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ABSTRACT

One of the key issues in process control is that the controller obtains

quantitative and reliable information about the process in real time.

As the quantities of interest in industrial processes have typically

both spatial and temporal variations, a nonstationary estimate of

the three-dimensional distribution of the unknown quantity is of-

ten preferred to a stationary single-point estimate of the unknown

quantity. Process tomography is a monitoring technique that pro-

vides the controller with three-dimensional and real time informa-

tion about the process. Furthermore in process tomography, non-

intrusive measurements are used and, thus, the measurements do

not disturb the process. Consequently, process tomography has

been acknowledged as a potential sensor for various process con-

trol systems.

When using diffusive tomography, such as electrical impedance

tomography, for process monitoring, the challenge is that the recon-

struction problem is an ill-posed inverse problem and the results

are known to be sensitive to measurement and modelling errors.

The models for industrial processes are typically based on partial

differential equations and when using the PDE-based models, there

are often unavoidable modelling errors. Such modelling errors re-

sult, for example, from unknown boundary data or from numerical

approximation of the models. Furthermore, as the unknown quan-

tities in industrial processes are often rapidly varying, traditional

stationary reconstruction methods are inapplicable. Formulating

the reconstruction problem as a state estimation problem and con-

structing models for the errors has been shown to produce feasible

reconstructions in the case of nonstationary quantities.

In this thesis, designing a model-based control system for a

convection-diffusion process is consideredwhen the process is mon-

itored with electrical impedance tomography. Two controllers, the

approximate linear quadratic Gaussian controller and the approx-

imate H∞ controller, are considered. The performance of the con-

trol system is evaluated with numerical simulations. The numerical



simulations indicate that it is possible to base a control system on

electrical impedance tomography measurements. Furthermore, the

results show that the control system is quite robust to certain kinds

of modelling errors provided that the overall structure of the pro-

cess is adequately accurately modelled.
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B1,t State noise input matrix
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Rt Control input weighting matrix
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t Time
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ut Control input
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Vi Voltage
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~v Velocity field
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xt State vector
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xMAP
t|t Maximum a posteriori estimate

x̂t State estimate in H∞ control

yt Control output

zt Control objective

z̄ℓ Contact impedance

Γ(·) Covariance matrix

ǫt Tracking error

κ Diffusion coefficient

Λ Boundary of the computational domain
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ν Kinematic viscosity

π(·) Probability density
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πG(·) Gaussian approximation of the probability density
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1 Introduction

Process tomography (PT) is a technique for monitoring the progress of an

industrial process using tomographic imaging methods. The basic idea

of PT is to distribute measurement sensors around the boundary of the

object of interest, and on the basis of the measurements to determine the

three-dimensional distribution of some physical quantity in that object.

Process tomography is suitable for monitoring both spatial and tempo-

ral variations of the unknown quantity. It can be used, for example, to

gather information on efficiency of mixing or separation of components

in a multicomponent flow, or on completion of a chemical reaction. This

information can subsequently be utilized in optimizing the operation of

a process or in process control. Furthermore, experimental tomographic

data can benefit the model validation task during model development for

industrial processes.

There are two essential benefits of PT in comparison to many other

conventional single-point sensors that are widely used in the process

industry such as bypass flow meters for measuring fluid flow rates or

conductivity probes for conductivity (and concentration) measurements.

Firstly, as only indirect boundary measurements are used, PT is a non-

intrusive technique. In other words, the measurement sensors do not

enter into the medium of the object, but they may, however, be invasive

penetrating, for example, the wall of a vessel or a pipe. Consequently, the

sensors do not usually disturb the process and they can provide essen-

tial quantitative information about the physical properties of the process

from locations that may be inaccessible with conventional monitoring in-

struments. Secondly, PT yields directly a three-dimensional distribution

of the physical quantity instead of a single-point estimate provided by a

single-point sensor.

The idea of tomographic imaging in general originates from the need

for a method to represent an image of a slice of a human body. The dis-

covery of X-rays and taking the first X-ray images during the last decades

of the 19th century initiated the study of tomography, the attempts to

built equipment for tomographic imaging, and the development of the

mathematical theory behind the tomographic reconstruction. However, it

was not until the 1970s when the first commercial computed tomography

scanner was introduced. From then on, the medical imaging methods

have been developed and instruments for medical applications have been

Dissertations in Forestry and Natural Sciences No 128 1
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manufactured.

In addition to medical applications, tomographic imaging has also

been applied to imaging of industrial processes. In the 1970s, the first

PT applications were invented. In the applications, radiation-based tomo-

graphic techniques were used. In the 1980s, research on electrical PT tech-

niques began [1], [2]. By the early 1990s, the work on applying also other

imaging modalities, such as ultrasound-based tomography, microwave to-

mography, and positron-emission tomography, to process imaging had

began. See [3], [2] for a review of the modalities. Due to the promising

results achieved in the field using a variety of imaging modalities, by the

1990s it was established that tomographic imaging is a potential technique

for monitoring industrial processes. From then on, research in the field

has focused on improving the hardware, developing the reconstruction

techniques, and introducing new modalities. The first book covering the

development of PT was published in 1995 [3]. In [2], achievements in the

field up to the year 2005 were summarized.

In this thesis, the focus is on electrical PT techniques. The electrical

PT techniques include electrical impedance tomography (EIT), electrical

capacitance tomography (ECT), and electromagnetic tomography (EMT).

The first industrial applications using electrical PT were aimed for imag-

ing multicomponent flows in oil wells and pneumatic conveyors. In the

first applications, the imaging modality was ECT. Also EIT that had been

investigated as a method for medical imaging was adapted to industrial

processes and utilized for monitoring process vessels containing electri-

cally conductive fluids. One of the main reasons that these electrical

techniques were and still are preferred for industrial applications is the

fast dynamic response of the sensors. Due to fast data collection, elec-

trical tomography techniques are suitable, for example, for monitoring of

fast moving targets such as fluids flowing in pipelines. Furthermore, the

electrical tomography equipment is typically inexpensive and movable,

and the measurement modalities are safe. The limiting issue related to

electrical tomography techniques is their relatively poor spatial resolution

in comparison to other imaging techniques such as magnetic resonance

imaging, for example.

The reconstruction problem in electrical PT is an inverse problem [4], [5].

An inverse problem is an inverse of a forward problem. When solving the

forward problem in electrical PT, one defines the mapping, that is, the

forward model, from the unknown quantity to be reconstructed to the

error-free quantity that is measured. Often, the forward model is derived

on the basis of physical theory. When solving the inverse problem in elec-

2 Dissertations in Forestry and Natural Sciences No 128
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trical PT, one determines the distribution of the unknown quantity on the

basis of indirect noisy measurements and the knowledge of the forward

model. In general, solutions of inverse problems are sensitive to modelling

and measurement errors. For example, even small errors in the observa-

tions can cause large errors in the determined distribution of the unknown

quantity. Consequently, it is often stated that accurate measurements, an

accurate forward model, and in nonstationary case, an adequately accu-

rate evolution model for the industrial process are needed when solving

inverse problems. In practice, however, the measurement noise may not

be small and the models cannot fully approximate the reality. In such

cases, the key issue is to model also the measurement errors and the dis-

crepancies between the models and the reality and take those models into

account when solving the reconstruction problem [5].

In numerous publications, one of the main potential application areas

for electrical PT is stated to be process control [6], [7], [8], [9], [10], [11],

[12], [13], [14], [2]. Process control is a field of engineering referring to the

methods for changing the conditions of industrial processes so that the

performance of the process fulfils some specific requirements regardless

of external inputs. Efficient process control can lead to increase in produc-

tivity, improvement in product quality, economical improvements, and

ability to meet environmental requirements. The quantitative information

provided by electrical PT can be utilised in process control to determine

the changes required in order to achieve a desired process performance.

Figure 1.1 illustrates the general idea of using (electrical) PT for pro-

cess monitoring in process control systems. One could consider, for exam-

ple, fluid flowing in a pipeline. The aim could be to control the concentra-

tion of a chemical substance in the fluid by adding strong concentrate into

the fluid flow if needed. The sensors would be attached to the boundary

of the pipeline and the measured data would be passed on to the state

estimator. The state estimator would yield the estimated concentration

distribution and this information would be, in turn, passed on to the con-

troller. On the basis of that information the control variable would be

computed with respect to the control objective and information about the

control variable would be passed on to the actuation mechanism. For ex-

ample in this case, the actuation mechanism could consist of injectors the

flow rates of which are controlled using flow valves. To be more specific,

the control variable would be the flow rates of the injectors.

In the early 1900s, process control was exercised by making manual

adjustments. From then on, the technological development in the field of

process control has been extensive following the new achievements in con-

Dissertations in Forestry and Natural Sciences No 128 3
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Figure 1.1: Illustration of the general idea of using PT for process monitoring in a process

control system.

trol theory and the improvement in the availability of high capacity digital

computers. However, the practical applications lag behind the achieve-

ments in control theory by even a decade or more. This is especially true

in the field of process control since in many countries the focus of research

has been on military and aerospace industries. On the other hand, many

achievements in those industries have later been applicable in the field of

process control.

The controllers that have been applied to industrial processes range

from simple proportional-integral-derivative (PID) controllers to more com-

plicated model predictive controllers. The PID controllers [15] have been

very popular, also in the process control industry, from the early decades

of the 20th century. In the late 1970s, research in the field of process con-

trol focused also on controllers based on optimal control methods that had

already been applied successfully, for example, in military and space in-

dustries. An optimal controller aims to direct or regulate the performance

of a process in the best way possible. To be more specific, the aim is to

stabilize a process, to minimize the influence of disturbances, and to op-

timize the overall performance. The directing or regulating, that is the

controlling, of the process is done by applying control inputs, that are

optimal in some sense, to a process.

The obstacles in implementing optimal controllers include the lack of

accurate process models, the complexity of the controllers, and, conse-
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quently, the computational requirements. Despite the obstacles, model

predictive control (MPC) [16], [17], [18] has gained acceptance in the pro-

cess industry and it has been applied to a variety of processes by the

beginning of the 21st century. However, MPC may be unsuitable for real

time control of rapidly changing processes, since it is based on the re-

peated solution of an optimal control problem subject to a performance

specification, constraints on process states and control inputs, and a pro-

cess model. In addition to MPC, also other optimal controllers, such as the

linear quadratic Gaussian (LQG) controller and the H∞ controller, have

been applied in process industry but not to the same extent as model pre-

dictive controllers. With the development of accurate process models and

real time monitoring systems, such as PT, and with the growth in com-

puter capacity, all of the optimal control methods will likely gain more

popularity in the field of process control.

A special class of industrial processes consists of processes that are

distributed in nature and can be considered as distributed parameter sys-

tems (DPSs). The DPSs are characterized by the feature that the state

variables, the control variables, the observations, and/or the system pa-

rameters exhibit both spatial and temporal variations. Examples of DPSs

are encountered in many process industries involving mass and/or heat

transfer or chemical reaction. In many chemical processes, the aim is to

control the flows of both heat and mass in the presence of possible simul-

taneous chemical reactions. The control problem is often highly complex

and requires sophisticated control methods. Consequently, although labo-

ratory or pilot case studies have been published since the early 1970s [19],

[20], [21], [22] and the references therein, full-size real time distributed pa-

rameter control systems have not been widely implemented. By contrast,

many simulation studies have been published applying distributed pa-

rameter control methods to chemical processes. For example, the control

of a fixed-bed bioreactor [23], [24], [25], of a nonisothermal packed-bed

reactor [26], [27], of a batch fluidised-bed reactor [28], and of a plug-flow

reactor [29], [30] has been investigated with numerical simulations. Fur-

thermore, the control of flow of mass is encountered, for example, in pa-

permaking [31], [32], in polymer film extrusion [33], and in a wide range

of coating processes. Control systems for the control of heat transfer have

been implemented in processes such as thawing of foodstuff [34], [35],

welding [36], [37], and metal spraying [38], [39], and in many processes

in semiconductor manufacturing [40]. However, PT has not been used as

a sensor in any of the published distributed parameter control systems

although the spatial and temporal changes of the process quantities en-

Dissertations in Forestry and Natural Sciences No 128 5
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countered in DPSs could be monitored with PT.

When designing model-based control systems for DPSs, mathematical

models of DPSs are required. The DPSs are modelled, for example, with

partial differential equations (PDEs) or integral equations. The PDE mod-

els are infinite-dimensional, and the controllers designed on the basis of

these models are also infinite-dimensional. The infinite-dimensional con-

trollers, however, are not typically implementable in practice for example

due to the discrete nature of actuators and measurement sensors. There

are two approaches to overcome the problem of infinite-dimensionality.

Firstly, an infinite-dimensional controller is designed using an infinite-

dimensional PDE model and then reduced to a finite-dimensional con-

troller. This approach has been proven to be applicable for DPSs described

by hyperbolic PDEs [29], [41], [30]. Secondly, the infinite-dimensional PDE

system is approximated with a set of finite-dimensional ordinary differen-

tial equations (ODEs), and a finite-dimensional controller is then derived

for that ODE system. Several methods have been proposed for the spatial

discretisation of the PDE system. These methods include the orthogonal

collocation method [23], [24], the finite element method (FEM) [42], [25],

the finite volume method [40], and the finite Fourier transform tech-

nique [43]. Although these two approaches are widely-used, there are no

guarantees that a finite-dimensional controller is actually able to control

the process modelled with an infinite-dimensional PDE system. Theoret-

ical results on the matter have begun to appear involving especially the

linear PDE systems.

Although electrical PT has been applied to the monitoring of indus-

trial processes, research efforts have only recently been directed to com-

bining electrical PT and (optimal) control of PDE-based DPSs. Designing

a distributed parameter control system using electrical PT as a sensor

is not a trivial task and only a few industrial automatic physical model-

based control systems employing electrical PT for process monitoring have

been considered [44], [28]. There are several important reasons for the

lack of applications. The information provided by the methods for solv-

ing the reconstruction problem associated with electrical PT has tradition-

ally been more qualitative than quantitative in nature. For some specific

fault detection processes, the qualitative information may be adequate,

but automatic controllers require quantitative and real time information

about the process. Furthermore, a model-based control system requires

a model describing the evolution of the process. However in many occa-

sions, the appropriate models are PDE-based and the spatial discretisation

leads to a finite-dimensional control system of high dimension increasing

6 Dissertations in Forestry and Natural Sciences No 128
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the computational load and at worst even hindering real time computa-

tions. Also the observation model, for example in EIT, is PDE-based and

the spatial discretisation yields a finite-dimensional system of high di-

mension. A common way to reduce the dimensionality of the models is

to use model reduction techniques, see [45], [46], [47], [48] for parabolic

PDE systems and [41], [30] for hyperbolic PDE systems. However, the

reconstruction problem in EIT is an ill-posed inverse problem and, thus,

sensitive to modelling errors such as the errors due to numerical approx-

imation of the PDE models. Therefore, model reduction often leads to

infeasible reconstructions if not handled appropriately and, especially, if

not taking into account the characteristic nature of ill-posed inverse prob-

lems [49], [50], [51].

THE AIMS AND CONTENTS OF THE THESIS

The overall aim of this thesis is to determine with numerical simulations

whether it is possible to design an optimal distributed parameter control

system for a convection-diffusion (CD) process when EIT is used for pro-

cess monitoring. The control system is required to be closed-loop, auto-

matic, model-based, and to operate in real time. The key issue is whether

the quality of the data provided by EIT is adequate for the optimal con-

troller when there are inevitable modelling and measurement errors in-

volved. Furthermore, the idea is to consider errors that will render the

quality of the state estimates inadequate for efficient process control. This

study is intended as an initial feasibility study on the subject of combining

optimal control of a specific industrial process described by a PDE-based

DPS and EIT measurements.

In this thesis, the difference between the performance of the approx-

imate LQG controller and the performance of the approximate H∞ con-

troller is studied in the case of EIT measurements. Also the robustness

of the proposed control systems is tested. It is investigated which of the

controllers is more suitable for controlling the CD process when indirect

EIT measurements provide the controller with the information on the con-

trolled quantity and when there are inaccuracies in the modelling of the

CD process. Furthermore, it is studied whether the selection of a state

estimator and the locations of actuators have an effect on the performance

of the control system in the case of the approximate LQG controller.

Some of the results presented in this thesis have already been pub-

lished [44], [52], [53], [54], [55], [56], [57]. In this thesis, the intention is to

give a theoretical background for the applied methods, to provide a de-
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tailed discussion of the research topics, and to present additional results.

This thesis is divided into six chapters. In Chapter 2, a short introduc-

tion to two optimal controllers, the LQG controller and the H∞ controller,

is given. In Chapter 3, the stochastic CD model, which is used as a pro-

cess model, is considered. Furthermore, EIT that is used as a sensor in

the control system is discussed. In Chapter 4, a short review of process

control applications monitored with electrical PT is given. Furthermore,

the control system designed for the example application of this thesis is

introduced and examples of industrial processes, to which the proposed

control system could be modified, are given. In Chapter 5, the perfor-

mance and robustness of the proposed approximate LQG controller is

evaluated with numerical simulations in the case of the example applica-

tion of this thesis. Furthermore, the comparison of the effect of the state

estimators on control performance is done. In Chapter 6, the performance

of the control system utilizing the approximateH∞ controller is evaluated.

Furthermore, it is investigated whether the approximate H∞ controller is

more suitable than the optimal linear quadratic (LQ) tracker in the case of

the example application. In Chapter 7, the effect of locations of actuators

on control performance in the case of the CD process is investigated. The

core of the contribution of this thesis is mainly in Chapters 5, 6, and 7 and

also in Section 4.2. In Chapter 8, overall discussion and conclusions are

given.
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2 On control problems

In this chapter, the linear quadratic Gaussian (LQG) controller and the

H∞ optimal controller are considered. The chapter is begun by giving

short explanations to the concepts of optimal control problems, model-

based control systems, and stochastic control problems. Furthermore,

background information on optimal control theory is briefly reviewed.

Optimal control problems are characterized by the property that the so-

lution, that is the optimal controller or the optimal control law, is ob-

tained by minimizing a selected cost function (or by maximizing a per-

formance index). The cost function reflects the objectives of the control

system and combines all the available performance specifications. Unlike

the so-called classical control system design methodology [15], [58], [59],

in which the control system is modified on the basis of the designer’s in-

tuitive insight until acceptable performance is obtained, the optimal con-

trol design methodology yields the optimal controller directly. The only

step in which modification may be required is the adjustment of the pa-

rameters in the cost function so that the cost function describes better

the desired behaviour of the process. However, the number of modified

parameters in the cost function is small. The need for less modification

based on designer’s insight is one of the main advantages of the optimal

control methodology. Especially when considering high-order systems,

the intuitive insight often fails.

In addition to the specification of the cost function, another important

component in the formulation of the optimal control problem is the mod-

elling of the process to be controlled. The optimal controller is based on

a mathematical model of the process that leads to the use of the term a

model-based control system. The process modelling includes also the defi-

nition of possible physical constraints on the state of the process and on

the control. Due to the constraints, the range of all possible controls is

reduced to the admissible ones.

In order to operate efficiently, the controller needs information on the

state of the process. If the controller must operate on limited or uncertain

state information or if the process is corrupted by random disturbances,

the state and future controls are seen as stochastic. This leads to a stochastic

control problem in which the cost function is a stochastic variable, and in-

stead of minimizing the cost function as such one minimizes the expected

value of the cost function given the assumptions about the statistics of the
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random effects.

The first steps in the field of optimal control theory were taken in

the post-war era. The development in the field was mainly influenced

by two factors [60], [61]. Firstly, in many countries research efforts were

focused on military and space industries, and optimal control methods

were needed for launching, guidance, and tracking of missiles and space

vehicles. Secondly, the improvement in the availability of high capacity

digital computers enabled the computations even in the case of complex

systems. In the 1950s, originating from his work on missiles, Richard Bell-

man formulated the principal of optimality and defined the optimal control

problem as a multi-stage decision making problem that could be solved

by using dynamic programming. In 1956, Lev Pontryagin proposed the

maximum principle of optimality (also referred to as the minimum principle)

that is said to form the foundation for the optimal control theory. The

achievements by Bellman and Pontryagin led to extensive research in the

field of optimal control theory and in the fields related to it in the next

decades. During that time, one of the main contributors without a doubt

was Rudolf Kalman who worked, among other things, on linear optimal

control problems with quadratic performance index and on optimal fil-

tering. In the 1960s and the 1970s, the optimal LQG control theory was

mostly developed due to the achievements of many contributors. To meet

the requirements of a more robust control design, the concept of H∞ opti-

mal control was introduced in the 1980s. The basic H∞ theory was refined

during the 1990s by John Doyle and Gunter Stein, for example.

Optimal control theory discussed in this chapter is based on the books

[62], [63], [64], [65], and [66]. In this thesis, the discussion is limited to the

discrete-time optimal control problems since in the control systems using

PT as a sensor, the observations are typically obtained at discrete time

intervals. Furthermore, only the state-space models are considered as

overall process models, and the approach using, for example, the transfer

function models [59], [67] or the differential (or difference) equation mod-

els [59], [67] is omitted. The state-space models are superior for high-order

multiple-input and multiple-output (MIMO) systems with large state di-

mension which are related to distributed parameter systems (DPSs) based

on partial differential equations (PDEs).

In Section 2.1, the discrete-time state-space model consisting of a lin-

ear state equation and a nonlinear observation equation is considered. In

Section 2.2, the LQG optimal control problem is formulated. Firstly, the

basic linear quadratic regulator (LQR) is reviewed. Then, methods for

solving a tracking problem are considered, and an introduction to (non-
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linear) state estimation is given. In Section 2.3, the H∞ optimal control

problem is formulated and the H∞ controller is reviewed. Model pre-

dictive control (MPC) is briefly discussed in Section 2.4. In Section 2.5,

the proportional-integral-derivative (PID) controller is briefly considered

although the PID controller is not an optimal controller. In Section 2.6,

the concepts of controllability and observability of control systems are

discussed. The chapter is concluded with a discussion is Section 2.7.

2.1 STATE-SPACEMODEL

The state-space model considered in this thesis consists of a linear state

equation and a nonlinear observation equation. The choice of such a state-

space model is based on the example application of this thesis, which

involves controlling of a convection-diffusion (CD) process using electrical

impedance tomography (EIT) as a sensor.

The linear, nonstationary, discrete-time state equation and the nonlin-

ear, nonstationary, discrete-time observation equation constitute the state-

space model

xt+1 = Atxt + B2,tut + st+1 + w1,t (2.1)

gt = Gt(xt) + vt (2.2)

where the time index t ∈ N0 and xt ∈ R
nx denotes the state vector.

In (2.1), ut ∈ R
nu is the control input vector and the vector st+1 ∈ R

nx

describes the uncontrollable process input. The state transition matrix

At ∈ R
nx×nx and the control input matrix B2,t ∈ R

nx×nu are known at

each time t. In (2.2), gt ∈ R
ng is the vector of observations at time t. Fur-

thermore, the nonlinear mapping Gt : R
nx → R

ng models the dependence

of the observations upon the state and is assumed to be differentiable. In

(2.1), w1,t ∈ R
nx is the state noise and in (2.2), vt ∈ R

ng is the observation

noise. The initial state x0 is assumed to be a Gaussian random variable

with known mean µx0 ∈ R
nx and known covariance Γx0 ∈ R

nx×nx .

The state noise w1,t and the observation noise vt are assumed to be

zero-mean Gaussian random variables with known covariances Γw1,t ∈
R

nx×nx and Γvt ∈ R
nx×nx for all t, respectively. Furthermore, it is assumed

that

E
[

w1,tw
T
1,t+τ

]

=

{

0 , τ 6= 0

Γw1,t , τ = 0
(2.3)

E
[

vtv
T
t+τ

]

=

{

0 , τ 6= 0

Γvt , τ = 0
(2.4)
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where τ ∈ Z. The state noise and the observation noise are also assumed

to be uncorrelated so that E
[

vtw
T
1,t+τ

]

= 0 for all τ. It is assumed that the

initial state x0 and the state noise w1,t as well as the initial state x0 and the

observation noise vt are uncorrelated, that is,

E
[

x0w
T
1,t

]

= E
[

x0v
T
t

]

= 0 (2.5)

for all t ∈ N0. Furthermore, the assumption that the state xt and the

observation noise vt are uncorrelated holds for all t. Thus,

E
[

xtv
T
t+τ

]

= 0 (2.6)

for all τ.

2.2 LINEAR QUADRATIC GAUSSIAN CONTROL PROBLEM

One of the most widely studied stochastic optimal control problem is the

LQG control problem. The objective in the LQG control is to find the

optimal control law specifying how to compute the optimal control inputs

that minimize the expected value of a quadratic cost function when only

incomplete or indirect state information is available and when the process

is modelled with a linear state equation. Furthermore, the state noise and

the observation noise are modelled as Gaussian white noise processes.

Solving the LQG optimal control problem consists basically of two

tasks. The first task is to find an optimal state estimator that yields the

estimated state of the process knowing the noisy observations and the

state-space model. The second task is to determine the optimal control

law yielding the optimal control input knowing the state estimate. An ap-

pealing feature of the LQG optimal control problem is that it possesses a

so-called certainty equivalence property [59]. For the certainty equivalent

problems, the controller and the estimator design processes are separable.

Thus, the state estimator can be designed without taking into account the

control law. The only information needed to be transformed from the es-

timator to the control law is the state estimate. Furthermore, the control

law can be designed as if there is perfect information about the state of the

process. In other words, the certainty equivalent control law for stochastic

problems is equivalent to the optimal control law for deterministic prob-

lems obtained by replacing all random variables in the state-space model

with their expected values and assuming that there is perfect information

about the state. The only difference is that the actual state in the control

12 Dissertations in Forestry and Natural Sciences No 128



On control problems

law for deterministic problems is replaced by its estimate in the control

law for stochastic problems.

Typically in the LQG control, the optimal control law is obtained as

a solution to a linear quadratic regulator (LQR) problem and if the ob-

servation equation is linear, the Kalman filter, also known as the linear

quadratic estimator, is employed as a optimal state estimator. In this the-

sis, the control law for the stochastic LQR is reviewed in Section 2.2.1.

In Section 2.2.2, optimal control laws for tracking problems are consid-

ered. Furthermore, as the observation equation in this thesis is nonlinear,

nonlinear state estimation is considered in Section 2.2.3.

2.2.1 Discrete-time stochastic linear quadratic regulator

In the stochastic LQR control, the expected value of a quadratic cost func-

tion is minimized when the state equation is linear, the initial conditions

and the disturbance inputs are assumed to be Gaussian, and perfect state

information is available. In this thesis when formulating the LQR control

law, the process input vector st+1 in the state equation (2.1) is assumed to

be a zero vector and in Section 4.2.2, it is described how the effect of st+1 is

taken into account. However, it would be possible to consider {st+1} as a

random process and replace st+1 with its expected value in the derivation

of the control law. Thus, the state equation (2.1) gets the form

xt+1 = Atxt + B2,tut + w1,t. (2.7)

The objective in the LQR control is to derive a control law that specifies

the control inputs ut, t = 1, . . . ,N, that minimize a selected cost function

when the state xt, t = 1, . . . ,N, and the state equation are known. The

quadratic cost function to be minimized is typically of the form

J = E

[

1

2

(

xTNHxN +
N−1

∑
t=0

zTt zt

)]

(2.8)

where H ∈ R
nx×nx is the weighting matrix that is specified by the de-

signer, and the objective vector zt ∈ R
(nx+nu) is defined as

zt = C1,txt + D12,tut. (2.9)

Typically in LQR control problems, the matrices C1,t ∈ R
(nx+nu)×nx and

D12,t ∈ R
(nx+nu)×nu are defined so that

C1,t =

[

Q
1
2
t

0

]

and D12,t =

[

0

R
1
2
t

]

(2.10)
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where Qt ∈ R
nx×nx and Rt ∈ R

nu×nu are weighting matrices that are

specified by the designer. With such a choice the cost function (2.8) gets

the form

J = E

[

1

2
xTNHxN +

1

2

N−1

∑
t=0

(

xTt Qtxt + uTt Rtut

)

]

. (2.11)

It is assumed that H and Qt are positive semidefinite matrices for all t.

Furthermore, the matrix Rt is positive definite for all t. From (2.11), it can

be concluded that there are two usually competing objectives, that are, to

drive the state xt to zero quickly and to choose small control inputs ut
to do that. The weighting matrices Qt, H, and Rt set relative weights to

the objectives. If, for example, it is important to drive the state to zero

regardless of the size of the control inputs, the magnitude of the elements

of Qt is increased relative to the magnitude of the elements of Rt and vice

versa. Also the state and measurement noise vectors weighted by matrices

could be included in the objective vector zt (2.9).

Often, it is impossible or unnecessary to control the entire state xt.

The control output specifies the part of the state that is controlled, and it

is defined with the output equation

yt = Ctxt (2.12)

where the output vector yt ∈ R
ny , ny ≤ nx and Ct ∈ R

ny×nx is the output

matrix. Now the objective is to drive the output yt to zero. Let the matrices

H = CT
t HyCt and Qt = CT

t Qy,tCt in (2.11). The cost function (2.11) can

now be expressed in terms of the output yt so that

J = E

[

1

2
yTNHyyN +

1

2

N−1

∑
t=0

(

yTt Qy,tyt + uTt Rtut
)

]

(2.13)

where Hy ∈ R
ny×ny and Qy,t ∈ R

ny×ny are the positive definite for all t.

The solution to the LQR problem is the optimal control law. There

are two widely used approaches, the method of dynamic programming

and the variational method, to derive the optimal control law. In this the-

sis, the derivation utilizing dynamic programming is reviewed. The basic

idea of dynamic programming is to break the optimization problem (the

minimization problem in this thesis) into a sequence of simpler subprob-

lems over time. This is enabled by the (Bellman’s) principle of optimality

which states that an optimal control sequence has the property that, what-

ever the initial state and the optimal first control may be, the remaining
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controls constitute an optimal control sequence with regard to the state

resulting from the first control [59].

Let ut denote the optimal control in a process finishing at time N and

starting from state xt i.e. the optimal control at time t. Let Jt,N denote the

cost in a process finishing at time N and starting from state xt at time t.

That is,

Jt,N = E

[

1

2
xTNHxN +

1

2

N−1

∑
k=t

(

xTk Qkxk + uTk Rkuk

)

]

. (2.14)

Let J∗t,N denote the value of (2.14) using optimal control over (N− t) stages

finishing at time N and starting from state xt i.e. the optimal (minimum)

cost for the last (N − t) stages of an N stage process. That is,

J∗t,N = min
ut,...,uN−1

{

E

[

1

2
xTNHxN +

1

2

N−1

∑
k=t

(

xTk Qkxk + uTk Rkuk

)

]}

. (2.15)

Thus, the cost of reaching the final state xN is

JN,N =
1

2
xTNPNxN (2.16)

where PN ∈ R
nx×nx , PN = H. Furthermore, the optimal cost J∗N,N =

1
2x

T
NPNxN . Correspondingly, the cost over the final interval [N − 1,N] is

JN−1,N

= E

[

1

2

(

xTN−1QN−1xN−1 + uTN−1RN−1uN−1

)

+ J∗N,N

]

=
1

2
E
[

xTN−1QN−1xN−1 + uTN−1RN−1uN−1 +xTNPNxN

]

=
1

2

(

xTN−1QN−1xN−1 + uTN−1RN−1uN−1 + E
[

xTNPNxN

])

(2.17)

where xN is related to uN−1 by the state equation (2.7). The cost over the

interval [N − 1,N] is minimized with respect to uN−1 and the minimiza-

tion problem to be solved is

min
uN−1

{JN−1,N}

= min
uN−1

{

1

2

{

xTN−1QN−1xN−1 + uTN−1RN−1uN−1

+(AN−1xN−1 + B2,N−1uN−1)
TPN

(AN−1xN−1 + B2,N−1uN−1) + tr (PNΓw1,N )
}

}

(2.18)

Dissertations in Forestry and Natural Sciences No 128 15



Anna Kaasinen: Optimal Control in Process Tomography

where tr (·) denotes the trace of a matrix and Γw1,N is the covariance matrix

of the state noise w1,N. Solving the minimization problem in (2.18) yields

the optimal control input

uN−1 = −KN−1xN−1 (2.19)

where KN−1 ∈ R
nu×nx , KN−1 = (RN−1+ BT

2,N−1PNB2,N−1)
−1BT

2,N−1PNAN−1.

Substituting (2.19) into (2.17) yields the optimal cost

J∗N−1,N =
1

2
xTN−1PN−1xN−1 + ωN−1 (2.20)

where PN−1 ∈ R
nx×nx ,

PN−1 = (AN−1 + B2,N−1KN−1)
T PN(AN−1 + B2,N−1KN−1)

+QN−1 + KT
N−1RN−1KN−1, (2.21)

and ωN−1 ∈ R, ωN−1 =
1
2 tr (PNΓw1,N ) + ωN with ωN = 0.

It can be noted that J∗N,N and J∗N−1,N are of the same form. The process

is continued further back for N − 2,N − 3, . . . and for the tth stage of the

process the expressions for the optimal control input and the minimum

cost are

ut = −Ktxt, (2.22)

J∗t,N =
1

2
xTt Ptxt + ωt (2.23)

where Kt ∈ R
nu×nx , Kt = (Rt + BT

2,tPt+1B2,t)
−1BT

2,tPt+1At, is referred to as

the optimal feedback gain matrix, Pt ∈ R
nx×nx ,

Pt = AT
t Pt+1At +Qt −

AT
t Pt+1B2,t

(

Rt + BT
2,tPt+1B2,t

)−1
BT
2,tPt+1At, (2.24)

and ωt ∈ R, ωt =
1
2 tr (Pt+1Γ1,t) + ωt+1. It can be concluded from (2.22)

that the optimal controller is a linear, nonstationary, and state feedback

controller.

The matrix Pt is neededwhen computing the control inputs (2.22). The

equation (2.24) has the form of a discrete-time matrix Riccati equation [66].

The matrix Pt can be solved, for example, by recursion from PN = H

using (2.24). Other numerical methods also exist [66]. If N → ∞ and the

matrices At = A, B2,t = B2, Qt = Q, and Rt = R are stationary, Pt → P

where P is the steady-state solution of the algebraic Riccati equation

0 = ATPA− P+ Q− ATPB2

(

R+ BT
2 PB2

)−1
BT
2 PA. (2.25)
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The use of the steady-state solution P is justified, if the control system

is designed to operate for time periods that are long compared to the

transient time of the solution of the Riccati equation (2.24). Such an ap-

proximation simplifies the controller structure and enables the off-line

computation of the optimal feedback gain matrix K as it becomes station-

ary. See [66] for details on numerical methods for solving the algebraic

Riccati equation.

2.2.2 Discrete-time tracking problem

The basic LQR reviewed in Section 2.2.1 is designed to drive the states (or

the outputs) to zero. However in many real life applications, the problem

is to design a control system that keeps the state xt close to a given desired

state xd,t ∈ R
nx for all t ∈ N0. The desired state xd,t typifies the desired

process behaviour and can be nonstationary and/or non-zero. Further-

more, it is specified by the designer. The control objective can be stated

also in terms of the output yt. In such a case, the problem is to design a

control system that forces the output yt to follow a given reference input

rt as closely as possible for all t. The reference input rt ∈ R
ny is defined

so that rt = Ctxd,t. Such control systems are referred to as tracking systems.

In terms of the output, the objective of a tracking system is to mini-

mize the tracking error ǫt ∈ R
ny , ǫt = |rt − yt|, for all t. The cost function

of a tracking system contains the tracking error ǫt and is

J = E

[

1

2
ǫTNHyǫN +

1

2

N−1

∑
t=0

(

ǫTt Qy,tǫt + uTt Rtut
)

]

(2.26)

where the weighting matrices Hy, Qy,t, and Rt are defined as in Section

2.2.1.

The optimal LQ tracker is derived, for example, in [62]. The optimal

control law for the tracking problem is achieved by following the deriva-

tion of the basic LQR and taking into account the required modifications

resulting from the new cost function (2.26). The optimal control law is

ut = −Ktxt − Kb,tbt+1 (2.27)

where Kt is defined in Section 2.2.1, Kb,t ∈ R
nu×nx ,

Kb,t = (Rt + BT
2,tPt+1B2,t)

−1BT
2,t, (2.28)

and bt ∈ R
nx ,

bt = (AT
t − KT

t B
T
2,t)bt+1 −Qtxd,t, (2.29)
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with bN given. Thus, for computation of the control input (2.27) at each

time t one has to solve bt+1 recursively from (2.29). Besides the optimal

tracker, suboptimal trackers have been designed mostly for continuous-

time systems, see [63], [68].

If the system matrices and the weighting matrices are stationary so

that At = A, B2,t = B2, Ct = C, Qt = Q, and Rt = R, a so-called non-

zero-set-point regulator can be designed. In such a case, the control law

is

ut = ū− K(xt − x̄) (2.30)

where ū ∈ R
nu and x̄ ∈ R

nx are the steady-state values of the control input

and the state, respectively. The steady-state values are determined so that

the steady-state output ȳ ∈ R
ny equals a stationary reference input r.

The non-zero set-point regulator for continuous-time systems is discussed

in [69] and [66].

2.2.3 State estimation

The optimal control ut can be found by using the control law (2.22) pro-

vided that the entire state xt is measured perfectly. This assumption is not

valid in many real life applications in which there may not be sensors ca-

pable of measuring the entire state or the cost of including such sensors is

prohibitive. Therefore, the concept of state estimation is introduced, and

a state estimator is incorporated into the control system. It can be shown

that if the state estimates are optimal in some sense, the optimal control

law produces optimal control inputs.

In this thesis, the aim is to determine the distribution of the unknown

quantity (i.e. the state) on the basis of EIT observations when the un-

known quantity has spatial and temporal variations. The associated non-

stationary reconstruction problem of EIT can be formulated as a state es-

timation problem. The review of state estimation methods in this thesis is

based on [5], [70] considering nonstationary inverse problems. As general

references on the state estimation theory, see [71], [72], [73].

The specification of the state estimation problem is to compute the

state estimate, preferably the optimal state estimate, denoted by x̂t or

xt|k on the basis of the observations g1, . . . , gk. The estimation problem

is considered from the Bayesian point of view. In Bayesian estimation,

the state xt and the observation gt are random (vector) variables. The

solution to the Bayesian estimation problem is actually the posterior den-

sity π(xt|gi, i = 1, . . . , k) of the state xt conditioned on the observations
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gi, i = 1, . . . , k, instead of a single estimate of the state xt. The posterior

density sums up the information about the state xt after the measurements

up to time k are performed.

The state estimation problem can be characterized as a prediction, a

filtering, or a smoothing problem depending on the set of observations

available for the computation of the state estimate at time t. If k < t,

the state estimation problem is a prediction problem. When considering

real time filtering problems, k = t. If real time estimation is not required,

it is possible that k > t, and the state estimation problem is viewed as

a smoothing problem. For real time feedback control systems, real time

state estimation is essential, and in such a case the set of available obser-

vations at time t is {g1, . . . , gt}.

A computationally feasible approach to solve the Bayesian estimation

problem is to use recursive algorithms since the dimension of the problem

increases linearly with time. When solving the Bayesian filtering problem,

the posterior density π(xt|gi, i = 1, . . . , t) that gives the conditional prob-

ability of the state xt conditioned on the observations gi, i = 1, . . . , t, is

to be determined. In order to determine the posterior density, properties

for the (state) process {xt}, the (observation) process {gt}, and the (noise)

processes {w1,t} and {vt} are postulated.

The vector process {xt} is assumed to be a Markov process with an

initial state x0 ∼ π(x0) and a transition kernel π(xt+1|xt). The prior den-

sity π(x0) sums up the available information about the initial state x0
prior to any measurements. The transition kernel π(xt+1|xt) is a func-

tion specifying that the future state xt+1 is independent of the past states

x0, . . . , xt−1 conditionally to the present state xt. Furthermore, the future

state xt+1 depends on the past observations g1, . . . , gt through the present

state xt. The observation gt is conditionally independent of the past states

given the present state xt. The likelihood function π (gt|xt) describes the
interrelation between the observation gt and the state xt. The noise pro-

cesses {w1,t} and {vt} are sequentially uncorrelated. Furthermore, the

noise vectors w1,t and vs are mutually independent for all t, s ∈ N0.

Given the prior density π(x0), the transition kernel π(xt+1|xt), t =

0, 1, . . . , and the likelihood π(gt|xt), t = 0, 1, . . . , the posterior density can
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be determined recursively following the steps

π (xt|gi, i = 1, . . . , t)

=
π (gt|xt)π (xt|gi, i = 1, . . . , t− 1)

π (gt|gi, i = 1, . . . , t− 1)
(2.31)

π (xt|gi, i = 1, . . . , t− 1)

=
∫

Rnx
π (xt−1|gi, i = 1, . . . , t− 1)π (xt|xt−1)dxt−1 (2.32)

where the normalizing constant

π (gt|gi, i = 1, . . . , t− 1)

=
∫

Rnx
π (gt|xt)π (xt|gi, i = 1, . . . , t− 1)dxt (2.33)

and the initial distribution is given by

π (x0|g0) =
π (g0|x0) π (x0)

∫

Rnx π (g0|x0)π (x0)dx0
. (2.34)

The equation (2.31) is the measurement update of the Bayesian recursion and

(2.32) is the time update equation. In (2.31),

π (xt|gi, i = 1, . . . , t− 1) is referred to as the prediction density.

The posterior density as such is difficult to visualize and analyse.

However, once the posterior density is derived, different estimates can

be computed to explore the density. Such estimates include point and

interval (spread) estimates. The point estimates indicate the most prob-

able value of the unknown state whereas the interval estimates yield an

interval that contains the values of the unknown state with some specified

probability given the observations and the prior information.

The point estimates that can be derived from the posterior density

(2.31) include for example the conditional mean (CM) that is also known

as the minimum mean square error estimate

xCMt|t = E [xt|gi, i = 1, . . . , t] =
∫

Rnx
xtπ (xt|gi, i = 1 . . . , t)dxt (2.35)

provided that the integral exists and the maximum a posteriori (MAP)

estimate

xMAP
t|t = argmax

xt
π (xt|gi, i = 1, . . . , t) (2.36)

given the observations g1, . . . , gt. The answer to the question which of the

point estimates is the optimal state estimate xt|t depends on the definition
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of the concept of optimality. A typical choice is to define that the optimal

state estimate minimizes the mean square estimation error. In such a

case, xt|t = xCM
t|t

. Perhaps the most widely used interval estimate is the

conditional covariance defined as

cov(xt|gi, i = 1, . . . , t)

=
∫

Rnx
(xt − xCMt|t )(xt − xCMt|t )Tπ (xt|gi, i = 1, . . . , t)dxt (2.37)

provided that the integral exists.

Computation of the estimates (2.35)-(2.37) is not always a trivial task.

The MAP estimate (2.36) is obtained as a solution to the optimization

problem that can be solved using, for example, iterative methods. In (2.35)

and (2.37), the integration is typically over a high-dimensional space. Con-

sequently, efficient alternative ways to perform the integration are needed.

The sampling-based methods, such as the Markov Chain Monte Carlo

(MCMC) methods, are applicable, although the computational load of

such methods is large. As a general reference to the MCMC methods,

see [74].

KALMAN FILTER

The well-known Kalman filter [75] is the solution to a special class of

recursive Bayesian filtering problems. In these problems, both the state

equation and the observation equation are linear, the state noise and the

measurement noise are modelled as Gaussian white noise with known

covariances, and the optimality criterion is defined as the minimum mean

square criterion.

The basis of the Kalman filter is the state-space model with the linear

state equation (2.1) and a linear observation equation

gt = G1,txt + vt (2.38)

where G1,t ∈ R
ng×nx is the observation matrix. In the state equation, the

control input ut and the process input st are taken to be known at respec-

tive times. The state noise w1,t, the observation noise vt, and the initial

state x0 are all modelled as Gaussian with known means and covariances.

One may assume that they are zero mean vectors without loss of general-

ity. It is assumed that the optimal state estimate xt|t = E [xt|gi, i = 1, . . . , t]
(the CM) and Γt|t = cov(xt|gi, i = 1, . . . , t) (the conditional covariance).

Furthermore, xt|t−1 denotes the predicted state estimate and Γt|t−1 the

covariance matrix of the predicted state.
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In the case that the noises are modelled as additive and mutually in-

dependent of the state, the likelihood π(gt|xt) and the transition kernel

π(xt|xt−1) are Gaussian [5]. Furthermore, it can be shown that the pre-

diction density π (xt|gi, i = 1, . . . , t− 1) corresponding to (2.32) is also a

Gaussian density of N (xt|t−1, Γt|t−1) [5]. Given the prediction density

π (xt|gi, i = 1, . . . , t− 1), the posterior density π (xt|gi, i = 1, . . . , t) corre-

sponding to (2.31) is determined on the basis of the observation gt and

the likelihood π(gt|xt). That is, the posterior density

π (xt|gi, i = 1, . . . , t)

∝ π (gt|xt) π (xt|gi, i = 1, . . . , t− 1)

∝ exp
{

−
1

2

(

(gt − G1,txt)
T

Γ−1
vt (gt − G1,txt)

)

−
1

2

( (

xt − xt|t−1

)T
Γ−1
t|t−1

(

xt − xt|t−1

) )}

(2.39)

and it is also a Gaussian density of N (xt|t, Γt|t). Actually in the poste-

rior density in (2.39), the state xt is conditioned on all the measurements

gi, i = 1, . . . , t, and on all the control inputs uj, j = 1, . . . , t − 1, so that

π
(

xt|gi, i = 1, . . . , t, uj, j = 1 . . . , t− 1
)

. However in this thesis, the nota-

tion in (2.39) is used for the posterior density. As the posterior, prediction,

and likelihood densities are Gaussian, the MAP estimate and the CM are

identical, that is, xCM
t|t = xMAP

t|t .

As for all t the densities are Gaussian, one needs to update only the

mean and the covariance. The optimal state estimate xt|t, the predicted

state estimate xt|t−1, and the covariance matrices Γt|t and Γt|t−1 can be

obtained recursively using the Kalman filter equations that in this case

are [71]

xt|t−1 = At−1xt−1|t−1 + B2,t−1ut−1 + st (2.40)

Γt|t−1 = At−1Γt−1|t−1A
T
t−1 + Γwt (2.41)

Ft = Γt|t−1G
T
1,t

(

G1,tΓt|t−1G
T
1,t + Γvt

)−1
(2.42)

xt|t = xt|t−1 + Ft
(

gt − G1,txt|t−1

)

(2.43)

Γt|t = (I − FtG1,t) Γt|t−1 (2.44)

where Ft ∈ R
nx×ng is the Kalman gain. It should be noted that the com-

putation of xt|t requires the control input ut−1 which is in turn computed

based on the previous real time estimate xt−1|t−1. In the control theory lit-

erature, the Kalman filter estimator is typically presented in an alternative
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form in comparison with (2.40)-(2.44). The alternative formulation com-

bines the prediction step (2.40) and the filtering step (2.43). Furthermore,

the covariance matrices of the prediction and the estimate are obtained

as a solution to a Riccati difference equation. The alternative formulation

can be found, for example, in [63].

One of the main difficulties in many real life industrial applications

is that the assumption on linearity does not hold, and nonlinear state

estimation is required. In such a case, the optimal estimates can be ob-

tained with sampling-based methods. Such methods are referred to as

sequential Monte Carlo (SMC) methods, and are also known as particle

filters [76], [73]. The particle filters can be formulated to prediction and

smoothing problems as well as filtering problems. The computational

complexity often limits the implementation of these methods in practice.

Furthermore, there are recursive estimators that give a suboptimal solu-

tion to nonlinear state estimation problems. Three of such suboptimal

estimators, the globally linearised Kalman filter, the extended Kalman fil-

ter, and the iterated extended Kalman filter, are reviewed in this section

in the case of nonlinear observation equation. These estimators could be

formulated for the case in which also the state equation is nonlinear.

GLOBALLY LINEARISED KALMAN FILTER

In the case of the state-space model (2.1)-(2.2), the basic idea of the glob-

ally linearised Kalman filter is that the nonlinear mapping Gt in (2.2) is

linearised globally at a selected linearisation point xlp ∈ R
nx and approx-

imated with the obtained linear mapping. Thus,

Gt(xt) ≈ Gt(xlp) + J Gt(xlp)(xt − xlp)

= J Gt(xlp)xt + G̃t (2.45)

where the Jacobian matrix J Gt ∈ R
ng×nx , J Gt = J Gt(xlp), and the

vector G̃t ∈ R
ng , G̃t = Gt(xlp) + J Gt(xlp)xlp, can be computed once the

vector xlp is chosen. Furthermore, G̃t is independent of the state xt but

still dependent of the mapping Gt.

In the case of a nonlinear observation equation, the prediction and

posterior densities are no longer Gaussian but they can be approximated

with Gaussian densities. Let πG (xt|gi, i = 1, . . . , t− 1) and

πG (xt|gi, i = 1, . . . , t) denote the Gaussian approximations of the predic-

tion density π (xt|gi, i = 1, . . . , t− 1) and posterior density

π (xt|gi, i = 1, . . . , t), respectively. The posterior density corresponding to
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(2.31) is [5]

π (xt|gi, i = 1, . . . , t)

∝ π (gt|xt)π (xt|gi, i = 1, . . . , t− 1)

≈ π (gt|xt)πG (xt|gi, i = 1, . . . , t− 1)

∝ exp
{

−
1

2

(

gt − Gt (xt)
)T

Γ−1
vt

(

gt − Gt (xt)
)

−
1

2

( (

xt − xt|t−1

)T
Γ−1
t|t−1

(

xt − xt|t−1

) )}

. (2.46)

The Gaussian approximation πG (xt|gi, i = 1, . . . , t) for the posterior den-

sity is obtained by using the linearisation (2.45) in (2.46) and it is a Gaus-

sian density of N (xt|t, Γt|t).

As the state equation is linear, the computation of the predicted state

xt|t−1 and the covariance matrix Γt|t−1 is equivalent to the Kalman filter

equations (2.40)-(2.41). The Kalman gain Ft, the optimal state estimate xt|t,

and the covariance matrix Γt|t are obtained using the equations [5]

Ft = Γt|t−1J GT
t (xlp)

(

J Gt(xlp)Γt|t−1J GT
t (xlp) + Γvt

)−1
(2.47)

xt|t = xt|t−1 + Ft

(

gt −
(

Gt(xlp) + J Gt(xlp)(xt|t−1 − xlp)
))

(2.48)

Γt|t =
(

I − FtJ Gt(xlp)
)

Γt|t−1. (2.49)

EXTENDED KALMAN FILTER

In the case of the state-space model (2.1)-(2.2), the basic idea of the ex-

tended Kalman filter is that instead of linearising the observation equation

(2.2) globally as in the globally linearised Kalman filter, the observation

equation is linearised at the predicted state xt|t−1. Thus, the linearisation

Gt(xt) ≈ Gt(xt|t−1) + J Gt(xt|t−1)(xt − xt|t−1) (2.50)

is used when finding the Gaussian approximation of the posterior density

π (xt|gi, i = 1, . . . , t).

The equations for the Kalman gain Ft, the optimal state estimate xt|t,

and the covariance matrix Γt|t are

Ft = Γt|t−1J GT
t (xt|t−1)

(

J Gt(xt|t−1)Γt|t−1J GT
t (xt|t−1) + Γvt

)−1
(2.51)

xt|t = xt|t−1 + Ft
(

gt − Gt(xt|t−1)
)

(2.52)

Γt|t =
(

I − FtJ Gt(xt|t−1)
)

Γt|t−1. (2.53)
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In conclusion, the extended Kalman filter equations consist of the time

evolution update equations (2.40)-(2.41) and the observation update equa-

tions (2.51)-(2.53).

ITERATED EXTENDED KALMAN FILTER

In the case of the state-space model (2.1)-(2.2), the basic idea of the iterated

extended Kalman filter is that an inner iteration loop is included into the

observation update steps (2.51)-(2.53) of the extended Kalman filter.

When solving the iterated extended Kalman filter problem, the it-

erated extended Kalman filter estimate is obtained by minimising the

quadratic functional in the exponent in the right-hand side of (2.46). An

approximate numerical solution is sought. Thus,

xt|t ≈ solmin
xt

{

(gt − Gt (xt))
T

Γ−1
vt (gt − Gt (xt))

+
(

xt − xt|t−1

)T
Γ−1
t|t−1

(

xt − xt|t−1

) }

. (2.54)

An approximate solution of the minimisation problem in (2.54) is ob-

tained with the Gauss-Newton method [77]. Let J G
j
t denote the Jacobian

J Gt(x
j
t). The sequence of iterates corresponding to each time t ∈ N0 yield

by the Gauss-Newton method when minimising the quadratic functional

(2.54) with the initial value x0t = xt|t−1 are of the form [71]

F
j
t = Γt|t−1(J G

j
t)

T
(

J G
j
tΓt|t−1(J G

j
t)

T + Γvt

)−1
(2.55)

x
j+1
t = xt|t−1 + F

j
t

(

gt −
(

Gt(x
j
t) + J G

j
t

(

xt|t−1 − x
j
t

)))

(2.56)

where j ∈ N0. The iteration is repeated until convergence. After the

iteration, the estimate xt|t is set to x
j
t and the covariance matrix Γt|t is

computed using the state estimate xt|t with

Γt|t =
(

I − FtJ Gt(xt|t)
)

Γt|t−1. (2.57)

In conclusion, the iterated extended Kalman filter equations consist of

the time evolution update equations (2.40)-(2.41), the iteration loop (2.55)-

(2.56) and the equation for the update of the covariance matrix (2.57).

2.3 H∞ CONTROL PROBLEM

The main reason behind the development of the H∞ control theory was

the need of a more robust optimal control method that takes into account
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the uncertainty in the process modelling and in the external disturbances.

The weak point of the LQG control is that the assumption of Gaussian state

and measurement noises does not hold in many real life industrial appli-

cations. Especially, the state noise can be far from Gaussian. Furthermore,

accurate modelling of the process dynamics is a challenging or even an

impossible task, and there will be errors of unknown statistical nature be-

tween the model and the actual process. These errors can be compensated

for by the H∞ controller. However, the use of the H∞ optimal controller

does not automatically guarantee better results in comparison to the ones

obtained using the LQG optimal controller. Especially, modelling state

and measurement errors and also the discrepancies between the process

model and the actual process and using these models when deriving the

LQG controller will in many cases improve the performance of the LQG

controller. As general references on the H∞ theory, see [64], [78].

Similarly to the LQG controller, the synthesis of the H∞ measurement

feedback controller (or simply the H∞ controller) can be divided into two

stages. Firstly, the H∞ control law is derived as if there is perfect infor-

mation about the state and also about the external disturbances. Conse-

quently, the obtained controller is referred to as the full information con-

troller. Secondly, the optimal state estimator is designed. Contrary to the

LQG control, the H∞ state estimator depends on the full information con-

troller and, thus, the certainty-equivalence property discussed in Section

2.2 does not hold for the H∞ control problems. Finally, the H∞ measure-

ment feedback controller is obtained by combining the two stages. When

utilizing the H∞ controller, perfect information about the state and the

external disturbances is not required. Instead, the state is estimated and

the disturbances are taken as unknowns.

In this section, the linear state-space model that consists of the linear

state equation and a linear observation equation

xt+1 = Atxt + B2,tut + B1,twt (2.58)

gt = C2,txt + D21,twt (2.59)

is considered. In the state-space model (2.58)-(2.59), xt, gt, ut, At and

B2,t are defined in Section 2.1. Furthermore, wt ∈ R
(nx+ng) is the ex-

ogenous disturbance input so that wt = [wT
1,t vTt ]

T and the noises w1,t

and vt are defined in Section 2.1. The matrices B1,t ∈ R
nx×(nx+ng) and

D21,t ∈ R
ng×(nx+ng) are the state noise input matrix and the observation

noise input matrix, respectively. The matrix C2,t ∈ R
ng×nx is known for

all t ∈ N0. Furthermore, the objective vector corresponding to (2.9) is
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zt ∈ R
nx+nu+(nx+ng) so that

zt = C1,txt + D12,tut + D11,twt (2.60)

where C1,t ∈ R
nx+nu+(nx+ng)×nx , D12,t ∈ R

nx+nu+(nx+ng)×nu , and D11,t ∈
R

nx+nu+(nx+ng)×(nx+ng). The state equation (2.58), the objective equation

(2.60), and the observation equation (2.59) can be written in a matrix form





xt+1

zt
gt



 =





At B1,t B2,t

C1,t D11,t D12,t

C2,t D21,t D22,t









xt
wt

ut



 (2.61)

where D22,t ∈ R
ng×nu so that D22,t is a zero matrix and the initial state x0

is a zero vector. The matrix form (2.61) is the basis when deriving the H∞

controller.

The main idea in the H∞ optimal control is to treat the worst-case

scenario. To be more specific, the aim is to minimize some performance

criterion in the presence of a worst-case external disturbance input. Con-

sequently, performance of the system is acceptable in the presence of

all possible external disturbance inputs. Below, z = {zt} in which zt ∈
R

nx+nu+(nx+ng) and the ℓ2-norm is defined as

‖z‖2,[0,N] =

(

N

∑
t=0

zTt zt

)
1
2

. (2.62)

w and ‖w‖2,[0,N] are defined accordingly. The performance criterion to be

minimized is the cost function [64], [63]

J = sup
‖w‖2,[0,N] 6=0

{

‖z‖2,[0,N]

‖w‖2,[0,N]

}

. (2.63)

Thus, the aim is to make the output zt small relative to the size of the

disturbance wt for all t ∈ [0,N]. The direct minimization of the cost (2.63)

is a difficult task. Therefore, it is typical to seek a suboptimalH∞ controller.

Assume that there exists γ ∈ R+ which satisfies

J = sup
‖w‖2,[0,N] 6=0

{

‖z‖2,[0,N]

‖w‖2,[0,N]

}

< γ. (2.64)

In this case, γ is referred to as a performance bound. As the supremum

satisfies the inequality (2.64), the inequality

‖z‖2,[0,N]

‖w‖2,[0,N]
< γ (2.65)
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must hold for all w 6= 0. Furthermore as the strict inequality (2.65) holds,

for some ǫ > 0 and for all w 6= 0,

‖z‖2
2,[0,N]

‖w‖2
2,[0,N]

≤ γ2 − ǫ. (2.66)

Consequently, by rearranging the terms in (2.66) one can define a cost

function Jγ, that is equivalent to (2.63), so that

Jγ = ‖z‖22,[0,N] − γ2‖w‖22,[0,N] ≤ −ǫ‖w‖22,[0,N] (2.67)

for all w 6= 0 and for some ǫ > 0.

When comparing (2.67) to the LQG cost function (2.11), one notices

that the H∞ cost function (2.67) has an extra term describing the effect of

the (worst) external disturbance w. When minimizing the cost function Jγ,

the external disturbance wt is maximized. In summary, the solution to the

suboptimal H∞ control problem is a controller that achieves the bound

(2.67).

The objective of the basic H∞ controller is to drive the state to zero

in the presence of external disturbances. The H∞ controller is derived

using dynamic programming respectively to the derivation of the LQG

controller. However, the derivation of the H∞ controller turns out to be

more complicated and longer. The H∞ controller is derived for example

in [64]. Provided that DT
12,tD12,t > 0 and D21,tD

T
21,t > 0 for all t ∈ [0,N],

the expressions for the state estimate x̂t+1 and the control input ut are of

the form

x̂t+1 = Āt x̂t + B2,tut + Lg,t(gt − Ḡt x̂t) (2.68)

V12,tut = −(Ku,t − Kuw,tKw,t)x̂t − Lug,t(gt − Ḡtx̂t) (2.69)

where

Ku,t = V12,t(D
T
12,tD12,t + BT

2,tZtB2,t)
−1(DT

12,tC1,t + BT
2,tZtAt), (2.70)

Kuw,t = V12,t(D
T
12,tD12,t + BT

2,tZtB2,t)
−1

(DT
12,tD11,t + BT

2,tZtB1,t), (2.71)

Kw,t =
(

DT
11,tD11,t + BT

1,tZtB1,t − γ2 I − (DT
11,tD12 + BT

1,tZtB2,t)

(DT
12,tD12,t + BT

2,tZtB2,t)
−1(DT

12,tD11,t + BT
2,tZtB1,t)

)−1

(

DT
11,tC1,t + BT

1,tZtAt − (DT
11,tD12,t + BT

1,tZtB2,t)

(DT
12,tD12,t + BT

2,tZtB2,t)
−1(DT

12,tC1,t + BT
2,tZtAt)

)

, (2.72)
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and

Lg,t = B1,tV
−1
21,t(D21,tV

−1
21,t)

T

+ĀtXtḠ
T
t

(

D21,tV
−1
21,t(D21,tV

−1
21,t)

T + ḠtXtḠ
T
t

)−1
, (2.73)

Lug,t = Kuw,tV
−1
21,t(D21,tV

−1
21,t)

T + (Ku,t − Kuw,tKw,t)XtḠ
T
t

(

D21,tV
−1
21,t(D21,tV

−1
21,t)

T + ḠtXtḠ
T
t

)−1
, (2.74)

VT
21,tV21,t = −γ−2

(

DT
11,tD11,t − γ2 I + BT

1,tZtB1,t

−(DT
11,tD12,t + BT

1,tZtB2,t)(D
T
12,tD12,t + BT

2,tZtB2,t)
−1

(DT
12,tD11,t + BT

2,tZtB1,t)
)

, (2.75)

VT
12,tV12,t = DT

12,tD12,t + BT
2,tZtB2,t, (2.76)

Āt = At − B1,tKw,t, (2.77)

Ḡt = C2,t − D21,tKw,t. (2.78)

Given the non-negative and definite matrices ZN and X0, the matrices

Zt and Xt are obtained as a solution of the Riccati equations

Zt−1 = AT
t ZtAt + CT

1,tC1,t

−
[

CT
1,tD11,t + AT

t ZtB1,t CT
1,tD12,t + AT

t ZtB2,t

]

[

DT
11,tD11,t + BT

1,tZtB1,t − γ2 I DT
11,tD12,t + BT

1,tZtB2,t

DT
12,tD11,t + BT

2,tZtB1,t DT
12,tD12,t + BT

2,tZtB2,t

]−1

[

DT
11,tC1,t + BT

1,tZtAt

DT
12,tC1,t + BT

2,tZtAt

]

, (2.79)

Xt+1 = ĀtXt Ā
T
t + B1,tV

−1
21,t(B1,tV

−1
21,t)

T − D̄tS̄tD̄
T
t (2.80)

where

D̄t =
[

B1,tV
−1
21,t(Kuw,tV

−1
21,t)

T B1,tV
−1
21,t(D21,tV

−1
21,t)

T
]

+ĀtXtC̄
T
t , (2.81)

S̄t =

[

Kuw,tV
−1
21,t(Kuw,tV

−1
21,t)

T − γ2 I Kuw,tV
−1
21,t(D21,tV

−1
21,t)

T

D21,tV
−1
21,t(Kuw,tV

−1
21,t)

T D21,tV
−1
21,t(D21,tV

−1
21,t)

T

]

+C̄tXtC̄
T
t , (2.82)

C̄t =

[

Ku,t − Kuw,tKw,t

Ḡt

]

. (2.83)
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It can be shown that the solution of the H∞ measurement feedback

control problem exists if and only if the Riccati equations (2.79) and (2.80)

have solutions, and the condition

ρ(ZtXt) < γ2 (2.84)

is satisfied for all t ∈ [0,N] where ρ(·) denotes the spectral radius. Unlike

the LQG control where, provided that the standard assumptions hold, the

Riccati equation always has a solution, the solutions of Riccati equations

(2.79) and (2.80) do not exist if the performance bound γ is too low. The

lowest value of γ for which the condition (2.84) is satisfied is searched

by using numerical simulations where the controller is redesigned for de-

creasing values of γ.

If N → ∞ and the system matrices At, B2,t, C1,t, and C2,t are stationary,

then Zt → Z and Xt → X where Z and X are the solutions of the algebraic

Riccati equations corresponding to (2.79) and (2.80), respectively. In such

a case, the coupling condition to be satisfied is ρ(ZX) < γ2.

2.4 MODEL PREDICTIVE CONTROLLER

The idea in MPC is that the future process behaviour is predicted over a

time interval and a sequence of future control inputs optimizing a given

cost function related to the predicted performance are computed. The

predictions are updated as new observations are obtained. By prediction

of the process behaviour unwanted situations can be avoided in advance

provided that there does not exist other unforeseen disturbances. The

optimization problem to be solved at every time step is typically of the

form of a linear programming (LP) problem or a quadratic programming

(QP) problem depending on the nature of the process model and the cost

function.

In the LP and the QP framework, input constraints, state constraints,

and output constraints can be included directly in the problem formula-

tion. The ability to systematically handle these constraints is one of the

major advantages of MPC. There are several numerical methods for solv-

ing the LP and QP problems on-line including, for example, the active

set method and the interior point methods. These methods are, unfortu-

nately, computationally expensive for large-scale problems, and the com-

putational load may prohibit the use on MPC in real time implementations

with high-dimensional process models.

To illustrate MPC, an example of the formulation of a MPC problem

is given. The formulation is based on [79]. The linear, stationary, and
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discrete-time state equation and the linear, stationary, and discrete-time

output equation

xt+1 = Axt + B2ut (2.85)

yt = Cxt (2.86)

are considered. See [79] for more information on MPC with stochastic

linear models.

The finite horizon quadratic cost function can be written as

J = xTt+NHxt+N + (ut+N − ut+N−1)
TS(ut+N − ut+N−1)

+
N−1

∑
j=0

(

xTt+jC
TQCxt+j + uTt+jRut+j + uTd,t+jSud,t+j

)

(2.87)

where ud,t+j = ut+j − ut+j−1 is the change in the control input, the matrix

S ∈ R
nu×nu is a positive semidefinite matrix weighting the rate of change

of the inputs, and the matrices H, Q, and R are defined in Section 2.2. Al-

though the quadratic cost functions are popular in MPC, the performance

index could also be expressed as a sum of the ∞- or 1-norm of the input

and the state.

The input and output constraint can be formulated as

umin ≤ ut+j ≤ umax, j = 0, 1, . . . ,N − 1, (2.88)

ymin ≤ yt+j ≤ ymax, j = j1, j1+1, . . . , j2, (2.89)

ud,max ≤ ut+j − ut+j−1 ≤ ud,min, j = 0, 1, . . . ,N (2.90)

where j1 and j2, j1 ≥ 1 and j2 ≥ j1, are chosen constants, see [79]. The

model predictive control problem at time t is to minimize the cost (2.87)

with respect to a vector uN
t = [ut, ut+1, . . . , ut+N−1]

T subject to constraints

(2.88)-(2.90). The vector uN
t contains the N future control actions. Once

the minimization problem is solved, the control input ut is applied to

the system and one starts again. The model predictive controller is an

automatic, feedback, and model-based controller.

2.5 PROPORTIONAL-INTEGRAL-DERIVATIVECONTROLLER

The PID controllers are widely used in industrial control systems because

of their simplicity, robustness, and lack of need of complex process mod-

els. The PID controller consists of three terms operating on the output

error signal. One or two of the three terms can be zero, so controllers such
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as a proportional-integral (PI) controller and a proportional-derivative

(PD) controller exist. The PID controllers are automatic and feedback

controllers. The formulation of the PID controller in this thesis is based

on [80]. It should be noted that the control input and the control output

have now only temporal variations in contrast to the variables in DPSs.

The continuous-time control law for the proportional control, that is

the P controller, is

uP(t) = KPǫP(t) (2.91)

where uP is the control input, KP ∈ R is the controller gain, ǫP is the

control error (or the tracking error), and t ∈ R denotes time. The control

error is

ǫP(t) = rP(t)− yP(t) (2.92)

where rP is the reference input (or the set point) and yP is the control

output. Another formulation of the P controller includes a so-called set

point weighting βsp ∈ R so that

uP,sp(t) = KP(βsprP(t)− yP(t)). (2.93)

In (2.93), the reference input can be weighted independently. The pro-

portional control may lead to steady-state errors. The steady-state errors

can be eliminated by adding a manually adjustable reset term uP,0 to the

control law. The controller is then

uP0 (t) = KPǫP(t) + uP,0(t). (2.94)

The problem is how to find the reset term uP,0 that cancels the steady-state

errors in practice.

An automatic way to find uP,0 is to use integral control. In the control

law (2.94), the reset term is replaced with an integral term. By doing so a

PI controller is obtained. The PI controller is of the form

uPI(t) = KP

(

ǫP(t) +
1

Ti

∫ t

0
ǫP(τ̃)dτ̃

)

(2.95)

where Ti ∈ R+ is the integral time.

In order to improve stability of the PI controller, a derivative term is

included in the control law (2.95) yielding the PID controller

uPID(t) = KP

(

ǫP(t) +
1

Ti

∫ t

0
ǫP(τ̃)dτ̃ + Td

dǫP(t)

dt

)

(2.96)
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where Td ∈ R+ is the derivative time. The derivative term can be inter-

preted as linear extrapolation of the error Td time units ahead.

When considering discrete-time control systems, a discrete-time ap-

proximation of the PID controller is needed. There are many ways to find

the approximation and a method discussed in [80] is reviewed here. In

the following, t ∈ N0 denotes the time, that is the sampling instances,

and h ∈ R+ is the time between samples. For example, ǫt denotes the

control error at time t and it is a scalar. The PID controller (2.96) can be

approximated by

ut = uP,t + uI,t + uD,t (2.97)

where the approximation of the proportional term, the approximation of

the integral term, and the approximation of the derivative term are ob-

tained from equations

uP,t = KP(βsprt − yt) (2.98)

uI,t+1 = uI,t +
KPh

Ti
ǫt (2.99)

uD,t =
Td

Td + Ndh
(uD,t−1 − KPNd(yt − yt−1)) , (2.100)

respectively, where Nd ∈ R. In the formulation, the derivative term is

given by

Td
Nd

duD
dt

+ uD = −KPTd
dy

dt
, (2.101)

see [80] for details.

2.6 CONTROLLABILITY AND OBSERVABILITY

Before designing a controller, two important properties, controllability

and observability, of the state-space system should be investigated in or-

der to determine if it is even possible to control the system [63], [66], [81].

A rank test can be used for determining whether the system is controllable

and/or observable [66], [81].

Consider a linear state-space model that consists of a linear state equa-

tion (without the state noise), a linear observation equation (without the

observation noise), and an output equation so that

xt+1 = Atxt + B2,tut (2.102)

gt = C2,txt (2.103)

yt = Ctxt. (2.104)

Dissertations in Forestry and Natural Sciences No 128 33



Anna Kaasinen: Optimal Control in Process Tomography

The system (2.102)-(2.104) is said to be (completely) state controllable if

there exists control inputs ut, t ∈ [0,N], that can transfer the system from

any initial state x0 to any other state xN in a finite time N. The rank test

states that the linear system (2.102)-(2.104) is state controllable if and only

if the nx × nx matrix

MNS =
N

∑
t=0

Φ(N, t)B2,tB
T
2,tΦ(N, t)T (2.105)

is non-singular when the matrix Φ ∈ R
nx×nx is defined so that Φ(N, t) =

AN−1AN−2 · · · At and Φ(0, 0) = I where I ∈ R
nx×nx is an identity matrix.

The matrix MNS is called the controllability matrix. If the matrices in the

state-space model (2.102)-(2.104) are stationary so that At = A, B2,t = B2,

C2,t = C2 , and Ct = C for all t ∈ N0, the system is state controllable if

and only if the nx × nunx matrix

MS =
[

B2 AB2 · · · Anx−1B2

]

(2.106)

has rank nx.

If the objective is to control the output yt instead of the entire state

xt, the output controllability of the system (2.102)-(2.104) should be in-

vestigated. The system (2.102)-(2.104) is said to be (completely) output

controllable if there exists control inputs ut, t ∈ [0,N], that can drive the

system output y0 to any other output yN in a finite time N. The rank test

states that the linear system (2.102)-(2.104) is output controllable if and

only if the ny × ny matrix

MO,NS =
N

∑
t=0

CtΦ(N, t)B2,tB
T
2,tΦ(N, t)TCT

t (2.107)

is non-singular. If the matrices in the state-space model (2.102)-(2.104) are

stationary, the system is output controllable if and only if the ny × nunx
matrix

MO,S =
[

CB2 CAB2 · · · CAnx−1B2

]

(2.108)

has rank ny.

The rank test states that the system is either controllable or uncon-

trollable. However in practice, some states/outputs can be very costly to

control and thus, sometimes referred to as effectively uncontrollable. In

general, the condition number of the controllability matrix can be con-

sidered as an indicator of controllability of the system. The smaller the

condition number the better the controllability of the system is.
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The system (2.102)-(2.104) is said to observable if and only if it is possi-

ble to determine the state x0 from a finite time-history of the observations

gt and the control inputs ut, t ∈ [0,N]. It can be shown that a linear

system is observable if and only if the nx × nx matrix

ONS =
N

∑
t=0

Φ(t, 0)TCT
2,tC2,tΦ(t, 0) (2.109)

is non-singular. The matrix ONS is called the observability matrix. If the

matrices in the state-space model (2.102)-(2.104) are stationary, the system

is observable if and only if the ngnx × nx matrix

OS =











C2

C2A
...

C2A
nx−1











(2.110)

has rank nx .

2.7 DISCUSSION

Only discrete-time state-space models are considered in this thesis. This

choice is made because in most industrial applications the observations

are obtained by sampling at discrete times. These observations are used

for determining the optimal control inputs at the measurement times.

Then, the control inputs are applied to the actuators and held fixed dur-

ing the time between the measurements. Contrary to the observations,

the state variable, that describes the evolution of an unknown quantity, is

continuous in time. The situation of the continuous-time state and the

discrete-time observations is handled by formally integrating the state

over the time intervals between the measurements. As a consequence,

a discrete-time state-space model is obtained and the discrete-time con-

troller and the discrete-time state estimator are applied. Correspond-

ingly, the optimal controllers and the state estimators can be derived us-

ing the continuous-time models. Optimal control methods in the case

of continuous-time models are presented, for example, in [62], [66], [63].

State estimation methods, and especially the Kalman-Bucy filter, in the

case of continuous-time models are presented in [82], [72].

When selecting a controller and a state estimator, the characteristics of

the application of interest need to be considered. One common require-

ment in industrial applications is that the control systems are real time
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and on-line. Consequently, only real time and on-line state estimators

and controllers are feasible, and often also some additional simplifica-

tions have to be made. One example of such simplifications is to use the

globally linearised Kalman filter instead of more complicated extended

Kalman filters. Furthermore, for example the SMC methods are inappli-

cable since it is impossible to execute the required computations in real

time with the current computational power. Also, off-line estimators such

as the Kalman smoothers cannot be utilized since with such an estimator,

for example, at time t one obtains the state estimate and, consequently,

the control input for the past time t− s where s ∈ N. When considering

the simplifications related to the control methods, the computations can

be simplified for example by approximating the nonstationary matrices in

the state-space model and the weighting matrices in the cost function with

stationary matrices. In that case, the steady-state solution to the algebraic

Riccati equation and the stationary optimal feedback gain matrix can be

used, and the number of on-line computations is reduced significantly.

The state noise and the measurement noise were omitted from the

state-space model when considering the controllability and the observ-

ability of the system in Section 2.6. One can include the noises in the

model and consider then controllability and observability of the stochas-

tic system. However, the extension of the deterministic controllability and

observability concepts to stochastic systems is not straightforward and

various definitions for stochastic controllability and stochastic observabil-

ity exist. For more information on stochastic controllability, see [83], [84]

and [85] (and the references therein). For more information on stochastic

observability, see [83], [86].

When defining the concept of controllability of a system in Section 2.6,

it was assumed that there are no constraints on the control input. This is

not the case in many practical implementations in which, for example, the

characteristics of the actuators define the set of admissible controls. If the

controls are required to satisfy such constraints, the concept of constrained

controllability should be investigated. An easily computable and widely

used criterion for constrained controllability in the case of an arbitrary set

of admissible controls has not been established. For more information on

constrained controllability, see, for example, [87], [88] and the references

therein.

The concept of observability was discussed in the context of linear

state-space models in Section 2.6. A widely accepted definition of ob-

servability for nonlinear systems does not exist. Various methods for

analysing the observability of a nonlinear discrete-time system have been
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proposed, see for example [89], [90]. A simple approach to analyse the

observability of a nonlinear system is to use the linearised observation

model and analyse the observability of the linearised system instead.

Typically, the DPSs are not observable or controllable in the classical

sense. It should be noted that the concepts of controllability and observ-

ability in this section are formulated for the finite-dimensional system.

Universal corresponding definitions for controllability and observability

of infinite-dimensional DPSs do not exist although the topic has been

studied. See [91] for reference.
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3 State-space modelling in electrical pro-

cess tomography

In Chapter 2, the discrete-time state-space model for a multiple-input and

multiple-output (MIMO) system was considered and used as a basis for

model-based controllers and state estimators. In this chapter, the state-

space model is derived for a convection-diffusion (CD) process that is

monitored with electrical impedance tomography (EIT) and controlled us-

ing injectors as actuators. In Chapter 4, the state estimation and optimal

control methods presented in Chapter 2 are modified to be used in the

example application discussed in this thesis.

This chapter is divided into three sections. In Section 3.1, the finite-

dimensional, discrete-time state equation modelling the CD process is de-

rived. In Section 3.2, the finite-dimensional, discrete-time EIT observation

equation is considered. This chapter is concluded with a discussion in

Section 3.3.

3.1 STOCHASTIC CONVECTION-DIFFUSION MODEL

In the example application of this thesis, concentration of a chemical sub-

stance in a fluid flowing in a domain of interest is considered. The do-

main can be, for example, a pipeline, a process vessel, or a mixing tank.

In this section, the objective is to write a model for a situation in which

the concentration distribution is controlled at a particular subdomain of

the domain by adding extra concentrate into the main fluid flow.

In a wide range of industrial processes, the fluid flow is turbulent

and consists of more than one component or phase. However, a model

for a laminar flow of an incompressible single-phase fluid is considered

in this thesis. In such a case, the evolution of the concentration can be

modelled with the CD equation with an additional source term describing

the control action affecting the concentration evolution. Furthermore in

process industry, nonstationary velocity fields of fluids are encountered.

In this thesis, the possible nonstationary velocity field is approximated

with a stationary velocity field. The uncertainties and inaccuracies in the

model (for example due to the inaccurate velocity field) are approximated

with stochastic terms. The finite-dimensional approximation of the CD
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model is derived using the Galerkin finite element method (FEM).

In Section 3.1.1, the CD equation with an additional control source

term is considered. The boundary conditions suitable for the example

application of this thesis are specified in Section 3.1.2. The control action

needed to achieve the control objective is modelled in Section 3.1.3. In

Section 3.1.4, the Navier-Stokes equations modelling the velocity field of

the fluid are reviewed briefly. In Section 3.1.5 and Appendix A, the finite

element (FE) approximation of the CD model is derived.

3.1.1 Convection-diffusion equation

Let Ω ⊂ R
n, n = 2, 3, be a bounded domain with a boundary Λ =

∂Ω. The function c : Ω × R+ → R, c = c(~r, t), describes the unknown

nonstationary concentration in Ω where ~r ∈ Ω is the spatial coordinate

vector and t ∈ R+ denotes the time. The evolution of the concentration

is modelled with the CD equation that is a parabolic partial differential

equation (PDE) so that

∂c

∂t
= ∇ · κ∇c−~v · ∇c+ q (3.1)

where q : Ω × R+ → R, q = q(~r, t), denotes the source term due to the

control action. In this thesis, ~v : Ω → R
n, ~v = ~v(~r), is the stationary

velocity field of the fluid and the diffusion coefficient κ ∈ R is a constant

scalar. As only laminar flow of an incompressible fluid is considered in

the modelling, the velocity field ~v is obtained as a solution of the Navier-

Stokes equations described in Section 3.1.4.

3.1.2 Boundary conditions

The domain of interest in this thesis is a segment of a pipeline along

which the fluid is flowing. The boundary of the domain is the union Λ =

Λin ∪ Λout ∪ Λwall. The input boundary Λin refers to the cutting surface

through which the flow enters the pipe and the output boundary Λout to

the cutting surface through which the flow exits the pipe. Furthermore,

Λwall denotes the pipe walls.

The following initial and boundary conditions are postulated for the

CD equation

c(~r, 0) = c0(~r), ~r ∈ Ω (3.2)

c(~r, t) = cin(~r, t), ~r ∈ Λin (3.3)

∂c

∂~n
(~r, t) = 0, ~r ∈ Λwall ∪ Λout, (3.4)
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where the function c0 : Ω → R is the initial concentration, the func-

tion cin : Λin × R+ → R is the nonstationary concentration on the input

boundary Λin, and ~n is the outward unit normal. It should be noted that

the condition (3.4) is also postulated for the output boundary Λout. For

justification of such an approximate boundary condition, see [92].

Although the boundary condition for Λin is written as a Dirichlet con-

dition, the input concentration is actually unknown and the input function

cin is considered as a stochastic function so that

cin(~r, t) = c̄in(~r, t) + η(~r, t), ~r ∈ Λin (3.5)

where the function c̄in : Λin × R+ → R is the deterministic part of the

input, usually the spatial/temporal average of cin or its estimate. If the

variations of the concentration are small, cin is a constant function. Fur-

thermore, η : Λin ×R+ → R is a function whose statistics should approx-

imate the actual fluctuations of the input. It is assumed that η is a smooth

function with respect to~r, and is, therefore, continuous and differentiable.

The initial concentration c0 is also unknown. This, however, is not a prob-

lem, since the effect of the initial concentration fades away quickly with

time.

3.1.3 Control action

The objective in the example application in this thesis is to control the

concentration distribution over a particular subdomain of the pipeline.

To be more specific, the concentration distribution is to be regulated on

the subdomain denoted by Λout. The control action taken to achieve this

objective is to inject substance of high concentration into the flow through

injectors. The amount of injected concentrate is controlled by adjusting

the flow rates of the injectors. The injectors are located either on the pipe

boundary or inside the pipe upstream of the subdomain of interest. The

injected concentrate increases the concentration level near the injection

point. The higher the flow rates are, the more the concentration level is

increased.

The concentration on the boundary Λout is defined as cout : Λout ×
R+ → R,

cout(~r, t) = c(~r, t), ~r ∈ Λout. (3.6)

When modelling the injections, nu denotes the number of injectors and

it is assumed that the output of the injector j is distributed in a small
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subdomain Ω
(j)
inj ⊂ Ω, j = 1, . . . , nu. In this thesis, the function q describes

the effect of the added substance on the concentration so that for j =

1, . . . , nu

q(~r, t) =







|Ω
(j)
inj |

−1u(j)(t), ~r ∈ Ω
(j)
inj

0, ~r /∈ Ω
(j)
inj

(3.7)

where |Ω
(j)
inj | denotes the volume (or surface area) of Ω

(j)
inj and u(j)(t) is the

flow rate of the jthinjector (mol s−1).

3.1.4 Navier-Stokes equations and Reynolds number

When modelling the evolution of the concentration with the CD equation

(3.1), a model for the velocity field ~v of the fluid is required. The motion

of the fluid in this thesis is described with the Navier-Stokes equations

under an incompressible flow assumption for Newtonian fluids. If the

viscosity µ and the density ρ of the fluid are constant, the nonstationary

Navier-Stokes equations can be written in the form [93]

ρ
∂~v

∂t
− µ∆~v+ ρ~v · ∇~v+∇p = ρ~f (3.8)

∇ ·~v = 0 (3.9)

where p : Ω × R+ → R, p = p(~r, t), is the pressure and ~f : Ω × R+ → R,
~f = ~f (~r, t), describes the external forces acting on the system such as

gravity.

In some industrial processes, the velocity field is nearly stationary

and can be approximated with a stationary velocity field. In such a case,

~v(~r, t) = ~v(~r) for all t ∈ R+. If for example, a homogeneous fluid is mov-

ing in a straight pipe under the influence of a constant pressure gradient,

and that the average flow rate is relatively low, the velocity field is the

solution of the stationary incompressible Navier-Stokes equations

−µ∆~v+ ρ~v · ∇~v+∇p = ρ~f (3.10)

∇ ·~v = 0 (3.11)

where p = p(~r) and ~f = ~f (~r).

Suitable boundary conditions for (nonstationary) pipe flow applica-
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tions are, for example,

~v(~r, t) = 0, ~r ∈ Λwall (3.12)

~v(~r, t) = ~vin(~r), ~r ∈ Λin (3.13)
(

µ(∇~v(~r, t) +∇~v(~r, t)T)− p(~r, t)I
)

~n = 0, ~r ∈ Λout (3.14)

where ~vin : Λin → R
n, ~vin = ~vin(~r), is the velocity on the boundary Λin

and I is an identity matrix. The non-slip boundary condition (3.12) is

postulated on the liquid-solid interfaces. The inflow boundary condition

(3.13) states that the velocity is known on the boundary Λin. The outflow

boundary condition (3.14) is used on the boundary Λout.

From the dimensionless form of the incompressible Navier-Stokes equa-

tions, one can obtain the dimensionless Reynolds number. The motion of

fluid is determined by two elementary properties that are viscosity and

inertia. The dimensionless Reynolds number is a measure of the relative

magnitude of inertial forces to viscous forces. The Reynolds number is

defined as [93]

Re =
vmeanL

ν
(3.15)

where vmean is the mean fluid velocity, ν is the kinematic fluid viscosity,

and L is the characteristic length of the flow region. For the pipe flow,

L is the pipe diameter if the pipe is circular. The Reynolds number can

be used to characterize flow regimes. Flows with low Reynolds numbers

tend to be laminar while flows with high Reynolds numbers are turbu-

lent. The magnitudes of ”low” and ”high” depend on the flow geometry.

Values reported for the critical point above which the flow is turbulent

vary widely, see [94] and references therein. In [94], it is stated that a

close estimate for the critical point is Re ≈ 2040.

3.1.5 Numerical approximation of the CD model

By the definition of Hadamard, a problem described by a PDE is said to

be well-posed if

(i) a solution exists,

(ii) the solution is unique

(iii) the solution depends continuously on the data, that is, on the initial

and boundary conditions.
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A solution that satisfies (i)-(iii) and is sufficiently smooth (k-times con-

tinuously differentiable) is referred to as the classical solution of a PDE.

The amount of smoothness required (the specification of k) depends on

the PDE to be solved. A solution that satisfies (i)-(iii) but does not nec-

essarily meet the smoothness requirements is called the weak solution of

a PDE. In this section, only the weak solution of the parabolic PDE (3.1)

with the initial and boundary conditions (3.2)–(3.5) is considered and a

finite-dimensional approximation of the weak solution is sought using

the Galerkin FEM. The existence, uniqueness, or regularity of the solution

is not considered. The FE approximation of the CD equation without the

additional source term was derived in [95]. A similar approach is adopted

in this thesis. For more details on the FEM in general, see [96], [97]. For

details on the existence and uniqueness analysis, and on the error analysis

of the FEM, see [98].

Firstly, the weak solution of the PDE (3.1) with the initial and bound-

ary conditions (3.2)–(3.5) is considered. Let ϑ ∈ H1(Ω) denote a so-called

test function where H1(Ω) = W1,2(Ω) is a Sobolev space of the first or-

der. The weak solution of the PDE (3.1) is the solution that satisfies the

weak (or variational) formulation of the original problem for all ϑ. The

weak form is obtained by multiplying the PDE by the test function ϑ and

integrating over the domain Ω. Thus, for all t

∫

Ω

∂c(~r, t)

∂t
ϑ(~r) d~r = −

∫

Ω
~v(~r) · ∇c(~r, t) ϑ(~r) d~r+

∫

Ω
κ∆c(~r, t) ϑ(~r) d~r

+
∫

Ω
q(~r, t) ϑ(~r) d~r. (3.16)

Applying the Green’s formula and the Neumann boundary condition (3.4)

to the second term on the right of (3.16) leads to

∫

Ω
κ∆c(~r, t) ϑ(~r) d~r = −

∫

Ω
κ∇c(~r, t) · ∇ϑ(~r) d~r+

∫

∂Ω
κ

∂c(~r, t)

∂~n
ϑ(~r) dS

= −
∫

Ω
κ∇c(~r, t) · ∇ϑ(~r) d~r

+
∫

Λin

κ
∂c(~r, t)

∂~n
ϑ(~r) dS. (3.17)

Substituting (3.17) into the weak form (3.16) yields

∫

Ω

∂c(~r, t)

∂t
ϑ(~r) d~r+

∫

Ω
~v(~r) · ∇c(~r, t) ϑ(~r) d~r+

∫

Ω
κ∇c(~r, t) · ∇ϑ(~r) d~r

−
∫

Ω
q(~r, t)ϑ(~r) d~r−

∫

Λin

κ
∂c(~r, t)

∂~n
ϑ(~r) dS = 0. (3.18)
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Now, c is the weak solution of the CD model (3.1)–(3.5) if and only if (3.18)

holds for all test functions ϑ. Thus, (3.18) is the starting point for the FE

approximation.

The basic idea of the Galerkin FEM is to approximate the weak solu-

tion of the CD model (3.1)-(3.5) with a finite-dimensional solution. The

approximate solution ch is defined so that

c(~r, t) ≈ ch(~r, t) =
nϕ

∑
j=1

cj(t)ϕj(~r) (3.19)

where ϕj, j = 1, . . . , nϕ, are the basis functions of a finite-dimensional sub-

space Hh of H1(Ω), nϕ is the number of the basis functions, and cj are to

be determined. An important question is how to choose the subspace Hh

and the basis functions ϕj. Typically, H
h is chosen as a subspace of com-

pactly supported piecewise polynomial functions of order d where d ∈ N.

This choice makes the FEM computationally feasible in comparison to

many other techniques when seeking the approximation ch. Furthermore,

the order d is kept low, that is, 1st or 2nd order polynomial functions are

used provided that adequate precision is achieved. In this thesis, Hh is

a subspace of piecewise linear functions and ϕj are the (piecewise linear)

basis functions of Hh.

To construct the basis functions, the domain Ω is divided into small

subdomains that are referred to as elements in this thesis. The obtained

FE mesh is a collection of vertices (nodes), edges between the vertices,

and faces. In two dimensions, the elements can be, for example, triangles

or convex quadrilaterals and in three dimensions, tetrahedra, cuboids or

wedges. In this thesis, triangular elements are used in two dimensions

and tetrahedral elements in three dimensions. It is defined that the basis

function ϕj(~r) = 1 at the jth node in the FE mesh and ϕj(~r) = 0 at other

nodes. As a consequence, the total number of nodes in the FE mesh equals

the number nϕ of the basis functions. Furthermore, cj(t), j = 1, . . . , nϕ, in

(3.19) is the approximated value of concentration at the jth node at time t.

Also, a finite-dimensional approximation is needed for the source

term q. The finite-dimensional approximation qh for the source term q

is

q(~r, t) ≈ qh(~r, t) =
nϕ

∑
j=1

qj(t)ϕj(~r) (3.20)

where qj, j = 1, . . . , nϕ, are defined as follows. In this thesis, if a pointwise

injector k, k = 1, . . . , nu, is located at the jth node, the injected concentrate
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is distributed to a subdomain Ω
(k)
inj,h formed by the elements connected

to that node where Ω
(k)
inj,h is an approximation for the subdomain Ω

(k)
inj in

(3.7). The concentration due to the injected concentrate at the jth node is

qj(t) =

{

|Ω
(k)
inj,h|

−1u(k)(t), the injector k is in the jth node

0, the injector k is not in the jth node
(3.21)

where u(k)(t) denotes the flow rate of kth injector at time t.

The next task in the FEM is to determine cj, j = 1, . . . , nϕ. In the fol-

lowing, c(t) =
[

c1(t), . . . , cnϕ(t)
]T

∈ R
nϕ and q(t) =

[

q1(t), . . . , qnϕ(t)
]T

∈

R
nϕ denote the vectors of cj and qj, respectively. Furthermore, the vector

c′(t) =
[

c′1(t), . . . , c
′
nϕ
(t)
]T

∈ R
nϕ consists of the time derivatives of cj. In

the Galerkin FEM, the basis functions are used as test functions. Substi-

tuting the approximations (3.19) and (3.20) into the weak form (3.18) and

reformulating the obtained equations into a matrix form yields

M̄
(

c′(t)− q(t)
)

+ K̄c(t) = 0 (3.22)

where the matrices M̄ ∈ R
nϕ×nϕ and K̄ ∈ R

nϕ×nϕ are defined as

M̄(i, j) =
∫

Ω
ϕj(~r)ϕi(~r) d~r (3.23)

K̄(i, j) =
∫

Ω
~v(~r) · ∇ϕj(~r) ϕi(~r) d~r+

∫

Ω
κ∇ϕj(~r) · ∇ϕi(~r) d~r

−
∫

Λin

κ
∂ϕj(~r)

∂~n
ϕi(~r) dS. (3.24)

The nonhomogeneous Dirichlet boundary condition (3.3) specifies the

concentration on the input boundary Λin, and it is implemented in the FE

approximation. The obtained system of ordinary differential equations

(ODEs) is

c′o(t) = −M−1Kco(t) + qo(t)− M−1M̃c′in(t)− M−1K̃cin(t) (3.25)

where cin denotes the concentration on the input boundary nodes whereas

co refers to the concentration corresponding to the nodes that are not on

the input boundary Λin. Similarly, qo denotes the effect of the control

action on non-input nodes. The definition of the matrices in (3.25) and

other details on the FE approximation are shown in Appendix A.

The system of ODEs (3.25) is solved numerically with respect to time.

As (3.25) is known to be stiff, the multistep backward Euler method is
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employed. The FE approximation of the CD model is of the form

co,t+1 = Ãco,t + Z̃cin,t + T̃cin,t+1 +
1

nτ
G̃Θut (3.26)

where t ∈ N0 denotes now the discrete time index and co,0 is obtained

from the initial condition (3.2). The vectors cin,t and cin,t+1 are specified

by the Dirichlet boundary condition (3.3). Furthermore, the control input

vector ut can be computed when co,t is known. Thus, when computing

co,t+1, the vector ut is known. The matrices in (3.26) are defined in Ap-

pendix A.

As the input concentration in (3.5) is partly unknown, a stochastic

term describing the uncertainty in cin,t and cin,t+1 has to be incorpo-

rated into the model. The details are shown in Appendix A. The finite-

dimensional, discrete-time evolution model for the concentration in the

final form is

ct+1 = Act + B2ut + st+1 + w1,t (3.27)

where ct ∈ R
nϕ is the discretised concentration at time t. Assuming that

the velocity field ~v and the diffusion coefficient κ do not vary over time,

the state transition matrix A ∈ R
nϕ×nϕ is stationary. The vector ut ∈ R

nu

denotes the flow rates of injectors (mol s−1) over the time interval [t, t+ 1],

and the stationary control input matrix B2 ∈ R
nϕ×nu determines how the

control affects the state. The vector st+1 ∈ R
nϕ is due to (formal) integra-

tion of the deterministic input c̄in in (3.5) over the time interval [t, t+ 1].

The zero-mean Gaussian state noise w1,t ∈ R
nϕ consists of two parts. The

first part is due to the stochastic input term η of the unknown boundary

data in equation (3.5). The second part is white noise that approximates

the inaccuracies in the CD model. The derivation of the covariance matrix

Γw1,t ∈ R
nϕ×nϕ of the state noise w1,t is shown in detail in [95]. As the

evolution errors are correlated, Γw1,t is not a diagonal matrix. Further-

more, since the input concentration cin is the main source of uncertainty

in the evolution model, the variance of the evolution errors is highest on

the input boundary Λin.

The finite-dimensional approximation of the output concentration (3.6)

is

yt = Cct (3.28)

where yt ∈ R
ny and the output matrix C ∈ R

ny×nϕ can be considered as a

restriction matrix from Ω → Λout. In other words, yt is the concentration

at the nodes on the boundary Λout.

Dissertations in Forestry and Natural Sciences No 128 47



Anna Kaasinen: Optimal Control in Process Tomography

3.2 EIT OBSERVATION MODEL

Electrical impedance tomography is a suitable modality for monitoring

targets that possess spatial and/or temporal variations in conductivity.

The basic idea in EIT is to inject electric currents into the object through

electrodes that are typically attached to the object boundary and to mea-

sure the potential differences between chosen pairs of electrodes. The ob-

jective is then to reconstruct the three-dimensional electrical conductivity

distribution in the object on the basis of the measured voltages.

The reconstruction problem of EIT belongs to a class of ill-posed in-

verse problems (see the definition of a well-posed problem in Section

3.1.5). The forward problem of EIT is to find a forward model for the

computation of the electric potential and the voltages given the contact

impedances, the injected currents and the conductivity distribution. The

inverse problem of EIT is to reconstruct the conductivity distribution on

the basis of a set of voltage measurements, the injected currents and the

forward model.

In 1980, A.P. Calderon formulated mathematically the problem of de-

termining the conductivity distribution in a domain on the basis of the

boundary measurements [99]. The problem corresponds to the EIT re-

construction problem with certain assumptions. The problem has been

widely studied after that. In [100], the uniqueness of the solution to the

Calderon’s problem was proved in R
2 for L∞ conductivity.

In Section 3.2.1, the complete electrode model (CEM) that is used as a

forward model in EIT is reviewed and in Section 3.2.2, the FE approxima-

tion of the CEM is discussed. In Section 3.2.3, the obtained EIT observa-

tion equation is linearised for computational reasons and the nonstation-

ary observation model is formulated in Section 3.2.4. Furthermore, data

acquisition in EIT is discussed in Section 3.2.5 and a short introduction to

the EIT inverse problem is given in Section 3.2.6.

3.2.1 Complete electrode model

Let Ω ⊂ R
n, n = 2, 3, be a bounded domain with ne contact electrodes eℓ

attached to its boundary ∂Ω so that eℓ ⊂ ∂Ω, ℓ = 1, . . . , ne. The electrodes

are assumed to be strictly disjoint, that is eℓ ∩ ek = ∅ for ℓ 6= k. The electric

current injected into the object Ω through the electrode ℓ is denoted as

Iℓ ∈ R. Furthermore, Uℓ ∈ R denotes the potential on the ℓth electrode

and Vi = Uℓ −Uk, ℓ 6= k, the potential differences between chosen pairs

of electrodes.
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In this thesis, the conductivity in the domain of interest is modelled

with a real-valued function σ : Ω → R+ which corresponds to a situation

of a domain with an isotropic conductivity. The electromagnetic condi-

tions within the domain Ω are described with the elliptic PDE

∇ · (σ(~r)∇φ(~r)) = 0, ~r ∈ Ω (3.29)

where φ : Ω → R is the electric potential in Ω. The PDE (3.29) can

be derived from the Maxwell’s equations with certain assumptions [101],

[102].

For the EIT forward model various sets of boundary conditions re-

ferred to as electrode models have been proposed. The most accurate

known model so far is the CEM that was first described in [103]. See

[103], [101] for more details on other electrode models. The boundary

conditions for the CEM are

φ(~r) + z̄ℓσ(~r)
∂φ(~r)

∂~n
= Uℓ, ~r ∈ eℓ, ℓ = 1, 2, . . . , ne (3.30)

∫

eℓ

σ(~r)
∂φ(~r)

∂~n
dS = Iℓ, ~r ∈ eℓ, ℓ = 1, 2, . . . , ne (3.31)

σ(~r)
∂φ(~r)

∂~n
= 0, ~r ∈ ∂Ω\ ∪ne

ℓ=1 eℓ (3.32)

where z̄ℓ ∈ R denotes the contact impedance between the ℓth electrode

and contact material. In this thesis, the condition (3.30) takes into account

the shunting effect of the electrodes and the potential drop caused by the

contact impedance layer at the saline-electrode interface. The condition

(3.31) specifies that the magnitude of the total charge flux through the

electrode ℓ equals the injected current. Furthermore, the condition (3.32)

states that through the boundary between the electrodes the current den-

sity is zero.

To ensure the existence and uniqueness of the solution of the CEM

(3.29)-(3.32), additional conditions for the injected currents and electrode

potentials are needed, see [101] for a proof. The vector of injected currents

I = [I1, . . . , Ine ]
T ∈ R

ne has to satisfy the charge conservation law

∑
ne
ℓ=1 Iℓ = 0. (3.33)

The vector I is referred to as a current pattern. Furthermore, the reference

level of the potential has to be fixed. The vector consisting the electrode

potentials is denoted as U = [U1, . . . ,Une ]
T ∈ R

ne . In this thesis, it is

chosen that

∑
ne
ℓ=1Uℓ = 0. (3.34)
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The condition (3.34) is one of the possible conditions for determining the

reference point.

As the reconstruction problem in EIT is ill-posed, it has been often

stated that it is crucial that the forward model is adequately accurate.

Recent results have, however, indicated that as long as the possible in-

accuracies in the observation model are modelled properly, one obtains

feasible reconstructions.

3.2.2 Numerical approximation of the CEM

The solution of the CEM (3.29)-(3.34) consists of two unknowns to be

determined that are the internal potential φ and the electrode potentials

U. In this thesis, the FE approximation of the CEM is used. The FE

approximation of the CEM has previously been considered in [104], [102],

[105], [106], [107]. Although the formulation of the FE approximation of

the CEM considered in this thesis follows the one derived in [107], a brief

review of the formulation is given.

The weak solution of the CEM (3.29)-(3.34) is considered and de-

noted by (φ,U) ∈ H where the solution space H = H1(Ω) × R
ne . Let

υ ∈ H1(Ω) denote the test function for the electric potential φ and Υ =

[Υ1, . . . ,Υne ]
T ∈ R

ne the vector for the potentials on the electrodes U. The

weak form of the CEM derived in [101], [107] is

B ((φ,U), (υ,Υ)) =
ne

∑
ℓ=1

IℓΥℓ ∀(υ,Υ) ∈ H (3.35)

where B : H × H → R is a bilinear form defined as

B ((φ,U), (υ,Υ)) =
∫

Ω
σ(~r)∇φ(~r) · ∇v(~r)d~r

+
ne

∑
ℓ=1

1

z̄ℓ

∫

eℓ

(φ(~r)−Uℓ)(υ(~r)− Υℓ)dS. (3.36)

Now, (φ,U) ∈ H is the weak solution of the CEM if and only if (3.35)

holds for all (υ,Υ) ∈ H.

The weak solution (φ,U) is approximated with a finite-dimensional

solution (φh,U) ∈ Hh where Hh = H1,h × H2,h so that H1,h is a finite-

dimensional subspace of H1(Ω) and H2,h is a subspace of R
nℓ with di-

mension nℓ − 1. The finite-dimensional approximation for φ is

φ(~r) ≈ φh(~r) =
nϕ̃

∑
i=1

ai ϕ̃i(~r) (3.37)
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where ai, i = 1, . . . , nϕ̃, are unknown coefficients and the functions ϕ̃i form

the basis of H1,h. In this thesis, the basis functions ϕ̃i are chosen as piece-

wise 2nd order polynomial functions. The vector of electrode potentials is

written as

U =
ne−1

∑
i=1

αi ϕ̄i (3.38)

where αi, i = 1, . . . , ne − 1, are unknown coefficients and the vectors ϕ̄i ∈
R

ne . In this thesis, the vectors ϕ̄i are chosen so that ϕ̄1 = [1,−1, 0, . . . , 0]T,

ϕ̄2 = [1, 0,−1, 0, . . . , 0]T , . . . , ϕ̄ne−1 = [1, 0, . . . , 0,−1]T. With such a choice

of ϕ̄i, the condition (3.34) is satisfied.

The Galerkin FEM is adopted. Let 0̂ : Ω → R be a function so that

0̂(~r) = 0. The test functions (υ,Υ) equal

{(ϕ̃1, 0̄), . . . , (ϕ̃nϕ̃ , 0̄), (0̂, ϕ̄1), . . . , (0̂, ϕ̄ne−1)} where 0̄ denotes a zero vec-

tor of size ne. Substituting (3.37) and (3.38) into the weak formulation

(3.35) leads to a matrix equation

Aθ = Ĩ (3.39)

where θ = [a1, . . . anϕ̃ , α1, . . . , αne−1]
T ∈ R

nϕ̃+(ne−1) is the vector of un-

knowns. Furthermore, the vector Ĩ =
[

0̄T ÎT
]T

∈ R
nϕ̃+(ne−1) where 0̄ is a

zero vector of size nϕ̃ and

Î =







∑
ne
ℓ=1 Iℓ(ϕ̄1)ℓ

...

∑
ne
ℓ=1 Iℓ(ϕ̄nℓ−1)ℓ






= GTI . (3.40)

The notation (ϕ̄i)ℓ refers to the ℓth entry of the vector ϕ̄i. With the chosen

vectors ϕ̄i, the sparse matrix G ∈ R
ne×(ne−1) is

G =





















1 1 · · · 1 1

−1 0 · · · 0 0

0 −1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −1 0

0 0 · · · 0 −1





















. (3.41)

In (3.39), the sparse block matrix A ∈ R
(nϕ̃+ne−1)×(nϕ̃+ne−1) is

A(σ, z̄) =

[

C(σ, z̄) D(z̄)

(D(z̄))T E (z̄)

]

(3.42)
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where the vector z̄ ∈ R
ne is z̄ = [z̄1, . . . , z̄ne ]

T and

C(i, j) = B((ϕ̃i, 0̄), (ϕ̃j, 0̄)) =
∫

Ω
σ∇ϕ̃i · ∇ϕ̃jd~r+

ne

∑
ℓ=1

1

z̄ℓ

∫

eℓ

ϕ̃i ϕ̃jdS,

i, j = 1, . . . , nϕ̃, (3.43)

D(i, j) = B((ϕ̃i, 0̄), (0̂, ϕ̄j)) = −

(

1

z̄1

∫

e1
ϕ̃idS−

1

z̄j+1

∫

e j+1

ϕ̃idS

)

,

i = 1, . . . nϕ̃, j = 1, . . . , ne − 1, (3.44)

E (i, j) = B((0̂, ϕ̄i), (0̂, ϕ̄j)) =
ne

∑
ℓ=1

1

z̄ℓ

∫

eℓ

(ϕ̄i)ℓ(ϕ̄j)ℓdS

=







|e1|
z̄1

, i 6= j
|e1|
z̄1

+
|e j+1|
z̄j+1

, i = j
, i, j = 1, . . . , ne − 1 (3.45)

where |ej| is the measure of the jth electrode and C(i, j), D(i, j), and E (i, j)
denote the entries of the corresponding matrices. For details on the com-

putation of the integrals in (3.43)-(3.45), see [108], [107].

For the computation of the integrals in (3.43)-(3.45), a finite-dimensional

approximation for the conductivity is needed. Typically, when deriving

the FE approximation for the CEM, piecewise constant functions are used

in the finite-dimensional approximation of the conductivity, see for ex-

ample [108], [107]. In this thesis, however, piecewise linear functions are

used as in [109], [92]. This choice is adopted since it allows for a straight-

forward mapping between the state evolution model and the observation

model if the FE bases for conductivity and concentration are equal. The

finite-dimensional approximation for the conductivity is

σ(~r) ≈ σh(~r) =
nϕ

∑
i=1

σiϕi(~r) (3.46)

where the functions ϕi form the basis for Hh that is a finite-dimensional

subspace of H1(Ω), nϕ is the number of basis functions ϕi, and σi is the

approximate value of conductivity in the ith node. From this on, σ =

[σ1, . . . , σnϕ ]
T ∈ R

nϕ denotes the finite-dimensional representation of the

conductivity.

The approximate solution of the forward problem is obtained by solv-

ing (3.39) as

θ = A−1 Ĩ. (3.47)
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The first nϕ̃ entries of the vector θ yield the coefficients ai and as a result,

the values of the internal potential φh in the FE nodes can be computed.

The last ne − 1 entries of the vector θ are the values of the coefficients

αi. The vector of potentials on the electrodes U is obtained according to

(3.38).

In EIT, the potential differences between chosen electrodes are mea-

sured. In this thesis, the vector V = [V1, . . . ,VnV ]
T ∈ R

nV denotes the ac-

tual EIT observations where nV is the number of measurements conducted

corresponding to one current injection and the matrix M ∈ R
nV×ne is a

measurement matrix specifying the electrodes between which the volt-

ages are measured. The matrix M is also referred to as the measurement

pattern. Thus, the voltage vector

V = MU. (3.48)

When the matrix F ∈ R
(ne−1)×(nϕ̃+ne−1) is defined so that F = [O I]

where O ∈ R
(ne−1)×nϕ̃ is a zero matrix and I ∈ R

(ne−1)×(ne−1) is an iden-

tity matrix, it can be shown that the voltage vector is of the form

V = MGFA−1F TGTI = R(σ, z̄)I . (3.49)

In (3.49), the matrix R ∈ R
nV×ne is referred to as the resistance matrix

and is defined as R = MGFA−1F TGT . Furthermore in (3.49), the vector

I is the current pattern, and, therefore, it can be concluded that the de-

pendence between the voltages V and the injected currents I is linear. By

contrast, the dependence between the voltages V and the conductivity σ

is nonlinear. In this thesis, an approximation for the contact impedances

is used. Thus, the vector z̄ in (3.49) is known. Consequently, the resis-

tance matrix depends only on the conductivity, that is, R(σ, z̄) = R(σ).

The contact impedances can also be estimated simultaneously with the

conductivity as shown in [110], [111], [112], [113].

When the nonlinear function R̄ : R
nϕ → R

nV is defined so that R̄(σ) =

R (σ) I , the finite-dimensional observation model of EIT is

V = R (σ) I + v = R̄(σ) + v, (3.50)

where the vector v ∈ R
nV denotes the observation noise. In this thesis,

the observation noise is modelled as Gaussian noise so that v ∼ N(0, Γv)

where Γv ∈ R
nV×nV is the covariance matrix of the observation noise.

The covariance matrix Γv can be determined, for example, by analysing

the measurement system properties with a set of repeated measurements

[114], [110].
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The unknown quantity in this thesis is the concentration of a chemical

substance in a pipe segment. As the EIT forward model is stated in terms

of the conductivity, a mapping from the concentration to the conductivity

is required. In this thesis, a linear model is used although the dependence

between the conductivity and the concentration is often nonlinear. If the

FE bases for approximating the conductivity and the concentration are

equal, the model describing the dependence between the conductivity and

the concentration in that case is σ̃ : R
nϕ → R

nϕ , σ = σ̃(c) = kc where

k ∈ R+.

The EIT observation model in terms of the concentration correspond-

ing to (3.50) is

V = R̄(σ̃(c)) + v = R̃(c) + v (3.51)

where R̃ : R
nϕ → R

nV is the nonlinear composite function R̃(c) = (R̄ ◦
σ̃)(c).

3.2.3 Linearisation of the EIT observation model

As the EIT observation model (3.51) is nonlinear, nonlinear state estima-

tion methods are needed. A simple approach to handle the nonlinearity is

to approximate the nonlinear observation model with a linearised model.

The mapping R̃ is linearised around a linearisation point clp ∈ R
nϕ . In

this thesis, clp is chosen to be a vector clp = [ca, ca, . . . , ca]T representing

a homogeneous concentration distribution in the pipe where ca ∈ R+ is

the approximate spatial and temporal average concentration. The average

concentration is approximated on the basis of prior knowledge. Thus, the

linearised observation model is

V ≈ R̃(clp) + J R̃(clp)
(

c− clp

)

+ v (3.52)

where J R̃ ∈ R
nV×nϕ is the Jacobian matrix of the mapping R̃. The differ-

entiability of the mapping R̃ is not considered in this thesis. The Jacobian

matrix J R̃ in (3.52) is obtained applying the chain rule of differentiation

so that

J R̃(c) = J R̄(σ̃(c))J σ̃(c) (3.53)

where J R̄ ∈ R
nV×nϕ and J σ̃ ∈ R

nϕ×nϕ denote the Jacobians of the func-

tions R̄ and σ̃, respectively.

The Jacobian matrix of the mapping R̄with respect to the conductivity

J R̄(σ) =

[

∂R̄(σ)

∂σ1
, . . . ,

∂R̄(σ)

∂σnϕ

]

(3.54)
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is computed as in [115]. See also [102]. From (3.49) and (3.50), it can be

concluded that

R̄(σ) = MGFA−1F TGTI (3.55)

where A = A(σ). The partial derivatives of R̄ with respect to the conduc-

tivity σk, k = 1, . . . , nϕ, are

∂R̄(σ)

∂σk
=

∂

∂σk
(MGFA−1F TGTI)

= MGF
∂A−1(σ)

∂σk
F TGTI

= −MGFA−1(σ)
∂A(σ)

∂σk
A−1(σ)F TGTI (3.56)

since only the matrix A in (3.55) depends on the conductivity, and it can

be shown that
∂A−1(σ)

∂σk
= −A−1(σ) ∂A(σ)

∂σk
A−1(σ). In the block matrix A,

only the block C depends on the conductivity. Consequently,

∂A(σ)

∂σk
=

[

∂C(σ)
∂σk

0

0 0

]

(3.57)

where

∂C(σ)

∂σk
=

∂

∂σk

(

∫

Ω
σ(~r)∇ϕi(~r) · ∇ϕj(~r)d~r

)

=
∂

∂σk

(

∫

Ω

nϕ

∑
i=1

σjϕj(~r)∇ϕi(~r) · ∇ϕj(~r)d~r

)

=
∫

Ω
ϕk(~r)∇ϕi(~r) · ∇ϕj(~r)d~r. (3.58)

It should be noted that (3.58) is valid only when the piecewise linear basis

functions are used in the approximation of the conductivity σ. The Jaco-

bian matrix J R̄ could be computed using also the adjoint differentiation

considered in [116].

The Jacobian matrix J σ̃ is a diagonal matrix

J σ̃(c) = diag

(

∂σ̃1(c)

∂c1
, . . . ,

∂σ̃nϕ(c)

∂cnϕ

)

. (3.59)

Often, the FE bases for the conductivity and the concentration are

different due to computational reasons. As an example, when approxi-

mating the CEM with the FEM, the FE mesh has to be quite dense near
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the electrodes in order to avoid large approximation errors. Such a mesh

structure is unnecessary when approximating the CD model, and mak-

ing the FE mesh denser would only increase the computational load.

In such a case, interpolation between the two different FE meshes is re-

quired. A simple method to tackle the problem is the linear interpolation.

Let σCEM ∈ R
nCEM and σCD ∈ R

nCD denote the conductivity approxi-

mated in the FE mesh for the CEM and the CD model, respectively. Now

σCEM = J̄σCD = kJ̄cCD where J̄ ∈ R
nCEM×nCD is a linear interpolation ma-

trix and cCD ∈ R
nCD is the finite-dimensional approximation of the con-

centration in the FE mesh for the CD model. Furthermore, the Jacobian

matrix in this case is

J σ̃(c) = J̄diag

(

∂σ̃1(c)

∂c1
, . . . ,

∂σ̃nCD(c)

∂cnCD

)

. (3.60)

3.2.4 Nonstationary EIT observation model

The concentration of a chemical substance has both spatial and tempo-

ral variations. Thus, a nonstationary observation model corresponding

to (3.51) is needed. Let ct ∈ R
nϕ denote the finite-dimensional approx-

imation of the concentration at the measurement time t. Furthermore,

the vector It ∈ R
ne denotes the current pattern applied at time t and

Vt ∈ R
nV the voltage observations corresponding to that current pattern.

The nonstationary EIT observation model corresponding to (3.51) is

Vt = R̃t(ct) + vt (3.61)

where the mapping R̃t : R
nϕ → R

nV corresponds to the current pattern It
and vt ∈ R

nV denotes the observation noise at time t.

The globally linearised nonstationary EIT observation model corre-

sponding to (3.52) is

Vt ≈ R̃t(clp) + J R̃t(clp)
(

ct − clp

)

+ vt (3.62)

where J R̃t ∈ R
nV×nϕ is the Jacobian matrix of the mapping R̃t. The

linearised nonstationary observation model (3.62) can be rearranged to

V1,t = J R̃t(clp)ct + vt (3.63)

where V1,t = Vt − R̃t(clp)−J R̃t(clp)clp.
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3.2.5 Data acquisition in EIT

When designing the EIT measurement system, it is essential that the volt-

age measurements provide maximal information on the unknown quan-

tity. To achieve that goal in EIT, the issues to be considered are the current

injection and the voltage measurement strategies. These strategies are

mainly developed for the two-dimensional EIT. In this thesis, the current

injection and voltage measurement strategies are discussed only briefly.

Furthermore, the EIT hardware is not considered. For information on EIT

hardware, see [117], [118], [119], [120], [121], [1], [122], [123], [124], [125],

[126].

The current injection strategies can be divided into two categories that

are the pair-drive methods and the multiple-drive methods. In the pair-drive

methods, the current is applied between two electrodes at a time. Thus,

only one current generator is needed. The two widely used pair-drive

methods in EIT are the adjacent drive method and the opposite (polar) drive

method. In the adjacent drive method, the current is injected sequentially

through adjacent electrode pairs [127], [128]. It has been shown that the

current density produced by the adjacent method is non-uniform leading

to good sensitivity in the regions near the drive electrodes and poor sensi-

tivity in the central region of the domain [129]. In opposite drive method,

the current is injected sequentially through diametrically opposite elec-

trode pairs [128], [130]. The method produces a more uniform current

density than the adjacent method. Especially, in the central regions of the

domain the sensitivity is better [129].

The multiple-drive methods can produce the most uniform current

density into the domain [131], [132]. In the multiple-drive methods, cur-

rents are applied to all electrodes simultaneously by using multiple cur-

rent generators. The challenge in such methods is the selection of the

patterns of applied current to obtain the best overall sensitivity. The opti-

mal current pattern is known to depend on the structure of the unknown

quantity distribution. There are also different definitions for optimality

in the case of optimal current patterns and the choice of the definition of

optimality has an effect on the optimal current pattern.

The theory of optimal current patterns in EIT has been widely investi-

gated. In [131], [133], the concept of distinguishability was discussed. To

be more specific, the current pattern that best distinguishes one conductiv-

ity distribution from another was considered. The so-called trigonometric

current patterns were introduced in the publications. The trigonometric

current patterns are the optimal current patterns when the target distri-
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bution is rotationally invariant.

Practical EIT systems have constraints that limit the total amount of

current that can be applied and the maximum current on individual elec-

trodes. In [133], [130], [134], [135], it was shown that the constraints have

an impact on the optimal current patterns. In [136], [137], [138], an adap-

tive process for producing the optimal current pattern on the basis of EIT

measurements was described. It should be noted that this experimental

process does not require prior knowledge of the target distribution inside

the object. In [139], iterative and direct methods to determine optimal cur-

rent patterns on the basis of physical measurements were considered. The

problem of determining the optimal current patterns in statistical inver-

sion framework when imaging stationary targets was considered in [140].

In [141], the method was extended to nonstationary targets. It was shown

that the use of only a small number of current injection patterns repeti-

tively instead of several different patterns yielded accurate estimates since

the target itself was moving.

Only a few studies on current patterns in three-dimensional EIT have

been published. In [142], three current injection strategies (and voltage

measurement strategies) were studied with simulations when imaging

stationary targets. In [143], a modified opposite current injection proce-

dure was developed for reducing the measurement time when monitoring

a multiphase flow in real time. The procedure was evaluated with labora-

tory experiments.

In EIT, the voltages can be measured in different ways. One possibility

is to fix a reference electrode and to measure the voltages with respect to

that electrode. Another possibility is to measure the voltages between,

for example, adjacent or opposite electrodes without any fixed reference

electrode.

3.2.6 Inverse problem in EIT

The reconstruction problem in EIT is a nonlinear and ill-posed inverse

problem. The methods for solving the EIT reconstruction problem can be

divided into two categories depending on whether the unknown quantity

is stationary or nonstationary.

In stationary EIT, it is assumed that the unknown quantity does not

change during a set of current injections. Consequently, several measure-

ment sets are available for reconstructing the distribution of the unknown

quantity. The stationary inversion can be considered from the determin-

istic viewpoint or the statistical viewpoint. The main difference between
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statistical inversion and deterministic inversion is in how the quantities

are defined. In statistical inversion, the quantities in the model are con-

sidered as random variables. In deterministic inversion, the quantity of

interest is considered unknown but deterministic. For more information

on stationary inverse problems, see [5].

If the unknown quantity has (rapid) temporal variations, the nonsta-

tionary inversion methods produce better reconstructions than the sta-

tionary inversion methods. Nonstationary quantities are typical in pro-

cess control applications in which, for example, monitoring of fast mov-

ing fluids is needed. The nonstationary inverse problem can be stated

as a problem to obtain information on the spatially and temporally vary-

ing unknown quantity on the basis of observations given the density of

the initial state. This leads to the concept of a state estimation problem

specified in Section 2.2.3. When solving nonstationary inverse problems,

the Bayesian filtering methods are used. It should be noted that even if

the temporal variations of the unknown quantity are slow, incorporating

an evolution model into the inversion algorithm may enhance the results.

For more information on nonstationary inverse problems, see [5].

STATIONARY INVERSE PROBLEMS

The firstly reported reconstruction methods in EIT were the backprojec-

tion method and the sensitivity coefficient method that are often referred

to as qualitative inversion methods. These methods have been and still

are widely-used although they produce biased reconstructions. On the

other hand, these methods are fast and do not require accurate process

modelling.

The backprojection algorithm was introduced in [144] in the context

of EIT. The method was also discussed in [145]. An iterative extension

based on the conjugate residual method to the algorithm was proposed

in [146]. The filtered backprojection algorithm was used in [129]. The

sensitivity coefficient method was discussed in [147]. In [148], the sensi-

tivity weighted back-projection algorithm was introduced. In [142], the

sensitivity method was used in three-dimensional EIT.

In addition to the qualitative inversion methods, also other approaches

to solve the stationary inverse problem in EIT have been proposed. Below,

the deterministic inversion in EIT is considered. The EIT inverse problem

is to determine the concentration c (or the conductivity σ) on the basis

of the measurements V and the forward model R̃. If one formulates the

problem as a least squares problem, the aim is to find c that minimizes
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the functional

‖V − R̃(c)‖22. (3.64)

As the EIT inverse problem is ill-posed, minimizing the functional (3.64)

as such leads to a nonunique and highly unstable solution that is, conse-

quently, intolerant to even small measurement noise and modelling errors.

One approach to handle the ill-posedness of the problem is to use

regularization. The basic idea of a regularization method is not to solve

the original minimization problem but to seek an approximate problem

that has a stable solution and to solve that problem. For example in

the Levenberg-Marquardt method and in the Tikhonov regularization that

have been applied in EIT, such a problem is obtained by adding a penalty

term into the functional to be minimized. This penalty term is typi-

cally chosen ad hoc in deterministic inversion. In addition to the stan-

dard Levenberg-Marquardt and Tikhonov regularization methods, vari-

ous modifications of them have been proposed in the case of EIT, see [149]

as an example. Furthermore, other regularization methods are, for ex-

ample, regularization by singular value truncation and regularization by

truncated iterative methods (e.g. the Landweber-Fridman iteration, the

Kaczmarz iteration, and the Krylov subspace method) [5].

The Levenberg-Marquardt method was first applied to EIT in [150].

In [151], the method proposed in [150] was shown to be inapplicable in

a real measurement situation. In [152], the Levenberg-Marquardt was ap-

plied to stabilize the image reconstruction process in the presence of mod-

elling errors and measurement noise. An experimental evaluation of the

methods proposed in [152] was presented in [153]. A convergence anal-

ysis of the Levenberg-Marquardt method was shown in [154]. In [155], a

combination of the steepest descent and the Levenberg-Marquardt meth-

ods with additional anatomical information was introduced.

One of the most common regularization methods in EIT is the general-

ized Tikhonov regularization [156]. The Tikhonov regularization was used

in EIT, for example, in [151], [157], [105], [106], [158]. In the generalized

Tikhonov regularization, the problem of minimizing the functional (3.64)

is replaced with a problem of minimizing a functional with an additional

penalty term

‖V − R̃(c)‖22 + β2
tr‖Ltr(c− cpr)‖

2
2 (3.65)

where βtr > 0 is the regularization parameter (constant), Ltr ∈ R
nL×nϕ is

the regularization matrix, nL is the number of rows in Ltr, and cpr ∈ R
nϕ is
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the initial guess for the concentration. With a proper choice of the penalty

term, the minimization problem has a stable solution. The existence and

uniqueness of the solution is not discussed in this thesis. Minimizing the

functional (3.65) in EIT is a nonlinear minimization problem that can be

solved with iterative methods such as the Newton-Raphson method and

the Gauss-Newton method. In [107], several iterative methods for solving

the EIT inverse problem were discussed.

In deterministic inversion, the regularization matrix Ltr, the initial

guess for the unknown cpr, and the regularization parameter βtr are typ-

ically chosen ad hoc by the designer. A simple choice is to set Ltr = I

where I is an identity matrix [157]. If the concentration is assumed to be

smooth, a difference-type matrix can be used [158]. In [105], a regulariza-

tion matrix that takes into account the prior assumptions of the target was

constructed. The choice of the regularization parameter βtr depends on

the measurement noise level. Several methods for choosing the regular-

ization parameter have been proposed such as the Morozov discrepancy

principle, the L-curve method and the generalized cross validation.

Below, the statistical inversion in EIT is considered. In the statisti-

cal inversion theory, the inverse problem is considered from the Bayesian

point of view. The basic idea in statistical inversion is to view all quan-

tities included in the models as random variables. The solution of the

inverse problem is a (posterior) probability density of the unknown quan-

tity instead of a single estimate produced by the classical deterministic

inversion methods. As the solution is a probability density, point and in-

terval estimates can be computed, and at the same time the reliability of

the obtained estimates can be evaluated. In this thesis, the principles of

statistical inversion theory are reviewed only briefly. The review is mainly

based on [5]. For more information about the statistical inversion theory

in general, see [5], [4]. The statistical inversion methods in EIT were con-

sidered in [109], [116], [159], [160], [114], [161].

For solving an inverse problem using the statistical inversion approach,

one needs to formulate the prior and likelihood densities and to derive the

posterior density. The prior density is formulated for the unknown quan-

tity that in this thesis is the concentration, and it is denoted as πpr(c).

Constructing the prior density can be a complicated task when solving an

inverse problem. The qualitative information about the unknown has to

be transformed into a quantitative prior density. The most widely used

priors in EIT, and in the field of inverse problems in general, are the Gaus-

sian priors. The Gaussian priors lead to estimators that are of simple form.

Furthermore, the Gaussian densities are often adequate approximations of
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the non-Gaussian densities.

The Gaussian priors applied in statistical inversion in EIT include the

white noise prior [116], the smoothness priors [162], [116], [5], and the

anisotropic smoothness prior [109], [114]. The white noise prior mod-

els the unknown parameters as mutually uncorrelated. If the unknown

quantity does not change abruptly, and, hence, has only smooth spatial

changes, the smoothness priors can be employed. The anisotropic smooth-

ness priors are considered when the unknown quantity is expected to

have large changes or discontinuity in some direction and to be smooth

in other directions. Furthermore, Gaussian Markov random field priors

can be used when the unknown has rapid changes or discontinuities (at

known locations) [5].

The non-Gaussian priors used in EIT are, for example, the total varia-

tion prior [163], [164], [116] and the L1 prior [165], [116]. The total varia-

tion prior is a suitable choice when the distribution of the unknown quan-

tity is piecewise constant. When using the L1 prior, the unknown quan-

tity is assumed to contain small and well localized objects in a relatively

homogeneous background. In [166], [167], Markov Chain Monte Carlo

(MCMC) methods were applied in EIT, and sophisticated non-Gaussian

prior models were introduced. In the publications, different types of ma-

terials existed in the domain of interest, and the conductivities of the ma-

terials varied.

The likelihood density contains the forward model and information

about the noise and the measurement uncertainties. When constructing

the likelihood function in EIT, an additive noise model is typically em-

ployed, and it is assumed that the noise is independent of the unknown

concentration c. The joint probability density of V and c in the case of

additive noise can be written as [116]

π(V, c) = πpr(c)π(V|c) = πpr(c)πnoise(V − R̃(c)) (3.66)

where πnoise(·) is the probability density of the measurement noise v. The

probability density π(V|c) is the likelihood density and can be expressed

as π(V|c) = πnoise(V − R̃(c)) in the case of additive noise model. The

likelihood density expresses the likelihood of different measurement out-

comes with c given. A more complex model for the relation between the

concentration, the observations, and the noise can be derived if needed.

In EIT, the measurement noise is often modelled as zero-mean Gaussian.

When the prior and likelihood densities are formulated, the posterior

probability density, that is, the solution of the inverse problem, is com-
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puted. The posterior density is

πpost(c) = π(c|V) =
πpr(c)π(V|c)

π(V)
∝ πpr(c)π(V|c) (3.67)

where the marginal density π(V) can be considered as a norming con-

stant.

A widely used point estimate when considering statistical inverse

problems is the maximum a posteriori (MAP) estimate. The most pop-

ular interval estimate is the conditional covariance. If the likelihood func-

tion is Gaussian with an additive noise model and a Gaussian prior is

used, the problem of finding the MAP estimate in statistical inversion cor-

responds to the Tikhonov regularization problem (3.65) when choosing

cpr = E [c] and β2
trL

T
trLtr = Γ−1

c where Γc is the covariance matrix of the

Gaussian prior density of the concentration. It should be noted, however,

that in deterministic inversion cpr, βtr, and Ltr are chosen ad hoc whereas

in statistical inversion the key issue is to find a proper prior model for the

concentration.

In the above discussion, absolute inversion was considered as the aim

was to determine the absolute values of the unknown quantity. By con-

trast in difference imaging, the basic idea is to monitor the changes in the

unknown quantity instead of the absolute values of the quantity. In dif-

ference imaging, the reconstructions are based on the difference between

the voltage measurements corresponding to the unknown distribution of

the concentration and the reference voltage measurements corresponding

to a reference concentration distribution that often is a homogeneous dis-

tribution. The difference methods are known to produce the reconstruc-

tions fast as the reconstruction algorithm is quite simple. Furthermore,

the methods are relatively tolerant to modelling errors. For example, the

systematic errors may be partly compensated when comparing the actual

measurements to the reference measurements if both are corrupted with

a similar error. In [143], difference imaging in EIT was considered and

laboratory experiments were presented. In [168], difference imaging of

mixing of two miscible liquids was considered in the case of EIT.

NONSTATIONARY INVERSE PROBLEMS

In nonstationary inversion, the number of observations is typically signif-

icantly smaller than the number of the unknowns. Therefore, the inverse

problem in nonstationary EIT is severely ill-posed. In such a case, the

nonstationary EIT inverse problem can be viewed as a state estimation
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problem. In the state estimation approach, the evolution model describes

the temporal variations of the unknown quantity and is often PDE-based.

In the case of rapidly moving fluids typical in process control applications,

fluid dynamical models can be utilized as evolution models. Sometimes

the state-space model is inadequate although the temporal variations of

the unknown are taken into account and one does not obtain stable es-

timates even if the observations are noiseless. In such a case, additional

spatial information of the unknown has to be incorporated into the state

estimation scheme [169], [170], [171].

In [172], the state estimation approach in EIT was evaluated with nu-

merical simulations. A model corresponding to the (linearised) CEM

(3.52) was used as an observation model and a random walk model as

a state evolution model. The Kalman filter estimates of the resistivity

distribution in a two-dimensional domain representing a section of a hu-

man thorax were presented. Also in [171], the random walk evolution

model and the CEM were employed. The Kalman filter estimates and the

fixed-interval Kalman smoother estimates of the nonstationary simulated

impedance distribution in a two-dimensional domain were computed.

In [173], the state estimation approach using the random walk evolution

model and the CEM was evaluated with laboratory experiments. In the

experiments, a cylindrical tank was filled with saline and a plastic cylin-

drical object was moved in the tank to simulate a nonstationary target.

The Kalman filter estimates and the fixed-interval Kalman smoother esti-

mates of the two-dimensional resistivity distribution inside the tank were

presented. In [174], the results using also the fixed-lag Kalman smoother

were shown.

Also the extended Kalman filter has been used in solving the state es-

timation problem in EIT. In [175], [176], cylindrical objects were moved in

a tank filled with saline to simulate nonstationary targets. The resistivity

distribution in the tank was estimated. The state-space model consisted

of the random walk evolution model and the nonlinear CEM (3.61). The

known internal structures were taken into account in the modelling. The

approach was evaluated with numerical simulations and laboratory ex-

periments. In [177], the extended Kalman filter was used in estimating

the conductivities in a two-dimensional domain representing a section of

a human thorax. The random walk model was used as a state model. Both

numerical simulations and laboratory experiments were presented.

The state estimation approach has been employed successfully to mon-

itoring a CD process using EIT as a sensor in simulation studies and in

laboratory experiments. In a case of a CD process, the simple random
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walk model is often inadequate. In [92], a stochastic CD model was used

as an evolution model and the CEM (3.52) as an observation model when

estimating the simulated two-dimensional concentration distribution of

a substance in a fluid moving along a pipeline using the Kalman filter.

In [92], also the fixed-lag Kalman smoother estimates of the concentra-

tion were presented. In [95], the Kalman filter estimates and the fixed-

interval Kalman smoother estimates and in [113], the iterated extended

Kalman filter estimates were computed when estimating the simulated

three-dimensional concentration distribution. An experimental evaluation

of the state estimation approach in the case of a CD process monitored

with EIT was performed in [178], [113], [179]. In the publications, moni-

toring the concentration distribution in the object of interest (a pipe or a

tank) was considered. There were extra objects in the moving fluid. For

example in [178], a saline-filled table tennis ball was placed in a fluid in a

cylindrical tank and the contents of the tank were stirred with an impeller.

In [178], the estimates of the two-dimensional concentration distribution

and in [113], [179], the estimates of the three-dimensional concentration

distribution were shown.

3.3 DISCUSSION

In this chapter, the state-space model consisting of the CD evolution model

and the EIT observation model was considered. The key issue in the mod-

elling was to take uncertainties and inaccuracies related to the evolution

model and the observation model into account by finding proper models

for the state noise process and the observation noise process. In this thesis,

the state noise covariance matrix was far from the standard ad hoc choice

that is a diagonal matrix with equal diagonal entries. Actually, such an ad

hoc choice would render the state estimation approach infeasible. In this

thesis, the observation noise was modelled as a Gaussian noise and the

covariance matrix of the observation noise was of simple structure. How-

ever, if there are uncertainties and inaccuracies related to the observation

model that are not Gaussian, one can analyse their statistical properties

and formulate a proper model for the observation noise process. This

matter is discussed further in Section 5.2.3.

In this thesis, only a stationary laminar flow was considered. However

in a wide range of industrial processes, nonstationary turbulent flows are

encountered. The advantage of turbulent flows is their ability to trans-

port and mix components of the flow fast and effectively. Furthermore if
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chemical reactions are involved in a process, the use of turbulence may

increase reactant contact and decrease reaction times. However even in

the case of a single-phase non-reactive flow, modelling the fundamentals

of turbulence can be a complex task. Various computational fluid dy-

namic (CFD) models for turbulent, reactive and non-reactive flows have

been developed. Such models include, for example, the k− ǫ model and

Reynolds stress models [180], [93]. Unfortunately, the solution of the tur-

bulent models require extensive computations. For real-time process con-

trol applications, the computational time is a crucial issue and, therefore,

the CFD models as such are often inapplicable. If such a feasible and more

realistic flow model is available, it could replace the laminar flow model

used in this thesis.

The presented single-phase model is not likely the most appropriate

model in the context of industrial processes. For example, the separa-

tion and mixing processes discussed in Section 4.3 typically involve two

or more components of similar or dissimilar phases. Therefore, atten-

tion should be directed to multiphase flows consisting of more than one

component or phase. The modelling of multiphase flows, whether it is

experimental, theoretical or computational, is a challenging task due to

the complexity of such flows. The complexity is multiplied if turbulence

is encountered in a multiphase flow. Despite that fact, CFD models for

different kind of multiphase flows have been proposed although the com-

puter power and speed needed for solving the related equations can be a

prohibitive issue in real-time process control implementations [181], [182],

[183], [184]. If computational resources allow the use of a more complex

multiphase process model, such a model can replace the CD model. In

addition to computational reasons, approximating the multi-phase flow

with a single-phase flow model is reasonable if the flow phenomena are

dominated by one phase and the amounts or effects of other phases are

insignificant.

The injections of extra concentrate into the flow in the CD equation

were modelled as point-wise injections that are distributed to a small vol-

ume near the injection point. To model the injections more accurately, the

injections could be written as boundary conditions for the velocity and the

concentration at the point of injection. Such a model would take into ac-

count the change in the velocity field inside the pipe due to the injections

in addition to the change in the concentration. Most likely if the flow rates

of injectors are high, the flow in the pipe becomes turbulent due to the in-

jections, and a turbulent flow model would be needed. Whether the flow

is laminar or turbulent, the changes in the velocity field would necessitate
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recomputation of the velocity field after each injection that could be too

time-consuming for an real-time process control implementation with fast

sampling. By assuming that the concentration of the injected substance

is very high, the flow rates of the injectors can be considered to be low.

Hence, the change in the velocity due to the injections is relatively small.

An elegant approach to overcome the problem of time-consuming recom-

putation of the velocity field is to write the CD model with the stationary

velocity field and construct a state noise process that accommodates for

the modelling errors due to this approximation [185]. Such an approach

could benefit also the example application of this thesis.

A stochastic term describing the inaccuracies in the CD model could

be included in the continuous CD equation (3.1). Such a term would take

into account the modelling uncertainties, for example, in the velocity field

and in the diffusion coefficient. In this thesis, this term is added to the

state noise wt after discretisation. For more information on the stochastic

formulation of the CD equation, see [186].

Overall, the simplifications of the evolution model (including those

described above) are often feasible since the control system that is de-

signed in Chapter 4 is based not only on the evolution model of the pro-

cess but also on the EIT measurements. If the approximative evolution

model is slightly inaccurate, the controller obtains compensatory informa-

tion on the process via the EIT measurement, and the control performance

is not deteriorated substantially. In [187], [188], [143], multiphase flows

were monitored successfully with EIT even when an evolution model was

not used. The key issue was that the conductivities of the components in

a multiphase flow were different. Furthermore, a simplified multiphase

model or even a single-phase model approximating a multiphase flow

may be adequate in some processes. In [178], [113], [179], a CD model

was formulated for a fluid flow in a pipeline. There were non-diffusing

tracer objects with low conductivity drifting with the flow and the objects

were successfully monitored with EIT despite the single-phase evolution

model. If the considered process is very complex and the development of

even an adequately accurate process model is impossible, system identi-

fication methods could be used. For example in many web forming pro-

cesses, system identification is essential in modelling the spatial response

of the actuators [189], [190].

In this thesis, the FEM was utilized in the numerical evaluation of the

CD model. In addition to the FEM, mesh-based numerical methods for

PDEs include, for example, the finite difference method (FDM) and the

finite volume method (FVM) which could be also considered. However,
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the advantage of the FEM is its ability to handle complex geometries and

non-trivial boundary conditions. On the other hand, the FDM and the

FVM are easier to implement and less time-consuming. In [191], [192], the

FDM was used successfully to approximate the CD equation describing

the concentration of a substance in a pipe flow. Contrary to the approach

chosen in this thesis, the source term due to the control action was in-

corporated into a boundary condition instead of the CD equation itself.

Furthermore, also numerous meshless methods exist for solving the CD

problems [193], [194] as well as combinations of meshless and FE meth-

ods [195].

It is well-known that the FEM yields quite accurate results for diffusion-

dominated problems. By contrast, if the diffusion coefficient is small, the

problem becomes convection-dominated, and the standard FE discreti-

sation may lead to oscillatory and even unstable approximate solutions.

The oscillations are due to the so-called boundary layers that are small

subregions of the domain in which the derivatives of the solution are

large. To eliminate the oscillations, the mesh size has to be set sufficiently

small or some FE stabilization method has to be applied. Such meth-

ods include, for example, the streamline upwind Petrov-Galerkin (SUPG)

method [196], the Galerkin least squares (GLS) method [197], and the lo-

cal discontinuous Galerkin (LDG) method [198]. Often, the stabilization

methods improve the approximation properties and reduce the oscillatory

behaviour of the solution in comparison to the standard Galerkin FEM.

There are numerous studies on the stabilization methods applied to dif-

ferent kind of CD problems. For example in [199], a comparison of several

stabilized FE methods for solving the convection-diffusion-reaction (CDR)

equation that is the CD equation with an additional reaction term, was

presented. In [200], [201], the GLS stabilization method was investigated

in the case of the one-dimensional CD equation with a control action term

as in (3.1).

In this thesis, the CEM was approximated with the FEM. In [202],

[203], [112], the use of the boundary element method (BEM) for solving

the CEM numerically was investigated. In [202], the location of a non-

conducting inclusion in a domain of known homogeneous conductivity

was estimated. In [203], [112], estimation of a piecewise homogeneous

conductivity distribution in a domain containing subdomains of different

conductivity was considered. In the publications, the unknown conduc-

tivity distribution was stationary. In general, the BEM is suitable only

for piecewise homogeneous domains whereas the FEM can be used also

for non-homogeneous domains. In the case of piecewise homogeneous
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domains with simple geometries, the BEM is less time-consuming and

demands less computational resources in comparison to the FEM as only

the boundaries of the inhomogeneities are discretised instead of the whole

domain. However, when estimating, for example, the non-homogeneous,

non-stationary conductivity distribution of a chemical substance in a fluid

flow as in this thesis, the BEM is infeasible.

It is well-known that the spatial resolution in EIT is quite poor in

comparison to many other imaging modalities. However, adequate recon-

structions have been obtained in both medical and industrial applications.

The low spatial resolution could become a problem when the components

in a multiphase flow are too small to be distinguished. In such a case

instead of imaging individual components, an estimate of the ratio of the

components may provide adequate information. By contrast, the tempo-

ral resolution in EIT is good. This is a huge benefit when controlling fast

moving fluids since without accurate real time information, the control

system is unable to react to the undesirable situations on time.
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4 Process control using electrical process

tomography

In Chapter 3, the discrete-time state-space model for the convection-

diffusion (CD) process and the electrical impedance tomography (EIT)

observations was discussed. The state equation described the spatial and

temporal variations of the concentration of a substance in a fluid flowing

in a pipe segment. The process was controlled by injecting extra con-

centrate into the main flow through injectors. The observation equation

defined the link between the concentration and the EIT boundary mea-

surements. In this chapter, the focus is on designing a control system

for the CD process. In Chapter 5, the feasibility of the control system is

evaluated with simulations.

This chapter is divided into four sections. In Section 4.1, publications

considering controlling of industrial processes monitored with electrical

process tomography (PT) are discussed. A control system suitable for the

CD process monitored with EIT is designed in Section 4.2. In Section

4.3, examples of industrial processes to which this kind of control system

could be applied are given. The chapter ends with a discussion in Section

4.4.

4.1 ELECTRICAL PROCESSTOMOGRAPHY IN PROCESSCON-

TROL

As the potential of electrical PT in process control has been recognized,

various controllers for industrial processes have been developed when

electrical PT is used for process monitoring. In this section, the discussed

publications are grouped according to the type of the controller. In Sec-

tion 4.1.1, the controller in the publications is the proportional-integral-

derivative (PID) controller. In Section 4.1.2, publications consider applica-

tions with other automatic, real time controllers. In Section 4.1.3, model-

based controllers are considered in the publications. The focus is on two

electrical PT techniques that are EIT and electrical capacitance tomogra-

phy (ECT).
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4.1.1 PID controllers and electrical PT

Most of the published control systems employing data from electrical PT

include a PID controller. The idea of a real time, automatic, and feedback

control system using EIT as a sensor was first proposed in [204]. The

controller in the control system was a PID controller. In the publication,

control of an air-water bubble column was considered. The aim was to

adjust the air flow rate in order to maintain a desired flow condition en-

suring high reaction efficiency. The performance of the PID controller was

evaluated with laboratory experiments in [205]. In [206], the aim was to

control a pneumatic conveying system transporting polyethylene pieces

using a proportional-integral (PI) controller and ECT as a sensor. The PI

controller was designed to adjust the velocity of the conveying air in order

to maintain a dilute phase flow at a predescribed level in a conveying pipe.

The control system was evaluated with laboratory experiments. In [207],

control of material moisture content of wet materials in a batch fluidised

bed dryer was studied. The moisture content was determined on-line us-

ing ECT. A PI controller was designed to achieve a desired drying rate

for wet materials by adjusting the inlet gas velocity. The proposed pro-

cess model considered the bulk moisture content. The performance of the

control system was evaluated with simulations. In [208], EIT measure-

ments were used for determining the separation status of a pilot-scale

solid-liquid separator by measuring the air core size and position. A PID

controller was designed to automatically maintain the desired air core for-

mation by manipulating the inlet flow rate. The proposed control system

was tested with laboratory experiments.

The PI and PID controllers are widely used in process control but,

however, they have several weaknesses especially in comparison to model-

based optimal controllers considered in this thesis. Although the PID and

PI controllers are automatic, real time, and feedback controllers, they re-

quire proper tuning of the control parameters in order to achieve good

control performance. Furthermore, feedforward control is implemented

more accurately using a model-based controller than a PID controller

since the process behaviour can be predicted more accurately when the

controller is based on an actual process model. Also the PID controller is

not able to adapt to changing conditions automatically or recognize dead

times. Furthermore, the PI and PID controllers aim to control a scalar pro-

cess variable (they are used typically for single-input and single-output

systems). For example in [207], the proposed process model described

the bulk moisture content instead of a spatial distribution of the moisture
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content. As the aim in this thesis is to control a distributed parameter

system (DPS) modelled with partial differential equations (PDEs), the PI

and PID controllers are unsuitable.

In the above mentioned publications, only stationary electrical PT

techniques were considered. If the state of the process changes during a

set of measurements, that is often the case in many industrial applications

involving, for example, fast moving fluids, the stationary PT techniques

yield unsatisfactory results. The state estimation approach adopted in this

thesis accommodates for the temporal variations of the process.

4.1.2 Other automatic, real time controllers and electrical PT

In addition to the PID controllers, other automatic and feedback con-

trollers using data obtained with electrical PT have been proposed. In

[209], electrical resistance tomography (ERT) data was used for real time

monitoring of a water-oil separation process in a hydrocyclone. The aim

was to keep the separation effectiveness high and the core offset low by

changing the input pressure of the liquid inflow. The control strategy

was quite simplistic, and the input pressure was adjusted only if preset

limits set on the separation effectiveness and on the core offset were vio-

lated. The simplicity of the controller was partly due to the requirement

of the controller to operate in real time. The proposed control system

was evaluated with numerical simulations. In the publication, the separa-

tion process was not described with a mathematical model and only the

stationary tomographic techniques were considered.

In [210], ECT was used to provide data on dune formation of polypropy-

lene pellets in a pneumatic flow rig to a neural network (NN) controller.

The automatic and real time multilayer perceptron (MLP) based NN con-

troller adjusted the air flow rate of the pneumatic flow rig to control the

dune formation. The NN controllers are known to be especially useful

when considering nonlinear processes. Furthermore, the advantage of the

NN controller over the PID controller is that the NN controller takes into

account the dynamics of the process in a neural network model. However,

the model parameters in the neural network model do not have any phys-

ical significance whereas the model parameters in the PDE-based models

considered in this thesis do. In [210], the aim was to control a scalar out-

put process variable by adjusting a scalar input variable. In other words,

the process was not considered as a DPS. Furthermore, only the stationary

tomographic techniques were considered.
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4.1.3 Model-based optimal controllers and electrical PT

Model-based (optimal) controllers have many benefits in comparison to

non-model-based controllers such as PID controllers. The model-based

controllers adapt automatically to changing process conditions without

needing tuning of the controller parameters. The model-based controllers

recognize dead times and can avoid undesirable situations by predicting

the process behaviour in advance. Furthermore, feedforward control can

be used in addition to feedback control as a process model exists. Al-

though the benefits of using a model-based controller are clear, the ma-

jority of the controllers implemented in industrial applications are non-

model-based (PID) controllers. The lack of implemented model-based

controllers originates partly from the fact that process models of good

quality, if existing, are often complex. Thus, they need sophisticated sim-

plifications without reducing the quality of the model and considerable

computational resources to be applied in control systems. Despite the

challenges, a few model-based optimal controllers employing PT as a sen-

sor have been designed.

In [28], distributed parameter control of a batch fluidised bed dryer

was considered. ECT was used as a sensor to monitor the distributed per-

mittivity in the bed. The objective of the designed control system was to

maintain a desired shape of the permittivity distribution. The control in-

put was the inlet air velocity of the dryer. The values for the control input

with respect to a set of selected moisture content values were obtained as

a solution of a simple optimization problem. Experimental results were

used to evaluate the performance of the control system. In [28], the aim

was to control only the shape of the permittivity distribution rather than

to match the distribution to a certain desired distribution that would be

advantageous in many cases. Furthermore, only stationary tomographic

techniques were considered.

In [191], [192], the starting point of the study was similar to the one

presented in this thesis. The idea in [191], [192] was to utilize EIT as a

sensor for a model-based controller when controlling fast moving fluids.

The controller was aimed for regulating the concentration distribution of

a chemical substance in a fluid flow. The state-space model of the process

and the observations was formed so that the concentration evolution was

described with the CD equation and the observation equation was derived

using the CEM. Although the idea of estimating the state of the process

on the basis of tomographic observations was discussed, in the presented

simulations, the state was assumed to be known and the state estimation
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was not used. Several control strategies were discussed in [191] and sim-

ulations using a PI controller to regulate the average concentration at a

particular point of the pipe were shown. The PI controller was designed

also in [192].

The first automatic, feedback, and model-based optimal controllers

obtaining data from EIT measurements were developed in [53], [54], [44],

[57] by the author of this thesis. In the publications, the basis of the control

system was the state-space model of the CD process and the EIT obser-

vations similar to the one derived in Chapter 3. One of the advantages

of the state-space approach in process control is that the state estimate of

the process can be used directly in a control system. Consequently, the

need for post-processing reconstructions is avoided. In the publications,

an approximate linear quadratic Gaussian (LQG) controller was designed

(see Section 4.2.2), and the performance and the robustness of the con-

troller was investigated with numerical simulations. Similar results as in

the publications are presented in Section 5.1. Furthermore, the H∞ opti-

mal control in the case of EIT measurements was considered in [57]. The

formulation of the approximate H∞ controller proposed in this thesis dif-

fers from the one presented in [57]. The proposed approach of this thesis

is evaluated with simulations presented in Section 6.

4.2 CONTROLLERFOR THE CD PROCESSMONITOREDWITH

EIT

In this section, a control system for the CD process is designed. In Section

4.2.1, the objective of the control system is illustrated. The LQG con-

troller and the H∞ controller discussed in Chapter 2 are modified to suit

the features of the CD process in Sections 4.2.2 and 4.2.3, respectively.

Furthermore, the controllability and the observability of the state-space

model described in Chapter 3 are addressed briefly in Section 4.2.4. The

computational aspects of the state estimation and the control algorithms

are considered in Section 4.2.5.

4.2.1 Objective of the control system

The objective of the control system designed in this thesis is to control the

concentration of a chemical substance in a fluid moving along a pipeline.

The computational domain in this thesis is a finite segment of a pipe, see

Figure 4.1. The fluid enters the pipe through the input boundary Λin

and exits through the output boundary Λout. The direction of flow in
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Figure 4.1: Illustration of the control system for controlling the concentration of a sub-

stance in a fluid.
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Figure 4.2: The concentration distribution in the pipe at a selected time.

the pipe is from left to right. In Figure 4.2, the concentration distribution

in the pipe is illustrated at a selected time when process control has not

been applied. The objective of the controller is to match the concentration

distribution over the boundary Λout (at the end of the pipe) to a predeter-

mined desired distribution as well as possible. The desired distribution is

a uniform distribution that remains constant during the operation time.

In Figure 4.2, it can be seen that the concentration over the boundary Λout

is not homogeneous. Thus, the controller has to bring the concentration

distribution close to the desired distribution as quickly as possible after

the start-up and then to compensate for the concentration variations in

the fluid.

In this thesis, EIT is utilized as a sensor in the control system. The

EIT electrodes are attached to the (inner) wall of the pipe, see Figure 4.1.

In the three-dimensional studies, the electrodes form several circular lay-

ers on the pipe boundary, see Figure 5.17 in Section 5.2. In addition to a

monitoring system, an actuation mechanism is needed for adjusting the

concentration of the substance along the pipe. In this thesis, a series of

injectors placed in the pipe or on the pipe boundary serve as actuators.

Through the injectors, strong concentrate is injected into the flow. Due to
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the fluid flow, the injected concentrate drifts to the region downstream of

the injectors and mixes with the main fluid. The flow rates of injectors

are considered as control inputs. Thus, by adjusting the flow rates, the

concentration distribution over Λout is aimed to match the desired distri-

bution. It should be noted that the injectors can only add extra substance

into the flow, and cannot remove it. Therefore, the concentration level

downstream of the injectors can be increased but not decreased when

injecting strong concentrate. If one wants to decrease the concentration

level, for example, water or some other suitable liquid can be injected into

the flow in addition to the strong concentrate.

4.2.2 Approximate LQG controller for the CD process

The basis for the formulation of the approximate LQG controller in this

thesis is the CD state equation (3.27), the nonlinear EIT observation equa-

tion (3.61), and the output equation (3.28), that is,

ct+1 = Act + B2ut + st+1 + w1,t (4.1)

Vt = R̃t(ct) + vt (4.2)

yt = Cct. (4.3)

The objective of the controller is to specify the flow rates of the injec-

tors ut so that the concentration distribution over Λout, that is, the output

concentration yt matches the desired distribution as well as possible. The

solution to the presented control problem consists of two tasks. The first

task is to estimate the concentration distribution in the pipe on the basis of

the EIT observations and the state-space model (4.1)-(4.2). The second task

is to determine the control inputs ut that minimise the difference between

the output concentration yt and the reference input rt. The reference in-

put describes the predetermined desired concentration distribution over

the boundary Λout. In this thesis, the desired profile is stationary and

uniform so that for all t ∈ N0, rt = βy1 where βy ∈ R+ is the desired con-

centration level and 1 = [1 , . . . , 1]T ∈ R
ny . In the following, yref denotes

the reference input.

There are several issues that need to be emphasized when designing

the controller in this thesis. The reference input yref is non-zero and, thus,

a basic LQG controller that drives the output to zero is inadequate. To

overcome this problem, a tracking system discussed in Section 2.2.2 can be

considered or, as in this thesis, a feedforward element can be incorporated

into the controller. Furthermore, there is an additional source term st+1 in
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the state equation (4.1) describing the process input and that term has to

be included into the controller design. Therefore, neither the basic LQG

controller nor the linear quadratic (LQ) tracker can be applied as such.

In this thesis, the effect of the process source term is taken into account

using the feedforward element. Also as the injectors can only add more

substance into the fluid and cannot remove it, the constraint u
(j)
t ≥ 0 has

to be valid for all t and j = 1, . . . , nu.

In this thesis, the approximate LQG controller is designed by defining

variables describing perturbations from a predetermined steady-state of

the system and by using the perturbation variables when deriving the

control law (2.30). The perturbation variables c̃t ∈ R
nϕ , ũt ∈ R

nu , and

ỹt ∈ R
ny are defined so that

c̃t = ct − c̄ (4.4)

ũt = ut − ū (4.5)

ỹt = yt − ȳ (4.6)

where c̄ ∈ R
nϕ , ū ∈ R

nu , and ȳ ∈ R
ny are the steady-state values of

the state, the control input, and the control output, respectively. To be

more specific, ū is the steady-state control input, that is, the steady rates

of injectors required to achieve the steady-state response c̄ so that steady-

state output ȳ = Cc̄ = yref.

The computation of the steady-state values can be decoupled from the

computation of the feedback control gains provided that the matrices in

the state equation (4.1) and in the output equation (4.3) are stationary. In

such a case, the steady-state values can be determined before the process

start-up. The steady-state values are defined with equations

c̄ = Ac̄+ B2ū+ s̄ (4.7)

ȳ = Cc̄ (4.8)

where s̄ ∈ R
nϕ is a stationary approximation for st+1. If {st+1} is consid-

ered as a random process whose distribution is known, then s̄ can be set

to E[st+1] and one can assume that the variations from s̄ are included in

the state noise term w1,t. It will be shown that such an approximation is

adequate in the example application.

Eliminating c̄ from the equations (4.7) - (4.8) leads to

ȳ = C (I − A)−1 (B2ū+ s̄) . (4.9)

As the problem is to define the steady-state control ū such that the output

ȳ equals the reference input yref, the error (ȳ − yref) is to be minimized
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with respect to ū. The minimisation problem to be solved is

min
ū

‖ȳ− yref‖2 = min
ū

‖C (I − A)−1 (B2ū+ s̄)− yref‖2. (4.10)

As the control inputs are assumed to be non-negative, the minimisa-

tion problem (4.10) is solved with the non-negative least squares estima-

tion [211]. Given the steady-state control input ū, the steady-state concen-

tration c̄ is computed as

c̄ = (I − A)−1 (B2ū+ s̄) . (4.11)

This kind of formulation of the steady-state values can be considered

as a feedforward element in the controller. It should be noted that if the

desired distribution is nonstationary, the steady-state values have to be

recomputed every time the desired distribution changes. Furthermore, as

the formulation is based on the CD evolution model, the model needs to

be adequately accurate. An inaccurate model could lead to a controller

that drives the output systematically to an undesired state. In the numer-

ical simulations, the controller is tested with an inaccurate process model

to determine whether it can compensate for this kind of systematic errors.

The state equation and the output equation in terms of the perturba-

tion variables are

c̃t+1 = Ac̃t + B2ũt +w1,t (4.12)

ỹt = Cc̃t. (4.13)

Now, the control problem is to determine ũt that bring ỹt = yt − yref,

that is, the output error from its initial state to zero as quickly as possible

and hold ỹt close to zero in the presence of the process input and the

disturbances. The quadratic cost function to be minimized including the

output ỹt and the control input ũt is of the form

J = E

[

ỹTNHyỹN +
N−1

∑
t=0

ỹTt Qyỹt + ũTt Rũt

]

(4.14)

where Hy ∈ R
ny×ny , Qy ∈ R

ny×ny , and R ∈ R
nu×nu . In (4.14), the ma-

trix Qy = βQ I defines the importance for the output concentration ȳt to

match the reference input yref over Λout. As the objective is to regulate the

concentration distribution over the whole boundary Λout, all the entries

in ỹt are equally weighted. The weighting matrix R = βR I in (4.14) is

used to impose a penalty on the use of excessive control inputs ũt which
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may exceed the operating range of the injectors, for example. As the in-

jectors work similarly, the penalty imposed is the same for all entries of

ũt. The key issue in choosing the weighting matrices is the magnitude of

the entries of Qy relative to the entries of R. When increasing the scalar

βQ relative to the scalar βR, the controller attempts to minimise the error

between the actual output concentration and the reference input regard-

less of the possible excessive control inputs. By contrast, decreasing βQ

relative to βR limits the control inputs but at the same time allows larger

output errors. Thus, the choice of the weighting matrices is always a

trade-off between matching the output concentration distribution to the

desired distribution and avoiding excessive control inputs.

The control law for the model (4.12)-(4.13) when minimizing (4.14)

can be found by following the derivation discussed in Section 2.2.1. The

optimal control law is

ũt = −Kt c̃t (4.15)

where Kt ∈ R
nu×nϕ is the discrete-time feedback gain. Substituting the

perturbation variables (4.5) and (4.4) into the control law (4.15) yields the

actual control inputs

ut = ū− Kt (ct − c̄) . (4.16)

In this thesis, the input constraint u
(j)
t ≥ 0 is handled in a quite simple

manner. If the entries of the control input vector ut are negative in spite

of the computation of the steady-state values with the non-negative least

squares, those entries are set to zero.

The computation of the control input ut requires the state ct. The

state ct is unknown and it is replaced with the state estimate ct|t ∈ R
nϕ

in (4.16). The globally linearised Kalman filter or the iterated extended

Kalman filter described in Section 2.2.3 are used for obtaining the state

estimate ct|t.

4.2.3 Approximate H∞ controller for the CD process

In this thesis, the approximate H∞ controller is designed to control the

CD process in a situation in which there are errors of unknown statistical

nature between the model and the actual process. To be more specific, the

input concentration (3.5) that was partly unknown when designing the

approximate LQG controller is now unknown. Consequently, the process

source term st+1 due to the approximated average input concentration is
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not in the CD state equation (3.27) and the input concentration acts as an

unknown external disturbance to the process.

The objective of the approximate H∞ controller is to match the control

output yt to the reference input yref in the presence of external distur-

bances. The external disturbances are the state and measurement noises

and also the unknown input concentration. A new state variable c∞ ∈
R

(nϕ+ny),

c∞
t =

[

ct
yref

]

, (4.17)

is considered and it consists of the concentration ct and the reference input

yref. The new state variable is introduced in order to provide the approxi-

mate H∞ controller with information on the reference input. It should be

noted that the reference input could be nonstationary in the formulation.

The objective vector zt ∈ R
(ny+nu) is defined as

zt =

[

Q
1
2
y (yt − yref)

R
1
2 ut

]

=

[

Q
1
2
y

0

]

(yt − yref) +

[

0

R
1
2

]

ut. (4.18)

The state equation of the state variable (4.17), the objective vector (4.18),

and the observation equation (3.63) can be written in matrix form





c∞
t+1

zt
V1,t



 =





A1 B11 B12

C1 D11 D12

C2,t D21 D22









c∞
t

wt

ut



 (4.19)

where the external input wt ∈ R
(nϕ+nV), wt =

[

wT
1,t vTt

]T
. The state noise

w1,t encompasses the external disturbance input due to the unknown in-

put boundary data. The system matrices are defined as

A1 =

[

A 0

0 I

]

B11 =

[

I 0

0 0

]

B12 =

[

B2

0

]

C1 =

[

Q
1
2
yC −Q

1
2
y

0 0

]

D11 =

[

0 0

0 0

]

D12 =

[

0

R
1
2

]

C2,t =
[

J R̃t(cbh) 0
]

D21 =
[

0 I
]

D22 = 0

. (4.20)

The approximate H∞ controller is formulated on the basis of the the-

ory reviewed in Section 2.3. In the formulation, the matrices D11 and

DT
12C1 are zero matrices and the equations can be simplified accordingly.
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4.2.4 Controllability and observability of the control system

When intuitively considering the controllability of the example applica-

tion, it is evident that the concentration upstream of the injectors cannot

be altered by injecting extra concentrate into the flow. This is due to

the fact that the process is assumed to be dominated by the convection,

and the rate of diffusion is slow. Thus, by intuition the system is not

state controllable but may be output controllable. However when consid-

ering a diffusion process, it is impossible to obtain a output concentra-

tion distribution with sharp concentration variations such as an exactly

piece-wise constant output concentration. The state controllability and

the output controllability of the system are formally tested with the rank

test specified in Section 2.6. As the state transition and the control input

matrices in the state equation (4.1) are stationary, the state controllability

matrix (2.106) and the output controllability matrix (2.108) are computed

in Chapter 5. However, it is worth emphasizing that even if all the states

were controllable, the desired state is reached within a finite time N. Thus,

during the time [0,N− 1] the state may be far from the desired state. This

inference is valid also for the output.

Correspondingly, when considering intuitively the observability of the

system, it can be noted that the measurement system can observe only the

states downstream of the first and upstream of the last EIT electrodes in

the pipe. However, the concentration in regions upstream of the first elec-

trode pair and downstream of the last electrode pair can be estimated as

the evolution model provides information about the process in those re-

gions. Furthermore, as the reconstruction problem in nonstationary EIT

is highly underdetermined (i.e. the number of states is far greater than

the number of measurements), the system is typically not observable in

the classical sense. As the observation model (4.2) is nonlinear, a sim-

ple approach to formally test the observability of the system is to use the

globally linearised observation model (3.63) and compute the observabil-

ity matrix (2.109), see Chapter 5.

It should be noted that although the system might not be controllable

and/or observable in the classical sense, one may be able to control it

up to a point. In fact, one of the aims of this thesis is to determine if

it is even possible to control a CD process using EIT observations when

the associated state-space system is clearly neither state controllable nor

observable.
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4.2.5 Computational issues

When controlling processes involving rapid variations, the controller must

obtain information frequently about the process in order to be able to re-

spond to undesirable situations. Consequently, the time between EIT mea-

surements should be short. As the aim is to design a real time controller,

in the time between the consecutive EIT measurements one must be able

to process the measurements as well as to compute the state estimate and

the control input. As the state dimension is typically very high in the case

of PDE-based DPSs, the state estimation and control algorithms must be

very efficient. An essential fact when considering the algorithms is that all

possible computations are performed off-line prior to the actual operation

of the control system.

In the EIT observation model (3.61), the mapping R̃t depends on the

current pattern It. In this thesis, 16 different current patterns are used

repeatedly. For example, I1 = I17. Consequently, the mappings R̃t cor-

responding to times t = 1 and t = 17 are identical. In the globally lin-

earised Kalman filter, the mapping R̃t is linearised around a linearisation

point clp. The Jacobians J R̃t of the mappings R̃t can be computed prior

to data acquisition and stored. Corresponding to the equal current pat-

terns I1 and I17, for example, the Jacobians for times t = 1 and t = 17

are equal. Thus, one has to store only 16 Jacobians. Given the initial co-

variance matrix Γ1|0 and the Jacobians J R̃t, also the covariance matrices

Γt|t and Γt|t−1 as well as the Kalman gains Ft can be computed prior to

data acquisition. It should be noticed that the measurements gt affect only

the measurement update equation (2.43). Storing also the covariance ma-

trices and Kalman gains may be inconvenient, if the process is run for a

long time (that is, t is large). However, one actually needs to store only

the asymptotic covariance matrices and Kalman gains corresponding to

different current patterns. By asymptotic covariances and Kalman gains

one means the matrices to which the covariances Γt|t and Γt|t−1 and the

Kalman gains Ft converge for each current pattern after sufficiently many

Kalman filter recursions.

In this thesis, the employed current patterns are not optimised in any

way. In [141], a single optimized current pattern was found to be suffi-

cient in a particular nonstationary EIT application. In the case of a single

current pattern, the precomputations and the number of matrices to be

stored is decreased further from the case described in this thesis.

The iterated extended Kalman filter does not allow any precompu-

tations. Due to the inner iteration required for the minimisation of the
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functional (2.54), the Jacobians J R̃t and the Kalman gains Ft have to be

recomputed several times for each time t ∈ N0. Furthermore, the covari-

ance matrices Γt|t and Γt|t−1 have to be recomputed at each t ∈ N0.

The most time-consuming part of the approximate LQG control law

computation is the computation of the solution of the Riccati equation

(2.24). If the final time N → ∞, and the state transition matrix and the

control input matrix are stationary, that is, At = A and B2,t = B2, then Pt
in (2.24) converges to a steady-state solution P. As a result, also the LQG

feedback gain matrix Kt defined in (2.22) is stationary, that is, Kt = K for

all t ∈ N0. The steady-state matrices P and K are used in the simulations

in Chapter 5.

In the approximateH∞ control law computation, the use of the steady-

state solution of the Riccati equation (2.79), that is, Zt = Z leads to sta-

tionary matrices Ku,t = Ku, Kuw,t = Kuw, Kw,t = Kw, Āt = Ā, V12,t = V12,

and V21,t = V21. The stationary matrices can be precomputed off-line and

they are used in the simulations in Chapter 5. Especially, the precom-

putation of Z reduces the on-line computational load substantially. By

contrast, as the H∞ observation matrix C2,t is nonstationary, the Riccati

equation (2.80) must be computed recursively on-line. It should, however,

be noticed that C2,t depends on time only through the current pattern It.
Therefore, the steady-state solutions could be computed for each different

current pattern which would reduce the computational burden.

4.3 POTENTIAL INDUSTRIAL APPLICATIONS

In this section, several industrial processes to which the control system

described in Section 4.2 could be applied are discussed. Although the

process model derived in Chapter 3 does not fully describe any existing

real industrial process and the control system designed does not fully

correspond to any existing control system, the basic idea of the designed

control system can be adopted with required modifications to controlling

many different kind of industrial processes. In this section, the focus is

on three industrial processes. The separation and mixing processes en-

countered especially in the chemical and mineral industries and the web

forming processes (also referred to as film and sheet forming processes)

are considered.

The separation and mixing processes are selected as examples since

those processes have been successfully monitored with electrical PT (ref-

erences are given below). Furthermore, suitable actuation mechanisms for
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those processes can be designed even though the actuation mechanism is

not necessarily the same as the one described in Section 4.2.1. The web

forming processes are selected as examples since the two-dimensional dy-

namics of the example application discussed in this thesis is somewhat

similar to the dynamics of these processes.

The discussion is broadened from processes featuring a single-phase

flow that is considered in this thesis to processes featuring multiphase

flows to show the variety of potential applications. Furthermore, the ac-

tuation mechanism and the control variable described in Sections 4.2.1

and 3.1.3, respectively, are suitable only for special kind of processes and,

thus, examples of other possibilities are given. The separation and mixing

processes discussed in this section are monitored with electrical PT tech-

niques unless mentioned otherwise and process control is not considered

in any of the given publications. By contrast, the web forming processes

discussed in this section are not monitored with EIT and various control

systems for those processes have been proposed.

The separation of components of different phases in multiphase flows

is encountered not only in chemical and mineral industries but also in

other fields. The two widely used separators for solid-solid and solid-

liquid separation in a liquid continuum are the hydrocyclones and the

dense medium cyclones [212], [12]. The hydrocyclones are also applicable

in liquid-liquid separation provided that the liquids have different den-

sities such as oil and water in a deoiling process [187]. Typically, the

hydrocyclones and the dense medium cyclones consist of one or more

feed inlets and two outlets (overflow and underflow). While operating a

vortex, sometimes an air core is formed inside the separator. The average

diameter and the dynamic oscillation of the air core is stated to reflect the

efficiency of the separator. As a consequence, the performance of the sep-

arator can be controlled by adjusting the operational parameters that are

known to affect the formation of the air core. For solid-liquid separators,

such parameters include, for example, the feed flow rate and the concen-

tration of the solid particles in the feed. In the deoiling hydrocyclones,

the control variable, that is adjusted to neutralise the air core, could be

selected as the feed flow rate of the oily water, the concentration of oil in

the mixture, or the back pressure of the hydrocyclone underflow.

In mixing processes, the objective is to produce a homogeneous mix-

ture of two or more components of a similar or dissimilar phase. There

are various types of industrial mixing processes including mixing of mis-

cible liquids, solid-liquid mixing, and gas-liquid mixing. The mixing in

such processes is typically executed in a tank, in a stirred vessel, or in a
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pipeline. The contents can be mixed with impellers, jets, or tees. When

mixing with impellers, rotating impellers are placed in a stirred vessel

or in a tank. The basic principal in jet mixing encountered in mixing

processes involving liquids is that a fast moving jet stream of liquid is

injected into a slowly moving or stationary bulk liquid. The injected liq-

uid can either be an additional chemical or a part of the original liquid

drawn through a pump and returned as a high-velocity jet back to the

mixture. The tee mixers include side tees and opposed tees. A side tee

mixer is formed by two pipe sections joined at a suitable angle and, thus,

resembles the jet mixer. In an opposed tee mixer, two streams enter from

opposite directions, mix as they converge, and leave through a pipe that

is perpendicular to the pipes from which the streams enter.

The mixing of miscible liquids in a pipeline is required for exam-

ple when additional chemicals are injected via jets into the main stream.

In [213], [143], [214], [215], mixing of miscible liquids was successfully

monitored with EIT. A more specific application is a system for mixing

of paper making chemicals into the main process stream [216], [215]. The

chemical is fed into the main stream via a jet injection mixer system by

exploiting a high speed injection stream. In [215], an EIT system was ap-

plied to imaging the efficiency of mixing of such a system. The injection

points as well as the EIT electrodes were located on the pipe boundary.

In such a case, the flow rate of injectors and/or the concentration of the

injected solution could be controlled to achieve a homogeneous mixture.

Furthermore, controlling the angle of the jet stream could improve the

quality of mixing.

In addition to mixing of miscible fluids in a pipeline, the mixing of

components of a similar or dissimilar phase in a stirred vessel has been

studied in the case of EIT. In [217], [6], [218], [219], [220], the mixing of

miscible liquids in a stirred vessel was considered when EIT was used

for process monitoring. The solid-liquid [182], [10] and gas-liquid mix-

ing [121], [221], [222], [204] in a stirred vessel have also been successfully

monitored with EIT. In the above-mentioned processes involving mixing

in a stirred vessel, controlling the impeller speed could improve the qual-

ity of mixing. Furthermore, if addition of extra liquid or gas is required,

the amount (and in some cases the concentration) of the injected compo-

nent could be selected as the control variable.

Also additional baffles could be placed inside a pipeline, a stirred ves-

sel, or a tank and the position of the baffles could be controlled in order

to direct the fluid and, thereby, to homogenize a mixture. When consid-

ering, for example, the CD process discussed in this thesis, the baffles
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would change the velocity field inside the object and, actually, one would

control the concentration by controlling the velocity field. However, the

dependence of the concentration and the velocity field in the CD model is

nonlinear and, thus, the control problem would also be nonlinear.

Many mixing processes involve simultaneous local chemical reactions.

If one considers, for example, a CD process involving a chemical reaction,

the process could be described with a convection-diffusion-reaction (CDR)

model taking into account both the changes of concentration of some

chemical substances and the chemical reaction. The (coupled) CDR sys-

tems have been used for simulating, for example, the dynamic behaviour

of fluidized bed and packed bed reactors [26], [223], [224], chemical re-

actions in chaotic flows [225], and precipitation processes [226]. In the

above-mentioned publications, EIT was not used. The process described

in this thesis could be expanded to cover also chemical reactions. To give

an example, if the fluid consists of several substances that are involved

in chemical reactions, the behaviour of each substance could be modelled

with the CDR equation that are dependent with respect to the chemical

reactions. The injections could consist of one or more components of the

fluid aiming for a homogeneous mixture. This would naturally lead to a

more complicated process model and extended processing times.

In addition to EIT, there are also other methods to determine concen-

tration variations in chemical processes. For example in [227], [228], [229],

chemical species tomography was considered. In [227], [228], imaging of

hydrocarbon concentration distribution and mixing within a combustion

chamber was investigated using near infra-red absorption tomography.

In [229], magnetic resonance measurements were used in determining the

distribution of species in a multi-component flow. Controllers for such

processes could be also designed.

Some specific processes such as the web forming processes [33], [190],

[230] are essentially two-dimensional distributed parameter processes that

have some similarities to the example process of this thesis. The web

forming processes include for example paper making [231], [232], [230],

polymer film extrusion [33], and a wide range of coating processes. In the

web forming process, a delivery mechanism supplies material through a

narrow slit to form a continuous web [33]. The material is moving down-

stream of the delivery mechanism. The properties of the material being

controlled vary in two-dimensions over the surface of the material web.

The control system, referred to as a cross-directional control system, aims

to regulate the nonstationary property of the material and, thus, to in-

crease the uniformity of the final product. In the web forming processes,
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the sensing system is usually an array of static sensors or a single sensor

moving back and forth along the material web. An array of actuators is

located across the web at the start of the process upstream of the sen-

sor(s). Typical features of the web forming processes are that they are

high dimensional DPSs, there are constraints on the actuator inputs, and

the development of high-quality models for such processes is a challeng-

ing task.

In paper making, the important process properties are basis weight,

moisture, calliper, and coat weight. For each of these properties specific

control systems can be designed, see [230] for a detailed review. For ex-

ample, the basis weight control system aims to distribute the fibres evenly

over the width of the headbox using either slice lip actuators or dilution

actuators. The dilution actuators change the consistency of the pulp stock

with a flow of low consistency water and, thus, locally reduce the basis

weight. The flow rate of actuators is adjusted on the basis of the mea-

surements. In the polymer film extrusion, the thickness of the film can be

controlled with a heater set which continuously vary the thermal proper-

ties of the material web [33].

4.4 DISCUSSION

In this chapter, a control system for the CD process was designed. Two

controllers, the approximate LQG controller and the approximateH∞ con-

troller, were formulated. The formulation of the approximate controllers

followed the formulation of the basic controllers shown in Chapter 2 with

the exceptions of the feedforward element introduced in the context of the

approximate LQG controller and the new state variable in the context of

the approximate H∞ controller. Without these elements, the performance

of the controllers would naturally be inadequate.

In industrial processes, the actuators may have physical constraints.

In the example application considered in this thesis, several physical con-

straints on the injectors need to be considered. Firstly, the injectors can

only add substance to the flow. Secondly, the flow rate of an injector has

a maximum value depending on the injection mechanism. Thirdly, it may

not be possible to adjust the injection rate fast enough for extremely fast

processes. The first two physical constraints result in a nonlinear and

constrained actuation mechanism. In general, the constraints on control

inputs, states, and outputs are difficult to implement in the LQG frame-

work. In this thesis, only the first constraint was taken into consideration
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in the LQG control and it was handled in a straightforward manner as

explained in Section 4.2.2. Another sub-optimal and one of the simplest

manners to handle the first two constraints would be to choose the param-

eters when defining the weighting matrices in the cost function so that the

values of the control inputs lie within a required range. Furthermore, the

constraints could be included more formally using model predictive con-

trol (MPC).

The third constraint on injectors is related to the response of the in-

jectors. Specifically, the dynamic response of the injectors has to be faster

than the dynamic response of the process in order to compensate for the

unwanted events in time. The dynamic response of processes involving

fast moving fluids is mainly determined by the convection rate of the flow.

The effect of diffusion is often less significant. The dynamic response of

the injectors depends on the speed of the actual flow valve adjusting the

injection rate. In practice, this constraint sets high demands on the devel-

opment of the flow valve.

A problem when monitoring industrial processes with EIT is that typ-

ically the domain of interest, whether it is a pipeline, a vessel, or a tank,

is made of electrically conducting metallic material. In such a case, the

domain acts like a large electrode, and the injected current leaks away

through the wall. In order to overcome the problem of conducting bound-

aries, the electrodes in industrial processes must be located on the inner

boundary of the domain [1]. Thus, the electrodes are invasive as they

penetrate the domain boundary but non-intrusive. However, the inva-

sive electrodes alone do not solve the problem, and, therefore, additional

methods are needed. In [123], several approaches to handle the problem

were reviewed. For example, the domain boundaries can be composed

of an electrically non-conducting material or the electrodes can be elec-

trically insulated. The latter approach may, however, lead to reconstruc-

tions of poor quality. Furthermore, a grouped-node technique developed

in [123] can be applied to model the conducting wall of the domain.

The questions of how many EIT electrodes are needed and where to

place them depend on the process. When the object of interest is a tank,

a stirred vessel, or a pipeline, the electrodes are typically arranged in

several layers on the object boundary. It is stated that in such a case

the state estimation accuracy is the highest in the middle region of the

area covered by the sensors. Recently, a novel approach of using only

a single electrode layer was proposed [113]. Furthermore, additional in-

ternal electrodes could be placed inside the object to improve the qual-

ity of the EIT data provided that it suits the characteristics of the pro-
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cess [233], [234], [235], [236], [237]. For web forming processes, for ex-

ample, a different arrangement of electrodes is needed. An arrangement

with electrodes at the edges of the web would likely be inappropriate.

The placement of the injectors depends on the considered process. For

web forming processes, the injectors are located in a line across the web.

For mixing processes, the injectors are located on the domain boundary.

A challenge when boundary injectors are used is how to get the concen-

trate into the middle regions of the pipe effectively. In Section 5.3, the

simulation results indicate that it is possible to achieve adequate control

performance with boundary injectors if the flow rates of the injectors are

high enough. The high flow rates, however, affect the velocity field inside

the pipe and the velocity field becomes nonstationary and dependent of

the flow rates. This fact needs to be addressed in the process modelling.

Also the location of the injectors with respect to the EIT electrodes and the

output boundary has an influence on the control performance. The con-

cept of injector placement in a specific application is considered in Section

7.

If the controller and the observer are based on a spatial discretisa-

tion of the PDE models, properties like controllability and observability

may depend on the discretisation method and on the number and the

locations of the discretisation points. However, if the discretisation is

done properly and the finite-dimensional model is a good approxima-

tion of the infinite-dimensional model, then the analysis of the finite-

dimensional model generally yields adequate information about the prop-

erties of the infinite-dimensional system. In Section 4.2.4, the controlla-

bility and the observability analysis of the system was discussed on the

basis of the finite-dimensional approximations of the infinite-dimensional

models. One could also consider the controllability and observability of

the infinite-dimensional models in the case of an infinite-dimensional con-

troller. A theoretical controllability and observability analysis of the state-

space model consisting of the CD state equation and the EIT observation

equation as in this thesis could be based on the formulation of the model

in [186].
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5 Simulations using approximate linear

quadratic Gaussian controller

In Chapter 4, a control system for monitoring and controlling a convection-

diffusion (CD) process on the basis of electrical impedance tomography

(EIT) observations was designed. The aim of the control system was to

control the concentration distribution of a chemical substance in a fluid

flow over a cross-section at a particular point of a pipeline. In this chapter,

the performance of the designed control system is evaluated with numer-

ical simulations when the controller is the approximate linear quadratic

Gaussian (LQG) controller. The simulations are executed in the Matlabr

platform.

In Section 5.1, two-dimensional simulation results when the approx-

imate LQG controller is utilized are presented and the robustness of the

controller is tested [53], [54], [44], [57]. In Section 5.2, the performance of

the approximate LQG controller is evaluated with three-dimensional sim-

ulations. In Section 5.3, boundary actuators are used and the velocity field

inside the pipe changes due to the boundary injections [56]. In Section 5.4,

the effects of two different state estimators, the globally linearised Kalman

filter and the iterated extended Kalman filter, on control performance are

compared [55].

5.1 TWO-DIMENSIONALAPPROXIMATE LQGCONTROLLER

SIMULATIONS

Firstly in this section, the simulation of the concentration evolution cor-

responding to the actual process in practical implementations is consid-

ered. Secondly, the simulation of the EIT observations corresponding to

the observations obtained from the EIT measurements in practical imple-

mentations is considered. Thirdly, the computation of the concentration

estimates and the control inputs using the globally linearised Kalman fil-

ter and the approximate LQG controller, respectively, is considered.

The simulation of the concentration evolution, the simulation of the

EIT observations, and the computation of the control inputs are not sep-

arable (see Figure 5.1) although they are considered separately. For the

simulation of the concentration evolution, one needs the control inputs.
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t

EIT measurement
Change flow rate

t+1

Recompute concentration estimate
Recompute control input

EIT measurement
Change flow rate

Concentration varies

Figure 5.1: The timeline of the control process.

The flow rates of the injectors change only at the measurement times. It

should be noted, however, that the concentration varies during the time

between the EIT measurements. When computing the control input cor-

responding to a measurement time, one needs the estimate of the con-

centration distribution corresponding to that time. For the computation

of the concentration estimate, one needs the simulated EIT observation.

And finally for the simulation of the EIT observation, one needs the con-

centration distribution corresponding to the measurement time.

5.1.1 Simulation of the concentration evolution

In the two-dimensional simulations, a finite segment of a pipe illustrated

in Figure 4.1 is considered. The pipe width is 10 cm and the pipe length 40

cm. The spatial and temporal variations of the concentration in the pipe

are modelled with the CD model (3.1)-(3.5) where~r ∈ R
2. The concentra-

tion variations in the fluid are mainly due to low concentration inclusions

entering the pipe through the boundary Λin. The concentration on the

boundary Λin is modelled with the input concentration (3.5). In this sec-

tion, the motion of fluid is modelled with the stationary incompressible

Navier-Stokes equations (3.10)-(3.11).

The concentration evolution in the pipe is simulated using the finite-

dimensional approximation of the CD model. The finite element method

(FEM) is employed to obtain the finite-dimensional approximation. In the

finite-dimensional approximation of the concentration, the basis functions

are piecewise linear functions (piecewise 1st order polynomial functions).

The finite element (FE) mesh used in the approximation is shown in Figure

5.2(a). For the backward Euler method, one needs to select a suitable time

step in order to obtain an accurate numerical solution of the CD model.

A suitable time step ∆t can be chosen on the basis of prior knowledge or

from a set of simulations. In this thesis, ∆t = 2.5 ms is chosen from a set
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(a) (b)

Figure 5.2: The finite element meshes for approximating the CD model. (a) The mesh

employed when constructing the evolution model for the simulation of the concentration

evolution. (b) The mesh employed when constructing the evolution model for the state

estimator and the controller.

Figure 5.3: The input concentration.

of simulations by trial and error.

The finite-dimensional approximation of the input concentration is

shown in Figure 5.3 in which dark blue indicates low and dark red high

concentration. The concentration of the homogeneous background is 5.0×
10−3 mol−1cm2 and the minimum value of the concentration in the low

concentration inclusions is 2.5× 10−3 mol−1cm2. Time evolves from right

to left. A vertical cross-section in Figure 5.3 corresponds to the concentra-

tion on the boundary Λin at one time instant.

The solution of the Navier-Stokes equations (3.10)-(3.11) is the parabolic

velocity field

~v~r1(~r) =
3

2
v~r1,mean

[

1−

(

|~r2 −~r2,0|

r̃

)2
]

, ~v~r2(~r) = 0 (5.1)

where v~r1,mean is the spatial average of the velocity in the horizontal di-

rection of the pipe, ~r2,0 is the ~r2-coordinate of the pipe center, and r̃ is

the pipe width. In the simulations, the average velocity is selected to

be v~r1,mean = 50 cms−1 and the diffusion coefficient κ = 5 cm2s−1. The

velocity field (5.1) is depicted in Figure 5.4. Assuming that the fluid is

saline and taking into account the pipe diameter, it is noted that with the

selected spatial average of the velocity the flow is actually turbulent (the

Reynolds number is of order 104) and the true velocity profile is neither

stationary nor parabolic. The effects of turbulent mixing (and other tem-

poral changes in the velocity) are modelled by increasing the diffusion
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Figure 5.4: The parabolic velocity field.

(a) (b)

Figure 5.5: The finite element meshes when approximating the CEM. (a) The mesh em-

ployed when constructing the observation model for simulating the measurements. (b) The

mesh employed when constructing the observation model for the state estimator and the

controller.

coefficient κ [98].

5.1.2 Simulation of the EIT observations

The EIT observations are modelled with the complete electrode model

(CEM) (3.29)–(3.34) where~r ∈ R
2. The finite-dimensional approximation

of the CEM is used when simulating the observations and it is obtained

with the FEM. The mesh used in the FEM is illustrated in Figure 5.5(a).

The EIT mesh is refined in the subregions near the electrodes where the

electric potential is known to have rapid changes. The refinement of the

mesh in those regions reduces substantially the errors that result from

the spatial discretisation. In the finite-dimensional approximation of the

electric potential, the basis functions are chosen as piecewise 2nd order

polynomial functions. By contrast, the conductivity is approximated us-

ing piecewise linear functions.

In the simulations, the currents are injected between opposite elec-

trodes. As illustrated in Figure 5.6 in this thesis, the concept of opposite

has a slightly different meaning in comparison to other implementations.

The dashed lines connect the opposite electrodes. Firstly, the current is

injected between the first and the ninth electrode, secondly between the

second and the tenth electrode and so forth. The voltages corresponding
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Figure 5.6: The opposite electrode pairs.

to one current injection are measured between all opposite electrode pairs.

Consequently, 16 voltage measurements are made corresponding to one

current injection.

In this thesis, the time between the current injections ∆tEIT is selected

as 50 ms. Hence, the concentration moves 2.5 cm on average during the

time between the consecutive current injections due to the flow. All the

voltage measurements corresponding to each current injection are exe-

cuted simultaneously and instantly, so that the concentration is taken to

be non-varying during that time.

The voltages corresponding to 64 current injections are simulated. The

voltages are corrupted with observation noise. The observation noise is

assumed to be zero-mean and Gaussian. The noise consists of two com-

ponents. Firstly, noise with standard deviation of 1% of the value of an

individual observation is added to that observation. Secondly, noise with

standard deviation of 0.1% of the voltage range, that is, the difference

between the maximum and the minimum voltage is added to all observa-

tions. This is a more or less standard error model of practical EIT mea-

surement systems.

5.1.3 Construction of the state estimator and the approximate

LQG controller

The objective of the controller is to obtain a uniform concentration distri-

bution over the boundary Λout when there are nine injectors located across

the pipe (see Figure 4.1). The desired output concentration (5.1× 10−3

mol−1cm2) is selected to be higher than the concentration of the homo-

geneous background (5.0× 10−3 mol−1cm2). As a consequence, the con-

troller has to take into account the concentration variations due to the low

concentration inclusions and even if there are no inclusions to increase
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Figure 5.7: The uncontrolled concentration distribution and the desired concentration

distribution over the boundary Λout as an inclusion passes the boundary.

the output concentration so that it matches the desired output concentra-

tion. In Figure 5.7, the concentration distribution over the boundary Λout

is depicted at time t = 1.70 s. The concentration distribution corresponds

to a situation when a low concentration inclusion passes the boundary

Λout and control is not employed. Also, the desired uniform distribution

is plotted. The concentration distribution at the entire pipe at that time is

visualised in Figure 5.8(a).

For the construction of the globally linearised Kalman filter and the

approximate LQG controller, a finite-dimensional approximation of the

CD model (3.1)-(3.5) and of the CEM (3.29)–(3.34) is needed. When ap-

proximating both the CD model and the CEM with the FEM, coarse FE

meshes illustrated in Figures 5.2(b) and 5.5(b) are employed in the spatial

discretisation. The use of the same meshes as in the simulations of the

concentration evolution and the EIT observations would lead to unrealis-

tically good estimates. The use of different meshes (models) is a standard

procedure to avoid the unrealistically good results in the control theory

and in the inverse problems theory. In order to operate with different

meshes, interpolation between meshes is required. In this thesis, the lin-

ear interpolation method is used. The sizes of the FE meshes are given in

Table 5.1 in which the number of nodes and elements for each FE mesh
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Table 5.1: Number of nodes and elements in the FE meshes used for approximating the CD

model and the CEM in two-dimensional simulations. The abbreviation CDM refers to the

CD model. The term ”actual” refers to the FE meshes used for approximating the models

for the simulation of the concentration evolution and the EIT observations. The term

”inverse” refers to the FE meshes used for approximating the models for the construction

of the state estimator and the controller.

Nodes Elements

CDM actual 992 1830

CEM actual, 1storder basis functions 1346 2440

CEM actual, 2ndorder basis functions 5131 2440

CDM inverse 451 800

CEM inverse, 1storder basis functions 707 1248

CEM inverse, 2ndorder basis functions 2661 1248

is listed. The mesh sizes and, consequently, the computational load in the

two-dimensional simulations are moderate.

When approximating the solution of the CD model with the FEM, the

input concentration (3.5) is (partly) unknown. The input concentration

is approximated with a uniform concentration distribution the level of

which equals the concentration of the homogeneous background.

Once the discrete-time state-space model (4.1)–(4.2) is obtained, the

controllability and the observability of the numerical system are tested

by computing the state controllability matrix (2.106), the output control-

lability matrix (2.108), and the observability matrix (2.109). The globally

linearised observation model (3.63) is used when testing the observability.

The rank tests indicate that the system is neither state controllable nor

observable. This fact is also intuitively clear. By contrast, the numerical

system is output controllable. However, the required sequence of control

inputs that transfers the output to a desired output may not be applicable

in practice (negative and unrealistically large entries).

For the globally linearised Kalman filter, the covariance matrices Γw1,t

and Γvt as well as the initial state c0 and the initial covariance matrix Γ0|0

are selected as follows. Let cbh ∈ R
nϕ denote a constant vector whose

entries equal the concentration of the homogeneous background βbg =

5.0× 10−3 mol−1cm2. The structure of the state noise covariance matrix

Γw1,t is described in Appendix A. The computation of Γw1,t requires the

specification of the matrices Γηt and Γξt . It is assumed that the input noise

Dissertations in Forestry and Natural Sciences No 128 97



Anna Kaasinen: Optimal Control in Process Tomography

covariance matrix is Γηt = β2
η I where the standard deviation βη is selected

to be the presumed standard deviation of the input concentration cin,t so

that βη = 1
8 × βbg. The nodal noise covariance matrix Γξt = β2

ξ I where the

standard deviation βξ = 1
40 × βbg.

The observation noise consists of two components as explained above.

However in this thesis, the observation noise covariance matrix is Γvt =

β2
v I where the standard deviation βv is taken to be 0.1% of the voltage

range. Such an approximation is shown to be adequate. Furthermore,

the initial covariance matrix is Γ0|0 = ( 1
10)

2 I and the initial concentration

is c0|0 = cbh. Often, the initial concentration is not known. To take into

account the uncertainty of the initial state, the initial covariance is set

relatively large. Thus, the uncertainty is reflected in the variances of the

first estimates, but the transition effect fades out soon.

When using the approximate LQG controller described in Section

4.2.2, the weighting matrices should be selected. Feasible scalars βQ and

βR are determined from simulations that are different from the simulation

study the results of which are shown in this section.

5.1.4 Two-dimensional simulation results using the approximate

LQG controller

The effect of control on the process is illustrated in Figure 5.8. In Figure

5.8(a), the uncontrolled concentration evolution is shown. When simulat-

ing the uncontrolled concentration evolution, the control term is omitted

from the CD model. In Figure 5.8(b), the change in the concentration due

to the injected concentrate is shown. In the simulation of the concentra-

tion change, the input concentration cin = 0. Thus, the finite-dimensional

model for the concentration change is

cc,t+1 = Acc,t + B2ut (5.2)

where cc,t ∈ R
nϕ and cc,0 ∈ R

nϕ is a zero vector. In Figure 5.8(c) and 5.8(d),

the controlled concentration evolution and the globally linearised Kalman

filter estimates of the controlled concentration are shown, respectively.

Especially from the last four subfigures corresponding to times t =

1.65, ..., 1.80 s in Figure 5.8(d), it can be seen that the low concentration

inclusions cannot be observed at the beginning of the pipe. At those times,

the current is injected between electrodes that are located in the middle of

the pipe (at time 1.75 s between the third and the eleventh electrode and

at time 1.80 s between the fourth and the twelfth electrode). Overall, the
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Figure 5.8: (a) The uncontrolled concentration evolution, (b) the change of concentration,

(c) the controlled concentration evolution, and (d) the globally linearised Kalman filter

estimates of the controlled concentration at times t = 1.25, 1.30, . . . , 1.75, 1.80 s.

estimates, however, provide the controller with adequate information on

the process. Consequently, when a low concentration inclusion passes the

array of injectors, the flow rates of injectors are increased. This can be seen

particularly at times t = 1.35, ..., 1.60 s in Figure 5.8. As a consequence of

the injections, the concentration over the boundary Λout is regulated and

it matches the desired concentration quite well.

The uncontrolled concentration and the controlled concentration over

the boundary Λout are shown in Figure 5.9 in which the concentration

values on the FE nodes on Λout are plotted at each time t. In Figure

5.10, the predicted output concentration is plotted. By predicted output
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concentration one means the globally linearised Kalman filter predictions

(see Equation (2.40)). It should be noticed that when computing the FE

approximation for the controlled concentration and the predicted con-

centration, the FE meshes are of different size (see Table 5.1). Thus, the

number of the FE nodes on Λout is also different. When comparing Fig-

ures 5.9 and 5.10, it can be seen that the predicted output concentration

is lower than the actual output concentration. This leads to control inputs

that are larger than would actually be required and the controlled output

concentration is at some time instances above the desired output concen-

tration. However, it can be stated that the controlled output concentration

matches quite adequately the desired output concentration.

Furthermore, the control performance of the system is evaluated with

a function

δ (t) =

(

∫

Λout

|yref(~r, t)− cout(~r, t)|
2dS

)
1
2

(5.3)

where the constant function yref : Λout × R+ → R, yref = yref(~r, t), is the

desired output concentration. The function (5.3) is a measure of output

(or tracking) errors, that is, the differences between the desired output

concentration and the controlled output concentration. The integral (5.3)

is computed using the FE approximation of the output concentration. The

output errors for the uncontrolled and controlled output concentration are

depicted in Figure 5.11. Also the output errors for the predicted output

concentration are shown. The output errors for the controlled output con-

centration are notably smaller than the output errors for the uncontrolled

output concentration. Furthermore, the output errors for the controlled

output concentration are smaller than the ones for the predicted output

concentration.

It can be seen from Figures 5.9 and 5.11 that there is an initial transient

before the controller is able to bring the controlled output concentration

close to the desired concentration. The length of the initial transient de-

pends on the distance between the injectors and the output boundary.

The closer the injectors are to the boundary Λout the shorter the length of

the initial transient as the injected concentrate reaches the boundary Λout

faster. In this case, the transient error decays to zero sufficiently fast.

5.1.5 Effects of mismodelling velocity fields

In this thesis, the robustness of the control system is examined with sim-

ulations in which the model for the fluid dynamics of the process is inac-
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Figure 5.9: The uncontrolled concentration and the controlled concentration on the FE

nodes on Λout. The thick black line indicates the desired output concentration.
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Figure 5.10: The predicted concentration on the FE nodes on Λout. The thick black line

indicates the desired output concentration.

curate. When considering the control system designed in this thesis, it is
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Figure 5.11: The output errors for the uncontrolled concentration, the controlled concen-

tration, and the predicted concentration.

assumed that the main source of uncertainty is in the modelling of the ve-

locity field. By contrast, the diffusion coefficient is assumed to be known

relatively accurately. In the simulations, an inaccurate spatial average of

the velocity in the horizontal direction is used in the CD model when con-

structing the globally linearised Kalman filter and the approximate LQG

controller. Only the spatial average of the velocity is altered and the ve-

locity profile is still parabolic. In [238], the effect of using an incorrect

velocity field on the accuracy of the state estimates was investigated in a

simulation study similar to the one presented in this section. However

in [238], process control was not considered.

In the first robustness test, the inaccurate spatial average of the ve-

locity is selected to be v~r1,mean = 45 cms−1 whereas the actual spatial

average of the velocity is v~r1,mean = 50 cms−1. Thus when simulating

the concentration evolution, v~r1,mean = 50 cms−1 and when constructing

the globally linearised Kalman filter and the approximate LQG controller,

v~r1,mean = 45 cms−1. In Figure 5.12, the uncontrolled output concentra-

tion and the controlled output concentration when the inaccurate spatial

average of the velocity is used are plotted. Furthermore in Figure 5.12,

the controlled output concentration when the accurate spatial average of

the velocity is used is plotted for comparison. In Figure 5.13, the output
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Figure 5.12: The minimum and the maximum value of the uncontrolled concentration and

the controlled concentration on the FE nodes on Λout at each time when v~r1,mean = 45

cms−1 (incorrect) and v~r1,mean = 50 cms−1 (correct). Average velocity refers to the

spatial average of the velocity v~r1,mean. The thick black line indicates the desired output

concentration.

errors are presented. It can be seen from Figures 5.12 and 5.13 that the

result with a slightly mismodelled velocity field is satisfactory.

In the second robustness test, a large error is applied to the spatial av-

erage of the velocity so that v~r1,mean = 20 cms−1. In Figure 5.14, the uncon-

trolled output concentration and the controlled output concentration are

plotted when the inaccurate spatial average of the velocity v~r1,mean = 20

cms−1 is used when constructing the state estimation and the controller.

Furthermore in Figure 5.14, the controlled output concentration when the

accurate spatial average of the velocity v~r1,mean = 50 cms−1 is used is com-

puted for comparison. In Figure 5.15, the output errors are presented. It

can be concluded from Figures 5.14 and 5.15 that the control performance

degrades considerably. However, the controller is still able to control the

inhomogeneities up to a point. The explanation for the loss of control per-

formance can be seen in Figure 5.16. In Figure 5.16(a), the evolution of the

controlled concentration is represented. The globally linearised Kalman

filter estimates of the controlled concentration are shown in Figure 5.16(b)

and the evolution of the change in the concentration in Figure 5.16(c). It

can be seen from the subfigures at times t = 1.25, . . . , 1.50 (the top six
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Figure 5.13: The output errors for the uncontrolled concentration and the controlled con-

centration when v~r1,mean = 45 cms−1 (incorrect) and v~r1,mean = 50 cms−1 (correct).

Average velocity refers to the spatial average of the velocity v~r1,mean.

subfigures) that when the inaccurate (lower) spatial average of the veloc-

ity is used in the CD model, the inclusions are estimated to move slower

than they actually do. Thus, the controller is operating on the basis of

misinformation, and delays occur in injecting the strong concentrate. The

selected times are equivalent to those shown in Figure 5.8 in which the

results with the correct velocity field are shown.

5.1.6 Discussion of two-dimensional approximate LQG controller

simulations

In Section 5.1, the performance of the approximate LQG controller de-

signed for controlling a CD process was evaluated with two-dimensional

simulations. The simulation results indicated that in this case it is possible

to base an automatic and model-based controller on tomographic obser-

vations. It is noted that the output concentration exhibited some minor

deviations from the desired output concentration but with only a finite

number of pointwise injectors an uniform concentration distribution is

difficult or even impossible to achieve.

In practical process control applications, there are inevitable distur-
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Figure 5.14: The minimum and the maximum value of the uncontrolled concentration and

the controlled concentration on the FE nodes on Λout at each time when v~r1,mean = 20

cms−1 (incorrect) and v~r1,mean = 50 cms−1 (correct). The thick black line indicates the

desired output concentration. Average velocity refers to the spatial average of the velocity

v~r1,mean.

bance inputs. Such disturbance inputs include for example different kind

of measurement and modelling errors. In this thesis, the partly unknown

input concentration can be considered as a non-Gaussian disturbance in-

put. The basic LQG controller can overcome the effects of zero-mean

Gaussian disturbance inputs. Thus in order to control the CD process

adequately with the approximate LQG controller, the input concentration

was modelled as a stochastic function. By doing this, the uncertainty in

the input concentration was taken into account. This kind of procedure

actually made process control feasible in this example.

As the model-based control system is designed on the basis of a math-

ematical model of the process and if simplifying assumptions are made in

process modelling, one can not automatically guarantee acceptable perfor-

mance or even stability when implementing the controller in practice. For

example, most flows in process control applications are turbulent and/or

multiphase flows that can be challenging to model and, thus, approxi-

mations are sometimes used. Furthermore in high dimensional real time

control problems, the computational load has to be minimized and model
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Figure 5.15: The output errors for the uncontrolled concentration and the controlled con-

centration when v~r1,mean = 20 cms−1 (incorrect) and v~r1,mean = 50 cms−1 (correct).

Average velocity refers to the spatial average of the velocity v~r1,mean.

reduction is often considered. In such cases, by investigating the robust-

ness of the control system, one is able to find out whether the control sys-

tem is sensitive to inaccuracies in the process modelling. In Section 5.1.5,

the robustness of the developed control system was tested with two sets

of simulations. The results indicated that as long as the observations and

the overall stochastic structure of the process dynamics are adequately

accurately modelled, the state estimation and control schemes are rela-

tively tolerant to misspecification of such quantities as the velocity field.

These results are also supported by the results in [238] and [44]. One

could also estimate such unknown quantities as the velocity field simul-

taneously with the concentration distribution as proposed in [239], [240].

However, such an approach is computationally demanding and could be

challenging to implement in practical real time process control applica-

tions.

In this thesis, a homogeneous and stationary reference input was

used since typically in practical industrial process control applications the

(homogeneous or nonhomogeneous) reference input is stationary or is

changed only infrequently. In the simulations, the reference input could

be chosen to be nonhomogeneous and/or nonstationary. The designed
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Figure 5.16: (a) The controlled concentration evolution, (b) the Kalman filter estimates,

and (c) the change in the concentration at times t = 1.25, 1.30, . . . , 1.75, 1.80 s when

v~r1,mean = 20 cms−1.

control system can be modified easily to accommodate such requirements,

and simulations indicate that the control system works well also in those

kind of situations. A change in the reference input would, however, re-

quire recomputation of the steady-state values of the concentration and

the control input that are used when constructing the approximate con-

troller. Furthermore, a change in the reference input would create a tran-

Dissertations in Forestry and Natural Sciences No 128 107



Anna Kaasinen: Optimal Control in Process Tomography

sient error that would, however, in most cases decay to zero quickly.

5.2 THREE-DIMENSIONALAPPROXIMATE LQGCONTROLLER

SIMULATIONS

There are industrial processes that are essentially two-dimensional in na-

ture such as the web forming processes. When designing control sys-

tems for such processes, the control system can be described as a two-

dimensional distributed parameter control system whose performance

can be evaluated with two-dimensional simulations similar to the ones

shown in Section 5.1. Furthermore, there are industrial processes that are

essentially three-dimensional in nature such as the mixing and separa-

tion processes in tanks, pipelines or process vessels. The control systems

for those processes are three-dimensional in nature and are modelled as

three-dimensional distributed parameter control systems. In this section,

a three-dimensional control system is designed for a specific CD process

monitored with EIT and simulation results to evaluate the performance of

the control system are shown.

Controlling a process that is three-dimensional in nature with bound-

ary actuators is often a difficult task. For example, if one wants to con-

trol the concentration distribution of a substance in a fluid flowing in

a pipeline with injectors located on the pipe boundary, the challenge is

how to get the injected concentrate efficiently and accurately into the mid-

dle regions of the pipe. By contrast, monitoring a process that is three-

dimensional in nature with EIT is less difficult than monitoring an essen-

tially two-dimensional process when considering for example the location

of the sensors.

5.2.1 Simulation of the concentration evolution, simulated EIT

observations, and construction of the control system

The domain of interest in the three-dimensional simulations is a pipe il-

lustrated in Figure 5.17. The pipe radius is 5 cm and the pipe length 20

cm. The electrodes are placed in four layers so that there are 16 electrodes

per layer. Consequently, there are 64 electrodes altogether. The control

performance with two different injector settings is evaluated. In the first

case referred to as Case 1, 4 boundary injectors are located 8 cm down-

stream of the boundary Λin, see Figure 5.17. In the second case referred to

as Case 2, there are 13 points from which the extra substance is added to
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Figure 5.17: Case 1. Illustration of the pipe in the three-dimensional simulations. Bound-

ary patches describe the EIT electrodes. Injectors are denoted by red circles and the black

dots refer to the FE nodes on the boundary Λout.

the fluid flow over a vertical cross-section of the pipe 8 cm downstream of

the boundary Λin. Case 2 simulates, for example, a situation in which the

extra substance is injected so that it reaches also the middle regions of the

pipe. In Figure 5.18, the formation of the injectors in Case 2 is depicted in

detail. In both cases, the objective of the control system is to regulate the

concentration profile over the boundary Λout, see Figure 5.17.

Firstly, the simulation of the concentration evolution in the pipe is

considered. The concentration is modelled with the CD model (3.1)-(3.5)

where ~r ∈ R
3. In the three-dimensional simulations, the low concentra-

tion inclusions are of the form of a sphere. In the interior of the sphere,

the concentration decreases as the center of the sphere is approached.

The minimum and the maximum concentration values are selected as in

the two-dimensional simulations. The low concentration inclusions enter

the pipe through the input boundary Λin. The concentration on Λin is

modelled with the input concentration (3.5). The velocity field in (3.1) is

modelled with the three-dimensional stationary Navier-Stokes equations

(3.10)-(3.11).

The finite-dimensional approximation of the CD model (3.1)-(3.5) is

used for the simulation of the concentration evolution. The CD model is

approximated with the FEM. In the finite-dimensional approximation of

the concentration, the basis functions are piecewise linear functions. The
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Figure 5.18: Case 2. Formation of the injectors and the FE mesh on the injector layer.

velocity field is parabolic so that

~v~r3(~r1,~r2,~r3) = 2v~r3,mean

(

1−
~r21 +~r22

r̃2

)

,

~v~r1(~r1,~r2,~r3) = ~v~r2(~r1,~r2,~r3) = 0 (5.4)

where the spatial average of the velocity in the horizontal direction of

the pipe is chosen as vr̄3,mean = 50 cms−1. Furthermore, the diffusion

coefficient in the simulations is κ = 5 cm2s−1.

Secondly, the simulation of the EIT observations is considered. The

finite-dimensional approximation of the CEM (3.29)–(3.34) where~r ∈ R
3

is used in the simulation. The CEM (3.29)–(3.34) is approximated with the

FEM. In the finite-dimensional approximation of the internal potential, the

basis functions are chosen as piecewise 2nd order polynomial functions.

By contrast in the finite-dimensional approximation of the conductivity,

the basis functions are piecewise linear functions.

The time between the consecutive EIT measurements is taken to be 50

ms. The concentration distribution changes considerably during the time
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Table 5.2: Number of nodes and elements in the FE meshes used for approximation of

the CD model and the CEM in three-dimensional simulations. The abbreviation CDM

refers to the CD model. The term ”actual” refers to the FE meshes used for approximating

the models for the simulation of the concentration evolution and the EIT observations.

The term ”inverse” refers to the FE meshes used for approximating the models for the

construction of the state estimator and the controller.

Nodes Elements

CDM actual 7667 40800

CEM actual, 1storder basis functions 2646 13080

CEM actual, 2ndorder basis functions 19229 13080

CDM inverse 1911 8880

CEM inverse, 1storder basis functions 1911 8880

CEM inverse, 2ndorder basis functions 13489 8880

interval between the measurements. The currents are injected between

electrodes that are located on opposite sides of the pipe and in different

electrode layers. The voltages are measured between opposite electrodes

of the same electrode layer. Consequently, 64 voltage measurements are

executed corresponding to each current injection. In total, 64 current injec-

tions are applied. See [143] for more details on the measurement protocol.

The voltage observations are corrupted with zero-mean Gaussian obser-

vation noise that consists of two components as in the two-dimensional

simulations presented in Section 5.1.

Thirdly, the construction of the globally linearised Kalman filter and

the approximate LQG controller is considered. The specification of pa-

rameters for the globally linearised Kalman filter and the approximate

LQG controller follows the explanation given in Section 5.1. There are

only a few minor changes. The computation of the covariance matrix Γw1,t

is performed as described in Section 5.1 and Appendix A. However in the

three-dimensional simulations, βη = 1
4 × cbg and βξ = 1

100 × cbg.

One of the challenges in the three-dimensional simulations is the size

of the FE meshes. Table 5.2 summarizes the number of nodes and tetrahe-

dral elements in the FE meshes. In comparison to the FE mesh sizes in the

two-dimensional simulations presented in Table 5.1, the number of nodes

and elements has now increased notably.
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5.2.2 Three-dimensional simulation results using the approxi-

mate LQG controller

The objective of the controller is to regulate the concentration distribu-

tion over the boundary Λout so that the concentration on the FEM nodes

matches the desired concentration (5.1× 10−3 mol−1cm2). Firstly, the per-

formance of the approximate LQG controller is investigated when the

boundary injectors depicted in Figure 5.17 are used (Case 1). The uncon-

trolled concentration evolution, the change in the concentration, and the

controlled concentration evolution are illustrated in Figure 5.19(a), 5.19(b),

and 5.19(c), respectively. Concentration on five vertical layers located 2

cm, 6.5 cm, 11 cm, 15.5 cm, and 20 cm downstream of the boundary Λin

are shown. The last layer is actually the boundary Λout and is, therefore,

the most interesting one. It can be seen that the injectors are not able to

distribute the injected concentrate to the inner regions of the pipe. Thus,

the concentration over the boundary Λout matches a desired concentration

only near the pipe walls.

The uncontrolled concentration and the controlled concentration over

the output boundary Λout are depicted in Figure 5.20 for Case 1. In Fig-

ure 5.20, the lines corresponding to the minimal values of the uncontrolled

concentration and the minimal values of the controlled concentration lie

on top of each other at most times t indicating that the minimum val-

ues of the uncontrolled and controlled concentrations are equal at those

times. Consequently, the injected concentrate is distributed only to some

regions of the pipe and other regions are unaffected by the control action.

From Figure 5.19, it can be concluded that the concentration in the middle

regions of the pipe cannot be adjusted efficiently.

Furthermore, the control performance of the system is evaluated by

investigating the output errors ‖yref − Cct‖2 that are computed using the

FE approximation of the concentration. The output errors for the uncon-

trolled concentration and the controlled concentration are plotted in Fig-

ure 5.21. Despite the difficulties evident in Figure 5.20, the output errors

are smaller for the controlled concentration in comparison to the uncon-

trolled concentration once the effect of the initial conditions has faded.

Secondly, the performance of the approximate LQG controller is in-

vestigated when using the injector setting illustrated in Figure 5.18 (Case

2). The uncontrolled concentration evolution, the change in the concen-

tration, and the controlled concentration evolution are shown in Figure

5.22(a), 5.22(b), and 5.22(c), respectively. Contrary to the case shown in

Figure 5.19, the controller is now able to regulate the output concentration,
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Figure 5.19: Case 1. (a) The uncontrolled concentration evolution, (b) the change

in the concentration, and (c) the controlled concentration evolution at times t =

2.90, 2.95, . . . , 3.15, 3.20 s.
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Figure 5.20: Case 1. The minimum and the maximum value of the uncontrolled concen-

tration and the controlled concentration on the FE nodes on Λout. The thick black line

indicates the desired output concentration.
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Figure 5.21: Case 1. The output errors for the uncontrolled concentration and the con-

trolled concentration.
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and the output concentration matches the desired output concentration.

The uncontrolled concentration and the controlled concentration over

the boundary Λout are depicted in Figure 5.23. It can be concluded that

due to the injected concentrate, the output concentration reaches the de-

sired output concentration throughout the pipe. The output errors for the

uncontrolled concentration and the controlled concentration are plotted

in Figure 5.24. The output errors are notably smaller for the controlled

concentration than for the uncontrolled concentration.

5.2.3 Discussion of three-dimensional approximate LQG con-

troller simulations

The three-dimensional modelling of the process and observations is es-

sential when designing a control system for processes that are three-

dimensional in nature. Such processes include for example processes

involving fluid flowing in a pipe, in a tank or in a process vessel. The

simulation results shown in this section indicated that it is possible to

control a three-dimensional CD process when EIT is used as a sensor for

the controller. The tracking performance and the disturbance rejection of

the proposed controller were adequate at least in Case 2. Robustness of

the designed control system could be investigated with similar simula-

tions as described in Section 5.1.5.

One simplification was made in the simulations involving the mod-

elling of the velocity field. In practical implementations, the injectors are

typically located on the pipe boundary and the flow rates of injectors are

often so high that the velocity field changes due to the injections. In the

simulations, the velocity field was assumed to be stationary due to com-

putational reasons. To compensate for this simplifying approximation,

the effects of small scale turbulent mixing were modelled by increasing

the diffusion coefficient. Furthermore, the injector setting in Case 2 was

constructed to simulate the case in which the flow rates of injectors are

high, and the injected concentrate diffuses to the middle regions of the

pipe.

The computational complexity of the system is a crucial issue espe-

cially in three-dimensional simulations. The dimension of the state vari-

able is inevitably very large since the number of unknowns equals the

number of nodes in the FE mesh. The FE meshes in turn have to be fine

for the solution to have an adequate level of accuracy. There are effective

methods to overcome the problem of dense discretisation. One of them,

the approximation error approach, is considered below. Such an approach
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Figure 5.22: Case 2. (a) The uncontrolled concentration evolution, (b) the change

in the concentration, and (c) the controlled concentration evolution at times t =

2.90, 2.95, . . . , 3.15, 3.20 s.
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Figure 5.23: Case 2. The minimum and the maximum value of the uncontrolled concen-

tration and the controlled concentration on the FE nodes on Λout. The thick black line

indicates the desired output concentration.
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Figure 5.24: Case 2. The output errors for the uncontrolled concentration and the con-

trolled concentration.
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could be adopted if the process control methods presented in this thesis

are used in practical implementations.

The basic idea in the approximation error method is to analyse the

statistical properties of the error processes related to the state and ob-

servation models prior to actual measurements, and to incorporate that

information into the models. An example related to the application dis-

cussed in this thesis is the reduction of the computational complexity of

the EIT forward model. Due to the ill-posed nature of the EIT estima-

tion problem, the spatial discretisation of the forward model should be

fine leading to a high-dimensional forward model. However, the use of

a high-dimensional forward model may lead to excessive computational

times and, thus, the dimensionality of the forward model should be re-

duced especially in the real time industrial applications. If the modelling

errors due to the reduced discretisation are neglected, the solution of the

EIT estimation problem can be inadequate. If the discretisation errors are

appropriately modelled, a reduced observation model can be employed in

process monitoring as the uncertainty in the model is taken into account.

The approximation error approach was first proposed in [5] (see also

[51]) where the discretisation errors were accommodated for in station-

ary inverse problems. In addition to model reduction, the method has

also been applied to problems in which the errors are caused by (par-

tially) unknown geometry [241], by truncation of the computational do-

main [242], [243], by (partially) unknown boundary conditions [179], and

by linearisation of the observation model [244]. The approximation error

method for the (linear and nonlinear) nonstationary inverse problems was

presented in [49], [50]. In [185], the nonstationary approximation error

approach was applied in monitoring of a CD process in which the nonsta-

tionary velocity fields were unknown. The stationary approximation error

method was evaluated with EIT laboratory experiments in [241], [243] and

the nonstationary approximation error method in [179].

5.3 APPROXIMATE LQGCONTROLLERSIMULATIONSWITH

NONSTATIONARY VELOCITY FIELDS

In real life process control applications in which pipelines or tanks are in-

volved, actuators are typically located on the boundary of the object. This

may lead to certain challenges when designing the whole control system.

If one uses, for example, boundary actuators injecting extra substance

into the flow, the injection rate has to high enough so that the injected
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Figure 5.25: Illustration of the pipe with boundary injection points denoted by black

squares.

substance reaches also the middle regions of the object. As a consequence

of the high injection rate, the injections alter the velocity field inside the

object. Furthermore, nonstationary velocity fields are typical in practical

industrial implementations even without the impact of a controller. The

question is whether in such a case modelling the velocity field inside the

pipe as stationary and unaffected by the injections as in Section 5.1 leads

to adequate control performance.

The starting point for the simulation study in this section corresponds

to the one presented in Section 5.1 with the exception of the nonstation-

ary velocity fields and the boundary injections. In this section, the domain

of interest is a pipe with two injection boundaries located on the oppo-

site walls of the pipe as illustrated in Figure 5.25. The situation can be

compared to a system involving side-tee mixers when the flow rate of

the injected concentrate is controlled using a flow valve. The objective of

the approximate LQG controller is to regulate the concentration over the

boundary Λout on the basis of EIT observations. The performance of the

control system is evaluated with two-dimensional simulations.

5.3.1 Simulation of the concentration evolution and the EIT ob-

servations

The concentration is modelled with the CD model (3.1)-(3.5) where~r ∈ R
2

and the velocity field ~v is nonstationary. The variations in the concentra-

tion are due to low concentration inclusions that enter the pipe through

the boundary Λin. The concentration on boundary Λin is modelled with

the input concentration (3.5). Although the injection points are on the

boundary of the domain, the effect of the injected concentrate is modelled

as described in Section 3.1.3 and not as a boundary condition for the CD

equation. Such a boundary condition depending on the flow rate on the
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injection boundary could also be formulated.

The nonstationary velocity field is modelled with the nonstationary

Navier-Stokes equations (3.8)-(3.9) with the initial and boundary condi-

tions (3.12)-(3.14). Furthermore, an additional boundary condition is pos-

tulated for the modelling of the velocity field on the injection boundaries.

Let Λ
(j)
inj ⊂ Λwall, j = 1, 2, denote the part of the boundary through which

the concentrate is injected into the main stream. The velocity field on the

injection boundary is defined as

~v(~r, t) = ~v
(j)
inj (~r, t), ~r ∈ Λ

(j)
inj (5.5)

where ~v
(j)
inj refers to the velocity field on the jth injection boundary Λ

(j)
inj ,

j = 1, 2. The flow on the jth injection boundary Λ
(j)
inj is a plug flow so that

when~r ∈ Λ
(j)
inj ,

~v
(j)
inj,~r1

(~r, t) = 0 (5.6)

~v
(j)
inj,~r2

(~r, t) = v
(j)
inj,0(t). (5.7)

where the velocity v
(j)
inj,0(t) in the vertical direction at time t depends on

the flow rate u(j)(t) on the jth injection boundary. It can be shown that if

the density ρ and the molar mass M f of the fluid, and the velocity on Λ
(j)
inj

are constant, the velocity

v
(j)
inj,0(t) = (−1)j+1

u(j)(t)M f

ρ|Λ
(j)
inj |

(5.8)

where |Λ
(j)
inj | is the size of the injection boundary.

The finite-dimensional approximation of the CD model (3.1)-(3.5) is

derived utilizing the FEM as in Section 5.1 with the exception that the

velocity field is nonstationary. To obtain an approximation for the velocity

field ~v, the boundary value problem (3.8)-(3.9) with initial and boundary

conditions (3.12)-(3.14) and (5.5) is solved numerically using the FE solver

in COMSOL Multiphysicsr. The external forces acting on the system are

nonexisting in this study and, thus, ~f = 0. Furthermore, the velocity field

~vin on the boundary Λin is parabolic (see equation (5.1)) where the spatial

average of the velocity in the horizontal direction is vin,~r1,mean = 50 cms−1.

When approximating the Navier-Stokes equations with the FEM, the

computational domain is taken to be twice as long as the original pipe.
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The interesting region is in the middle of the new computational domain.

Such a choice compensates for the effects of the unknown boundary data

on boundaries Λin and Λout on the velocity field. Furthermore, the FE

mesh when approximating the Navier-Stokes equations is denser than the

FE meshes for approximating the CD model and the CEM (Table 5.1) in

order to guarantee adequate numerical accuracy. The number of nodes

is 17245 and the number of elements is 33760 when approximating the

Navier-Stokes equations. The linear interpolation method is applied for

the interpolation between the different meshes.

The finite-dimensional and discrete-time approximation of the CD

model corresponds to (3.27) with the exception that the state transition

matrix, the control input matrix, and the process source term are in this

case nonstationary and dependent of the velocity field at time t. Thus, the

evolution model is

ct+1 = At(~vt)ct + B2,t(~vt)ut + st+1(~vt) +wt. (5.9)

When simulating the concentration evolution (corresponding to the actual

process), the velocity field ~vt, the matrices At and Bt, and the vector st+1

have to be recomputed as each time t.

The EIT observations are modelled with the CEM (3.29)–(3.34) where

~r ∈ R
2. The current injection and the voltage measurement patterns

are similar to the ones described in Section 5.1. Furthermore, the finite-

dimensional approximation of the CEM is derived as in Section 5.1.

5.3.2 Construction of the control system

The control inputs are obtained with the approximate LQG controller de-

signed in Section 4.2.2. The globally linearised Kalman filter is used as

a state estimator. In the FE approximation of the CD model (3.1)-(3.5)

for constructing the globally linearised Kalman filter and the approxi-

mate LQG controller, the nonstationary velocity field is replaced with an

approximate stationary velocity field. The approximate velocity field is

parabolic and modelled with (5.1). As a consequence of the stationary ve-

locity field, the matrices and the process input vector in the state equation

(5.9) are stationary so that At = A, Bt = B, and st = s̄ for all t. Thus, the

computational load of the state estimator and the controller is decreased

and tolerable for real time application. The parameters for the globally

linearised Kalman filter are specified in Section 5.1.3. The parameters for

the weighting matrices needed when constructing the approximate LQG

controller are determined from a set of simulations.
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5.3.3 Simulation results with nonstationary velocity fields

The uncontrolled concentration evolution is shown in Figure 5.26(a). When

computing the uncontrolled concentration evolution, there are no injec-

tions affecting the velocity field. Thus, the velocity field is approximately

parabolic. The controlled concentration evolution is shown in Figure

5.26(c) and the change in the concentration in Figure 5.26(b). In these

computations, the velocity field is nonstationary and changing according

to the flow rates of the injectors. It can be seen that even though the

flow rates of injectors are high, the injected concentrate does not reach

the middle regions of the pipe. Consequently, the concentration in the

middle regions of the pipe is lower than the concentration near the pipe

walls. Correspondingly on the boundary Λout, the concentration near the

pipe walls is higher and the concentration in the middle of the boundary

Λout is lower than the desired output concentration.

In Figure 5.26(d), the globally linearised Kalman filter estimates of the

controlled concentration are shown. It can be seen from the last four sub-

figures that the estimated output concentration is lower than the actual

output concentration. Especially in the regions near the pipe boundaries,

the estimates are less accurate. Furthermore from the subfigures from

the fourth subfigure to the eight subfigure, it can be concluded that the

low concentration inclusions are estimated to move slower than they ac-

tually do. These inaccuracies in the state estimates deteriorate the control

performance.

Although the concentration on the boundary Λout does not fully match

the desired output concentration, the benefit of control on the process is

clear. In Figure 5.27, the uncontrolled concentration and the controlled

concentration over the boundary Λout are depicted. The controlled out-

put concentration is increased and it matches better the desired output

concentration. Furthermore in Figure 5.28, the output errors are shown.

The output errors are smaller for the controlled concentration.

5.3.4 Discussion of simulations with nonstationary velocity fields

In this section, boundary actuators were considered and the effect of

boundary injections on the velocity field was accounted for. The simu-

lations showed that the boundary actuators can be used to control the CD

process considered in this thesis up to a point if the flow rate of the in-

jected substance is high enough. The problem of using such a injection

system is evidently how to distribute the injected substance to the mid-
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Figure 5.26: (a) The uncontrolled concentration evolution, (b) the change in the concen-

tration, (c) the controlled concentration evolution, and (d) the globally linearised Kalman

filter estimates of the controlled concentration at times t = 1.70, . . . , 2.25 s.

dle regions of the pipe so that the concentration near the pipe walls does

not increase to an undesirable level. Especially if the injection points are

close to the region in which the concentration is aimed to match to the de-

sired concentration, controlling the concentration distribution with only

boundary actuators is challenging.

If boundary actuators are used in practical implementations, one needs

an actuation system that is able to inject the extra substance in a fast flow

rate in comparison to the rate of the main process flow. With such a sys-

tem, also the middle regions of the object of interest are affected with the

added substance. Furthermore, several injections points on boundary of
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Figure 5.27: The minimum and the maximum value of the uncontrolled concentration and

the controlled concentration on the FE nodes on Λout at each time. The thick black line

indicates the desired output concentration.
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Figure 5.28: The output errors for the uncontrolled concentration and the controlled con-
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the object may be required to obtain a satisfactory outcome, a homoge-

neous mixture for example. It is also intuitively clear that making very

small and/or pinpoint concentration changes inside the object using only

boundary actuators is a very difficult task. However, one may be able to

control the spatial and temporal average of the concentration with such a

system.

Due to computational reasons the nonstationary velocity field was

replaced with an stationary approximation when constructing the state

estimator and the controller. The simulations indicated that approximat-

ing the nonstationary velocity fields was acceptable in this case although

the state estimates have inaccuracies. However, this approach is essential

when considering real time processes involving rapid changes in which

the time for computations is limited. The recomputation of the velocity

field at each time would lead to recomputation of the matrices in the state

equation which in turn would lead to a nonstationary feedback gain ma-

trix. These computations would most likely make the implementation of

a real time controller impossible in the case of high dimensional systems.

In [185], estimation of the concentration when the effect of the nonstation-

ary velocity fields was taken into account using the approximation error

approach was investigated. A similar approach could be adopted in this

case.

There are also other stationary approximations than the parabolic ve-

locity field for the nonstationary velocity field. One approach would be to

compute several velocity fields corresponding to selected flow rates of the

injections prior to the actual operation of the system. Then the approxi-

mation that closely corresponds to the actual flow rates could be chosen

from the set of the computed velocity fields using bilinear interpolation.

The velocity field inside the pipe was taken to be laminar and was

modelled with the Navier-Stokes equations. If the flow rates on the in-

jection boundaries are very high in practical implementations, the flow is

likely to turbulent and turbulent flow models could be used. It is empha-

sized, that the laminar flow model could be replaced in the computations

with a turbulent flow model if such is needed. However, the use of turbu-

lent flow models may increase the computational load. Furthermore, the

performance of the control system may be adequate even if approximate

flow models are used when the overall structure of the process is properly

modelled. These issues are also addressed in Section 3.3.
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5.4 COMPARISONOF EFFECTSOF TWOSTATE ESTIMATORS

ON CONTROL PERFORMANCE

State estimators such as the globally linearised Kalman filter, the extended

Kalman filter, and the iterated extended Kalman filter have successfully

been applied in EIT, see Section 3.2.6. However, all of the publications

have focused only on state estimation. Process control or effects of the

selection of the state estimator on control performance have not been con-

sidered in the publications. It is often stated that the effect of linearising

the EIT observation model is not large on the outcome. Especially if the

variations of the quantity to be estimated are not very large, the globally

linearised Kalman filter estimates are said to be feasible provided that the

linearisation point is properly selected. This is the case for example in a

mixing process in which the monitoring and control systems are situated

after a main mixer and the aim is to detect inhomogeneities in the fluid

and to make fine adjustments. However, it is relevant to ask whether the

globally linearised Kalman filter yield adequately accurate state estimates

for process control when the variations of the estimated quantity cannot

be considered as small.

Furthermore, the measurements in the field are never noiseless. The

noise level depends on the industrial application and on the imaging

modality in question, and can be determined, for example, with a set of re-

peated measurements. Also the noise level affects the selection of the state

estimator and this topic is investigated in the case of the CD process mon-

itored with EIT. In this thesis, two state estimators, the globally linearised

Kalman filter and the iterated extended Kalman filter, are employed and in

both cases, the performance of the approximate LQG controller designed

in Section 4.2.2 is evaluated with two-dimensional simulations.

5.4.1 Simulation of the concentration evolution and the EIT ob-

servations

The starting point for this study is similar to the one described in Sec-

tion 5.1 with a few exceptions. In Section 5.1, the input concentration

consisted of low concentration inclusions in a homogeneous background

and the level of the background concentration was constant in the simula-

tions. Furthermore, the difference between the background concentration

and the minimum concentration in the inclusions was small. It was es-

tablished that the globally linearised Kalman filter estimates were feasible

for control purposes in such a case. When simulating the input concentra-

126 Dissertations in Forestry and Natural Sciences No 128



Simulations using approximate linear quadratic Gaussian controller

Figure 5.29: The input concentration when the background concentration is temporally

varying.

tion in this section, the concentration of the background changes smoothly

with respect to time so that the value of the background concentration de-

creases from 5× 10−3 mol−1cm2 to 3× 10−3 mol−1cm2 and then starts to

increase again. The low concentration inclusions are simulated as in Sec-

tion 5.1 with the exception that the minimum value of concentration in

the inclusions is now 0.1× 10−3 mol−1cm2. Thus, the difference between

the background concentration and the minimum concentration value in

the inclusions is slightly larger than in Section 5.1. The simulated input

concentration is shown in Figure 5.29.

The EIT observations are simulated as in Section 5.1 with the excep-

tion of the added observation noise. In this section, to each observation,

firstly, noise with standard deviation of 1%, 10%, or 30% of the value of

that observation and, then, noise with standard deviation of 0.1%, 1%, or

3% of the voltage range is added, respectively. The three different noise

levels are denoted by the 1/0.1% noise level, the 10/1% noise level, and

the 30/3% noise level.

5.4.2 Construction of the state estimators and the approximate

LQG controller

The parameters for the state estimator and the approximate LQG con-

troller are selected as in Section 5.1 with a few exceptions. As the concen-

tration on the boundary Λin has now larger variations than in Section 5.1,

the standard deviation of the input noise βη is changed accordingly. The

covariance matrix Γηt = β2
η I is still diagonal, but in this case βη = 1

5 × cbg
where cbg is an stationary approximation of the concentration. As the

background concentration is not homogeneous, the selection of cbg is not

as straightforward as in Section 5.1. If the variations of the concentration

are not known in advance, cbg has to be chosen on a basis of prior knowl-

edge. In this section, cbg = 4.7× 10−3 mol−1cm2. The covariance matrix

of the observation noise is approximated with a uniform diagonal matrix

Γvt = β2
v I where βv is 0.1%, 1%, or 3% of the assumed voltage range cor-

responding to the employed noise level. The parameters βQ and βR for
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Figure 5.30: The minimum and the maximum value of the uncontrolled concentration

and the controlled concentration on the FE nodes on Λout when using the globally lin-

earised Kalman filter (KF) and the iterated extended Kalman filter (IEKF). The straight

line indicates the desired output concentration. The noise level is 1/0.1%.

the weighting matrices Qy = βQ I and R = βR I are selected from a set of

simulations.

5.4.3 Simulation results using two different state estimators

The simulation results when the noise level is the 1/0.1% noise level are

firstly considered. In Figure 5.30, the uncontrolled concentration and the

controlled concentration over the boundary Λout are shown when using

the globally linearised Kalman filter and the iterated extended Kalman fil-

ter. The output concentration when using the globally linearised Kalman

filter is higher than the desired output concentration especially from the

time t = 1.5 s onwards.

The output errors (5.3) for the uncontrolled concentration and the con-

trolled concentration are shown in Figure 5.31 when the noise level is

1/0.1%. The output errors when the iterated extended Kalman filter is

used as a state estimator are notably smaller than the errors when the

globally linearised Kalman filter is used.

In this numerical study, the control performance using the iterated ex-

tended Kalman filter is substantially better that the control performance
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Figure 5.31: The output errors for the uncontrolled concentration and the controlled

concentration using the globally linearised Kalman filter (KF) and the iterated extended

Kalman filter (IEKF). The noise level is 1/0.1%.

using the globally linearised Kalman filter, see Figures 5.30 and 5.31. The

reason for the difference in the control performance can be traced to the

state estimates yielded by the estimators. The state estimates for the con-

centration using the two state estimators are shown in Figure 5.32. In

Figure 5.32(a) and 5.32(c), the images of the controlled concentrations are

shown at times t = 2.40, . . . , 2.95 s. In Figure 5.32(a), the globally lin-

earised Kalman filter and in Figure 5.32(c), the iterated extended Kalman

filter is used as a state estimator. During the selected times, the back-

ground concentration is at its lowest. In Figure 5.32(b), the globally lin-

earised Kalman filter estimates and in Figure 5.32(d), the iterated ex-

tended Kalman filter estimates of the controlled concentration are shown.

Especially, the top three subfigures in Figures 5.32(b) and 5.32(d) illustrate

the difference in the state estimates. When using the iterated extended

Kalman filter, the low concentration inclusions are estimated more accu-

rately than when using the globally linearised Kalman filter. Furthermore,

the globally linearised Kalman filter is unable to estimate the average level

of the controlled concentration in the regions after the injectors. The con-

centration estimates in those regions including also the boundary Λout are

too low, and, therefore, control inputs are too high. It can be concluded
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Figure 5.32: (a) The controlled concentration evolution using the globally linearised

Kalman filter, (b) the globally linearised Kalman filter estimates, (c) the controlled concen-

tration evolution using the iterated extended Kalman filter, and (d) the iterated extended

Kalman filter estimates at times t = 2.40, . . . , 2.95 s. The noise level is 1/0.1%.

from Figures 5.32 and 5.30 that in this numerical study as the level of the

average concentration decreases, the globally linearised Kalman filter is

unable to adapt to the new situation. By contrast, the iterated extended

Kalman filter yields adequate state estimates to the controller also in this

case. The inner iteration loop ensures that the linearisation point in the

iterated extended Kalman filter corresponds more accurately to the actual

average concentration level.

In Figure 5.33, the uncontrolled concentration and the controlled con-

centration over Λout are shown in the case of the 10/1% noise level. The

corresponding output errors (5.3) are plotted in Figure 5.34. When con-

sidering the 10/1% noise level, the difference between the control per-
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Figure 5.33: The minimum and the maximum value of the uncontrolled concentration and

the controlled concentration on the FE nodes on Λout using the globally linearised Kalman

filter (KF) and the iterated extended Kalman filter (IEKF). The noise level is 10/1%.

formances using the iterated extended Kalman filter and the globally lin-

earised extended Kalman filter decreases. However, the control perfor-

mance using the iterated extended Kalman filter is better especially when

the average concentration varies from the initial background concentra-

tion (approximately from the time t = 2.40 s onwards).

In Figure 5.35, the uncontrolled concentration and the controlled con-

centration over Λout are shown in the case of the 30/3% noise level. The

corresponding output errors (5.3) are plotted in Figure 5.36. Neither the

globally linearised Kalman filter nor the iterated extended Kalman filter

yield adequate estimates for the controller to perform well. The results

presented in Figure 5.35 show that the controller is not able to regulate

the low concentration inclusions or even to match the average output con-

centration to the desired output concentration. The concentration over

Λout is increased but not enough. Furthermore, the control performance

using the globally linearised Kalman filter corresponds to the control per-

formance using the iterated extended Kalman filter.

Time-averaged output errors for the globally linearised Kalman filter

and the iterated extended Kalman filter are shown in Table 1. The noise

levels are 1/0.1%, 10/1%, and 30/3%. The time-averaged output error for
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Figure 5.34: The output errors for the uncontrolled concentration and the controlled con-

centration using the iterated extended Kalman filter (IEKF) and the globally linearised

extended Kalman filter (KF). The noise level is 10/1%.

the iterated extended Kalman filter is significantly smaller than the one

for the globally linearised Kalman filter when the noise level is 1/0.1%

or 10/1%. When the noise level is 30/3%, the difference between the

time-averaged output errors for the state estimators is small. In this case,

the time-averaged output error for the globally linearised Kalman filter

is slightly smaller. Furthermore, it can be noticed that the smallest time-

averaged output error for the globally linearised Kalman filter is achieved

when the noise level is the 10/1% noise level and not the 1/0.1% noise

level. This is due to the fact that if the measurement noise level is low, the

effect of the evolution model is small in comparison to the effect of the

observation model when computing the estimates. Consequently as the

observation model is biased (the linearisation point does not correspond

to the actual level of the concentration), also the estimates are biased.

It can be concluded from Table 1 and Figures 5.30, 5.31, 5.33, and 5.34

that in this numerical study the iterated extended Kalman filter performs

better than the globally linearised extended Kalman filter when the noise

level of the measurement system is low (in this case 1/0.1% or 10/1%).

The iterated extended Kalman filter yields more accurate state estimates,

and better quality of the estimates usually leads to better control perfor-
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Figure 5.35: The minimum and the maximum value of the uncontrolled concentration and

the controlled concentration on the FE nodes on Λout using the globally linearised Kalman

filter (KF) and the iterated extended Kalman filter (IEKF). The noise level is 30/3%.

mance. When the noise level increases, the advantage of using a more

complex state estimation algorithm diminishes. This can be seen from

Figures 5.35 and 5.36 in which the noise level is 30/3%.

5.4.4 Discussion of simulations using two different state estima-

tors

In general, choosing an appropriate state estimator when controlling a

specific industrial process monitored with electrical process tomography

(PT) always depends on the characteristics of the process and on the con-

trol objective to be attained. As the control inputs are based on the state

estimates, the estimates should be relatively accurate in order to achieve

adequate control performance. Furthermore, in real time implementations

with fast sampling, the state estimation algorithm is also required to be

fast. Simulations, like the ones presented in this section, provide informa-

tion on the computational times and on the estimation accuracy, and this

information can be taken into account when designing control systems.

In this section, the objective was to investigate the effect of two dif-

ferent state estimators, the globally linearised Kalman filter and the iter-
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Figure 5.36: The output errors for the uncontrolled concentration and the controlled

concentration using the globally linearised Kalman filter (KF) and the iterated extended

Kalman filter (IEKF). The noise level is 30/3%.

ated extended Kalman filter, on control performance when controlling the

concentration distribution in a CD process monitored with EIT. As the

EIT observation model was nonlinear, the basic Kalman filter was inap-

plicable. As expected, the simulation results indicated that the iterated

extended Kalman filter yields state estimates that are adequate for control

purposes even when the concentration variations are quite large. How-

ever, the simulations verified that one cannot automatically conclude that

the iterated extended Kalman filter is more suitable for process control im-

plementations than the globally linearised Kalman filter. Even though the

iterated extended Kalman filter performed better in general, the control

performance with the globally linearised Kalman filter was essentially as

good as the performance with the iterated extended Kalman filter when

the noise level of the measurement system was 30/3%. Therefore, in such

a case, the computational complexity of the system can be decreased by

applying the globally linearised Kalman filter without a significant loss in

control performance. However, in such a case the performance of the con-

troller was altogether quite poor. By contrast, if the measurement system

was very accurate, the advantage of using the iterated extended Kalman

filter was clear.
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Table 5.3: Time-averaged output errors and the ratio of errors for the globally linearised

Kalman filter (KF) and the iterated extended Kalman filter (IEKF) corresponding to the

employed noise levels.

Noise level (%) KF IEKF IEKF/KF

1/0.1 0.0032 0.0014 0.44

10/1 0.0024 0.0016 0.67

30/3 0.0036 0.0038 1.1

If the computational time is a crucial issue, the computationally sim-

ple algorithm is preferable to the more accurate and expensive algorithm.

In such a case, the globally linearised Kalman filter is usually more suit-

able than the iterated extended Kalman filter provided that the estimate

quality is adequate. In high-dimensional problems, the use of the iter-

ated extended Kalman filter may lead to excessive computation times and

is, therefore, not feasible for real time operations unless the dimensional-

ity of problem is reduced in a proper manner. The approximation error

method [49], [50] discussed in Section 5.2.3 could be used for model reduc-

tion which would enable the use of a more computationally demanding

state estimation algorithm.

The link between the noise level and the performance of the state esti-

mators shown in the simulations suggests that developing and improving

just one procedure of the whole controller chain is useless. For example,

choosing a state estimator that generally yields more accurate estimates

does not automatically guarantee better control performance if the mea-

surement system is inaccurate and vice versa.
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6 Simulations using approximate H∞ con-

troller

In this chapter, the performance of the approximate H∞ controller dis-

cussed in Section 4.2.3 is evaluated with two-dimensional simulations.

One of the benefits of the H∞ controller is its ability to handle non-

Gaussian disturbances which are often encountered in practical process

control applications. The disturbance inputs include the modelling and

the measurement errors and other unknown (but not necessarily random)

external disturbances.

In the two-dimensional simulations in Section 5.1, the input concen-

tration (3.5) was partly unknown. The inclusion of the average input con-

centration c̄in led to feasible state estimates and good control performance.

Furthermore, it was reasonable to assume that the state noise in Section

5.1 was zero-mean Gaussian noise. In this chapter, the input concentration

(3.5) is treated as an external disturbance to the process. The simulations

aim to test the approximate H∞ controller in the case of the unknown

boundary data and the results are compared to the ones obtained with

the optimal linear quadratic (LQ) tracker reviewed in Section 2.2.2.

6.1 CONSTRUCTIONOF THEAPPROXIMATEH∞ CONTROLLER

The starting point of this study is similar to the one described in Sec-

tion 5.1. The concentration evolution is simulated as in Section 5.1 with

the exception that the diffusion coefficient κ = 10 cm2s−1. By increasing

the diffusion coefficient, it is easier for the controller to match the out-

put concentration to the desired uniform output concentration. It should

be noticed that when simulating the concentration evolution, the input

concentration (3.5) is known. Furthermore, the electrical impedance to-

mography (EIT) observations are simulated as in Section 5.1.

When approximating the solution of the convection-diffusion (CD)

model with the finite element method (FEM) for constructing the approxi-

mate H∞ controller, the input concentration (3.5) is unknown. An approx-

imate boundary condition (3.4) is postulated also for the input boundary

Λin instead of the Dirichlet condition (3.3). Thus, (3.3) and (3.4) are re-
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placed with

∂c

∂~n
(~r, t) = 0, ~r ∈ Λ. (6.1)

The finite element (FE) approximation of the CD equation (3.1) with the

initial condition (3.2) and the boundary condition (6.1) is obtained follow-

ing the approach shown in Section 3.1.5 and Appendix A. The discrete-

time state equation is

ct+1 = Act + B2ut + w1,t (6.2)

where the state noise w1,t encompasses also the errors due to the unknown

input boundary data. The state-space system consisting of the state equa-

tion (6.2) and the observation equation (3.63) is output controllable, but is

neither state controllable nor observable.

The objective of the controller is to regulate the concentration dis-

tribution over the boundary Λout. The desired output concentration is

5.1× 10−3 mol−1cm2 as in Section 5.1. The approximate H∞ controller

is derived on the basis of the theory in Section 2.3 with the modifica-

tions shown in Section 4.2.3. The only parameters to be specified in the

approximate H∞ controller are the performance bound γ and the weight-

ing matrices Qy and R. The lowest feasible performance bound and the

weighting matrices are chosen from a set of simulations.

6.2 APPROXIMATEH∞ CONTROLLERSIMULATIONRESULTS

The uncontrolled concentration evolution, the change in the concentration,

and the controlled concentration evolution are shown in Figures 6.1(a),

6.1(b), and 6.1(c), respectively. In Figure 6.1(d), the state estimates of the

controlled concentration are shown. As expected, the concentration on

the boundary Λin is not estimated accurately. Also the estimates on the

other regions of the pipe are not as accurate as in the approximate linear

quadratic Gaussian (LQG) control simulations in Section 5.1. However,

with respect to the fact that the input concentration is now completely

unknown and an approximate boundary condition is postulated for the

boundary Λin, the estimates are adequate. The effect of postulating a

Dirichlet boundary condition for the boundary Λin in the approximate

LQG control simulations can be seen in Figures 5.8(d) and 5.16(b). In

those figures, the estimated concentration on the boundary Λin always

equals to the concentration of the homogeneous background due to the

138 Dissertations in Forestry and Natural Sciences No 128



Simulations using approximate H∞ controller

3 3.5 4 4.5 5

x 10
−3

0
0.1
0.2

0 5 10

x 10
−4

0
0.1
0.2

3 3.5 4 4.5 5

x 10
−3

0
0.1
0.2

3 3.5 4 4.5 5

x 10
−3

0
0.1
0.2

(a) (b) (c) (d)

Figure 6.1: (a) The uncontrolled concentration evolution, (b) the change in the concentra-

tion, (c) the controlled concentration evolution, and (d) the estimated controlled concen-

tration at times t = 1.55, . . . , 2.10 s.

approximation for c̄in. In Figure 6.1(d), the estimated concentration on

the boundary Λin can be far from the homogeneous background concen-

tration. Although the state estimates are only moderately accurate, the

approximate H∞ controller is able to regulate the output concentration.

The uncontrolled concentration and the controlled concentration over

the boundary Λout are depicted in Figure 6.2. It can be seen that the

controlled output concentration matches well the desired output concen-

tration after the initial transient. The output errors are plotted in Figure

6.3. As expected, the output errors are smaller when control is employed.
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Figure 6.2: The minimum and the maximum value of the uncontrolled concentration

and the controlled concentration on the FE nodes on Λout when using the approximate

H∞ controller and the LQG controller. The thick black line indicates the desired output

concentration.
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Figure 6.3: The output errors for the uncontrolled concentration and the controlled con-

centration when using the approximate H∞ controller and the LQG controller.
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6.3 COMPARISONOF THEOPTIMAL LQ TRACKERANDTHE

APPROXIMATE H∞ CONTROLLER

The performance of the approximate H∞ controller is compared to the

performance of the LQ tracker. The derivation of the optimal LQ tracker

is reviewed in Section 2.2.2. The state estimation method used in the

simulations is the globally linearised Kalman filter introduced in Section

2.2.3. In (2.29), the final state bN ∈ R
nϕ is taken to be a zero vector. The

weighting matrices Qy and R are chosen on the basis of simulations.

The uncontrolled concentration evolution, the change in the concen-

tration, and the controlled concentration evolution when using the opti-

mal LQ tracker are shown in Figures 6.4(a), 6.4(b), and 6.4(c), respectively.

The selected times correspond to the times in Figure 6.1. When compar-

ing the controlled concentration evolution in Figure 6.4(c) to the controlled

concentration evolution obtained with the approximate H∞ controller in

Figure 6.1(c), it can be concluded that both controllers are able to increase

the output concentration to the desired level in general. However, the

approximate H∞ controller can regulate the low concentration inclusion

better than the LQ tracker. This fact is also seen in Figures 6.1(b) and 6.4(b)

in which the injected concentrate when using the approximate H∞ con-

troller matches better to the shape and the size of the low concentration

inclusion than when using the LQ tracker.

The difference in the performance of the controllers is partly due to

the state estimates. In Figure 6.4(d), the state estimates of the controlled

concentration when using the LQ tracker are shown. It is evident that the

Kalman filter is unable detect the low concentration inclusions when the

boundary condition (6.1) is used. Although the state estimates when using

the approximate H∞ controller in Figure 6.1(d) are not as good as the state

estimates with the partly known input boundary data in Section 5.1, the

state estimates in Figure 6.1(d) are much better than the state estimates

using the LQ tracker in Figure 6.4(d). Actually, the state estimates shown

in Figure 6.4(d) are nearly useless.

The uncontrolled concentration and the controlled concentration over

the boundary Λout when using the approximate H∞ controller and the

optimal LQ tracker are depicted in Figure 6.2. It can be seen that the out-

put concentration using the approximateH∞ controller matches better the

desired output concentration than when using the LQ tracker. However,

the performance of the LQ tracker is also fairly satisfactory. The tracking

error of the LQ tracker from time t = 2.75 onwards is due to the final con-

dition bN . Furthermore, the LQ tracker does not overshoot after the initial
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Figure 6.4: (a) The uncontrolled concentration evolution, (b) the change in the concentra-

tion, (c) the controlled concentration evolution, and (d) the estimated controlled concen-

tration at times t = 1.55, . . . , 2.10 s.

transient as does the approximate H∞ controller. The output errors for

the approximate H∞ controller and the LQ tracker are plotted in Figure

6.3. The output errors are generally smaller when the approximate H∞

controller is used.

The reason that the control performance of the LQ tracker is adequate

is the effect of diffusion. The LQ tracker is able to increase the mean level

of concentration on the basis of the poor state estimates that leads to the

adequate control performance. If the diffusion coefficient was smaller,

the performance of the LQ tracker would deteriorate (as would also the

performance of the approximate H∞ controller).
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6.4 DISCUSSIONOFAPPROXIMATEH∞ CONTROLLERSIM-

ULATIONS

In this section, the performance of the approximate H∞ controller was

evaluated. The H∞ controller is known to be more robust to external dis-

turbances than the LQG controller. The simulation results indicated that

it is possible to design an approximate H∞ controller for the CD process

when there are external disturbances to the process. The simulations also

indicated that the tracking performance and the disturbance rejection of

the proposed controller are adequate.

When the input boundary data was unknown and the approximate

boundary condition was postulated for Λin, the approximate H∞ con-

troller performed (slightly) better than the optimal LQ tracker. Especially,

the low concentration inclusions were detected more precisely and regu-

lated better when using the approximate H∞ controller. If the diffusion

coefficient was smaller as in Section 5.1 and the concentration variations

were larger as in Section 5.4, the performance of the LQ tracker would be

even poorer. In such a case, the homogenising effect of diffusion would

be lesser and since the LQ tracker is not able to regulate the low concen-

tration inclusions, the output concentration would differ more from the

desired concentration.

In many publications, the standard view is that the H∞ controller per-

forms generally better than the LQG controller in the case of non-Gaussian

disturbances. However, if one is able to formulate proper models for the

disturbances and take those models into account when designing the LQG

controller, the performance of the LQG controller may easily be better

than the performance of the H∞ controller designed so that the distur-

bances are not modelled. For example, the approximation error method

discussed in Section 5.2.3 could be applied when analysing the statistical

properties of the modelling errors.

Dissertations in Forestry and Natural Sciences No 128 143



Anna Kaasinen: Optimal Control in Process Tomography

144 Dissertations in Forestry and Natural Sciences No 128



7 Optimal injector setting

In some process control applications, the control performance can be en-

hanced by proper layout of control actuators and/or measurement sen-

sors. In practice, the possible actuator and sensor positions are to a great

extent defined by the physical characteristics of the process and the de-

signers often choose them based on physical intuition and experience. For

simple system, such decisions are adequate. However as the system be-

comes more complex geometrically or structurally, decision-making based

on intuition may deteriorate the performance of the control system. The

optimal positions of actuators and sensors can be determined on the basis

of simulations, for example, by inspecting some appropriate performance

criterion.

Not only the actuator positions but also the number of actuators has

an effect on the control performance. The effect in practical implementa-

tions is typically so significant that it is relevant to determine the suitable

number of actuators. It is obvious that as the actuator number increases

the control performance improves up to a point. The key question in

practice is how many actuators are needed for adequate control perfor-

mance. As an example, one can consider the TrumpJetr injection system

for mixing paper making chemicals into the main process stream [216].

The system is designed to operate with only a few injection points located

on the pipe boundary.

When considering processes modelled with partial differential equa-

tions (PDEs), determining the optimal positions of actuators should be for-

mulated for that infinite-dimensional system instead of the finite-

dimensional approximation of the system. Such a formulation would,

however, be inapplicable in practice. Thus, a general approach is to

use the finite-dimensional approximation and to show that the solution

to the optimal actuator problem which is obtained on the basis of the

finite-dimensional system is near-optimal in the sense that it approaches

the optimal solution to the actuator position problem for the infinite-

dimensional system [43], [245], [246], [247], [248]. Furthermore, the topic

on optimal sensor positions for distributed parameter systems (DPSs) has

been studied in [43], [246], [247], [248], [249]. The publications consider,

however, only one-dimensional cases.

In the example application of this thesis, it is assumed that the po-

sitions of the electrical impedance tomography (EIT) electrodes are fixed
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but the positions and the number of injectors can be modified. Intuitively,

if the injectors are close to the boundary Λout and the diffusion coefficient

is small, it is impossible to obtain a uniform or even a smooth concentra-

tion distribution on the boundary Λout with only a few pointwise injec-

tors. Once the injectors are located further back from the boundary Λout,

the injected concentrate has more time to diffuse. Thus, by finding the

optimal injector setting the homogenising effect of diffusion can be fully

exploited. Furthermore, with only a few injectors regardless of their po-

sition one may be able to regulate the mean level of concentration but is

more than likely unable to make fine adjustments to remove effects of the

low concentration inclusions.

Also intuitively, by locating the injectors in the region in which the

state estimation accuracy is as high as possible, the control performance

can be improved. Bias in the state estimates creates bias to the optimal

control inputs, that in turn results in inadequate concentration distribu-

tion on the boundary Λout. The state estimation accuracy can be deduced,

for example, by inspecting the mean state noise variance, that is, time-

averaged diagonals of the state estimate covariance. When considering

the observability of the motivating application in Section 4.2.4, it was

concluded that the estimation accuracy is high downstream of the first

electrode pair. The uncertainty of the state estimates very near the in-

put boundary Λin is typically high, because the input concentration is the

primary unknown of the system.

Although one can consider the suitable injector positions and the suit-

able number of injectors in this example intuitively, the optimal positions

and the optimal number of injectors are not clear for example due the

(joint) effect of factors such as the state estimation accuracy and the dif-

fusion. Thus in this chapter, the problem of finding the optimal injector

positions and the optimal number of injectors for the example applica-

tion of this thesis is studied with two-dimensional simulations. The aim

is to study only one example situation in which parameters such as the

diffusion coefficient and the desired concentration level are fixed.

7.1 SIMULATION OF THE CONCENTRATION EVOLUTION

AND THE EIT OBSERVATIONS

In this study, six different positions for a series of injectors illustrated in

Figure 7.1 are considered. In those positions, the injectors are located

in a straight vertical line. Consecutive injectors could be considered for
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Figure 7.1: The considered injector positions in the pipe segment when nk = 9.

example in a situation in which the flow rates of injectors are not high

enough to inject a required amount of strong concentrate.

The set of selected injector numbers to be tested is Nk = {1, 3, 5, 7, 9}.
The single injector is located in the middle of the pipe. There are, ac-

tually, commercial systems that are trying to achieve similar goals as in

this thesis with just one actuator. When more than one injector is used,

the injectors are added symmetrically in a vertical line around the sin-

gle injector. The maximum number of injectors in this example is chosen

to be nine. Nine injectors cover sufficiently the region between the pipe

walls. In this section, one of the aims is to determine if adequate control

performance can be achieved with fewer than nine injectors. The control

performance is evaluated for every position illustrated in Figure 7.1 and

for every number of injectors nu ∈ Nk.

The concentration evolution and the EIT observations are simulated

as described in Section 5.1. The only difference is that the structure of the

control input matrix B2 in the convection-diffusion (CD) state equation

changes to correspond to the different injector positions and the number

of injectors. The globally linearised Kalman filter is used as the state

estimator, and the control inputs are computed using the approximate

linear quadratic Gaussian (LQG) controller formulated in Section 4.2.2.

7.2 SIMULATION RESULTS USING DIFFERENT INJECTOR

SETTINGS

A natural choice to evaluate the performance of the control system is to

compute the minimum cost corresponding to (4.14), see [63] for details.

Furthermore, the main aim of the control system is to obtain a desired

output concentration distribution. The output errors (5.3) reflect this aim

and are also considered. It is noted that the distance between the injectors

Dissertations in Forestry and Natural Sciences No 128 147



Anna Kaasinen: Optimal Control in Process Tomography

and the boundary Λout affects the time required for the controller to bring

the concentration on Λout from its initial state close to the desired level.

Thus, the closer the injectors are to the boundary Λout the shorter is the

initial transient and the smaller the output errors. Therefore, the first

time instances are excluded from the evaluations of the time-averaged

output errors in order to eliminate the error due to the different transient

performance. This is reasonable since if a control system is designed to

operate for a long time period, the first time instances are irrelevant.

The benefit of control on the process in general is seen in Figure 7.2.

In Figure 7.2(a), the uncontrolled concentration evolution is shown. In

Figure 7.2(b), nine injectors are in position 1, in Figure 7.2(c), nine injec-

tors are in position 3, and in Figure 7.2(d), nine injectors are in position 6.

When the injectors are in position 1, the controller is not able to regulate

the low concentration inclusions and the output concentration is lower

than the desired output concentration (see especially the bottom six sub-

figures in Figure 7.2(b)). When the injectors are in position 3, the control

system seems to work adequately. When the injectors are in position 6,

the controller is able to regulate the low concentration inclusions but the

concentration distribution on the boundary Λout is not as smooth as in the

case in which the injectors are in position 3.

The costs for different injector positions and numbers of injectors are

computed and plotted in Figure 7.3. As expected, the smallest costs are

obtained with nine injectors, and the costs increase as the number of in-

jectors decreases. Furthermore when the injectors are near the boundary

Λin, the uncertainty in the input concentration increases the costs. If one

investigated only the costs, one would place nine injectors in position 6.

The output errors for different injector positions when nine injectors

are used are plotted in Figure 7.4. The injector positions 3 and 4 have

the smallest output errors almost at all times after the initial transient. In

Table 7.1, the time-averaged output errors are shown. The time-averaged

output errors are smallest for position 3. The time-averaged output errors

for different injector positions and numbers of injectors are shown in Fig-

ure 7.5. The time-averaged output errors with one injector indicate that if

the injector is near the boundary Λin of the pipe, one is able to regulate

the mean concentration level with the help of diffusion. However, with a

single injector one cannot remove the effect of the low concentration inclu-

sions. Once the single injector is moved towards the boundary Λout, the

extra concentrate has less time to diffuse and the time-averaged output er-

rors are larger. Especially using five injectors or more, the controller seem

to be able to regulate the mean concentration level and also to remove the
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Figure 7.2: (a) The uncontrolled concentration evolution. (b) The controlled concentration

evolution when the injectors are in position 1. (c) The controlled concentration evolution

when the injectors are in position 3. (d) The controlled concentration evolution when the

injectors are in position 6. Nine injectors are used.

effect of the low concentration inclusions.

The output errors for different injector numbers are depicted in Figure

7.6 when the injectors are in position 3. Similarly to the consideration of

the costs, the smallest output errors are achieved with nine injectors. The

result in this example is obvious since it is difficult to obtain a smooth out-

put concentration profile with only a few injectors despite the diffusion

property of the process. However, the output errors for seven injectors

are almost as small as for nine injectors. In this case, therefore, the im-

provements that are obtained by adding more injectors may be of little

significance in comparison to the expenses needed to do so.
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Figure 7.3: The costs J for different injector positions and number of injectors.

Table 7.1: Time-averaged output errors (·10−3) for different injector position and number

of injectors.

Position 1 injector 3 injectors 5 injectors 7 injectors 9 injectors

1 1.399 1.023 0.888 0.729 0.619

2 1.320 0.731 0.574 0.469 0.371

3 1.217 0.513 0.381 0.288 0.248

4 1.387 0.651 0.477 0.334 0.304

5 1.515 0.685 0.481 0.327 0.338

6 1.668 0.917 0.535 0.368 0.361

7.3 DISCUSSION OF OPTIMAL INJECTOR SETTING

In this section, the problem of finding the suitable injector positions for

the example application of this thesis was investigated. Furthermore, the

number of injectors needed to achieve adequate control performance was

considered. It was shown that finding the optimal injector setting can im-

prove the performance of the control system in this example. The simula-

tions also indicated that considering the injector positions and the num-

ber of injectors intuitively may be difficult if the control performance is
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Figure 7.4: The output errors for different injector positions when nine injectors are used.

affected by several factors.

In this example, the homogenising effect of diffusion is closely related

to the question of the optimal injector position and the optimal number

of injectors. If the effect of diffusion was larger, adequate control per-

formance would be achieved with fewer injectors and the injectors could

be located in the regions nearer to the output boundary Λout. However,

with only one injector or with injectors close to the output boundary, the

low concentration inclusions could not be regulated even if the effect of

diffusion was larger.

The optimal actuator positions could also be studied by considering

the conditional number of the output controllability matrix of the state-

space system (without the state noise and the measurement noise) pro-

vided that the output controllability matrix is of full rank. The condition

number of the controllability matrix is an indicator of controllability of

the system and small condition numbers indicate ”better” controllability.

Thus, by minimizing the conditional number of the controllability matrix

with respect to the actuator positions, optimal positions could be found.
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Figure 7.5: Time-averaged output errors for different injector position and number of

injectors.
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Figure 7.6: The output errors for different injector number when the injectors are in

position 3.
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8 Conclusions

Since the 1990s, the potential of electrical process tomography (PT) to be

used for industrial process monitoring in process control has been rec-

ognized. However, only a few practical implementations have been de-

signed. The main reason limiting the use of electrical PT in process con-

trol is that the reconstructed images have traditionally been qualitative

in nature. For automatic control, quantitative reconstructions are usually

needed. The challenge in providing the controller quantitative informa-

tion about the process using electrical PT is that the reconstruction prob-

lem of electrical PT is an ill-posed inverse problem and, thus, sensitive to

modelling and measurement errors. Often when controlling an industrial

process, modelling and measurement errors cannot be avoided. Thus, one

of the key questions is whether the information provided by electrical PT

is sufficient for process control when such errors are present.

Furthermore in the practical process control implementations using

electrical PT as a sensor, the proportional-integral-derivative (PID) con-

troller has typically been used instead of a physical model-based con-

troller. One of the challenges related to the model-based controllers is

how to combine the process models with the data provided by electri-

cal PT. Furthermore, adequate process models can often be complex and,

therefore, unsuitable for real time control systems.

In certain types of processes, the information provided by electrical

PT may be sufficient for process control. In this thesis, it was shown that

it is possible to control a convection-diffusion (CD) process using model-

based approximate optimal controllers when the process was monitored

with electrical impedance tomography (EIT). As the controlled quantity

had both spatial and temporal variations, the CD process was described

as a distributed parameter system (DPS) modelled with partial differential

equations (PDEs). Also the forward model in EIT was PDE-based. The

reconstruction problem of EIT was formulated as a state estimation prob-

lem. Previously, the state estimation approach has been shown to produce

feasible reconstructions for nonstationary targets. In this thesis, there were

uncertainties related to (partly) unknown boundary conditions in the pro-

cess model. Such uncertainties are typical for PDE models describing

industrial processes. The key issue in obtaining sufficient state estimates

for the controller was to model the uncertainties related to the unknown

boundary conditions and to take these models into account when design-
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ing the state estimator and the controller.

When aiming for a real time control system, some simplifications and

approximations are often needed in the modelling. Such approximations

could be related, for example, to nonstationary flows typically encoun-

tered in industrial processes. In this thesis, it was shown that approximat-

ing the nonstationary flow with a stationary flow led to adequate control

performance as long as the overall process dynamics were adequately ac-

curately modelled. Thus in some cases, the use of such stationary approx-

imations may be reasonable. However, ignoring the time-dependence of

the flow fields and modelling them as stationary may in other cases lead

to intolerable estimation errors and poor control performance. In such a

case, the question is how to take the time-dependence of the flow fields

into account when constructing the controller. One approach would be to

use the recently developed approximation error method [70], [49] and to

model the errors caused by the use of the stationary approximations for

nonstationary flow fields [185]. Furthermore in [240], a novel approach

to estimate the reduced-order representation of the nonstationary flow

field simultaneously with other primary unknown process quantities was

introduced when using EIT as a sensor. The reduce-order representation

was based on the concept of proper orthogonal decomposition. The above

mentioned methods could be applied with minor modifications also to the

example application of this thesis if needed.

The models related to the PDE-based DPSs are typically

high-dimensional as noticed also in this thesis. If one aims for a real

time controller, employing high-dimensional models may prevent real

time computations. The traditional and commonly used model reduc-

tion techniques in the field of control theory do not take into account

the ill-posedness of inverse problems and may lead to approximation

errors that can cause poor control performance. The above mentioned

approximation error method provides also a way to reduce the dimen-

sionality of the models in the case of inverse problems without destroy-

ing the state estimates and, thus, may enable the use of PT as a sensor

for real time and model-based optimal controllers. In [250], a reduced-

order observation model in stationary EIT was constructed based on the

concept of proper orthogonal decomposition and the approximation er-

ror approach. In [251], the approach proposed in [250] was extended to

deriving reduced-order approximations of both the evolution and obser-

vation models in nonstationary EIT. The above mentioned methods could

be applied with minor modifications also to the control system discussed

in this thesis.
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In this thesis, the approximate linear quadratic Gaussian (LQG) con-

troller and the approximate H∞ controller were employed. It was shown

that the performance of controllers was adequate even when there were

non-Gaussian uncertainties related to the process model. In general in the

LQG control, the state and measurement noises are assumed to be Gaus-

sian. Furthermore, it is often stated that the H∞ controller performs better

than the LQG controller if there are non-Gaussian disturbances to the pro-

cess as shown also in this thesis. This claim, however, is not necessarily

valid. If one is able to model the disturbances and utilise those models

in the controller design, the performance of the LQG controller may be

adequate or even better than the performance of the H∞ controller.

When considering industrial processes, there may be physical con-

straints on the actuators resulting from their operation range and/or on

the controlled process quantities resulting from the characteristics of the

process. Actuator constraints are typical for web forming processes, for

example. When designing a controller, often these constraints cannot be

ignored in order to obtain adequate control performance. In this the-

sis, the constraints on the injectors were taken into account by including

a feedforward term in the controller. Typically in the LQG control and

the H∞ control, the constraints are handled in an ad hoc and often quite

simple manner. A problem arises when there are several constraints and

one tries to find the optimal control input that satisfies them all. When

constraints are present, one might want to consider a model predictive

controller instead of the LQG controller or the H∞ controller. In model

predictive control (MPC), the constraints are included in the controller

design. The disadvantage of MPC is the computational burden related to

the computations especially if the prediction horizon is long. However,

proper model reduction might enable real time computations.

In this thesis, model-based controllers were considered. If it is known

that there are errors of unknown statistical nature between the actual pro-

cess and the model, one may obtain better control performance with a

PID controller than with a model-based controller. It should be noticed

that a single PID controller is typically inapplicable in distributed param-

eter control systems as it can control only a scalar quantity. However, a

comparison between multiple PID controllers and the optimal controllers

considered in this thesis could provide interesting additional information

in this case. A similar comparison between an auto-tuned PID controller

and an adaptive predictive controller can be found for example in [252].

Also an interesting idea that has been previously stated is to use the PID

controller together with a feedforward controller. In this case, the process
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dynamics would be accounted for in the feedforward part of the controller

and the PID controller would regulate the possible remaining deviations

of the process output from the desired output.

In general, the control scheme discussed in this thesis can be applied

also to other industrial processes besides the CD process and to other

imaging modalities besides EIT, provided that proper process and obser-

vation models can be derived. Many processes, especially in the chemical

industry, are distributed and nonlinear in nature. Electrical PT techniques

and the state estimation algorithms can easily be modified for such pro-

cesses. By contrast, the controllers discussed in this thesis are not appli-

cable as such if the process models are nonlinear. However, it should be

noticed that when linearising a process model, an additional model could

be derived for linearisation errors. Such an approximative linearised pro-

cess model taking into account the linearisation errors may be adequate

when designing a controller for nonlinear processes.

In the future, the objective is to evaluate the performance of the control

system with laboratory experiments. Three-dimensional state estimation

of the concentration in a fluid flowing in a pipe has already been success-

fully tested in a laboratory scale when using a CD process model and EIT

observations [179], [113]. As in many industrial processes the unknown

quantity has rapid variations and the models are high-dimensional, the

approximation error method may be needed to enable real time opera-

tions. Furthermore, as the multi-phase flows are typical in practical in-

dustrial applications, multi-phase flow models may in some cases im-

prove the control performance. However, the computational burden re-

lated to multi-phase flow models is greater than the burden when using a

single-phase flow model. As the controller is not based only on the pro-

cess model but also on the information provided by the electrical PT, a

single-phase model may be an adequate approximation for the control of

a multi-phase flow.
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[233] B. M. Eyüboglu and T. C. Pilkington, “Intracavity electrical

impedance tomography,” in Proceedings of 12th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, Vol.

12 (1990), pp. 130, Philadelphia, Pennsylvania, USA, November 1–4.

[234] M. Tarvainen, M. Vauhkonen, T. Savolainen, and J. P. Kaipio,

“Boundary element method and internal electrodes in electrical

impedance tomography,” International Journal for Numerical Methods

in Engineering 50, 809–824 (2001).

Dissertations in Forestry and Natural Sciences No 128 177



Anna Kaasinen: Optimal Control in Process Tomography

[235] L. M. Heikkinen, M. Vauhkonen, T. Savolainen, and J. P. Kaipio,

“Modelling of internal structures and electrodes in electrical pro-

cess tomography,” Measurement Science and Technology 12, 1012–1019

(2001).

[236] S. C. Murphy and T. A. York, “Electrical impedance tomography

with non-stationary electrodes,” Measurement Science and Technology

17, 3042–3052 (2006).

[237] S. C. Murphy, R. K. Y. Chin, and T. A. York, “Design of an impeller-

mounted electrode array for EIT imaging,” Measurement Science and

Technology 19, 094009 (2008).

[238] A. Seppänen, M. Vauhkonen, P. J. Vauhkonen, E. Somersalo, and J. P.

Kaipio, “Fluid dynamical models and state estimation in process

tomography: Effect due to inaccuracies in flow fields,” Journal of

Electronic Imaging 10, 630–640 (2001).

[239] A. Seppänen, A. Voutilainen, and J. P. Kaipio, “State estimation in

process tomography– Reconstruction of velocity fields using EIT,”

Inverse Problems 25, 085009 (2009).

[240] A. Lipponen, A. Seppänen, and J. P. Kaipio, “Reduced-order estima-

tion of nonstationary flows with electrical impedance tomography,”

Inverse Problems 26, 074010 (2010).

[241] A. Nissinen, L. M. Heikkinen, and J. P. Kaipio, “The Bayesian ap-

proximation error approach for electrical impedance tomography–

experimental results,”Measurement Science and Technology 19, 015501

(2008).

[242] A. Lehikoinen, S. Finsterle, A. Voutilainen, L. M. Heikkinen,

M. Vauhkonen, and J. P. Kaipio, “Approximation errors and trun-

cation of computational domains with application to geophysical

tomography,” Inverse Problems and Imaging 1, 371–389 (2007).

[243] A. Nissinen, L. M. Heikkinen, V. Kolehmainen, and J. P. Kaipio,

“Compensation of errors due to discretization, domain truncation

and unknown contact impedances in electrical impedance tomogra-

phy,” Measurement Science and Technology 20, 105504 (2009).

[244] S. Pursiainen, “Two-stage reconstruction of a circular anomaly in

electrical impedance tomography,” Inverse Problems 22, 1689–1703

(2006).

178 Dissertations in Forestry and Natural Sciences No 128



Bibliography

[245] C. Antoniades and P. D. Christofides, “Computation of optimal ac-

tuator locations for nonlinear controllers in transport-reaction pro-

cesses,” Computers & Chemical Engineering 24, 577–583 (2000).

[246] C. Antoniades and P. D. Christofides, “Integrating nonlinear out-

put feedback control and optimal actuator/sensor placement for

transport-reaction processes,” Chemical Engineering Science 56, 4517–

4535 (2001).

[247] C. Antoniades and P. D. Christofides, “Integrated optimal actu-

ator/sensor placement and robust control of uncertain transport-

reaction processes,” Computers & Chemical Engineering 26, 187–203

(2002).

[248] Y. Lou and P. D. Christofides, “Optimal actuator/sensor placement

for nonlinear control of the Kuramoto-Sivashinsky equation,” IEEE

Transactions on Control System Technology 11, 737–745 (2003).

[249] A. A. Alonso, C. E. Frouzakis, and I. G. Kevrekidis, “Optimal sensor

placement for state reconstruction of distributed process systems,”

AIChE Journal 50, 1438–1452 (2004).

[250] A. Lipponen, A. Seppänen, and J. P. Kaipio, “Reduced-order model

for electrical impedance tomography based on proper orthogonal

decomposition,” Submitted to Inverse Problems (2012).

[251] A. Voutilainen, A. Lipponen, T. Savolainen, A. Lehikoinen,

M. Vauhkonen, and J. P. Kaipio, “Fast adaptive 3-D nonstationary

electrical impedance tomography based on reduced-order model-

ing,” IEEE Transactions on Instrumentation and Measurement 61, 2665–

2681 (2012).

[252] G. A. Dumont, J. M. Martin-Sanchez, and C. C. Zervos, “Com-

parison of an auto-tuned PID regulator and an adaptive predictive

control system on an industrial bleach plant,” Automatica 25, 33–40

(1989).

Dissertations in Forestry and Natural Sciences No 128 179



Anna Kaasinen: Optimal Control in Process Tomography

180 Dissertations in Forestry and Natural Sciences No 128



A FE approximation of stochastic CD

model and construction of state noise co-

variance matrix

In this thesis, the finite element (FE) approximation of the convection-

diffusion (CD) model (3.1)-(3.5) is a modification of the FE approximation

of a CD model without the additional control source term that was pre-

sented in [95]. The Dirichlet boundary condition (3.3) can be incorporated

into the matrix form (3.22). Let nin denote the number of nodes on bound-

ary Λin and no the number of all other nodes. As the coefficients cj and

c′j on the boundary Λin are specified by (3.3), the terms corresponding

to the input boundary nodes are moved to the right hand side of equa-

tion (3.22). Furthermore, the basis functions corresponding to the bound-

ary Λin are removed and, thus, the number of test functions decreases to

no = nϕ − nin.

Let Nin =
{

Nin,1, . . . ,Nin,nin

}

denote a subset including the indices of

the nodes on the boundary Λin and No = {No,1, . . . ,No,no} be a subset

of indices of all the other nodes. Now, co(t) ∈ R
no and cin(t) ∈ R

nin

are the coefficient vectors corresponding to the index sets No and Nin,

respectively. The obtained matrix equation with respect to (3.22) is

M
(

c′o(t)− qo(t)
)

+ Kco(t) = −M̃
(

c′in(t)− qin(t)
)

− K̃cin(t)

= −M̃c′in(t)− K̃cin(t) (A.1)

where the matrices M ∈ R
no×no , K ∈ R

no×no , M̃ ∈ R
no×nin and K̃ ∈

R
no×nin are of the form

M(i, j) =
∫

Ω
ϕNo,j

(~r)ϕNo,i
(~r)d~r, (A.2)

K(i, j) =
∫

Ω
~v(~r) · ∇ϕNo,j

(~r)ϕNo,i
(~r)d~r

+
∫

Ω
κ∇ϕNo,j

(~r) · ∇ϕNo,i
(~r)d~r, (A.3)

M̃(i, j) =
∫

Ω
ϕNin,j

(~r)ϕNin,i
(~r)d~r, (A.4)

K̃(i, j) =
∫

Ω
~v(~r) · ∇ϕNin,j

(~r)ϕNo,i
(~r)d~r

+
∫

Ω
κ∇ϕNin,j

(~r) · ∇ϕNo,i
(~r)d~r. (A.5)
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It should be noted that qin(t) ∈ R
nin is a zero vector and qo(t) ∈ R

no .

The system of differential equations

c′o(t) = −M−1Kco(t) + qo(t)− M−1M̃c′in(t)− M−1K̃cin(t) (A.6)

is obtained and its solution is approximated with the backward Euler

method. Thus,

co,t+1 ≈ co,t + ∆tc′o,t+1

= co,t − ∆tM−1Kco,t+1 − ∆tM−1M̃c′in,t+1

−∆tM−1K̃cin,t+1 + ∆tqo,t+1 (A.7)

where t ∈ N0 denotes the discrete time index and ∆t is the time step

between t and t+ 1. Furthermore, co,t+1, c
′
in,t+1, cin,t+1, and qo,t+1 are the

discrete-time counterparts of co(t+ 1), c′in(t+ 1), cin(t+ 1), and qo(t+ 1),

respectively. The backward Euler approximation is also written for the

input concentration

cin,t+1 ≈ cin,t + ∆t c′in,t+1 (A.8)

leading to

c′in,t+1 ≈
1

∆t
(cin,t+1 − cin,t). (A.9)

Let ∆cin,t+1 = cin,t+1 − cin,t. Substituting the approximations (A.8) into

(A.7) yields

co,t+1 = co,t − ∆tM−1Kco,t+1 − M−1(M̃+ ∆tK̃)∆cin,t+1

−∆tM−1K̃cin,t + ∆tqo,t+1. (A.10)

Thus,

(I + ∆t M−1K)co,t+1 = co,t − M−1(M̃+ ∆t K̃)∆cin,t+1

−∆t M−1K̃cin,t + ∆tqo,t+1 (A.11)

where I ∈ R
no×no is an identity matrix. Let the matrix W ∈ R

no×no be

defined so that W = (I + ∆t M−1K)−1. Furthermore, the control term

qo,t+1 is defined as

qo,t+1 = Tut (A.12)

where T ∈ R
no×nu is a matrix specifying the size of the area (the elements)

the injections affect and ut ∈ R
nu is a vector of the flow rates of injectors
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at time t. Thus given the initial state c0, the FE approximation of the CD

model is of the form

co,t+1 = Wco,t + Ξcin,t + Ψ∆cin,t+1 + Θut (A.13)

where the matrices Ξ ∈ R
no×nin , Ψ ∈ R

no×nin , and Θ ∈ R
no×nu are

Ξ = −∆tWM−1K̃, (A.14)

Ψ = −WM−1M̃+ Ξ, (A.15)

Θ = ∆tWT. (A.16)

THE MULTISTEP BACKWARD EULER METHOD

For the backward Euler method one needs to determine a suitable time

step ∆t so that an accurate numerical solution of the CD model is ob-

tained. In Section 5.1, the time between the electrical impedance tomog-

raphy (EIT) measurements ∆tEIT = 50 ms. However, ∆tEIT turned out to

be too long to be selected as ∆t. Therefore, the multistep backward Euler

method is employed. In the multistep method, ∆tEIT is divided into nτ

substeps so that the step length ∆t = ∆tEIT/nτ is small enough in order

to guarantee satisfactory numerical accuracy of the CD model. In this

case, nτ = 20.

Let c
(0)
o,t , c

(1)
o,t , . . . , c

(nτ)
o,t ∈ R

no denote the vectors of coefficients corre-

sponding to the index set No on nτ substeps. In that case, co,t = c
(0)
o,t and

co,t+1 = c
(nτ)
o,t . Similar notations are used for the coefficient vectors cor-

responding to the index set Nin, c
(0)
in,t, . . . , c

(nτ)
in,t ∈ R

nin . The change of the

input is constant during the time ∆tEIT, that is,

∆c
(1)
in,t = ∆c

(2)
in,t = . . . = ∆c

(nτ)
in,t =

1

nτ
∆cin,t+1. (A.17)

Furthermore, the control input is constant between measurements. Thus,

u
(0)
t = u

(1)
t = · · · = u

(nτ−1)
t =

1

nτ
ut. (A.18)

The coefficient vector on the first substep is obtained from (A.13) and

c
(1)
o,t = Wc

(0)
o,t + Ξc

(0)
in,t + Ψ∆c

(1)
in,t + Θu

(0)
t (A.19)

where the matricesW,Ξ, Ψ and Θ correspond to time step ∆t = ∆tEIT/nτ .
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Similarly, the second substep yields

c
(2)
o,t = Wc

(1)
o,t + Ξc

(1)
in,t + Ψ∆c

(2)
in,t + Θu

(1)
t

= W(Wc
(0)
o,t + Ξc

(0)
in,t + Ψ∆c

(1)
in,t + Θu

(0)
t ) + Ξc

(1)
in,t + Ψ∆c

(2)
in,t

+Θu
(1)
t

= W2c
(0)
o,t +WΞc

(0)
in,t +WΨ∆c

(1)
in,t +WΘu

(0)
t + Ξc

(1)
in,t + Ψ∆c

(2)
in,t

+Θu
(1)
t

= W2co,t + (WΞ + Ξ)cin,t +
1

nτ
(WΨ + Ψ + Ξ)∆cin,t+1

+
1

nτ
(W + I)Θut (A.20)

since

c
(0)
o,t = co,t, (A.21)

c
(0)
in,t = cin,t, (A.22)

c
(1)
in,t = c

(0)
in,t + ∆c

(1)
in,t, (A.23)

∆c
(1)
in,t = ∆c

(2)
in,t =

1

nτ
∆cin,t+1, (A.24)

u
(0)
t = u

(1)
t =

1

nτ
ut. (A.25)

The recursion is repeated and after nτ substeps

c
(nτ)
o,t = Wnτ co,t + (Wnτ−1 +Wnτ−2 + . . .+W + I)Ξcin,t

+
1

nτ

[

(Wnτ−1 +Wnτ−2 + . . .+W + I)Ψ

+(Wnτ−2 + 2Wnτ−3 + . . .+ (nτ − 2)W + (nτ − 1)I)Ξ
]

∆cin,t+1

+
1

nτ

(

Wnτ−1 +Wnτ−2 + . . .+W + I
)

Θut. (A.26)

Equation (A.26) can be written in the form

co,t+1 = Ãco,t + Q̃cin,t + T̃∆cin,t+1 +
1

nτ
G̃Θut

= Ãco,t + Z̃cin,t + T̃cin,t+1 +
1

nτ
G̃Θut (A.27)
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since ∆cin,t+1 = cin,t+1 − cin,t and

Ã = Wnτ , (A.28)

Q̃ = G̃ Ξ, (A.29)

G̃ =
nτ−1

∑
j=0

W j, (A.30)

T̃ =
1

nτ
(P̃+ S̃), (A.31)

P̃ = G̃ Ψ, (A.32)

S̃ =
nτ−2

∑
j=0

(nτ − 1− j)W j Ξ, (A.33)

Z̃ = Q̃− T̃. (A.34)

STATE NOISE COVARIANCE MATRIX

The stochastic terms are included into the CD model after the discreti-

sation. It is assumed that the modelling errors are Gaussian so that

ξt ∼ N (0, Γξt) with Γξ = β2
ξ I ∈ R

no×no . The stochastic process ηt is

also approximated as Gaussian, that is, ηt ∼ N (0, Γηt). The stochastic

process ηt models the uncertainty of the input concentration so that

cin,t+1 = c̄in,t+1 + ηt+1. (A.35)

Combining equations (A.27) and (A.35) yields

ct+1 = Act + B2ut + st+1 + w1,t. (A.36)

In (A.36), the matrices A ∈ R
nϕ×nϕ and B2 ∈ R

nϕ×nu are

A(Nin,i, j) = 0, (A.37)

A(No,i,Nin,j) = Z̃(i, j), (A.38)

A(No,i,No,j) = Ã(i, j) (A.39)

and

B2(Nin,i, j) = 0, (A.40)

B2(No,i,Nin,j) =
1

nτ
G̃Θ(i, j). (A.41)

Furthermore, the source terms st+1 and w1,t are of the form

st+1 = Ỹc̄in,t+1, (A.42)

w1,t = Ỹηt + H̃ξt (A.43)
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where the matrices Ỹ ∈ R
nϕ×nin and H̃ ∈ R

nϕ×no are defined as

Ỹ(Nin,i, j) = δij, (A.44)

Ỹ(No,i, j) = T̃(i, j) (A.45)

and

H̃(Nin,i, j) = 0, (A.46)

H̃(No,i, j) = δij (A.47)

where δij is the Kronecker delta. It should be noted that w1,t ∼ N (0, Γw1,t)

with the covariance matrix

Γw1,t = ỸΓηtỸ
T + H̃Γξt H̃

T (A.48)

since the processes {ηt} and {ξt} are uncorrelated.
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One of the key issues in process 

control is that quantitative and 

reliable information about the 

process is obtained in real time. In 

this thesis, the feasibility of electrical 

impedance tomography (EIT) for 

process monitoring in a model-based 

optimal control system is studied. 

The simulation results indicate 

that in this case the quality of the 

data provided by EIT is adequate 

for process control even when 

there are inevitable modelling and 
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