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Abstract: Reactive oxygen and nitrogen species (RONS) cause oxidative damage, which is 

associated with endothelial dysfunction and cardiovascular disease, but may also contribute to 

redox signaling. Therefore, their precise detection is important for the evaluation of disease 

mechanisms. Here, we compared three different methods for the detection of 3-nitrotyrosine 

(3-NT), a marker of nitro-oxidative stress, in biological samples. Nitrated proteins were generated 

by incubation with peroxynitrite or 3-morpholino sydnonimine (Sin-1) and subjected to total 

hydrolysis using pronase, a mixture of different proteases. The 3-NT was then separated by high 

performance liquid chromatography (HPLC) and quantified by electrochemical detection (ECD, 

CoulArray) and compared to classical methods, namely enzyme-linked immunosorbent assay 

(ELISA) and dot blot analysis using specific 3-NT antibodies. Calibration curves for authentic 3-NT 

(detection limit 10 nM) and a concentration-response pattern for 3-NT obtained from digested 

nitrated bovine serum albumin (BSA) were highly linear over a wide 3-NT concentration range. 

Also, ex vivo nitration of protein from heart, isolated mitochondria, and serum/plasma could be 

quantified using the HPLC/ECD method and was confirmed by LC-MS/MS. Of note, 

nitro-oxidative damage of mitochondria results in increased superoxide (O2•–) formation rates 

(measured by dihydroethidium-based HPLC assay), pointing to a self-amplification mechanism of 

oxidative stress. Based on our ex vivo data, the CoulArray quantification method for 3-NT seems to 

have some advantages regarding sensitivity and selectivity. Establishing a reliable automated 

HPLC assay for the routine quantification of 3-NT in biological samples of cell culture, of animal 

and human origin seems to be more sophisticated than expected. 
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1. Introduction 

Oxidative stress is reported to be a hallmark of almost all neurodegenerative and 

cardiovascular diseases [1–3]. Clinical trials support a role of oxidative stress for cardiovascular 

prognosis [4,5]. Cellular oxidative stress conditions are defined by the increased formation of 

reactive oxygen and nitrogen species and/or impaired cellular antioxidant defense system, depletion 

of low molecular weight antioxidants, and a shift in the cellular redox balance [6,7], which is 

associated with oxidative damage of biomolecules such as proteins [8,9]. A prominent example is the 

nitration, e.g., by peroxynitrite (PN) of Tyr34 in mitochondrial superoxide dismutase (MnSOD) [10–

12], which is associated with its inhibition and the pathogenesis of various diseases [13–15].  

There is increasing evidence that redox modifications of proteins can affect enzyme activities 

and thus represent alterations of the cellular signaling network (reviewed in [16–19]). Protein 

tyrosine nitration represents a prominent posttranslational redox modification and is associated 

with a broad range of different diseases [3,20,21]. Besides reports on unspecific protein tyrosine 

nitration, used as a general marker of nitro-oxidative stress, there are reports on site-specific 

nitrations with a direct impact on enzymatic activities and properties [22]. Examples are the very 

rapid tyrosine nitration and inactivation of prostacyclin synthase, a P450 protein, by nanomolar 

concentrations of PN [23,24], which was later postulated to involve heme-thiolate catalysis and a 

ferryl intermediate [25,26]. A similar metal-catalyzed mechanism was postulated for MnSOD that 

facilitates PN-mediated nitration and dimerization of tyrosine residues, leading to inactivation of the 

enzyme [10–12]. Of note, the apoenzyme and zinc-substituted enzyme showed significantly 

decreased rate constants for the reaction with PN and did not catalyze the nitration of phenolic 

compounds [10]. More examples are presented in Section 4 to support the biological importance of 

this oxidative post-translational modification. 

Levels of 3-NT, mostly caused by PN in vivo formation, allow the indirect quantification of 

triumvirate •NO, O2•–, and PN, which is of great importance for the regulation of vascular tone but 

also represents a great challenge, since these species are short-lived. Therefore, the aim of the present 

study was to establish an HPLC assay for the electrochemical detection of 3-NT in biological samples 

and to compare this method with different immunological methods (enzyme-linked immunosorbent 

assay (ELISA) and dot blot analysis). 

2. Materials and Methods 

2.1. Chemicals 

Pronase from Streptomyces griseus (lyophylized powder) was obtained from Roche (Mannheim, 

Germany). Sin-1, hydrochloride was obtained from Cayman Chemical Company Michigan, USA; 

3-NT standard was obtained from Sigma, Merck KGaA, Darmstadt, Germany. D3-3NT standard was 

obtained from Toronto Research Chemicals, Toronto, Canada. Anti-nitrotyrosine, rabbit 

immunoaffinity purified IgG was obtained from EMD Merck Millipore Corp, Merck KGaA, 

Darmstadt. Peroxidase labeld anti-rabbit IgG (H&L) affinity purified, made in goat was obtained 

from Vector Laboratories, CA, USA. Triphenylphosphonium-linked dihydroethidium (mitoSOX) 

was purchased from Invitrogen/Thermo Fischer Scientific, Waltham, MA, USA. PN was prepared by 

quickly adding one after another: 0.6 M potassium nitrate and 1.5 M potassium hydroxide in the 

previously mixed solution of 0.6 M hydrochloric acid and 0.7 M hydrogen peroxide.  
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2.2. Animals Handling and Euthanasia 

All animals were treated in accordance with the Guide for the Care and Use of Laboratory 

Animals as adopted by the U.S. National Institutes of Health and approval was granted by the Ethics 

Committee of the University Hospital Mainz and the Landesuntersuchungsamt Rheinland-Pfalz 

(Koblenz, Germany; permit number: 23 177-07/G 18-1-001). Male Wistar rats (6 weeks old, 300 g, 

Charles River Laboratories, Sulzfeld, Germany) and male C57BL/6 mice (13 ± 3 weeks) were used for 

the study and all efforts were made to minimize suffering. Only male animals were used because we 

usually always use this gender for our vascular function studies. Due to hormonal differences, 

vascular function would turn out differently between male and female animals (e.g., specifically 

depending on the menstrual cycle). Animals were killed under isoflurane anesthesia by transection 

of the diaphragm and exsanguination (for plasma generation). Heart and liver were harvested for 

further analysis. As a model of type 2 diabetes mellitus (T2DM), we used previously harvested 

kidney tissue from Zucker Diabetic Fatty (ZDF-Leprfa/fa) rats that were previously obtained from 

Charles River at an age of 16 ± 1 weeks and fed with Purina 5008 chow as described [27]. 

2.3. Nitration of bovine serum albumin (BSA) or Biological Samples 

Purified BSA was used at a final concentration of 1 mg/mL in 0.1 M potassium phosphate buffer 

pH 7.4. Blood was obtained by heart puncture directly after the addition of heparin to the heart. A 

small amount of the blood was then mixed with 10% 50 mM tri-potassium 

ethylenediaminetetraacetic acid (EDTA) for the final concertation of 5 mM and centrifuged 10 min 

1452× g. Plasma (supernatant) was taken, frozen in liquid nitrogen, and kept at −80 °C until use. 

Protein count of plasma was determined by Lowry method and it was diluted to 0.6 mg/mL protein 

in 0.1 M potassium phosphate buffer pH 7.4 before digestion.  

For the isolation of mitochondria, a published protocol was used [28,29]. Briefly, cardiac and 

liver tissues underwent homogenization in HEPES buffer (4-(2-hydroxyethyl)-1- 

piperazineethanesulfonic acid; composition in mM: 50 HEPES, 70 sucrose, 220 mannitol, 1 EGTA 

(ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid), and 0.033 bovine serum 

albumin) and centrifugation at 1500× g for 10 min at 4 °C, followed by another centrifugation step of 

the supernatant at 2000× g for 5 min (pellets were not used). Next, centrifugation of the supernatant 

at 20,000× g for 20 min was applied, the pellet was collected, and a suspension in 1 mL of HEPES 

buffer was prepared. The suspension was centrifuged again at 20,000× g for 20 min, but this time, a 

suspension of the pellet was prepared in 1 mL of Tris buffer (composition in mM: 10 Tris, 340 

sucrose, 100 KCl, and 1 EDTA). The resulting mitochondria-enriched suspensions containing 5–10 

mg/mL of total protein (according to Lowry assay) were kept at 0 °C, were all adjusted to a similar 

protein content (based on the lowest determined concentration). 

A small aliquot of PN (80 mM in 0.1 M NaOH) was added by rapid mixing of the reaction 

solutions (protein homogenate in potassium phosphate 100 mM buffer) and was allowed to 

completely decompose within 5 min. Sin-1 (100 mM from a 0.1 M acidic stock solution) was added to 

the protein solutions and incubated for 90 min at 37 °C to allow complete decomposition.  

2.4. Dot Blot Analysis for Protein-Bound 3-Nitrotyrosine 

Analysis of total protein homogenates and of plasma samples was performed by dot blot as 

previously described [30,31]. Briefly, 50 µL (1 µg/µL protein based on Bradford analysis) of the heart 

homogenate or EDTA plasma were transferred to a Protran BA85 (0.45 µm) nitrocellulose membrane 

(Schleicher&Schuell, Dassel, Germany) by a Minifold I vacuum Dot-Blot system 

(Schleicher&Schuell, Dassel, Germany). Each slot was washed twice with 200 µL phosphate buffered 

saline (PBS) before and after protein transfer. The membrane was dried for 60 min at 60 °C. Equal 

loading of protein amounts per dot was then verified by staining the membrane with Ponceau S. 

Next, the membrane was incubated with blocking buffer and then primary antibody in blocking 

buffer according to the supplier’s instructions. Protein tyrosine nitration was detected using a 

specific antibody for 3-NT (1:1,000, anti-nitrotyrosine, rabbit immunoaffinity purified IgG, EMD 
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Merck Millipore Corp, Merck KGaA, Darmstadt Germany). Positive bands were detected by 

enhanced chemiluminescence after incubation with a peroxidase-coupled secondary antibody (1: 

5000, peroxidase-conjugated goat anti rabbit antibody) (Vector Laboratories, CA, USA). All 

incubation and washing steps were performed according to the manufacturer’s instructions. 

Densitometric quantification of the dots was performed using the Super Signal enhanced 

chemiluminescence kit from Thermo Scientific using a ChemiLux Imager (CsX-1400M, Intas, 

Göttingen, Germany) and Gel-Pro Analyzer software (Media Cybernetics, Bethesda, MD, USA). 

2.5. ELISA Quantification of Protein-Bound 3-Nitrotyrosine 

Levels of 3-nitrotyrosine were determined in nitrated BSA samples using a commercial ELISA 

kit (OxiSelect™ Nitrotyrosine ELISA, Cell Biolabs, San Diego, CA, USA) following the instructions 

of the vendor. 

2.6. HPLC/ECD and UV/Vis Detection of 3-Nitrotyrosine 

Pronase digestion was performed as previously described for bacterial monooxygenase-3 

(P450BM-3) and camphor 5-monooxygenase (P450CAM) [26,32]. Briefly, all the samples were diluted to 

the desired protein amount in 0.1 M potassium phosphate buffer pH 7.4 containing 1 mM CaCl2 for 

the stabilization of the proteases during digestion at 37 °C. For different types of samples (heart, 

plasma, mitochondria), adjustments were made regarding the percentage of acetonitrile (which is 

used for protein denaturation and for better solubility of the liberated amino acid), as well as final 

pronase concentration and total time of the digestion. Nitrated solution of 1 mg/mL BSA was 

prepared with 5 v/v% acetonitrile and incubated with total 2 mg/mL of pronase with multiple 

additions over 24 h at 37 °C. The digestion of lipophilic proteins may take 3 days, whereas for other 

hydrophilic proteins such as BSA, it was already completed within 2–3 h after the addition of 

pronase [33]. Heart proteins (final 0.6 mg/mL proteins) were prepared with 20 v/v% acetonitrile and 

plasma (0.6 mg/mL proteins) and mitochondria (0.1 mg/mL proteins) with 10 v/v% acetonitrile. 

Because of the interference in the HPLC and a smaller amount or protein solution used, plasma and 

mitochondria were incubated with the final concentrations of 1 mg/mL and 0.5 mg/mL pronase 

respectively, which was added by multiple additions over 48 h period of time, while BSA and hearts 

were digested by 2 mg/mL pronase over 24 h. All digested samples were freed from residual 

proteins by centrifugation through 10 kDa Microcon centrifugal filter device from Millipore 

Corporation (Bedford, USA) and the eluates were measured immediately. Several experiments have 

been conducted to ensure that, under these conditions, hydrolysis was completed within the 

indicated time scale. 

Kidney probes of the control and ZDF rats were digested by a specific protocol according to a 

recently published protocol [34]. Kidney tissue was glass-glass homogenized in 100 mM potassium 

phosphate buffer and after Lowry protein determination samples were diluted to a final protein 

concentration of 10 mg/mL. Samples were placed on ice for 10 min in 10% (v/v) ice cold 

trichloroacetic acid (TCA, 1M). Then, 75% (v/v) of 0.1 M ice cold TCA was added and the mixture 

was incubated for another 20 min. Samples were vortexed after both additions of TCA. Samples 

were then centrifuged for 30 min at 20,000× g, the supernatant was removed, and the pellet was 

washed and resuspended with 500 µL of pure acetone, which was followed by 10 min centrifugation 

at 20,000× g. The supernatant was carefully removed, and the pellet was resuspended in 100 mM 

potassium phosphate for a further 36 h digestion with 3 mg/mL pronase as described above. 

For some samples, aliquots (100 µL) were analyzed on a HPLC system with UV/Vis detection 

according to a slightly modified method as previously described [25]. Briefly, the HPLC system was 

purchased from Jasco (Groß-Umstadt, Germany) with a typical composition (control unit, two 

pumps for high pressure gradient, high pressure mixer, UV/VIS and fluorescence detectors, and an 

autosampler (AS-2057 plus with 4 °C cooling device). The generation of gas bubbles from the 

solvents that can cause an unstable detection baseline was prevented using a degasser unit. For the 

separation of the product and reactant mixtures, a reversed-phase column was used (C18-Nucleosil 

100-3 (125 × 4), Macherey & Nagel, Düren, Germany). Optimal separation was achieved by the 
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application of a high pressure gradient with acetonitrile as the organic/nonpolar component and 

citrate buffer as the aqueous/polar component (50 mM, pH 2.2) of the mobile phase. The following 

percentages of the organic solvent were applied: 0–7 min, 8 v/v%; 8–9 min, 90 v/v%; 10 min, 8 v/v%. 

The flow was 1 mL/min and 3-NT was detected by its absorption at 360 nm. 

For the electrochemical detection of 3-NT UltiMate 3000 system with Dionex™ CoulArray™ 

(Coulometric Array Detector) (Thermo Fisher Scientific GmbH, Dreieich, Germany) was used, which 

is high-quality instrument designed for the detection of electroactive species. The system was 

controlled by two different software programs: Chromeleon Chromatography Management System 

(Chromeleon) software and CoulArray software. When starting the system, pumps were first 

purged, then pump pressure was equilibrated for at least 1 h. The samples were loaded to the 

autosampler and the sampling settings were also controlled by Chromeleon software (amount of 

sample taken, speed, washing of the needle). The CoulArray software controls two parts of the 

HPLC/ECD system: the chamber for the column where temperature was assigned before starting the 

sequence and the electrochemical detector. Detector consisted of two coulometric electrochemical 

channels which can use up to 4 different cells each. A coulometric cell with a large surface area 

consisting of porous graphite electrode allows complete oxidation (or reduction) of the electroactive 

species minimizing the noise and providing enhanced sensitivity. The Coularray method is shorter 

than the Chromeleon method and starts first by turning the cells on to the assigned voltage, then it 

performs autozero and waits for the injection signal by Chromeleon software. Each sample run ends 

with a short cleaning procedure of the electrochemical cells (setting all cells to 800mV). For detection 

of 3-NT potentials of 0, +150, +300, +450, +600, +650, +700, and +800 mV were used and 3-NT peek 

was observed between 650 and 800 mV with the most pronounced signal at 800 mV. HPLC 

separation was done using Phenomenex column (Kintex® 2.6 µm C18 100Å LC Column 100 × 4.6 

mm) (Aschaffenburg, Germany) and analysis was done at 27 °C with 20 µL of sample. Changes in 

temperature can shift the chromatographic peaks. Mobile phase consisted of 26.3 mM sodium citrate 

and 10.9 mM sodium acetate, although different pH and methanol percentages were used to achieve 

better separations and detection in the different types of samples.  

BSA samples were measured with isocratic elution of 1 mL/min with a mobile phase consisting 

of 2.8 v/v% methanol in citrate/acetate buffer and a pH of 4.75, and under these conditions the 3-NT 

peak showed a retention time (RT) of 6.2 min. Heart proteins were analyzed with isocratic elution of 

1.3 mL/min with a mobile phase consisting of 3.25 v/v% methanol in citrate/acetate buffer and a pH 

of 4.85 (3-NT at RT = 4.39 min). Plasma proteins were measured with isocratic elution of 1.3 mL/min 

with the mobile phase consisting of 3 v/v% methanol in citrate/acetate buffer and a pH of 4.95 (3-NT 

at RT = 4.76 min). All mitochondrial samples were measured with isocratic elution of 1 mL/min with 

a mobile phase consisting of 3.5% methanol in citrate/acetate buffer and a pH of 3.75 (3-NT at RT = 

4.05 min). Kidney tissue samples were measured with isocratic elution of 0.75 mL/min with a mobile 

phase consisting of pure citrate/acetate buffer and a pH of 3.75 (3-NT at RT = 7.03 min).  

2.7. Detection of Mitochondrial Superoxide Formation by mitoSOX HPLC Method and Plate Reader Assay  

Mitochondrial oxidative stress by superoxide was also measured by a modified HPLC-based 

method to quantify triphenylphosphonium-linked 2-hydroxyethidium (2-OH-mito-E+) levels as 

previously described [35,36]. Mitochondrial suspensions were further diluted to the final protein 

concentration of 0.1 mg/mL in 0.5 mL of PBS buffer containing mitoSOX (5 µM) and then incubated 

for 15 min at 37 °C. After the incubation step, 50 v/v% of acetonitrile was added in order to destroy 

the mitochondrial membrane and extract the mitoSOX oxidation products, samples were subjected 

to centrifugation and the resulting supernatant was subjected to HPLC analysis (100 µL per sample 

injection). The HPLC system and reversed-phase column were the same as those used for 3-NT 

quantification. Optimal separation was achieved by application of a high pressure gradient with 

acetonitrile as the organic/nonpolar component and citrate buffer as the aqueous/polar component 

(50 mM, pH 2.2) of the mobile phase. The following percentages of the organic solvent were applied: 

0 min, 22 v/v%; 10 min, 50 v/v%; 22 min, 63 v/v%; 23–25 min, 100 v/v%; 25–27 min, 22 v/v%. The flow 

was 0.5 mL/min and mitoSOX was detected by its absorption at 360 nm whereas 
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triphenylphosphonium-linked ethidium (mitoE+) and 2-OH-mito-E+ were detected by fluorescence 

(Ex. 500 nm/Em. 580 nm).  

The mitochondrial supernatant was also used for the plate reader assay. Here, 200 µL of 

supernatant was pipetted in the 96 well black plate (Berthold Technologies), and the fluorescence 

was measured by Mithras2 chemiluminescence/fluorescence plate reader with double 

monochromator (Berthold Technologies) using the same fluorescence parameters as described for 

the HPLC method above. 

2.8. LC-MS/MS Analysis 

LC-MS/MS analysis was carried out in positive ion mode on a Waters Xevo TQ-XS triple 

quadrupole mass spectrometer coupled to a Waters Acquity UPLC (Waters, Eschborn, Germany) 

consisting of a binary UPLC pump equipped with a degasser, an autosampler and a column oven. 

MassLynx 4.2 software was used for instrument control, data acquisition and data processing. 

Chromatographic separation was performed using a Waters Acquity UPLC BEH C18 column (1.7 

µm 2.1 × 50 mm). Injection volume was 5 µL. A gradient was applied using a mobile phase 0.1 v/v% 

formic acid in water (A) and 0.1 v/v% formic acid in acetonitrile (B) at 40 °C and a flow rate of 0.6 

mL/min with the following percentages of (B): 0 min, 3 v/v%; 2 min, 20 v/v%; 2.01 min, 95 v/v%; 2.2 

min, 95; 2.21 min, 3 v/v%. Total run time was 2.5 min. The first 0.6 min. of the gradient was directed 

to waste to reduce contamination of the mass spectrometer. Optimized ion source parameters were 

as follows: Capillary voltage 0.8 kV, cone voltage 20 V, desolvation temperature 600 °C, desolvation 

gas flow 1200 L/h, source temperature 150 °C, source gas flow 150 L/h. Argon was used as collision 

gas. Mass transitions were monitored at m/z 227 → 117 (Collison energy: 18 eV) and m/z 227 → 181 

(10 eV) for 3-NT and m/z 230 → 119 (18 eV) and m/z 230 → 184 (10 eV) for D3-3-NT. MS/MS-spectra 

of 3-NT were recorded scanning m/z from 80 to 230. 

2.9. Statistical Analysis 

Results are expressed as mean ± SD. One-way ANOVA (with Bonferroni’s correction for 

comparison of multiple means) or, where appropriate, the equivalent non-parametric 

Kruskal-Wallis test (Dunn multiple comparison) was used for comparisons of ROS detection and 

oxidative protein modification (SigmaStat for Windows, version 3.5, Systat Software Inc.). p values < 

0.05 were considered statistically significant. 

3. Results 

3.1. Comparison of the Detection and Quantification of 3-NT Standards as well as Nitrated BSA Standards by 

HPLC/ECD, Dot Blot and ELISA  

Coulometric detection of 3-NT yielded the most pronounced signal when an electrode potential 

of 800 mV was applied and allowed proper detection of 25 nM authentic 3-NT (Figure 1A,B). The 

calibration curve showed good linearity over a 3-NT standard concentration range between 10 and 

500 nM (Figure 1C), which was still highly linear up to a concentration of 10 µM 3-NT. Purified BSA 

was nitrated using Sin-1 and PN and was afterwards digested using pronase. Digested samples were 

used for the detection by HPLC/ECD while parts of undigested samples were used for the detection 

by dot blot analysis or ELISA. Quantification of the free 3-NT signal from nitrated BSA showed a 

concentration-dependent increase with Sin-1 or PN, which was absent if nitrated samples were 

treated with the potent reductant dithionite (dTH) (Figure 2A,B). Dithionite is known to reduce 

3-NT to 3-aminotyrosine. In untreated BSA, no 3-NT signal could be detected. Dot blot analysis 

using a specific 3-NT antibody showed a comparable pattern but a quite substantial background 

with untreated BSA samples or those nitrated and then treated with dTH (Figure 2C,D). In addition, 

there was plateau formation of the 3-NT signal in the presence of the middle and highest PN 

concentrations. The ELISA showed a nice concentration-nitration signal correlation but an 

unexpected signal pattern as well as large signal variation for the PN-treated BSA samples (Figure 

2E). Overall, the HPLC/ECD method provided the best sensitivity for both nitrating agents, and for 
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Sin-1, the best correlation between Sin-1 concentration and 3-NT yield as well as the most reliable 

effect of dTH reduction of 3-NT. 

 

Figure 1. Detection of authentic 3-NT standards by HPLC/ECD. (A) The coulometric signal for 

3-NT increased for the applied potentials from 650 to 800 mV as shown by the representative 

chromatograms. (B) The sensitivity of the HPLC/ECD analysis was good and a concentration of 25 

nM 3-NT was easily detectable as shown by the representative chromatograms. (C) The calibration 

curve was highly linear over a concentration range of 10-500 nM. Analysis was carried on with 20µL 

of sample at 27 °C with isocratic elution using a flow of 1 mL/min and a mobile phase consisting of 

26.3 mM sodium citrate and 10.9 mM sodium at pH 4.75 with 2.8 v/v% methanol (RT of 3-NT was 

observed at 6.2 min). 

 

Figure 2. Detection of free 3-NT from nitrated BSA by HPLC/ECD and comparison with detection 

of BSA-bound 3-NT by antibody-based methods. Purified BSA was nitrated by Sin-1 or PN 

(10-1000 µM) and generated 3-NT was reduced by dTH. These samples were subjected to pronase 

digest before HPLC/ECD analysis (A) or were not digested for quantification by dot blot (C) and 

ELISA (E). (B) Representative chromatograms are shown for the HPLC/ECD quantification. (D) 
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Representative blots are shown for the dot blot quantification. Equal protein loading was checked by 

Ponceau staining of the membrane. HPLC/ECD analysis was performed with 20 µL of sample at 27 

°C with isocratic elution (1 mL/min, mobile phase: 26.3 mM sodium citrate and 10.9 mM sodium at 

pH 4.75 with 2.8 v/v% methanol; 3-NT eluted at 6.2 min). Data are presented as mean ± SD of n = 9 

(A), 9 (C) and 4 (E) independent experiments. * indicates p < 0.05 versus BSA untreated control 

group; # indicates p < 0.05 versus 1000 µM Sin-1/PN group. 

3.2. Detection and Quantification of Free 3-NT from Nitrated Tissue Homogenates and Plasma Samples by 

HPLC/ECD as well as Comparison with HPLC/UV or ELISA  

Hearts were homogenized, nitrated by Sin-1, and then the homogenate was digested using 

pronase and subjected to HPLC/ECD analysis (Figure 3). The resulting coulometric signal showed a 

similar retention time as compared to 3-NT standard, was lost upon treatment with dTH and 

showed symmetric peak increase after spiking with low concentrations of authentic 3-NT standard 

(Figure 3A–C). Likewise, plasma samples were nitrated by Sin-1, the samples were then digested 

using pronase and subjected to HPLC/ECD analysis (Figure 4). The resulting coulometric signal 

showed a similar retention time as compared to 3-NT standard, was lost upon treatment with dTH 

and showed symmetric peak increase after spiking with low concentrations of authentic 3-NT 

standard (Figure 4A–D). Liver mitochondria were isolated, nitrated by PN, and the mitochondria 

were sonicated and digested using pronase and subjected to HPLC/ECD or HPLC/UV analysis, 

whereas for dot blot analysis and ELISA, the digestion step was omitted (Figure 5). Mitochondrial 

protein showed a good concentration-nitration signal correlation when HPLC/ECD analysis was 

applied (Figure 5A,B). However, HPLC/UV analysis revealed no disadvantage as compared to the 

coulometric detection (Figure 5C,D). The reason for the different retention times of 3-NT in the 

chromatograms of the different biological samples is that the mobile phase conditions had to be 

slightly modified for each cell organelle, tissue, or plasma in order to achieve the proper separation 

of the 3-NT peak from other contaminating compounds (see figure legends and Section 2 for a 

description of the different mobile phase conditions). 

 

Figure 3. Detection of free 3-NT from nitrated heart proteins by HPLC/ECD. Heart homogenates 

were nitrated by Sin-1 and generated 3-NT was reduced by dTH. These samples were subjected to 

pronase digest before HPLC/ECD analysis. (A) Representative chromatogram of authentic 3-NT 

standard. (B) Representative chromatograms of Sin-1 treated heart proteins after digest with or 

without dTH. (C) Spiking of potential 3-NT peak with low concentrations of authentic 3-NT standard 

to proof the identity of this peak. HPLC/ECD analysis was performed with 20 µL of sample at 27 °C 

with isocratic elution (1.3 mL/min, mobile phase: 26.3 mM sodium citrate and 10.9 mM sodium at pH 

4.85 with 3.25 v/v% methanol; 3-NT eluted at 4.39 min). 
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Figure 4. Detection of free 3-NT from nitrated plasma proteins by HPLC/ECD. Plasma was nitrated 

by Sin-1 and generated 3-NT was reduced by dTH. These samples were subjected to pronase digest 

before HPLC/ECD analysis. (A) Representative chromatogram of authentic 3-NT standard. (B) 

Representative chromatograms of Sin-1 treated plasma proteins after digest with or without dTH. 

(C) Spiking of potential 3-NT peak with low concentrations of authentic 3-NT standard to proof the 

identity of this peak. (D) Quantification of 3-NT yield of experiments shown in panels (B,C). 

HPLC/ECD analysis was performed with 20µL of sample at 27 °C with isocratic elution (1.3 mL/min, 

mobile phase: 26.3 mM sodium citrate and 10.9 mM sodium at pH 4.75 with 3 v/v% methanol; 3-NT 

eluted at 4.76 min). 
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Figure 5. Detection of free 3-NT from nitrated liver mitochondria by HPLC/ECD or HPLC/UV. 

Isolated liver mitochondria were nitrated by PN (50–500 µM). These samples were subjected to 

pronase digest before HPLC/ECD analysis (A) or HPLC/UV analysis (C). Representative 

chromatograms are shown for the HPLC/ECD quantification (B) or the HPLC/UV quantification (D). 

HPLC/ECD analysis was performed with 20µL of sample at 27 °C with isocratic elution (1 mL/min, 

mobile phase: 26.3 mM sodium citrate and 10.9 mM sodium at pH 3.75 with 3.5 v/v% methanol; 3-NT 

eluted at 4.05 min). Data are presented as mean ± SD of n = 3–5 (A) and 3–5 (C) independent 

experiments. * indicates p < 0.05 versus Mito untreated control group. 

3.3. Detection and Quantification of Free 3-NT from Tissue Samples of Diabetic Rats with or without 

Combined Sin-1 Nitration by HPLC/ECD as well as Comparison with LC-MS 

A small 3-NT signal was observed using HPLC/ECD detection in the sample of the healthy 

control rat (33.8 nM 3-NT). The 3-NT signal was marginally higher in the sample of the diabetic 

(ZDF) rat (42.9 nM 3-NT) and was substantially increased upon treatment with Sin-1 (84.8 nM 3-NT) 

(Figure 6A). The signal in the diabetic rat sample was confirmed using LC-MS/MS (Figure 6B) and 

MS/MS-spectra (Figure 6C). For LC-MS/MS analysis an identical amount of a deuterated internal 

standard of 3-nitrotyrosine (D3-3-NT) was added to 100 nM authentic 3-NT standard or digested 

tissue samples to compensate for matrix effects occurring during the ionization process. An 

approximately 6-fold increase after treatment with Sin-1 was observed. The LC-MS/MS method used 

also offers the possibility of absolute quantification. Furthermore, the presence of 3-NT was 

confirmed by comparison of MS/MS fragmentation patterns of authentic 3-NT standard and in vivo 

samples of precursor ion at m/z = 227. Standard and in vivo samples showed only common MS/MS 

signals. Despite a reliable 3-NT signal in the in vivo samples, no differences between healthy control 

and diabetic rat samples could be observed by LC-MS/MS. 
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Figure 6. Detection of free 3-NT from control and diabetic animals with and without combined 

nitration by Sin-1. Kidney homogenates of healthy control and diabetic (ZDF) rats (10 mg/mL 

protein) were subjected to pronase digest before HPLC/ECD analysis or LC-MS/MS analysis. A 

special digestion protocol was used (see Methods for kidney samples). HPLC/ECD analysis was 

performed with 40µL of sample at 27 °C with isocratic elution (0.75 mL/min, mobile phase: 26.3 mM 

sodium citrate and 10.9 mM sodium at pH 3.75; 3-NT eluted at 7.03 min). Representative 

chromatograms are shown for the HPLC/ECD quantification (A) or LC-MS/MS analysis (B). 

LC-MS/MS analysis was performed after adding an identical amount of deuterated 3-NT (D3-3-NT) 

to compensate for matrix effects. Mass transitions monitored at 227 → 117 (3-NT) and 230 → 119 

(D3-NT) are shown. Representative MS/MS spectra of precursor ion at m/z = 227 are shown for the 

3-NT standard (100 nM) and the sample from ZDF rat with 1 mM Sin-1 treatment (C). 

3.4. Correlation of Mitochondrial Nitration and Superoxide Formation in Response to PN Treatment  

Mitochondria were isolated from rat hearts and nitrated by PN at three increasing 

concentrations. Mitochondrial superoxide formation was measured by mitoSOX HPLC method or 

plate reader assay and showed a good correlation between PN concentration used for the 

nitration/oxidation of mitochondria and superoxide formation rate (Figure 7A,B). As the 3-NT yield 

from digested nitrated mitochondria was also determined for the same PN-treated samples, we were 

able to correlate the mitochondrial superoxide formation rate with the 3-NT concentrations. There 

was a good linear correlation between mitochondrial superoxide formation rate and the 3-NT 

concentrations in the same sample (Figure 7C), suggesting that oxidative damage of mitochondria 

(3-NT but probably also thiol oxidation) initiates mitochondrial superoxide formation, e.g., by 

pro-oxidative state of respiratory complexes. This would be in line with the previously suggested 

crosstalk concept among different ROS sources [37–40].  
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Figure 7. Detection of superoxide generation by mitochondria by mitoSOX HPLC and correlation 

with 3-NT levels. Isolated heart mitochondria were nitrated by PN at concentrations of 50–250 µM. 

These samples were split, one aliquot was used for measurement of mitochondrial superoxide 

formation using mitoSOX/HPLC and the other aliquot for determination of free 3-NT levels by 

HPLC/ECD after digestion. Mitochondrial superoxide formation was determined using HPLC-based 

quantification of 2-OH-mito-E+ (A) and ROS formation was measured using a fluorescence plate 

reader assay for the mitoSOX oxidation products (B). The yield of mitochondrial 3-NT was correlated 

with superoxide formation rate for the different PN-treated samples (C). HPLC/ECD analysis was 

performed with 20µL of sample at 27 °C with isocratic elution (1 mL/min, mobile phase: 26.3 mM 

sodium citrate and 10.9 mM sodium at pH 3.75 with 3.5 v/v% methanol; 3-NT eluted at 4.05 min). 

Data are presented as mean ± SD of n = 3–5 (A); n = 4 (B) and n = 8 (C) independent experiments. * 

indicates p < 0.05 versus Mito untreated control group. 

4. Discussion 

With the present study, we show that HPLC/ECD quantification is suitable for detection of free 

3-NT from purified BSA and protein homogenates subjected to total hydrolysis by pronase after in 

vitro nitration by Sin-1 and PN. Concentration–response-curves of 3-NT standards were highly 

linear (detection limit 10 nM with 20 µL injection volume corresponding to 200 fmol). The presence 

of 3-NT in nitrated bovine serum albumin standards was validated by other methods (ELISA and 

dot blot analysis based on specific 3-NT antibodies). With our data, we also show that protein-bound 

3-NT not only represents a footprint of PN formation and marker of oxidative stress but also 

correlates with increased mitochondrial superoxide formation rates, pointing towards 

self-propagating oxidative stress vicious circles and ROS-induced ROS formation as previously 

reported [37,38,41–43]. We also found 3-NT in samples of diseased (diabetic) animals using 

HPLC/ECD as well as LC-MS/MS measurement, however, with only marginal increase over 3-NT 

content in healthy control animals. Therefore, translation of our in vitro biological assay to the in 

vivo situation seems more sophisticated than expected. 

4.1. Importance of the Quantification of Oxidative Stress in General and 3-Nitrotyrosine in Particular  

The importance of reliable quantification of 3-NT in biological samples, as a read-out of nitric 

oxide and superoxide balance, is given by the close connection between oxidative stress and 

cardiovascular prognosis, which is supported by a number of small cohort clinical studies. For 

example, the differential effects of vitamin C infusion on flow-mediated dilation (FMD) in coronary 

artery disease patients with high or low burden of ROS formation are associated with cardiovascular 

prognosis [44] and the impairment of FMD in 52 smokers versus controls is associated with lower 

blood levels of reduced glutathione [45]. This connection is also supported by a correlation between 

improvement of FMD and higher superoxide dismutase activity as well as a correlation between 

impairment of FMD in 59 patients with chronic kidney disease versus controls and higher oxidized 

low-density lipoprotein (oxLDL) or asymmetric dimethyl-L-arginine (ADMA) levels [46]. Finally, 

patients with sleep apnea versus controls (n = 69) show negative correlations between vascular 
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function (reactive hyperemia index) and oxidative stress markers in blood (malondialdehyde and 

8-oxo-deoxyguanosine) [47]. 

Under physiological conditions, cells produce low levels of O2•– which can be largely increased 

by numerous stimuli such as inflammatory processes [48], hypoxia-reoxygenation 

(ischemia-reperfusion) [49] and aging [50,51] involving several O2•– sources. Major sources of O2•– 

are phagocytic and non-phagocytic NADPH oxidases, xanthine oxidase, mitochondria, and an 

uncoupled nitric oxide synthase, that might interact and stimulate each other in a crosstalk fashion 

[37,38]. Besides the direct toxic effects of O2•– and higher hydrogen peroxide concentrations by 

disrupting Fe-S-clusters and oxidizing critical thiols in proteins as well as Fenton-type reactions, O2•– 

reacts in a diffusion-controlled fashion with nitric oxide (•NO) resulting in PN formation [52]. Since 

formation of PN is at expense of •NO, this reaction decreases the bioavailability of this potent 

vasodilator and antiaggregatory compound while shifting the balance between protective and 

proinflammatory/proatherosclerotic actions to the pathophysiology [53,54]. Previous data suggest 

that •NO and O2•– mainly influence the redox balance in living cells and account for oxidative, 

nitrative, and nitrosative stress [19,55–57], and represent a central redox regulatory system in the 

endothelium and vasculature controlling vascular tone [58]. 

4.2. Biological Consequences of Protein Tyrosine Nitration 

There are various reports on protein tyrosine nitration regarding mechanisms of 3-NT 

formation, its specific detection as well as the pathophysiological consequences, especially in 

diseases related to oxidative stress [3,15,53–58]. For example, the nitration and modulation of 

activity of ERK1/2 and protein kinase B (Akt) play an important role in angiotensin-II triggered 

vascular complications [59,60]. Tyrosine nitration by PN was reported to proceed via a free radical 

based mechanism with intermediary formation of tyrosyl radicals [61], which is largely enhanced in 

the presence of carbon dioxide [59–61]. The tyrosine content of most proteins is around 3.2%, but not 

all of them are available for nitration. Secondary structure and the local environment are important 

factors determining the nitration site. Nitrated tyrosines are found in loop structures (near proline or 

glycine) as well as in proximity of a negative charge (e.g., glutamate or aspartate) [62,63]. The 

presence of free metal ions such as Cu2+, Fe3+, and Fe2+ as well as bound in complexes, especially 

metal porphyrins (like hemin), act as nitration catalysts, while the presence of sulfur-containing 

residues (cysteine or methionine) decreases the probability of nitration due to competitive reactions 

with PN [13]. In heme-containing proteins, the nitration of tyrosine is facilitated by the formation of 

ferryl intermediates [62,64], which was observed in prostacyclin synthase (PGIS) and prevented by 

an enzyme inhibitor that binds to the metal complex pocket [16].  

Concerning the biological significance, PGIS activity was attenuated after nitration of Tyr430 by 

PN [64] and contributed to endothelial dysfunction [65]. Although the inhibition of MnSOD was not 

only associated with Tyr34 nitration, but could also involve dityrosine formation [11,12], it has been 

demonstrated that reaction with PN is catalyzed by the manganese cation [66]. Nitration of 

cytochrome c by PN lead to conformational changes going hand in hand with altered redox 

properties including increased peroxidatic activity, resistance to reduction by ascorbate and 

different behavior in rat heart mitochondria [66]. Also, some constituents of the mitochondrial 

respiratory chain are subject to PN-mediated nitration, such as interactions with mitochondrial 

ATPase (complex V) and components of the mitochondrial membrane (e.g., permeability transition 

pore) [15]. Nitration of fibrinogen and plasminogen was proposed to contribute to pro-thrombotic 

conditions [67–70]. However, protein Tyr nitration might also leave the enzyme function entirely 

unaffected. Therefore, various protein nitrations observed in models of endotoxemia or 

inflammation could just present markers of PN formation or activation of the 

peroxidase/nitrite/H2O2 pathway [71], without direct connection to the underlying pathophysiology 

[72,73]. However, even if nitration does not cause direct enzyme inhibition or altered function, 

posttranslational modification in form of nitro-groups may cause immune responses as 

immunoglobulins (autoantibodies) against nitrated proteins were identified in patients that predict 

the outcome and risk in [74,75]. 
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4.3. Comparison of Previous Reports on Detection and Quantification of Protein Tyrosine Nitration 

Most reports on 3-NT detection and quantification by HPLC with various electrochemical 

methods (coulometric and amperometric, different electrodes) are based on in vitro nitrated 

samples. Only few reports describe the detection of 3-NT in samples of animals with different in 

vivo treatments, however, often without showing the proper negative controls. Ishida et al. used 

HPLC-ECD detection of 3-NT and reported a detection limit of less than 10 fmol 3-NT standard as 

well as correlation of lipopolysaccharide (LPS) dosage and plasma 3-NT levels in mice [76]. 

Shigenaga et al. used GC/MS detection of derivatized 15N-labeled 3-NT (as acetyl-3-aminotyrosine) 

in protein lysates from activated RAW 264.7 macrophages upon incubation with 15N-L-arginine [77]. 

Acetyl-3-aminotyrosine was also detected by HPLC-ECD and compared with the GC/MS data. 

Ohshima et al. used HPLC-ECD after online reduction for the detection of 3-NT in BSA and human 

plasma samples, which were nitrated with different nitrating agents (0.1–10 mM), and reported a 

detection limit of 0.1 pmol [78]. Hensley et al. managed to detect 3-NT in glial cell cultures which 

were treated with interleukin (IL-1β) by using an HPLC-ECD method [79]. Sodum et al. described a 

highly sensitive HPLC-ECD method for the detection of 3-NT and reported a detection limit for 

3-NT standards of 50 fmol, and of 0.1 pmol in biological samples of tetranitromethane-treated rats 

[80]. Nuriel et al. reported an HPLC-ECD assay for 3-NT detection in most healthy tissues, which 

was 100-fold more sensitive than UV/Vis detection of 3-NT [81] and was modified from previous 

protocols [82,83]. To eliminate interfering signals and additionally affirm complete oxidation of 

3-NT at 800 mV, Crabtree et al. used an HPLC-ECD method (700, 800, 900 mV) for 3-NT detection in 

kidney proteins [84]. Kumarathasan et al. developed HPLC methods with amperometric–CoulArray 

to simultaneous analyze norepinephrine, epinephrine, L-3,4-dihydroxyphenylalanine (DOPA), 

dopamine, 3-nitrotyrosine, m-, o-, and p-tyrosines [85]. The detection limit was in the low pmol 

range with amperometry, and in the low fmol range for the CoulArray method. Commonly used 

antibodies for semi-quantitative detection of 3-NT in tissues offer a great sensitivity but exert also an 

epitope preference and cross-reactivity, which leads to under/overestimation and misinterpretation 

of biological protein nitration. ELISA assays for 3-NT detection are widely used in preclinical and 

clinical studies (for review, see [86]). However, the broad product specifications and multiple 

manufacturers hamper easy comparison of these results and certainly some of these ELISA assays 

may not be reliable for the use in biological samples. In contrast, total hydrolysis and subsequent 

HPLC-analysis offers an alternative method for quantification of 3-NT [61,62]. Pitfalls in hydrolysis 

include losses of 3-NT by partially reducing conditions and false positive results due to the presence 

of nitrite and its nitrosating properties during hydrolysis in concentrated acids or under acidic 

conditions as generated during the freezing process in certain buffers [87,88]. Therefore, pronase 

digestion has been recommended [18,62]. Some previous reports even validated the ELISA-based 

detection methods for 3-NT, e.g., by an HPLC assay [89] or by LC/MS technique [90]. Likewise, 

immunohistochemical 3-NT detection was validated by 2D-PAGE and LC-MS for plasma fibronectin 

[91] and atherosclerotic lesions [92]. 

4.4. Comparison of Theory and Our Empiric Data 

A theoretical assumption is that most tyrosine residues which are nitrated are surface-exposed 

in proteins [62]. We found that extended time period of digestion increases the yield of 

3-nitrotyrosine suggesting that some nitrated tyrosine residues may be buried and not easily 

accessible to pronase-dependent total hydrolysis. This may be in accordance with previous 

observations that non-surface-exposed tyrosines can also be efficiently nitrated under physiological 

conditions, when neighbored metal centers (e.g., as found in manganese-porphyrin, P450 or heme 

enzymes) catalyze the hemolysis of PN and subsequent nitration of the phenolic ring [25]. Another 

theory is that 3-NT can be reduced to 3-aminotyrosine during storage or total hydrolysis by trace 

metal contaminations or reducing proteins/biomolecules in the samples [93], which may be most 

pronounced for surface-exposed, accessible 3-NT residues. This reduction is mimicked by dTH that 

is used as a proof of 3-NT identity (if dTH leads to diminished signal it should be 3-NT). We 

potentially confirmed both of these theoretical aspects by using sodium dTH in highly nitrated 
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samples and subsequent loss of 3-NT signals as well as by the lack of 3-NT signals in samples of 

animal disease models with confirmed high levels of 3-NT, e.g., in septic or diabetic animals due to 

inflammation-dependent nitric oxide and superoxide formation. The very weak 3-NT signals in 

these samples during HPLC/ECD analysis points towards unspecific degradation processes of 3-NT 

(as also speculated in Section 5), especially of surface-exposed residues, whereas the buried 3-NT 

groups may still yield enough signal with immunostaining-based methods. A final theoretical 

consideration that we have proven here is that very high concentrations of PN induce a vicious cycle 

of ROS-induced ROS formation, as previously shown for self-amplification of mitochondrial ROS 

formation [43,94], and eventually cell death. Our data indicate that the incubation of mitochondria 

with high, supra-physiological concentrations of PN leads to higher 3-NT levels, but also enhanced 

mitochondrial superoxide formation (with a nice linear correlation), suggesting a vicious cycle of 

“ROS-induced ROS”, e.g., by well-known nitration of Mn-SOD, inactivation of aconitase, oxidation 

of thiols, and other oxidative stress processes at the level of mitochondrial respiratory complexes, as 

we have postulated previously [37,38]. 

4.5. Strengths and Limitations of the Present Study 

ECD detection of 3-NT standard has great advantage because it maintains linearity across a 

wide range of concentrations. Within first 4–7 min, 3-NT elutes, which allows for the analysis of 

many samples in a short period of time. The specificity of our assay is based not only on the 

retention time, but also on the oxidation potential of 3-NT, which is quite specific for each analyte 

that can be oxidized. This decreases the chance of generating false positive or false negative results. 

The sample preparation and digestion are done at neutral pH, so it is not aggressive for the sample. 

Therefore, artificial nitration as observed during acidic hydrolysis is not possible. The detection limit 

is quite low (200 fmol in our assay, others even reported 10 fmol). On the other hand, preparation of 

the samples needs at least 24 h incubation, which could result in the catalytic conversion of 3-NT to 

tyrosine or to 3-aminotyrosine as reported by us and colleagues recently [93]. Also, completeness of 

digestion could be a problem due to “buried” 3-NT in lipophilic cores and also due to autodigestion 

of pronase during the long incubation times. A solution for the latter problem (incomplete 

hydrolysis) would be longer digestion times and adding fresh pronase multiple times during the 

process. However, again at risk of “artificial” loss of 3-NT. A major limitation of the HPLC-ECD 

method is the appearance of interfering peaks (e.g., from other amino acids, low molecular weight 

antioxidants/messengers) that vary in different biological samples. Therefore, with high background 

noise, it is impossible to detect 3-NT in samples, which are not artificially nitrated.  

5. Conclusions 

It seems to be a great challenge to reproducibly detect 3-NT in samples with biological nitration 

obtained from animals and humans. However, 3-NT from artificially nitrated samples can be 

reproducibly detected, also allowing a comparison with immunological detection methods (ELISA 

and dot blot). Strengths of our HPLC/ECD method were the high linearity over a wide concentration 

range, the low detection limit, the confirmation of 3-NT identity by dTH-dependent reduction and 

co-elution of the 3-NT sample peaks after spiking with authentic standards. A major draw-back of 

the present HPLC/ECD protocol seems to be the separation of the 3-NT peak in complex biological 

samples or potentially the degradation of 3-NT during the pronase-based digestion method. As a 

major result of the present study, by combining optical and ECD-based HPLC methods, we were 

able to quantify 3-NT and superoxide in the same mitochondrial sample and could establish a direct 

linear correlation between these two oxidative stress read-outs. Our aim to quantify 3-NT in the 

artificially nitrated samples was achieved, but still, our method seems unsuitable for the routine use 

for 3-NT detection in tissues and plasma samples of diseased animals. Future studies will be 

dedicated to the quantification of 3-NT in tissue samples of nitrate-tolerant, diabetic, hypertensive, 

and septic mice and rats, also including the comparison of different detection methods. 
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