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ABSTRACT
Despite massive efforts to elucidate the genetic and molecular basis of common complex

diseases, definitive answers remain elusive. This thesis focuses on the molecular
mechanisms of saccular intracranial aneurysm (sIA), a complex trait. The rupture of slA is
the leading cause of aneurysmal subarachnoid hemorrhage, a devastating form of stroke.
High-throughput genomic methods can generate a simultaneous assessment of the activity
of the human genome, but a drawback is huge amounts of data that pose great challenges
for analysis and interpretation, requiring bioinformatic methods. Three complementary
approaches utilizing high-throughput genomics and bioinformatics are applied in this
thesis. First, differences in genome-wide gene expression profiles between ruptured and
unruptured sIA walls were studied, and a number of potential pathways and genes
associated with the sIA rupture were identified. Second, a novel bioinformatics method and
software was developed, aiding in the interpretation of biological mechanisms reflected by
the differentially expressed genes in the sIA walls. Using our novel method, we generated
hypotheses about potential links between transcription factors controlling detrimental
processes in the sIA walls. Third, we identified four novel sIA loci in Finnish and Dutch sIA
samples using genome-wide association analysis. In summary, we identified candidate
genes and pathways, which can serve as a basis for future research aiming towards novel
diagnostics, preventions, or therapies of sIA disease. Additionally, the developed novel

bioinformatic method and software can also be used to study other complex phenotypes.
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Medical Subject Headings: Bioinformatics; Genetics; Genomics; Intracranial Aneurysm; Subarachnoid

Hemorrhage; Gene Expression Profiling; Genome-Wide Association Study
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Genomisia ja  bioinformatiivisia =~ menetelmid  monitekijdisen = sakkulaarisen intrakraniaalisen
aivovaltimoaneurysmataudin molekulaaristen mekanismien tutkimuksessa.
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TIIVISTELMA
Yleisten monitekijdisten tautien molekulaariset mekanismit eivét ole tdysin tunnettuja,

vaikka niiden tutkimukseen on maailmanlaajuisesti panostettu huomattavasti. Téassa
vaitoskirjassa keskitytddn sakkulaarisen intrakraniaalisen aivovaltimoaneurysman (sIA)
molekulaaristen mekanismien tutkimukseen. sIA on monitekijdinen tauti, jossa
muodostuneen aneurysman puhkeaminen aiheuttaa hengenvaarallisen lukinkalvonalaisen
verenvuodon. Modernit korkean kapasiteetin genomiset menetelmét mahdollistavat mm.
kaikkien ihmisen geenien aktiivisuuden mittaamisen samanaikaisesti. Naméa genomiset
menetelmat tuottavat valtavasti mittaustietoa, jonka analysointi ja tulkinta on usein
haasteellista. Bioinformatiikka tieteenalana soveltaa ja kehittdd genomisen tiedon
analysointi- ja tulkintamenetelmid. Téssd vaitoskirjatyossa kaytetiin kolmea toisiaan
tdydentdavaa lahestymistapaa, joiden avulla pyrittiin ymmartdmaan sIA:n muodostumiseen
ja puhkeamiseen vaikuttavia molekulaarisia mekanismeja. Aluksi vertailtiin vuotaneiden ja
vuotamattomien aneurysmien geenien ilmentymisprofiileja genominlaajuisesti ja
tunnistettiin useita vuotoon assosioituneita signalointireitteji ja geenejd. Seuraavaksi
kehitettiin bioinformatiivinen menetelmé ja ohjelmisto, joita soveltamalla ensimmaisen
osatyon mittaustietoon perustuen luotiin uusia hypoteeseja sIA:n puhkeamiseen liittyvista
mekanismeista. Lopuksi, kdyttden genominlaajuista assosiaatioanalyysid suomalaisiin ja
hollantilaisiin naytteisiin, tunnistettiin nelji uutta geneettistdi muunnosta, jotka
assosioituvat sIA:n  muodostumisriskiin.  Yhteenvetona voidaan todeta, ettd
vaitoskirjatyossd tunnistettiin useita kandidaattigeeneja ja signalointireittejd, jotka voivat
toimia pohjana tutkimuksille, joiden tdhtdimessa on uusia sIA-taudin diagnostiikka-, esto-
ja hoitomenetelmid. Kehitetty bioinformatiivinen menetelma soveltuu lisaksi myds muiden

kompleksien fenotyyppien tutkimiseen.

Luokitus: QU 460; QU 26.5; WL 355 ; QU 460; QU 465; QU 550.5.G
Yleinen Suomalainen asiasanasto: Bioinformatiikka; Genomiikka; Perinnéllisyystiede; Aneurysma;

Tiedonlouhinta; aivoverenkiertohairiét ; populaatiogenetiikka
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“Suppose you succeed in breaking the wall with your head.
And what, then, will you do in the next cell?”
Stanistaw Jerzy Lec

"Only two things are infinite, the universe and human stupidity, and I'm not sure about the former."
Albert Einstein
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1 Introduction

Common complex diseases such as coronary artery disease, diabetes mellitus type 2,
and stroke place a heavy burden on public health care systems in developed countries.
Despite the massive efforts of the scientific community to elucidate the genetic and
molecular basis of common complex diseases, the fundamental basis remains elusive. This
knowledge is needed for the development of novel improved preventative measures as
well as diagnostic and therapeutic approaches. Complex and largely uncharted
combinations of genomic and epigenomic, environmental, and lifestyle factors likely cause
complex diseases (Lupski et al. 2011; Marian 2012). The completion of the human genome
project in the beginning of the 21st century revealed the 3.2 billion long nucleotide
sequence of the 23 human chromosomes, which contain most of the hereditary material in
human cells. The human genome and epigenome are the blueprints that amazingly guide
the development of a fertilized egg to an adult human being, consisting of a multitude of
different cell and tissue types and organs with specific functions. These functions must be
maintained throughout the individual’s life and protected against internal and external
insults, e.g., related to unhealthy lifestyle choices or viral infections. Failures to maintain
these functions in the extremely complex interplay of various tissues and organs may lead
to the development of various complex diseases.

This thesis focuses on the molecular pathomechanisms of saccular intracranial aneurysm
(sIA) disease, a complex trait. The wall of the intracranial artery is a thin but highly
complex structure that must withstand various stressors such as blood pressure and shear
stress or atherosclerosis throughout the individual’s life. For largely unknown reasons, in 2-
3% of the population, protective mechanisms fail, leading to the formation of sIAs in the
branching sites of intracranial extracerebral arteries. Most slAs are too small to cause
neurological symptoms and go unnoticed during life. In some sIA walls the mechanisms of
maintenance and protection fail and the aneurysm ruptures, causing a devastating
subarachnoid hemorrhage (sIA-SAH), flow of high-pressure arterial blood to the
subarachnoid space on the surface of the brain, and possibly also to the brain tissue and
brain ventricles. One third of sIA-SAH patients admitted to neurosurgical care die of
complications within one year. Although sIA-SAH accounts for only about 5% of all forms
of stroke, it mainly affects the working age population, causing a higher loss of productive
years than the two more common forms of stroke, brain infarction and intracerebral
hemorrhage. For unknown reasons, sIA-SAH is more common in Finland (about 1000 cases

annually) and Japan than elsewhere in the world.
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Modern high-throughput genomic methods are an attractive way to unravel the
molecular pathomechanisms behind complex diseases, allowing, e.g., studies of whole
genomes of patients or interrogation of transcriptomes of diseased tissues. These methods
are increasingly applied to understand complex diseases. However, huge amounts of data
are generated, and the greatest challenge is meaningful bioinformatic analysis and
interpretation of the data in terms of molecular mechanisms, optimal therapies, and likely
outcome of a given disease in a given individual.

In this thesis, the aim was to elucidate the signalling pathways of sIA rupture and the
genetic background of sIA formation. This knowledge is needed for further understanding
of the molecular mechanisms of sIA formation and rupture which could pave the way for
the design of novel methods for non-invasive diagnosis, prevention, and occlusive therapy
of sIAs.

Three complementary approaches were applied. First, genome-wide differences in gene
expression between ruptured and unruptured sIA walls were studied. Second, a novel
bioinformatics method and software was developed to aid interpretation and generation of
hypotheses from differentially expressed gene sets. Third, a genome-wide association
analysis was conducted to identify novel genes contributing to sIA disease susceptibility in
Finnish and Dutch samples.

In the review part of this thesis, the landscape of human genetics as well as gene
expression and regulation are reviewed. Next, complex diseases are defined, and a
literature review of the complex sIA disease is presented. Finally, current computational
pathway analysis methods aimed at the interpretation of differential gene expression data
sets are reviewed.

After presenting the three studies that form the basis of this thesis, the common themes
and differences identified in the complementary approaches are discussed. Finally, some
avenues of reseach are envisioned for 1) advancing knowledge of the molecular basis of the
sIA disease, and 2) developing bioinformatics methods applicable for the analysis of data
generated by high-throughput methods about complex diseases.



2 Review of the literature

2.1 THE HUMAN GENOME

The first draft in 2001 (Lander et al. 2001; Venter et al. 2001) and the final completion of the
Human Genome Project (HGP) in 2004 (International Human Genome Sequencing
Consortium 2004) laid the foundation for modern high throughput genetic, genomic, and
functional genomic studies of human diseases. The preceeding historical milestones were
Darwin’s theory of evolution and inheritance in 1859 (Darwin 1859), Mendel’s observation
of regular inheritance patterns in peas in 1866 (Mendel 1866), the identification of the first
mendelian disease alkaptonuria in 1902 (Garrod 1902), and the identification of the
structure of DNA in 1953 (Watson and Crick, 1953).

The HGP compiled a near complete single consensus basepair sequence of the human
genome by analyzing the DNA sequence of four invididuals: two males and two females.
The project, for the first time, provided estimates about the composition of the human
genome. In 2004, it was estimated that the genome contains 20,000-25,000 protein coding
genes, which are contained in less than 2% of the total genome sequence of some three
billion basepairs (International Human Genome Sequencing Consortium 2004). The human
reference sequence is constantly being improved upon in accuracy and annotation. Selected
statistics of the genome build at the time of writing this thesis are shown in Table 1.

All work presented in this thesis is critically dependent on the HGP and subsequent
genome annotations. The knowledge of human genome consensus sequence and variation
enables the design of technology to study the transcriptome (Study I) and genome (Study
III) in a genome-wide manner, and it is also critical for the computational methods
predicting the regulation of gene sets obtained by whole-genome transcriptomic studies
(Studies I and II).

2.1.1 Variation in human genome
The human reference sequence is based only on a few individuals. However, many
different types of variations exist between individuals (Table 2). The sequence between two
human individuals is estimated to differ by 0.1% due to single nucleotide polymorphism
(SNP) variation (The International HapMap Consortium 2005), but other types of variation
can account for a total of 0.5% of sequence difference (Levy et al. 2007).

A variant is a change in the nucleotide sequence of a genome. Variants in the human
genome arise from uncorrected errors in DNA replication in dividing cells at an estimated
rate of one in every billionth base (McCulloch & Kunkel 2008). In addition, Variants may

occur due to environmental exposures such as radiation. If a variant occurs in germ-line
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cells and proves to be beneficial, leading to increased survival and reproduction, the
variant will become more common with every generation in a population — the basis of
evolution. In contrast, variants that are harmful in terms of survival and reproduction are
under negative selection and will remain rare or vanish in subsequent generations. Variants
that do not affect reproduction success, being functionally neutral or affecting probability
of diseases at older age, can be carried and distributed randomly in the population.
Variants that occur in less than 1% of a population are called mutations, but if a variant
reaches a frequency of 1% or more it is called a polymorphism. Variants with a frequency
over 5% in a population are called common variants (The 1000 Genomes Project
Consortium 2010). Variants occurring at a frequency between 0.5% and 5% are called low
frequency variants, and those in under 0.5% of population are called rare variants.
Extremely rare variants seen, e.g., in a single family are called private variants. The
evolutionary pressure on variations are exemplified by the fact that the frequency of
common variants are reduced near genes and regulatory elements (Cai et al. 2009; The 1000

Genomes Project Consortium 2012).

2.1.2 Linkage disequilibrium
Variants that are close to each other and/or not separated by recombination hotspots are
likely to be inherited together. This phenomenon is called linkage. Linkage disequilibrium
(LD) is the occurrence of a pair of variant alleles in a population more or less often than
expected by chance. The term LD can be misleading since variations can be in association
with each other without being linked. A simple example is when two populations with
different frequencies of variations in two loci are mixed together; the combined population
can display disequilibrium between variations without those variations being linked.
Gametic phase disequilibrium has been used as an alternative to LD (Neale et al. 2007). In
this thesis, like in most scientific articles on genetic association studies, the term LD is used.

When a new mutation occurs in a germline cell chromosome (e.g., de novo mutations at a
rate of approximately 1.1 X 10® / base / generation (Conrad et al. 2011)), it is accompanied
by all other genetic variants on that chromosome. Recombinations during meiosis slowly
erode this LD at a rate of approximately 1 crossover per 100 megabases per generation
(Altshuler et al. 2008). The significance of LD to genetic studies of human diseases is that
instead of an expensive determination of the full sequence of individuals, only carefully
selected variants tagging the regions of interest need to be determined.

Let us consider two biallelic loci (A and B) and their allele frequencies pAl, pA2, pB1
and pB2. If the two loci are independent of each other (ie. in equilibrium) then the
probability of observing any pair of alleles together in the same chromosome is the product

of the individual allele frequencies (Equation 1).

Paip1 = Pa1Pp1 (1)



Common metrics of LD are D, D" and r2. The simplest of the measures is covariance D
(Equation 2). (Neale et al. 2007).

Dup = DPa1Pp1 — Pa1Par (2)

A problem with this measure is that it is dependent on allele frequencies and thus it is
not useful in comparing different pairs of loci with deviating allele frequencies. The
absolute maximum value of D is the smaller of paipsi and paips: when D is positive and the
smaller of paipsi and paipsz when D is negative (Neale et al. 2007). A one proposed
approach to make D more independent of allele frequencies is to scale the value of D by the

maximum value (Equation 3).

DAB

D= —
MAX(Dyp)

(3)

D’ ranges from -1 to 1, or alternatively absolute value, |D’l, ranging from 0 to 1 can be
used. D’ is more suitable for comparing pairs of loci with different allele frequencies
although D’ also is somewhat dependent on the allele frequencies (D’ tends to be inflated
when one of the alleles is rare).

Perhaps the most useful measure of LD in association studies is the squared correlation
between presence and absence of alleles in a pair of biallelic loci (Equation 4) (Neale et al.
2007).

DZ
2= (4)
PA1PA2PB1PBZ

The measure r? varies between zero and one, one meaning the variants convey the same
information and zero meaning that the variants are independent of each other. In
association studies, there is a direct relationship between r> of the genotyped marker and
causative variant and statistical power to detect association. Sample size would have to be
increased by a factor of ~ 1/12 to achieve the same statistical power as if the causative variant
had been genotyped directly (Pritchard & Przeworski 2001).

Some distinctive features between D’ and 12 can be identified. The ID’| equals 1 if the
frequency of any of the four pairs of genotypes is 0. If D’ =1, there is not a 100% correlation
between the allele at one locus and the allele at the second locus. If =1 then two

haplotypes are not observed and there is a 100% correlation between the alleles at two
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locus. (Neale et al. 2007). As a simplified rule of thumb: D’ might be favored when
information on historic recombination events is of interest and r2 provides information on
the correlation of the two loci. The measurement of LD in different contexts is a large topic
and will not be further discussed here. The interested reader may want to read the
publication (Pritchard & Przeworski 2001) and further references therein for an expansion

of this topic.

2.1.3 Genome variation catalogues

In the wake of the first draft of the human genome, the International HapMap Project was
launched with a mission to provide a catalogue of common human SNP variation and a
haplotype map showing how those variants inherit together in different populations.
Haplotype is defined as a particular combination of variant alleles along the same
chromosome.

The first phase of the HapMap project constructed haplotype maps by analyzing
approximately one common SNP in every 5kb across the genome (1,007,329 SNPS) of 269
individuals from four different populations. The samples were 90 individuals (30 parents-
offspring trios) from Yoruba, Nigeria, 90 individuals with European ancestry (30 parents-
offspring trios) from Utah, USA, 45 Han Chinese from Beijing China and 44 individuals
from Tokyo, Japan (The International HapMap Consortium 2005).

In the second phase, the same individuals were used, but the SNP count was increased
to over 3.1 million, which was estimated to capture untyped common variation with the
maximum r2 ranging from 0.9 to 0.6 (Frazer et al. 2007). In the third phase, the sample size
was increased to 1,184 from 11 populations. Rare and low frequency SNPs were also
genotyped. They were hypothesized to explain a more substantial fraction of heritability of
disease risks than common variants (Altshuler et al. 2010), which have been the focus of
most genome-wide association studies to date (See chapter 2.1.4). The HapMap project
estimated recombination frequency in different parts of the genome and a block like
structure in the LD patterns was observed, where the block boundaries are often separated
by recombination hotspots (Figure 1).

The HapMap projects created massive amounts of data on human SNP variation and
how they inherit together in different populations. This knowledge was crucial for the
design of genome-wide SNP arrays, the tools that started the genome-wide association
studies of complex diseases. Study III in this thesis was possible only with the

advancements in knowledge brought on by the HapMap projects.
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Figure 1. lllustration of the block-like structure of the human genome caused by linkage
disequilibrium. A) Typical variation in 18 individuals. Six correlating variants on the left of the
recombination hotspot form three different haplotypes (out of 64 possible haplotypes) as
indicated by different colors. Recombination breaks the correlation, and the next six correlating
variants form two different haplotypes. B) Regions depicted in A are scattered throughout the
chromosomes forming LD blocks of different sizes. The correlations shown in the chromosome
are fictitious (adapted from (Altshuler et al. 2008).

1000 Genomes Project

The latest major effort to characterize human genetic variation has been the 1000 Genomes
project of more than 75 universities and companies worldwide (The 1000 Genomes Project
Consortium 2010). The aim is to identify and create accurate haplotype maps of all sorts of
human DNA polymorphisms of frequency > 1% and down to a frequency of 0.1% in the
coding regions. The first phase of the project performed a low coverage whole-genome
sequencing of 179 individuals from 4 populations, high-coverage sequencing of two

parents-child trios, and exon sequencing of 697 individuals from 7 populations. The first



8

phase reported 15 million SNPs, 1 million short insertions or deletions, and 20,000
structural variants. One striking finding was that each person’s genome contains putative
loss-of-function variants in as many as 250-300 genes worldwide (The 1000 Genomes
Project Consortium 2010).

The second phase, aimed to comprehensively characterize low frequency (<5%) variants,
sequenced 1092 individuals from 12 populations, including 93 Finns (The 1000 Genomes
Project Consortium 2012). Overall, 38 million SNPs, 1.4 million short insertions and
deletions, and over 14,000 larger deletions were identified. The project showed that while
common variants are typically found across populations and continents, low frequency and
rare variants are more restricted to major ancestral groups (e.g., Europeans) or single
populations. Interestingly, low-frequency variants (0.5-5%) are enriched among Finns as
compared to other European populations.

In study III of this thesis, the interim 1000 Genomes haplotype panel (The 1000 Genomes
Project Consortium 2012) was used to impute also low frequency variants, insertions or
deletions and structural variants in a Finnish sample of sIA cases and controls. Our
hypothesis was that some low-frequency variants, increased in frequency in Finland, would
contribute to increased incidence of sIA-SAH in Finland (see Chapter 2.4).

The 1000 Genomes Project is an on-going effort, currently aiming to sequence 2,500
individuals from 27 populations. The data generated will be crucial for the design of new
genotyping tools and imputation of a wider range of variants since the focus of whole
genome association studies will likely shift towards low frequency variants.

Mankind'’s colossal endeavour of determining, let alone understanding, the function and
consequences of human genome variation is an ongoing effort with an estimated one
million individuals having their full genome sequenced by 2015 (Aarno Palotie personal

communication; Andreas Sundquist (Harris 2012)) .

Table 1. Current Human genome statistics according to Ensembl database version 72.37, April 2013.

Category Count
Length (basepairs) 3,323,950,079
Coding genes 20,774

Non coding genes 22,493
Pseudogenes 14,145

Gene transcripts 194,846
SNPs, indels, somatic mutations 54,965,377

Structural variants 10,266,123




Table 2. Types of variations in the human genome

Type Description

Single nucleotide A change of one nucleotide in DNA.

polymorphism (SNP)

Chromosomal Insertion, deletion, translocation or reversal of a large (> 3Mb) parts
abnormality of a chromosome.

Copy number variation A repetition of large (1kb - 3Mb) part of genome zero (deletion) or

(CNV) more times.

Interspersed element A repeating sequence of DNA, a remnant from viral genome. Some
repeats contain sequence encoding viral machinery proteins required
to copy and move the sequence.

Simple repeat A variable number repetition of a few nucleotide sequence.
Insertion or deletion A change of addition or removal of one or more nucleotides.
(INDEL)

1 kb and larger in size and can include inversions and balanced

Structural variant (SV)
translocations or large insertions or deletions

214 Studying human genome variation

Heritability is a measure for percent of variation in a phenotype due to genetic factors
(Wray 2008). The classical way of assessing the amount of genetic contribution to human
diseases or phenotypes is twin studies. As monozygotic and dizygotic twins share 100%
and 50% of the genomes, respectively, and if both share similar environments, then the
genetic load on the phenotype can be estimated by studying the phenotype difference
between the twins. The concordance of complex diseases in monozygotic twins is often far
from 100%, suggesting that, in addition to environmental effects, also epigenomic
differences may contribute to phenotype development or complex disease susceptibility
(Bell & Spector 2011). The twin studies offer only knowledge about the heritability of the
phenotype and methods of linkage and association studies can be used to map the genomic

loci harbouring variants affecting the phenotypes.

2.1.4.1 Linkage studies

In linkage studies, segregation of genetic markers scattered throughout the genomes is
correlated to the segregation of disease in pedigrees. One shortcoming is that linkage
analysis in complex traits can only map genetic loci broadly and the linkage intervals can
contain hundreds of genes, thus the underlying mutations are not necessarily easily
identifiable (Teare & Barrett 2005).

2.1.4.2 Candidate gene association studies

In association analyses, selected genetic markers are correlated to case-control status in a
sample of cases and controls or to quantitative phenotype in a population cohort. The
controls should be as similar to the cases as possible, differing optimally only by the
phenotype or disease status. The cohorts should usually be unrelated individuals, but

pedigree based analysis is also possible (Neale et al. 2007).
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Traditionally, the candidate gene approach was used where one or a few genes were
selected, based on positional evidence from linkage studies or functional hypotheses about
putative susceptibility genes. Genetic markers were then selected among previously known
variable genetic markers (Hirschhorn et al. 2002). The obvious shortcoming is the need of
insight or prior knowledge about the pathways and genes likely associated to the

phenotype studied, and, consequently, many novel associations are likely to be missed.

2.14.3 Genome-wide association studies

In recent years, the genome-wide association study (GWAS) approach has been the method
of choice in human genetic studies. In GWASs, as in the candidate gene approach, genetic
markers are correlated to phenotype in cases (affected) and controls (unaffected) or in
population cohorts with phenotypes of interest. Instead of having educated guesses about
candidate genes and pathways, genetic markers all around the genome are used. Typical
GWAS arrays contain from a few hundred thousand to a few million SNPs and structural
variants, and each of these is correlated to the phenotype of interest. The GWAS
genotyping chips are commercially available from, e.g., lllumina and Affymetrix whose
chips differ in how the SNPs are selected. Affymetrix selects SNPs scattered evenly around
the genome whereas Illumina uses LD information of the HapMap CEU population to
achieve satisfactory tagging coverage of common variations. One major limitation of the
majority of GWASs has been that most commercial genotyping platforms can reliably
detect only common SNPs at > 5% frequency. Also, the selection of SNPs may not tag well
even the common variation in a given population. More recently, the frequency spectrum
has been expanded by genotyping arrays focused on the exomes (Huyghe et al. 2013) or on
the loci selected for metabolic (Metabochip) (Voight et al. 2012) or immune related
(Immunochip) (Eyre et al. 2012) traits.

The number of published GWASs has steadily increased for the last 5 years, totalling
almost 1500 studies of over 200 different phenotypes (Hindorff et al.) (Figure 2). The general
outcome of the studies is that the associated SNPs only moderately increase the risk of the
disease studied, and the identified SNPs explain only a proportion of the heritability
estimated from twin studies.

For example, in human height, with an estimated heritability of 80%-90%, the 180
associated GWAS loci explain only about 10% of the heritability (Allen et al. 2011).
However, it has been estimated that as much as 45% percent of the phenotypic variance of
height can be captured by using all of the variants in the genotyping array and not just the
variants reaching stringent genome-wide significance (Yang et al. 2011). These types of
multimarker predictive panels need to be evaluated carefully as they typically are not able
to explain as much of the phenotypic variances in independent replication studies
(Makowsky et al. 2011). It nevertheless seems that many true risk variants (with small risk
effect) exists that have not reached the stringent statistical thresholds in GWASs.
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Similar GWAS findings apply to less heritable complex human diseases such as ischemic
stroke (Bevan et al. 2012), obesity, and mental disorders (Schizophrenia, bipolar disorder)
(Visscher et al. 2012). Age-related macular degeneration is a striking exception in which
about 50% of the heritability is explained by only five common SNPs (Maller et al. 2006).
Another success story is the identification of 163 loci associated to the inflammatory bowel
disease, more than to any other complex disease to date, accounting for 13.6% of disease
variance in Crohn’s disease (one of the two major subtypes of inflammatory bowel disease)
(Jostins et al. 2012). However, even in the case of reliably replicated associations with high
odds ratios, the predictive ability of the identified variants in common complex diseases is
low (Jakobsdottir et al. 2009).

Although the GWAS approach has been successful in identifying numerous consistently
replicable SNPs associated to complex human diseases or traits, converting these findings
to a molecular understanding of various disease mechanisms has been challenging. In
many GWASs the nearest gene to the variants are nominated as susceptibility genes. Only
about 5% of the trait associated variants are non-synonymous coding variants, and most of
them are intergenic (43%) or intronic (45%) (Hindorff et al. 2009). The problem in
nominating the physically closest gene as the susceptibility gene is exemplified by the well
known SNP causing adult-type hypolactasia (Enattah et al. 2002). The nearest associated
SNP resides in an intron of a gene unrelated to the phenotype, almost 14kb away from the
lactase-phlorizin hydrolaze (LPH) gene. The enzyme product of LPH breaks down lactose,
and silencing of LPH causes hypolactasia. Despite being distant to LPH, the associated SNP
above is strongly associated to the transcriptional regulation of the LPH expression
(Enattah et al. 2002).

In summary, even though GWASs in many complex human diseases have produced
interesting results, suggesting biological pathways involved in the pathophysiology of
various complex diseases, follow-up studies are needed to translate these initial findings
into mechanistic biological knowledge that paves the way for novel tools for the prediction,

diagnosis, and therapy directed at the disease.
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Figure 2. Significant associations (p<5 x 10°®) identified in genome-wide association studies in 18 categories of
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2.1.44 Missing heritability

The fact that GWAS identified variants explain only a fraction of the heritability has been
termed “missing heritability”, a topic of much debate in the scientific community (Maher
2008; Manolio et al. 2010). The proposed causes include the possibility that untyped copy
number variants could be the variants carrying missing heritability (Maher 2008; Manolio
et al. 2010). Future exome or full-genome sequencing projects are likely to shed light on
this. Another explanation proposed is that rare variants, inefficiently tagged by SNPs
included in the current GWAS genotyping arrays, would explain the missing heritability
(Maher 2008; Manolio et al. 2010). Sequencing studies and projects such as the 1000
Genomes Project will elucidate this possibility. The lower frequency variants detected in
the 1000 Genomes Project are one of the cornerstones of Study III in this thesis. Further
explanations suggest that there are many undiscovered variants with smaller effect sizes
than can be detected by current GWAS studies or the effects are modified by other loci
and/or environment, reducing the power to detect associations (Maher 2008; Manolio et al.
2010). The fact that the loci surpassing the stringent genome-wide significance explain
much less of the variability than considering all the variants together in the array suggests
that a great number of false negatives in GWAS studies explain part of the missing
heritability (Yang et al. 2011). The identification of these loci would require much larger
sample sizes. It has also been suggested that population isolates, potentially enriched in
unique variants, are of value in uncovering some of the hidden heritability. This approach
has already been succesful in uncovering loci that associate to metabolic traits in the
Finnish population isolate (Sabatti et al. 2009). This possibility is utilized in Study III of the

present thesis.

2.1.4.5 Sequencing approaches in genomic studies

The latest technological advancement in human genomic studies is next-generation
sequencing (NGS) (Metzker 2010). The DNA sequencing costs have plummeted from
around $1000 per megabase in 2005 to just about ten cents per megabase, and these
techniques have become widely available also outside of large genome centers
(Wetterstrand 2013). Sequencing of the exome or the full genome allows interrogation of a
complete set of variants (including rare coding variants with possibly large effects) and not
just the set of variants selected for, e.g.,, a GWAS chip. Exome sequencing has accelerated
the identification of mutations causing Mendelian diseases (Bamshad et al. 2011), and has
been applied to the study of de novo mutations possibly causing neurological diseases such
as autism (O’Roak et al. 2011). There is also interest to apply exome sequencing in the study
of complex diseases (Kiezun et al. 2012). The association of rare variants identified by
sequencing with complex diseases and traits necessitates large sample sizes of around
10,000 participants to achieve sufficient statistical power (Kiezun et al. 2012). Full genome

sequencing has been mainly applied in somatic mutation detection in cancer studies
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(Kilpivaara & Aaltonen 2013). One of the challenges of applying NGS to study human
genetic diseases is to distinguish the disease causing variants from the potentially harmful
250-300 protein product changing variants found in every genome (The 1000 Genomes
Project Consortium 2010), and more dauntingly, to identify and to interpret the roles of
intergenic non-coding variants.

NGS methods can also be applied to genome-wide studies of epigenomic markers
(DNA-methylation, histone modifications) (Ku et al. 2011). The epigenome-wide studies are
scarce outside of cancer research and, consequently, the contribution of epigenomic factors

to complex human diseases is only beginning to be unravelled (Rakyan et al. 2011).

2.1.4.6 Genotype imputation

Genotyping arrays utilized in GWASs interrogate only a small subset of currently known
variants. Utilizing LD between variants, it is possible to impute (i.e. predict) untyped
variants based on the smaller set of genotyped ones and larger panel of reference
genotypes.

Genotype imputation has several benefits. It can increase the statistical power of the
study, and provides a means to fine-map association regions to pinpoint causal variants
(Figure 3 A). Imputation also allows prediction of other than SNP variations such as
INDELSs if suitable reference panels such as the 1000 Genomes Project are used. Finally,
genotype imputation facilitates meta-analyses of different studies if they did not include
the same set of variants (Marchini & Howie 2010).
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Figure 3. Genotype imputation. A) Illustration of the gain in power and fine-mapping provided
by imputation. B) Schematic illustration of the genotype imputation process modified from the
following article (Marchini & Howie 2010). See text for explanation.

The basic process of genotype imputation is illustrated in Figure 3 B. A cohort of
individuals has been genotyped with a given GWAS chip, leaving many known (and
unknown) variants untyped (1). The genotyping technology is not able to determine which
variants reside together on the same chromosome, and this information must be
probabilistically inferred, producing two local stretches of variants likely to reside on the
same chromosome for each individual (i.e. haplotypes) (2). These short haplotypes will be
related to each other in a sample of unrelated individuals and individuals in a reference
panel (3) by being identical by descent. Subsequences of the study haplotypes are matched
to those of different reference panel individuals (3), resulting in the haplotypes of study
individual’s being modelled by a mosaic of reference haplotypes (indicated by different
colors in Figure 3 B). The missing genotypes are then inferred from the matching

haplotypes (4).
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The imputed genotypes are probabilistic (contrary to the simple schematic in Figure 3),
so imputation methods produce a probability distribution of all possible genotypes for each
individual. This distribution can be modelled using Hidden Markov Models in which the
transition state space and probabilities of variant-to-variant transitions are modelled from
haplotypes of a reference panel as in Impute 2 (Howie et al. 2009).

Using the best guess genotype after imputation in subsequent association analyses can
lead to false positives or reduced power and therefore should not be used, rather the
uncertainty should be taken into account in the association analyses (Marchini & Howie
2010).

2.2 THE HUMAN TRANSCRIPTOME

The function of the human genome in the cells, tissues, organs and the whole body is
ultimately channeled through the transcription of the protein coding parts of genes to
mRNA molecules, which are in turn translated to proteins on ribosomes. Other types of
functional RNA molecules are also transcribed from the genome such as ribosomal RNA
(rRNA), transfer RNA (tRNA) and many other small RNA molecules with diverse
functions as enzymes or with gene regulatory functions (Guil & Esteller 2012). The
collection of all of the different types of transcribed RNA molecules is called the
transcriptome.

A protein-coding gene consists of exons and introns. All introns and exons are first
transcribed to mRNA molecules by RNA polymerase II enzyme. The intron parts of full-
length mRNA molecules are almost always removed, and combinations of exons are
assembled by the spliceosome complex in a process called alternative splicing. After
splicing, the mRNA molecules are exported from the cell nucleus to the ribosomes for
translation of the mRNA code to the specific sequence of amino acids, i.e., into a protein.
Finally, the protein may undergo chemical modifications called post-translation
modifications, and the protein folds into its functional conformation.

The approximately 21,000 protein coding genes are coded by only 3 percent of the
human genome (Dunham et al. 2012). However, a huge variety of different proteins are
produced from those genes via alternative splicing (on average ~4 per gene) (Dunham et al.
2012) and many different post-translational modifications (Choudhary & Mann 2010).

221 Regulation of gene expression

The activity of protein coding genes need to be precisely controlled spatially and
temporally in order to produce proteins in correct time and amount as needed by a cell,
tissue, organ or the whole body (Noonan & Mccallion 2010; Davidson & Erwin 2006). The
regulation of gene expression can occur at many points, including transcription initiation,

elongation (Guenther et al. 2007), or mRNA stability as well as translation and protein
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degradation (Vogel & Marcotte 2012; Wu & Brewer 2012). Control of transcription initiation
is most relevant to the present thesis (Studies I and II), and it is discussed in detail,
although a significant amount of control occurs in subsequent steps after mRNA
transcription (Vogel & Marcotte 2012).

For a gene to become active, the basic transcriptional machinery needs to have access to
the DNA sequence near the transcription start site (TSS), in an area called the promoter of
the gene. Transcription factors (TF) are proteins that can bind to the DNA strand in the
promoter regions of a gene and guide the transcriptional machinery to initiate
transcription. There are two types of transcription factors binding to the promoter region: 1)
TFs of the general transcriptional machinery bind to the core promoter in the immediate
vicinity of TSS; and 2) more general TFs bind to the proximal promoter. TFs of general
transcriptional machinery can usually only drive low levels of expression, whereas
proximal TFs can have a greater impact as transcriptional activators or repressors. In
addition to promoter sequence elements, more distant elements can also have effect on
gene expression. Enhancers and silencers are positive or negative regulatory elements that
can reside even several hundred kilobases upstream of a given TSS, downstream of a TSS in
an intron, or even beyond the end of the gene (Figure 4) (Maston et al. 2006).

TFs bind to their characteristic short (6-21 bp) DNA sequences called transcription factor
binding sites (TFBS). These binding sites are not exact, but are characterized by a consensus
sequence where the probability of each nucleotide in each position varies and some
positions are more fixed while other positions are more tolerant to different nucleotides
(Spitz & Furlong 2012; Bryne et al. 2008; Matys 2003).

Mutations in TFBS can alter the binding affinity and subsequently the transcriptional
activity of a gene, and can cause human diseases. A mutation in a TFBS 43 bp upstream
from the low-density lipoprotein receptor affects it's expression and cause familial
hypercholesterolemia (Koivisto et al. 1994). Favorable lactase persistence trait, the ability to
break down lactose in adulthood, is caused by a mutation in a probable distant silencer
(Enattah et al. 2002). The lactase gene is typically silenced in mammals after weaning, but
an SNP 14kb upstream disrupts the silencer activity, allowing continued expression of the

lactase gene and lactase enzyme activity (Rasinpera et al. 2005).
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Proximal promoter region  Core promoter Gene coding region

Figure 4. Illustration of a gene promoter and regulation. Chromatin consists of DNA packaged
into histones. This packaging must be unwound for the transcriptional machinery to have access
to the transcription start site (TSS) in the core promoter. Transcription factors bind to their
specific transcription factor binding sites (TFBS) near the TSS (proximal region) or further away
(enhancer) and can influence the transcriptional efficiency. Adapted from (Maston et al. 2006;
Lenhard et al. 2012).

Another regulatory mechanism controlling transcription is epigenomics. Epigenomic
modifications alter the structure and packaging of DNA while the DNA sequence itself
remains the same. These epigenetic modifications can be inherited or acquired. Here we
adopt the definition of epigenetics by Adrian Bird: ”“the structural adaptation of
chromosomal regions so as to register, signal, or perpetuate altered activity states” (Bird
2007).

The cytosine residues in DNA strand can be methylated to 5-methylcytosine at CG
dinucleotides. CG dinucleotides can be repeated as a so called CpG islands, which often
occur in promoter regions and their hypermethylation is associated with silenced gene
expression (Hsieh 1994). DNA methylation is also involved in X chromosome inactivation
(Panning & Jaenisch 1996), repression of retroviral elements (Walsh et al. 1998) and
genomic imprinting (Li et al. 1993), the differential modification distinguishing maternally
or paternally inherited chromosomes in the offspring. The amino acids at the tails of the
histone proteins are another target for epigenetic modifications. These include methylation,
ubiquitylation, phosphorylation, and acetylation. These modifications are considered to
modify gene expression by affecting chromating packaging or by serving as signalling
factors to other proteins. The chromatin code is very complex, of which we have only a
very limited understanding (Berger 2007).

Just recently, the ENCODE project reported a wide catalog of regulatory elements in
human cells, including accessible chromatin (DNAse hypersensitivity) in 25 cell types,

DNA methylation patterns in 82 cell lines, 12 histone modifications in 46 cell types, and
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DNA binding of 119 different transcription factors in 72 different cell types (Dunham et al.
2012). Some key findings were: approximately 80% of the human genome is involved in at
least one RNA expression or chromatin associated event in at least one cell type studied;
Most TFs show enriched binding signals in a narrow DNA region near TSS; TF binding and
chromatin modification in a narrow promoter region around a transcription start site can
explain a large fraction of variation in transcription from a specific TSS but not the variation
of mRNA transripts; SNPs associated with different diseases in genome-wide association
analyses are enriched within identified non-coding functional elements. In study III the
functional elements identified in ENCODE project are used to predict putative functional

consequences of identified variants.

2.2.2 Studying the transcriptome

Studying the transcriptome has been widely used to gain insight into molecular
mechanisms underlying human diseases. The key assumption is that a change in
transcriptional activity of genes is an indicator of change in the function of diseased tissues,
presumably contributing to disease mechanisms. Identifying signaling pathways and genes
involved could lead to a better understanding of the disease process, and lead to
development of novel diagnostic, prognostic, and therapeutic tools. (Margulies et al. 2009;
Kwong et al. 2012)

Applying transcriptome profiling in human diseases typically involve comparison of
two or more types of tissues such as the comparison of the diseased tissue to the
corresponding healthy tissue, and identification of transcripts that are differentially
expressed between the tissues. The typical result of transcriptomic profiling is then a set of
differentially expressed genes. This set of genes might be extremely useful in identifying
genes that appear to play a role in the etiology, development, and progression of the
studied disease. Often, however, the list contains hundreds of genes and may fail, at least in
the light of present knowledge, to provide insight into the molecular mechanism of the
disease process. In chapter 2.5, some bioinformatic methods for the functional analysis of
differentially expressed gene sets are reviewed. In Study II of the present thesis, a novel
computational method and software tool was developed to assist researchers in gaining
additional insight and in generating data driven hypotheses from such gene sets.

Another use for transriptome profiling is to study how variation in the genome may lead
to differential gene expression, providing mechanistic explanations between, e.g., GWAS
findings and phenotypes. These variants, called expression quantitative trait loci (eQTL),
are searched for in Study III. In fact, SNPs associated to human traits in GWAS studies are
more likely to be eQTLs (Nicolae et al. 2010).

Traditionally, the transcriptional activity of genes has been measured by quantitative
PCR, one gene at a time. This approach is limited similarly as the candidate gene
association analyses, requiring educated guesses for the selection of candidate genes. This

approach may be sensible, however, in functional studies of the loci identified by GWAS. In



20
complex diseases, with limited knowledge of molecular mechanisms, more holistic
approaches are required. The advent of microarray technology in the mid 1990’s (Schena et
al. 1995) revolutionized expression studies by allowing simultaneous measurement of
mRNA levels of most human genes.

Microarray technology is dependent on the knowledge of the studied organism’s
genome sequence and annotations of transcribed regions. Microarrays contain sets of
oligonucleotide probe sequences, and each sequence is complementary to a subsequence of
each target mRNA. Total mRNA is isolated from tissues or cell cultures, and it is reverse
transcribed to complementary DNA (cDNA) and finally labeled complementary RNA
(cRNA) is transcribed from cDNA. The total labeled cRNA is then let to hybridize to the
microarray chip. Dedicated scanners are used to detect the intensities of signals from
labeled cRNA hybridized to specific locations on the microarray chip. The microrrays are
commercially available from several vendors, each with their own array designs. The most
popular arrays are produced by Affymetrix (www.affymetrix.com) and Illumina
(www.illumina.com), which are also the main manufacturers of genotyping arrays. After
computational steps of pre-processing and normalization these intensity signals can be
used to semi-quantitatively assess the expression level of each transcript. Semi-quantitative
refers to the fact that microarray intensity levels cannot be interpreted as specific amounts
of mRNA. Instead, the intensities can be used to assess the relative expression levels
between experimental groups.

Lately, next-generation sequencing for transcriptome profiling (RNA-Seq) has become
available (Wang et al. 2009). In RNA-seq, the total RNA is extracted and reverse transcribed
to cDNA, which is then processed in to a library of short sequences, and massively parallel
sequencing is finally used to read the sequences. The short DNA sequences can then be
either mapped to reference genome or to reference transcripts or alternatively the overlap
in short sequences can guide de novo assembly of transcripts. The number of reads of each
trancript is used as a measure of abundance of the transcript. RNA-seq methods have some
advantages over the microarray approach. First, RNA-seq does not necessarily require any
a priori knowledge about the transcripts of the studied tissue. RNA-seq is suitable for the
detection of novel transcripts or alternative mRNA splicing. Another advantage is the
possiblity to detect differences in RNA sequences allowing the identification of mutations
or mRNA editing events. The data from RNA-seq are expected to be less noisy, not affected
by cross-hybridization of similar sequences. Finally, RNA-seq has a broader dynamic range
than microarrays (Wang et al. 2009).

The first enthusiastic reports of RNA-seq’s technical reproducibility were based on a
small sample sizes, and recently pitfalls in RNA-seq approach have been reported. RNA-
seq protocols include steps that can induce biases in the data, and the sequence content of
the mRNA molecules studied can affect the results (Roberts et al. 2011; Li et al. 2010). These

biases require sophisticated normalization procedures to mitigate their impact, similarly as
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in microarray studies (Hansen et al. 2012). These normalization techniques are mature in
microarray technology, but in RNA-seq the biasing problems are just being recognized and
appropriate normalization methods are being developed. Despite these differences, the
data from the both methods do correlate with each other, but the lower sensitivity of
microarrays may reduce the statistical power to detect as many differentially expressed
genes (Fu et al. 2009; Bradford et al. 2010; Malone & Oliver 2011).

One shortcoming of the transcriptome profiling in studying complex diseases, with
either microarrays or RNA-seq, is that only about 40% of the variation in protein levels
might be explained by the mRNA concentrations, and the rest of protein level variation
could be explained by post-transcriptional mechanisms. The abundance of mRNA seems,
however, to be an excellent indicator of the presence of a given protein (Vogel & Marcotte
2012).

In common complex diseases, transcriptome profiling has indicated novel candidate
genes and pathways, increased the understanding of the molecular mechanisms of those
diseases, and has led to novel diagnostics approved also for clinical use. For example,
microarray profiling of liver, visceral fat, skeletal muscle, atherosclerotic vs. unaffected
arterial wall isolated from coronary artery disease (CAD) patients, has identified a group of
genes in atherosclerotic vascular and visceral fat tissues that associates to the extent of
coronary stenosis (Hagg et al. 2009). The association of this gene group to the coronary
stenosis was confirmed by expression profiling of an independent CAD cohort. The gene
group was linked to the leukocyte transendothelial migration signalling pathway, and the
LBD?2 transcription factor binding site was identified in the promoter regions of all these
genes, suggesting LBD2 as a key regulator in coronary stenosis. In another study, the
transcriptomic profiling of breast cancer tissue by microarrays led to the identification of a
panel of 70 genes, which proved be a better predictor of the 5-year probability of distant
metastases than any other clinical predictor used (Veer et al. 2002). The FDA has approved
this panel, called Mammaprint, after validation in further studies.

2.3 COMPLEX DISEASES

Human diseases can be roughly divided into two classes based on the impact of inheritance
in their etiology. A disease is termed Mendelian if it segregates in families following the
Mendelian laws of segregation. In Mendelian diseases, there is typically a single gene or a
locus with a causal effect but additional genes may modulate the appearance of the disease
(Chial 2008). Mutations that cause severe consequences remain rare in the population since
they diminish the probability of having offspring.

The identification of a causative mutation can be a relatively straightforward when a
sufficient number of members in families with the genetic condition are identified. There

are currently over 3,200 Mendelian diseases tied to a specific gene but causative genes in as
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many rare diseases or phenotypes have not been identified (McKusick-Nathans Institute of
Genetic Medicine, Johns Hopkins University, Baltimore).

With no obvious pattern of inheritance, a disease is termed complex or multifactorial
such as type 2 diabetes, hypertension, schizophrenia, or multiple sclerosis. The
development of complex diseases is determined in various proportions by multiple
genomic, epigenomic and environmental risk factors and their interactions. Unraveling the
mechanisms and impact of these factors in complex disease development is much more
difficult than in Mendelian diseases because the development these diseases are controlled
by multiple genetic, epigenetic and environmental factors and their complex interactions
(Craig 2008).

2.4 SACCULAR INTRACRANIAL ANEURYSM (SIA) DISEASE

Intracranial extracerebral aneurysms are classified into: 1) saccular intracranial aneurysms
(sIAs), pouches that develop during life in the forks of extracerebral arteries (Figure 5); and
to 2) fusiform intracranial aneurysms, spindle-like dilatations of extracerebral artery trunks.
Fusiformic aneurysms are the dominant type in the aorta, but for unknown reasons,
saccular aneurysms account for about 96% of the intracranial extracerebral artery
aneurysms. The current thesis, similar to most previous research, focuses on sIA disease.

Unruptured sIAs are almost always too small to cause neurological symptoms, and most
remain undetected during life (Brisman et al. 2006). Large unruptured sIAs can cause
neural symptoms by compressing, e.g., the optic nerve (visual deficits) or the oculomotor
nerve (diplopia and proptosis), or cerebral ischemia due to emboli from inside the
aneurysm (Friedman et al. 2001). The rupture of the sIA pouch, however, causes
subarachnoid hemorrhage (sIA-SAH), pouring of high-pressure arterial blood into the
subarachnoid space on the surface of the brain and possibly into the brain tissue or the
brain ventricles. Aneurysmal SAH is a devastating form of stroke that affects the working
age population (van Gijn et al. 2007).

The case fatality of SAH is variable but has been estimated to have been almost around
50%, however recently improving to under 40% (Stegmayr et al. 2004; Nieuwkamp et al.
2009) and about a third of the survivors are moderately or severely disabled (Hop et al.
1997). Neurosurgery at Kuopio University Hospital (KUH) solely serves a defined Eastern
Finnish catchment population (Huttunen et al. 2010), and 26% of the sIA-SAH patients
admitted alive to KUH died at 12 months due to complications of the bleeding
(Karamanakos et al. 2012).
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Figure 5. A) Drawing of a saccular intracranial aneurysm at a typical location in the Circle of
Willis at the base of the brain (modified from www.nebraskamed.org). B) Photograph of a
human saccular intracranial aneurysm taken during surgery.

24.1 Epidemiology
The prevalence of sIA has been estimated to be 3% in a population with a median age of 50
years and consisting of 50% males (Vlak et al. 2011). Most sIAs do not rupture during life
as the incidence of sIA-SAH is only 9.1 (95% CI 8.8-9.5) per 100,000 life-years in Europe and
North America, about half of that observed in South and Central America 4.2 (3.1 to 5.7)
and strikingly about twice in Japan 22.7 (21.9 to 23.5) and Finland 19.7 (18.1 to 21.3) (de
Rooij et al. 2007). The reasons for the higher incidence in Finland and Japan are not known.
The overall annual rupture rate of unruptured slAs is estimated to be around 1%
(Wermer et al. 2007; Morita et al. 2012; Miiller et al. 2013). The risk of rupture can vary by
aneurysm size, location, shape, patient gender and ethnicity (Wermer et al. 2007; Morita et
al. 2012). Posterior aneurysms are more likely to rupture than MCA aneurysms and also
larger aneurysms and aneurysms with secondary pouches are more likely to rupture
(Morita et al. 2012). In a recent meta-analysis, the incidence of sIAs seems comparable in
Japan and Finland to that of the rest of the world, hinting to the possibility of higher
rupture risk explaining the higher incidence of SAH in those countries (Vlak et al. 2011).
The possible genetic basis behind the higher rupture or incidence rate in Finland is
investigated in study III.

2.4.2 Risk factors
sIA disease is acquired during life as suggested by the increasing incidence of sIAs by age
and very low incidence in the first two decades of life (Rinkel et al. 1998). The average age
of aSAH has been in the sixth decade of life but is increasing and currently estimated to be
62 years (Nieuwkamp et al. 2009).

The incidence of SAH becomes dominant in females in the sixth decade of life (de Rooij
et al. 2007). The higher incidence of SAH in women after menopause suggest that hormonal

changes may play a role (Mhurchu et al. 2001).
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Smoking, hypertension, and excess alcohol consumption are the strongest modifiable
risk factors for SAH (V. L. Feigin et al. 2005; V. Feigin et al. 2005). Hypertension increases
the risk of SAH approximately 2.5 times and the risk effect of hypertension has been
reported to be 30% higher in females (V. L. Feigin et al. 2005). Smoking at some point in life
increases the risk of SAH by 2.2- to 3.1-fold when compared to never smoking. Similarly,
previous smoking also increases the risk by 1.5 to 2.3-fold as compared to never smoking.
Current smokers hav the highest risk of 2.2-3.1-fold as compared to never and previous
smokers combined (V. L. Feigin et al. 2005). Excess alcohol intake (> 150g/week)
approximately doubles the risk of SAH (V. L. Feigin et al. 2005). These three acquired risk
factors accounted for SAH as follows: smoking 20%; alcohol > 300 g/wk 21% and 100 to 299
g/wk 11%; and hypertension 17% (Ruigrok et al. 2001).

Over 10 % of aSAH patients have first or second degree relatives with SAH or
unruptured aneurysms (Ruigrok et al. 2005; Huttunen et al. 2010). The relative risk of aSAH
of first degree relatives of aSAH patients has been estimated to range from 4.1 to 6.6 with a
population attributable risk of 11% (Ruigrok et al. 2001). Familial patients also more often
seem to have multiple aneurysms (Mackey 2012; Ruigrok et al. 2004; Huttunen et al. 2010),
suggesting that genetic factors may increase the risk of developing aneurysms. The
association of smoking, female gender, and hypertension to the number of sIAs remains to
be verified in large enough cohorts (Juvela 2000; Ellamushi et al. 2001; Qureshi et al. 1998).
The association of SNPs, INDELs and structural variants to the number of sIAs Finland is

investigated in Study III of the present thesis.

2.4.3 Molecular biology of intracranial extracerebral arteries and sIA wall

The phenotypical tissue of the sIA disease is the branching site of the intracranial
extracerebral arteries. The arterial wall consists of three histologically separate layers: the
intima consisting of endothelial cells; the media containing mainly smooth muscle cells;
and the adventitia containing mostly fibroblasts. In extracranial arteries, the media is
separated from the intima and the adventitia by the internal elastic layer (IEL) and the
external elastic layer (EEL), respectively. Instead, the intracranial extracerebral arteries lack
the EEL (Figure 6) (Ruigrok et al. 2005).
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Figure 6. Schematic diagram of intracranial extracerebral artery wall structure. Adapted from
(Ruigrok et al. 2005)

The histological studies of ruptured and unruptured sIA walls show degenerative and
inflammatory changes associated to the rupture. Unruptured sIA walls already manifest
damaged endothelial layer, absence of IEL, and disorganized media. The amount of smooth
muscle cells in medial layer is also decreased (Scanarini et al. 1978; Frosen et al. 2004).

Ruptured sIA walls expectedly differ from unruptured ones. Some differences are likely
due to the rupture event, but inflammatory and wall remodeling processes likely also
precede the rupture (Frosen et al. 2004; Laaksamo et al. 2008; Kataoka et al. 1999).
Specifically, immunohistochemichal studies indicate loss of endothelium and subsequent
intraluminal thrombus formation, loss of mural cells and collagen matrix degradation
(Frosen et al. 2004; Kataoka et al. 1999).

2.44 Genetics of the sIA disease
The tendency of the sIA disease to cluster in families (Ronkainen et al. 1997; Ruigrok et al.
2005) and the fact that familial background predisposes to the rupture (Ruigrok et al. 2001)
at an earlier age (Huttunen et al. 2010; Bromberg et al. 1995) suggests that genetic factors
might affect the risk of sIA formation and sIA rupture. On the other hand, the familial sIA
clustering could also be affected by clustering of acquired socioenvironmental risk factors.
Based on a large Nordic twin study, the concordance of subarachnoid hemorrhage was low
in monozygotic twins which suggests low heritability of SAH in general (Korja et al. 2010).
A few Mendelian diseases are associated with sIA disease. Autosomal dominant
polycystic kidney disease (ADPKD) caused by mutations in PKD1 (85% of the cases) and/or
PKD2 genes is clearly and specifically associated with the saccular form of IAs (Torres et al.
2007). Some 8% to 12% of ADPKD patients develop slAs (Pirson et al. 2002; Xu et al. 2011).
A recent meta-analysis reported a prevalence ratio of unruptured IAs of 6.9 (95% CI 3.5-
14.0) in ADPKD and of 3.4 (1.9-5.9) in familial sIA disease as compared to the general
population (Vlak et al. 2011). ADPKD however accounts for only 0.3% of aSAH cases
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(Ruigrok et al. 2001). Autosomal dominant fibromuscular dysplasia patients also seem to
have increased prevalence of sIAs (7.3%) (Cloft et al. 1998). Many candidate gene studies
have been conducted since the late 90’s, motivated mainly by Mendelian diseases
suggested to be associated to the SIA disease, but these studies did not identify consistently
replicating risk variants (Nahed et al. 2007). Several linkage studies aimed to identify
chromosomal regions segregating in sIA families have identified many chromosomal loci
(Nahed et al. 2007; Ruigrok & Rinkel 2008) but only a few loci (1p34.3—p36.13, 7ql1,
19q13.3, and Xp22) have been replicated in an independent studies in other populations.
The identified regions are large, containing many genes, and the significance of these loci is
unknown.

The first genome-wide association study of sIA disease was published in 2008 (Bilguvar
et al. 2008). The study employed a two-stage design: genome-wide discovery (289,271
SNPs) in Finnish (920 cases, 985 controls) and Dutch (781 cases, 6424 controls) samples
followed by replication of the most promising associations (p < 5 x 107) in a Japanese
sample (495 cases, 676 controls). The study identified and replicated three SNPs in three
loci (2933.1, 8q11.23-q12.1 and 9p21.3). In addition, the 8qll locus contained a second
independent genome-wide significant SNP in the European sample, which failed to
replicate in the Japanese sample.

In a follow-up study, two samples were added to the discovery phase, a German sample
(789 cases and 2228 controls) and a combined European sample from Germany, Great
Britain, Hungary, The Netherlands, Switzerland, and Spain (475 cases and 1940 controls)
(Yasuno et al. 2010). The replication phase was augmented by adding a new Japanese
sample (2,282 cases and 905 controls) and by increasing the cases and controls (a total of 829
cases and 761 controls) in the previous Japanese replication sample. The number of studied
SNPs was increased to ~832,000 by imputation based on the HapMap phase 2 CEU
reference panel. The study identified three new risk loci in 18q11.2, 13q13.1 and 10q24.32
and confirmed two of the previous loci in 8ql11.23—q12.1 and 9p21.3. The previously
reported locus 2q33.1 was not carried forward to replication as the probability of
association was lower than the probability of no association in the applied Bayesian
association analysis. In the 8qll locus, the replicated SNP was the one that failed
replication in the first study, and the SNP previously replicated, failed to reach genome-
wide significance in the discovery phase and also failed to replicate in the Japanese sample.

In a second followup study using the same samples, the 14 loci with weaker associations
in the discovery phase (probability of association 0.1 - 0.5) were taken to replication
(Yasuno et al. 2011). Three loci (4q31.23, 12q22 and 20p12.1) replicated in the Japanese
sample, but only one of those on 4q31.23 reached genome-wide significance when the
samples were combined. It is noteworthy that the 2q33.1 locus discovered in the first study
and not replicated in the second study was one of the 14 loci carried to the replication, and

it did replicate in terms of statistical significance but the risk allele was different (i.e., the
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risk allele in the discovery phase was a protective allele in the replication phase). The
authors suggested that this controversy might be caused by allelic heterogeneity between
European and Japanese populations, and stated that more studies are needed. This locus is
further studied in Study III of the current thesis.

The three GWA studies have identified 6 definitive and 1 probable loci, and they are
estimated to account for 6.1%, 4.4%, and 4.1% of the four-fold sibling recurrence risk in
Finnish, other European, and Japanese populations, respectively (Yasuno et al. 2011).
Although most of the associated variants are located within or in LD with adjacent genes,
suggesting those genes as IA candidate genes, the functional significance of the loci are not
known.

The first functional clues of the pathophysiological mechanisms of sIA GWAS loci was
revealed in a cross-phenotype study which investigated the association of the sIA loci with
hypertension, a strong acquired risk factor of sIA disease (Gaal et al. 2012). Among the six
established and 13 suggestive loci (Yasuno et al. 2010; Yasuno et al. 2011), a suggestive
variant on 5q23.2 was significantly associated with increased systolic blood pressure in
9893 Finnish individuals. The association was replicated in a cohort of 200,000 individuals
of European descent. Summary of replicated genomic loci affecting affecting sIA disease

risk are shown in Table 3.
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Table 3. Replicated genetic variants/loci linked to sIA disease

Locus Gene RAF Study Effect size Reference
type
4931.23 EDNRA 85%* GWAS OR 1.22 (95%-CI (Yasuno et al. 2011)
1.14-1.31)
8g12.1 SOX17 83%* GWAS 1.28 (1.20-1.38) (Yasuno et al. 2010)
9p21.3 CDKN2A/ 58%* GWAS 1.32 (1.25-1.39) (Yasuno et al. 2010)
CDKN2B
10g24.32 CNNM2 91%* GWAS 1.29 (1.19-1.40) (Yasuno et al. 2010)
13g13.1 KL, 23%* GWAS 1.20(1.13-1.28) (Yasuno et al. 2010)
STARD13
18q11.2 RBBP8 48%* GWAS 1.22 (1.15-1.28) (Yasuno et al. 2010)
1p34.3- Many. Likely  LNK - (Nahed et al. 2005; Ruigrok
1p.36.13 Potential rare et al. 2008)
candidate
HSPG2
(Ruigrok et
al. 2006)
7q11 Many. Likely  LNK - (Onda et al. 2001; Farnham
Potential rare et al. 2004)
candidate
ELN (Onda
et al.
2001;
Akagawa et
al. 2006)
19q13.3 Many. Likely  LNK - (Olson et al. 2002; Yamada et
rare al. 2004; van der Voet et al.
2004; Mineharu et al. 2007)
Xp22 Many. Likely  LNK - (Yamada et al. 2004; Ruigrok
rare et al. 2008)
16p13.3 PKD1 Rare MEND  Prevalence of sIA (Vlak et al. 2011)

is 6.9 higher in
ADPKD patients
than in general
population.
4q22.1 PKD2 Rare MEND  Prevalence of sIA (Vlak et al. 2011)

is 6.9 higher in
ADPKD patients
than in general

population.
RAF: Risk allele frequency; LNK: linkage; MEND: Mendelian disease associated with sIA disease; ADPKD:
Autosomal Dominant Polycystic Kidney Disease; * European populations in 1000 Genomes Project




29

2.4.5 Whole genome expression profiling of human sIA tissue

Five whole genome gene expression studies of human sIA tissues have been published
(Table 4). Krischek et al. (Krischek et al. 2008) and Shi et al. (Shi et al. 2009) compared
combined ruptured and unruptured intracranial aneurysm (IA) wall tissues with control
artery walls and reported, for example, major histocompatibility complex class II
overexpression, inflammatory response, and apoptosis as characteristic processes of
aneurysm wall tissue. Li et al. (Li et al. 2009) compared unruptured IAs only with control
arteries and, in contradiction, reported downregulation of several immune-related genes.
Pera et al. reported cell adhesion and muscle system related genes to be downregulated and
immune system and inflammatory response related genes to be upregulated when
comparing ruptured and unruptured aneurysms together to control arteries (Pera et al.
2010). Marchese et al. compared ruptured sIAs to control arteries and reported structural
proteins of the extracellular matrix, members of matrix metalloproteinase (MMP) family
(which resulted as being overexpressed) and genes involved in apoptotic phenomena to be
differentially expressed (Marchese et al. 2010).

Transcriptomic comparisons of human ruptured and unruptured sIA walls have
been performed in four studies (Table 4). Very few differentially expressed genes were
identified in those studies and consequently statistically significant pathway analyses were
not possible. Pera et al (Pera et al. 2010) reported only 1 upregulated gene in ruptured IA
walls compared with unruptured walls and stated, in slight contradiction to previous
immunohistochemical studies, that some inflammatory genes were more highly expressed
in unruptured IAs.

In these previously published whole-genome expression studies there were some
seemingly contradicting results expecially whether the inflammatory reactions are
upregulated in ruptured or unruptured slAs or whether inflammatory genes are
downregulated in IA tissues as compared to controls. Many differences could lead to these
results including: different case vs. control selection, different statistical methods used,
small sample sizes in many studies, suboptimal annotation files (Sandberg & Larsson 2007)
used in Affymetrix analysis by Marchese et al and Li et al. In study II of the current thesis
whole-genome expression profile between ruptured and unruptured slAs is investigated to
shed light on the role of inflammation in aneurysm rupture and to identify more specific

pathways potentially contributing to sIA rupture.
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Table 4. Whole-genome gene expression profiling studies of human saccular intracranial
aneurysm tissue.

Cases Controls Genes?{? Genes | Array Ref.
6 RAs and 4 4 AVM 263 258 Agilent Human (Krischek et al. 2008)
UAs feeder 1A(v2)
arteries
6 RA 4 UAs 2% 0 Agilent Human (Krischek et al. 2008)
1A(v2)
3 RAs and 3 6 STAs 172 154 Illumina Human  (Shi et al. 2009b)
UAs from the WG6-v2
same
patients
as cases
3 RAs 3 UAs 0 0 Illumina Human  (Shi et al. 2009b)
WG6-v2
3 UAs 3 STAs 164 996 Affymetrix (Li et al. 2009)

HU133 Plus 2.0

8 RAs and 6 5 MMA 8 123 Affymetrix (Pera et al. 2010)
UAs GeneChip
Human Gene ST
1.0
8 RAs 6 UAs 1 31 Affymetrix (Pera et al. 2010)
GeneChip
Human Gene ST
1.0
12 RAs 10 UAs 10 4 Affymetrix (Marchese et al. 2010)
U133A
12 RAs 5 22 8 Affymetrix (Marchese et al. 2010)
U133A
STA/MMA
from the
same
patients
as cases

RA: Ruptured saccular intracranial aneurysm; UA: Unruptured saccular intracranial aneurysm; STA:
Superficial temporal artery; AVM Arteriovenous malformation; Middle meningeal Artery; * Did not specify
if the genes were upregulated or downregulated.
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2.5 CHALLENGES AND BIOINFORMATIC SOLUTIONS FOR
INTERPRETATION OF RESULTS FROM HIGH THROUGHPUT
ANALYSES

High-throughput methods have revolutionized the research of complex diseases by
enabling simultaneous genome-wide measurement of genetic variants, gene expression,
and protein levels. Current technologies are able to produce massive amounts of data in a
short time and the bottleneck in the research process has shifted from producing the data to
intelligent bioinformatic analyses. Each technology platform has its own idiosyncrasies
often requiring sophisticated statistical methods to obtain reliable and comparable results.
A researcher obviously must be aware of these and to apply appropriate statistical
methods, not to mention proper experimental design. These questions are not discussed
further as they are out of the scope of this review but the interested reader is referred to
reviews on these topics (Leek et al. 2010; Trapnell et al. 2012; Roberts et al. 2011; Allison et
al. 2006).

After initial data-analysis, the researcher often ends up with a set of genes that are
differentially expressed between some conditions in gene expression profiling or with
genome-wide risk estimates and their associated statistical significance values in GWAS
experiments. These lists in isolation, especially in gene expression studies, fail to convey
much insight into the molecular mechanisms underlying complex diseases. In this chapter,
bioinformatic approaches for analyzing gene sets from high-throughput methods are
reviewed focusing mainly on methods for analyzing gene sets obtained from e.g.
transcriptomic or proteomic studies, while similar methods in GWAS studies are only

briefly treated.

2.5.1 Biological body of knowledge and digital representation
The first essential building block of computational analysis of gene sets from high-
throughput analyses is computationally accessible biological knowledge about genes such
as functions, regulation of expression, localization in cell or organism, interactions with
other genes and environment. Obtaining such knowledge for a larger set of genes from
traditional scientific literature is time consuming manually, and error-prone
computationally, as the data about gene functions is disseminated in individual research
articles, described in natural languages. A common strategy to represent scientific
knowledge is the creation of controlled vocabularies and using the vocabulary to describe
the knowledge gained from original data. This standardization is important so that
discoveries on gene functions by individual researchers can be unambiguosly defined,
made possible to search computationally and faster to comprehend manually (Bard & Rhee
2004).

Arguably the most widely used and accepted source of information on individual gene

product functions is the Gene Ontology (GO) project and associated databases (Ashburner



32

et al. 2000). Gene Ontology is a standardized controlled vocabulary of terms used to
annotate different aspects of gene functions. The GO defines three categories of
annotations: biological process, molecular function, and cellular component. The Biological
process category describes end points of biological activity that a gene somehow
contributes to e.g. ”positive regulation of cell death”. The molecular function annotations
describe biochemical activity such as “receptor binding”, irrespective of when or where
that binding might occur. The cellular component annnotations describe a location within a
cell where the gene product is active. The terms are organized as a directed acyclic graph
where the root nodes are the three different categories and each child node describes the
aspect more specifically than the parent node (Figure 7). This has the benefit that two genes
can be inferred to share a same more general function even though they have been
described at a different level of abstraction. All of the gene product annotations have
evidence code associations. Some of the annotations are based on experimental evidence
and manually checked by the curators such as the evidence code “Inferred from direct
assay (IDA)” while some annotations are reviewed by curators but are based on
computational predictions such as inferred from Reviewed Computational Analysis (RCA).
One of the largest annotation category is comprised of e.g. automatic transfer of
annotations from other databases or computational predictions without manual curation:
“Inferred from electronic annotation (IEA)”. The Gene Ontology consortium provides
annotations for over 20 species, including human and model organisms such as mouse,
dog, and the worm Caenorhabditis elegans. Each species’ annotations are governed by a
single member organisation of the consortium, each with their own procedures for
annotation. Human annotations are governed by the European Bioinformatics Institute
(www.ebi.ac.uk/GOA), providing GO annotations for proteins in UniProt protein resource
(http://www.uniprot.org). For the full list of consortium members, included species,
annotation codes, and their explanations refer to the consortium’s web site
(www.geneontology.org)

While Gene Ontology is somewhat comprehensive in human annotations (45,555 protein
products and 200,047 curated annotations as of 13.8.2013) and widely used, it allows
annotation of genes and gene products with a limited attribute set. For example it does not
contain attributes for disease involvement because e.g. oncogenesis is not a normal function
of any gene. For the same reasons the GO does not contain attributes for in what tissues or
in what developmental stage the gene might be expressed. There are other gene ontologies
being developed for these types of more specific use cases although the actual gene
annotations are often lacking. The Open Biological and Biomedical Ontologies (OBO) is a
community of different ontology developers aiming to develop shared principles for
ontology development. OBO Foundry is an extension to the original OBO, establishing a set
of principles for ontology creation with the aim to create a set of interoperable and non-
reduntant ontologies in the biomedical domain (Smith et al. 2007). The OBO foundry site
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lists the foundry ontologies as well as foundry candidate ontologies
(www.obofoundry.org). Some emerging ontologies likely to to be relevant to complex
human disease studies are ontologies like human disease ontology (Osborne et al. 2009)

and human phenotype ontology (Robinson & Mundlos 2010).

process

function

activity

process

migraﬁon

Figure 7. Illustration of a Gene Ontology tree. Annotations can be depicted as directed acyclic
graph where directed edges (arrows) go from broader term to more specific term.

One of the limitations of using Gene Ontology annotations for gaining understanding to
disease mechanisms from a gene set obtained from high-throughput studies is that the
biological process annotations do not necessarily describe a single coherent pathway, but
just annotates the gene product’s functions that aim to a similar biological endpoint or
function in the same cellular location. In that sense, Gene Ontology is not strictly a pathway
resource. The other class of pathway resources aims to define more focused signalling
pathways (often called canonical pathways). In addition to classifying genes as performing
a certain biological process, a pathway topology is desribed, defining interactions between
gene products (Figure 8). One of the earliest and most widely used such resources is the
Kyoto Encyclopedia of Genes and Genomes (KEGG) PATHWAY database (Kanehisa &
Goto 2000; Kanehisa et al. 2012). The KEGG PATHWAY database contains manually
compiled signalling pathways based on literature. KEGG provides pathway maps aiming
to capture, from some aspect, metabolic pathways (e.g. steroid hormone biosynthesis),
signalling cascades related to different human diseases (e.g Alzheimers disease), specific
signalling pathways (e.g. Wnt signalling pathway), different organismal systems (e.g.
Cardiac muscle contraction), and cellular processess (e.g. Apoptosis). Another similar
noteworthy resource gaining popularity and providing manually compiled and curated

pathways is Reactome (Croft et al. 2011). Reactome pathways are created by experts in
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collaboration with Reactome staff but are also subjected to peer-review, which is expected
to increase the accuracy of the provided pathways. Currently, Reactome contains ~1,300
human pathways containing ~6,300 proteins as well as pathways for 19 other species.
Several other pathway resources are constantly being developed, each with their own
annotation processes and focus areas. The Pathguide online resource (www.pathguide.org)
lists and updates pathway databases and currently lists over 60 signalling pathway

resources.
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2.5.2 Pathway analysis methods

Once pathway resources are selected, the next step in pathway analysis of gene sets is to
computationally relate the differentially expressed genes to the pathways and statistically
assess the degree of belief that this relation would not have occurred just by chance. During
the last decade, this has been an active area of research and several classes of analytical
approaches have emerged. There are far too many individual methods and software
developed for this purpose and hence individual methods will not be evaluated or
discussed, rather the different types of approaches are presented and the interested reader
is referred to a comparison article of 68 different pathway analysis methods (Huang et al.
2009). The classification of pathway tools and discussions are inspired and based on a
review by Khatri et al. (Khatri et al. 2012)

2.5.2.1 Owverrepresentation analyses

The first methods developed assess the overlap between the differentially expressed gene
set (e.g. genes significantly differentially expressed between healthy vs. diseased samples)
and gene sets derived from chosen pathway resources. Each of the gene sets in a pathway
resource in turn is tested for overlap, and statistical significance of the overlap is tested
using e.g. conventional Chi-square or Fisher’s exact test. As there are typically hundreds of
gene sets tested, the likelihood of getting significant results just by chance increases and
multiple testing correction must be applied to control against false positive findings.

The result of overrepresentation analysis is then a ranked list of statistically significant
pathways and the differentially expressed genes grouped into the respective pathways.
This aids the researcher in focusing on enriched biological processess instead of just
individual genes.

Despite the usefulness and widespread usage of overepresentation analysis, some
limitations can be identified. First, this type of analysis ignores the magnitude of
differential expression and the strength of statistical evidence and treats every gene in the
gene set equally. In some circumstances it could be appropriate to weight the genes e.g.
with higher fold change more, which might lead to identifying significant pathways.
However, also the genes that exhibit only subtle differential expression can be equally, or
more important in given context and inappropriately downweighting such genes might
then actually lead to not being able to identify the important pathways. A second type of
potential limitation is that in this approach, the researcher must decide a strict significance
cut-off when obtaining the differentially expressed gene set whereafter the rest of the genes
are ignored. Marginally less significant genes (say, two genes with p-values 0.049 and
0.051) are practically just as significant but the one is considered to be fully significant and
the other one is discarded, potentially losing important information. The third limitation is
that these methods treat each gene and pathway independently of each other (other than
assigning genes belonging to the same pathway). In reality the biological processess in cells

and tissues are highly complex interactions between genes and different pathways, and
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novel insights might be gained if the interaction information were appropriately utilized.
A final shortcoming is that these methods totally rely on previous knowledge about gene
functions and on a limited and narrow focused knowledge on the complex interactions
between genes in forming biological pathways. The curated pathways are often based on
experimental conditions in cell lines or tissues and conditions that might differ in unknown
ways from the context the researcher is facing. Study II presents one bioinformatic
approach that can be used for hypothesizing potentially novel gene functions and

biological processes in studied condition.

2.5.2.2 Enrichment analyses

In order to overcome the need to define strict cut-offs for selecting differentially expressed
gene sets and to utilize more of the measurement information (fold-change or statistical
significance), gene set enrichment analysis (EA) methods were developed. Many methods
have been developed differing in individual aspects but most follow a similar general
framework (Ackermann & Strimmer 2009).

These approaches first compute a gene-level statistic from molecular measurement of
gene expression, such as t-statistic or Z-test statistics, comparing e.g. healthy vs. diseased
tissue. The choice of the gene-level statistic seems not to be critical for detection of
differentially expressed gene sets, however untransformed statistics can fail to detect
pathways with up- and down-regulated genes. Transforming the statistic e.g. to absolute
value can be useful in such situations. (Ackermann & Strimmer 2009). Next the individual
gene-level statistics are aggregated to a single statistic per pathway. Statistics suggested can
be multi-variate such as Hotelling T (Kong et al. 2006) , thus taking into account the
interdependence between gene measurements , or univariate like average of t-test statistics
(Tian et al. 2005), effectively ignoring the correlation between genes. Perhaps unexpectedly,
although multi-variate statistics does lead to higher statistical power in the presence of high
correlation in a simulation study, univariate statistics showed higher or at worst equal
power in analysis of a real dataset, suggesting that some aspects of complex gene
expression dynamics cannot be efficiently simulated (Glazko & Emmert-Streib 2009).

Statistical significance of pathway score is typically achieved by generating empirical
null distribution of pathway-level test-statistics by permuting either the phenotypes of
samples (e.g. diseased / healthy) or by permuting genes in the gene sets. Gene permutation
tests if the observed gene set can be distinguished from randomly chosen gene set of the
same size. On the other hand, phenotype permutation tests whether the association of gene
set with phenotype is distinguishable from a random correlation of shuffled phenotypes
(Tian et al. 2005). Notably, permuting sample labels preserves the complex correlation
structure between genes and is often favored. (Dinu et al. 2009; Nam & Kim 2008). One of
the first and most widely used methods (33,000 registered users and > 3,100 citations) Gene
Set Enrichment analysis (GSEA), ranks genes based on differential expression statistic (e.g.

fold change) and calculates a running sum statistic for the top or bottom of the list
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(Weighted Kolmogorov-Smirnov type statistic) (Subramanian et al. 2005; Mootha et al.
2003). Also simpler and computationally faster parametric approaches such as z-test have
been proposed (Irizarry et al. 2009).

Enrichment analysis methods typically overcome the three issues of over-representation
analyses. First, they circumvent the need to define a strict threshold between significant
and not significant differential expression of genes. Second, EA methods utilize the
molecular measurement of expression in order to detect coordinated changes in the
expression of genes in the same pathway. Third, the utilization of gene expression changes
allows taking into account the correlation of genes in the pathway. Enrichment analyses
share the shortcoming of over-representation analyses that they consider each pathway in

isolation and ignore the topology of the signalling network of genes.

2.5.2.3 Topology based pathway analysis

EA and ORA approaches consider only the number of genes in a pathway or gene
coexpressions to detect differentially expressed pathways and totally ignore the topology of
the interaction provided by some signalling pathway resources, such as KEGG and
Reactome. A third type of pathway analyses, topology based (TP) analyses, aims to take
into account the topological ordering of genes in a pathway.

TP methods are typically similar to the three-step process of EA methods except that
they use pathway topology information in computing the gene-level statistic.
(Rahnenfiihrer et al. 2004; Tarca et al. 2009; Draghici et al. 2007). For example, Impact Factor
analysis (IF) and its enhancement SPIA combine the evidence of overrepresentation
analysis and topology based analysis (Draghici et al. 2007; Tarca et al. 2009. IF defines a
gene-level statistic (termed Perturbation Factor, PF) as the sum of fold change of the gene
and PF of all the genes preceding the gene in the pathway. Pathway-level statistic (termed
Impact Factor, IF) is then defined as a sum of all PFs of the genes in the pathway. Statistical
significance of pathway-level statistic is calculated by repeatedly assigning as many
random genes from the list of differentially expressed genes as there were differentially
expressed genes in the pathway to replace a random gene in the pathway. IF is calculated
for all of these repeated randomizations and the p-value is calculated by observing the
number of times the randomizations achieved higher IF than the actual data (Draghici et al.
2007; Tarca et al. 2009).

TP methods are more recently developed and despite their intuitively appealing
advantages, no method has gained significant popularity like GSEA, presumably at least
due to lack of comprehensive comparison between methods. One limitation of PT analyses
is that the topology of signalling is dependent on cell-specific gene expression patterns and
conditions being studied. This knowledge is often not readily available (Bauer-Mehren et
al. 2009).
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2.5.3 Challenges and limitations of pathway analysis

Pathway analyses are an essential tool for interpreting large differentially expressed gene
sets from experimental condititions but are mainly limited by incomplete and inaccurate
gene function annotations. For instance, 95% of human Gene Ontology annotations are
inferred from electronic annotations without manual curation. These annotations are likely
to contain more false positives, although this has not been shown conclusively (Rhee et al.
2008). Furthermore, most of the pathways in pathway databases are curated by combining
evidence from many different cell types and conditions (Bauer-Mehren et al. 2009).
Therefore the available pathways may not correctly reflect the signalling pathway under
the studied condition. Methods using literature mining of pubmed abstracts has been
proposed to alleviate the problem of incomplete annotations in pathway analysis (Jelier et
al. 2011).

Finally, all pathway analysis tools typically map the input genes to a single unique gene
identifier. However, over 90% of the human genes are estimated to be alternatively spliced
and these isoforms of the same gene may have both related and opposing functions (Wang
et al. 2008). This mapping to a single gene identifier can be advantageous in that the tool is
not dependent on the technology that generated the gene measurements but naturally leads
to a loss of potentially valuable information. Study II introduces one approach for gene set
analysis, where exact knowledge of all of the gene functions in studied condition might not

be available.

2.5.4 Pathway analysis in GWA studies

Due to the high multiple testing burden in GWA studies, genes or loci may be genuinely
associated with disease status but might not reach a stringent genome-wide significance
threshold in a given GWA study. However, related genes showing coordinated moderate
association to disease might pinpoint true positives among less significant genes. To study
this possibility, a similar type of pathway analyses have been developed for genome-wide
association studies as for genome-wide expression studies studies (Wang et al. 2010; Zhong
et al. 2010; Ramanan et al. 2012). One key difference is that instead of having expression
measures of each gene in pathway analysis, the involvement of a gene is assigned by a
SNPs proximity to a gene. A SNP could be, for example, assigned to a gene if the SNP
resides less than 1000 nucleotides away from a gene. The general framework of GWAS
pathway analyses is to calculate a pathway score by taking a logarithm of the lowest p-
value of each gene in the pathway and sum the scores of individual genes. This pathway
score is then tested if it is larger than would be expected by chance. As pathways
containing larger genes are more likely to get higher pathway scores (a larger gene has
more SNPs and by chance would get lower p-values), many methods use phenotype
permutation to correct for this bias. The GWAS pathway analysis methods mainly differ by

the way gene-assignment is done and how the significance is tested. Similar issues are
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present in gene expression pathway analysis, but no clear consensus exists about the best

approaches, as these methods are relatively recently developed (Wang et al. 2010).

2.5.5 Inferring regulation of differentially expressed genes

Once a differentially expressed gene set has been identified, the next logical question might
be to determine the cause of differential expression. When studying complex human
diseases and target tissues in a typical one time-point study, this question might be next to
impossible to answer. Clues to the differential expression regulation can however be gained
by analyzing the regulatory transcription factor binding sites in the vicinity of differentially
expressed genes (see chapter 2.2.1). As the specific regulation of most of the genes by
transcription factors in different cell types and conditions are not known, bioinformatic
predictions can be a useful way to gain some insight into the observed differential
expression.

Known transcription factor binding site motifs from resources such as Jaspar (Bryne et
al. 2008) or Transfac (Wingender et al. 1996) can be used to search promoter sequences of
differentially expressed genes for potentially functional binding sites (Wasserman &
Sandelin 2004). A noteworthy problem with such an approach is that a mammalian
organism can contain hundreds of times the number of binding motifs than are actually
bound by a transcription factor in a given cell type (Zhang et al. 2009). Conservation of
sequence around regulatory elements between closely related species is one common
strategy to reduce identification of false positive binding sites (Huber & Bulyk 2006;
Robertson et al. 2006), but may miss lineage specific regulatory elements (Hardison &
Taylor 2012). The relative merits of different identification methods are not reviewed here
but the interested reader is referred to a recent excellent review and references therein
(Hardison & Taylor 2012).

Once putative regulatory elements are identified, overrepresentation or an enrichment
type of analyses (see chapter 2.5.2) can be used to assess if some regulatory elements occur
in the promoter regions of differentially expressed genes more often than would be
expected by chance. Identification of such elements among promoters of differentially
expressed genes between healthy and disease tissue could pinpoint common regulatory
mechanisms putatively contributing to pathogenesis of human diseases (Nischan et al.
2009).

2.5.6 Clustering in high-throughput genomic data mining

In high-throughput data analysis such as microarray data mining, it is often desirable to
group similar items (e.g., genes) together to facilitate interpretation. Clustering methods
identify subgroupings of observations so that members in a group are more similar to each
other (with some chosen metric) than to members of other groups. One clustering method
is applied in Study II to identify functionally similar gene groups from differentially

expressed genes. The result of clustering is dependent on the chosen clustering method and
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parameter values. For a general technical treatment of clustering methods see e.g. (Hastie et

al. 2008) and specifically in application to microarray gene expression data see e.g. (Kerr et
al. 2008).

2.5.7 Multiple testing burden

The possibility to make a large number of simultaneous measurements, either by
performing genome-wide association or transcription experiments, or testing hundreds of
pathways for enrichment is a double-edged sword. The positive side is that links between
genetic marker and phenotype, gene-expression and phenotype or pathway and phenotype
will be tested (if they exist), but the flip-side is that by conducting hundreds to millions of
statistical tests, the probability of false positive findings increases. This occurs in
frequentist statistics because in a single test we typically might reject a null hypothesis if
the probability of being wrong is less than 1/20 (i.e. p-value < 0.05). If we make 20 statistical
tests, the probabilities of being wrong add up and one of those tests is expected to reject the
null hypothesis, even if the null hypothesis were true. Appropriate multiple testing
correction methods must therefore be applied in the analysis of high-throughput data and
in bioinformatic datamining.

If the statistical tests are uncorrelated and moderate in number, traditional Bonferroni
correction is appropriate (divide the critical p-value by the number of tests performed).
However when the tests are correlated (e.g. SNPs in LD or correlated genes) the Bonferroni
correction becomes overly conservative (i.e. increased false negative rate), hence decreases
the statistical power. In such situations computationally demanding permutation methods
can be an option (Subramanian et al. 2005; Churchill & Doerge 1994).

Multiple testing correction methods that control the probability of making one or more
false positives among all the statistical tests are called family-wise error rate (FWER)
methods. For example Bonferroni correction is a FWER method. False discovery rate (FDR)
methods offer less stringent multiple testing correction. FDR methods control the expected
number of false positives among rejected null hypotheses. FDR methods such as Benjamini
and Hochberg False Discovery Rate (Benjamini & Hochberg 1995) are often favored to
increase statistical power e.g. in whole-genome gene expression studies where the number

of tests far exceed the number of samples (e.g. Study I).
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3 Aims

The overarching aim of the current study was to elucidate: (a) genetic predisposition to sIA
disease and (b) signaling processes leading to sIA wall rupture, using genomewide
methods and related bioinformatics. This knowledge is needed for a better understanding
of the molecular mechanisms of sIA pouch formation and sIA wall rupture which could
pave the way for the design of novel methods for non-invasive diagnosis, prevention, and
occlusion of sIAs. The main approaches were signalling pathway analysis by whole-
genome expression study, development of a novel bioinformatic method to be applied to
the expression data, and a genome-wide association analysis utilizing the high-risk

population of Finland.

The specific aims of the study were:

1) To identify signalling pathways active in ruptured human sIA walls as compared to
unruptured ones using whole genome transcriptome profiling and related
bioinformatics.

* We aimed to identify differentially expressed genes and signalling pathways and
their putative control by transcription factors by comparing ruptured and
unruptured human sIA walls obtained and snap frozen during microsurgery. The
acquired knowledge would increase the understanding of mechanisms leading to
sIA wall rupture. Identified candidate genes and pathways might be used as a target

for future therapeutic development.

2) To develop a novel method and software for interpreting differentially expressed gene
sets to gain further insight into the signaling processes orchestrated by the differentially
expressed gene set in Study I (Aim 1).

*  We hypothesized that there are a multitude of signalling processes driven by subsets
of the differentially expressed gene set in Study I. Such specific processes might not
be identified using the existing enrichment and pathway analysis software.

* We aimed to develop a method that could identify functionally coherent gene
subsets from differentially expressed genes and would provide clues of
transcriptional regulation of those subsets.

*  We hypothesized that such a method could identify additional candidate genes and
biological processes that could serve as a basis for novel hypothesis generation

concerning the mechanisms leading to sIA rupture.
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*  We aimed to make the method publicly available as an easy to use software for other

researchers and to be used as a basis for further method development.

3) To identify novel genetic factors affecting susceptibility to sIA disease by genome-
wide association analysis and followup replication in the high-risk population of
Finland.

* We aimed to identify novel genetic risk loci predisposing to sIA disease by
performing genome-wide association analysis augmented by genotype imputation
of low frequency variants in a high risk population isolate of Finland.

* We aimed to identify novel genetic risk loci predisposing to aneurysm formation
using the number of aneurysms as a phenotype.

* We sought to confirm previously published association loci with inconclusive
positive evidence in European populations, including Finland, but no replication in
Japan.

* We aimed to gain evidence to support our hypothesis that the higher incidence of

sIA  in Finland is at least in part due to genetic factors.
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4 Upregulated signaling pathways in ruptured human
saccular intracranial aneurysm wall: an emerging
regulative role of Toll-like receptor signaling and
nuclear factor-kB, hypoxia-inducible factor-1A, and
ETS transcription factors!

4.1 INTRODUCTION

The mechanisms of the initiation, progression, and rupture of the sIA pouch need to be
elucidated for the design of novel methods for noninvasive diagnosis, prevention, or
occlusion of slAs. In previous microarray studies, Krischek et al. (Krischek et al. 2008) and
Shi et al. (Shi et al. 2009) compared combined ruptured and unruptured intracranial
aneurysm (IA) wall tissues with control artery walls and reported, for example, major
histocompatibility complex class II overexpression, inflammatory response, and apoptosis
as characteristic processes of aneurysm wall tissue. Significant changes were not found
between unruptured and ruptured IA walls. Li et al (Li et al. 2009) compared unruptured
IAs only with control arteries and, in contradiction, reported downregulation of several
immune-related genes. Pera et al (Pera et al. 2010) reported only 1 upregulated gene in
ruptured IA walls compared with unruptured walls and stated, in contradiction, that
inflammatory genes were more highly expressed in unruptured IAs. Marchese et al
(Marchese et al. 2010) reported 10 upregulated and 4 downregulated genes in ruptured IAs.
The mechanisms in sIA wall rupture are poorly understood. Because most sIAs do not
rupture, it is possible that ruptured sIAs have a pathobiology distinct from unruptured
slAs. So far, transcriptome profiling of ruptured and unruptured sIA walls has not revealed
specific pathways related to sIA wall rupture. In the present study, we compared the
transcriptomes of 11 ruptured and 8 unruptured human sIA walls to identify pathways that
are askksociated with the rupture and to computationally predict transcriptional control of

those pathways.
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4.1.1 Materials and methods

4.1.2 Patients and Tissue Samples

Fundi of 18 ruptured and 11 unruptured sIAs were resected after microsurgical clipping of
the neck (Table 1) as previously described (Frosen et al. 2004; Frosen et al. 2006; Tulamo et
al. 2006; Laaksamo et al. 2008). All patients were of Finnish ethnicity. The samples were
immediately snap-frozen in liquid nitrogen and stored in the Helsinki Neurosurgery sIA
Tissue Bank. The medical records of the 29 sIA patients were reviewed (Table 5). The
Ethical Committee of Neurology, Ophthalmology, Otorhinolaryngology, and Neurosurgery
of the Helsinki University Central Hospital approved the study.

Table 5. Patients, Saccular Intracranial Aneurysm Samples, and Methods

Sample Sex Age Location Rupture Time from Microarray gRT-PCR

of sIA of sIA Rupture (h)

No Years

1. F 60 MCA - T ,
2. F 64 ICA - + -
3. M 47 MCA - + -
4. F 37 MCA - + -
5. M 42 MCA - + +
6. F 62 MCA - + +
7. M 56 PCoA - + +
8. F 65 MCA - + +
9. F 56 MCA - - +
10. M 42 MCA - - +
11. F 59 MCA - - +
12. F 54 MCA + 16 + -
13. F 46 ACoA + 96 + -
14. M 58 MCA + 24 + +
15. F 71 ACoA + 216 + +
16. F 52 ICA + 168 + +
17. F 32 MCA + 3 + +
18. F 83 MCA + 2.6 + +

19 M 73 MCA + 3.6 + +
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20. F 69 MCA + 6.7 ¥ +
21. F 53 MCA + N.A. + +
22. M 70 MCA + 14 + +
23. F 57 PCoA + 6.4 - +
24, F 58 MCA + 12 - +
25. F 44 MCA + 11 - +
26. F 53 MCA + 24 - +
27. F 47 ACoA + 5.2 - +
28. M 41 ACoA + 9.1 - +
29. F 62 PCoA + 72 - +

F = female; M = male; MCA = middle cerebral artery; PCoA = posterior communicating artery;
ACOA = anterior communicating artery; ICA = internal carotid artery; N.A. = not available.

4.1.3 Isolation of mRNA and Microarray Hybridization

Total RNA was isolated with Trizol Reagent (Invitrogen, Carlsbad, California) according to
the manufacturer’s instructions and as described previously(Hiltunen et al. 2002). The
quantity and quality of RNA were analyzed with NanoDrop ND-1000 Spectrophotometer
(NanoDrop Technologies Inc, Wilmington, Delaware), and only good-quality RNA with an
A260/A280 ratio of > 1.8 and < 2.0 was used. RNA from the whole wall of 11 ruptured and 8
unruptured samples was used to prepare hybridization mixes according to the Affymetrix
2-cycle amplification protocol. Briefly, 100 ng of total RNA was used to synthesize double-
stranded cDNA. The cDNA was purified and transcribed to biotin-labeled cRNA. Purified
cRNA (20 mg) was hybridized to Affymetrix Human Genome U133 Plus 2.0 GeneChips.
The chips were stained, washed (Affymetrix Fluidics Station 400), and scanned (Affymetrix

GeneChip Scanner 3000) according to the manufacturer’s instructions.

4.1.4 Microarray Data Analysis

Microarray analyses were performed with R statistical software version 2.9.1 (R
Development Core Team 2009) and Bioconductor version 2.4.1 (Gentleman et al. 2004).
Data import was done with Affy package version 1.2226 with the BrainArray CustomCDF
version 12 custom chip description file for probe set matching and gene annotations (Dai et
al. 2005; Sandberg & Larsson 2007). There were 17 788 distinct genes defined by the custom
chip description file.

The Robust Multichip Average was used to normalize expression values between arrays
and to generate a single expression measure for each gene from individual probes (Wu et
al. 2004). Nonspecific filtering was used to filter out less informative probe sets not linked
to genes and probe sets with small variance across samples (50% of probe sets with the least

variation). Linear models for microarray data version 2.18.3 analysis package (Smyth 2004)
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was used to detect the differentially expressed genes between sample groups, using fitting
of linear models and applying empirical Bayes variance smoothing to each probe set.
Because of the anticipated large biological gene specific variation between individuals, a
robust MM estimator was used (as implemented by rlm method in MASS R package
(Venables & Ripley 2002)), as it is less sensitive to outliers than the least-squares estimation.
The Benjamini and Hochberg (Benjamini & Hochberg 1995) false discovery rate was used to
adjust for multiple testing, and adjusted values of P < 0.05 were considered significant.

4.1.5 Functional Analysis of Differentially Expressed Genes

An overrepresentation analysis was performed for the upregulated and downregulated
gene lists separately. For this enrichment analysis of gene ontology terms and Kyoto
Encyclopedia of Genes and Genomes pathways, GOstats R package version 2.1 (Beissbarth
& Speed 2004) and database for annotation, visualization, and integrated discovery
(DAVID) (Huang da et al. 2009; Dennis Jr et al. 2003) bioinformatics resource were used. All
of the distinct 17 788 genes in the array were used as a background gene set. To avoid
reporting redundant ontologies, a conditional gene ontology analysis strategy was used
that reports only the most specific gene ontology terms in the hierarchy that are statistically
overrepresented in the differentially expressed gene sets (Beissbarth & Speed 2004). The
Benjamini and Hochberg (Benjamini & Hochberg 1995) false discovery rate was used to
adjust for multiple testing, and adjusted values of P < 0.05 were considered significant.

The similarity of differentially expressed gene sets to genes genetically associated with
different diseases and disease classes was assessed with DAVID (Huang da et al. 2009) with
the Genetic Association Database as the data source used for disease association.

In the ruptured sIA wall samples, the time elapsed from rupture to resection of the
sample may affect the gene expression levels. The levels were compared between the early
(2.6-16 hours) and delayed (24-216 hours) time groups. The correlation between the elapsed
time and the expression level of each gene was calculated. In both tests, the P values were
adjusted for multiple testing correction with the Benjanimi and Hochberg (Benjamini &
Hochberg 1995) false discovery rate, and corrected values of P < 0.05 were considered
significant. The Kruskal nonmetric multidimensional scaling method implemented in the
MASS R package (Venables & Ripley 2002) was used to arrange each sample according to
expression level differences of all genes between samples, and clustering according to the

elapsed time was visually assessed.

4.1.6 In Silico Transcription Factor Analysis

The enrichment of binding motifs for transcription factors located within 5000 bp upstream
of the transcription start site of differentially expressed genes was assessed with Whole
Genome rVista (Zambon et al. 2005). Start of the 5 exon was always used to define
transcription start site. The binding motifs and surrounding genomic sequences were

required to be conserved between human and mouse to reduce the number of false
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positives among the detected binding sites. Enrichment values of P < 10 were considered

significant.

4.1.7 Validation of Microarray Data

Expression of 5 genes was studied by quantitative polymerase chain reaction in 17 ruptured
and 6 unruptured sIA samples (Table 5). Briefly, 500 ng of total RNA was reverse
transcribed into cDNA using random hexamers (Promega, Madison, Wisconsin) and M-
MuLV reverse transcriptase (MBI Fermentas, Hanover, Maryland). Quantitative
measurements of mRNA levels were per-formed with assays-on-demand gene expression
reagents (Applied Biosystems, Foster City, California) with the ABI PRISM 7700 Sequence
Detection System (Applied Biosystems) and 1 x gene expression product target (Applied
Bio-systems) in a final volume of 23 pL. The assayed genes and assay identifications were
CD44 (Hs00153304_m1), TIMP1 (Hs00171558_m1), VEGFA (Hs00900055_m1), TNFR1
(Hs01042313_m1), and TNFR2 (Hs00153550_m1). These genes were chosen arbitrarily in
order to validate the microarray measurements of genes showing larger and smaller fold
changes. Measurements were performed in duplicates. Amplification of 185 ribosomal
RNA was used as an endogenous control to standardize the amount of total RNA in each
sample. The differential expression was tested by the Welch t-test, and values of P < 0.05

were considered significant.

4.2 RESULTS

We compared the transcription profiles of 11 ruptured and 8 unruptured sIA walls resected
during microsurgery from Finnish patients at median ages of 58 and 56 years, respectively.
We were able to screen the expression of 17 788 distinct genes. In the ruptured sIA walls,
686 genes were significantly upregulated and 740 were downregulated compared with the
unruptured sIA walls (See supplemental Table 1 of the original article). Five upregulated
genes (CD44, TIMP1, VEGFA, TNFRS1A, TNFRS1B) were studied by quantitative
polymerase chain reaction (Figure 9). All 5 were consistently upregulated but TNFRS1A not

significantly.



50

1000
800 W ruptured 4.20
O unruptured (3.85)
600+
400+
1.76 3.30 1.21
(2.14) (7-14) (2 17) (1.50)
200+
O—j—*ﬁ ‘—"% L ﬁl‘

CD44 TIMP1 VEGFA TNFRSF1A TNFRSF1B
0.025 0.032 0.003 0.52 0.004

Figure 9. Comparison of expression of 5 selected genes in 16 ruptured and 7 unruptured
saccular intracranial aneurysm (sIA) wall samples by quantitative real-time polymerase chain
reaction (RT-PCR). Gene expression ratios in the RT-PCR study and in the microarray study (in
parentheses; 11 ruptured and 8 unruptured sIA wall samples) are presented. The y-axis
indicates in arbitrary units the expression level of each gene normalized by ribosomal RNA
expression levels. SDs are shown on top of each bar. P values are indicated below the gene
names.

In the ruptured sIA wall group, the time elapsed from rupture to resection of the sample
did not seem to affect the gene expression levels. There were no statistically significant
differences in the gene expression levels between the early and delayed sample groups. The
elapsed time correlated significantly only to the expression of GREMI, not in the

differentially expressed gene set, and the samples did not cluster according to the elapsed

time in multidimensional scaling (Figure 10).
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Figure 10. Ten ruptured saccular intracranial aneurysm (sIA) wall samples arranged according
to the expression levels of all 17 788 genes studied (see Materials and Methods). The 5 samples
resected < 24 hours after the rupture are denoted by E (early), and the 5 samples resected >=
24 hours are denoted by L (late). The time elapsed in hours from rupture to the resection is
shown in front of the rectangles. The axes are in arbitrary units.
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Among the upregulated genes in the ruptured sIA walls, the significantly enriched
pathways were cytokine-receptor interaction, toll-like receptor (TLR) signaling,
hematopoietic cell lineage, and leukocyte transendothelial migration (Table 6). The most
interesting (based on previous literature and partially conflicting previous microarray
studies) and significantly enriched ontologies were related to the immune system, and to
the chemotaxis of cells, specifically including neutrophil chemotaxis. Of the cellular
compartment ontologies, the Arp2/3 protein complex and the NADPH oxidase complex
were enriched. The upregulated gene set of the ruptured sIA wall was significantly
associated with the following disease classes in Genetic Association Database: immune;
infection; cardiovascular, including atherosclerosis; and renal (see Table 3 of the original
article).

Among the genes significantly downregulated in the ruptured sIA walls, there were no
significantly enriched pathways after multiple testing correction. However, there were
significantly enriched gene ontologies, revealing strong enrichment of zinc finger proteins
of transcription factor activity (data not shown) and genes of tight junction and adherens
junction (Table 6).

We performed in silico prediction of conserved transcription factor binding sites in the
promoter regions of the differentially expressed gene sets. There were 6 and 58 enriched
transcription factor binding sites in the upregulated (Table 7) and downregulated (see
Supplemental Table 2 of the original publication) gene sets, respectively. The transcription
factors enriched among the upregulated genes consisted of several members of the ETS
family of transcription factors, nuclear factor-kB (NF-kB) p65 subunit, and hypoxia
inducible factor-1A (HIF1A). The factors enriched in the downregulated gene set were
diverse but contained many transcription factors of the SOX family.
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Table 6. Biological processes differentially expressed in ruptured vs. unruptured sIA wall
samples.

UPREGULATED GENES

Gene Ontology (GO)

P FDR Count
biological processes GO ID* valueX* **x* OR ***Xx  Gjze*****
chemotaxis GO0:0006935 2.60E-14 5.66E-11 7 30 125
immune response GO:0006955 5.70E-14 6.26E-11 4 49 333
response to external
stimulus G0O:0009605 1.00E-13 7.41E-11 3 74 651

inflammatory response G0:0006954 1.40E-13 7.52E-11 4.2 46 296
locomotory behavior G0:0007626 1.50E-11 6.46E-09 4.5 35 208
response to stress GO:0006950 3.60E-09 1.31E-06 2.1 99 1224

response to other
organism G0:0051707 4.70E-08 1.49E-05 5.7 18 87

positive regulation of

tumor necrosis factor 12
production G0O:0032760 5.80E-08 1.60E-05 7 6 7
locomotion G0:0040011 1.30E-07 3.18E-05 4.7 20 114

cytokine production G0:0001816 2.50E-05 5.49E-03 3.8 16 108

phosphate metabolic
process G0:0006796 5.30E-05 1.06E-02 1.8 66 893

positive regulation of

interleukin-6

production GO0:0032755 5.90E-05 1.08E-02 42 4 6
regulation of cell

proliferation G0:0042127 1.80E-04 3.10E-02 1.9 44 550
intracellular lipid

transport G0:0032365 2.60E-04 3.55E-02 21 4 8
neutrophil chemotaxis GO0O:0030593 2.70E-04 3.55E-02 12 5 14

regulated secretory
pathway G0:0045055 2.70E-04 3.55E-02 12 5 14

Protein amino acid
phosphorylation G0:0006468 2.70E-04 3.55E-02 1.8 47 613

regulation of cytokine
biosynthetic process G0:0042035 3.90E-04 4.55E-02 4.2 10 61



Purine ribonucleoside
monophosphate

53

biosynthetic process G0:0009168 3.90E-04 4.55E-02 11 5 15
KEGG biological

process KEGG ID P value FDR OR Count Size
Cytokine-cytokine

receptor interaction 4060 8.50E-06 7.82E-04 2.7 31 245
toll-like receptor

signaling pathway 4620 1.10E-05 7.82E-04 4 17 94
hematopoietic cell

lineage 4640 1.70E-05 8.10E-04 4.3 15 78
epithelial cell signaling

in Helicobacter pylori

infection 5120 5.80E-05 2.03E-03 4.3 13 67
fructose and mannose

metabolism 51 3.30E-04 8.81E-03 5.6 8 33
leukocyte

transendothelial

migration 4670 3.80E-04 8.81E-03 3 16 112
Gene Ontology

cellular

compartment GO ID P value FDR OR Count Size
membrane G0:0016020 2.50E-07 5.30E-05 1.5 325 6028
vacuole G0:0005773 3.30E-07 5.30E-05 3.5 26 193
Arp2/3 protein 11

complex G0:0005885 9.30E-07 9.80E-05 0 5 6
cytoplasm G0:0005737 5.10E-05 3.80E-03 1.4 329 6428
integral to plasma

membrane G0:0005887 6.00E-05 3.80E-03 1.7 72 1053
NADPH oxidase

complex G0:0043020 2.20E-04 1.18E-02 22 4 8
extracellular space G0:0005615 3.20E-04 1.43E-02 1.9 39 497
membrane raft GO0:0045121 5.60E-04 2.23E-02 3.9 10 66
lysosome GO:0005764 8.10E-04 2.85E-02 3.1 13 108
cytosol G0:0005829 1.30E-03 4.09E-02 1.6 55 827
Proton-transporting V-

type ATPase, VO

domain G0:0033179 1.50E-03 4.40E-02 22 3 6
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DOWNREGULATED GENES

Gene Ontology

cellular

compartment GO ID P value FDR OR Count Size
nucleus G0O:0005634 1.40E-05 4.81E-03 1.5 235 4487
intracellular part G0:0044424 5.90E-05 1.04E-02 1.8 79 1487
costamere G0:0043034 9.60E-05 1.11E-02 31 4 7
adherens junction GO:0005912 5.90E-04 4.36E-02 3.6 11 82
tight junction G0:0005923 6.30E-04 4.36E-02 5.6 7 36

* identification code; ** p-value uncorrected for multiple testing; *** false discovery rate, p-value after
multiple testing correction (see Materials and Methods); **** number of differentially expressed genes in
each biological category; ***** total number of genes assayed in the present study in each category.

Table 7. Enriched transcription factor binding sites in the -5 kb promoter regions of the 686
upregulated genes.
Transcription factor

Number of
TRANSFAC® HGNC Number of binding sites
binding in human

* * % sites genome P value***  Family
ELF1 ELF1 411 11549 1.66E-08 ETS
PEA3 ETV4 714 21887 1.66E-07 ETS
ETS2 ETS2 413 11968 3.64E-07 ETS
ETS1 ETS1 728 22501 3.87E-07 ETS
HIF1 HIF1A 304 8663 3.13E-06 -

Rel/ank
NFKAPPAB65 RELA 96 2232 7.99E-06 yrin

Transcription factor name at *TRANSFAC® (www.gene-regulation.com) and ** HUGO Gene Nomenclature
Committee gene symbol; *** nominal p-value.

4.3 DISCUSSION

In the present study, we compared the transcriptomes of 11 ruptured and 8 unruptured
human sIA walls to identify pathways that are associated with the rupture and to
computationally predict transcriptional control of those pathways. The processes identified
in the ruptured sIA walls were response to turbulent blood flow, chemotaxis, leukocyte
migration, oxidative stress, vascular remodeling, and extracellular matrix degradation (See

Table 4 and discussion below). Signaling pathway and transcription factor analyses
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suggested that TLR signaling and regulation by NF-kB, HIF1A, and ETS transcription
factors have key roles in the processes active in the ruptured sIA walls. Our results may
provide clues to the molecular mechanism in sIA wall rupture and insight for novel
therapeutic strategies to prevent rupture.

Previous whole-genome gene expression profiling studies comparing ruptured and
unruptured sIAs have only identified low number of differentially expressed genes (see
chapter 2.4.5 for a review). In contrast, we identified 686 significantly upregulated and 740
significantly downregulated genes in the ruptured sIA walls. The larger number of
differentially expressed genes is most likely due to increased sample size combined with
different statistical analyses and up-to-date custom annotations for microarray
oligonucleotide probes.

In our study, some of the differential gene expressions may be caused by reaction of the
sIA wall to the rupture. However, different times from the rupture to the resection of the
sIA wall samples did not seem to have a significant effect on the differential gene
expression. This is in line with the comparison of 44 ruptured and 27 unruptured walls by
Kataoka et al (Kataoka et al. 1999) in which the time from rupture to resection of the
aneurysm samples did not correlate to the scores of histological inflammation and
aneurysm wall fragility. Frosen et al (Frosen et al. 2004) studied 42 ruptured and 24
unruptured sIA walls, and their comparison of leukocyte density and time from rupture to
sample resection suggested that leukocytes could be present in the sIA wall already before
the rupture. Another limitation in our differential gene expression profiling is that the sIA
wall samples contain a mixture of cell types, including endothelial cells, smooth muscle
cells, fibroblasts, and leukocytes. Consequently, it is difficult to pinpoint which cell
populations are responsible for the overall differential profile.

Turbulent flow and low shear stress may cause inflammation, leukocyte migration, and
oxidative stress at arterial bifurcations (Chiu et al. 2009), the site of sIAs as well. In our
study, many genes and processes upregulated in turbulent and low-blood-flow conditions
were enhanced, including TLR signaling (Dunzendorfer et al. 2004), CTSL1 (Platt et al.
2006), VEGF, NADPH complex, NF-kB signaling, IL8, CXCR4, PTX3, TNFRSF21, PHLDAI,
and ICAMLI. (Chiu et al. 2009) Dai et al. (Dai et al. 2004) detected 72 upregulated genes in
endothelial cells under turbulent blood flow compared with laminar flow, and 13 of those
genes were significantly upregulated in our ruptured sIA walls. The probability of finding
as many or more overlapping genes just by chance is 1.38E-5 as assessed by Fisher’s exact
test.

Inflammation is associated with atherosclerosis and many cardiovascular diseases
(Sprague & Khalil 2009), as well as experimental cerebral aneurysm formation (Aoki,
Kataoka, et al. 2009). Our transcriptome data suggest that inflammatory processes are
strongly associated with the rupture of the human sIA wall. Increased expression was

observed in inflammatory pathways such as the cytokine-cytokine receptor interaction,
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TLR signaling, leukocyte transendothelial migration (Table 6), NF-kB signaling (Table 7)
and many other inflammation-related gene ontology categories (Table 6).

Increased expression of the macrophage marker CD163 and the neutrophil marker
FCGR3B (Bux 2008) was observed, as well as enrichment of the neutrophil chemotaxis gene
ontology category. Here, we provide the first indication that neutrophils may have a role in
the rupture of human sIA walls. Prolonged neutrophil presence can damage healthy tissues
(McGettrick & O’Neill 2007) (Figure 11). FCGR3B is possibly involved in small vessel
vasculitis associated with antineutrophil cytoplasmic antibodies (Kettritz 2012), it is
required for neutrophil mediated tissue damage in bullous pemphigoid disease (Yu et al.
2010), and neutrophil depletion decreased the progression of experimental abdominal
aortic aneurysms with a mechanism that so far is unknown (Eliason et al. 2005).
Importantly, FCGR3B mediated reactive oxidant production can be selectively suppressed

(Fossati et al. 2002), suggesting a potential future approach to prevent sIA wall rupture.
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Figure 11. Upregulated genes in selected cellular signaling pathways in a neutrophil
granulocyte, hypothesized here to infiltrate a ruptured saccular intracranial aneurysm wall.
Neutrophil signaling pathways are adapted from the following references (Reichel et al. 2006;
Nizet & Johnson 2009; Rommel et al. 2007; Tanaka et al. 2003). Red boxes indicate proteins of
the upregulated genes; white boxes indicate proteins of the nondifferentially expressed genes.
NCF1 gene in the grey box was not included in the array. Many of the signaling pathways are
also used by macrophages. NADP+, nicotinamide adenine dinucleotide phosphate; NADPH,
reduced NADP+.
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Subunits of NADPH oxidase complex (NCF1, NCF2, CYBB, CYBA; Table 6), producers
of reactive oxygen species, and a number of oxidative stress response genes (ERCC1,
PTGS1, CCL5, SOD2, SRXN1, HMOX1, UCP2, PNKP (Ashburner et al. 2000)) were
upregulated in the ruptured sIA walls. Aoki et al (Aoki, Nishimura, Kataoka, et al. 2009)
found that NCF1 was upregulated in sIA walls and that NCF1 knockout decreased cerebral
aneurysm formation in a mouse neurysm model. Increased oxidative stress and
upregulated NADPH complex play a role in, for example, coronary artery disease and
atherosclerosis, and reactive oxygen species production is increased at coronary artery
branching sites (Chiu et al. 2009; Guzik et al. 2006). Tight junction and adherens junction
genes were downregulated in the ruptured sIA walls (Table 6), suggesting loosening of
contact between endothelial cells and smooth muscle cells. Elastin- and collagen-degrading
enzymes (cathepsins A, L1, S, B, C), matrix metalloproteinases (MMP9, MMP19), heparan
sulfate proteoglycan degrading enzyme heparanase (HPSE), and plasminogen activating
receptor (PLAUR) were highly upregulated, whereas 3 collagen genes (COL4A5, COL21A1,
COL14A1) were strongly down-regulated (see Supplemental table 1 of the original
publication). These data suggest that ECM degradation predisposes or follows the sIA wall
rupture or both. Extracellular matrix degradation is central in many arterial wall diseases
(Lutgens et al. 2007; Raffetto & Khalil 2008) and matrix metalloproteinase mediated
vascular remodeling likely promotes intracranial aneurysm formation in rats (Aoki et al.
2007). Overexpression of HPSE in mouse endothelium decreased aortic stiffness and
strength and increased the incidence of spontaneous aneurysms (Baker et al. 2009).

The canonical TLR pathway ends in the activation of NF-kB. In our study, TLR signaling
was significantly enriched, and genes responsive to TLR to NF-kB signaling (IL6, MMP9,
CCL5) (Lee et al. 2009; O’Neill et al. 2009) were upregulated in the ruptured sIA walls. In
our in silico prediction, the binding site for the p65 transcription factor, a subunit of NF-kB,
was significantly enriched among the promoter regions of the upregulated gene set. TLR
activation contributes to the development and progression of atherosclerosis, cardiac
dysfunction in sepsis, and congestive heart failure (Frantz et al. 2007). TLR4 and TLR10 are
upregulated during the formation of cerebral aneurysms in rats, and TLR4 was also
detected in human cerebral aneurysms (Aoki, Nishimura, Ishibashi, et al. 2009).

We observed the enrichment of 6 conserved transcription factor binding sites among the
upregulated genes: 4 from the ETS family (ELF1, ETV4, ETS2, ETS1), HIF1A, and an NF-kB
subunit (RELA) (Table 7). ETS transcription factors are involved in vascular inflammation
and remodeling (Ni et al. 2007; Oettgen 2006; Zhan et al. 2005). HIF1A transcriptional
activity is increased in hypoxic conditions, and the activation of HIF1A has been reported
in several inflammatory conditions also in normoxic conditions e.g. in atherosclerosis (Vink
et al. 2007). NF-kB is a key player in the induction of IAs in rats (Tomohiro Aoki et al. 2007),
and the induction of abdominal aortic aneurysms in rabbits was regressed by dual
inhibition of NF-kB and ETS1 (Miyake et al. 2007).
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4.4 CONCLUSIONS

Transcriptome comparison of 11 ruptured and 8 unruptured human sIA walls indicated
that response to turbulent blood flow, chemotaxis, leukocyte migration, oxidative stress,
vascular remodeling, and extracellular matrix degradation were active in the ruptured sIA
walls. Signaling pathway analysis and computational transcription factor analysis
suggested that TLR signaling and regulation by NF-kB, HIF1A, and ETS transcription
factors have a key role in processes active in the ruptured sIA walls. Further analyses are
required to distinguish between inflammatory reactions that predispose the sIA wall to
rupture and the immediate responses to the rupture and subsequent closure of the
ruptured site by an acute thrombus and to confirm the mRNA level gene expression

patterns at the protein level.
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5 TAFFEL: Independent Enrichment Analysis of gene
sets!

5.1 INTRODUCTION

Gene expression studies often compare samples from two or more experimental conditions,
the most typical outcome being a set of genes that differ in expression between the
conditions. Several databases, computational methods and software programs have been
recently published for analysis of such differentially expressed (DE) gene sets. Usually
these tools are aimed at finding out associated (differentially active) biological mechanisms
by searching for associations of DE genes to various biological functions, processes and
pathways reported in the biological databases such as Gene Ontology (GO) (Ashburner et
al. 2000). The output of these tools is usually a list of biological terms (functions, processes,
pathways etc.) that are more frequently associated to the gene set than expected by chance.
Therefore, this analysis is often referred to as overrepresentation analysis (ORA) (for a
review see chapter 2.5.2).

Standard EA has some shortcomings that should be taken into account, especially in the
case of DE genes. DE genes are often, dependent on the studied condition, likely to be
associated to multiple distinct biological pathways rather than one or a few, consequently
the possible large list of genes might prevent the identification of more subtly perturbed
processes driven by fewer genes. This problem has been addressed by applying various
clustering methods for finding gene subgroups with homogeneous functional annotations
(Pehkonen et al. 2005; Dennis Jr et al. 2003; Martin et al. 2004) and combining similar
functional annotations together (Martin et al. 2004). Clustering can reveal interesting gene
subgroups, but so far, there are no definitive methods available to verify them or obtain
further interpretation about their biological significance in the studied cases, other than

calculating the internal homogeneity of clusters.



60

Here we present a novel method Independent Enrichment Analysis (IEA) and its
implementation in a software tool called TAFFEL. The principal idea of IEA and TAFFEL is
to facilitate the discovery of relevant biological phenomena from subsets of a set of
differentially expressed genes and potential mechanisms of the regulation of those
processes. The developed application allows quick and easy explorative analysis of data by
performing three main steps (Figure 12). First, TAFFEL uses functional annotations from
Gene Ontology (Ashburner et al. 2000) to separate differentially expressed genes into
functionally homogenous gene groups. This facilitates the discovery of multiple biological
phenomena associated to DE genes. Secondly, TAFFEL discovers groups of genes with
similar cis-regulatory transcription factor binding sites (TFBSs) in their regulatory regions,
using annotations of TFBS to specific transcription factors (TF) from the cisRED database
(Robertson et al. 2006). This enables the identification of putatively co-regulated genes from
the gene list and identification of their regulators. At this point, the analyst has several
groups of genes that are homogenous in either GO or TF annotations. Therefore, as a third
step TAFFEL includes a novel method referred to as Independent Enrichment Analysis
(IEA) which evaluates the enrichment of TFs in gene clusters homogeneous in GO terms,
and vice versa, enrichment of GO terms in gene clusters homogeneous in TF annotations.
IEA provides clues to the regulatory control of genes sharing common functions.
Simultaneously, it serves as an extrinsic biological validation of the obtained gene groups
that can be used to point out the most interesting gene clusters among several. A detailed
description of typical analysis flow with TAFFEL is provided in Methods and illustrated in
Figure 12.

In order to demonstrate the utility of our method and the associated software, we
applied TAFFEL to two datasets. Firstly, we analyzed differentially expressed genes in
human HEK293T cell culture after treatment with forskolin, a cyclic AMP (cAMP) pathway
inducer. A researcher, not involved in the method or software development, independently
performed this analysis. This analysis served two main purposes: 1) as a positive control to
see if our methodology is able to identify the involvement of the known cyclic AMP
response element (CREB) in regulation of cAMP responsice genes; and 2) as a way to assess
if a researcher knowledgeable in the biology of a studied phenomena (cAMP signalling) but
without extensive bioinformatic knowledge is able to use the software and produce new
insights.

Secondly, we re-analyzed differentially expressed genes between human ruptured and
unruptured saccular intracranial artery aneurysm (sIA) walls of study I. This dataset was
re-analyzed using TAFFEL in order to demonstrate the capability of TAFFEL to find novel
phenomena overlooked in standard analysis and to identify factors that might be causing
the reported phenomena. The results suggest hypotheses of novel molecular mechanisms in
ruptured sIA walls and demonstrate the usefulness of TAFFEL in typical snapshot type

research settings and in diseases of poorly characterized molecular pathogenesis.
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We compared TAFFEL gene clustering results against results from five other methods or
tools used for enrichment analysis: standard list of GO-terms sorted according to Fisher’s
Exact test p-values, a sorted list of GO-terms and transcription factors resulting from
FatiGO+ tool (Al-Shahrour et al. 2004), annotation sets resulting from the Functional
Annotation Clustering tool available in DAVID (Dennis Jr et al. 2003), co-occurring sets of
GO-terms and transcription factors resulting from a priori association rule discovery
algorithm implemented in GeneCodis (Carmona-Saez et al. 2007) and results from GSEA
(Subramanian et al. 2005). The comparison shows that TAFFEL can discover important
individual themes and relations between transcription factors and biological processes that
are not reported at all by other methods.

TF GO
(cisRED) (Ensembl)

TF annotations GO annotations

Gene list

All Genes

Observe interesting clusters

Independently
Enriched GO terms

GO1

TF2 GO2

~

Inference:

1
1
1
1
1
1 TF1
1
1
1
1
L

TF1 and TF2 control processes GO1
and GO2

Figure 12. The flow diagram of TAFFEL analysis. From the top: the list of genes given by the
user is annotated by GO and TF information from Ensembl (20) and cisRED (12) databases. The
genes are clustered separately in parallel, based on GO and TF annotations (for simplicity only
the TF clustering tree is shown). In each resulting cluster, the enrichment of both GO and TF
annotations is determined, providing a basis for suggesting implications between the biological
processes and their regulator molecules.
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5.2 RESULTS

5.2.1 Description of the method and tool

TAFFEL uses a non-nested hierarchical clustering scheme (Pehkonen et al. 2005) for finding
gene subgroups that are homogeneous in GO terms or TF annotations. The gene subgroups
are a partition of the whole gene set i.e. they are disjoint sets that cover the whole gene set.

The clustering of genes is performed using only GO or TF data and no gene expression
data is needed. The method creates multiple clustering solutions with different numbers of
clusters and combines them into a single visualization. Each clustering solution is
visualized as a set of horizontally ordered rectangles, each rectangle representing a single
cluster (Figure 13). Different clustering solutions are ordered vertically according to the
number of clusters. Thus, the visualization contains several levels, the top level
representing the whole gene list as a single cluster, the second level representing clustering
of genes into two clusters, the third level representing a solution with three clusters etc. The
best correlating clusters between adjacent levels are combined with edges, creating a tree-
like structure. Unlike regular hierarchical clustering, the different tree levels are
independent of each other. This visualization can be used to track coherent clusters that
stay similar in different solutions despite the changing number of clusters and initialization
for clustering, and to observe the hierarchical relationships in the data. In addition, the tool
performs automatic evaluation of clustering solutions with a different number of clusters
using a statistical model selection (see Selection of number of clusters). The best scoring
levels are highlighted in the visualization. The tree that is obtained using GO terms as data
for clustering is referred to as a “GO tree” and the tree obtained using TF annotations is
referred to as a “TF tree”.

For each gene cluster, TAFFEL reports both the enriched GO terms and TF annotations,
regardless of what information (GO or TF) was used for clustering. For the first level of the
tree, representing the whole analyzed gene list, the enrichment is measured in the list
versus the genome. This is analogous to the traditional enrichment analysis and can be
used for observing the most interesting themes in general. This enrichment is also reported
for the annotations in the clusters of subsequent tree levels (column “List p-value” in the
software) as additional evidence of their biological significance. However, as a principal
description for each cluster in the subsequent tree levels, TAFFEL reports annotations that
are enriched in each cluster versus the whole gene list (column “Cluster p-value” in the
software). This gives the user a compact overview of the different biological phenomena
present in the analyzed list of genes.

In order to gain more evidence about the biological meaningfulness of resulting clusters,
TAFFEL performs two types of extrinsic evaluation steps. Firstly, in the IEA evaluation,
each functionally homogeneous gene cluster is evaluated in terms of enrichment of TFs,

and each gene cluster homogeneous in TFs is evaluated in terms of enrichment in GO
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terms. Secondly, TAFFEL allows measuring correlations of gene memberships between all
possible cluster pairs where one cluster comes from the GO tree and another from the TF
tree. This measure, referred to as inter-correlation, can be used to identify the gene clusters
that share the same genes regardless of using TF’s or GO terms as a basis for clustering.
Both the IEA and inter-correlation can be used for validating the biological significance of
gene subgroups, and to interpret relations between transcription regulators and processes

they regulate.
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Figure 13. TAFFEL user interface. The clustering trees represents the clustering result for the DE
genes after 4 hours of forskolin treatment in HEK293T cells. The genes have been clustered by
the GO terms (left) and TFs (right). The topmost box represents the whole gene set without
clustering. Below that, each level represents clustering to two, three, or more clusters. The
green outline indicates the cluster number selection by AIC and blue by dAIC. The clusters
obtained from the IEA analysis with FDR p < 0.1 are highlighted with the light blue background
on the right side of cluster box. The best intercorrelating clusters (cell morphogenesis cluster in
the GO tree and COUP cluster in the TF tree) between the trees are connected with the bold
line. Information at bottom shows enriched annotations (left list) and cluster genes (right list).
Positive regulation of biosynthetic process related cluster is selected in the picture.

5.2.2 Availability and running the program

TAFFEL is a Java Web Start application written using Java Standard Edition 6 with
NetBeans integrated development environment (www.netbeans.org). MySQL database
(www.mysql.com) is used to store all the persistent data. Running TAFFEL requires Java
Runtime Environment version 6. TAFFEL program, help-pages, and example data sets are
freely available under LGPL license from http://kokki.uef.fi/bioinformatics/taffel/.
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5.2.3 Typical analysis flow

A typical analysis flow with TAFFEL is shown in Figure 12. Firstly, the gene list is imported
to TAFFEL and clustered using GO terms and TF annotations as data. Secondly, the root
levels of the GO and TF trees are observed to study the themes associated to the whole gene
list in general. Thirdly, the clusters at the tree levels with the smallest dAIC scores in both
the GO and TF trees are observed in order to find which separate themes are associated to
the analyzed gene list and which respective gene subgroups constitute it. Fourthly, the
coherency of these clusters is evaluated by observing their conservation throughout the
tree. Finally, special focus is set on the clusters in the selected levels by using IEA and inter-
correlation methods for cluster evaluation. The independently enriched themes in each
cluster can be used to infer the TFs that drive a particular biological process or function in
the analyzed condition.

The resulting clusters can be further analyzed by multiple ways such as highlighting the
clusters including particular GO terms or TFs, to find correlations between clusters in
different trees, and to show the list of genes associated to specific GO terms and/or TF
annotations in each cluster. The results can be exported from the program in text form, and

all results can be saved in one XML file.

5.2.4 Analysis of forskolin effect on HEK293T cells

The application of TAFFEL and IEA to forskolin treated human HEK293T cells by cAMP
signaling by an external domaine expert researcher indicated that the method and software
are usable and useful also for non-bioinformatics researchers. CREB involvement was
correctly identified but also other results were identified, unexpected to the analyst at first,
but highly plausible backed by evidence from the literature. As the author of this thesis is
not expert on cAMP signaling and it is out of the scope of the thesis, the interested reader is

referred to Publication II for a more detailed report of the external analysts results.

5.2.5 1EA suggests novel hypotheses of signaling mechanisms active in the ruptured
sIA wall

The 498 overexpressed and 491 underexpressed genes in the ruptured sIA wall group were
input to TAFFEL and clustered separately first by GO and then by TFBS. Automatic cluster
number selection identified 9 and 11 clusters in GO and TFBS clustering respectively. We
focused then on the clusters with significant (corrected p<0.05) independent enrichment
(IEA) or significant inter-correlation. Three statistically significant IEA clusters and one
significant inter-correlation cluster were identified (Table 8).

The first cluster was identified among the upregulated gene set. Metal ion transport and
protein kinase signaling were the main functions in the cluster and MTF-1 and ATE-1
transcription factor binding sites were independently enriched. MTF-1 is a pleiotropic

metal, oxidative stress and hypoxia activated transcription factor controlling e.g. zinc-
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transferring metallothioneins (MT) and other genes (Giinther et al. 2012). The cluster is
enriched in ion-transferring proteins and contains MT2A (a metallothionein), a primary
target of MTF-1 (Saydam et al. 2002). Metallothioneins can control intracellular zinc
availability (Kang 2006; Giacconi et al. 2008; Maret & Krezel 2007). MT activation and
reduced zinc bioavailability has been observed to increase with aging and cardiovascular
diseases in the elderly (Giacconi et al. 2008). Although MTF-1 is mainly vascular protective,
chronic low grade inflammation can maintain long-term elevation of MTs, which in turn
may lead to a pro-inflammatory response possibly due to decreased zinc bioavailability
(Giacconi et al. 2008; Conway et al. 2010). This cluster contains also many other potassium
and calcium transporters. Ion channels play a role in vascular tone regulation and many
inflammatory conditions (Eisenhut & Wallace 2011; Hu & Zhang 2012; Das et al. 2010). One
such gene in the cluster is P2RX4, a gene having a role in regulating large arterial tone in
response to shear stress. A loss-of-function mutation in P2RX4 is associated with increased
pulse pressure (Stokes et al. 2011).

Such possible coordinated regulation of ion transporters important for cardiovascular
function suggests that the role of these transporters, metallothioneins, and metal ions in
aneurysm rupture should be investigated in more focused studies to address the question
of whether these changes are just a benign defence mechanisms or detrimental to sIA wall
structure.

Another cluster found in IEA from the analysis of under expressed genes was related to
oxidation-reduction and independently enriched the NF-1 (nuclear factor 1 C, NF1C)
transcription factor (FDR corrected p=0.037). NF1C activation capability is repressed by
oxidative stress and NFIC knockout decreases the activity of Cytochrome p450 family gene
CYP1A1(Barouki & Morel 2001). The cluster contains 2 CYP-family genes, and many other
lipid and amino acid metabolizing genes as well as genes protecting against or controlling
oxidative stress (NXN, OXR1). NF1C activity is repressed by oxidative stress (Barouki &
Morel 2001) and thus the down-regulation of the genes in this cluster might be caused by
inactivation of NFIC by oxidative stress likely present in the ruptured aneurysms
(Laaksamo et al. 2013).

The third cluster found in IEA was identified among the down-regulated genes. The
cluster was enriched with cell development related GO terms, cell motion, cell projection and
organization, and more specifically blood vessel morphogenesis and independently enriched
Tal-1 transcription factor (FDR corrected p=0.031). Tal-1 protein is known to drive
endothelial cell migration and morphogenesis in angiogenesis (Chetty et al. 1997; Lazrak et
al. 2004). Tal-1 regulates VE-cadherin expression in endothelial cells. VE-cadherin
concentrates on cell-to-cell adherens junctions and maintains cell adhesion, controls
vascular permeability and relays signals necessary for vascular stabilization. VE-cadherin is

a positive controller of TGF-f signalling and deletion of various components of this
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signalling pathway leads to several vascular manifestations, often including hemorrhages
(Rudini et al. 2008).

In order to find out whether the clustering by GO terms and TF annotations would yield
any clusters with common genes, the TAFFEL inter-correlation method was applied. The
link between apoptosis and TF MEF2A and Lhx3a was strongly observed (FDR corrected
p=7.5E-6). MEF2A is a myocyte enhancer factor, which controls many muscle-specific
genes. A deletion of MEF2A causes autosomal dominant coronary artery disease (Wang et
al. 2003) and knock-down of MEF2A enhances smooth muscle cell proliferation (Zhao et al.
2012). A low number of smooth muscle cells with disorganized architecture has been
associated with aneurysm rupture (Frosen et al. 2004). Our results suggest that MEF2A
might be involved in smooth muscle cell apoptosis or phenotype in the ruptured sIA walls.
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Table 8. Statistically significant clusters in up-regulated (sIA1) and down-regulated (sIA|) genes
in ruptured intracranial aneurysms. CLUSTER column indicates the clustered dataset,
annotations used for clustering (either GO or TF) and the size of the cluster, respectively.
ANNOTATION column indicates enriched GO terms and TF annotations from TRANSFAC in each
cluster. P and P LIST columns indicate Benjamini-Hochberg FDR corrected Fisher’s exact test p-
values for the enrichment of the annotation in the cluster and in the gene list, respectively. N
and N LIST columns show the number of genes associated with the annotation in the cluster
and in the gene list.

CLUSTER ANNOTATION P P LIST N N LIST
sIA1 GO 58 cation transport 3.8E-08 1.8E-01 17 23
ion transport 3.8E-08 3.7E-01 18 26
metal ion transport 1.2E-05 4.2E-01 12 16
protein amino acid 4.5E-4 9.6E-03 16 35
phosphorylation
regulation of protein kinase 1.0E-02 1.5E-01 7 12
activity
G-protein signaling, coupled 2.9E-02 1.6E-01 4 5

to IP3 second messenger
(phospholipase C activating)

regulation of Ras GTPase 7E-02 1.5E-01 4 6
activity
MTF-1 4.8E-02 4.7E-01 13 30
ATF-1 4.8E-02 6.5E-01 9 17
sIA| GO 22 nervous system development 1.3E-11 1.3E-02 17 32
generation of neurons 2.1E-06 2.8E-01 8 10
cell development 2.1E-06 2.8E-01 10 17
blood vessel morphogenesis 3.5E-04 2.8E-01 5 6
cell migration 4.3E-04 7.2E-01 4 4
Tal-1 3.1E-02 1.0E+00 4 5
AR 9.4E-02 9.8E-01 6 17
sIA| GO 49 organic acid metabolic 1.3E-08 2.8E-01 13 13
process
carboxylic acid metabolic 1.3E-08 2.8E-01 13 13
process

oxidation reduction 1.2E-07 2.8E-01 14 16
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lipid metabolic process 5.3E-07 4.4E-01 13 16

carbohydrate metabolic 2.8E-3 5.5E-01 7 9
process

amino acid metabolic process 3.2E-03 5.2E-01 5 5

NF-1 3.7E-02 9.8E-01 14 30

5.2.6 Comparison of TAFFEL to other methods

Several different approaches for analyzing differentially expressed gene sets exists, such as
GENERATOR (Pehkonen et al. 2005), DAVID (Dennis Jr et al. 2003), FatiGO (Al-Shahrour
et al. 2004), GOToolBox (Martin et al. 2004), GenMAPP (Dahlquist et al. 2002), GoMiner
(Zeeberg et al. 2003), OntoTools (Draghici et al. 2003), and GSEA (Subramanian et al. 2005),
which can report the enriched terms e.g. the functional annotations, or TF information but
no relation between these concepts. GeneCodis (Carmona-Saez et al. 2007) is aimed at
addressing partly the same concerns as TAFFEL by seeking relations between different
annotation systems within a set of genes but without considering subsets of the genes (i.e.
clustering).

The main advancement of TAFFEL is that the developed IEA method, which allows
statistically interpretable evaluations for the found clusters, helps to draw attention to the
most interesting gene clusters among many, and provides information about the control of
regulator proteins in functionally homogeneous gene subgroups.

We compared the IEA method to several other pathway analysis methods (See publication
II for details) and showed that our method can identify additional phenomena from
differentially expressed gene sets, which are not reported by other methods. IEA is not,
however, a replacement for more standard overrepresentation analyses but a

complementary way to aid in gaining additional insight.

5.3 DISCUSSION

We presented a novel method for the analysis of differentially expressed (DE) genes for the
discovery of co-functional and co-regulated subsets of genes, and for further analysis of
such clusters with functional annotations and regulatory protein information. As
information about gene regulatory elements, we have used TF predictions and annotations
from cisRED database where putative binding sites are validated in terms of evolutionary
conservation (Robertson et al. 2006). Such validation has shown to be advantageous as it

can significantly reduce the amount of false positives in predictions (Kankainen et al. 2006;
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Ho Sui et al. 2005). Moreover, our clustering of genes by TF/GO and validation of
discovered clusters using functional annotations not used in the clustering process should
reveal relevant patterns from the data and reduce the amount of noise.

A major limitation in our and many other methods employing GO and TF data is that
the knowledge on gene functions (the GO annotations) (Rhee et al. 2008) and regulation
(TFs) is incomplete. Furthermore, the GO annotations are biased towards well-studied
biological phenomena and the predicted TF binding sites (cisRED) often contain a large
number of false positives (Hannenhalli 2008). Still the clustering method alleviates this
problem in the sense that the clustering is not driven by randomly distributed annotations
(false positives or negatives) but by stable annotations shared by many genes. The
constantly improving quality of the annotations is also likely to improve the results
obtained using our method. It should also be noted that gene expression is not necessarily
functional in the sense that co-expressed or similarly expressed genes do not necessarily
share any GO annotations. Thus our clustering approach does not necessarily produce
clusters of co-expressed genes, which likely results in fewer significant IEA clusters. Also
the used AIC method for cluster number selection is not necessarily optimal, but rather it
strikes a good balance between accuracy and number of parameters. The cluster number
selection is a very general problem and usually there is no single best solution for every
dataset (see for example reviews (Halkidi et al. 2002a; Halkidi et al. 2002b). In our method
we use cluster number selection as a guide for the analyst to focus on some particular
clustering level to start the analysis with.

The result of TAFFEL analysis for the DE genes after forskolin treatment of human
HEK?293T cells in culture showed the expected results at the first level of the clustering tree,
e.g., the enrichment of cAMP related GO terms and CREB TF. The independent non-
bioinformatician domain expert could additionally identify a piece of a complex MAPK-
AP1-AhR related transcription network, related to proliferation and regulation of
metabolism. As CREB signalling is out of focus of this thesis and outside the area of
expertise of the author, the reader interested in these discussions is referred to the original
Publication II

In the analysis of over and under-expressed genes in the ruptured saccular intracranial
aneurysm (sIA) walls TAFFEL identified several interesting clusters. TAFFEL suggested
signalling relating TALI to cell development and blood vessel morphogenesis, MTF1 to
metal ion transport activity, NFI1C to oxidation reduction and lipid metabolism and MEF2A
to apoptosis. These processes might be related to processess detrimental to the sIA wall
integrity but they could also be vascular wall reactions to rupture. Further more focused

studies are needed to address this issue.

5.4 CONCLUSIONS
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In conclusion, we have demonstrated that the developed method and TAFFEL tool is
usable by a non-bioinformatician and can give new insight into the analysis of differentially
expressed genes. Our comparison to other popular methods showed that the IEA method
implemented in TAFFEL can generate novel hypotheses of biological phenomena, which
are not reported by other methods at all. The downside of the method, as is typical of many
computational methods, is that the generated hypotheses should be validated in further
functional studies .IEA is however not meant to be a replacement for or claimed superior to
more standard overrepresentation analyses but a complementary way to aid in gaining
additional insight into the studied phenomenon.

Firstly, the analysis of forskolin-treated HEK293T cells indicates that TAFFEL will
identify well-known and expected phenomena such as differential expression of CREB
regulated genes, but can also lead to new hypotheses. Secondly, the results with the sIA
wall rupture related data give confidence to the usefulness of TAFFEL in the analysis of
complex and poorly characterized clinical conditions, affected by inherited and acquired
risk factors. These findings suggest that TAFFEL is an efficient method to generate new
hypotheses to be further tested in more focused studies.

5.5 MATERIALS AND METHODS

5.5.1 Annotation data sources

For the functional grouping of genes, TAFFEL uses Gene Ontology (Ashburner et al. 2000)
annotations (December 2008 release used in this study) from Ensembl database (Flicek et al.
2008) (version 53 used in this study). The included species are human, mouse, rat and C.
elegans. The current version of TAFFEL can use biological process and molecular function
ontologies from GO, either separately or in parallel.

Secondly, TAFFEL uses information about predicted TFBSs available in the public
cisRED database (Robertson et al. 2006), containing genome wide collections of sequence
motifs conserved in gene regulatory regions. The motifs have been annotated by
transcription factors (TFs) found in TRANSFAC (Matys 2003) and JASPAR (Bryne et al.
2008) databases. In TAFFEL, we have included all TF annotations from both of these
databases that have similarity p-value < 0.001 with the found sequence motif. We have

included data for human (version 9), mouse (version 4) and C. elegans (version 4).

5.5.2 Gene clustering method

In order to perform gene clustering, associations between genes and annotations (GO terms
and TFs) are represented as a binary matrix. Each row in the matrix represents a gene and
each column represents an annotation. In the matrix, the cell value one indicates association

and zero indicates no association between the row (gene) and the column (annotation). For
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clustering, we apply a Non-negative matrix factorization (NMF) (Lee & Seung 1999) based
approach. This approach has been advantageous in clustering of sparse binary data and
finding clusters that are defined in a (possibly small) subset of all data attributes (Seppanen
et al. 2003). Both of these features are important in our cases described here. Firstly, the data
are sparse by nature. Secondly, one set of genes often associates to numerous biological

attributes (TFs and GO terms), many of which may not be relevant (Pehkonen et al. 2005).

5.5.3 Selection of number of clusters

In order to choose a clustering solution with a suitable balance between goodness of fit in
the data and complexity, TAFFEL uses Akaike Information Criterion (AIC) (Akaike 1974)
for statistical model selection. AIC is calculated by taking the number of parameters of the
statistical model representing the evaluated clustering solution and subtracting them from
the maximized log-likelihood of the data for the same model. Due to simplicity and
robustness of the method, it has been widely used in similar clustering applications (see e.g.
(Chen & Murphy 2005; Liu et al. 2009; Huang et al. 2003)).

As the abundance of dimensions (GO terms or TFs) in the gene annotation data are
distributed randomly in resulting clusters, the clusters tend to exist in a relatively small
subset of all dimensions (Pehkonen et al. 2005). Besides being problematic for clustering,
this behaviour is also problematic for model selection. The model selection tends to be
overwhelmed by such dimension and systematically favour a result with only one or a few
clusters with different data sets. Thus, we also calculated a modified AIC, referred to as
dAIC, for which we used only the dimensions that are distributed in a non-random fashion
in at least one of the clustering solutions with >2 clusters in the whole TAFFEL tree. This
was tested by comparing the AIC score of the dimension in the whole gene list versus the
AIC score in each clustering solution. If the AIC score is better (smaller) in any of the
clustering solutions, then the evaluated dimension was included in the calculation of dAIC.
The same set of dimensions was then used for calculating dAIC for different clustering
solutions including the whole gene list as one cluster. This feature selection filtered out at
least 50% of the GO terms in our forskolin and sIA datasets (see Results section for detailed
description of the datasets). When the remaining dimensions were used for calculating AIC
score, the number of selected clusters was systematically higher than when using all

dimensions.

5.5.4 Cluster statistics

The statistical testing of enrichment in TAFFEL is calculated using Fisher’s exact test. Only
annotations with occurrences in a cluster are used in the testing. The resulting p-values are
corrected for multiple testing using Benjamini-Hochberg False Discovery Rate (FDR)
(Benjamini & Hochberg 1995).



72

The interpretation of p-values reported by TAFFEL warrants a special note. In each
cluster, enrichment is analyzed for the annotations of the same (Dependent Enrichment
Analysis, DEA) and different (IEA) annotation system that was used in clustering. The p-
values resulting from IEA have reasonable statistical interpretation as they test null
hypotheses such as: “TF x is not dependent of the gene group y homogeneous in GO terms”. Due
to statistical independence between variables x and y, these p-values can be used
reasonably to detect their biological significance and dependence of each cluster. As an
opposite, the p-values from DEA would test null hypotheses such as: “GO term x is not
dependent of gene group y homogeneous in GO terms”. Here, variable y is statistically
dependent on x and thus treating the resulting values as standard p-values for statistical
decision-making would lead to circular argumentation. Still, these values from DEA are
suitable as relative enrichment scores representing the most characteristic annotations in
each cluster.

The inter-correlation measurements are also calculated using Fisher’s exact test with
Benjamini-Hochberg correction. As dependencies exist among the clusters between
different inter-correlation comparisons, the correction tends to be highly conservative for
this situation and should be interpreted with care.

The correlation between each cluster pair between the adjacent clustering solutions in
the same clustering tree is calculated using standard correlation between two binomial

distributions representing the gene memberships in the clusters.

5.5.5 Processing of demonstration microarray data sets

Gene expression microarray data (GSE2060 Affymetrix Human Genome U133A Array)
concerning the effect of forskolin in human HEK293T culture was downloaded from Gene
Expression Omnibus (GEO) and normalized using the RMA method. Forskolin-treated and
control HEK293T cells (both in duplicates) in culture were compared at 4 hours to find out
differentially expressed genes. Welch’s t-test with Benjamini-Hochberg correction was
used. Due to a low number of replicates, the fold change was used as an additional
measure for filtering. P-value < 0.05 and fold change > 1.25 resulted in 691 differentially
expressed genes.

Whole genome expression data of 11 ruptured and 8 unruptured sIA wall samples
resected after microsurgical clipping of the sIA neck were compared using Affymetrix HG-
U133 Plus 2.0 microarrays (see publication 1). The data was RMA normalized and
compared using Welch’s t-test with Benjamini-Hochberg correction for p-values. Genes
with p-value < 0.05 were regarded as differentially expressed genes. This resulted in 498

overexpressed and 491 underexpressed genes in the ruptured sIA wall group.
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6 High risk population isolate reveals low frequency
variants predisposing to intracranial aneurysms

6.1 INTRODUCTION

About 3% of the population develops saccular intracranial aneurysms (sIAs) during life
(Vlak et al. 2011; Ronkainen et al. 1998). Some 95% of subarachnoid hemorrhages are
caused by ruptured sIA (sIA-SAH), a devastating form of stroke affecting individuals
mainly in the sixth decade of life (van Gijn et al. 2007). The annual incidence of SAH is 4-9
per 100 000 worldwide (Feigin et al. 2009) but over twice as high in Finland and in Japan
(de Rooij et al. 2007). The sIA disease is a complex trait, the risk of which is affected by age,
sex, smoking, hypertension, excess drinking (V. L. Feigin et al. 2005), and in over 10% of the
cases family history of sIA disease (Ronkainen et al. 1997; Huttunen et al. 2010; Ruigrok et
al. 2001).

To date, genome wide association (GWA) studies have identified six definite and one
probable (replicated in Japan but not strictly genome-wide significant) loci with common
variants associated to sIA: 4q31.23 (OR 1.22) (Yasuno et al. 2011; Low et al. 2012); 8q11.23—
q12.1 (OR 1.28); 9p21.3 (OR 1.31); 10g24.32 (OR 1.29); 12q22 (OR 1.16) (Yasuno et al. 2011);
13q13.1 (OR 1.20); 18q11.2 (OR 1.22)(Yasuno et al. 2010); and 9p21.3 (Helgadottir et al. 2008;
Foroud et al. 2012) (see Supplementary Table 5 of the publication of study III). These seven
loci were estimated to explain 6.1%, 4.4%, and 4.1% of the four-fold sibling recurrence risk
in Finland, Europe, and Japan, respectively (Yasuno et al. 2011). In these previous GWA
studies, results on 2q33.1 locus were inconsistent: the locus was significant in the first
GWAS (Bilguvar et al. 2008), not significant in the enlarged follow-up GWAS (Yasuno et al.
2010), and in the third GWAS the risk allele was reversed in the Japanese replication
sample (Yasuno et al. 2011).
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The population of Finland is one of the most thoroughly characterized genetic isolates.
Due to the small size of the founder population, subsequent bottleneck effects and genetic
drift, the Finnish population is enriched for low frequency variants that are almost absent
in other European populations and some variants rare elsewhere are increased in frequency
(The 1000 Genomes Project Consortium 2012). This is best illustrated by the increased
prevalence of 36 rare Mendelian, mostly recessive, disorders in Finland (www.findis.org);
the so called Finnish disease heritage (FDH) (Peltonen et al. 1999). We hypothesized that
some of the enriched rare or low frequency variants could contribute to the increased sIA-
SAH susceptibility in Finland.

In this GWA study, we combined the power of the 1000 Genomes imputation, the special
benefits of a population isolate and enrichment of familial cases in the discovery cohort.
Familial sIA patients more often carry multiple sIAs as compared to sporadic sIA patients,
which may confer an additional genetic burden to sIA formation (Ruigrok et al. 2004;
Mackey 2012; Huttunen et al. 2010). Therefore, in addition to the case vs. control analysis,
we also analyzed the number of sIAs per individual as an intermediate phenotype. We
conducted an association analysis in a discovery sample of 760 Finnish sIA cases and 2,513
matched controls followed by replication in an additional sample of 858 Finnish sIA cases
and 4048 controls. The successfully replicated loci in Finland were further studied in a
Dutch cohort of 717 sIA cases and 3004 controls to assess the extent to which the allele
frequencies and risk effect sizes match between the isolate of Finland and a continental
European population (Figure 14). In addition, we hypothesized that a previously
inconclusive locus on 2q33.1 (Bilguvar et al. 2008; Akiyama et al. 2010; Yasuno et al. 2011) is
a true sIA risk locus at least in Finland and aimed to replicate the best discovery

associations in the locus in this study in the Finnish and in the Dutch samples.
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- 40% familial sIA patients FINNISH DISCOVERY

- increased risk of sIA-SAH * 760 slA cases

- 9.4 million variants * 2513 matiched controls
v p < 5x10%

FINNISH REPLICATION
- 6% familial slA patients * aEa o|A cases

- increased risk of slA-SAH * 4048 controls

v p < 5x10%
14.7% familial sIA patient DUTCH COMPARISON
- 14.7% familial slA patients * 717 sIA cases

- general risk of slA-SAH
= * 3004 controls

Figure 14. Study design. The Finnish discovery and replication cohorts represent a population
with an over two-fold increased risk of subarachnoid hemorrhage from ruptured saccular
intracranial aneurysm (sIA-SAH). The Finnish discovery cohort was intentionally enriched with
familial sIA patients, and 9.4M genotyped and imputed variants were studied. The loci with p <
5E-6 were replicated in an independent and unselected Finnish sIA sample. The allele
frequencies and effect sizes of the replicated variants in Finland were finally compared to a
continental European population using a Dutch sample. The sIA-SAH risk is not increased in the
Netherlands (‘general risk’ in the figure).

6.2 RESULTS

6.2.1 Case vs. control analysis in Finnish and Dutch samples

To increase the potential genetic load in the study sample, our discovery sample
consisted of 760 cases from the isolated, high-risk Finnish population, purposefully
enriched for familial sIA (40%) patients and 2513 genetically matched Finnish controls. The
imputation of the 304,399 previously genotyped variants (Yasuno et al. 2010) against the
1000 Genomes Project reference panel (v3, March 2012 release) increased the number of
common and low frequency variants available for the association analysis to 9,359,231.
Quantile-quantile (QQ) plots of association p-values and genomic inflation factor (A = 1.04)
did not indicate substantial population stratification (see Supplementary Figure 1 of the
original publication). The discovery association analysis revealed one locus at 12p11.1
driven by rs653464 at genome-wide significance (p <5 x 10%) and 14 other loci at p <5 x 10
(see Supplementary Table 1 of the original publication).

We chose 17 SNPs representing the 15 promising loci (p <5 x 10-6) above for replication
in an independent sample of 858 Finnish sIA cases and 4,048 controls (Table 11). Four SNPs
and one deletion were associated at p<0.05 with sIA disease (see Supplementary Table 1 of
the original publication), two of them in the previously reported sIA loci 9p21.3 (rs1333042;
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OR 1.3, p = 6.3 x 10-7) and 13q13.1 (rs113124623; OR 0.88, p = 0.01). The genome-wide
significant 12p11.1 locus in the discovery sample did not replicate (p = 0.29). In the meta-
analysis of the two Finnish samples, four SNPs reached genome-wide significance at p <
5x10-8 (Table 9). Three were novel: 2q23.3 (rs74972714; OR 2.1, 95% CI 1.68 - 2.63, p =7.4 x
10-11, control allele frequency or CAF 2.35%), 5q31.3 (rs113816216; OR 1.92, CI11.53 —2.40, p
=1.74 x 10-8, CAF 2.09%) and 6q24.2 (rs75018213; OR 1.97, CI 1.6- 2.43, p =2.25 x 10-10, CAF
2.53%). One was previously reported at 9p21.3 (rs1333042; OR 1.31, CI 1.21 - 142, p=1.8 x
10-11, CAF 42.3%) (Table 9). To assess how the allele frequencies and effect sizes of variants
identified in the Finnish population compare to other European populations, we studied
those variants in a Dutch sample consisting of 717 sIA cases and 3,004 controls (Table 11).
All three variants tagging the novel loci at 2q23.3, 5q31.3 and 6q24.2 had a similar low
minor allele frequency (1.6-3.9%) in Finland and the Netherlands (Table 9). Two of them
had similar effect sizes and were also significantly replicated: 5q31.3 (rs113816216; OR 1.3,
CI0.98 - 1.75, p = 0.045, CAF 3.87%) and 6q24.2 (rs75018213; OR 1.5, CI1 0.98 — 2.3 p = 0.034,
CAF 2.92%). The previously reported 9p21.3 locus also replicated in the Dutch sample
(rs1333042; OR 1.32, CI11.17 - 1.49, p = 3.42 x 10-6, CAF 47.86%). In the meta-analysis of the
Finnish and Dutch samples, all three novel loci 2q23.3 (rs74972714; OR 1.89, p = 1.42 x 10-9),
5q31.3 (rs113816216; OR 1.66, p = 3.17 x 10-8) and 6q24.2 (rs75018213; 1.87, p = 7.1 x 10-11)

were significantly associated to the sIA disease at genome-wide significance (Table 9).
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6.2.2 Association of variants to the number of sIAs

Some 20-30% of the slA patients carry multiple sIAs, a phenomenon more commonly
seen in familial sIA disease (Huttunen et al. 2010; Mackey 2012; Ruigrok et al. 2004). We
hypothesized that an increased number of sIAs (> 2) in a given patient would reflect a
higher underlying genetic load, motivating us to use aneurysm count as an intermediate
phenotype to increase statistical power. The number of sIAs was used as a count data using
the negative binomial regression analysis in the discovery sample of 760 Finnish sIA cases
(1-8 slAs per patient) and 2,513 controls. The QQ plot (see Supplementary Figure 2 of the
original publication) and the genomic inflation factor (1.05) did not indicate substantial
population stratification.

Nine loci had variants at p < 5E-6 (Supplementary Table 2). The most significant variant
of each locus was selected for replication in the new Finnish sample of 858 sIA cases (1-6
slAs per patient) and 4,048 controls. Two loci were replicated at p < 0.05: 7p22.1
(rs150927513; RR 1.39, p = 8.36 x 104, CAF 5.24%) and 16p13.3 (rs144159053; RR 1.66, p = 4.4
x 103, CAF 1.27%) (see Supplementary Table 2 of the original publication). In the meta-
analysis of the Finnish samples, 7p22.1 was genome-wide significant (rs150927513; RR 1.6,
CI1.37 -1.88, p=4.92 x 10-9, CAF 4.61%); Table 10).

To compare the allele frequency and effect size of rs150927513 identified in the Finnish
population to those of a continental European population we studied the variant also in the
Dutch, but the imputation quality (Impute info 0.38) and estimated allele frequency (0.29%)
were too low to obtain reliable estimates (RR 0.97; 95% CI 0.17 - 4.03, p = 0.97).

6.2.3 Analysis of 2q33.1 locus

Previously published results on the 2q33.1 locus are inconsistent, being significant in the
first GWAS (Bilguvar et al. 2008), not significant in the enlarged follow-up GWAS (Yasuno
et al. 2010), and uncertain in the third GWAS (Yasuno et al. 2011). We aimed to study if the
2q33.1 would replicate in Finland, even though no variant in this region reached p < 5E-6 in
the discovery sample. We chose two of the most significant SNPs (in this study) at 2q33.1
for replication in the new Finnish replication sample, which was not used in the previous
studies (rs12472355; OR 1.21, p = 2.23 x 10*, CAF 43.7%, and rs919433; OR 1.18, p = 1.01 x
10-3, CAF 43.9%). They are in LD with the three previously investigated SNPs (rs787994,
rs1429412, rs700651; LD r2 0.75-0.96). The variants rs12472355 (OR 1.23, CI 1.13 - 1.33, p =
4.83 x 107) and rs919433 (OR 1.23, CI 1.13 — 1.33, p = 2.15 x 10°) did not reach genome-wide
significance in the combined Finnish samples (). They were highly significant in the Dutch
sample (rs12472355; OR, 1.39, CI1 1.23 - 1.57, p = 1.05 x 10-7 and rs919433; OR 1.43, CI 1.26 —
1.61, p 9.77 x 10-9), and in the meta-analysis of all three samples they reached genome-wide



significance (Table 9). The allele frequencies were notably higher in the Finnish samples
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(44% and 43.7%) than in the Dutch samples (33.2% and 31%).

Table 11. The Finnish and Dutch study samples used in the association analysis of saccular

intracranial aneurysm (sIA) disease.

Finnish discovery Finnish replication Dutch replication
Cases Controls Cases Controls Cases Controls

N 760 2,513 858 4,048 717 3,004
Women 443 (58%) 1,454 (58%) 532 (62%) 2,182 (54%) 492 (67%) 1,135 (38%)
Familial sIA 300 (40%) - 51 (6%) - 100 (15%)* -
sIA-SAH 561 (74%) - 587 (68%) - 658 (92%)
Mean age (yrs) 50 52 52 40 54 68
Number of sIAs

mean 1.54 (1-8) - 1.46 (1-6) - 1.26 (1-7) -

> 2 242 (32%) - 257 (30%) - 127 (18%)**

* Unknown familial slA status for 35 patients.: ** Number of slAs not known for 16 patients

6.2.4 Regulatory elements at identified loci

The UCSC Genome Browser and HaploReg version 2 (Ward & Kellis 2012) were used to

search for ENCODE regulatory elements at the five genome-wide significant variants.
rs74972714 at 2q23.3 and rs150927513 at 7p22.1 reside within a DNAse hypersensitivity

peak. The rs75018213 at 6q24.2 resides on an ENCODE GATA2 transcription factor binding

site peak (see Supplementary Table 4 of the original publication).

Using genome-wide ChlP-seq analysis, Ernst et al. constructed a predicted cell-type
specific regulatory region map of nine chromatin marks in nine cell lines (Ernst et al. 2011).
rs113816216 at 5q31.3 resides on a predicted erythroleukemia cell specific (K562) strong
enhancer and rs75018213 at 6q24.2 on a predicted lymphoblastoid cell (GM12878) weak
enhancer (see Supplementary Table 4 of the original publication).

We searched for putative transcription factor binding sites affected by the four variants,
based on position weight matrices from Transfac, Jaspar and ENCODE (top 3 enriched
motifs for each transcription factor, identified in transcription factor ChlP-seq peaks (Ward
& Kellis 2012)). rs74972714 at 2q23.3 affects putative binding sites for EBF1 (ENCODE),
HDAC2 (ENCODE), RXRA:PPARG complex (Transfac), ZNF423 (Jaspar) and ZIC3 (Jaspar).
rs113816216 at 5q31.3 affects the putative binding sites for RFX1 (Transfac) SREBP1
(ENCODE), STAT3 (Transfac) and IKZF3 (Transfac). rs150927513 at 7p22.1 affects putative
binding sites of T (brachyury) (Transfac), CEBPB (Transfac) and P300 (ENCODE).
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rs75018213 at 6q24.2 is not directly on any putative transcription factor binding site (see
Supplementary Table 4 of the original publication).

At the 2q33.1 locus neither of the studied variants (rs919433, rs12472355) were on
ENCODE DNAse hypersensitivity or transcription factor binding site peaks. However,
rs919433 is on a predicted lymphoblastoid (GM12878) cell enhancer whereas rs12472355 is
not directly on any regulatory region. rs919433 disrupts a putative transcription factor
binding sites for RUNX2 (OSF2, Transfac) and the MYC:MAX complex (Transfac).

6.2.5 eQTL analysis

To study the potential effects of the variants in the five significant loci on the transcripts of
nearby genes, we correlated the variants to expression levels of exons of nearby genes
(expression quantitative trait locus (eQTL) analysis) obtained using RNA-sequencing in
lymphoblasts of genotyped European individuals from the 1000 Genomes Project (Finnish,
British, Toscani and CEPH populations, n=373; www.geuvadis.org) (Lappalainen et al.
2013). Each variant was correlated to transcripts residing within 1MB. There were 55 genes
in 586 exons available for analysis (see Materials and Methods) and in total 748 tests were
performed corresponding to Bonferroni corrected significance threshold of 8.7 x 10-5.
Strongest association for each variant are reported below and all eQTL results in
Supplementary Table 6 of the original publication.

The most significant eQTL associations were observed at the 2q33.1 locus: rs12472355
associated significantly to the closest gene ANKRD44 (FC 0.94, p = 1.83 x 10-5) and also to
HSPD1 (FC 0.94, p = 1.6 x 10-4), whereas rs919433 was associated to the same genes but in
different order of significance; HSPD1 (FC 0.94, p = 3.8 x 10-5) and ANKRD44 (FC 0.95, p =
1.4 x 10-4). Among the novel low-frequency variants, only rs150927513 at 7p22.1 was
significantly associated to TNRC18 (allelic fold change (FC) 1.23, p = 5.1 x 10-5). Nominal
associations were observed for two other novel low frequency variants: rs113816216 at
5q31.3 to VDACI (FC 2.12, p 4.6E-4); 1s74972714 at 2q23.3 to EPC2 (FC 0.75, p = 3.9 x 10-2).
rs75018213 at 6q24.2 did not have any association even at nominal p < 0.05 (see
Supplementary Table 6 of the original publication).
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Figure 15. Regional association plots of the five identified saccular intracranial aneurysm (sIA)
loci in the combined Finnish samples and the Dutch sample. Association p-values (-log10 scale,
y-axis) of variants are shown according to their chromosomal positions (x-axis). Blue lines
indicate the genetic recombination rate (cM/Mb). Figures A-C present the loci identified in the
case vs. control analysis at 2g23.3, 5931.3, and 6g24.2, respectively. Figure D presents the
7p22.1 locus associated to the sIA count per patient. Figure E presents the 2g33.1 locus with
inconclusive previous evidence. Purple rectangles indicate the most significant variant in a) the
Finnish discovery sample and, along the dashed line, its p-values in b) the combined Finnish
samples (META FIN) and in c) all samples (META ALL). Adjacent variants in linkage
disequilibrium (r?; EUR populations, 1000 Genomes March 2012) to the index variant are shown
in colours indicating their r? levels (r? box in each figure).
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6.3 DISCUSSION

In this study, we used three approaches to improve the power to identify new loci
associated to the sIA disease. First, we focused on the Finnish population isolate with
increased risk for subarachnoid haemorrhage from ruptured sIAs (sIA-SAH) (de Rooijj et al.
2007). Second, we enriched the proportion of familial sIA patients in the discovery sample,
thus possibly increasing the prevalence of risk alleles. Third, we increased genome-wide
coverage through imputing ungenotyped variants based on the 1000 Genomes Project data.
Using this combination of strategies, we were able to identify three new loci associated with
sIA disease, and one locus associated with the number of aneurysms. Additionally, we
replicated a locus where the evidence so far was inconclusive. Together these five loci
account for 2.1% of the heritability in the Finnish samples. In comparison, the six
previously identified SNPs explain 2.5% of the heritability in the discovery sample of the
current study. Our results likely reflect the varying genetic background of complex traits,

such as sIA, in different populations.

6.3.1 Four novel sIA loci

The lead SNPs in the four novel loci all have a low frequency (< 5%) in the general
population and could not have been identified without imputing the genotype data against
the 1000 Genomes reference. One of the variants, rs150927513 at 7p22.1 that was associated
with the number of sIAs, indicates a strong bottleneck effect, for it was 15 times more
frequent in the controls of combined Finnish samples (4.6%) than in the Dutch sample
(0.3%), and it is virtually non-existent in other populations (1000 Genomes). The three other
loci had similar frequencies in Finland and other European populations (1000 Genomes).
These four novel loci explain 1.7% of the heritability in the Finnish samples.

The four sIA loci had higher effect sizes (point estimates ranging 1.59-1.88) than the lead
SNPs identified by previous GWA studies. We cannot yet conclude whether relatively high
ORs of low frequency risk alleles are a typical feature of sIA disease. Similar, odds ratios for
low frequency and rare variants have been reported in isolates for other traits (Sulem et al.
2011; Jonsson et al. 2013). It is likely that this first wave of low frequency and rare
susceptibility variants represent “low hanging” fruits that do not allow general conclusions

about the susceptibility landscape of sIA or other complex traits.

6.3.2 2q23.3 locus

The variant rs74972714 at 2q23.3 has a frequency of about 2% in European populations,
including Finns. It was significantly associated to sIA in the Finnish samples but did not
show a trend for being associated in the Dutch sample despite having a similar allele
frequency. Further studies are required to find out whether this variant tags a risk allele
specific to Finnish sIA patients. The variant is located 40kb downstream of LYPD6 and 55kb
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upstream of MMADHC (Figure 15 A). LYPDG6 has recently been characterized as a member
of the Ly-6 protein superfamily (Zhang et al. 2010). LYPD6 is ubiquitously expressed with
highest levels in heart and brain. GPI-anchored Ly-6 proteins such as PLAUR function, e.g.,
in cellular adhesion (Zhang et al. 2010). LYPD6 overexpression can inhibit transcriptional
activity of the AP1 transcription factor complex (Zhang et al. 2010), a key inflammation
mediator activated, e.g., in endothelial cells in atherogenic disturbed blood flow conditions,
leading in turn to upregulation of pro-inflammatory molecules (Nigro et al. 2011). Similar
transcriptional changes were observed in the ruptured human sIA wall in Study I of this
thesis. MMADHC is an intracellular vitamin B12 trafficking gene. Mutations in this gene
can cause methylmalonic aciduria or homocystinuria, or both (Lerner-ellis et al. 2008).
rs74972714 was only nominally associated to exon expression level of EPC2 (FC 0.75, p=3.9
x 102).

6.3.3 5q31.11ocus

The variant rs113816216 at 5q31.3 has a frequency of 1-3% in Finland and most other
European populations, except in Spain (7%). It was significantly associated to the sIA
disease in the Finnish samples and was also significant in the Dutch sample but had a
somewhat lower OR (Table 9).

The meta-analysis of all combined samples exceeded the genome wide significance
threshold. The variant is located in the intron of FSTL4 (Figure 15 B), a poorly characterized
gene. FSTL1, a paralog of FSTL4, codes a protein inducing innate immunity as TLR4
agonist (Murakami et al. 2012). Increased tissue levels of FSTL1 were associated to the
severity of heart failure (Lara-Pezzi et al. 2008) and to the coronary artery aneurysm
formation in Kawasaki disease (Gorelik et al. 2012). Variants in FSTL4 were modestly
associated to human ischemic stroke (Luke et al. 2009), and a variant 70 kb from FSTL4
nominally to hypertension (Guo et al. 2012). The strongest eQTL of rs113816216 was
suggestive association with an exon of VDACI (FC 2.12, p 4.64 x 10*).

6.3.4 6q24.21ocus

The variant rs75018213 at 6q24.2 has similar frequencies (2%) in European populations,
including Finns. It was significantly associated to the sIA disease in the Finnish samples
and was also significant in the Dutch sample but had a somewhat lower OR (Table 9)
It is located in the intron of EPM2A. The LD spans over 300 kb downstream covering
FBXO30, LOC100507557, SHPRH, and GRM1 (Figure 15 C). In the ENCODE data,
rs75018213 is located in a GATA2 transcription factor binding site ChIP-seq peak.
Homozygous deletions in the EPM2A gene result in progressive myoclonus epilepsy (PME)
with Lafora bodies (OMIM 254780) (Minassian et al. 1998). No vascular anomalies have
been reported in EPM2 deletion patients with a PME phenotype or their heterozygote
parents. EPM2A encodes a phosphatase, which dephosphorylates glycogen, but it is likely
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that EPM2A has broader functions in regulation of glycogen biosynthesis, endoplasmic
reticulum stress, autophagy, and possibly also cell cycle (Gentry et al. 2013).

6.3.5 7p22.11locus and the number of sIAs

The variant rs150927513 at 7p22.1 was significantly associated to sIA count per individual
in the Finnish population (Table 10). Its frequency was 4.6% in the Finnish samples but only
0.3%, in the Dutch sample, in line with most European populations. The variant is located
in the intron of RADIL (Figure 15 D), a rap GTPase interactor, an essential effector of RAP1
in activation of integrins in cell-adhesive signalling by G protein-coupled receptors (Ahmed
et al. 2010). RADIL has also been shown to control, together with RAP1, neutrophil
adhesion and chemotaxis (Liu et al. 2012). Neutrophils seem to have a role in the formation
and rupture of intracranial and abdominal aortic aneurysm (Frosen et al. 2012; Kurki et al.
2011; Eliason et al. 2005). The strongest eQTL association was to an exon of TNRC18, (FC
1.23, p 5.1 x 10-5). TNRC18 has not been functionally characterized.

As we analysed the number of sIAs as a count variable from 0-8, the inherent
assumption was that the same variant would increase the risk of the first and the
subsequent sIA formation. Thus, any variant associated to the number of sIAs will to some
extent be associated in the case vs. control analysis. Indeed, in the analysis of combined
Finnish cohorts rs150927513 was associated in the case-control analysis (OR 1.54, p = 6.5 x
107) and consistently also in the analysis of multiple vs. single sIA patients (OR 1.65, p = 8.4
x 10#). The association of this variant, should be interpreted as reflecting the tendency of
sIA formation, rather than considering multiple sIAs as a completely different dichotomous

end point.

6.3.6 Previously identified 9p21.3 locus

The 9p21.3 locus has been robustly associated to the sIA disease (Yasuno et al. 2010) as well
as to cardiovascular, metabolic, and cancer traits (Helgadottir et al. 2008; Wellcome et al.
2007), and it has been extensively studied by others (Johnson et al. 2013). The allele
frequency and effect size in the current study, although with a different lead SNP (12 = 0.7
to previous lead SNP rs1333040), are in strong agreement with the previous study (Yasuno

et al. 2010). This locus is not therefore discussed further here.

6.3.7 2q33.1 locus with previously inconclusive evidence

Two common variants, rs12472355 and rs919433 at 2q33.1 were significantly associated
to the sIA disease in the Finnish and Dutch samples (Table 9). rs919433 is located intronic
and rs12472355 upstream 30 kb from ANKRD44 (Figure 15 E). The allele frequencies were
somewhat higher in the Finnish samples (rs919433, 44%; rs12472355 43.7%) than in the
Dutch samples (33.2%; 31%) or in the Japanese population according to 1000 Genomes
Project (28.1%; 27.5%). In this locus, the risk allele was reversed in the Japanese cohort of
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the previous sIA GWA study (Yasuno et al. 2011). ANKRD44 is likely a subunit of protein
phosphatase 6 (Stefansson et al. 2008) that functions, e.g., in cell cycle control (Stefansson &
Brautigan 2007) and in inhibition of NF-kB activation (Stefansson & Brautigan 2006). NF-«B
is a significant mediator in experimental sIA formation in rats, highly expressed in human
sIA wall (Tomohiro Aoki et al. 2007), and it was associated to human sIA wall rupture in
Study I of this thesis. In eQTL analysis, rs12472355 was significantly associated to
ANKRD44 (FC 0.94, p =1.83 x 10%) and rs919433 to HSPD1 (FC 0.94, p = 3.8 x 10°)

In conclusion, we identified four novel loci associated to sIA disease and confirmed one
additional locus with previously inconclusive evidence, together explaining 2.1% of the sIA
heritability in Finland. Our data illustrates the utility of high-risk population isolates,
familial disease history, and dense genotype imputation in search of low-frequency
variants associated to complex human diseases. The identification of the four novel low
frequency variants would likely have required much larger sample sizes in more mixed
populations. Further studies of the identified five loci are needed to explain their functional

mechanisms in the pathogenesis of sIA disease.

6.4 MATERIALS AND METHODS

6.4.1 Study samples

A. Finnish discovery sample

The initial discovery GWAS data consisted of previously Illumina genotyped 974 Finnish
intracranial aneurysm patients and 740 controls (Yasuno et al. 2010). The patients were
collected from the registries of Neurosurgery, Kuopio University Hospital, and
Neurosurgery, Helsinki University Hospital, solely serving their catchment populations in
Eastern and Southern Finland, respectively. The sIAs were angiographically verified and
the cases of subarachnoid hemorrhage from ruptured sIA (sIA-SAH) with computed
tomography (CT). Patients with at least 1 first-degree relative carrying sIA disease were
considered familial (Huttunen et al. 2010).

The Helsinki Birth Cohort Study (HBCS) includes 8,760 individuals born in the Helsinki
Central Hospital between 1934 and 1944 (Barker et al. 2005). A subset of 1676 Illumina
genotyped individuals were available for the present study. The Health 2000 Cohort
(H2000) includes 2 402 Finns, and of those 2138 Illumina genotyped individuals were
available for the present study (Aromaa & Koskinen 2004; THL - National Institute for
Health and Welfare. 2000).

The following 210 cases and 119 controls were removed from the discovery sample:
fusiform aneurysm carriers (n=5); duplicated cases (n=9) and controls (n=10); blind

duplicate cases (n=15) and controls (n=5); genotyping rate <97% (29 cases, 31 controls);
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individuals with higher missingness from cryptically related pairs (Identity by descent
(IBD) >0.1875, similarity halfway between 2nd and 3rd degree relatives: 69 cases, 55
controls); genetic distance to 5 nearest neighbours > 4 standard deviations longer than the
average distance (2 cases, 18 controls); patients not traceable from the database or with
traumatic SAH (n=81); or polycystic kidney disease (n=4).

The following SNPs were removed: missing genotypes > 5%; minor allele frequency <
1%; Hardy-Weinberg disequilibrium p-value in controls < 1*10%; symmetric SNPs (A/T,
C/G); and SNPs not on all the genotyping platforms.

To minimize false positives, each sIA case was matched to three controls by gender and
genetic distance from control individuals. First, a sliding window approach was used to
thin the set of SNPs to be approximately independent of each other. A sliding window of
1500 SNPs was shifted by 150 SNPs at a time along chromosomes, and in each step SNPs
were filtered if any pairwise r2 was > 0.2, resulting in 79596 independent SNPs. Pairwise
IBS distances of these SNPs were used in multidimensional scaling and four first
dimensions were used in matching. Plink v. 1.07 (Purcell et al. 2007) was used for thinning
and MDS analysis. R package optmatch was used to pair each case to three controls. After
1:3 matching, additionally all Eastern Finnish controls from the previous sIA study were
included (Purcell et al. 2007).

The final discovery sample consisted of 760 sIA cases and 2,513 controls (Table 11). After
SNP filtering, there were 304,399 genotyped SNPs and 9,046,433 imputed SNPs and indels
(see imputation paragraph for imputation QC) for the discovery sample.

B. Finnish replication sample

The replication sample consisted of 858 independent sIA patients from the registry of
Neurosurgery, Kuopio University Hospital. There were 1,605 independent controls, 453
from Eastern Finland and 1152 from the FINRISK study, both genotyped using the
Sequenom iPLEX technique. Additionally, 2,443 whole genome genotyped controls from
The Cardiovascular Risk in Young Finns Study were acquired and replication SNPs were
extracted after imputation (Table 11).

The Cardiovascular Risk in Young Finns Study is a follow-up study of cardiovascular
risk factors from childhood to adulthood (Raitakari et al. 2008; Anon 2008). The participants
were randomly chosen from the Finnish Population Registry and recruited from five
university cities in Finland. The baseline study launched in 1980 and included 3,596
individuals. Follow-ups have taken place at every three to six years with the last one in
2007 at 27 years of age.

The FINRISK cohort is a national survey on risk factors of chronic and non-

communicable diseases in Finland (Vartiainen et al. 2010). The survey has been conducted
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every five years since 1972 in randomly selected, representative population samples from

different parts of Finland.

C. Dutch replication sample

The Dutch sample consisted of previously GWAS genotyped 786 Dutch sIA cases (Yasuno
2010), and the 3,110 controls were recruited as part of the Nijmegen Biomedical Study
(n=1,832) and the Nijmegen Bladder Cancer Study (n=1,278) (Wetzels et al. 2007; Kiemeney
et al. 2008). The relevant medical ethical committees approved all studies and all
participants provided written informed consent. The patients were admitted to the Utrecht
University Medical Center between 1997 and 2007. The sIA-SAH cases were verified with
CT scan and slAs by angiography. Unruptured sIAs were identified by angiography in the
absence of clinical or radiological signs of SAH (Yasuno et al. 2010). Patients reporting at
least 1 first-degree relative carrying sIA disease were considered familial.

The Nijmegen Biomedical Study is a population based cross-sectional study conducted
by the Radboud University Nijmegen Medical Centre (Wetzels et al. 2007; Kiemeney et al.
2008). Age and sex stratified, randomly selected adults (> 18 years) of Nijmegen (n=22,452)
received an invitation to fill out a postal questionnaire on lifestyle and medical history.

The following cases and controls were excluded: missingness >= 0.05 (n=10); IBD >= 0.2
(n=102); heterozygosity >/< 3 standad deviations from the mean (n=46); and principal
component analysis outliers (n=43). The intersection of SNPs in different platforms was first
extracted and symmetric SNPs were removed (A/T, C/G). SNPs prior to the imputation
were filtered by the following QC criteria: genotype missingness > 0.05; MAF < 0.01; HWE p
< 0.001; and differential missingness between cases and controls p < 1E-5. The final Dutch

replication sample consisted of 717 cases and 3,004 controls (Table 11).

6.4.2 Replication strategy

From both of the analyses (the case vs. controls and the number of slIAs) the best
independent SNPs were taken to replication if p < 5E-6. Additional significant independent
SNPs in a locus were tested by analyzing each SNP within 1 MB from the top SNP while
adding the top SNP as a covariate. Additionally the most significant SNP in the current
study in 2q33.1 region with uncertain evidence in previous slA GWASs was taken to
replication. A variant was considered replicated if it reached one-tailed significance of
p<0.05 and was consistent in terms of the risk allele. In all of the results, one-tailed p-values

are given for the Finnish replication and in the Dutch results.

6.4.3 Genotyping

Genomic DNA was extracted from peripheral blood and genotyped by Illumina arrays: the
Finnish discovery sample and the Dutch replication cases by CNV370k DUO chip; the
HBCS and YFS controls by Illumina Human670K customBeadChip; and the H2000 controls



89

by Mlumina Infinium HDHuman610-Quad BeadChip. In the Finnish replication sample,
DNA was genotyped using Sequenom MassARRAY system and iPLEX Gold assays
(Sequenom Inc., San Diego, USA). The data was collected using the MassARRAY Compact
System (Sequenom) and the genotypes were called using TyperAnalyzer software
(Sequenom). Genotyping quality was examined by a detailed QC procedure consisting of
success rate checks, duplicates, water controls and Hardy-Weinberg Equilibrium (HWE)

testing.

6.4.4 Imputation

For imputation of additional genotypes in the discovery sample, the Young Finns
replication cohort and in the 2nd Dutch replication sample the genotypes were first pre-
phased (Howie et al. 2012) using the Shape-IT (Delaneau et al. 2012) phasing software and
the pre-phased haplotypes were subjected to imputation. The Impute version 2.2.2 software
(Howie et al. 2009) with 1000 Genomes Phase I integrated variant set release (v3) reference
panel (05 Mar 2012 release, http://mathgen.stats.ox.ac.uk/impute/) was used. Imputed
genotypes were filtered if the Impute info measure was < 0.5 or minor allele frequency <
0.01.

6.45 eQTL analysis

We analyzed whether the identified genome-wide significant SNPs might affect gene
expression by using the European samples of the Geuvadis RNA-sequencing data set, with
mRNA sequencing data from LCLs of 373 samples from the FIN, CEU, GBR, and TSI
populations of 1000 Genomes project (Lappalainen et al. 2013).

We did eQTL analysis for each of the associating variants and all the genes within a 1IMB
window that were expressed in >50% of the individuals. We used exon quantifications
based on individual read counts per exon, after correction by the total number of mapped
reads per sample and PEER normalization to remove technical variation. For each exon, we
calculated linear regression between these expression values and genotype dosage of the

associating variants in the 1000 Genomes data.

6.4.6 Regional association plots
Regional association plots were generated using LocusZoom with LD data from European
populations of the 1000 Genomes project (Hg19/ March 2012) (Pruim et al. 2010).

6.4.7 Search of regulatory elements at identified variants

The UCSC Genome Browser and HaploReg version 2 (Ward & Kellis 2012) were used to
search for ENCODE regulatory element regions located at the five genome-wide significant
variants. HaploReg database also annotates if SNP resides on a putative transcription-factor

binding site (TFBS) according to Transfac or Jaspar TFBS profiles and also 10 most enriched
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TFBS profiles identified in ENCODE TF ChIP-eq peaks. We used all the Jaspar and Transfac
annotations and the three most enriched ENCODE based TFBS annotations for each TF.

6.4.8 Statistical analysis
GWA was performed against two complementary phenotypes: the case vs. control status

and the number of sIAs.

Case vs. control analysis
SNPTEST v2.3.0 was used for the association analysis, assuming additive effect. Genotype
uncertainty in the imputed SNPs was taken in to account by treating them as continuous

expected genotype dosages. The gender was used as a covariate.

Aneurysm count analysis

The Vuong test (Vuong 1989) showed that the negative binomial model was a significantly
better fit to the sIA count per individual when compared to the Poisson model. The zero-
inflated negative binomial model was not significantly better, so the simpler negative
binomial model (glm.nb function in MASS R package) was used. When assessing the model
fits, the gender was used as a predictor. Imputation uncertainty was taken into account by
treating the imputed SNPs as continuous expected genotype dosages, and the gender was

used as a covariate.

Meta-analysis

The association evidence from the discovery and replication samples were combined by
inverse variance-weighted fixed-effects meta-analysis, using Plink v. 1.07 (Purcell et al.
2007).

6.4.9 Heritability analysis

The fraction of additive genetic variance explained by the five identified loci was estimated
using the liability threshold model (So et al. 2011). The model assumes an additive effect at
each locus, which shifts the mean of a normally distributed distribution of disease liability
for each genotype. The combined genetic variance explained by the five SNPs (rs74972714,
rs113816216, rs7501821, rs1509275133, rs12472355) in the five loci was assumed to be the
sum of variances explained by each SNP. Risk allele frequencies in controls and OR’s from
combined Finnish samples was used and population prevalence of 3% of the sIA disease
was assumed (Vlak et al. 2011). Heritability of the six previously identified lead SNPs
(rs9298506, rs1333040, rs12413409, rs9315204, rs11661542, rs6841581) was estimated using
the allele frequencies and effect sizes from the discovery cohort of the current study.
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7 General discussion

Despite efforts to elucidate the genetic and molecular basis of common complex diseases,
the answers still remain elusive. The intracranial aneurysm disease is no exception; rather it
has received much less attention than more common complex diseases like Alzheimer’s
disease or type 2 diabetes.

Common complex diseases are a cause of much humanitarian suffering and also place a
huge economical burden on societies in treatment costs and loss of productive life years. In
the United States, common diseases were estimated to cost 277 billion dollars in treatment
costs and 1,047 billion in loss of productive life years annually in 2003 (Ross & Armen
2007). Although stroke represents only 0.8% of the cases, the costs are still 36 billion
annually. Thus, even for only economical reasons, the search for the molecular basis of

complex diseases will and should continue.

7.1 HIGH-THROUGHPUT METHODS IN THE STUDY OF COMPLEX
DISEASES

The application of high-throughput genomic methods in the study of molecular mechanism
and genetics of complex diseases produces massive amounts of data, which is further
typically complicated by noise caused by measurement technology or external factors
related to study design. A brief summary of most typical methods is presented in Table 12
(see chapters 2.1.4 and 2.2.2 for more detailed discussion). Especially the application of
next-generation or now-generation sequencing is expected to grow in popularity as the
costs are rapidly plummeting. For example, sequencing of the human genome currently
costs approximately a few thousands euros, the cost of which was around 100 million just a
decade ago. As the cost decreases and the technology matures, producing the raw data and
basic analyses are becoming more trivial but the greatest challenges are the bioinformatic
analysis, interpretation of the produced data, information technology (IT) related issues,
and importantly functional followup studies to conclusively prove the proposen
mechanistic links between findings and phenotypes. The IT requirements for imputation
and storing genotypes of > 3,200 individuals of the discovery cohort in our study III
required about a week of computation in a cluster computing environment of 81 nodes
with 24 CPUs each and 2 TB of disk space. In comparison, storing the full genome
sequencing results of a single individual can take around 300 Gb (30x coverage) and take

over a day to just call the variants (16 CPU environment) (Sboner et al. 2011). Making sense
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of the genome sequence and linking variants to phenotypes can take even months from a
team of bioinformaticians, statisticians, geneticists, and physicians (Sboner et al. 2011).

A traditional way of handling the computational and storage requirements is to build
and administer in-house cluster computing environments. This approach requires
investments in hardware and maintenance personnel and the hardware capacity must be
fitted to the heaviest use case even if that use would be infrequent. Cloud computing offers
a flexible alternative to efficiently allocate virtual computational and storage resources via
the Internet. Public Cloud computing providers such as Amazon Web Services (AWS)
(http://aws.amazon.com/) enable a pay-as-you-go type of computational infrastructure
where you can dynamically allocate computing capacity and pay only for the used
resources. Transfer of large amounts of data to the public cloud can still be a bottleneck and
it is not uncommon to ship a hard-drive to the Cloud Service provider to be transferred to
the cloud. AWS has a free public repository of some large datasets that can be used in own
virtual computing instances from AWS, such as Ensembl Human genome database (size
310GB) and 1000 Genomes project data (size 200 TB). For a review of cloud computing in

bioinformatics see (Dai et al. 2012).

Table 12. Summary of common high-throughput methods in genomic studies of complex human
diseases.

Technology Purpose Description Advantages Disadvantages
Oligonucleotide mMRNA, Oligonucleotide baits | Relatively Can only detect
Microarrays miRNA, to capture mRNA cheap, mature known transcripts,
profiling of printed on chips bioinformatics biological
disease designed based on methods for interpretation of
tissue. known transcripts in | quality control results can be
human reference and data- challenging.
genome. analysis.

RNA-seq MRNA, High throughput Higher dynamic More expensive than
miRNA, sequencing of range than microarrays, less
profiling of transcripts. microarrays, can | mature statistical
disease detect novel methods for quality
tissue. transcripts, control and analysis,

identification of | biological
sequence interpretation of
variants in results can be
transcripts. challenging.

SNP microarrays Genetic Assayed variants Very good Detection of known
studies to designed based on genotyping variants only, most
identify known variations quality, arrays identify only
genetic risk and LD in human relatively cheap, | common variants,
variants / genome (e.g. mature translating findings
loci. HapMap). statistical into

methodology pathophysiological
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and software. understanding is often
challenging.
Next generation | Genetic Protein coding parts | Affordable high | Misses non-coding
exome sequencing. | studies to | of genome are | coverage variants, can detect
identify captured using | sequencing of | coding variants of
(causative) capture kit, which is | protein  coding | only known
genetic  risk | designed based on | parts of | transcripts.
variants / | known  transcripts. | genome, robust
loci. Next generation | single nucleotide
sequencing of | variant and
captured DNA. small INDEL
detection
methodology,
moderate IT
requirements,
coding variants
can be easier to
interpret
biologically.
Next generation | Genetic Next generation | Identification of | Especially high-
whole-genome studies to | sequencing of full | variants coverage sequencing
sequencing identify genomic DNA. everywhere in | is expensive, larger
(causative) the genome | structural variant
genetic  risk instead of pre- | detection still
variants / loci selected parts, | unreliable, very high
robust single | data  storage and
nucleotide analysis
variant and | requirements,
small INDEL | interpretation of non-
detection coding parts of
methodology genome is very
challenging

7.1.1 Strengths and weaknessess of applied high-throughput approaches in study of
complex disease
In trying to understand the molecular mechanisms of complex human diseases, it would
seem important to study human samples of the phenotypical tissue in a holistic way, like
transcriptome profiling of the sIA wall in the current thesis. This approach has at least one
serious limitation; the molecular phenomena observed in the diseased tissue might not
reflect the causative processes, but just the end stage status of the disease. Observations
from such studies can, however, be a useful way to generate data driven hypotheses of
genes and pathways that otherwise might not have been considered relevant. These

hypotheses must then be proven in more focused studies in further research. Animal
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models can be a useful way to test such hypotheses as the researcher can control the
experminental conditions and coincide the sampling time of tissues with various stages of
the diasese. Unfortunately, there are no naturally occurring sIAs in animal models but the
sIAs have to be induced by e.g. hypertension and elastin degradation (Nuki et al. 2009).

Studying the genetic susceptibility to complex diseases is not as susceptible to
confounders as studies of phenotypical tissues. The genotype of an individual is not
dependent on environmental effects and therefore identifying variants predisposing to
complex diseases therefore are either in a directly causative path or predisposes to
concomitant disease or phenotype, that in turn increases the risk of the disease of interest.
The translation of association to knowledge can be often challenging but has had success in
highlighting important pathways and genes e.g. in IL23-R pathway in Crohn’s disease,
factor H in age related macular degeneration (Visscher et al. 2012), and regulation of SORT1
in controlling plasma LDL levels likely contributing to myocardial infarction (Musunuru et
al. 2010).

7.1.2 Interpretation challenges of genome-wide studies

The challenges of development for advancing the interpretation of high-throughput
methods can be broadly divided into two: annotation challenges and methodological
challenges. First, the functional understanding and annotation of genes, regulatory
elements, signaling molecules and their interplay in pathways need improvement. These
annotations should become more precise e.g. in terms of different isoforms or different
tissues and conditions and they should be made computationally accessible in a systematic
manner. Second, the bioinformatics analysis methods need to keep pace with the evolving
annotation systems to maximally benefit from the higher resolution knowledgebases. The
results from current pathway analysis methods (either positive or negative) cannot often be
just taken at face value but combined knowledge of domain experts in the studied disease,
cellular molecular mechanisms, bioinformatics, and used technology platforms is often
needed. A short summary of common pathway analysis methods of high-throughput
studies is given in Table 13 (see chapter 2.5 for detailed discussion).

In the analysis of differentially expressed gene sets in study I, we also utilized the most
popular gene set enrichment method, GSEA (Subramanian et al. 2005) and one topology
based analysis method SPIA (Tarca et al. 2009) (data not shown). The SPIA method
identified the same KEGG pathways as simpler over-representation analysis, only the
ordering was different. The practical utility of a topology-based method in our case was
therefore limited, although utilizing the topology in signaling pathway analysis feels
intuitively appealing. It is expected that topology based analyses suffer from lack of precise
knowledge of signaling pathways in different tissues and will greatly benefit from the

evolving knowledge and resolution of signaling pathway databases in the future. Similar
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results were also obtained from GSEA analysis of GO categories. Thus, the GSEA method
also did not have practical utility in our case. The advantage of GSEA is however that no
strict statistical cut-off has to be specified. One shortcoming of GSEA could be that seeking
enrichment in the top or the bottom of the gene list, which is ordered by strength of
correlation to phenotype of interest might not reveal all relevant changes. Functionally
similar genes might not be necessarily similarly differentially regulated. Small differential
expression in functionally similar genes could also convey larger effects, and the method of
Study II was developed to study this type of hypotheses, which are likely missed by the

existing methods.

Table 13. Short summary of typical pathway analysis methods of high-throughput genomic
studies.

Method Description Pros Cons
Over-representation Interpretation of Aids interpretation of | Depends on the
analysis differentially expressed gene sets by accuracy of
gene sets. Assess if some highlighting higher- annotations, existing
pre-specified gene level themes, gene annotations may
annotations (e.g. biological | computationally easy, | not be relevant in the
functions) occur in the huge variety of studied
analyzed gene set more software available. condition/tissue, the
often than would be differentially expressed
expected just by chance. gene set is based on

arbitrary statistical cut-
off, huge variety of
software available.

Enrichment analysis Interpretation of Aids interpretation of | Depends on the
differentially expressed gene sets by accuracy of
gene sets. Assess if pre- highlighting higher annotations, existing
specified annotations (e.g level themes, is not gene annotations may
pathways) occur in top or dependent on not be relevant in the
bottom of ranked list of arbitrary statistical studied
genes more often than cut-off for condition/tissue,
would be expected just by differentially ignores interaction of
chance. expressed gene set, genes in canonical

significance pathways.

calculation by
permutation is

computationally
heavy
Topology based | Interpretation of Aids interpretation of | Depends on the
pathway analysis differentially expressed gene sets by accuracy of pathways,
gene sets. Takes into highlighting biological | existing pathways may
account the topological pathways, utilizes the | not be relevant in the
ordering of interacting topological studied condition/tissue

genes in a pathway when information of
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calculating pathway existing pathway
significance resources
GWAS pathway | Identification of possibly Helps to put the Permutation based
analysis weak but coordinated genetic findings in analyses
statistical signal among biological context, aid | computationally
genes belonging to a in discovery of demanding, relatively
common pathway. genomic loci with recently developed and
weaker risk effects. no clear consensus
exist about best
methodology.

7.2 QUEST FOR MOLECULAR PATHOMECHANISMS OF SACCULAR
INTRACRANIAL ANEURYSM DISEASE

In this thesis, we aimed to elucidate signalling pathways and genetic background of
saccular intracranial aneurysm formation and rupture. This knowledge is needed for
understanding the molecular mechanisms of aneurysm formation and rupture, which
could lead to the design of novel methods for non-invasive diagnosis, prevention, or
occlusion of sIAs.

In study I, we identified pathways and transcription factors potentially contributing to
the process of sIA wall rupture, which might serve as a target for novel non-invasive
therapies to stabilize the wall of sIAs. Some of the identified signaling molecules have
already shown promise in animal models of sIA. We identified overrepresentation of NFKB
and the ETS-family of transcription factors in the promoter region of upregulated genes in
ruptured sIA wall. Consistent with our results, a recent study showed that a dual inhibition
of Nuclear Factor-kB and Ets-1 dimished the size and thickened the wall of existing IAs in
rats (Aoki et al. 2012). Our results also add to the growing body of scientific evidence that
inflammatory changes could precede and predispose to sIA rupture (Chalouhi et al. 2012)
and we additionally pinpointed more specific putative targets for future studies and novel
therapy development.

The limitations of study I are that it is possible that some of the observed signaling
pathways are mere reactions to rupture, although we did not find evidence to support such
a view by analyzing gene expression levels in relation to time from rupture. Additionally,
we did not study protein expression or localization in sIA tissues. Thus, we are not able to
pinpoint, which of the cell populations exhibit differential expression and if the mRNA
level changes are reflected to protein level expression. Further more focused studies are
therefore warranted. One such study has already been performed where oxidative stress
activity was observed in polymorphonuclear cells in the luminal thrombus (in perfect

agreement with our hypothesis in Publication I) and oxidative stress response genes
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HMOX1 identified in the Publication I was shown to be upregulated in the ruptured sIA
walls but was also associated to wall degeneration in unruptured ones (Laaksamo et al.
2013). Laaksamo et al. also conclude that the observed changes are likely not just reactions
to rupture.

In study II, we developed a bioinformatics method, Independent Enrichment Analysis
(IEA), for data-mining the differentially expressed genes of study I. Specifically, we
hypothesized that interesting biological phenomena are driven by a subset of the
differentially expressed genes, which are not revealed by existing pathway analysis
methods: a key novelty of IEA is to identify functional subgroups from large gene sets and
provide clues about their regulatory control. As similar approach could potentially be
useful in research of many other conditions, we also sought to develop publicly available,
easy to use software TAFFEL. TAFFEL was designed to enable agile evaluation and use of
our method by other researchers without bioinformatics skills.

Using the developed method and software, we generated novel data driven hypotheses
of signaling pathways active in the ruptured sIAs, which were not identified by other
methods.  One such hypothesis relates TALI transcription factor to controlling
downregulation of cell developmental processes, and more specifically blood vessel
development. =~ As TAL1->VE-Cadherin->TGF-beta pathway maintain vascular stability
(Rudini et al. 2008), the downregulation of these genes could potentially be involved in the
weakening of the vessel wall. Another plausible hypothesis generated was the link between
MEF2A transcription factor and apoptosis. Low vascular smooth muscle cell count with
disorganized architecture in sIAs is associated with aneurysm rupture (Frosen et al. 2004),
and our results suggest that the role of MEF2A in these processes should be investigated in
further studies.

In our IEA analysis, also many other unreported clusters also contained many
interesting links between function and regulation, even though IEA did not reach formal
statistical significance after multiple testing corrections. This is actually expected, as
functional knowledge of many genes is limited and therefore not annotated with the
functions the genes might actually be involved in. Also some of the gene functions inferred
are from cell culture studies or from different tissues/conditions and thus might not hold in
other tissues or conditions (here sIA wall). These IEA clusters could anyway serve as a
basis for generating new hypotheses about differentially expressed genes functions in
studied conditions even if all of the genes are not (yet) annotated with hypothesized
function and gain insight on transcriptional regulation of those functions.

A main limitation of the study is that we did not provide additional evidence to support
the generated hypotheses. This aspect touches also on one key hindrance in signalling
pathway analysis method development. The ground truth (i.e. what pathways are really

differentially active) is typically not known so it is difficult to systematically compare the
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methods in terms of e.g. sensitivity to identify correct biological processess. In specific
cases, like in our study, the role of identified processes could potentially be studied in e.g.
knockout studies in arterial wall cells or in animal models of sIA disease.

Many interesting studies on human transcriptional regulation have been published after
the publication of study II. One of the most interesting ones is the ENCODE projects report
of DNA binding of 119 different transcription factors in 72 different cell types (Dunham et
al. 2012). Using these binding sites in the IEA method instead of computationally inferred
ones would likely lead to improvements in the method. Also pathway annotations have
been evolving since the study and we aim to extend our methodology and software in the
future also to include ENCODE TF data and recent pathway databases.

In study III, we hypothesized that novel sIA susceptibility loci could be identified in a
high-risk population of Finland especially among low frequency variants. Identification of
such variants could potentially highlight genes and pathways relevant to molecular
pathogenesis of sIA disease and to be of general interest to the genetics research
community. We identified low frequency variants in four novel loci associated to either
sIA status or number of aneurysms, a phenotype hypothesized to reflect genetic load of sIA
disease. We also provided evidence that a previously controversial locus in 2q33.1 with
inconclusive evidence is associated to sIA disease at least in Finland and Europe.

As is typical for genome-wide association studies, it is not yet possible to conclusively
associate genes and functions through, which the identified variants convey the sIA risk
effect. Two of the loci had functionally hypothesizable genes whose effects converge with
some of the biological processes identified in the Study I and in literature on the sIA
disease. The variant identified on 7p22.1 predisposing to multiple aneurysm formation is
located in an intron of RADIL gene. The variant in this locus also shows a strong bottleneck
effect: it is observed only in Finns (MAF 4%) and Italians (MAF 0.5%) in 1000 genomes
project data. RADIL controls cell matrix adhesion and has been shown to control neutrophil
adhesion and chemotaxis (Liu et al. 2012). Neutrophil signaling was associated to aneurysm
rupture in study I and neutrophils have also been observed to be trapped in luminal
thrombus of human slAs (Frosen et al. 2012) and to be a source of potentially wall
damaging oxidative stress as suggested in Publication I and by Laaksamo et al. (Laaksamo
et al. 2013). As the identified variant is on a DNAse hypersensitivity peak of two fibroblast
cell lines in the ENCODE data, this gives rise to another hypothesis that the variant could
affect fibroblast cell adhesion properties in the adventitia, which has essential structural
and functional roles in vascular wall (Stenmark et al. 2013).

The other locus with increased frequency in Finland was the previously inconclusively
reported 2q33.1. The most strongly associated variant was more frequent in Finland (37.6%)
than in other Europan populations (20%-30%) in 1000 genomes data. Notably in the

Japanese population, where the replication in previous studies failed, the MAF is only
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27.5%. The variants are located in the intron and upstream of ANKRD44, a subunit of
Protein phosphatase 6, which has been linked to regulating NfKB activity, which in turn
likely plays a crucial role in aneurysm development (Tomohiro Aoki et al. 2007) and
rupture (Study I). These results indicate that the role of ANKRD44 in aneurysm disease
should be further investigated.

7.3 COMMON FINDINGS IN DIFFFERENT APPROACHES IN THE
CURRENT THESIS

Inflammation related genes and pathways were common between the expression study and
genetic study of the current thesis. The involvement of neutrophils specifically was
suggested by the gene expression study and the genetic study (RADIL gene). Neutrophils
had not been previously linked to sIA disease, which opens up new directions for sIA
research. Different components of NfKB, a master regulator of inflammatory signalling,
were also suggested to be involved in sIA formation and rupture. Computational
predictions by developed TAFFEL software suggested more vessel wall structural
phenomena to be associated with sIA rupture rather than inflammatory signalling. This
would be expected a priori, since the wall would be expected to weaken for sIA to form or

rupture.

7.4 NEAR FUTURE AVENUES FOR SIA RESEARCH

As both the gene-expression (Study I) profiles and genetic variants (Study III) suggest
neutrophil involvement in sIA formation and rupture this should be a primary focus for
subsequent functional studies. The potential role of identified variant in RADIL gene on
neutrophil phenotypes could be studied by e.g. extracting leukocytes from patients and
controls with and without the variant and performing comparative adhesion assays
between wild type and variant cells. For following up the hypotheses generated by IEA
method (Study II) the identified transcription factors and the genes they were predicted to
regulate should be further studied. The localization and expression levels of the proteins in
human IA tissues could be studied by immunohistochemistry. These same genes could also
be knocked out or over-expressed in mouse models and the phenotypical consequences on

vascular tissue observed.

The largest GWAS studies have likely identified most common variants (MAF > 10%)
with modest effect sizes (genotype relative risk > 1.25) (Yasuno et al. 2010; Yasuno et al.
2011). First, a natural continuation to study the genetics of the sIA disease is to investigate

lower frequency variants and/or variants with even lower effect sizes. The primary way to
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find variants with smaller effect sizes is to organize GWAS studies of very large cohorts of
sIA patients and controls. Low-frequency (MAF 0.5%-5%) or rare (MAF < 0.5%) variants
have received much of the focus in the discussions where the hidden heritability may lie.
The genotyping arrays used in the majority of the GWAS studies do not capture well these
lower frequency variants. Futhermore, the effect sizes are likely not high enough to be
captured by linkage in families (Manolio et al. 2010). Imputation based on whole-genome-
sequenced individuals (Study III), use of exome targeted (Huyghe et al. 2013), or custom
GWAS chips (Voight et al. 2012), and exome or full-genome sequencing are the tools
available for studying the association of lower frequency variants to sIA and other complex
diseases. Study III is the first study reporting low-frequency variants associated to sIA
disease in genome-wide association analysis. The identified variants have relatively high
odds ratios. The sIA disease commonly affects individuals past their prime reproductive
age, and consequently it is possible that the negative selection pressure against variants
with higher risks has not been strong. Future studies of low-frequency variants are needed
to address the question whether high-risk low-frequency variants are a feature of sIA
disease. Studying very rare penetrant Mendelian variants in families using exome or full-
genome sequencing is another valuable approach in that they may highlight disease
associated functions and pathways. This approach has identified SMAD3 mutations
causing Thoracic aortic aneurysms and dissection and many different forms of arterial
aneurysms, including intracranial aneurysms (Regalado et al. 2011). We have identified an
Eastern Finnish family where parents, all six children and two out of six of the father’s
siblings are affected with sIA disease. We hypothesize that a highly penetrant very rare
coding variant is causing the disease in this family and we will apply exome sequencing to
identify the putative mutations.

The role of epigenetics, the alteration of phenotypic expression of genomic information
without changes in DNA sequence, in sIA disease has not been studied so far. Genome-
wide epigenetic modification can be studied using immunoprecipitation of DNA sequences
associated with the chromatin modification of interest followed by sequence detection by
arrays or increasingly by next-generation sequencing (Bock et al. 2010; Ku et al. 2011).
Epigenetic changes have been associated to many cardiovascular functions in development
and disease such as angiogenesis, flow-dependent regulation of gene-expression, smooth
muscle cell proliferation, and vascular inflammation (Lorenzen et al. 2012; Schnabel et al.
2012). Most of the evidence is coming from basic science, however, and epidemiological
and clinical data is lacking (Schnabel et al. 2012). One clinical example is the observation of
DNA hypomethylation in promoter regions of upregulated genes in end-stage failing
human hearts. These observations, however, can not discriminate cause from consequence
(Movassagh et al. 2011).
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Differential expression of microRNAs (miRNA), a class of non-protein coding RNA
molecules, which post-transcriptionally regulate mRNA expression, has been associated to
many cardiovascular functions and diseases (Quiat & Olson 2013) including abdominal
aortic aneurysms (Boon & Dimmeler 2011). Only one study in experimental intracranial
aneurysms in rats have studied the genome-wide differential expression of miRNAs (Lee et
al. 2013), consequently the role of miRNAs in sIA disease development is almost
completely unknown.

Many studies relating genetic, epigenetic, transcriptomic, proteomic, lipidomic, and
environmental variables to complex disease have studied these phenomena in isolation.
Studies presented in this thesis belong to this category. This simplistic view is unlikely to
fully reflect the complex interactions occurring in the development of complex human
diseases, including sIA disease. Modern systems biology aims to integrate disparate data
sources and analyze them together as a network of interacting participants (Medina 2013).
Although very challenging, due to the explosion of combinatorial possibilities alone,
development of systems biology promises to provide a more holistic view of the processes
leading to complex diseases, hopefully leading to novel methods for disease prevention,

diagnosis, and personalized treatment.
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8 Conclusions

The overarching aim of the current study was to elucidate signaling processes leading to
sIA rupture and genetic predisposition to formation and rupture of the sIA pouch using
genomewide methods and related bioinformatics. This knowledge is needed for
understanding the molecular mechanisms of aneurysm formation and rupture, which
could be used as a basis for novel methods for diagnosis, prevention, or occlusion of sIAs.
The primary approaches used in this thesis were signalling pathway analysis by whole-
genome microarrays, novel bioinformatic method development, and the methods
application to our microarray data and genome-wide association analysis in the Finnish
population.

By using three complementary approaches, we were able to identify several genes and
biological processes associated with sIA formation and rupture. In addition to shedding
light on molecular pathomechanism of sIA disease, these findings may also serve as a basis
for more focused studies aiming to find druggable targets for development of novel
methods to identify rupture prone patients and to prevent sIA development or rupture.

In study I, we identified biological processes associated to sIA rupture and transcription
factors putatively controlling those processes using genome-wide transcriptome analysis.
Some of the identified genes and processes have lately been shown to be associated to sIA
disease in independent studies in human sIA tissue and animal models.

In study II, we developed a novel bioinformatic method and software to gain additional
insight in to differentially expressed gene set of study L. The principal idea of the method
development was to be able to identify biological processes and transcription factors
putatively controlling those processes from subsets of the whole set of differentially
expressed genes.

We also developed easy to use, publicly available software for other researchers without
requirement for advanced computing skills. Using the developed method and software, we
were able to identify additional biological processes and transcription factors associated to
sIA rupture, which were not reported by other popular pathway analysis methods.

In study III, we identified low frequency variants in three novel loci associated to sIA
disease and one variant associated to the number of aneurysms in the high-risk population
of Finland. Our study highlights the utility of population isolates, imputation based on
whole genome sequencing projects, and use of alternative phenotypes in identification of
susceptibility variants to complex diseases. Two of the identified variants were also
replicated in a Dutch case/control cohort whereas two of the variants are putatively specific

to Finland. The putative Finnish specific variants may be related to, but not explain, the
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higher than average SAH incidence in Finland. The potential mechanisms how the
identified variants are related to sIA disease are not definitely known and the role of
implicated genes in sIA disease should be a focus of further studies.

It should finally be noted that the identification of these different genes and pathways
were basically based on statistical associations to various aspects of the sIA disease. Mere
associations can never prove causality and therefore the identified genes and pathways
should be considered as data driven hypotheses and serve as a basis for more focused
studies in the future. But as Albert Einstein once said: “I think that only daring speculation

can lead us further and not accumulation of facts”.
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