
where  is the grade membership of object xn in cluster ck. 
Typically, . Each object’s memberships to different 
clusters always sum to 1 (eq. 4.6): 
 

(4.6) 
 
The membership values indicate the strength of association of 
an object with the cluster. FCM clustering iteratively updates the 
cluster centroids, estimates and updates the U matrix.  
 
The criterion function in fuzzy clustering L becomes: 
 

 (4.7) 
 

where  is a fuzzy cluster centroid of the ith cluster.  
 

FCM is the most popular technique among all fuzzy clustering 
methods. It performs better than k-means in avoiding local 
minima, but it can still converge to this value. The critical point 
in FCM is to select the initial membership function [80]. The 
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fuzzy clustering results could be converted to “hard” clustering 
by assigning each object to the cluster with the highest 
membership value.  
 
The number of clustering maps produced by the algorithm is 
equal to the number of clusters. Within the map, each point 
marked with a false color corresponding to the membership 
degree of belonging to this cluster. In this thesis, “hard” 
clustering maps were calculated from the combination of fuzzy-
maps, by assigning each pixel (object) to the cluster with the 
maximum membership degree value.  
 
The advantage of fuzzy clustering methods over the “hard” 
clustering approach lies in their ability to obtain degrees of 
uncertainty of belonging to each class. This feature of fuzzy 
clustering makes it more reliable when one is studying 
biological tissue samples, provided that the boundaries between 
the features are not sharp and furthermore careful investigation 
of the continuously changing feature is essential [86].  

4.4 VALIDATION OF CLUSTERING 

The Rand index R is used as a measure of similarity between the 
clustering results and the known actual classification [81, 83, 87]. 
It calculates the relative number of agreements between two 
partitions over the total number of pairs of elements (eq. 4.8): 
 

  (4.8) 

 
The Rand index values lie between 0 and 1, with 0 indicating 
that the two data clusterings do not agree at all and 1 meaning 
that they are identical. Thus, the closer the Rand index is to 1, 
the better is the clustering result as compared to the actual data 
classification. 
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Mean squared error (MSE) indicates how well the clustering 
model represents the actual data. It decreases monotonically as 
the number of clusters increases. Smaller MSE value indicates 
more compact and reliable clustering. When MSE values are 
compared for different numbers of clusters, a sharp change in 
the slope of MSE graph can reveal the most adequate number of 
clusters for an algorithm [83]. 

4.5 CLUSTER ANALYSIS APPLIED TO FTIR-MSP  

The multivariate cluster analysis has been successfully used for 
differentiation and discrimination purposes in many fields, like 
biochemistry, biomedicine, nutritional science, imaging, object 
recognition, etc [64, 80, 82, 83, 88]. It has been applied for the 
identification and differentiation of biological micro-organisms 
such as bacteria [55, 89, 90], normal and cancerous tissues [61, 
91-93] and other diseased tissues [19, 21, 94].  
 
In bone and cartilage research, cluster analysis was mostly 
exploited in MRI studies, e.g., to differentiate normal and 
degraded nasal cartilage [95]. It has rarely been used in the FTIR 
research. Clustering was applied to the bovine muscle tissue for 
spatial separation of connective tissue and myofiber spectra [23]. 
In FTIR-MSP analysis of AC cross sections, clustering on the 
second derivative infrared spectra was applied [96]. The method 
was able to reveal major changes in chemical composition, as 
revealed by a shift in the AI peak to lower wavenumbers. This 
was consistent with collagen denaturation (antibody-induced 
damage), which had been conducted prior to the analysis.  
 
In another AC study, a combination of hierarchical and fuzzy 
clustering techniques was applied on Raman spectra [97]. 
Together they differentiated cells and ECM, and detected 
variations in the ECM. Furthermore, fuzzy clustering 
highlighted the inhomogeneity of the ECM and was able to 
provide a detailed description of continuous variation in 
composition of ECM.  
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5 Aims of the study 

The main aim of this thesis was to combine FTIR-MSP with 
multivariate unsupervised cluster analysis in order to reveal 
spatial variations and changes in the composition of biological 
tissues, such as bone, articular cartilage and engineered 
cartilage. 
 
 
The specific aims of this thesis were: 
 

� to detect qualitative and quantitative changes in the 
composition of SB and cortical bone with age; 

� to compare the performance of different types of cluster 
analysis algorithms and identify the most suitable and 
accurate approach for analyzing bone and cartilage; 

� to establish an effective algorithm for processing FTIR-
MSP data of bone and cartilage with cluster analysis; 

� to test the power of cluster analysis to differentiate 
between bone of different ages and between normal and 
repaired AC by utilizing only qualitative differences in 
the spectra; 

� to evaluate the ability of cluster analysis to identify the 
histological zonal structure within intact AC. 
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6 Materials and methods 

This thesis consists of four independent studies (I-IV). PLM and 
histological data used in studies II and IV were obtained from 
earlier studies by Rieppo et al. [98] and Pulkkinen et al. [99], 
respectively. The rest of the data is original. The rabbit AC in 
studies III and IV originates from the same set of samples. The 
materials and methods used in the studies are summarized in 
Table 6.1. In this thesis, all data and images were analyzed with 
Matlab software (v. 7.8-7.10, The Mathworks Inc. Natick, MA, 
USA). 
 
Table 6.1: Summary of the materials and methods used in studies I-IV. 
 

Study Tisue Species/ 
location 

n Methods 

I subchondral 
bone 

equine 
metacarpo-
phalangeal joint 

n=29 quantitative 
analysis, k-means 

II cortical bone rabbit humerus n=35 k-means, HCA and 
FCM; DA; validity 
analysis 

III articular 
cartilage 

bovine patella 
rabbit patella 

n=8 
n=7 

quantitative 
analysis, FCM, PLM 

IV articular 
cartilage 

rabbit patella 
 

n=12 quantitative 
analysis, FCM, 
histological analysis 

 
 

In this chapter, measurement setup along with the protocols 
used for preparation of samples and FTIR-MSP data for data 
analysis is explained. Further, the details of comparison of 
quantitative and qualitative analyses, as well as results with 
reference data are described. 
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6.1    SAMPLE PREPARATION 

 
In study I, equine SB samples were taken from two differently 
loaded sites at the articular surface of the proximal phalanx in 
the normal left metacarpophalangeal joint (Figure 6.1). The 
cartilage at Site 1 was subjected to intermittent high peak 
loading conditions. In contrast, cartilage at site 2 was exposed to 
lower-level but constant joint loading [100].  
 

 
Figure 6.1: Sampling sites for cylindrical osteochondral plugs from the 
articular surface of the proximal phalangeal bone of the left 
metacarpophalangeal joint. Located at the medial dorsal margin of the joint 
surface, site 1 is not loaded during standing or in a slowly moving animal, 
but is subjected to high intermittent peak loading during overextension when 
an animal moves at high speeds and jumps. Site 2, in the mediocentral area, is 
continually loaded during weight bearing, but experiences lower peak forces 
than site 1 [100]. 
 
Newborn (n = 6), immature (age range 5 to 11 months, n = 15), 
and adult horses (age range 6 to 10 years, n=8) were used. 
Osteochondral plugs (diameter 4 mm) were removed from the 
two predefined locations using a custom-built hollow drill in a 
random orientation, but with the long axis perpendicular to the 
articular surface of the proximal phalangeal bone. The plugs 
were subsequently sectioned into two equal halves consisting of 
AC and approximately 10 to 20 mm of SB. One half, used for the 
analysis in the present study, was decalcified in 10% 
ethylenediaminetetraacetic acid (EDTA) supplemented with 4% 
formaldehyde and 0.1M sodium phosphate buffer (pH 7.4) for 
12 days at 4°C, and subsequently dehydrated in ethanol and 
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embedded in paraffin [30]. The study protocol was approved by 
the ethical committees of Utrecht University, the Netherlands, 
and Massey University, New Zealand. 
 
In study II, cortical bone samples taken from the mid-diaphysis 
of the humerus of New Zealand white rabbits (five different age 
groups: newborn, 11 days, 1 month, 3 months and 6 months, 7 
samples per group) were used. The samples were cut (8 mm), 
dehydrated in ethanol and embedded in 
polymethylmethacrylate (PMMA). The study protocol was 
approved by the Animal Care and Use Committee of University 
of Eastern Finland. 
 
In study III, two separate sets of AC samples were investigated. 
The first sample set consisted of bovine AC samples (n=8), 
which were obtained from the local abattoir. The animals were 
1-3 years old, and the samples were taken from the lateral upper 
quadrants of the patellae (13 mm diameter, length 2-3 cm). This 
sample set originated from an earlier study by Rieppo et al [98]. 
The second set consisted of AC samples (4 mm diameter, 3 mm 
depth) from the patellar grooves of 6-months-old New Zealand 
rabbits. The intact AC (n=7) from the left knee was used in study 
III and as a control group for the repaired osteochondral lesions 
(4 mm in diameter, 3 mm in depth, n=6) that were surgically 
created in the right knee of animals in study IV. In the first 
repaired group of samples in study IV, the lesions were left 
empty to heal spontaneously (n=6). In the second group, the 
lesions were surgically repaired using autologous pre-cultivated 
chondrocytes in human type II collagen gel (CG)(n=6). The 
surgical procedures have been described in more detail by 
Pulkkinen et al [99, 101]. The animals were sacrificed 6 months 
post-operatively and osteochondral specimens were collected 
from the repair sites. In the second group, control AC samples 
were harvested from the intact AC at an adjacent site to the 
lesion. 
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All samples in studies III-IV were fixed in 10% formalin, 
decalcified with EDTA, dehydrated and embedded in paraffin 
as described earlier. Paraffin was dissolved from all samples 
with xylene prior to the FTIR-MSP measurements. 

6.2 FTIR-MSP MEASUREMENTS 

In the FTIR-MSP measurements, the samples were mounted on 
either ZnSe or BaF2 windows that were transparent to infrared 
light. All measurements were performed in the transmittance 
mode with a FTIR imaging system (Perkin Elmer Spotlight 300, 
Perkin Elmer, Shelton, Colorado). This system comprises a 
classical FTIR spectrometer coupled with a light microscope, a 
computer-controlled sample stage, and a linear array detector. 
The humidity of the measurement chamber was continuously 
monitored to be 0% using CO2-free air to standardize the 
measurement conditions (Parker Balston, Haverhill, MA, USA). 
For background correction, one measurement of an empty site 
with only the window present was used. Several scans were 
averaged. After the measurements, all spectra were converted to 
ABS values for further analysis using Cytospec software 
(Cytospec Inc., Boston, USA). In all studies, spectra of pixels 
containing no tissue were set to zero and excluded from the 
analysis. 
 

6.2.1 FTIR-MSP of SB (Study I) 
 
Paraffin was dissolved from 5-μm-thick sections with xylene 
prior to the measurements. Infrared spectra were acquired with 
spatial resolution of 25 μm and spectral resolution of 4 cm−1. 
Two repeated scans were used for data collection with the 
spectra being collected over the region of 2000 to 700 cm−1.  
 
In the analysis, two rectangular regions of interest (ROIs) were 
extracted from each sample (Figure 6.2). Region 1 (R1) was 
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chosen just below the cartilage-bone interface, and region 2 (R2) 
was chosen in the deeper SB.  
 

 
 
Figure 6.2: Amide I absorbance images of newborn (left), immature (middle), 
and adult (right) equine subchondral bone samples. Region 1 (R1) was chosen 
just below the articular cartilage-bone interface, and region 2 (R2) was located 
in the deeper subchondral bone. 
 
An equal number of spectra from each region (N=300) was used 
for analysis. When the regions contained more than 300 bone 
spectra, the pixels were chosen randomly from the data matrix 
of the region. Spectra from all samples were pooled together 
into one data matrix. In quantitative analysis, average spectra 
were calculated for each region. 
 

6.2.2 FTIR-MSP of cortical bone (Study II) 
 
For each 3-μm-thick sample, five rectangular measurement 
areas (on average 100 x 100 mm) were manually selected based 
on visual observation of the whole sample section. A pixel size 
of 6.25 μm and spectral resolution of 4 cm-1 were used for FTIR-
MSP measurements. Thus, over 1125 spectra covering an area of 
more than ~44000 mm2 were collected from five measurements 



42 

on each sample. Eight repeated scans were performed, and the 
spectra were collected over the region of 4000– 720 cm-1.  

6.2.3 FTIR-MSP of AC (Study III, IV) 
 

Infrared spectra were acquired from 5-μm-thick sections of 
rabbit and bovine AC. The pixel size for measurements was set 
to 25 μm and the spectral resolution to 4 cm-1. The numbers of 
repeated scans were eight for the bovine samples and four for 
the rabbit samples, and the measured spectral region was 4000-
720 cm-1. An area covering the whole prepared section for each 
sample was analyzed. After the quality tests and removal of the 
data containing bone spectra, the spectral map of each rabbit AC 
sample consisted of 500-5300 spectra. For bovine AC samples, a 
400-mm-wide area was measured from the cartilage surface to 
cartilage-bone junction using the same setup.  

6.3 PREPROCESSING PROCEDURES 

6.3.1 Quality tests 
 
Quality tests were performed on AC samples in Studies III and 
IV. The tests consisted of three separate procedures: 1) removal 
of outliers using 3-sigma rule; 2) confirmation that the SNR of 
each spectra was high enough; and 3) confirmation that the 
maximum absorbance in the region 1800-1600 cm-1 was higher 
than 0.1. The last step was conducted to eliminate spectra of low 
absorbance.  
 

6.3.2 Mathematical removal of bone tissue from 
samples 

 
Bone spectra were removed from images in studies III and IV by 
applying PCA. PCA is based on an evaluation of the total 
variance in the data and projection of initial variables to a new 
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coordinate system of orthogonal principal components (PCs). It 
is used for reduction of data dimensionality and classification 
into a new PC-based coordinate system. PCs are sorted in order 
of descending percentage of explained variance. The first PC is 
the most important one and accounts most of the variance in 
data. PCA was applied on each image using the CHO spectral 
region of 986-1140 cm-1, which is known to be attributable to the 
PG vibrations (Figure 6.3).  
 

 
Figure 6.3: Removing of bone spectra and outliers using principal component 
analysis (PCA). The first PCA image was built using the CHO (968-1140 
cm-1) region of infrared spectra and clustered using the FCM. Pixels assigned 
to bone (B) and outliers were removed remaining only cartilage (C). 
Integrated collagen absorbance images show the sample before and after 
preprocessing. 

 
The first PC was most discriminative between cartilage and 
bone. A gray-scaled projection PC image was created for each 
sample based on first PC, and was clustered with FCM 
clustering algorithm using two clusters (represented AC and 
bone). Pixels, which were assigned to bone tissue, and pixels of 
the AC cluster located in the bone area were removed. 
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6.3.3 Removal of PMMA contribution from infrared 
spectra of cortical bone 

 
In study II, absorbance of the pure PMMA was used to 
normalize and minimize the effect of section thickness. This was 
done by scaling the PMMA spectra to the bone spectra using the 
PMMA peak at 1728 cm-1 and subtracting it from the bone 
spectra [102]. 
 

6.3.4 Correction for scattering effects 
 

Cartilage spectra in studies III and IV were corrected for 
scattering effects using Resonant Mie Scattering algorithm [103]. 
A reference spectrum for correction was calculated as the global 
average spectrum of all samples (separately for the rabbit and 
bovine sample sets). 
 

6.3.4  Correction for water vapor and CO2 

 
The remaining contribution of water vapor and CO2 to the AC 
spectra in studies III and IV were removed with the algorithm 
described by Bruun et al [104]. This was achieved by measuring 
a 2550x2875 μm2 area from an empty window under gradually 
decreasing water vapor and CO2 concentrations, resulting in 
~11700 infrared absorption spectra in total. The CO2 gas purging 
was started after closure of the sample chamber, resulting in a 
reduction in the water vapor concentration from 22% to 0%. In 
addition, a slight increase of the temperature inside the chamber 
(~0.6ºC) was observed during the measurements. The collected 
spectra were used for estimation of two primary gas spectra, 
which were subsequently used for correction as explained by 
Bruun et al [104]. 
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6.3.5 Normalization and derivation of spectra 
 
Only the spectral region that included the main absorption 
bands of bone or AC at the fingerprint region was chosen for the 
analysis. Hence, spectra were restricted to 720–2000 cm-1 in all 
studies.  
 
In studies I and II, second derivative spectra were calculated 
from the raw spectra using the Savitzky-Golay algorithm with 
nine-smoothing points [105]. Subsequently, derivative spectra 
were scaled so that the sum of squared deviation over the 
indicated wavelength equaled unity (vector normalization). The 
second derivative was used to resolve and locate peaks in the 
spectra for cluster analysis. In Studies III and IV, the raw spectra 
were normalized to the vector length before the cluster analysis.  

6.4 UNIVARIATE ANALYSIS 

In the quantitative FTIR analysis, the representative spectrum 
was first extracted from the data by averaging the set of spectra 
and it was then baseline-corrected. Spectra of pixels containing 
no tissue (background spectra) were set to zero and excluded 
from the calculations of the average spectrum. In study I, 
average spectra for each sample were extracted from two 
rectangular ROIs (Figure 6.2). In studies III and IV, mean spectra 
were calculated for each cluster, constructed based on the AI 
spectral region.  
 
Further, a quantitative estimation of basic compositional 
parameters of bone and AC was done by integrating 
representative spectra over the particular peak. In the AC 
samples, the collagen content was quantified by measuring the 
integrated absorbance of the AI peak (1584–1720 cm−1), the AII 
peak (1500–1584 cm−1); and the PG content – from CHO peak 
(968-1140 cm-1). Additionally, averaged CHO/AI and AI/AII 
peak ratios were calculated in order to estimate relative PG 
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content and orientation of collagen fibers, respectively. A peak 
at 1338 cm-1, i.e., calculation of 1338 cm-1/AII ratio, was used to 
estimate the collagen integrity parameter [15].  
 
The composition of bone samples was analyzed by measuring 
spatial collagen content using the AI and AII peaks. 
Additionally, the collagen maturity, or the ratio of immature to 
mature collagen-cross links, was estimated by using a 
combination of the second derivative spectra and peak fitting to 
determine the sub-peaks at 1660 cm−1 and 1690 cm−1 [59]. 

6.5 STATISTICAL ANALYSIS 

Statistical significance of differences in estimated values 
between different sample groups was tested using the non-
parametric Mann-Whitney U-test in SPSS 11.5-17.0 software, 
SPSS Inc., Chicago, IL, USA. Means and standard deviation 
values, or medians and a 95% confidence intervals were used in 
data presentation in study I and studies III-IV, respectively. 

6.6 CLUSTER ANALYSIS 

6.6.1 K-means cluster analysis (Study I) 
 
In study I, k-means clustering was used to classify SB samples 
into age groups. The number of clusters was set to three, 
corresponding to the number of constructed groups of samples. 
The squared Euclidean distance was used as a measure of 
dissimilarity between spectra. The k-means algorithm was run 
50 times with different random initialization, and the solution 
with the smallest MSE value was chosen. Spectra of the two 
ROIs from the two loading sites were analyzed separately. 
Clustering was performed both on mean spectra and pixel-by-
pixel for each sample. In the first approach, spectra from all 
samples were pooled together into one data matrix, and 
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normalized second derivative spectra were clustered altogether 
using k-means. The spectral region between 1200 and 1720 cm−1 
was selected for clustering. 
 

6.6.2 Performance of different clustering algorithms 
(Study II) 

 
In study II, average normalized second derivative spectra of 
each sample were used as the input for different clustering 
algorithms: k-means, FCM and HCA clustering. The maximum 
number of iterations and number of repetitions for FCM and k-
means were set to 1000 and 100, respectively. Each method was 
used to obtain three clusters (newborn, immature and adult) to 
represent the different stages of biological bone maturation. Each 
method utilized the whole spectral range 720-2000 cm-1, as well 
as the spectral regions of AI, phosphate (900–1200 cm-1) and 
carbonate (850–890 cm-1) peaks.  
 
The validity of clustering results was evaluated by the Rand 
index value and the overall MSE level. Two to eight clusters 
were tested for each spectral region, and MSE analysis was used 
to determine the actual number of distinct groups inside the 
data.  
 
Discriminant analysis (DA) is a multivariate classification 
technique that can classify objects into two or more known 
groups on the basis of several variables [85, 106]. The goal of the 
analysis is to find the discriminant function (DF) which can 
differentiate between the groups, i.e., maximize the difference 
between the mean of the groups. With more than two groups, 
one can obtain more than one DF. The first DF is the one which 
maximally separates the groups (produces the largest ratio of 
among-groups to within-groups sum of squares on the resulting 
D scores). The second DF, orthogonal to the first value, 
maximally separates the groups based on the variance that was 
not yet explained by the first DF. 
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DA was used in study II to combine clustering results from 
three spectral regions and to define the contribution of each 
spectral region to the overall discrimination results. For that 
purpose, final cluster memberships were linearly combined into 
three groups of observations using DA [107]. Two DF were 
calculated for each of the three cluster methods. The 
performance of a DA was evaluated by estimating error rates 
(probabilities of misclassification) using leave-one-out cross-
validation. DA was performed using SSPS software [85] (v.15, 
Chicago, IL, USA). 
 

6.6.3 Fuzzy c-means cluster analysis of FTIR-MSP in 
cartilage (studies III and IV) 

 
Several spectral regions were investigated in studies III and IV: 
complete amide region (1200-1720 cm-1, referred as A), AI region 
(1585-1720 cm-1), AII region (1510-1584 cm-1), and CHO region 
(968-1140 cm-1). When the complete amide region was used, the 
spectral region of 1300-1490 cm-1 was excluded. This was done 
to eliminate possible overlapping with the remaining spectra 
from the embedding medium [108]. 
 
In study III, two species, i.e., rabbits and bovine AC were 
analyzed independently. FCM clustering was performed pixel-
by-pixel on normalized raw FTIR-MSP images. Three clusters 
were obtained for each spectral region (A, AI, AII and CHO), 
considered to represent three main histological zones of AC (SZ, 
MZ and DZ) within each sample.  
 
In study IV, spectral images of the repaired and control rabbit 
AC samples were clustered: 1) independently using three 
clusters, or 2) together from each rabbit using four clusters. In 
both studies, the maximum number of iterations and number of 
repetitions of FCM were set to 1000 and 100, respectively. The 
clustering results were examined for each spectral region. 
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First, performance of clustering was evaluated by calculating the 
percentage of the correct clustering assignments for repaired 
and intact clusters. Histological images were used as a reference 
for the tissue type. The overall performance of clustering was 
expressed as a number of correct pixel assignments divided by 
the total number of pixels. Performance was compared for two 
types of repair and spectral regions used for clustering.  
 
Second, the differences between the first and second largest 
membership degree values for each pixel were calculated to 
evaluate the uncertainty of clustering. Average differences were 
compared for intact and repaired clusters. A difference value 
close to 0 means that the first and the second largest 
membership degree values are almost equal. In this case, the 
pixel can be assigned with almost identical probability to both 
clusters represented by those values. Otherwise, a value close to 
1 means that the first largest membership degree value is much 
larger than the others and clustering is very distinctive.  
 
Qualitative differences between clusters were analyzed using 
raw average spectra of clusters. The second derivatives were 
calculated using the Savitzky-Golay algorithm with nine 
smoothing points and were used to enhance resolution and to 
locate the differences in positions of the peaks. 

6.7 REFERENCE DATA 

In studies III and IV, the results from the analysis of the same 
samples using different analysis techniques in other studies 
were used as reference for qualitative comparison. The 
structural integrity of the intact and repaired AC was evaluated 
by using histology [99], immuno-histological staining [99] and 
PLM [43]. Bovine AC sections were stained with safranin O to 
reveal the spatial PG concentrations [109]. In rabbit samples, 
toluidine blue was used to stain PGs and type I collagen 
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antibody was used for immunohistochemical staining of type I 
collagen. PLM was used to determine the organization of 
collagen network. By analyzing the histological images, the 
borders between the repaired areas in the SZ and MZ and the 
more hyaline-like AC tissue in the deeper zones within each 
repaired sample were manually determined. The modified 
O’Driscoll score for cartilage repair was used to evaluate the 
quality of the repair [13]. In PLM analysis, the parallelism index 
was calculated to evaluate the degree of parallelism of the 
collagen fibers, in other words, the organization of the collagen 
network. The histological and PLM methods and results have 
been published in detail by Pulkkinen et al. [99] and Viren et al. 
[13].  
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7 Results 

This chapter summarizes the most relevant results of studies I-
IV. The complete results are presented in the original articles I-
IV. 

7.1    DISCRIMINATION OF BONE AT DIFFERENT 
MATURATION STAGES WITH CLUSTER ANALYSIS 

Studies I and II highlighted the ability of FTIR-MSP coupled 
with cluster analysis to detect changes in the collagen matrix of 
decalcified SB in horses and rabbit cortical bone during 
maturation and growth.  
 
The overall clustering performance results for equine 
subchondral and rabbit cortical bone are shown in Figure 7.1. In 
SB at each studied site and region, newborn and adult samples 
were classified into two different groups using the amide 
region, while immature samples were assigned partially to each 
of the three age groups. The accuracy of clustering slightly 
differed for the SB, which was subjected to different types of 
loads and also differed for the location of the sample relative to 
the closeness to AC. Second derivatives revealed that the AI 
peak had its highest value at different wavenumbers in different 
clusters. The shape of the peak was also slightly different. 
 
For rabbit cortical bone, both the organic matrix and mineral 
component were included in the cluster analysis. All cluster 
algorithms classified samples rather accurately into different age 
groups (Figure 7.1). The newborn samples were well separated 
from the other age groups by carbonate and phosphate spectral 
regions. The adult samples were well separated from the other 
age groups by carbonate and amide I, while some samples were 
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assigned to another group if phosphate was used in the cluster 
analysis.  
 

 
 
Figure 7.1: Performance of cluster analysis applied to FTIR-MSP spectra. 
Amide infrared region was used for equine subchondral bone (SB) (results 
from Site 2, region 2). Amide I, phosphate and carbonate spectral regions were 
used in analysis of rabbit cortical bone (CB). The bars show percentage of 
correct assignments of samples to their age groups. 
 
When conducting pixel-by-pixel clustering of FTIR-MSP images 
of samples, the results of clustering were similar to those 
obtained by clustering the average spectra (Figures 7.2-7.3).  
 

 
 
Figure 7.2: False color code clustering maps of representative samples from 
three age groups (newborn, immature and adult) of equine subchondral bone. 
Clustering is performed pixel-by-pixel using three clusters. The percentages 
represent the number of pixels assigned to the particular cluster divided by 
the total number of pixels in the sample.  
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Figure 7.3: (A) Amide I absorbance images of one representative area in one 
sample of each age group, i.e. newborn, immature and adult bone sample. 
Spectra excluded by the quality tests appear dark blue; (B) Color 
representation of membership values obtained by FCM algorithm (amide I 
region, 3 clusters). A strong association of samples with their primary 
clusters can be seen. 

7.2    VALIDATION OF THE MOST ACCURATE CLUSTERING 
ALGORITHM  

In study II, attempts to determine optimal clustering algorithm 
for differentiation of maturing cortical bone were made. 
Although all algorithms (k-means, FCM, HCA) produced good 
discrimination (Figure 7.4), for all algorithms, the highest 
variance in the results was observed in the AI region. Cluster 
analysis highlighted several spectral differences between the 
spectra of clusters (Figure 7.5).  
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Figure 7.4: Classification performance of fuzzy c-means (FCM), k-means 
(KM) and hierarchical (HCA) clustering algorithms. Clustering performance 
is indicated by the average value obtained using carbonate, phosphate and 
amide I spectral regions individually.  
 
 

 
Figure 7.5: Average second derivative spectra for three clusters, as obtained 
using FCM clustering (amide I region). Spectral differences are highlighted. 



55 

Using any spectral region FCM showed the best performance, as 
compared to HCA and k-means algorithms. The results 
suggested that three clusters were the best choice for all 
clustering methods. The highest Rand index values were 
obtained for the carbonate region followed by the AI region and 
then the phosphate region. 
 
DA analysis showed that age groups differed significantly in all 
regions (p < 0.001). The adult samples were separated by 
carbonate region from the other two groups. By combining all 
clustering results, the ability to predict the correct age group of 
the samples increased. With the use of the discriminant 
function, 100% of the NB and adult samples and 43% of the 
immature samples were classified correctly in KM and HCA 
clustering. For FCM, correct classifications were obtained for 
71% of the NB samples, 93% of the immature samples and 100% 
of the adult samples. Thus, in total, 77% (KM and HCA) and 
91% (FCM) of the samples were classified correctly. In general, 
leave-one-out cross-validation showed that DA performed well 
for all clustering methods. 

7.3    DETERMINATION OF HISTOLOGICAL LAYERS IN INTACT 
ARTICULAR CARTILAGE 

In study III, FCM clustering revealed layered structure for intact 
AC of bovine and rabbits. Three distinct layers were found in 
rabbits AC. For bovine samples, the cluster in the SZ also 
appeared as a layer in the deeper cartilage, producing more 
variation in the clustering structure. Moreover, careful 
investigation of fuzzy maps revealed a distinct clustering of the 
rabbit AC, with a strong association of each pixel to its major 
cluster (Figure 7.6A). In contrast, pixels in the SZ of bovine AC 
were almost 50% associated with two bottom clusters (Figure 
7.6B). In general, for all samples in both groups, clustering using 
the amide region produced more distinct results than those 
using the CHO region.  
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Figure 7.6: Figure shows fuzzy clustering maps of a (A) rabbit and (B) bovine 
articular cartilage samples obtained using the amide spectral region. Degrees 
of membership at each pixel, in each of the three clusters are given, and the 
gradual transition between clusters is revealed. The “hard” clustering maps 
were calculated based on the fuzzy maps, such that each pixel is assigned to 
the cluster with the maximum membership value. The parallelism index of 
collagen fibers calculated from polarized light microscopy (PLM) images. The 
red arrow indicates an extra lamina in the bovine sample. The magnified 
image from the rabbit sample displays the histological zones determined by 
PLM. The toluidine blue and safranin O stained histological images, sensitive 
to cartilage PGs, are shown as references.  
 
When clustering results were compared with PLM, clearly 
similar features were revealed including three distinct layers 
visible in both PLM and clustering images of the rabbit cartilage. 
In the bovine sample, an extra lamina is highlighted both by 
PLM and clustering (Figure 7.6B). However, the thickness of the 
layers and location of their boundaries do not match exactly 
between PLM images and cluster images. 
 
Spectral differences between the clusters were investigated 
using the average spectra of clusters. The major infrared peaks 
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for AC were observed in all samples, regardless of species. 
However, minor non-regular shifts (2-4 cm-1) were observed 
from cluster to cluster and from sample to sample. Other minor 
peaks appeared only in few samples. A shift of the AI peak 
position in both directions (around 1662 cm-1) was observed 
between three clusters. The shift was greater in the bovine 
samples, varying in location around 1666-1669 cm-1 in SZ 
cluster, 1660-1662 cm-1 in the MZ cluster and 1662-1664 cm-1 in 
the DZ cluster. Moreover, although the location of AI, AII and 
AIII peaks changed almost randomly, the differences in the 
shapes of the peaks’ shoulders were identified after careful 
visual examination.  

7.4    DISCRIMINATION BETWEEN NORMAL AND REPAIRED 
ARTICULAR CARTILAGE 

In study IV, the surgically and spontaneously repaired rabbit 
AC was separated from the intact AC using FTIR-MSP with 
FCM cluster analysis. When clustering was conducted 
independently, intact samples revealed a layered clustering 
structure from the superficial to deep zone, similar to that found 
in study III. For spontaneously and collagen II gel repaired AC, 
superficial fibrous and more hyaline-like deeper cartilage sites 
were separated in different clusters.  
 
When the intact and repaired sections from each rabbit were 
clustered together at the same time, the discrimination between 
the intact and repaired AC was clear when using each spectral 
region. However, careful manual assessment indicated that the 
best separation could be achieved by using AI and CHO 
regions. FCM results for typical spontaneously and collagen gel 
repaired samples, paired with the corresponding intact AC 
samples, are shown in Figure 7.7 and Figure 7.8, respectively. 
The differences in clustering structure using AI and CHO 
regions could be visually observed. 
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In all samples, generally, repaired and intact tissues were 
separated into different clusters. They were represented by two 
clusters each, marked with a different color on the cluster maps 
(green and blue for intact, orange for repaired regions in the 
superficial and middle zones and red for the cartilage-like 
repaired region in the deeper zone). Two separate regions of 
repair were detected in each sample with repaired AC: the 
“repaired 1 cluster” located in the superficial and middle zones 
and the “repaired 2 cluster” located in the deeper zone.  
 

 

Figure 7.7: Fuzzy c-means clustering for a pair of spontaneously repaired and 
intact samples in a rabbit. (A,B) Collagen type I and toluidine blue 
histological images of the corresponding samples with the indicated areas of 
repair: the solid line is the border between cartilage and bone, dashed line 
separates the region of superficial repair; (C,D) Infrared absorption images 
based on amide I and carbohydrate spectral regions; (E,F) False-color cluster 
maps and (G,F) corresponding average spectra of clusters.  
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Figure 7.8: Fuzzy c-means clustering for a pair of gel repaired and intact 
samples in a rabbit. (A,B) Collagen type I and toluidine blue histological 
images of the corresponding samples with the indicated areas of repair: the 
solid line is the border between cartilage and bone, dashed line separates the 
region of superficial repair; (C,D) Infrared absorption images based on amide I 
and carbohydrate spectral regions; (E,F) False-color cluster maps and (G,F) 
the corresponding average spectra of clusters.  

 
Based on the performance analysis from both spectral regions, 
the repair tissue in spontaneously repaired samples was more 
accurately identified than that in the samples repaired using 
collagen gel. The intact tissue was more clearly identified using 
the AI region. Overall clustering performance was the same for 
both tissue types using the AI region (81%). However, 
somewhat a higher uncertainty in discrimination was noted 
when using AI region for the spontaneously repaired samples. 
The most distinct clustering was achieved by using CHO region 
for spontaneously repaired samples (82% compared to 75% for 
collagen gel repaired samples). These results indicate that the 
spontaneously repaired tissue was better distinguished from the 
intact AC compared to the collagen gel repaired tissue. 
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For the qualitative comparison of differences, the mean spectra 
of one intact and two repaired clusters were calculated as 
average spectra of all samples in each group. At the AI region, 
both repair clusters in collagen gel repaired tissue were different 
from the other clusters, by having slightly shifted sub-peaks at 
1654-1656 cm-1 and 1680-1682 cm-1 and opposite curvatures of 
spectra of the region 1708-1720 cm-1. At the CH region, repaired 
cluster 1 showed lower absorption values before and higher 
absorption values after 1078 cm-1, as compared to other clusters. 
For the cartilage repaired using collagen gel, intact cluster 
spectra were highly similar to the repaired cluster 2 spectra, 
while all spectra in the spontaneously repaired cartilage were 
distinguishable. 
 
The accuracy of clustering, when compared with histology, 
varied slightly from sample to sample. Different clustering 
structures as obtained with AI and CHO regions corresponded 
rather well to different structures of repaired tissue, as 
evaluated using the type I collagen and PG histological staining.  
 
Average O’Driscoll score was the highest for the spontaneously 
repaired cartilage. The parallelism index calculated from PLM 
data was lower in the repaired AC in both repair groups, 
indicating mostly a random orientation of collagen fibers 
throughout the cartilage depth [13]. 
 
Quantitatively, in the spontaneously repaired AC, cluster 1 had 
lower PG concentration than cluster 2 and intact AC as 
estimated by CHO/AI ratio. In the AC with collagen gel repair, 
estimated collagen and PG contents were at their lowest in the 
repaired cluster 1, as compared to the intact cartilage. Moreover, 
estimated PG content in the repaired cluster 1 of the 
spontaneously repaired samples was significantly higher than 
that in the collagen gel repaired samples. However, no other 
differences were observed.   
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8 Discussion 

Clustering has been applied in various fields of research and 
engineering. However, the first FTIR study on articular cartilage 
employing cluster analysis was conducted by Rieppo et al in 
2007 [110]. Those preliminary results revealed a good potential 
of this technique to characterize qualitative differences in 
material properties of articular cartilage. The authors stated that 
this technique could open a new era for FTIR-MSP of cartilage. 
For the best of our knowledge, no clustering analysis of FTIR-
MSP of bone tissue has earlier been conducted. The present 
work introduced a new approach to study depth-wise structure 
and composition of AC, as well as tissue changes in cartilage 
repair. This appears to be also the first work employing 
clustering techniques, based on its collagen and mineral 
contents, to differentiate bone of varying age.  

8.1 CLUSTER ANALYSIS CAN IDENTIFY SUBTLE CHANGES 
IN FTIR-MSP SPECTRA  

Each study showed that cluster analysis can identify minor 
differences in FTIR-MSP spectra, i.e. changes that are not 
apparent under visual analysis of the spectra. Moreover, one 
needs no expert assessment on tissue quality or type 
beforehand, since clustering algorithms work with minimal 
human interference. Although the correct age classifications for 
bone samples in studies I-II were known, this information was 
not available for the clustering algorithm. Nonetheless, it was 
able to distinguish effectively the newborn from the adult bone 
samples. Clustering also revealed the inhomogeneous structure 
of the immature group by assigning some samples to either the 
immature or adult group. The spectral differences between the 
clusters were characterized by peak shifts and shape changes in 
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the spectra. The shifts of collagen bands, as observed by some 
authors [31], are believed to be sensitive to the helicoidal 
arrangement of proteins [58, 111] and collagen crosslinks [59]. 
These qualitative changes could reflect the change in the 
collagen protein secondary structure.  
 
In study III, FCM cluster analysis qualitatively demonstrated the 
layered structure of intact rabbit and bovine AC tissue. 
However, the observed laminar structure did not match exactly 
with that obtained using the PLM. This extra lamina in the DZ 
of bovine samples, as found using FCM cluster analysis [Figure 
7.7D], has been also observed in several previous studies of 
bovine AC [98, 112, 113] and samples from beagle dogs [114]. 
Clustering indicated the high similarity of this lamina to the SZ 
cluster. Moreover, it was possible to identify a shift of the AI 
peak from 1600 cm-1 to higher wavenumbers of 1666-1668 cm-1 in 
this cluster. This shift could reflect changes in the collagen 
quality (renaturation) and organization [96].  
 
In study IV, FCM detected two types of repair tissue in each AC 
sample and discriminated effectively the repair tissue from the 
intact tissue. In samples with collagen gel repair slight shifts of 
two sub-peaks in AI region were noted in clusters for neotissue. 
These sub-peaks are attributable to secondary protein vibrations 
[56, 58]. The observed variations in the curvature of spectra in 
the region 1708-1720 cm-1 may originate from the non-hydrogen 
bonded β-turns proteins. FTIR bands in the CHO region 
assigned to C–O stretching vibrations of the carbohydrate 
residues are present in collagen and in PGs and could be related 
to AI of PGs [23]. The change in the location of spectra at CHO 
region after 1078 cm-1 may be evidence of differences in the 
collagen contribution.  
 
These findings, indeed, highlight the great potential of 
clustering for detecting small differences in infrared spectra. 
However, no definite conclusion could be made based on these 
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differences, except that they were sufficiently clear to enable 
successful clustering. 

8.2 INTERPRETATION OF DISCRIMINATION RESULTS 

It is most challenging to explain the present clustering results 
from the biological point of view. In order to appreciate the real 
potential of clustering, the specific changes in the infrared 
spectra need to be associated with the corresponding biological 
and molecular changes. Fortunately, most of the IR spectral 
bands can be assigned to a particular part of a molecule. 
However, several factors complicate designation of the 
particular wavelengths in the group frequencies [52]. Thus, it is 
difficult to observe minor changes in the shape and location of 
the infrared bands between classes. 
 
In the process of visual examination of average spectra in 
different clusters, specific differences that distinguished one 
cluster from the others were discovered. In order to enhance 
those differences, second derivatives have been used [115]. In 
clustering, major differences in the amide region could be 
related to secondary protein vibrations. Shifts and relative 
changes in the intensity of infrared sub-peaks point to changes 
in the concentration of proteins present in the different clusters. 
However, assignment of particular absorbance to specific 
secondary protein structure needs to be approached with 
caution due to the overlapping between vibrations and 
dependence on hydrogen bonding [56, 58].  
 
These difficulties in interpretation and treatment of FTIR data 
have been claimed to be the main drawback in utilizing FTIR-
MSP in clinical practice [116]. 
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8.3 THE MOST ACCURATE CLUSTER ANALYSIS APPROACH 
BASED ON DISCRIMINATION OF BONE 

Different clustering algorithms have their own pros and cons 
and exhibit different scalability, sensitivity to outliers, or ability 
to handle clusters with specified shapes. Hence, no single 
clustering method can be optimal for all data sets. For instance, 
if the data exhibits a hierarchical structure, the hierarchical 
clustering methods will probably be appropriate, while partition 
algorithms, such as k-means, will not be effective with this type 
of information [117]. K-means and FCM clustering algorithms 
also require setting a specific number of clusters in advance, 
which is a non-trivial question.  
 
Lasch et al. compared HCA, KM and, the less used FCM 
clustering techniques on the IR spectra of cancerous tissue [118]. 
In that study, HCA could identify different tissue types and 
achieved the best agreement with histopathology. However, the 
major drawback of HCA is its extreme computational 
complexity, especially with large-scale datasets [86, 118, 119]. It 
is also known that HCA is not capable of correcting possible 
misclassification [117], and thus, the algorithm is more sensitive 
to noise and outliers [86].  
 
In study II, k-means, FCM and HCA could separate rabbit bone 
samples into different age groups based on their infrared 
spectra. The better results produced by FCM clustering can be 
explained by the fact that the ‘‘hard’’ clustering methods (k-
means, HCA) assign a sample to only one group with 100% 
probability, while FCM allows a sample to belong to several 
clusters with different degrees of membership. If a spectrum at a 
pixel contains contributions from two or more constituents, e.g., 
due to different maturation stages within the tissue, it does not 
completely match any particular constituent or tissue type. 
Thus, these spectra cannot belong exclusively to any single 
cluster. The fuzzy membership approaches can ideally handle 
this situation and allow more specific and robust classification 
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[97, 120]. Therefore, FCM clustering may be more reliable, as 
compared to the ‘‘hard’’ algorithms, in many applications 
related to medical diagnostics.  

 
In the current set of bone samples (study II), three samples 
appeared not to associate strongly with any cluster. Cluster 
membership values for these samples were close to 0.5 and 
suggest continuing maturation. This could not be captured by 
clustering using ‘‘hard’’ methods. Using other methods, 
including microCT and nanoindentation analysis [121], different 
BMD and mechanical properties were measured for these 
specific samples. Therefore, these deviations in the clustering 
are obviously related to true biological variation between 
samples.  
 
Based on these results, only FCM clustering algorithm was used 
for discrimination in the following studies. It successfully 
identified histological layers in intact AC and discriminated 
intact and repaired AC.  

8.5 DEVELOPING AN ALGORITHM FOR CLUSTER ANALYSIS 
OF FTIR-MSP  

The aim for the present studies was to identify the best 
approach for clustering FTIR-MSP data of biological tissues. 
Further, it was hoped to maximize the discrimination ability by 
optimal preparation and analysis of the data, as well as 
interpretation of the clustering results. In each study, an initial 
algorithm was further developed by testing different 
approaches and settings, selecting only those which improved 
classification and enabled faster processing of extensive amount 
of data. The final algorithm comprises the following procedures 
(explained in detail in Chapter 6): 
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1. Pre-processing 
a. Quality tests 
b. Mathematical removing of background and 

secondary data from samples 
c. Removing contribution of the embedding 

medium 
d. Correction for scattering effect 
e. Correction for water vapor and CO2  
f. Derivation and normalization of spectra 

2. Cluster analysis 
a. Select suitable algorithm 
b. Set up a number of clusters and parameters for 

algorithm 
c. Run analysis 
d. Visualize results 
e. Validate results 

3. Interpret results 
 
The important step prior to analysis of spectral data is to 
standardize representation of the data and check for any 
inconsistencies [23, 60]. The pre-processing procedures include 
evaluation of data quality, definition of areas and spectral 
regions of interest, baseline correction, normalization and 
derivations, if needed [52, 60, 122]. The pre-processing is 
necessary in order to emphasize the biological differences and to 
remove variations caused by measurement conditions [23].  
 
The overall high quality of the spectra is essential when spectra 
are being analyzed using multivariate techniques. Low-quality 
spectra must typically be removed [115]. A spatial resolution of 
25μm was used for the FTIR-MSP. This resolution provides 
spectra of higher quality than when using a smaller pixel size, 
and thus, a superior SNR. Moreover, it is advisable to process 
only those spectra, which are informative for the study. By 
removing all background and other tissue spectra, a reduction 
in the time needed to run the cluster analysis decreases, and also 
a better focus on the data of interest can be achieved. 
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The possible contribution of the embedding substrate to the 
infrared absorption of the tissue must be removed. Therefore, 
those spectral regions where this kind of removal is impossible 
must be excluded from the analysis. One can also consider 
further correction for the samples thickness. However, this effect 
can be eliminated by the use of normalized second derivatives, 
instead of raw spectra. Importantly, clustering applied to the 
raw spectra mainly distinguishes the concentrations of 
constituents while derivation of the spectra prior to clustering 
differentiates the structural difefrences. In addition, 
normalization of spectra prior to the clustering removes 
quantitative information and makes possible to study only 
qualitative differences in the shape of spectra.  
 
It is important to standardize measurement conditions in terms 
of temperature, composition and humidity of air inside the 
measurement chamber in FTIR-MSP. However, all remaining 
effects must be eliminated mathematically. Especially, one needs 
to pay attention to the water vapor contribution since water is a 
very good absorber of infrared light in the amide region. This 
should be performed very carefully to avoid distortion of initial 
spectra and, thus, changing its unique features. 
 
Standardization, or normalization, scales the data so that the 
units used for measurements do not affect the similarities 
among the objects and this permits them to contribute equally to 
these similarities. In practice, the use of second derivative 
spectra is essential, as minor changes across the specimen are 
difficult to observe from the raw spectra due to the overlap of 
the different constituent bands. Further, as the second derivative 
spectra increase the resolution, small or subtle features can also 
be identified. It is also known that the second derivative of a 
spectrum removes the contributions of offset and slope from the 
original spectrum, as well as reducing the contribution related 
to a slowly varying baseline in a spectrum [123]. Although the 
use of derivatives will not eliminate the scattering component 
from the spectrum, it does discriminate against the scattering 
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component and reduces its effect on quantification. However, 
derivation should be used with caution when spectra of 
insufficient quality are used, since it may increase the noise.  
 
When spectra are ready, they are passed to the cluster analysis. 
It was discovered that FCM was the most optimal algorithm for 
discrimination of non-hierarchical biological data. However, 
based on the problem, one can choose another clustering 
algorithm. Using nonhierarchical methods one should set the 
optimal number of clusters to identify differences in the data. 
Alternatively, one can search in advance for the optimal number 
of clusters for the particular data set. For instance, this can be 
done with the unsupervised cluster validity measures MSE or 
other validity measures [80, 81].  
 
Validation of the clustering results is crucial when the suitability 
of a technique is being evaluated, or different clustering 
techniques need to be compared [80]. Various numerical 
measures, or indices, have been developed for cluster 
validation. Those indices which use no external information, like 
class labels, are called unsupervised or internal indices, and 
those, which measure how well the clustering results match 
with some external information, are called supervised or 
external indices. Study I evaluated the percentage of the correct 
cluster assignments compared to known class labels. In study II, 
the supervised Rand index was applied to compare the 
performance of the clustering algorithms. In studies III and IV, 
clustering maps were visually compared to histological images 
and PLM images to qualitatively evaluate the agreement of 
clusters with tissue types or zones. 
  
In this study, custom made Matlab scripts were developed for 
all analyses. However, one can also use commercial software, 
e.g., CytoSpec2 or iSys3 spectral imaging software, to conduct 
similar analysis. The built-in Matlab functions with small 
                                                      
2 CytoSpec  (2014) , retrieved from http://www.cytospec.com/ 
3 Malvern Instruments Ltd (2014), http://www.malvern.com/en/ 
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enhancement could also be used, as well as some commercial 
software packages such as “Essential FTIR”4 which have 
possibilities to create add-on scripts on built-in functions.  

8.6   POTENTIAL OF CLUSTER ANALYSIS OF FTIR-MSP IN 
DIAGNOSTICS 

The FTIR-MSP is a potentially useful diagnostic tool for 
biomedicine [19, 53-55, 124, 125]. It can capture both the spatial 
distribution and the concentration of biological components in 
tissue and it provides a great amount of data for quantitative 
assessment of tissue composition. For example, the present 
studies revealed that the collagen content as estimated from 
FTIR-MSP spectra of SB is altered during aging, and this was 
consistent to changes detected by traditional biochemical 
methods [32]. The estimated composition of clustering-derived 
repaired regions of AC corresponded well to the histological 
appearance of the samples, i.e. to differences in PG and collagen 
I staining. 
 
In reality, spatial analysis can show only variations in certain 
parameters, e.g., collagen or PG composition across the tissue. 
However, to enable optimal comparisons and analyses, one 
must know what to particularly seek in the FTIR image. Cluster 
analysis determines region of similar spectra without human 
intervention, and discrimination of every pixel is directly seen 
from the clustering maps. Moreover, probabilities for 
assignment of each image pixel to the clusters can be observed. 
Then, one can undertake an inspection of spatial variations in 
tissue properties across the sample. The mean spectra of clusters 
can be used to allocate spectral differences or to evaluate tissue 
composition within each cluster. The clustering maps could be 
visually compared to histological images or to other image 
modalities (PLM, X-rays, etc) in order to match the clustering 

                                                      
4 Essential FTIR (2014), http://www.essentialftir.com/ 
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results with histopathological evidence. One can even visualize 
3D images of tissue sections as was conducted by Wood et al. 
using HCA [126].  
 
Since cluster analysis requires no a priori knowledge it can 
reveal both novel and as well as expected features in the data. 
Thus, in study III, the observed structure of histological zones in 
intact AC did not exactly match the known zonal structure of 
AC, and differed from the PLM-derived structure. However, it 
should be acknowledged that clustering can also capture other 
properties in addition to variations in collagen fibril orientation 
or relative composition of the matrix. FTIR-MSP can therefore 
provide complementary information on the different 
histological zones in intact AC. The “hard” clustering methods 
could not identify these features. One could also carefully 
investigate transitions between zones by studying membership 
maps.  
 
In study IV, differences were observed between the histological 
and the clustering results. This inconsistency suggests that 
cluster analysis utilizes some other features for discrimination 
between tissues. Moreover, as two types of repaired AC could 
be discriminated, the non-optimal repair outcome was obvious. 
The less accurate discrimination of collagen gel repaired AC 
might indicate better overall integrity of the repair tissue or/and 
more variation in the healing response. On the other hand, the 
better discrimination of the spontaneously repaired tissue 
suggests that the overall quality of generated cartilage is rather 
different from the intact tissue.  
 
Although some inconsistencies exist in interpretation of the 
present clustering results, the methodology for the FTIR data 
analysis is presented to discriminate accurately biological 
tissues without human interaction. This study is a step along the 
road towards further development of medical FTIR applications, 
primarily for research and use in the diagnostics of bone and 
AC.   
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9 Summary and conclusions 

This is the first study to assess the feasibility of exploiting 
cluster analysis to discriminate bone of different ages, normal 
and repaired articular cartilage and histological zones in intact 
cartilage measured with FTIR-MSP. 
 
The main results and conclusions of this thesis can be 
summarized as follows: 
 

� Cluster analysis could discriminate tissues based on the 
subtle differences in the FTIR-MSP spectra. These 
differences could be enhanced by calculation of second 
derivatives. The results of classification were comparable 
to histological inspection and FTIR-based quantitative 
evaluation. 

� Fuzzy clustering produced more accurate results than 
either the “hard” or hierarchical clustering methods. It 
makes multiple assignments and thus, allows 
investigation of transitions and uncertainties in its 
classification. 

� Certain difficulties exist in the interpretation of spectral 
differences between detected classes due to the 
complexity of FTIR-MSP spectra. 

� Cluster analysis is non-subjective, rapid and easy to 
implement. Potentially, it could be applied for use in real 
time clinical analysis. 

� An algorithm for clustering of FTIR-MSP data was 
thoroughly investigated and programmed using Matlab 
for future reference. 

 
In summary, fuzzy cluster analysis of FTIR spectra of bone and 
cartilage represents an effective tool for tissue analysis, and 
could be potentially useful in the diagnostics of tissue 
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pathologies. However, more research will be needed to link the 
specific changes of the spectrum with the corresponding 
biological and molecular changes. 
  
In principle, the present clustering approaches may be used also 
for diagnostics of other tissues. All cluster analyses need good 
quality FTIR-MSP spectra, containing signatures of the tissue of 
interest. However, one will need to consider adjustments of the 
devised algorithm in order to apply methodology for other 
research subjects. 
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