
 

Micrometer scale spacings between fibronectin
nanodots regulate cell morphology and focal
adhesions

Utku Horzum, Berrin Ozdil and Devrim Pesen-Okvur
Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Izmir,
Turkey
E-mail: devrimpesen@iyte.edu.tr

Received 13 February 2014, revised 30 March 2014
Accepted for publication 1 April 2014
Published 01 May 2014

Materials Research Express 1 (2014) 025402

doi:10.1088/2053-1591/1/2/025402

Abstract
Cell adhesion to extracellular matrix is an important process for both health and
disease states. Surface protein patterns that are topographically flat, and do not
introduce other chemical, topographical or rigidity related functionality and,
more importantly, that mimic the organization of the in vivo extracellular matrix
are desired. Previous work showed that vinculin and cytoskeletal organization
are modulated by size and shape of surface nanopatterns. However, quantitative
analysis on cell morphology and focal adhesions as a function of micrometer
scale spacings of FN nanopatterns was absent. Here, electron beam lithography
was used to pattern fibronectin nanodots with micrometer scale spacings on a K-
casein background on indium tin oxide coated glass which, unlike silicon, is
transparent and thus suitable for many light microscopy techniques. Exposure
times were significantly reduced using the line exposure mode with micrometer
scale step sizes. Micrometer scale spacings of 2, 4 and 8 μm between fibronectin
nanodots proved to modulate cell adhesion through modification of cell area,
focal adhesion number, size and circularity. Overall, cell behavior was shown to
shift at the apparent threshold of 4 μm spacing. The findings presented here offer
exciting new opportunities for cell biology research.

S Online supplementary data available from stacks.iop.org/MRX/1/025402/
mmedia
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Introduction

Cell adhesion is an important process for both health and disease states such as wound healing
and metastasis. Cells adhesion to the extracellular matrix (ECM) is mediated by focal adhesions
(FA) involving proteins and complexes with sizes on the order of 10 nm to 10 μm. FAs are
comprised of over a hundred proteins [1–4] where the basic modular structure contains an
extracellular matrix protein (e.g. fibronectin), a transmembrane protein (integrins) and
intracellular proteins (e.g. vinculin). Cell adhesion to ECM is widely studied using uniformly
coated surfaces. However, ECM in vivo and ECM produced by cells in vitro have a complex
structure with adhesive patches and non-adhesive spacings [5–9]. The dimensions of the former
are at the nanometer scale, while those of the latter are at the micrometer scale ranging up to
tens of micrometers. Surfaces that mimic the in vivo organization of the ECM should therefore
have micrometer scale spacings in this range. In order to understand in vivo cell adhesion better,
surfaces that closely mimic the in vivo ECM organization are needed.

There have been important cell adhesion studies using both micro and nanopatterned
surfaces [10–23]. The pioneering contributions of Mirkin and Spatz are particularly noteworthy
[24, 25]. However, there are limitations: although micropatterns can be fabricated with high
throughput, they lack nanometer scale resolution and present large areas with uniform
adhesiveness. On the other hand, most nanometer scale patterning processes lack pattern
flexibility. In addition, they usually deliver a combination of topographical, biochemical and/or
rigidity signals [10, 11, 17, 26, 27] rather than providing a pure biochemical signal, for
example. While different types of signal are all crucial for cell response in order to dissect the
contribution of each type of signal, surfaces that provide only that type of signal are essential.
There have been significant previous studies on patterning proteins on surfaces; however, one
drawback has been the presence of both biochemical and topography or stiffness signals due to
the lack of a better fabrication method at the time. Oxide layers that inevitably introduce
topography variations have been used to provide regions for protein versus polymer adsorption
[26, 27]. In this case, the cells receive the biochemical signal (protein versus polymer) coupled
to a topographical signal (high versus low regions on the surface). Thus, it would not be
possible to assign the reason of a change in the cell response exclusively to a change in the
surface topography or a change in the surface biochemistry. Gold nanoparticles coupled to
polymers of various lengths have provided excellent control over distances between proteins;
however, the method does not allow for patterns with varying spacings to be fabricated; the
presence of gold particles also introduce additional signals for cell biology studies [11].
Electron beam lithography (EBL) has a resolution of a few nanometers due to a tightly focused
electron beam (diameter ∼2 nm).

EBL is a direct writing method that does not require the use of a photomask and can be
used to fabricate patterns from a few nanometers to centimeters, covering the range of length
scales that are important and practical for cell biological applications. EBL has been utilized to
fabricate patterns of proteins on surfaces, and some of these patterned surfaces were also tested
and shown to be functional at the cellular level [18, 26–35]. In one approach the resulting
patterns present a purely biochemical signal because there are no differences in rigidity and the
patterns are basically flat because adhesive patches have a thickness of only 2 nm [31]. This
approach also uniquely makes it possible to pattern two proteins simultaneously since proteins
are directly used as EBL resists [18]. Initial work using this approach used the focused electron
beam to inactivate a surface bound protein such as fibronectin [34]. However, image reversal
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was implemented to avoid the proximity effect and to be able to create nanometer scale patterns
[36, 37]. The background is a protein layer and the pattern of interest is just another protein
bound directly to the electron beam exposed regions on the background protein [31]. Using
proteins directly as EBL resists without the need for PMMA, gold coating or beads, for
example, yields a biochemical pattern devoid of topography or stiffness related inputs. Previous
work also showed differences in vinculin and cytoskeleton organization in response to
differently shaped FN nanopatterns, namely dot versus ring patterns on a K-casein background
[18]. However, EBL patterning of proteins was performed on silicon substrates which are not
transparent, thus limiting many downstream light microscopy applications important for cell
biology assays. A quantitative analysis on cell morphology and focal adhesions as a function of
micrometer scale spacings of FN nanopatterns was also absent in previous work. Here, indium
tin oxide coated glass (ITO-glass) was used as substrate for direct patterning of surface
immobilized proteins. The conductive nature of ITO-glass rendered it suitable for EBL and its
transparency was advantageous for phase-contrast microscopy, a fundamental observation
technique. The in vivo ECM was mimicked with nanometer scale FN dots with micrometer
scale spacings. Immunostaining with FN specific antibodies and formation of pattern-specific
FAs by breast cancer cells showed activity at the biochemical and cellular levels, respectively.
In addition, the micrometer scale spacings of 2, 4 and 8 μm between FN nanodots proved to
modulate cell adhesion through modification of cell morphology and FA features.

Methods

Unless otherwise noted, materials were obtained from Sigma, Germany.

Protein coating of ITO glass

ITO coated glass slides (whole or cut into 25 mm×25mm pieces) with ∼230 nm ITO coating
and ∼8 ohm sqr−1 resistance (TEKNOMA, Izmir, Turkey) were cleaned with sequential
sonication in acetone, isopropyl alcohol and ultra-pure (UP) water (18.2 mega-ohm), followed
by UV/Ozone treatment (BioForce Nanosciences, Inc., USA). ITO-glass was incubated in 3%
APTES solution (3-aminopropyl triethoxy-silane, in acetone) for 30 min. The APTES treated
ITO-glass was rinsed with acetone, UP water, dried and baked in a 110 °C oven for 1 h. APTES
coated ITO-glass was incubated in 0.5% glutaraldehyde for 15 min and rinsed just before
incubation with 2 mg ml−1 K-casein for 24 h. K-casein coated ITO-glass was rinsed with buffer,
UP water, dried and stored inside a desiccator. After EBL, K-casein:ITO-glass was backfilled
with 0.05 mgml−1 FN for 1 h, rinsed with buffer, UP water, dried and stored.

Electron beam lithography

K-casein coated ITO-glass was patterned by EBL using a Raith E-line system with a high
precision interferometric stage (Raith GmbH, Dortmund, Germany). The accelerating voltage
was set to 5 kV. Apertures of 7.5 and 30 μm gave typical beam currents of ∼15 and ∼150 pA, at
a working distance of ∼10 mm. Patterns were designed using the Raith software in GDSII
format. A range of area (5–100 μC cm−2) and line (2–3200 pAs cm−1) exposure doses were
tested. Using micrometer scale step sizes in the line exposure mode significantly reduced
exposure times. During electron beam exposure, samples were under a system vacuum of
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∼2–5 × 10−6 mBar for up to 16 h. The Raith system was also used to collect SEM images of
patterned and immunostained FN:K-casein:ITO-glass samples at 5 kV.

Cell culture

All cell culture materials were obtained from Biological Industries, Israel. MDA-MB-231 cells
were grown in DMEM with 10% fetal bovine serum (FBS) at 37 °C and 5% CO2. Cells were
passaged every 2–3 days. For experiments, cells ready for passaging were starved in serum free
medium for 2 h, trypsinized and cultured in DMEM with FBS on ITO-glass with 0.6 × 106 cells
per 60 mm petri dish at 37 °C and 5% CO2 for 18 h.

Immunofluorescence

FN:K-casein:ITO-glass without cells was directly processed for immunostaining. Surfaces with
cells were fixed with 4% paraformaldehyde and permeabilized with 0.1% Triton X-100. The
samples were blocked with 1% bovine serum albumin, stained for FN and vinculin using FN
and vinculin specific primary antibodies, followed by Alexa488 or Alexa555 fluorophore
conjugated secondary antibodies (Molecular Probes, Eugene, OR, USA). The samples were
imaged using an Olympus epifluorescence microscope with a 100X oil immersion objective.
Images were processed using ImageJ.

Image analysis

All image processing and analysis steps were performed using ImageJ. Cell contours were
manually drawn. Vinculin images were processed through either ‘Subtract background’,
‘CLAHE (Contrast Limited Adaptive Histogram Equalization)’, ‘Mathematical exponential(exp)’
and ‘Log3D’ (figure 7 and online figure S2, available at stacks.iop.org/MRX/1/025402/mmedia)
or ‘Subtract background’, ‘Subtract’ and ‘Log3D’ steps before thresholding (online figures S3
and S4, available at stacks.iop.org/MRX/1/025402/mmedia). Identified FAs were analyzed with
‘Analyze Particles’. N = 5–9 cells or 7-416 FAs were analyzed per group. Different thresholds
and background subtraction steps were tested but different paths only negligibly changed the
absolute values for the parameters tested and the correlations between parameters were virtually
the same (online figures S3 and S4, available at stacks.iop.org/MRX/1/025402/mmedia).

Results and discussion

Previous studies have shown that proteins can be used directly as EBL resists on silicon
substrates [31]. However, silicon is not transparent and thus limits usage of many light
microscopy based assays used in cell biology. To overcome these limitations, the suitability of
ITO-glass as an EBL substrate with proteins as EBL resists was tested. EBL requires a conductive
substrate. ITO-glass is conductive due to a thin layer of ITO coating which does not significantly
change the transparency of the underlying glass (figure 1(A)). ITO-glass is also more affordable
than silicon wafers. The fabrication process is outlined in figure 1(B). ITO-glass was first
functionalized with APTES (3-aminopropyl triethoxy-silane) which induces protein binding.
After coating the APTES treated ITO-glass with the protein of interest 1 (K-casein), the surface
was exposed to a focused electron beam and finally backfilled with protein of interest 2 (FN).
Patterned ITO-glass was then characterized at the biochemical and cellular levels (figure 1(C)).
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Suitability of ITO-glass for direct patterning of protein coated surfaces using EBL was first
tested on K-casein:ITO-glass using the area exposure mode (figure 2). Area doses ranging from
5 to 80 μC cm−2 were tested. After EBL, the surface was backfilled with and immunostained for
FN. Results showed that first, K-casein coated ITO-glass can be directly patterned with EBL
where FN selectively binds to the exposed areas on K-casein. Second, FN nanodots patterned
on K-casein:ITO-glass can be detected by FN immunospecific antibodies. Third, the mean
intensity as well as the homogeneity of the immunofluorescence signal for FN on the electron
beam exposed areas increased as the applied electron dose increased, consistent with previous
results on silicon substrates [31]. Area doses as low as 5 μC cm−2 initiated FN binding but
efficient coverage of the exposed area by FN was observed at area doses of 65 μC cm−2 and
higher. Previous work showed that electron beam irradiation does not change surface
topography but rather surface functionality, as determined by phase imaging with atomic force
microscopy [31]. The exact chemical nature of the change induced by the focused electron
beam on K-casein is not known; however, it is likely to show similarities to changes previously
reported on self-assembled monolayers [33, 38].

EBL can be performed in area, line and dot exposure modes. The dot exposure mode can
be used to fabricate FN nanodots; however, in this mode the exposure times are long since the
beam moves to each point exposes and then moves to the next point. To overcome this
limitation, line exposure mode was used with step sizes that matched the desired spacings
between FN nanodots (figure 3). In this mode, the exposure time was significantly reduced. In
addition, FN nanodots with micrometer scale spacings were successfully fabricated on K-
casein:ITO-glass. Line exposure was performed at both 30 μm and 7.5 μm apertures (figure 3,
online figure S1, available at stacks.iop.org/MRX/1/025402/mmedia). As for area exposure,
immunofluorescence signal increased as the electron dose increased. At 30 μm aperture, line
doses of 200, 400, 800, 1600 and 3200 pAs cm−1 were tested. In this case, while diameters of
the resulting FN nanodots were similar (588 ± 6 nm for 3200 pAs cm−1; 538 ± 14 nm for 1600
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Figure 1. Electron beam lithography based approach for fabricating proteins patterns on
transparent ITO-glass. (A) Image of standard glass slide and ITO coated glass slide.
Both are similarly transparent and the words underneath are clearly visible. (B) ITO-
glass surfaces are functionalized with APTES before coating with K-casein. A focused
electron beam is raster scanned on the K-casein:ITO-glass surface which is then
incubated with FN. (C) FN localization is determined using immunofluorescence, which
is performed with antibodies that specifically recognize FN ( ) and secondary
fluorescent antibodies ( ) that specifically recognize the former ( ). Bioactivity is
assayed at the cellular level.

http://stacks.iop.org/MRX/1/025402/mmedia


pAs cm−1; 497 ± 18 nm for 800 pAs cm−1) and larger than those at 7.5 μm aperture, the
efficiency of backfilling clearly increased as the electron dose increased above 400 pAs cm−1

(figure 3). At 7.5 μm aperture, line doses ranging from 2 to 1000 pAs cm−1 were tested. Here,
FN nanodot diameter significantly increased (from 238 ± 11 nm to 653 ± 18 nm) as the electron
dose increased (from 212 pAs cm−1 to 1000 pAs cm−1), p < 0.0001 (online figure S1, available
at stacks.iop.org/MRX/1/025402/mmedia). The threshold level for initiation of backfilling was
determined as 200 pAs cm−1 based on intensities of fluorescence images. In addition, area
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Figure 2. Backfilling with FN is dose dependent. (A) Area pattern drawn in EBL
software. (B) Immunofluorescence image of FN squares on K-casein background
corresponding to pattern in (A). Sample was stained with FN specific antibodies. (C)
Fluorescence intensity and homogeneity of FN immunostaining increased as the applied
electron dose increased (n = 4 per dose).
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exposure mode with micrometer scale step sizes was successfully used to fabricate FN nanodots
on K-casein:ITO-glass although the spacings in the x and y directions had to be identical (data
not shown).

Previous work has shown that proteins patterned on silicon using this EBL approach are
functional at the cellular level as cortical cells, fibroblasts and endothelial cells specifically
adhere to FN micro- and nanopatterns. Here, breast cancer cells were cultured on the control
and patterned surfaces. Since ITO-glass is transparent, cells on them can easily be visualized
using techniques such as phase-contrast microscopy (figure 4). As expected, few cells were
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Figure 3. Using a micrometer scale step size in line exposure mode results in nanometer
scale FN dots. (A) Line pattern drawn in EBL software. One corner of the pattern is
magnified to show individual lines. (B) Immunofluorescence image of FN nanodots on
K-casein background corresponding to pattern in (A). Sample was stained with FN
specific antibodies. Fluorescence intensity of FN immunostaining increased as the
applied dose increased. (C) SEM image of the sample in (B). 30 μm aperture was used
for EBL.



attached and even fewer were spread on K-casein coated ITO-glass while many cells were
attached and spread on FN coated ITO-glass.

To evaluate cell adhesion on FN nanodots with micrometer scale spacings, cells were
cultured overnight on FN:ITO-glass, K-casein:ITO-glass and FN:K-casein:ITO-glass (i.e. ITO-
glass coated with K-casein, exposed to EBL and backfilled with FN), fixed and processed for
immunofluorescence. Sample immunofluorescence images are shown in figure 5. Fluorescence
signal from the endogenous FN at the perinuclear region is observed in addition to the FN pattern.
FAs were detected by immunofluorescence staining of vinculin, which is a well-known marker of
FAs. Cells on FN:ITO-glass formed prominent FA while cells on K-casein:ITO-glass did not.
Cells on FN:K-casein:ITO-glass also showed FA formation. When the FN nanodots were 200 nm
in diameter, cells did not form FAs, consistent with previous results [18]. Cell adhesion was
observed on FN nanodots with larger diameters such as 400 or 800 nm. The micrometer scale
spacings tested here were up to 8 μm, at which point the cell morphology and FA features were
similar to those on K-casein surfaces. Therefore, larger spacings were not tested.

Cell morphology was analyzed as a function of the nanopattern spacing (i.e. the step size
in line exposure mode). Cell area correlated negatively with nanopattern spacings: from
1549 ± 185 μm2 for FN (0) to 629 ± 84 μm2 for 8 μm (R=−0.83) to 494 ± 52 μm2 for K-casein
(∞) (R =−0.46) (figure 6(A)). For nanopattern spacings of 4 μm or larger, cell areas did not
show any statistically significant further decreases. These data show that nanopattern spacing
negatively correlated with cell area and did not change cellular aspect ratio.

Next, FAs were analyzed as a function of the nanopattern spacing. This analysis is outlined
with sample images in online figure S2, available at stacks.iop.org/MRX/1/025402/mmedia.
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Figure 4. Phase-contrast images of MDA-MB-231 breast cancer cells cultured on
transparent ITO-glass surfaces. Top: K-casein:ITO-glass, bottom: FN:ITO-glass.
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Figure 5. Immunofluorescence images of cells on ITO-glass surfaces. Top, middle and
bottom panels show FN, vinculin and merged images, respectively. Prominent FAs are
observed in cells cultured on both FN:ITO-glass and FN:K-casein:ITO-glass with 2 μm
spacing. FAs are not observed in cells cultured on K-casein:ITO-glass. A few of the
FAs on and off FN nanodots are indicated with arrows and arrowheads, respectively.

Figure 6. Nanopattern spacing regulates cell morphology. (A) Cell area decreased as
nanopattern spacing increased. (B) Cell aspect ratio did not change significantly with
nanopattern spacing. (C) FN nanodot spacing negatively correlated with cell area
( ), but did not change cell aspect ratio significantly ( ). Horizontal solid and
dashed lines show data with statistically significant differences with p < 0.05 for two-
tailed and one-tailed t-tests, respectively.
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spacings, respectively. Horizontal solid and dashed lines show data with statistically
significant differences with p < 0.05 for two-tailed and one-tailed t-tests, respectively.



Briefly, the vinculin images were processed through a series of steps to remove background and
finally thresholded to identify individual FAs. The identified FAs were then mapped on the
corresponding FN pattern image to determine FAs on and off FN nanodots. Here ‘FA off FN’
refers to FA located between FN nanodots rather than on FN nanodots; FAs that form on
control FN surfaces are all ‘on’ FN while those on control K-casein surfaces are all ‘off’ FN.
Different thresholds and background subtraction steps were tested but different paths only
negligibly changed the absolute values for the parameters tested and the correlations between
parameters were virtually the same (figure 7, online figures S2, S3 and S4, available at stacks.
iop.org/MRX/1/025402/mmedia). The number of FAs, the area of FAs, the total area of FAs per
cell and the circularity of FA were analyzed (figure 7 and online table S1, available at stacks.
iop.org/MRX/1/025402/mmedia). The number of FAs on FN per cell decreased as nanopattern
spacing increased (figure 7(A)). Number of FAs off FN did not change with nanopattern
spacing. The numbers of FAs off FN were higher than those on FN when the nanopattern
spacing was 4 μm and 8 μm. On the other hand, areas of individual FAs on FN decreased as
nanopattern spacing increased from 2 μm to infinity (K-casein) (figure 7(B)). Areas of FA on
FN:ITO-glass (0.56 ± 0.03 μm2) for the breast cancer cell line used in this study were consistent
with previously reported values on uniform surfaces [39]. Areas of FA on FN:ITO-glass were
smaller than those on FN:K-casein:ITO-glass with nanopattern spacings of 2 μm and 4 μm.
Areas of FAs off FN were smaller than those on FN for all nanopattern spacings, namely, 2, 4
and 8 μm. Areas of FAs off FN did not change with nanopattern spacing. What is more, total
FA area on FN per cell decreased as nanopattern spacing increased (figure 7(C)). Total FA area
off FN per cell did not change with nanopattern spacing. Furthermore, FAs are known to gain
an elongated shape as they increase in size and mature [2, 4]. FA circularity on FN had an
inverse correlation with micrometer scale spacing (R =−0.88) (figure 7(D)). FA circularity off
FN nanodots was higher than that on FN nanodots. FA circularity negatively correlated with FA
area for all groups, as expected (R =−0.73) (figure 7(E)). These data show that nanopattern
spacing negatively correlated with FA number, FA area and total FA area per cell while it
positively correlated with FA circularity. Interestingly, when the total area for all FAs was
expressed as a percentage of cell area, MDA-MB-231 cells on FN:ITO-glass surfaces employed
only 2.5 ± 0.5% of their total area to form FAs. For nanopatterned surfaces, this value dropped
down to ∼1.7 ± 0.2%. These results show that, first, the cells can form FAs, though fewer and
smaller, off FN nanodots. This observation is expected considering that cells can secrete their
own FN during an overnight culture and that serum present in the culture medium contains FN.
Second, when FN is uniformly available on the surface, cells form many and small Fas, whereas
cells focus on the available FN areas and form fewer and larger FAs on nanopatterned surfaces
as long as the nanopattern spacing is equal to or smaller than 4 μm. Third, the major features
examined in this work appear to significantly change when the nanopattern spacing goes higher
than 4 μm, suggesting this value as a threshold for spacings of adhesive nanopatterns. Fourth,
cells on 2D surfaces use only 1.5–3% of their projected area for forming adhesions.

Conclusions

This study shows that patterns of proteins that mimic the in vivo ECM organization can be
directly fabricated on transparent ITO-glass using EBL. In addition, micrometer scale spacings
of 2, 4 and 8 μm between fibronectin nanodots are shown to regulate cell adhesion through
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modification of cell area, FA number, size and circularity. Overall, cell behavior shifts at the
apparent threshold of 4 μm spacing. These results will assist in the design and fabrication of
surfaces mimicking the in vivo organization of ECM and will promote further studies on cell
adhesion, migration and ECM modification, comparing health and disease states.
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