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ABSTRACT 

METHOD DEVELOPMENT FOR PROTEIN IDENTIFICATION WITH 

 MALDI-TOF/TOF BY USING ON-SURFACE DIGESTION 

 Protein identification is predominantly carried out by searching tandem mass 

spectrometric data of peptides in a protein database. For this reason, proteins are 

converted to peptides through a digestion process by using some certain 

endoproteinases. Trypsin is mostly preferred in this sample preparation step due to its 

high activity and products having appropriate mass range. Whereas in-solution digestion 

method is applied for the proteins in solution, proteins trapped in the gel can be digested 

by using in-gel digestion technique. Alternative to these traditional digestion methods, it 

has been reported that proteins can be digested too while they were adsorbed onto solid 

surfaces.  

 In this study, digestion process of the adsorbed proteins, namely on-surface 

digestion is examined widely by using both hydrophobic and ionic adsorbents on 

different proteins. Results of the on-surface digestion were compared with in-solution 

digestion and in-gel digestion methods. As a conclusion, on-surface digestion is 

applicable for the protein identification by mass spectrometry; however, its yield may 

change from one experiment to another, depending on two separate but related 

processes: protein adsorption before the digestion and peptide recovery after the 

digestion. Nevertheless on-surface digestion has the advantages of protein enrichment 

and protein purification prior to mass spectrometry. These processes are necessary and 

significant especially for the samples containing minute amounts of protein and an 

effective enzymatic activity. Last but not least, this method may be performed 

complementarily to other digestion methods since new and different peptides may be 

acquired from the same sample source. 
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ÖZET 

MALDI-TOF/TOF İLE PROTEİN TANIMLAMASI İÇİN YÜZEYDE 

PARÇALAMA YÖNTEMİNİ KULLANARAK METOT GELİŞTİRME 

 Protein tanımlaması ağırlıklı olarak, peptitlerin sıralı kütle spektrometrik 

verisinin bir protein veri tabanında taranmasıyla gerçekleştirilir. Bu sebeple, proteinler 

bir parçalama işlemi üzerinden belli bazı endoproteinazlar kullanılarak peptitlere 

dönüştürülürler. Bu örnek hazırlama basamağında, yüksek aktivitesi ve uygun kütle 

aralığına sahip ürünlerinden dolayı çoğunlukla tripsin tercih edilir. Solüsyondaki 

proteinler için solüsyon-içinde parçalama metodu uygulanırken, jele hapsolmuş 

proteinler jel-içinde parçalama tekniği ile parçalanabilir. Bu geleneksel parçalama 

metotlarına alternatif olarak proteinlerin, katı yüzeyler üzerine tutturulmuşken de 

parçalanabildiği gösterilmiştir.  

 Bu çalışmada, yüzeyde parçalama olarak adlandırılan adsorplanmış proteinlerin 

parçalanma işlemi, hidrofobik ve iyonik adsorbentler kullanılarak farklı proteinler 

üzerinde kapsamlı olarak incelenmiştir. Ayrıca yüzeyde parçalama sonuçları solüsyon-

içinde ve jel-içinde parçalama metodları ile karşılaştırılmıştır. Sonuç olarak yüzeyde 

parçalama metodu kütle spektrometresi ile protein tanımlamasında uygulanabilir ancak 

verimi, parçalama öncesi protein tutturulması ve parçalama sonrası peptit geri kazanımı 

şeklinde ayrı fakat birbiriyle ilişkili iki sürece bağlı olarak bir denemeden diğerine 

değişiklik gösterebilir. Buna rağmen, yüzeyde parçalama kütle spektrometresi öncesi 

protein zenginleştirme ve saflaştırma avantajlarına sahiptir. Bu işlemler özellikle çok az 

miktarda protein içeren örnekler ve etkili bir enzimatik aktivite için gerekli ve 

mühimdir. Son ve bir o kadar önemli olarak, aynı örnek kaynağından yeni ve farklı 

peptit sinyalleri elde edilebildiğinden, bu metot diğer parçalama metotlarına 

tamamlayıcı olarak uygulanabilir.  
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CHAPTER 1 

 

INTRODUCTION TO  

MASS SPECTROMETRY-BASED PROTEOMICS 

 

1.1. Introduction to Proteomics 

 

 Since proteins govern the function in the cells or body fluids, towards the end of 

Human Genome Project it has been realized that a comprehensive understanding of 

biological activities can be attained through proteins rather than genes
1
. In addition, 

studies on the correlation of mRNA to protein have proved that mRNA is insufficient to 

predict the expressions of all the proteins
2
. Thus, post-genomic era started with an 

extensive interest in the direct analysis of proteins. However, proteins have extremely 

dynamic nature and complex structure. Moreover, they carry out their function through 

interactions with other proteins and molecules. Proteomics, the global scale analysis of 

proteins has enabled scientist to study complex protein mixtures without the need of 

complete amino acid sequence of a protein. In conclusion, proteomics, which was 

coined in analogy to genomics by Marc Wilkins in the early 1990s, has been widely 

adopted by the biological community in a short time
3
. 

 Numerous functional diversity of proteins arises from the linear arrangement of 

specific twenty amino acids in different composition. Once the primary structure is 

formed as an amino acid chain, local conformation of the peptide sequence generates 

the secondary structure. After that, prevailing interactions between stabilizing forces 

such as hydrophobic effects and hydrogen bonds, lead protein to fold creating the 

tertiary structure. Together with protein folding, diversifications on the polypeptide 

chain, which occurs after the translation by covalent modifications (post-translational 

modifications, PTM) play a key role in several biological processes
4
. As the links 

between proteins and the metabolic pathways have been uncovered, scientists started to 

discuss the problem of protein complexity systematically by drawing protein interaction 

maps and protein networks via wires and nodes
5
 (Figure 1.1. c). Proteins tend to 

respond to changing stimuli, therefore, some certain predeterminations as the 

environmental condition, status of the protein resource and the methodology used 
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should be thoroughly stated according to the purpose of the research. At this point, the 

original scope of proteome, which is defined as entire protein complement expressed by 

a genome or by a cell or tissue type
6
, may be narrowed defining the material or working 

area like plant proteomics, structural proteomics, targeted proteomics and so forth. 

 A typical proteomic analysis primarily starts with expression proteomics in 

which the sample preparation, analyte detection and monitoring are performed. Next, 

the bioinformatic analysis takes over the task and provides information about the given 

protein. Ultimate and most importantly, in functional proteomics, role of the targeted 

protein is tried to find in the biological sense
7
. Following the innovations in ionization 

techniques, analytes of biological macromolecules, which are relatively large and 

fragile to ionize, have become eligible to be measured by mass spectrometers. In time, 

mass spectrometry (MS) became a method of choice for proteomics, and proteomics 

researches involving mass spectrometer is named mass spectrometry-based proteomics. 

 

 

Figure 1.1. Complexity of proteins 
8

 

 

 Unlike the traditional protein sequencing method Edman degradation
9
, in mass 

spectrometry-based proteomics, it is not anticipated to have the complete sequence of 

the protein of interest because cell events associated with proteins can be described 

without 100% sequence coverage
10

. Although the whole proteome analysis of some 

model organisms, especially the proteomes of the yeast Saccharomyces cerevisiae and 

well-known bacteria Escherichia coli, have been attained to some extent, in the case of 

proteome analysis of rather complex organisms, this attempt get more formidable. 
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As an example, the number of proteins cataloged (over thousands) is estimated to 

correspond to half of the predicted genome roughly in the reports of the well-studied 

organisms; the nematode Caenorhabditis elegans and the fruit fly Drosophila 

melanogaster 
11

. When it comes to human proteome, the total number of proteins is 

expected to reach millions in the recently established Human Proteome Project
12

.  

 Abilities of mass spectrometry are not limited to protein identification, 

characterization of PTMs is also being conducted by mass spectrometry for a long 

time
13

. In addition to this, discrepancy between normal organism and pathological one, 

can be revealed by comparing their proteomes. Appearance of new protein fragments, 

which is regarded as the signature of the disease, appears as a result of protein 

breakdown, modification process, change in protein concentration beyond the standard 

deviation or occurrence of protein aggregation. So far, many biological connections and 

physiological processes, which used to be thought unrelated have been enlightened by 

mass spectrometry 
14

. In time, applications of proteomics have been developed from 

bench-to-bedside investigations, especially in the field of drug discovery
15

 and 

biomarker design
16

. 

 Last but not least, protein quantities reflect dynamics of biological system and 

responses to a changing environment. Protein quantification can be carried out by mass 

spectrometry using one of two different ways: differential stable isotope-labelled and 

label-free. In label-free methods, either signal intensity of the peptides or number of 

acquired spectra are used. On the other hand, labelled methods are performed 

considering the mass shift between heavy and light peptides, which is produced by 

adding stable isotopes to the sample beforehand.
17

.  

 Unfortunately in mass spectrometry-based proteomics, there is no single method 

addressing to all problems, therefore, scientists have to select the most appropriate 

methods and the most advanced techniques for specific aims and problems. 

 

1.2. Mass Spectrometry 

 

 Mass spectrometers separate the charged analytes according to their mass-to-

charge (m/z) ratios. Mass spectrometry is the name of this analytical technique in which 

the ions are detected in proportion to their abundances. A typical mass spectrometer is 

comprised of three main parts: ion source, mass analyzer and detector. 
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 In order to mobilize and manipulate the molecules under the impact of electric or 

magnetic field, analytes are first ionized in the ion source. Since internal energy is 

transferred during this process, physicochemical properties of the ionic compound are 

of considerable importance. Conventional energetic ionization techniques, which cause 

extensive fragmentation, were not suitable for large, nonvolatile and thermally unstable 

species; proteins, oligosaccharides, oligonucleotides etc. For this reason, new 

techniques were necessary to introduce biological macromolecules to the system by 

extracting them directly from condensed form to gas phase without degradation. Matrix-

assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) have 

been undertaking this mission since late 1980s
18

 (Figure 1.2.). 

 

 

Figure 1.2. Soft ionization techniques 
19

 

 

 In MALDI, both desorption and ionization processes are carried out by matrix 

compounds, which are mostly chosen from ultraviolet absorbing organic molecules. 

Matrix also serves as a proton donor or acceptor according to the positive or negative 

ionization mode while minimizing the sample damage from the laser energy for a 

nondestructive vaporization. Furthermore, matrix-solvent composition and sample-

matrix preparation have considerable importance on the quality of spectrum
20

. 

Therefore, both the choice of matrix and preparation procedure are critical for a 

favorable MALDI analyses. 

 Lack of chemical reactivity, solubility in different solvents, ability to promote 

analyte ionization, strong absorbance at the laser wavelength and low mass can be listed 

the features of a good MALDI matrix. Although there is no universal sample 



5 
 

preparation method for peptides and proteins, α-cyano-4-hydroxycinnamic acid 

(CHCA), 2,5- dihydroxybenzoic acid (DHB), 3,5-dimethoxy-4-hydroxycinnamic acid 

(Sinapinic acid, SA) are the most common matrices in use. Sample-matrix mixture is 

mostly deposited onto target either dried-droplet or thin layer methods. In both 

methods, analytes are embedded throughout excess quantity of matrix and then left to 

dry to co-crystallization with matrix
18

. 

 Ionization in bundles through an intermittent process rather than a continuous 

ion beam makes this technique more appropriate to time-of-flight (TOF) analyzers. 

Today, MALDI-TOF is an essential and widespread technique due to its favorable 

features; singly charged ion acquisition, high mass range, user-friendliness and partial 

tolerance to contaminants. Although a number of pathways including ion-molecule 

reaction, excited-state proton transfer, thermal ionization, energy pooling, 

disproportionation were proposed, there is no single mechanism which can precisely 

explain the ionization process in MALDI. Considering the broad analyte range (from 

biological macromolecules to synthetic polymers, synthetically prepared dendrimers 

and fullerenes) and different sample preparation methods, it is not surprising why one 

definite mechanism addressing to all these analytes, could not be found
21

. 

 Whereas MALDI introduces the solid phase analytes to the analyzer; other soft 

ionization technique ESI produces ions from bulk solution via capillary tube. This 

structure of ESI enables scientist to combine mass spectrometry with liquid 

chromatography. In this LC-MS/MS system, analytes can be separated, purified and 

enriched at the same time prior to mass analysis. Under atmospheric pressure, a high 

voltage about 2-6 kV is applied to the tip of the capillary creating highly charged 

droplets. To direct the spray towards the mass analyzer and to disperse spray for better 

nebulization, a gas, dry N2 is injected coaxially. Solvent evaporation occurs when the 

charged droplets pass through either the heated inert gas or heated capillary at high 

vacuum. Nature of the solvent, flow rate, size of the capillary, potential applied, surface 

tension, nature of the analyte and electrolytes are the factors which affect the 

electrochemical process and the ion formation in ESI. For the explanation of ionization 

process in electrospray, two mechanisms are proposed: charged residue model and ion 

evaporation model. Whereas ion evaporation model suggests that removal of charge is 

replaced by ion evaporation mostly as Coulomb fission at larger droplet radii, charge 

residue model explains the phenomenon through jet-fission or evaporation cycles, at the 

end leaving a ‘residue’ of charge on the analyte
22

. In contrast to MALDI, multiply 
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charged ions are mostly occurred in ESI. Later, they are reduced to reach  the 

monoisotopic mass by a mathematical charge deconvolution method. This multiply 

charge formation gives better results in ECD/ETD fragmentations and provides further 

analyses for protein three-dimensional structure and noncovalent interaction. 

 Mass analyzer is the part in which ions are trapped or transmitted according to 

their m/z values. Today several different mass analyzers and their sequentially 

positioned same or hybrid assemblies are being utilized in proteomics especially for 

their unique properties: resolution, mass range, sensitivity, ion transmission, dynamic 

range and analysis speed (Figure 1.3.). 

 

 

Figure 1.3. Mass analyzers 
23

 a) Quadrupole b) TOF/TOF c) Magnetic sector instrument 

d) Quadrupole ion trap e) Orbitrap f) FT-ICR 

 

 Electric or magnetic fields are used in mass analyzers by using different ion 

manipulation principles. For example, while ions are separated according to their flight 

time in a time-of-flight (TOF) analyzers, ion stability is used for quadrupole analyzers 

and resonance frequency of a m/z value is utilized for trapping the ions in an ion trap, 

orbitrap and cyclotron resonance mass analyzers
24

. 

 One of the earliest analyzer, sector instruments functions in scanning mode by 

focusing the ions to a magnetic and electrostatic field. Accelerated ions passing through 
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a magnetic sector are deflected to a circular motion of a unique radius. Angle and radius 

of the deflection can be derived from magnetic field strength, accelerating voltage and 

m/z. In double focusing magnetic sectors, ions are first focused according to their 

kinetic energy by an electrostatic sector and then separated according to their 

momentum by a magnetic sector
25

. 

 The most commonly used mass analyzer, quadrupole was first invented as a 

mass filter. Quadrupole mass filter consists of four circular symmetrically arranged rods 

to which rf and dc voltages are supplied. Ion oscillates in the x, y-plane with a 

frequency depending on its m/z value. If the oscillations of the ion in this plane are 

stable, the ion will continue to drift down the rods and reach the detector. Later, 

quadrupole ion trap is modified from linear quadrupole mass filter. In this device, ions 

are subjected to forces applied by a rf field too. Ions are trapped within the system of 

three electrodes-a ring electrode and two end-cap electrodes in a hyperbolic cross-

section. The motion of the ions lasts if they never hit to the electrodes. Elevating the 

voltage to the stability limit causes ions to have unstable trajectory and expels ions to be 

analyzed from the IT
26

. 

 In a linear TOF analyzer, ions in bundles expelled from the source are 

accelerated by an electric field towards the flight tube. In this field free region, they are 

separated according to their velocities and from the relationship between the mass of an 

ion and its kinetic energy, m/z value can be deduced by comparing their time of flights. 

Simply put, TOF analyzers measure the flight time of the ions in a tube which have 

been acquired the same kinetic energy with different flight times due to the mass 

difference. Sensitivity and upper mass range are the most striking features of these 

instruments that from femtomole to attomole levels, and even masses over 100 kDa can 

be detected. Since the flight time is proportional to the resolution, length of flight tube is 

critical for high resolution, however, too long flight path results with the loss of ions. 

Hence flight tube with a length of 1 to 2 m and an acceleration voltage of at least 20 kV 

keep both the sensitivity and resolution at a reasonably high values. Apart from this, 

delayed pulsed extraction and reflectron are two techniques for the improvement of 

resolution. Ions having same m/z ratio with different kinetic energy cause peak 

broadening because they reach the detector slightly different times. Delayed pulsed 

extraction technique enables analyzer to correct this energy dispersion by transmitting 

more energy to the ions which spend more time in the source, after a certain delay. On 

the other hand, reflectrons increase the resolution via a second transmission of the ions 
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in the reverse direction by deflecting them with an electrostatic reflector. Equally 

spaced ring electrodes in a reflectron act as an ion mirror, therefore, speedy ions 

penetrate into the reflectron more deeply than the ions having lower kinetic energy. 

Next, they are repelled outside of the reflectron with the same absolute velocity to the 

opposite direction to reach  the detector. 

 Among the present MS technologies, Fourier Transform Ion Cyclotron 

Resonance (FTICR) analyzers exhibit the best mass resolving power, mass resolution, 

mass accuracy and sensitivity. High cost of the system and necessity of expertise, 

however, render their usage limited compared to the others. In these instruments, ions 

trapped in the center of the cell are then excited to a larger radius by the excitation 

plates which are perpendicular to the magnetic field to create cyclotron frequency. Since 

frequency is measured more accurately than the other experimental parameters, higher 

resolution can be acquired. After that, the frequency and time domains are converted to 

mass spectrum by a mathematical transform based on Fourier inversion theorem
27

. 

 Orbitrap, a lately invented (2005) analyzer is the most noticeable indication of 

the explicit turn towards proteomics because it was developed from Knight modified 

Kingston trap as a result of extensive demand to a higher performance instrument with 

low cost and size. In the orbitrap analyzers, once the ions are injected tangentially, they 

orbit around the central spindle-like electrode, and their electrostatic attraction is 

prevented by centrifugal force balancing. Thus, ions are trapped around an electrode 

under the influence of the electrostatic fields rather than magnetic fields and radio 

frequency. In conclusion, mass spectrum is generated from axial oscillation frequencies 

of the rotating ion rings by using Fourier transformation
28

. 

 In tandem mass spectrometers, multiple stages of mass analysis and 

fragmentation between the stages can be carried out. Tandem-in-space analysis requires 

at least two independent mass analyzers sequentially positioned such as TOF/TOF and 

triple quadrupole. For tandem-in-time approach, ion trapping mass analyzers, in which 

the ion of interest is isolated before the fragmentation, are used
29

. 

 

1.3. Separation Techniques Before the Mass Analysis 

 

 Since high concentration and sample purity are critical for sensitive and accurate 

mass measurement, some physicochemical properties of proteins, which can be listed as 
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size, charge, shape, isoelectric point, hydrophobicity, solubility, ligand/metal affinity 

and structure, are used to reduce the complexity and dynamic range of proteomes. For 

this purpose, either prefractionation techniques or enrichments strategies are performed 

before the mass analysis
30

. Although there have been innovative techniques utilizing 

biochips and nanoparticles, proteins and peptides are separated and isolated by the two 

techniques: chromatography and electrophoresis. 

 

1.3.1. Chromatographic Techniques 

 

 General principle underlying all types of chromatography is the interaction of 

components in the sample with stationary and mobile phase. While molecules are 

reversibly detained according to their affinity to the stationary phase, they are dragged 

to move via stationary phase by the flow of mobile phase. As a result, in a typical liquid 

chromatography, separation relies on retarding time of the compounds in the colum
31

. 

High performance liquid chromatography (HPLC), which has a high recovery, 

reproducibility, speed and particularly superior resolution, became an essential method 

for analytical separation of proteins and peptides. Furthermore, HPLC provides various 

separation modes such as hydrophobic interaction, reverse phase (RP), hydrophilic 

interaction, ion-exchange, gel filtration, immobilized metal ion affinity and 

immunoaffinity
32

. 

 In addition to these benefits, combining HPLC to electrospray mass 

spectrometers generates an excellent on-line procedure, in which the ion-suppression 

effect is reduced, low abundance peptides are enriched, and salts are removed. Mostly 

RP mode is coupled to MS owing to its appropriate mobile phase content. Moreover, 

after the production of smaller particles as packing material, ultra high pressure 

capillary LC systems, which work at high pressure up to 7000 bar, has taken place in 

the market. These systems exhibit considerable rapidity and high sensitivity particularly 

for the limited amount samples; however, they require nano-ESI interface, specific 

pumping equipment and proper detector. Despite its efficiency and practicality, one 

dimensional liquid chromatography seems insufficient considering the complexity of 

the proteomes and a vast amount of resultant peptides from the digestion. Therefore, 

multi dimensional or orthogonal chromatographic techniques are developed for better 

resolution. In these techniques, RP-LC is always placed prior to mass analyzer, and the 
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preceding separation is primarily carried out by ion-exchange chromatography. On the 

other hand, affinity chromatography has been used efficiently for targeted proteins like 

phosphorylated or glycosylated ones; however, size exclusion chromatography is 

occasionally utilized because of its low resolution and limited loading capacity. Apart 

from these, LC is an inevitable segment for quantitative proteomics 
33

. 

 

 

Figure 1.4.Separation techniques 
34

 a) HPLC b) 2-D SDS PAGE  

 

1.3.2. Electrophoretic Techniques 

 

 Electrophoresis is one of the most widely used analytical tool in which the 

charged molecules are migrated in an electrical field. Electrophoretic methods are 

usually carried out in the aim of separation rather than purification because proteins’ 

structure and function are affected adversely from the technique. Polyacrylamide gels 

are prepared from free radical polymerization of acrylamide and cross-linking agent 

N,N’- methylene-bis-acrylamide forming a physically stable matrix with high resolving 

power for proteins under the control of the initiator-catalyst couple, ammonium 

persulphate-N,N,N’,N’-tetramethylethylenediamine (TEMED) 
31

. To reduce the adverse 

effect of diffusion, two-phased (stacking phase and resolving phase) discontinuous 

electrophoresis method is used. In zone electrophoresis, samples are visualized as a spot 
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or thin band in the medium as a result of speed race depending on the size and charge of 

proteins. On the other hand, isoelectric focusing separates proteins by concentrating 

them at their isoelectric points on a pH gradient medium
35

. 

 These two modes of electrophoresis, zone electrophoresis and isoelectric 

focusing can be applied sequentially creating a remarkably effective and easy technique 

called two dimensional gel electrophoresis (2D-GE). 2D-GE has gained much more 

reproducibility after the advent of immobilized pH gradient (IPG) that in the place of 

carrier ampholytes. Moreover, today’s routine IEF gel strips has fairly facilitate the 

association of IEF method to SDS-GE in comparison to cumbersome and unsuccessful 

tube gel mode. 

 2D-GE technique provides a readout to visualize hundreds to thousand of 

proteins. This unique property enables scientist to differentiate the expressed proteins 

qualitatively and to some degree quantitatively. Disease state differences, toxic 

influences and stress impacts have been revealed by comparing readouts of two samples 

in different states. Despite the increment in resolution obtained by the narrow range pH 

strips and sensitive staining methods (with silver and fluorescent staining reach up to 

nanogram level), 2D-GE is not sufficient to cope with the dynamic range of the 

complex biological samples and fluids at once. One way to solve this problem is 

lowering the complexity of the sample by handling subcellular proteomes or domains
35

. 

 

1.4. Protein Identification By Mass Spectrometry 

 

 Present day mass spectrometry-based proteomic studies are being conducted 

with different methods by using different instruments. In addition, today one can choose 

one of the bottom-up and top-down approaches. Whereas the former analyze the intact 

proteins or protein domains, in bottom-up approach proteins are digested to peptides 

prior to MS analysis. Bottom-up proteomics has been widely used due to the solubility 

and mass range suitability of the peptides. Nevertheless after the advent of new collision 

techniques and improvements in resolution, today informative fragment ions are being 

gained from top-down analysis too 
36

. Both approaches have limitations and drawbacks 

therefore, integration of the two approaches will provide complementary results giving 

the best yield that can be achieve from mass spectrometry if there is no sample shortage 

problem
37

 
38

. 
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 Top-down proteomics initiates the analysis with intact protein providing the 

molecular weight information at the beginning of the measurement. However, the key 

advantage of the approach is the possible acquisition of the complete sequence coverage 

because peptides can be lost during chromatography. In addition, too large or too small 

peptides may have to be ignored during mass analyses. Apart from this, peptides are 

usually assigned to more than one protein, which generates a new challenge protein 

inference. However expensive instrumental setup, necessity of a large amount sample 

and the limited number of bioinformatic tools are the leading downsides of this 

method
39

. 

 

 

Figure 1.5. Proteomics approaches
40

 

 

 Since the information is obtained by putting individual peptides together, 

bottom-up proteomics is frequently likened to jigsaw puzzles with missing pieces. A 

well-known digestion protease, trypsin is mostly used for the cleavage due to its high 

activity and stability. More importantly, trypsin specifically breaks down proteins on the 

carboxy-terminal side of arginine and lysine residues
41

 generating peptides in the 

effectual mass range (500-2000 Da). Other sequence specific enzymes: endoproteinase 

Asp-N
42

, endoproteinase Glu-C
43

, endoproteinase Lys
44

 and the less-sequence specific 

enzymes: chymotrypsin
45

 and pepsin 
46

 have been alternatively used to improve protein 
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identification and characterization, but they are mostly not preferred. When the sample 

of protein mixture is not pretreated for the separation, digesting more than one protein 

together in a sample solution is called shotgun proteomics
47

 (Figure 1.5). This high-

throughput method, however, has to be coupled with high performance liquid 

chromatography, favorably with a multidimensional nanoLC, and necessitate a reliable 

search engine.  

 

1.4.1. Sample Preparation for Bottom-Up Proteomics 

 

 Sample preparation and data analysis are the two bottlenecks of MS-based 

proteomics. Since sample preparation is the first step before the MS analysis, high 

sequence coverage and protein recovery can not be gained without convenient and 

reproducible sample handling. Conversion of proteins to peptides is one of the most 

critical process in the sample preparation procedure. Unfortunately, all of the detected 

peptides are not informative for the identification, therefore, successful protein 

digestion, and utmost peptide recovery would increase the chance of protein 

identification. In addition, artificial modifications and contamination, which might be 

occurred during the sample preparation protocols, should be avoided as far as possible.  

 There are many factors influencing the proteolytic result. First of all, enzyme 

should be added sufficient amount to perform a good digestion, at the same time low 

enough to eliminate the autolysis products of trypsin. It is not recommended to use less 

than 1:100 enzyme to protein ratio, mainly 1:50 or 1:25 ratios are preferred. To ensure 

the best overall digestion efficiency, incubation time is kept long from 9 hours to 

overnight at 37 °C. In addition, proteins in most samples need to be denatured either by 

using chaotropic agents or increasing the temperature. However, diluting the sample up 

to 8-fold, which is necessary for the following tryptic digestion, causes volume 

elevation; an unfavorable condition for an effective digestion. Apart from this, 

disulphide bonds between cysteine residues are reduced with one of the reducing 

reagents; 1,4-dithiothreitol (DTT), β-mercaptoethanol or tris (2-carboxyethyl) 

phosphine (TCEP). Subsequently, proteins are alkylated with iodoacetamide (IAM) or 

iodoacetic acid to prevent the potential renaturation
48

. Furthermore, several digestion 

methods; including ultrasonic-assisted, infrared radiation-assisted, microwave-assisted, 

pressure-assisted, vortex-assisted, have been proposed to accelerate the digestion 
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process or to change the resultant peptides
49

. In conclusion, optimal conditions for 

tryptic digestion increase the digestion efficiency, however, concentrations of protein 

and other contaminants in the sample also affect the result of the enzymatic reaction. 

 

 

Figure 1.6. N-alkyl hydrocarbon ligands 
50

 a) Octyl (C8) b) Octadecyl (C18) 

 

 

 

 

 

 

Figure 1.7. Ionic adsorbents a) SCX b) SAX
51

 

 

1.4.2. Peptide Mass Fingerprinting  

 

 Peptide mass fingerprinting (PMF) or peptide mass mapping is a protein 

identification method, which uses masses of protein products after a predictable 

cleavage, to match with in silico digested proteins’ peptide masses, in the database. 

Simply put, the sizes of the pieces are thought as the fingerprint for that protein so in 

this sense experimentally obtained peptide mass data can be searched in the 

theoretically constructed peptide mass list of the databases. 

 In fact,  this method come into being after the frequent appearance of some 

proteins namely contaminant proteins like serum albumin, during sequencing with 
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Edman degradation thereafter sequences of these proteins started to take place in the 

databases. Method is rather fast and easy and also effective especially for 2D gel-

separated proteins. Advent of MALDI-TOF instruments took away the need for early 

used less sensitive fast atom bombardment ionization and relatively expensive sector 

instruments. Moreover, immense accumulation of proteins and DNA sequences in the 

databases after the advent of proteomics rendered this approach as a simple, efficient 

and widespread protein identification method
52

. 

 

 

Figure 1.8. Experimental workflow for protein identification 
53

 

 

 The general strategy in PMF is starting with the elimination of contaminant 

masses such as trypsin autodigestion peptides, keratin peptides and peaks arising from 

matrices or dye. After the determination of the parameters; enzyme name, mass 

tolerance, molecular weight and isoelectric point of the protein, taxonomy, database and 

allowed potential modifications are determined, and then PMF search is initiated
54

. 

 Despite its simplicity, today PMF is not a reliable or preferable peptide 

identification method owing to its limitation, among the most striking is it is being 

relied on only the peptide masses, which can easily correspond to more than one 
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sequence combination. Consequently to add specification to those masses, further 

examination for the sequence analysis is necessary which is now being implemented as 

peptide fragmentation. Apart from that, protein has to be fairly pure; therefore protein 

mixtures can not be studied with this method. In addition, the protein of interest has to 

be included in the database; otherwise there will not be any match except the false 

positives. Post-translationally modified proteins or other modifications occurred during 

the sample handling, unpredictable adducts and protein splicing variants are the other 

problematic issues for the identification with PMF
52

. 

 

1.4.3. Tandem Mass Spectrometry 

 

 In tandem mass spectrometry, a specific ion (precursor ion) is selected and 

induced to fragmentation. After that, the m/z values of the fragment ions are measured. 

Tandem MS is either, performed by combining mass analyzers in a tandem 

configuration or isolating and activating the selected ion (only by ion traps) by the 

multiple isolation and fragmentation stages, which is abbreviated as MS
n
. Collision-

induced dissociation (CID), electron capture (ECD) and electron transfer dissociation 

(ETD) are the commonly used MS/MS fragmentation techniques in proteomics.  

 CID fragmentation occurs by colliding the neutral gas atoms (helium, nitrogen, 

argon) with accelerated ions. In this process, the internal vibrational energy is converted 

to bond cleavage. This widespread, fast and efficient fragmentation method creates b 

and y fragment ions by breaking the peptide bonds. On the other hand, in ECD multiply 

charged ions trapped in FT-ICR cell are irradiated with a beam of low energy electrons 

(< 0,2 eV). Likewise in ETD, the reaction between multiply protonated peptide cations 

and small molecule anions are proceeded, through the electron transfer from anion to 

peptide cation. This ECD-like fragmentation also has the advantage of mass analyzer 

selection other than FT-ICR MS. While y and b ions originate from the dissociation of 

the amide bond, c and z fragments, which are generated from both ECD and ETD 

techniques, are gained from the cleavage of N-Cα amine backbone. Whereas protein 

identification is employed better with CID due to its high performance on the protein 

coverage, ECD is more suitable for the protein characterization owing to its high 

performance on the peptide coverage and its success on the detection of PTMs. 

Nevertheless complementary studies will give the best result since the performance of 
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the techniques depend on to composition, the length of the peptides and charge state of 

the ion
55

.  

 Under low-energy collision conditions, fragmentation preferentially occurs 

along the peptide backbone forming the most abundant fragments, b- and y- ions. 

Fragmented ions are designated according to the position of charge, and they are 

labelled consecutively from the original amino terminus of the peptide. According to 

this nomenclature, fragment ions retaining the positive charge on the amino terminus 

are called a-, b-, or c ion and likewise x-, y- or z- ion if the charge stays on the C-

terminal.  

 

 

Figure 1.9. Nomenclature of peptide fragment ions 
56

 

 

 Furthermore, fragmentation on both amino- and carboxy- terminal of the same 

amino acid produces immonium ions, which appear among the low masses in the 

spectrum yielding information about the amino acid composition of the sample. Peptide 

fragmentation is much useful when it produces a sequence ladder, in which the mass 

difference between the fragments can be correlated to a certain residue. From this 

ladder, a partial sequence of a peptide can be read forward via from b ions or backward 

via y ions. Since the labile PTMs are retained on the fragments of the peptide backbone, 

both the ECD and ETD dissociation techniques are implemented mostly in the protein 

characterization studies. 

 

1.5. Analysis of Proteomic Data 

 

 In mass spectrometry based proteomics, protein identification relies on partial 

sequence analysis. Although this approach offers a high-throughput platform for the 
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intricate and formidable proteome researches, reliability of these results are notably 

questionable. Correct assignment of MS/MS spectrum to a peptide sequence and the 

succeeding peptide association of these data with the correct protein require high 

computational capacity and software tools. Database searching, de novo sequencing and 

hybrid approach sequence tags are strategies employed
57

. 

 De novo sequencing is more inductive method than the others since it does not 

use information beforehand coming from genomic or peptidomic databases. Therefore, 

it is more applicable for organisms with unknown genome sequence, protein splice 

isoforms and amino acids modified. Early de novo sequencing method, Edman 

degradation is based on chemical derivatization of amino acids in a peptide adjacently 

and subsequent separation of these products. However limited study region, (only the 

isolated, unmodified proteins with accessible N terminus), insensitivity and low sample 

throughput render this method laborious and less effective. Thus, mass spectrometry has 

become the method of choice in protein sequencing. De novo sequencing with mass 

spectrometry deduce the sequence from tandem MS spectrum, therefore, completeness 

of ion series and mass accuracy are of great importance 
58

. Type of the ion series can be 

predicted from the dissociation technique to some extent (e.g. b/y ions from low energy 

CID) but these C and N terminal fragment series generating a sequence ladder are 

hardly seen together. Apart from that, neutral losses, internal fragment ions and 

unpredictable noise peaks cause further complications for the interpretation of the 

spectrum or less likely provide extra information about the sequence. While sequence 

ladder is much more necessary for the amino acid order, information about the 

composition can be inferred through the immonium ions at the low mass region. 

Nevertheless assigning a peak to an ion type is a formidable task. Although manual 

interpretation has been carried out to reveal the fragmentation mechanisms, for the 

peptide identification, more speedy and unbiased solutions are required. For this 

purpose, several computer algorithms have been devised their success, however, 

depends on the quality of the spectra and knowledge about peptide fragmentation 
59

. 

 Even though, all ion series are not detected after the collision, it has proposed 

that easily identified partial sequences even containing only two to three amino acids 

can be useful. In this hybrid approach, short piece identified, and the molecular weight 

of its preceding and trailing region are together introduced as a sequence tag. This 

sequence tags are then used to locate the peptide in the database by a search engine
60

.  
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Figure 1.10. An example to sequence ladder 
61

 

 

 A number of database search algorithms using different models have been 

developed. MASCOT, SEQUEST, OMSSA, X!Tandem are some of these programs 

widely use today. Generally they all read the experimental spectra as input, query a 

sequence database then score them against the theoretical fragmentation patterns and 

finally provide an output list of the matches that are ranked according to the similarities 

between experimental spectrum and theoretical spectrum. Common search parameters, 

database and taxonomy selection, mass tolerance, enzymatic constraint, and 

modifications are set before the run
62

. The performances of these algorithms, however, 

mostly differ in terms of sensitivity and selectivity, therefore, credibility of the protein 

identification considerably depends on the strengths and weaknesses of the MS/MS 

search algorithm
63

. Interpretation of the data especially gets difficult in the event of 

shotgun proteomic studies. Although excluding the separation at the protein level 

facilitates the sample handling and increases the output, losing the connectivity between 

peptides and protein renders the computational analysis exceedingly intricate. 

Assembling the identified peptides into proteins, which is also known as protein 

inference problem, is much more complex in the case of higher eukaryotic organisms 

due to the sequence redundancy arising from splice forms of the same gene and 

abundance of proteins with sequence homology. Despite the fact that there is no 
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established valid way of calling a protein “identified”, this problem can be overcame 

more or less by increasing the protein sequence coverage thus proteins corresponding to 

only one peptide usually are not accepted as identified
64

. 

 

 

Figure1.11. Tandem mass spectrometry database searching 
65

 

 

 Mascot is a search engine which uses a probability based scoring. According to 

this model, MS data are introduced to the system in the form of peak list. From the 

frequency of matched ions, score is calculated hypothesizing the observed match as a 

random event. As a result, low probability indicates high score and the default value of 

significance threshold is set to less than five per cent taking into account commonly 

accepted threshold probability of an event occurring by chance
66

. 

 

1.6. Aim of the Study 

 

 When the standard free energy of an interface between two different phases is 

higher than the bulk phase, protein adsorption to the surface is expected. This principle 

is used to enrich the protein from dilute or contaminated solution by the help of various 

sorbent materials. Those adsorbents are able to adsorb the proteins selectively according 

to the physicochemical properties of the protein, sorbent and bulk solution. However 

adsorption of proteins on solid surfaces is common but extremely complicated 
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phenomenon because protein-surface interactions are highly dependent on the 

individual properties of the system
67

.  

 One of the earliest study in this subject, which was carried out by using the 

reverse-phase column packing materials C4 and C18 hydrophobic surfaces, reported 

that proteins could be digested while they were bound to sorbents. In this work, 

differences between the digestion patterns of in solution digestion and on-surface 

digestion are related to the partial hinderance for proteolytic cleavage due to the 

adsorption
68

. Doucette et al. reported a similar study to highly contaminated dilute 

solutions of model proteins.
69

 While the former one used HPLC with UV detection for 

the detection of eluted peptides, Doucette et al. developed their method for the protein 

identification by PMF; therefore, they used MALDI-TOF instrument by direct 

deposition of the beads on the target without peptide elution. Nevertheless, they 

obtained MS spectrum for peptide mass mapping of dilute and contaminated solutions 

by the enrichment of proteins on microbead with subsequent rapid cleaning. In a 

following study, they also tested the effect of the type of the bead support. They 

compared polymeric poros R2 with conventional C4, C8 and C18 and observed minor 

differences in terms of protein sequence coverage thus concluded that pore size of the 

beads does not have a significant effect on the digestion characteristic of an adsorbed 

protein
70

. 

 Those aforementioned studies, however, only include the hydrophobic surfaces 

and unfavorable protein identification technique, PMF. On the other hand, Figeys et al. 

have used ionic adsorbent materials, strong cation exchanger (SCX) and strong anion 

exchanger in a microfluidic device form, namely proteomic reactor
71

. In this reactor 

system, a capillary tubing was filled with a slurry of SCX/SAX by applying pressure. 

Then protein and trypsin were bound to sorbent at adjusted pH. After the reduction and 

alkylation steps, tryptic reaction was started by increasing the pH up to 8. Finally, 

peptide elution was carried out. Figeys et al. compared their proteomic reactors (SAX & 

SCX) and traditional in-solution digestion methods on the proteome of yeast by using 

LC-MS/MS 
72

. They concluded that those complementary reactors together outperform 

the conventional in-solution digestion for peptide and protein identification. Although 

proteins were adsorped to SCX and SAX by pH adjustment at the beginning of the 

experiment, in their study they facilitated those SCX and SAX sorbent materials to 

enrich the protein rather than performing the digestion on the surface. Nevertheless, 
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their efforts and success on various proteomic reactors are quite promising for the usage 

of sorbent materials in the field of protein identification. 

 Objective of this study was mainly to investigate this occasionally studied 

alternative digestion method, on-surface digestion by using both two ionic and three 

hydrophobic adsorbent materials on the different standard protein and their mixture. 

MALDI-TOF/TOF mass spectrometry was the main instrument for the protein 

identification throughout the study therefore it was aimed to adapt the on-surface 

digestion protocol for the tandem mass analysis with MALDI-TOF/TOF MS. We 

intentially preferred rather practical and applicable work steps to be able to address the 

method to any proteomic laboratory without need to serios expertise and money. As 

distinct from the aforementioned studies, various type of adsorbents were involved to 

the work together, which are strong cation exchange, strong anion exchange, 

hdyrophobic C8, C18 and rather smaller one, poros R2 micro beads. Despite its longer 

sample preparation steps comparing to in-solution digestion, we believe that on-surface 

digestion has a potential in proteomics for the improvement of protein digestion results. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1. Verification of Protein Adsorption 

 

 A simple verification of protein adsorption to different adsorbents (C18, C8, 

SCX, SAX) was performed by using Bradford protein assay. This method relies on the 

absorbance shift of the dye Coomassie Brilliant Blue at 595nm due to the protein 

binding. Coomassie Brilliant Blue dye binds arginine, lysine and histidine residues of 

proteins. Absorption decrease in protein solutions after sorbent addition was considered 

as protein adsorption onto beads.  

 Benzenesulfonic SCX, quaternary amino SAX (Spe-ed SPE cartridges; Applied 

Separations) and hydrophobic adsorbent materials C18, C8 (Finisterre C18/C8 SPE 

column; Teknokroma) were obtained by breaking the disposable solid phase extraction 

columns. 3 mg from each microbead was weighed and washed 3 times with 250ul wash 

solution before the addition of proteins. As the wash solution, organic solvents are used 

for hydrophobic sorbents, C8 and C18; acidic and basic solutions are chosen 

respectively for SCX and SAX. C18 and C8 microbeads were washed with 100% 

methanol (Sigma-Aldrich) twice and once with 50% methanol. SAX and SCX were 

washed three times with 1% ammonium hydroxide (26% NH3 Riedel-deHaen) and 1% 

trifluoroacetic acid (Merck) respectively. 

 To compare the proteins’ adsorption behaviour, 100ul 0,5 mg/ml protein 

solutions of myoglobin, cytochrome c, bovine serum albumin and lysozyme (Sigma) 

were added on the sorbents, then tubes were adhered onto vortex shaker with sticky tape 

and next they were left to agitation for 4-5 hours. 150 µL of coomassie plus
TM 

protein 

assay reagent (Thermo Scientific) was mixed with 90 µL distilled water and 60 µL 

protein sample in a well (96 well F-bottom plate; greiner bio-one). 5 minutes later 

absorbance values at 595nm were measured by spectrophotometer (Multiskan 

Spectrum; Thermo Electron Corporation). Preparation and the composition of Bradford 

reagent alternative to commercial one and the standard curve are given in Appendix A.  
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Table 2.1 Specifications for standard proteins 

Accession 

number  

Index 

number 
Name of the Protein pI  

Protein 

Molecular 

Weight 

(Da) 

Organism 

P00004 81522 Cytochrome c 9.6 11833 Equus caballus (Horse) 

P00698 213825 Lysozyme c 9.4 16239 Gallus gallus (Chicken) 

P68082 245046 Myoglobin 7.2 17083 Equus caballus (Horse) 

P02662 48707 Alpha-S1-casein 5.0 24529 Bos taurus (Bovine) 

P02663 48720 Alpha-S2-casein 8.5 26019 Bos taurus (Bovine) 

P00921 46499 Carbonic anhydrase 2 6.4 29114 Bos taurus (Bovine) 

P02769 12073 Serum albumin 5.8 69294 Bos taurus (Bovine) 

 

 

 

Table 2.2. Specifications for adsorbents 

Sorbent  Functional group  Size  

SCX  Benzenesulfonic Acid  40μm irregularly-shaped silica, 60 Å mean porosity  

SAX  Quaternary Amino  40μm irregularly-shaped silica, 60 Å mean porosity  

C8  
Polymerically bonded 

octadecyl C8  
50 μm irregular-shaped silica, 60 Å mean porosity  

C18  
Polymerically bonded 

octacyl C18  
50 μm irregular-shaped silica, 60 Å mean porosity  

Poros 

R2  
Reverse phase  

2000 angstrom pore-size Poly (Styrene-

Divinylbenzene)  

 

 

 

 

Figure 2.1. Workflow of protein adsorption onto adsorbents 

 

2.2. Protein Digestion Methods 

 

 For the protein tryptic digestion, three different digestion methods were carried 

out to compare the digestion efficiency through the signal quality and resultant peptides. 
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2.2.1 In-Gel Digestion 

 

 This protocol takes two days or more depending on the removal of the dye. 

Reagent are as follows:  

 Wash solution: 50% (v/v) methanol and 5% (v/v) acetic acid.  

 100 mM ammonium bicarbonate in water:  

 50 mM ammonium bicarbonate in water 

 10 mM DTT in 100 mM ammonium bicarbonate  

 100 mM iodoacetamide in 100 mM ammonium bicarbonate 

 Extraction buffer: 50% (v/v) acetonitrile and 5% (v/v) formic acid. 

 Trypsin solution is prepared by adding 1.0 mL of ice cold 50 mM ammonium 

bicarbonate to 20 μg of sequencing-grade modified trypsin. The final 

concentration is 20 ng/μL trypsin.  

 First protein bands are cut from the gel as closely as possible with a sharp 

scalpel, and divided into smaller pieces that are approximately 1mm
3
 to 2 mm

3
. Gel 

pieces are placed in a new plastic microcentrifuge tubes and 200 μL of the wash 

solution is added and they are rinsed overnight at room temperature. If desired, this 

washing step can be carried out over the weekend or, alternatively, for 4 h.   On the 

second day, the wash solution is removed from the sample with a plastic pipette and 

discarded. Then 200 μL of acetonitrile was added to dehydrate the gel pieces for ~5 min 

at room temperature. When dehydrated, the gel pieces will have an opaque white color 

and will be significantly smaller in size. Carefully the acetonitrile is removed from the 

sample with a plastic pipette. Completely the gel pieces are dried at ambient 

temperature in a vacuum centrifuge for 2 to 3 minutes. Then 30 μL of 10 mM DTT is 

added and proteins are reduced for 0.5 hour at room temperature. DTT solution is 

removed from the sample carefully and 30 μL of 100 mM iodoacetamide is added to 

alkylate the protein at room temperature for 0.5 hour. After 30 minutes the 

iodoacetamide solution is removed from the sample with a plastic pipette carefully. 

Next 200 μL of acetonitrile is added to dehydrate the gel pieces for ~5 min at room 

temperature. Acetonitrile is removed from the sample with a plastic pipette again. Once 

more the gel pieces are rehydrated in 200 μL of 100 mM ammonium bicarbonate for 10 

minutes at room temperature. After that the gel pieces are dehydrated last time with 

acetonitrile and then they are dried at ambient temperature in a vacuum centrifuge for 2 
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to 3 minutes. Finally 30 μL of the trypsin solution is added to the sample and the gel 

pieces are allowed to rehydrate for 10 minutes with occasional vortex mixing. 5 μL of 

50 mM ammonium bicarbonate is added to the sample to cover the gels when necessary. 

The sample is drove to the bottom of the tube by centrifuging for 30 sec, and the 

digestion is carried out overnight at 37 °C  

 On the third day peptides produced by the digestion are extracted in three steps. 

First 30 μL of 50 mM ammonium bicarbonate is added to the digest and incubated fr 10 

minutes with occasional gentle vortex mixing. The digest is drove to the bottom of the 

tube by centrifuging the sample for 30 second. Then 30 μL of the extraction buffer is 

added to the tube containing the gel pieces and incubated in the sample for 10 minutes 

with occasional gentle vortex mixing. The extract is drove to the bottom of the tube by 

centrifuging the sample for 30 seconds. Supernate is collected carefully with a plastic 

pipette and combined in the 0.5-mL plastic microcentrifuge tube. A second 30-μL 

aliquot of the extraction buffer is added to the sample and last step is repeated. The 

volume of the extract is reduced to < 20 μL by evaporation in a vacuum centrifuge at 

ambient temperature. The volume of the digest is adjusted ~ 20 μL, as need, with 1% 

acetic acid. At this point, the sample is ready for analysis however a final step for the 

salt remove is needed and. C18 ZipTip™ from Millipore Corporation, a 10 μL pipette 

tip with a bed of chromatography media fixed at its end is mostly used for this purpose. 

To equilibrate the ZipTip pipette tip for sample binding, maximum volume setting of 10 

μL 0,1% TFA in water is aspirated as wetting solution and dispensed to waste three 

times. After equilibrating the tip, peptides are bound by fully depressing the pipette 

plunger to a dead stop. The sample is aspirated and dispensed 7-10 cycles without 

dropping the sample to the waste. Then pipette is again washed with wash solution at 

least twice. 1 to 4 μL of elution solution which contains 50% acetonitrile in 0,1% TFA 

is dispensed into a clean vial. 

 

2.2.2. In-Solution Digestion 

 

 Trypsin works best in a pH range of 7,5-8,5 and it is resistant to mild denaturing 

conditions such as 0,1% SDS, 1M urea or 10% acetonitrile therefore procedure are 

designed considering working conditions of trypsin. However protein folding can 

protect the amino acid chain from enzymatic cleavage so denaturation may be necessary 
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for efficient cleavage. 6-8 M urea is mostly used as common denaturant but this time 

sample volume needs to be increased to reduce the concentration of urea to 1 M before 

trypsin addition. According to the preliminary results we observed that urea did not 

affect the results to a great extent so we excluded urea addition in our experiment since 

overnight incubation would provide a gradual digestion. Generally digestion is carried 

out in 100 mM ammonium bicarbonate or Tris-HCl buffer but our experiments showed 

that 20 mM concentration is enough for less amount of protein sample therefore to 

eliminate the salt remove step or need to ziptip, 20 mM ammonium bicarbonate can be 

used. For in solution digestion lower sample volumes/higher protein concentration work 

best therefore protein enrichment by evaporation is recommended. Ratio of enzyme to 

trypsin changes according to incubation time but no less than 1:100 should be used. We 

mostly used 1:25 or 1:50 for in solution digestion. To cleave the disulphide bonds, 

reduction and alkylation buffers are used. To 1 mg of total protein 5 μL of 200 mM 

reducing reagent DTT is added to before starting the digestion. After 45 minutes 

incubation of reducing reagent, 20 μL of 200 mM alkylating reagent iodoacetamide is 

added and incubated for 45 minutes. 20 μL of the reducing agent is added again to 

consume any unreacted iodoacetamide. If one is sure about the content of cysteines and 

disulphide bonds, these alkylation and reduction steps may not be necessary. 

 

2.2.3. On-Surface Digestion 

 

 Protein adsorption was carried out by adding 100 μL of 0,1 mg/ml protein 

solution and 0,22 mg/ml protein mixture solution onto the washed microbeads as 

described at 2.1 then tubes were adhered onto vortex shaker with sticky tape and shaked 

for 4-5 hours. Before adding alkylation and reduction buffer, beads are washed with 

water three times to remove any unbound proteins. 5 μL of 100 mM DTT was added 

and incubated for 45 minutes. After that 5 μL of 200 mM iodoacetamid was added and 

incubated for 45 minutes. 5 μL DTT solution was added again to consume any 

unreacted iodoacetamide. Before trypsin addition beads are pulled down by 

centrifugation and liquid part was discarded. 10 μL of trypsin solution with 1:10 ratio 

was added and proteins bound to microbead are incubated at 37 C overnight.  
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2.3. One Dimensional SDS-Polyacrylamide Gel Electrophoresis  

 

 Preparation of 12% resolving gel for tris-glycine SDS-Polyacrylamide gel 

electrophoresis:  

 All the chemical used in SDS-PAGE were purchased from applichem. For mini 

gel of Mini-PROTEAN
®
 Tetra Cell (Bio-rad)  5 ml volume of total resolving gel is 

sufficient. It contains  1.6 ml H2O, 2.0 ml 30% acrylamide solution, 1.5 M Tris-HCl 

(pH 8.8), 0.05 ml 10% SDS, 0.05 ml freshly prepared 10% ammonium persulfate and 

0,002 ml tetramethylethylene diamine (TEMED). 

 Preparation of 5% stacking gel for tris-glycine SDS-polyacrylamide gel 

electrophoresis:  

 For mini gel of Mini-PROTEAN
®
 Tetra Cell (Bio-rad) 3 ml stacking gel is 

sufficient. The solution components are as follows :2.1 ml H2O, 0.5 ml 30% acrylamide 

mixture in water, 0.38 1.0 M Tris-HCl pH( 6,8), 0.03 ml 10% SDS, 0.03 ml freshly 

prepared 10% ammonium persulphate and 0,003 ml TEMED. 

 Pouring SDS-polyacrylamide gels: The glass pates are assembled according to 

the manufacturer’s instructions.  

 First resolving gel is poured into the gap between the glass plates. Sufficient 

space is left for the stacking gel. Acylamide solution is overlayed with water or 

isobutanol to prevent oxygen diffusion which inhibits the polymerization. After about 

thirty minutes when the polymerization is completed, overlay is poured off and top of 

gel is washed with deionized water to remove any unpolymerized acrylamide. Then 

remaining water is removed with the edge of a paper towel. After that stacking gel 

solution is poured directly onto the surface of the polymerized resolving gel. Comb is 

immediately inserted avoiding to trap any air bubbles. The gel is left vertical position at 

room temperature to polymerize. 

 

2.4. Protein Extraction By Passive Elution From Polyacrylamaide Gel  

 

 Proteins are extracted from polyacrylamide gel into the solvent (formic acid, 

water, isopropanol 1:3:2 v/v/v) by passive elution. Protein bands are cut from the gel, 

crushed into small pieces with micro pestle. 50 μL of extracting solvent is added and the 

tube is adhered onto vortex by sticky tape for overnight. Next day supernatant is placed 
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into a clean tube after centrifugation. For MALDI-TOF analysis volume is reduced to 

~5 μL with vacuum concentrator (Christ RVC 2-33).  

 

 

Figure 2.2. a)Mini SDS-PAGE system b) Micropestle: A gel crushing tool 

 

2.5. Sample-Matrix Deposition Onto MALDI-TOF/TOF Target 

 

 The matrix used for the peptides was alpha cyano-4-hydroxycinnamic acid 

(CHCA) with a two-layer MALDI deposition method. This involves the deposition on 

the MALDI target of a microcrystalline matrix layer via fast evaporation from 0,6-1 μL 

solution of CHCA (10 mg/ml) dissolved in 20% methanol in acetone. A 1 μL aliquot of 

the digested protein sample was mixed with either 2 or 4 of saturated CHCA solution in 

40% methanol in 0,1% TFA-water. The peptide-matrix solution was vortexed and 1 μL 

portion was deposited on top of the first matrix layer. 

 

 

Figure 2.3. a) Gold MALDI target plate b) MALDI-TOF/TOF MS system 
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 For the protein analyses, a mixture of α-cyano-4-hydroxycinnamic acid and 2,5- 

dihydroxybenzoic acid  was used. 5 mg of CHCA was dissolved in 1ml of 20% 

methanol/acetone and 20 mg of DHB was dissolved in 1 ml of 20% acetonitrile in 0,1 

TFA-water. A 1 μL of the protein sample was mixed with 3 or 5 μL of 1:2 CHCA/DHB 

mixture. The protein-matrix solution was vortexed and c portion was deposited onto the 

target.  

 

2.6 Protein Identification by Mascot Search Engine 

 

 Spectra were processed and analyzed by Autoflex III Smartbeam (Bruker) which 

uses internal MASCOT software (Matrix Science, London,UK) for searching  the 

MS/MS data. This type of MALDI TOF/TOF works with programs flexControl 3,0 and 

flexAnalysis 3,0. Processed data by flexControl is transferred to MASCOT software by 

another licensed program biotools 3.1. NCBI nonredundant and Swiss-Prot protein 

sequence databases were used for searches under metazoa (animals) taxonomy . Other 

database search parameters were as follows: carbamidomethylation (C) as fixed global 

modification allowance for up to one (increased up to four when necessary) missed 

tryptic cleavage. The peptide mass tolerance was 1,2 Da and fragment ion mass 

tolerance was 0,6 Da. Charge state was 1+ and monoisotopic mass was considered. 

Mass range of the analyses was set to 700-3500 Da. Protein Prospector v 5.10.6. is used 

to check manually the assigned peaks to the calculated peptide masses. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

3.1. Protein Adsorption onto Sorbents in Solution  

 

 When an amino acid is dissolved in water, it can act as either an acid or a base 

owing to its dipolar ion (zwitterion) nature. Proteins exhibit acidic or basic 

characteristic too depending on their isoelectric point (pI) which is defined as the 

characteristic pH at which the net electric charge is zero. Simply isoelectric points 

reflect the nature of the ionizing R groups present in the protein sequence. This feature 

helps proteins and peptides to be separated by cation and anion exchanger adsorption 

materials. In addition, clustered hydrophobic amino acid residues in the proteins lead to 

hydrophobic interactions with hydrophobic ligands; typically linear hydrocarbon chains. 

As a matter of fact, a well-accepted and very successful analytic separation technique, 

High Performance Liquid Chromatography (HPLC) bases on this adsorption ability of 

sorbent materials by using continuous flow under high pressure. 

  In this study, we first tested whether proteins were adsorbed on sorbents while 

they were mixed with sorbents in a solution environment rather than tightly packed 

column without the driving force of pressure. In protein/peptide HPLC columns, silica-

coated octyl (C8) and octadecyl (C18) alkyl hydrocarbon ligands are mostly used as the 

packing material. In this part of the study, for the hydrophobic interaction both C8 and 

C18 and for ionic interaction bead-coated with functional groups of benzenesulphonic 

(SCX) and quaternary amino (SAX) were utilized. Although these materials may 

address to all proteins, their adsorption efficiency changes according to the protein and 

its physicochemical properties, therefore, examination of proteins with various 

characteristics will strengthen the validation of the method being developed. For this 

reason, four different proteins; myoglobin, lysozyme c, bovine serum albumin and 

cytochrome c were used. In order to verify and observe the adsorption behaviour of 

protein in solution, a quite uncomplicated experiment with 4 hours vortex agitation and 

Bradford assay were used. Decrease in protein concentration after the sorbent addition 

was shown through the absorbance decrease at 595 nm.  
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Figure 3.1. Absorbance decrease after hydrophobic sorbents addition 

 

 Among the hydrophobic surfaces, absorbance decrease after C18 addition was 

greater than C8 except albumin (Figure 3.1.). Since C8 columns are preferred for large 

proteins and likewise C18 column for rather small proteins and peptides, this result is 

consistent with general HPLC rules by reason of the mass difference between albumin 

and other proteins. On the other hand, adsorption behavior of ion exchanger sorbents 

were more selective however, this selectivity was less predictable. As a rule, proteins 

with pI < 6 (i.e., acidic proteins) are chromatographed on an anion-exchange column, 

while proteins of pI > 8 (basic proteins) are chromatographed on a cation-exchange 

column, and proteins with pI between 6 and 8 can be chromatographed on either type. 

 

 

Figure 3.2. Absorbance decrease after ionic sorbent addition 
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 Thus, basic proteins lysozyme c and cytochrome c in the water medium at pH 7 

were being expected to be adsorbed strongly by SCX and slightly by SAX. Although 

they were both adsorbed more or less by SCX, in contrast to expectations SAX strongly 

adsorbed both basic proteins, which was concluded from the concentration decrease 

after SAX beads addition (Figure 3.2.). Myoglobin might be misleading for the SCX 

and SAX comparison by reason of being a neutral protein. In addition, proteins 

precipitate when the pH of the solution is close to pI of the protein therefore, any 

precipitation arising from this principle might deceive and give false positive result. 

Nevertheless control samples, which did not contain sorbents, were controlled 

beforehand for any precipitation arising from vortex agitation or pH. Other proteins; 

carbonic anhydrase and casein were excluded because of this false positive effect of 

precipitation. As mentioned earlier in the introduction part, protein-surface interactions 

are highly dependent on the individual properties of the system. Therefore, specificity 

of each protein in terms of molecular weight, amino acid composition, localization of 

amino acids, protein three-dimensional structure and other prevailing interactions have 

contributions to the protein adsorption.  

 Apart from that, some enzymes require additional chemical component to carry 

out their function. They are called prosthetic group when they tightly or even covalently 

bound to the protein. As an example, both myoglobin and cytochrome c proteins contain 

heme prosthetic group in their structure so the iron atom in the structure of heme might 

affect the prevailing forces governing the ion exchange adsorption phenomenon. 

Proteins were not denatured before the sorbent addition therefore, structural formation 

and the locations of acidic, basic and hydrophobic residues of great importance for the 

adsorption. 

 Last but not least, adsorption relies on energetically favorable and collectively 

dominant noncovalent interactions therefore changes in the environment and the 

external parameters influence the adsorption phenomenon, especially the hydrophobic 

interactions. For example, better protein adsorption to hydrophobic surfaces was 

observed a at higher temperature and at higher ionic strength however, in these cases 

protein aggregation again might be encountered as a false positive for this measurement. 

A better quantification method is necessary to detect only the proteins bound to the 

sorbent beads. In short, this experiment was performed to have an opinion about the 

adsorption behaviours of different proteins in the solution. After that, additional 

Bradford assay were carried to determine the sufficient bead amount by using two 



34 
 

proteins; bovine serum albumin (BSA) and cytochrome c (cyt c). Consequently, less 

than 2 mg sorbent amount was sufficient for 1µg protein therefore 2-5 mg mass range 

was fixed for all experiment in this study (Figure 3.3.). 

 

 

Figure 3.3. Effect of sorbent amount on protein concentration 

 

3.2 Comparison of Protein Digestion Methods on Individual Proteins 

 

 For the MALDI-TOF analysis, 1µl or even less volume of the sample is 

sufficient however concentration of contaminants and salt coming from the buffer, 

increase too during the protein concentration step, solvent evaporation. Therefore 

peptide preconcentration by using Ziptip may be necessary prior to the deposition of the 

sample onto MALDI target plate. Instead of using ziptip to remove the salt, urea, 

detergent etc., decreasing the concentration of the ammonium bicarbonate salt is 

preferred to the degree of MALDI tolerance. For this reason, effect of the buffer 

concentration to the tryptic digestion was first examined. In APPENDIX B, it can be 

seen that proteins can be digested in medium containing lower buffer concentration too. 

In conclusion, trypsin can perform its function in 1-25 mM ammonium bicarbonate 

solution keeping the pH around 7 so we compromised the slight effect of buffer 

concentration and did not use 100 mM ammonium bicarbonate solution, which is 

generally preferred. In addition, proteins were not denatured by the addition of urea. 

Probably long duration of the overnight digestion causes the gradual digestion of 
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proteins from the outer side to the inner side thus it might not require the usage of urea 

as denaturing reagent. Using urea was avoided to eliminate the negative effects of urea 

to trypsin thus no volume increment was necessary. 

 The conventional tryptic digestion method, in-solution digestion was compared 

with on-surface digestion through the MS spectrum of each method. These MS spectra 

were used to identify the proteins by peptide mass fingerprinting and to reveal the 

differences in digestion patterns of the two methods. Although same dominant peptide 

peaks were mostly observed on the spectrum of in-solution digestion and on-surface 

digestion, there were still new or missing peptide peaks leading to the difference. 

Appearance of new signals, which are assigned to a peptide, helps to increase the 

sequence coverage. As proposed in the literature, these new peptide signals are 

generated from the miscleaved peptides. However when these new peaks do not 

correspond to a peptide from the protein of interest, they might mislead the researcher 

and the search engine thus cause to confusion and false results. Especially noise peaks 

which were arisen from the matrix, Na/K adducts and chemical modifications were 

often encountered during the experiments. To make an unbiased comparison, protein 

sequence coverage and sequence list of the peptides, which were identified by Mascot 

PMF search, were put on the spectra. All the spectra shown in figures were drawn by 

Igor Pro program according to the 100% relative intensity. In addition, some particular 

peptides identified by Mascot MS/MS search, are listed in APPENDIX C  

 In conclusion, we demonstrated that proteins can be digested while bound to the 

microbeads. Efficiency of on-surface digestion depends on two uncertain experimental 

processes: adsorption of the protein and elution of the peptides. Nevertheless in this 

method, proteins can be selectively concentrated from the solution and removed from 

the contaminants. Unlike the studies in the literature, peptides were retrieved from the 

ion exchanger surfaces by pH alteration rather than salt addition. This enables one to 

concentrate the sample by evaporating the solvent; thus ziptip usage became optional. 

However it is observed that duration of the elution is significant for the peptide recovery 

therefore overnight elutions, and frequent vortex shaking should be performed to release 

the peptides from the sorbent surfaces. 
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Table 3.1. Amino acid sequence of Alpha-S1-casein protein from Bos Taurus  

1 MKLLILTCLVAVALARPKHPIKHQGLPQEVLNENLLRFFVAPFPEVFGKEKVNELSKDIG 

61 SESTEDQAMEDIKQMEAESISSSEEIVPNSVEQKHIQKEDVPSERYLGYLEQLLRLKKYK 

121 VPQLEIVPNSAEERLHSMKEGIHAQQKEPMIGVNQELAYFYPELFRQFYQLDAYPSGAWY 

181 YVPLGTQYTDAPSFSDIPNPIGSENSEKTTMPLW 

 

 

 

 

 

 

Figure 3.4. Mass spectra of Alpha-S1-casein digestions a) in-solution b) on-SCX 
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Table 3.2. Amino acid sequence of Bos Taurus Serum albumin protein 

1 MKWVTFISLLLLFSSAYSRGVFRRDTHKSEIAHRFKDLGEEHFKGLVLIAFSQYLQQCPF 

61 DEHVKLVNELTEFAKTCVADESHAGCEKSLHTLFGDELCKVASLRETYGDMADCCEKQEP 

121 ERNECFLSHKDDSPDLPKLKPDPNTLCDEFKADEKKFWGKYLYEIARRHPYFYAPELLYY 

181 ANKYNGVFQECCQAEDKGACLLPKIETMREKVLASSARQRLRCASIQKFGERALKAWSVA 

241 RLSQKFPKAEFVEVTKLVTDLTKVHKECCHGDLLECADDRADLAKYICDNQDTISSKLKE 

301 CCDKPLLEKSHCIAEVEKDAIPENLPPLTADFAEDKDVCKNYQEAKDAFLGSFLYEYSRR 

361 HPEYAVSVLLRLAKEYEATLEECCAKDDPHACYSTVFDKLKHLVDEPQNLIKQNCDQFEK 

421 LGEYGFQNALIVRYTRKVPQVSTPTLVEVSRSLGKVGTRCCTKPESERMPCTEDYLSLIL 

481 NRLCVLHEKTPVSEKVTKCCTESLVNRRPCFSALTPDETYVPKAFDEKLFTFHADICTLP 

541 DTEKQIKKQTALVELLKHKPKATEEQLKTVMENFVAFVDKCCAADDKEACFAVEGPKLVV 

601 STQTALA 

 

 

 

 

 

Figure 3.5. Mass spectra of albumin digestions a) in-solution b) on-SCX 
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Table 3.3. Amino acid sequence of Gallus gallus Lysozyme C protein  

1 MRSLLILVLCFLPLAALGKVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQA 

61 TNRNTDGSTDYGILQINSRWWCNDGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVSDG 

121 NGMNAWVAWRNRCKGTDVQAWIRGCRL 

 

 

 

 

 

 

Figure 3.6. Mass spectra of lysozyme c digestions a) in-solution b) on-SAX 
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Table 3.4. Amino acid sequence of Bos Taurus Carbonic anhydrase protein   

1 MSHHWGYGKHNGPEHWHKDFPIANGERQSPVDIDTKAVVQDPALKPLALVYGEATSRRMV 

61 NNGHSFNVEYDDSQDKAVLKDGPLTGTYRLVQFHFHWGSSDDQGSEHTVDRKKYAAELHL 

121 VHWNTKYGDFGTAAQQPDGLAVVGVFLKVGDANPALQKVLDALDSIKTKGKSTDFPNFDP 

181 GSLLPNVLDYWTYPGSLTTPPLLESVTWIVLKEPISVSSQQMLKFRTLNFNAEGEPELLM 

241 LANWRPAQPLKNRQVRGFPK 

 

 

 

 

Figure 3.7. Mass spectra of carbonic anhydrase digestions a) in-solution b) on-C8 
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3.3. Comparison of On-Surface Digestion with In-Gel Digestion 

 

 Although SDS-PAGE electrophoresis is an indispensable method for protein 

separation, yield of protein recovery from gel is generally too low for the further 

examinations. Nevertheless proteins are being extracted from the gel either by 

electroelution or passive elution methods. On the other hand, proteins can also be 

digested while they were trapped in the gel by in-gel digestion method. This digestion 

method has gained massive success and widespread usage especially for the 

identification of proteins separated with 2D-SDS PAGE. However trypsin penetration 

into the gel to reach the protein and the pore size of the gel to retrieve the peptides are 

considered as the two main limitations of this technique.  

 In this section, a considerably small protein cytochrome c, which was extracted 

from polyacrylamide gel to fairly acidic solution by passive elution, was used to 

compare in-gel digestion with on-surface digestion. Firstly proteins were analyzed while 

they were in water by MALDI-TOF MS to observe the signals of proteins at a much 

higher mass range. On Figure 3.8., mass analysis of some model proteins are 

demonstrated. Although gel-extracted proteins, alpha-S1-casein and myoglobin were 

analyzed barely by MALDI-TOF MS at high mass range, only the peptides of 

cytochrome c protein were detected as adsorbed on sorbent beads before the tryptic 

digestion. MS result of on-surface digestion of gel-extracted cytochrome c was 

compared with the MS result of in-gel digestion. In this example, protein was extracted 

from gel to a present solvent mixture: formic acid-isopropanol-water. Protein in this 

highly acidic solution can not be digested directly without increasing the pH because 

trypsin does not active at low pH. However increasing the pH by adding basic solution 

would increase the volume and salt concentration. In conclusion cytochrome c was 

concentrated on the beads and at the same time removed from acidic solution by 

washing step. Apart from this, new peaks corresponding to cytochrome c peptides were 

observed at rather high mass range, over 1400 Da as can be seen on the Figure 3.11. 

These new peptides, which help to strengthen the identification of the protein by 

increasing the sequence coverage, are generally resulted from the peptides miscleaved 

by trypsin.  
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Figure 3.8. Mass spectrum of some model proteins  
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Figure 3.9. Mass spectrum of cytochrome c protein extracted from PA gel 

 

 

 

 

Figure 3.10. Mass spectrum of in-gel digested cytochrome c 

 

 

 

 

Figure 3.11. Mass spectrum of on-surface digested cytochrome c extracted from PA gel 
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3.4. On-Surface Digestion of Protein Mixture  

 

 On-surface digestion was also tested on protein mixture. Protein mixture 

containing six protein was digested on five different sorbents and compared with in-

solution digestion. Peptides assigned to a protein by Mascot search are differentiated by 

different colours on the spectra. According to the general acceptance, at least two 

peptides are necessary to declare a protein identified. When we look at the spectrum of 

in-solution digestion of protein solution, we see that only one peptide was assigned to 

myoglobin and cytochrome c. Therefore these proteins’ identifications are less reliable 

than the others (BSA by six, casein by four, lysozyme by three and carbonic anhydrase 

by two peptides). In terms of protein coverage, in-solution digestion alone gave the best 

result because none of the sorbents alone sufficed to identify all the proteins in the 

mixture however on-surface digestion totally increased the sequence coverage of some 

proteins and protein coverage. Besides one peptide was assigned to a new protein; 

alpha-S2-casein. Generally this low abundant protein is suppressed by alpha-S1 casein. 

 

 

Figure 3.12. In-solution digestion of protein mixture 
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Figure 3.13. Digestion of protein mixture on different sorbents a) on-SCX b) on R2 
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Figure 3.14. Digestion of protein mixture on different sorbents a) on-SAX b) on C18 



46 
 

Table 3.5. Identified peptides by MASCOT from in-solution digestion 

m/z Protein Peptide Sequence 

927.4730 Serum Albumin  K-YLYEIAR-R 

1045.5350 Lysozyme K-GTDVQAWIR-G  

1168.5950 Cytochrome c K-TGPNLHGLFGR-K 

1267.6750 Alpha-S1-casein R-YLGYLEQLLR-L  

1384.6520 Alpha-S1-casein R-FFVAPFPEVFGK-E 

1439.7620 Serum Albumin  R-RHPEYAVSVLLR-L 

1479.7320 Serum Albumin  K-LGEYGFQNALIVR-Y 

1567.6790 Serum Albumin  K-DAFLGSFLYEYSR-R 

1606.7910 Myoglobin K-VEADIAGHGQEVLIR-L 

1675.7130 Lysozyme K-IVSNGNGMNAWVAWR-N 

1759.8740 Alpha-S1-casein K-HQGLPQEVLNENLLR-F 

2044.9500 Serum Albumin R-RHPYFYAPELLYYANK-Y 

2198.1250 Carbonic Anhydrase 2 K-AVVQDPALKPLALVYGEATSR-R 

2316.0681 Alpha-S1-casein K-EPMIGVNQELAYFYPELFR-Q 

2492.2129 Serum Albumin K-GLVLIAFSQYLQQCPFDEHVK-L 

2584.1260 Carbonic Anhydrase 2 R-LVQFHFHWGSSDDQGSEHTVDR-K 

 

 

 

 

Table 3.6. Identified new peptides by MASCOT from on-sorbent digestion 

m/z Protein Surface Sequence 

936,406 Lysozyme   SAX R.WWCNDGR.T 

993,434 Lysozyme   SAX R.WWCNDGR.T + Carbamidomethyl (C)  

1001,387 Serum albumin  C18 R.ALKAWSVAR.L 

1018,502 Carbonic anhydrase 2   R2 K.DFPIANGER.Q 

1022,625 Alpha-S2-casein  SCX K.VIPYVRYLK. 

1283,700 Serum albumin  R2 R.HPEYAVSVLLR.L 

1296,757 Cytochrome c  SAX K.TGPNLHGLFGRK.T 

1333,709 Lysozyme    SAX  R.CKGTDVQAWIR.G + Carbamidomethyl  

1360,777 Myoglobin  SCX K.ALELFR NDIAAK.Y 

1639,567 Serum albumin  C18 R.KVPQVSTPTLVEVSR.S 

1640,888 Alpha-S1-casein   SCX R.FFVAPFPEVFGKEK.V 

1753,860 Lysozyme  SAX R.NTDGSTDYGILQINSR.W 

1803,900 Lysozyme  SAX K.KIVSDGNGMNAWVAWR.N 

2284,163 Myoglobin SCX K.ALELFR NDIAAKYKELGFQG 

2851,729 Carbonic anhydrase 2  C18 R.TLNFNAEGEPELLMLANWRPAQPLK.N 

2852,400 Carbonic anhydrase 2   R2 R.TLNFNAEGEPELLMLANWRPAQPLK.N 

3206,800 Alpha-S1-casein C18 K.EGIHAQQKEPMIGVNQELAYFYPELFR.Q 
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CHAPTER 4 

 

CONCLUSION 

 

 In this study, an alternative protein digestion method namely on-surface 

digestion or on-bead digestion, which is already proposed but occasionally in use, was 

examined comprehensively by using different type of sorbent materials on various 

proteins with different physicochemical properties. Firstly, protein adsorption to the 

sorbents in the solution environment was verified with Bradford assay by considering 

the absorbance decrease after sorbent addition. Adsorption performance of the sorbents 

was pretty changeable from protein to protein. As a rough conclusion, hydrophobic 

sorbent having rather short hydrocarbon chain tends to adsorb the larger proteins 

whereas longed-chain hydrophobic sorbents like C18 is able to adsorb smaller proteins 

and larger ones as well. This result is consistent with general principles of HPLC since 

C18 columns are particularly preferred for the peptide and small proteins analysis. 

Although the selectivity in ionic sorbents was greater than hydrophobic surfaces, their 

adsorption was quite unpredictable in contrast to the expectations from acidic or basic 

proteins. It is probably arising from the localization of acidic and basic residues on the 

tertiary structure of the protein.  

 On-surface digestion was first tried on particular proteins individually and 

results were compared with traditional in-solution digestion. Although differences were 

observed on digestion patterns, some certain peptides were generally detected on the 

spectra of both methods. Similar experiments were repeated for the protein mixture 

including cytochrome c, lysozyme, myoglobin, carbonic anhydrase, bovine serum 

albumin and casein by using SAX, SCX, poros R2 and C18 sorbents. None of the 

sorbents alone sufficed to identify all the proteins as the in-solution digestion performed 

alone. On the other hand, on-surface digestion totally increased the sequence coverage 

of some proteins, especially the lysozyme’s. In addition to this, detection of a peptide 

identifying the Alpha-S2-casein (one of the low abundant content of casein) only by on-

SCX digestion, implies that protein-level separations before the digestion process may 

increase more or less both the sequence coverage of protein and protein coverage of the 

sample. Moreover, repeating peaks, which were obtained from different sorbents of the 
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on-surface digestion, enable scientist a second chance of the mass analysis for that ion. 

This feature is especially important for the MALDI because tandem mass spectrometric 

analysis of close signals is considerably difficult. Besides, matrix-sample co-

crystallization might not form favorable enough for a successful analysis. Since protein 

adsorption is the first and key step for on-surface digestion, using more than one sorbent 

on the same sample consecutively will increase the chance of the adsorption especially 

for low abundant unknown proteins. Downsides of this method may be counted as the 

low protein adsorption and peptide recovery. 

 Last but not least, experimental setup and the devices were kept as simple as 

possible throughout this study by excluding the sophisticated and expensive HPLC 

system in order to address to any proteomics laboratory. In addition to this, need of 

ZipTip cleaning for the peptide recovery and desalting was lessened by using solvents 

easily evaporate prior to mass analysis.  
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APPENDIX A 

 

PROTEIN STANDART CURVE AND  

PREPARATION OF BRADFORD REAGENT 

 

 

Figure1 : Standard curve for Bradford Assay 

 

Preparation of Bradford Reagent 

• 10.0 mg Coomassie Brilliant Blue G-250 (CBB G-250) 

• 5ml 95% ethanol 

• 10ml 85% phosphoric acid 

 

10.0 mg of CBBG-250 is dissolved in ethanol. Then 10 ml ortho phosphoric acid is 

added. Volume is adjusted to 100 ml with ultra pure water. When the dye was 

completely dissolved, solution is filtered with Whatman No. 1 paper. It is stored at 4 °C. 
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APPENDIX B 

 

BUFFER EFFECT TO TRYPTIC DIGESTION 
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APPENDIX C 

 

MS/MS RESULTS OF ON-SURFACE DIGESTION 

 

Mass Met Protein Taxonomy Sequence 
% 

SC 

927,2 C18 Serum albumin Bos taurus K.YLYEIAR.R 1 

936,3 SAX Lysozyme C Gallus gallus R.WWCNDGR.T 5 

1001,4 C18 Serum albumin Bos taurus R.ALKAWSVAR.L 1 

1018,5 R2 Carbonic anhydrase Bos taurus K.DFPIANGER.Q 3 

1045,5 R2 Lysozyme C Gallus gallus K.GTDVQAWIR.G 6 

1163,6 SAX Albumin Bos taurus K.LVNELTEFAK.T 1 

1168,6 R2 Cytochrome c Equus caballus K.TGPNLHGLFGR.K 10 

1193,6 SAX Albumin Bos taurus R.DTHKSEIAHR.F 1 

1267,7 R2 Alpha-S1-casein Bos taurus R.YLGYLEQLLR.L 4 

1283,7 R2 Serum albumin Bos taurus R.HPEYAVSVLLR.L 1 

1337,6 SCX Alpha-S1-casein Bos taurus K.HIQKEDVPSER.Y 5 

1350,7 SCX Cytochrome c Equus caballus K.TEREDLIAYLK.K 10 

1384,6 SCX Alpha-S1-casein Bos taurus R.FFVAPFPEVFGK.E 5 

1428,6 SCX Lysozyme Gallus gallus K.FESNFNTQATNR.N 8 

1439 C8 Serum albumin Bos taurus R.RHPEYAVSVLLR.L 1 

1439,4 C18 Serum albumin Bos taurus R.RHPEYAVSVLLR.L 1 

1470,6 SCX Cytochrome C Equus caballus K.TGQAPGFTYTDANK.N 13 

1479 C8 Serum albumin Bos taurus K.LGEYGFQNALIVR.Y 2 

1479,4 C18 Serum albumin Bos taurus K.LGEYGFQNALIVR.Y 2 

1491,6 C8 Lysozyme Gallus gallus R.WWCNDGRTPGSR.N+ 8 

Carbamidomethyl (C) 

1567,2 C8 Serum albumin Bos taurus K.DAFLGSFLYEYSR.R 2 

1567,3 C18 Serum albumin Bos taurus K.DAFLGSFLYEYSR.R 2 

1639,5 C18 Serum albumin Bos taurus R.KVPQVSTPTLVEVSR.S 2 

1639,9 SCX Albumin Bos taurus R.KVPQVSTPTLVEVSR.S 2 

1675,7 SAX Lysozyme C Gallus gallus R.IVSDGNGMNAWVAWR.N 10 

1675,8 C8 Lysozyme Gallus gallus R.IVSDGNGMNAWVAWR.N 10 

1753,8 C8 Lysozyme Gallus gallus R.NTDGSTDYGILQINSR.W 10 

1759,8 SCX Alpha-S1-casein Bos taurus K.HQGLPQEVLNENLLR.F 7 

1803,8 C8 Lysozyme Gallus gallus K.KIVSDGNGMNAWVAWR.N 10 

2044,4 C18 Serum albumin Bos taurus R.RHPYFYAPELLYYANK.Y 2 

2197,9 C18 Carbonic anhydrase Bos taurus K.AVVQDPALKPLALVYGEAT 8 

SR.R 

2199 C8 Carbonic anhydrase Bos taurus K.AVVQDPALKPLALVYGEAT 8 

SR.R 

2315,5 C18 Alpha-S1-casein Bos taurus K.EPMIGVNQELAYFYPELFR.Q 8 

2583,3 C8 Carbonic anhydrase Bos taurus R.LVQFHFHWGSSDDQGSEHTVDR.K 8 

2851,5 C8 Carbonic anhydrase Bos taurus R.TLNFNAEGEPELLMLANWRPAQPLK.N 9 

2851,8 C18 Carbonic anhydrase Bos taurus R.TLNFNAEGEPELLMLANWRPAQPLK.N 9 

3206,8 C18 Alpha-S1-casein Bos taurus K.EPLPYLYRKPTVELLDLNTMEESSEIK.V 12 

 


