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ABSTRACT

A multiple-order-parameter model for Cu−Au system on a face cubic cen-
tered lattice was recently developed in the presence of anisotropy. In that model,
three order parameters (non-conserved) and one concentration order parameter
(conserved), which has been taken as a constant, were considered. Later on, the
model has been extended, so that, concentration has been taken as a variable. It
has been seen that two models were in a good agreement near critical tempera-
ture since the non-conserved order parameter behaves like a constant near critical
temperature in both models. Thus, we extended the first model to a dynamical
diffuse interface model near critical temperature.

After writing the free energy of the system in terms of the order parame-
ters, minimizing the energy with respect to the order parameters and Langevin
equation yield the non-linear system of parabolic equations. The finite differences
method was implemented to solve this non-linear system of parabolic equations.
The forward difference discretization was applied for the first derivative of the
solution with respect to time and centered difference discretization was applied
for the second order derivative of the solution with respect to spatial variable.
We obtained stability criteria and find the error bound. The orientation depen-
dence profiles, variation of interfacial energy and the effect of the degree of the
anisotropy on the width of the diffuse interface are simulated when the time
evolves.
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ÖZET

Son zamanlarda, yüzey merkezli kübik yapı üzerindeki anizotropik Cu−Au
sistemi için bir çoklu durum parametresi modeli gelistirilmişti. Modelde, üç du-
rum parametresi (korunan) ve sabit alınmış bir konsantrasyon durum parametresi
(korunmayan) ele alınmıştı. Daha sonra bu model, konsantrasyon durum parame-
tresinin değişken alınması suretiyle genişletilmiştir. İlk modelin ve genişletilmiş
modelin, korunmayan durum parametresinin sabit gibi davranmasından dolayı,
kritik sıcaklıkta iyi bir uyum gösterdikleri gözlenmiştir. Bu çalışma kritik sıcaklıkta
yapılmış ve çalışmada ilk model, dinamik bir arayüzey problemine genişletilmiştir.

Sistemin enerjisi durum parametrelerine bağlı olarak yazıldıktan sonra,
enerjinin durum parametrelerine göre minimize edilmesi ve Langevin denklem-
leriyle, doğrusal olmayan parabolik denklem sistemi elde edilmiştir. Bu den-
klem sistemini çözmek için sisteme sonlu farklar yöntemi uygulanmıştır. İleri
sonlu fark ayrıklaştırılması, çözümün zamana göre türevine; merkezi sonlu fark
ayrıklaştırılması ise çözümün uzaysal değişkene göre ikinci türevine uygulanmıştır.
Kararlılık şartları ve hata sınırları elde edilmiştir. Zaman ilerledikçe, yöne bağlı
profiller, arayüzey enerjisinin değişimi ve anizotropi derecesinin yayılım arayüzeyinin
genişliğine olan etkisi betimlenmiştir.
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Chapter 1

INTRODUCTION

The phase field model has attracted many scientists due to its ability in

describing the complex pattern formation in phase transitions such as dendrites.

It is a useful method for realistic simulation of microstructural evolution involv-

ing diffusion, coarsening of dendrites and the curvature and kinetic effects on the

moving solid-liquid interface. It is efficient, especially in numerical treatment,

because all the governing equations are written in a unified form without dis-

tinguishing the interface from solid or from the liquid phase. In the model, the

phase field, φ(x, t), characterizes the physical state of the system at each position

and time: φ = 1 for the solid, φ = 0 for the liquid, and 0 < φ < 1 at the inter-

face. The phase field variable, φ, changes steeply but smoothly at the solid-liquid

interface region, which avoids direct tracking of the interface position. Therefore,

the model can be generated as a type of a diffuse interface model, which assumes

that the interface has a finite thickness and that physical properties of the system

vary smoothly through the interface.

A diffuse interface model was first developed by Van der Walls [1], who

considered fluid density as an order parameter. Thereafter, by the mid of 1980’s,

the diffuse interface model was applied to the equilibrium properties of the in-

terface [2], antiphase boundary migration by curvature [3], and to the second

order phase transitions [4], but not to the first order phase transitions. Langer [5]

proposed that the diffuse interface model could be applied to solidification phe-

nomena. By using a singular perturbation method, Caginalp [6] proved that the

phase field model could be reduced to the Stephan problem in the limit that the

thickness of the interface approaches zero. Kobayashi [7] studied the dendritic

growth of a pure melt and Wheeler, McFadden and Boettinger [8] proposed the

phase field model for isothermal solidification of a binary alloy. Warren and Boet-

tinger [9] investigated the dendritic growth of a binary alloy with the model of

Wheeler, McFadden and Boettinger’s [8].

The phase field models mentioned above suffer from two limitations which



severely restrict their range of applications. The first limitation is that the mod-

els can not simulate the case where the kinetic undercooling is negligibly small

compared to the curvature undercooling (local equilibrium condition) [10]. The

second is that the temperature variation in the finite interface region is negligibly

small compared to the interface kinetic undercooling [10]. This restricts the size

of the calculation domain and makes the reliable simulation of dendritic growth

possible only at a large undercooling [11]. Karma and Rappel [10, 12] relieved

these limitations and showed that it is feasible to determine the parameters in the

phase field model at the thin interface limit (finite interface thickness condition)

for the solidification of a pure melt using the concept, that the temperature gra-

dient in the thin interface region could be linearly approximated. Following the

work of Karma and Rappel, Kim et al [13, 14] demonstrated that the parameters

in the phase field model for solidification of binary alloys can be determined at

the thin interface limit by linearly approximated chemical potentials in the thin

interface region [15].

One method for treating diffuse interfaces is to use a free energy functional

for the system based on continuum parameters, that are spatially varying. The

functional is written as integral of the sum of two kinds of terms; bulk energies,

that are multiple-well functions of these parameters, and gradient energies that

are (generally quadratic) functions of the gradients of the order parameters. The

gradient part is included by the free energy functional because the translation

between two phases is smooth. Both terms contribute to the energy in the tran-

sition regions that separate bulk phases [16].

One can obtain the evolution equations by using the variational arguments

on these free-energy functionals. When the free-energy functional involves a sin-

gle non-conserved scalar-order parameter, the result is the Cahn-Allen [17, 18]

equation which is second-order non-linear parabolic equation. For a single con-

served order parameter, say composition, the result is the Cahn-Hillard equation

[19, 20]. Solidification of a binary mixture has been studied by Caginalp et al

[21]. Warren and Boettinger [22, 23] derived a phase field model for isothermal

solidification of a binary alloy.

Braun et al [16], developed a model for a binary alloy with two species

on a face-centered cubic (fcc) lattice [24]: the atoms occupy the corners and the

faces as shown in Figure 1.1. It has been customary to describe the fcc structure

by four interpenetrating simple cubic ”sublattices”. Each sublattice represents a

distinguished site which is repeated periodically to make up a crystal. The four

sublattices are equivalent by symmetry of the fcc lattice [25].

At high temperatures, either of the atoms can occupy any site, and the
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Figure 1.1: A schematic diagram of an fcc lattice. This lattice contains four
interpenetrating simple cubic sublattices labelled by 1, 2, 3 and 4.

equilibrium state for this case is considered as disordered phase (with Struk-

turbericht notation A1 [26, 27]), which means the probabilities of finding either

atom at each lattice point is equal. At low temperatures, ordered phases can be

preferable. The ordered phases considered in this work are in the copper-gold

(Cu − Au) system, where the corners of the lattice are different from the faces.

The Cu3Au phase with the copper atoms occupying the centers of the faces and

the gold atoms at the corners is an example of L12 ordering in the Strukturbericht

notation system. In this work, we consider A1 disordered phase and L12 ordered

phase, and the structures we mentioned above are summarized in Figure 1.2 with

their Strukturbericht notation [25].

In ordering of binary alloys on fcc lattices, one finds that not one but

three(non-conserved) order parameters and an overall concentration(conserved

order parameter) are required. The first model of ordering of a binary alloy on an

fcc lattice for Cu−Au system with gradient energy terms was developed by Braun

et al [16] by using a multiple-order-parameter method. In that model, the over-

all concentration was taken constant through the interface; the focus was on the

role played by three non-conserved order parameters in determining anisotropy of

two types of boundaries; interphase boundaries (IPBs) and antiphase boundaries

(APBs). The IPBs form between two different phases; they could be between two

3



Figure 1.2: A schematic showing the Bulk phases for Binary Alloy on an fcc
lattice. A1 represents the disordered state. Au and Cu atoms alternate for
L10 structure. The corners are different from the faces for L12 structure.

different ordered phases or between an ordered and a disordered phase. APBs

form between two domains of variants of the same phase(in this work we are not

interested in APBs). In spite of that limitation, the model was successful in giv-

ing the anisotropy of IPBs between the disordered A1 phase and the ordered L12

phase [25]. But for an IPB, a uniform composition is inconsistent with the differ-

ences in the bulk concentrations in each phase at equilibrium. Moreover, for both

APBs and IPBs, the assumption of a uniform composition leads to no adsorption,

so that finding a temperature and composition-dependent interfacial free energy

leads to a violation of the Gibbs adsorption equation [28]. For the interfacial en-

ergy anisotropy, IPBs were found to have relatively weak cubic anisotropy. The

model also allowed a stable L10 phase. These different anisotropies occur natu-

rally in the model once the form of the free energy is given. Furthermore, the

dependence on orientation of properties of the interfaces is continuous and eas-

ily allows computation of the properties for all orientations. Lately, the previous

model was generalized by G. Tanoglu [25] to the case where the concentration was

free to vary through IPBs between ordered and disordered phases of a binary alloy

on a lattice. The aim of that work was to compute phase boundaries at different

places on the phase diagram for all orientations by using the extended model, and

to show that above-mentioned success from the Braun’s model still hold when the

concentration varies through the IPB. In Braun’s model, three non-conserved or-

der parameters and one constant conserved order parameter were used. In the

extended free energy model, the conserved order parameter was considered as a

variable, to have a more realistic model. Thus, that the equations became more

complex. In addition, the phase diagram of the Cu − Au system was obtained

4



for the concentration W < 1
2

and it’s observed that the experimental and model

phase diagram of Cu − Au system are quite similar.

Many researchers have performed theoretical investigations on the diffusion-

controlled phase transformation. Since the analytical solution of such problem

is impossible, the recent remarkable developments in computers have made the

numerical analysis of the non-linear diffusion equations possible, and computer

simulations have become very useful for understanding the dynamics of phase

transformation in materials. In the present thesis, we calculate the dynamics of

microstructural changes in real alloys, i.e; Cu − Au system, based on the multi-

ple order parameter model developed by Braun et al [16]. We obtain interfacial

properties of Cu−Au system at equilibrium. Since we would like to understand

phase-decomposition process, we extend the steady-state model to a non-steady

dynamical problem. We only consider the phase-decomposition process at crit-

ical temperature (Tc), since the previous model is a good approximation of the

extended model at the critical temperature, based on the numerical study of

G.Tanoglu’s thesis [25]. Their numerical simulations showed that the variation

of concentration, W, is negligible, i.e; behaves like a constant, therefore, there is

no need to include W as a parameter in the bulk free energy functional at Tc.

1.1 Outline

In this thesis, the numerical solution of the dynamical mathematical model

which describes the ordering between the disordered phase A1 and ordered phase

Cu3Au for face-centered cubic alloy, based on the multiple order parameter model

is studied. The finite difference method is implemented for this purpose.

In Chapter 2, the relation between the face-centered cubic lattice and or-

der parameters is established. After introducing the free energy functional in

terms of the order parameters, the bulk states are defined, and related to the free

energy functional. Moreover, the system of non-linear parabolic equations are set

up with the help of the Langevin Equation.

In Chapter 3, we briefly mention about the history of the explicit finite

difference method. We then approximate the system of non-linear parabolic equa-

tions by explicit finite difference method. The stability criteria is obtained and

error bound is found for the special orientation.

In Chapter 4, the dynamical process is exhibited for different orientations

and different degrees of anisotropy. First, the behavior of the order parameters

are simulated for different orientations. Then, the thickness of the interface is

plotted for different orientations and degrees of anisotropy. The changing of the

5



interfacial energy with time is exhibited. We compare the exact solution with the

numerical one in order to show the asymptotical stability of the method. Finally,

we add the convection part to the diffusion-reaction equation, in order to obtain

moving solution. We then solve this equation by finite difference method and

exhibit the numerical results.
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Chapter 2

FORMULATION

In this chapter, we begin with the relation between the fcc lattice and order

parameters. Then we introduce the free energy of the system, F , which is the

integral of sum of two terms; bulk free energy and the gradient part. The relation

between bulk free energy functional and bulk states is given. Finally, the system

of parabolic equations are obtained by using Langevin and Euler-Ostrogradsky

Equations.

An fcc crystal is a certain periodic arrangement of atoms, each associated

with a point in a face-centered cubic Bravais lattice in 3-space. In Figure 2.1, we

depict the unit cell of such a crystal. Each unit cell is occupied by four atoms,

and so a tetrahedron can be associated to it. Each numbered point of such a

tetrahedron can serve as the origin of a primitive cubic Bravais lattice. The fcc

lattice is then decomposed into four numbered sublattices.

The example of alloy considered in this work is the Cu3Au ordered struc-

ture, with the copper atoms occupying the centers of the faces and the gold atoms

the vertices. Four numbers; ρ1, ρ2, ρ3, and ρ4, are chosen as the corresponding

fractional probability (when ordering is imperfect) densities of copper or gold

on each primitive cubic sublattice are needed to describe this ordered structure.

When ordering is perfect, copper represents 3
4

of the total. Hence for the ordered

Cu3Au state

ρ1(ord) = 0, ρ2(ord) = ρ3(ord) = ρ4(ord) = 1 (2.1)

while for the disordered fcc state

ρ1(dis) = ρ2(dis) = ρ3(dis) = ρ4(dis) =
3

4
(2.2)

In our treatment the ρ’s are taken to vary continuously and the specific

problem we are addressing involves the transition between the disordered fcc and
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Figure 2.1: A unit cell of the fcc lattice, and the tetrahedron whose corners serves
to number the four Primitive cubic sublattices. The Cu3Au ordered structures
arises when one of the sublattice, here labelled 1, has different occupation from
the other three.
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the ordered Cu3Au state. The equations we will be dealing with are written in

terms of the different variables X,Y, Z,W defined via

W =
1

4
(ρ1 + ρ2 + ρ3 + ρ4), (2.3a)

X =
1

4
(ρ1 + ρ2 − ρ3 − ρ4), (2.3b)

Y =
1

4
(ρ1 − ρ2 + ρ3 − ρ4), (2.3c)

Z =
1

4
(ρ1 − ρ2 − ρ3 + ρ4) (2.3d)

W represents the total relative density of copper in the system and in our

treatment it will be taken fixed and equal to 3
4
, focusing our attention on the

competition between different directions (anisotropy), ignoring the competition

between different bulk states. In a more complete model W is taken not pointwise

fixed, but only fixed on the average, see G. Tanoglu [25]. The ρ’s can be recovered

from X,Y, Z,W via

ρ1 = W + X + Y + Z, (2.4a)

ρ2 = W + X − Y − Z, (2.4b)

ρ3 = W − X + Y − Z, (2.4c)

ρ4 = W − X − Y + Z (2.4d)

The intuition behind the introduction of the new variables is that they

are more amenable to continuizing [29]. In these variables, the disordered state

corresponds to

X = 0, Y = 0, Z = 0 (2.5)

and the ordered state to

X = −1

4
, Y = −1

4
, Z = −1

4
(2.6)

In what follows the variables are redefined as multiples by a fixed number of

their previous meaning due to non-dimensionalization of the governing equations.

To avoid another notation, we continue with X,Y, Z. In the new variables the

disordered state is X = 0, Y = 0, Z = 0, while the ordered state is X = 1, Y =

1, Z = 1.

When W is held fixed, the free energy functional used in [16] is

F =

∫

V

[
1

2
A(X2

x + Y 2
y + Z2

z ) +
1

2
B(X2

y + X2
z + Y 2

x + Y 2
z + Z2

x + Z2
y ) (2.7)

+ f(X,Y, Z)]dxdydz

9



where (x, y, z) are the space coordinates ranging in V ⊂ IR3, and

f(X,Y, Z) = a2(X
2 + Y 2 + Z2) + a3 XY Z (2.8)

+ a41(X
4 + Y 4 + Z4) + a42(X

2Y 2 + X2Z2 + Y 2Z2)

with a2 = 2, a3 = −12, a41 = a42 = 1 and A,B independent constants. Other

terms of the integral given in (2.7), i.e;

1

2
A(X2

x + Y 2
y + Z2

z ) +
1

2
B(X2

y + X2
z + Y 2

x + Y 2
z + Z2

x + Z2
y ) (2.9)

give the gradient part. We have the gradient part because the connection between

two phases is smooth rather than sharp.

We refer to [16] for the derivation of the model and other relevant informa-

tion. We only mention briefly that the form of f incorporates all the symmetries of

the crystal. The cubic term is sufficient for the existence of first-order transitions

and the associated interfaces [30]. The truncation to fourth order is discussed

in Braun et al [16], and the extension to sixth order by [25]. The temperature

enters through the coefficients. The form of the gradient part is derived so that

the functional respects certain natural invariances and symmetries of fcc. The

ratio B
A

measures the degree of anisotropy and it is the single most important

parameter in our considerations.

The uniform equilibria are given as solutions to

fX(X,Y, Z) = 2a2X + a3Y Z + 4a41X
3 + 2a42X(Y 2 + Z2) = 0 (2.10a)

fY (X,Y, Z) = 2a2Y + a3XZ + 4a41Y
3 + 2a42Y (X2 + Z2) = 0 (2.10b)

fZ(X,Y, Z) = 2a2Z + a3XY + 4a41Z
3 + 2a42Z(X2 + Y 2) = 0 (2.10c)

As can be seen, the order parameters, X, Y and Z are interchangeable

(X ↔ Y ↔ Z), and note that (0, 0, 0) and (1, 1, 1) satisfy

f(0, 0, 0) = f(1, 1, 1) = 0. (2.11)

In order to derive a dynamical model, it is assumed that the system evolves

in time so that its total free energy decreases monotonically. The evolution equa-

tion for the order parameters in the Ginzburg-Landau approach is the Langevin

equation [15] which can be written as

∂Xi

∂t
= −M

(
δF
δXi

)
where X1 = X,X2 = Y,X3 = Z (2.12)

In this thesis, the mobility constant M is assumed as 1. The equation (2.7)

can be written in the following form:
10



F =

∫

V

H(X,Y, Z,Xx, Xy, Xz, Yx, Yy, Yz, Zx, Zy, Zz)dV (2.13)

where

H =
1

2
A(X2

x + Y 2
y + Z2

z ) +
1

2
B(X2

y + X2
z + Y 2

x + Y 2
z + Z2

x + Z2
y ) (2.14)

+ f(X,Y, Z)

After applying the minimizing process, the variation of the free energy

of the system with respect to the order parameters can be obtained from the

Euler-Ostrogradsky equations [31]

∂

∂x
HXx

+
∂

∂y
HXy

+
∂

∂z
HXz

− HX = Xt (2.15a)

∂

∂x
HYx

+
∂

∂y
HYy

+
∂

∂z
HYz

− HY = Yt (2.15b)

∂

∂x
HZx

+
∂

∂y
HZy

+
∂

∂z
HZz

− HZ = Zt (2.15c)

After using the explicit form of H given in (2.14), the equations (2.15)

may be written as follows:

AXxx + BXyy + BXzz − fX = Xt (2.16a)

BYxx + AYyy + BYzz − fY = Yt (2.16b)

BZxx + BZyy + AZzz − fZ = Zt (2.16c)

In these equations, the order parameters X, Y and Z depend on vector
−→x = (x, y, z) and time t.

We shall consider the one dimensional solution of the governing equations

(2.16), which represents a dynamical planar interfacial region separating an or-

dered L12 bulk phase from a disordered bulk phase at the same composition

point. After defining the spatial variable ζ by

ζ = ~n · ~x = (nx, ny, nz).(x, y, z) = xnx + yny + znz (2.17)

where ~n = (nx, ny, nz) is the unit normal vector to the interface, the order pa-

rameters vary only in the direction parallel to the unit normal vector ~n to the

interface. Now on, the new order parameters depend on a scalar, ζ, i.e;

Xi(−→x ) = X̂i(−→n .−→x ) = X̂i(ζ), i = 1, 2, 3 (2.18)

Applying the change of variable, the dependent variables become in the

following form.
11



Xxx = n2
xX̂ζζ , Xyy = n2

yX̂ζζ , Xzz = n2
zX̂ζζ (2.19a)

Yxx = n2
xŶζζ , Yyy = n2

yŶζζ , Yzz = n2
zŶζζ (2.19b)

Zxx = n2
xẐζζ , Zyy = n2

yẐζζ , Zzz = n2
zẐζζ (2.19c)

After substituting these expressions into equations (2.16) and collecting

terms in the appropriate way, the governing equations reduce to the following

system of non-linear parabolic differential equations.

X̂t = λ2
xX̂ζζ − fX̂(X̂, Ŷ , Ẑ) (2.20a)

Ŷt = λ2
yŶζζ − fŶ (X̂, Ŷ , Ẑ) (2.20b)

Ẑt = λ2
zẐζζ − fẐ(X̂, Ŷ , Ẑ) (2.20c)

The coefficients of the second derivatives which are given in (2.21) depend

on the degree of anisotropy, ε2 = B/A, and orientations, prescribed with the

components of the unit normal vector.

λ2
x = nx

2 + ε2ny
2 + ε2n2

z (2.21a)

λ2
y = ε2nx

2 + ny
2 + ε2nz

2 (2.21b)

λ2
z = ε2n2

x + ε2n2
y + nz

2 (2.21c)

For simplicity, we will use the expressions without (ˆ). After finding the

first derivatives of the free energy functional with respect to the order parameters

and substituting them, we rewrite the equations (2.20) as follows

Xt = λ2
xXζζ − (2a2X + a3Y Z + 4a41X

3 + 2a42X(Y 2 + Z2)) (2.22a)

Yt = λ2
yYζζ − (2a2Y + a3XZ + 4a41Y

3 + 2a42Y (X2 + Z2)) (2.22b)

Zt = λ2
zZζζ − (2a2Z + a3XY + 4a41Z

3 + 2a42Z(X2 + Y 2)) (2.22c)

The detailed derivation of this non-dimensionalization process is given in

paper [16].

In order to solve this non-linear parabolic equations, we need to set up

the boundary conditions and initial conditions. Since we are interested in the

interface between A1 and L12 phases, left boundary conditions are

lim
ζ→−∞

X(ζ, t) = lim
ζ→−∞

Y (ζ, t) = lim
ζ→−∞

Z(ζ, t) = 0 (2.23)

and right ones are

lim
ζ→∞

X(ζ, t) = lim
ζ→∞

Y (ζ, t) = lim
ζ→∞

Z(ζ, t) = 1 (2.24)
12



We use the following step function for initial condition in our problem, since the

thickness of the interface is 0 at t = 0.

X(ζ, 0) = Y (ζ, 0) = Z(ζ, 0) =

{
1 ζ ≥ 0
0 ζ < 0

(2.25)

2.1 Orientation Dependent Solution

We are interested in finding the orientation dependent interfacial proper-

ties of the interface between disordered phase A1 and the ordered phase Cu3Au.

The functional f(X,Y, Z) is invariant to cyclic permutations of three variables,

X, Y and Z for [111] orientation, and the boundary and initial conditions are

the same for all order parameters. Thus, the number of equations in (2.22) can

be reducible. But, for orientations that satisfy λ2
x 6= λ2

y 6= λ2
z, the equations of

motion are not invariant under permutation X ↔ Y ↔ Z.

This mathematical model allows us to simulate the structure of the inter-

face for arbitrary orientation. When we change the orientation, the coefficients

of the second derivatives in the equation (2.22) also change. Thus, we obtain dif-

ferent solutions of the system of equations for each orientation. The orientations

are prescribed with two angles θ, the azimuthal angle, and φ, the polar angle.

The Figure 2.2 shows these angles.

z

x

y

d

S

Figure 2.2: The azimuthal angle θ and polar angle φ.

The components of the unit normal vector in spherical coordinates may

be written in terms of these angles.

13



nx = sin φ cos θ (2.26a)

ny = sin φ sin θ (2.26b)

nz = cos φ (2.26c)

One can easily show that

n2
x + n2

y + n2
z = sin2 φ cos2 θ + sin2 φ sin2 θ + cos2 φ

= sin2 φ(cos2 θ + sin2 θ) + cos2 φ

= sin2 φ + cos2 φ

= 1

In our study, we can compute the interfacial properties for arbitrary ori-

entation by using the spherical coordinates of the unit normal vector. Now, we

give examples for reduction of the number of the equations in the system.

For [a00] orientation (∀ a 6= 0), the components of the unit normal vector

are nx = 1, ny = nz = 0, and by using (2.21), we have λ2
x = 1, λ2

y = λ2
z = ε2, i.e;

Y ↔ Z. So, (2.22), which contains three equations, reduces to a system with two

equations

Xt = λ2
xXζζ − (2a2X + a3Y Z + 4a41X

3 + 2a42X(Y 2 + Z2)) (2.27a)

Yt = λ2
yYζζ − (2a2Y + a3XZ + 4a41Y

3 + 2a42Y (X2 + Z2)) (2.27b)

For orientation [aaa], (∀ a 6= 0), unit normal vector to the interface is

~n = ( 1√
3
, 1√

3
, 1√

3
), and λ2

x = λ2
y = λ2

z = λ2 = 1
3
(1 + 2ε2). So, our system (2.22)

becomes

Xt = λ2Xζζ − 4a2X(X − 1)(X − 1

2
) (2.28)

by using the interchangeability of X, Y and Z.
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Chapter 3

METHOD OF SOLVING

In this chapter, first we give the brief introduction about the history of

the finite difference method. Then we obtain the finite difference approximation

of the non-linear system of parabolic partial differential equations. Finally, we

discuss stability and find the error bound.

3.1 Background for Finite Difference Method

We start with the fundamental theoretical paper by Courant, Friedrichs

and Lewy [32], on the solutions of problems of mathematical physics by means of

finite differences. In this paper, a discrete analogue of Dirichlet’s principle was

used to define an approximate solution by means of the five point approxima-

tion of Laplace’s equation, and convergence as the mesh width tends to zero was

established by compactness. A finite difference approximation was also defined

for the wave equation. With its use of a variational principle for discretization

and its discovery of the importance of mesh-ratio conditions in approximation of

time-dependent problems this paper points forward and has had a great influence

on numerical analysis of partial differential equations.

For time-dependent problems, considerable progress in finite difference

methods was made during the period of the Second World War, when large-scale

practical applications became possible with the aid of computers. A major role

was played by the work of von Neumann, partly reported in O’Brien, Hyman

and Kaplan [33]. For parabolic equations, a highlight of the early theory was

the important paper by John [34]. For mixed initial-boundary value problems,

the use of implicit methods was also established in this period by, e.g., Crank

and Nicolson [35]. The finite difference theory for general initial value problems

and parabolic problems then had an intense period of development during 1950s

and 1960s, when the concept of stability was explored in the Lax equivalence



theorem and the Kreiss matrix lemmas, with further major contributions given

by Douglas, Lees, Samarskii, Windlund and others.

Standart references on finite difference methods are the textbooks of Col-

latz [36], Forsythe and Wasow [37] and Richtmyer and Morton [38].

3.2 Application of the Explicit Finite Difference Method

In this thesis, the explicit finite difference method is implemented to solve

the following system of non-linear parabolic equations which is obtained in the

previous chapter and given in (2.22).

Xt = λ2
xXζζ − (2a2X + a3Y Z + 4a41X

3 + 2a42X(Y 2 + Z2))

Yt = λ2
yYζζ − (2a2Y + a3XZ + 4a41Y

3 + 2a42Y (X2 + Z2))

Zt = λ2
zZζζ − (2a2Z + a3XY + 4a41Z

3 + 2a42Z(X2 + Y 2))

with constants a2 = 2, a3 = −12, a41 = a42 = 1. For this purpose, the FORTRAN

code which is given in the appendix is implemented.

In order to approximate system (2.22) by finite difference method, we

divide the closed domain by a set of lines parallel to the x- and t-axis to form

a grid or mesh. We shall assume that the sets of lines are equally spaced. The

domain is restricted on [−L,L] and the finite time interval is considered as [0,T],

for fixed T.

We denote the discrete approximation X(ζi, tn) as Xn
i where

ζi = −L + i∆ζ, (i = 0, 1, ..., Nζ), and ∆ζ =
2L

Nζ

(3.2)

and

tn = n∆t, (n = 0, ..., T/∆t) (3.3)

We use the forward difference approximation for the time derivatives

(Xt)
n
i =

Xn+1
i − Xn

i

∆t
+ O(∆t) (3.4a)

(Yt)
n
i =

Y n+1
i − Y n

i

∆t
+ O(∆t) (3.4b)

(Zt)
n
i =

Zn+1
i − Zn

i

∆t
+ O(∆t) (3.4c)

and centered second difference approximation for the second order space deriva-

tives

(Xζζ)
n
i =

Xn
i+1 − 2Xn

i + Xn
i−1

(∆ζ)2
+ O((∆ζ)2) (3.5a)
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(Yζζ)
n
i =

Y n
i+1 − 2Y n

i + Y n
i−1

(∆ζ)2
+ O((∆ζ)2) (3.5b)

(Zζζ)
n
i =

Zn
i+1 − 2Zn

i + Zn
i−1

(∆ζ)2
+ O((∆ζ)2) (3.5c)

We then substitute the approximations (3.4) and (3.5) into the system of

equations (2.22). The one-step explicit finite difference approximations of the

equations (2.22) are given in equation (3.6)

Xn+1
i ≈ λ2

x∆t

(∆ζ)2
(Xn

i+1 − 2Xn
i + Xn

i−1) (3.6a)

−(2a2X
n
i + a3Y

n
i Zn

i + 4a41(X
n
i )3 + 2a42X

n
i ((Y n

i )2 + (Zn
i )2))∆t + Xn

i

Y n+1
i ≈

λ2
y∆t

(∆ζ)2
(Y n

i+1 − 2Y n
i + Y n

i−1) (3.6b)

−(2a2Y
n
i + a3X

n
i Zn

i + 4a41(Y
n
i )3 + 2a42Y

n
i ((Xn

i )2 + (Zn
i )2))∆t + Y n

i

Zn+1
i ≈ λ2

z∆t

(∆ζ)2
(Zn

i+1 − 2Zn
i + Zn

i−1) (3.6c)

−(2a2Z
n
i + a3X

n
i Y n

i + 4a41(Z
n
i )3 + 2a42Z

n
i ((Xn

i )2 + (Y n
i )2))∆t + Zn

i

Thus, the order of the convergence of the method is O(∆t) + O((∆ζ)2).

The schematic diagram summarizes the solution method in Figure 3.1.

In the figure, boundary conditions for space variables (see equations (2.23) and

(2.24)), and initial condition for time variables are known (see equation (2.25)).

Intersection points of the lines parallel to the x- and t-axis are shown as dots.

Because of the centered approximation for space variable, we have to use three

points, denoted by i − 1, i, i + 1, in order to go one step up.

3.3 Stability and Error Analysis

In this section, we establish the stability criteria and error bound. We

prove the lemma which states the stability criteria for [111] equation and we

show that error is bounded.

3.3.1 Stability

A method is said to be stable if a small deviation from the true solution

does not tend to grow as the solution is iterated.

We are interested in establishing the stability criteria for non-linear diffusion-

reaction equation for the special case, [111] orientation. Because of the form of

the free energy functional, the stability criteria for [111] orientation is valid for

all orientations. More detailed study can be deduced as a future work.
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T
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n+2

n+1

i-1 i i+1
n

Figure 3.1: Schematic diagram for finite difference approximation.

We state and prove the stability criteria, i.e; the relation between ∆ζ and

∆t for the scheme, for the equation (2.28). Note that since a2 = 2, equation

(2.28) becomes

Xt = λ2Xζζ − 8X(X − 1)(X − 1

2
) (3.7)

The Lax-Richtmyer Equivalence Theorem [40], which is given in Theo-

rem 1, is the fundamental theorem for the finite difference schemes for the initial

value problems. Theorem 1 states the relation between convergency and stability.

Theorem 1. (The Lax-Richtmyer Equivalence Theorem)

A consistent finite difference scheme for a partial differential equation for

which the initial value problem is well-posed is convergent if and only if it is

stable.

We establish the following stability criteria for [111] equation in Lemma

1.
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Lemma 1. (The stability criteria )

The stability condition for the explicit method for the [111] orientation is

∆t ≤ 1
2λ2

(∆ζ)2
+ max |a′(η)|

(3.8)

where

a(η) = 8η(η − 1)(η − 1

2
) (3.9)

Proof:

Let un
i represent the exact solution and Un

i represent the numerical ap-

proximation. After substituting these expression into equation (3.7), we get the

following equations:

Un+1
i = λ2ν(Un

i+1 − 2Un
i + Un

i−1) − 8∆tUn
i (Un

i − 1)(Un
i − 1

2
) + Un

i (3.10)

un+1
i = λ2ν(un

i+1 − 2un
i + un

i−1) − 8∆tun
i (un

i − 1)(un
i − 1

2
) + un

i + ∆tT n
i (3.11)

where ν = ∆t
(∆ζ)2

and T n
i is the truncation error.

Let en
i represents the discretization error which is the difference between

the numerical approximation and exact solution, i.e;

en
i = Un

i − un
i (3.12)

After subtracting (3.11) from (3.10), we get the one-step iteration approx-

imation for the error as follows

en+1
i = λ2ν(en

i+1 − 2en
i + en

i−1) − ∆t(a(Un
i ) − a(un

i )) + en
i − ∆tT n

i (3.13)

First, we write the Taylor expansion of a(un
i ) near Un

i in equation (3.14)

a(un
i ) = a(Un

i ) + (un
i − Un

i )
a′(Un

i )

1!
+ (un

i − Un
i )2 a′′(Un

i )

2!
+ . . . (3.14)

and then we approximate this expansion linearly;

a(un
i ) ≈ a(Un

i ) − en
i a

′(η) (3.15)

where un
i < η < Un

i .
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By using approximation (3.15), equation (3.13) can be written in the fol-

lowing form

en+1
i ≈ en

i (−2λ2ν − ∆ta′(η) + 1) + λ2νen
i+1 + λ2νen

i−1 − ∆tT n
i (3.16)

The Maximum Principle tells us that the coefficients of en
i , en

i+1 and en
i−1

must be equal or greater than zero [39]. Since the coefficients of en
i+1 and en

i−1 are

positive, we only consider the coefficient of en
i .

−2λ2ν − ∆ta′(η) + 1 ≥ 0 (3.17)

−2λ2 ∆t

(∆ζ)2
− ∆ta′(η) + 1 ≥ 0 (3.18)

−∆t(
2λ2

(∆ζ)2
+ a′(η)) ≥ −1 (3.19)

∆t(
2λ2

(∆ζ)2
+ a′(η)) ≤ 1 (3.20)

Finally, the stability criteria for (3.7) is obtained as follows

∆t ≤ 1
2λ2

(∆ζ)2
+ max |a′(η)|

(3.21)

The graph of a′(η) is given in Figure 3.2 and as it can be seen from the

figure, the maximum value of max |a′(η)| is 4 for 0 ≤ η ≤ 1.

In Figure 3.3, the relation between ∆ζ and ∆t is shown. The solid line is

the equation of the curve

∆t =
1

2λ2

(∆ζ)2
+ 4

(3.22)

The stability region is the region below the solid line. We pick ∆ζ = 0.05

and ∆t = 0.001 in our calculations to satisfy the stability criteria.

One of the property of the parabolic equations is

sup
x

|u(ζ, t)| ≤ sup
x

|u(ζ, t′)| if t > t′. (3.23)

In order to observe that the numerical solution of [111] equation satisfies

this property, we now plot the numerical solution as function of time. As can be

seen in Figure 3.4, the numerical solution is decreasing as time evolves.

20



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

η

a’
(η

)

Figure 3.2: Graph of a′(η)
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Figure 3.3: This figure shows the stability region for equation (3.7). Stability
region is the region below the solid line.
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Thus,

|Un+1| < |Un|, (3.24)

where the norm we use is

|Un| =
∞∑

i=0

Un
i . (3.25)
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99

100
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rm

time

Figure 3.4: This figure simulates the sequence of the norm |Un| is decreasing,
thus scheme is stable.

As a result, after stating the stability for criteria (3.8) and picking the

values of ∆ζ and ∆t, (according to the Lax-Richtmyer Equivalence Theorem) we

say that the scheme is convergent.

3.3.2 Asymptotical Stability

In this section, asymptotical stability is discussed. We start with giving

the definition of asymptotical stability.

Definition 1.

Let X̃(ζ) be the exact solution of equilibrium equation

λ2X̃ζζ = 4a2X̃(X̃ − 1)(X̃ − 1

2
) (3.26)

22



and Xn
i be the solution of time dependent non-linear parabolic equation (2.28).

If the numerical solution Xn
i approaches the exact solution X̃(ζ) when t → ∞,

it is said that the numerical solution is asymptotically stable.

Lemma 2.

The numerical solution of the problem for [111] orientation is asymptoti-

cally stable.

Proof:

First, we exactly solve the equilibrium equation (3.26). The equilibrium

equation for [111] orientation is

λ2X̃ζζ = 4a2(X̃
3 − 3

2
X̃2 +

1

2
X̃) (3.27)

after multiplying the parenthesis at right hand side. Then, we multiply both sides

by X̃ζ and get the equality

λ2X̃ζζX̃ζ = 4a2(X̃
3 − 3

2
X̃2 +

1

2
)X̃ζ (3.28)

Since

X̃ζζX̃ζ =
1

2

d

dζ
(X̃ζ)

2 (3.29)

we get the following form

λ2 d

dζ
(X̃ζ)

2 = 8a2(X̃
3 − 3

2
X̃2 +

1

2
)X̃ζ (3.30)

We write X̃ζ = dX̃
dζ

and take the integral of both sides

λ2

∫
d

dζ
(X̃ζ)

2dζ = 8a2

∫
(X̃3 − 3

2
X̃2 +

1

2
)dX̃ (3.31)

or

λ2(X̃ζ)
2 = 8a2(

1

4
X̃4 − 1

2
X̃3 +

1

4
X̃2) + c (3.32)

Pick c = 0,

λ2(X̃ζ)
2 = 8a2

1

4
X̃2(X̃2 − 2X̃ + 1) (3.33)

λ2(X̃ζ)
2 = 2a2X̃

2(X̃2 − 2X̃ + 1) (3.34)

(X̃ζ)
2 =

2a2

λ2
X̃2(X̃2 − 2X̃ + 1) (3.35)
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(X̃ζ)
2 =

2a2

λ2
X̃2(X̃ − 1)2 (3.36)

Take the square root of both sides,

√
(X̃ζ)2 =

√
2a2

λ2
X̃2(X̃ − 1)2 (3.37)

|X̃ζ | =

√
2a2

|λ| |X̃(X̃ − 1)| (3.38)

Since λ > 0, X̃(X̃ − 1) ≤ 0 for the interval 0 ≤ X̃ ≤ 1, and X̃ζ > 0,

X̃ζ = −
√

2a2

λ
X̃(X̃ − 1) (3.39)

or
dX̃

X̃(X̃ − 1)
= −

√
2a2

λ
dζ (3.40)

Integrate both sides,

ln |X̃ − 1| − ln |X̃| = −
√

2a2

λ
ζ + d (3.41)

Pick d =
√

2a2

λ
ζ0

ln |X̃ − 1

X̃
| = −

√
2a2

λ
(ζ − ζ0) (3.42)

Since X̃−1

X̃
< 0 in the interval 0 < X̃ < 1,

1 − X̃

X̃
= exp(−

√
2a2(ζ − ζ0)

λ
) (3.43)

thus,

X̃ =
1

1 + exp(−
√

2a2(ζ−ζ0)
λ

)
(3.44)

Since
1

2
(1 + tanh a) =

1

1 + exp(−2a)
(3.45)

where

a =

√
a2(ζ − ζ0)√

2λ
(3.46)

the solution of the equation (3.26) becomes

X̃ =
1

2
(1 + tanh

√
a2(ζ − ζ0)√

2λ
) (3.47)

The solution (3.47) exhibits the translation invariance of the problem. For

simplicity, we assume position ζ0 = 0.
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Now, we simulate the comparison of the exact solution X̃ (3.47) for equi-

librium equation (3.26) to the numerical solution Xn
i of the equation for [111]

orientation (2.28) when t → ∞ in Figure 3.5. It is not possible for us to take t

to infinity. We observe that the system reaches equilibrium at t = 5 and nothing

changes for time t > 5. Thus, we simulate the solution for [111] orientation for

t = 5 and the exact solution for equilibrium. As it can be seen, numerical solution

is asymptotically stable.
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Figure 3.5: The numerical and exact solutions.

3.3.3 Error Analysis

The error of the numerical solution will tend to zero along the refinement

path, as required, provided that the initial and boundary values are consistent;

that is, the errors in the initial and boundary values also tend to zero along the

refinement path. But, for the non-linear problem, we are expecting to see the

error bound is small. In this section, we find the error bound for [111] equation.
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Lemma 3. (Error Bound for [111] Orientation)

The error bound for the scheme for [111] equation is

0 ≤ En ≤ e−c+T T̂ T (3.48)

where c is the maximum value of |a′(ζ)| and T̂ =
∑∞

i T n
i with truncation error T n

i .

Proof:

We start with equation (3.13) obtained in previous section

en+1
i = λ2ν(en

i+1 − 2en
i + en

i−1) − ∆t(a(Un
i ) − a(un

i )) + en
i − ∆tT n

i

Next, since en
i ≥ 0, ∀i, n, we define En and T̂ as

En =
∞∑

i

en
i and T̂ =

∞∑

i

T n
i (3.49)

By using (3.15) and take the sum of both sides, we get the following

equation

∞∑

i

en+1
i = λ2ν(

∞∑

i

en
i+1−2

∞∑

i

en
i +

∞∑

i

en
i−1)−∆ta′(η)

∞∑

i

en
i +

∞∑

i

en
i −∆t

∞∑

i

T n
i

(3.50)

Since
∞∑

i

en
i−1 =

∞∑

i

en
i =

∞∑

i

en
i+1 = En (3.51)

we get

En+1 ≤ En(1 + c∆t) + T̂∆t (3.52)

For the zeroth step, there is no error, i.e; E0 = 0

E1 ≤ T̂∆t (3.53)

E2 ≤ (1 + c∆t)T̂∆t + T̂∆t = [1 + (1 + c∆t)]T̂∆t (3.54)

E3 ≤ (1+c∆t)[1+(1+c∆t)]T̂∆t+ T̂∆t = [1+(1+c∆t)+(1+c∆t)2]T̂∆t (3.55)

...

En ≤ [1 + (1 + c∆t) + (1 + c∆t)2 + . . . + (1 + c∆t)n−1]T̂∆t (3.56)
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By using the property

(1 + x)n ≤ enx (3.57)

we get

En ≤ [1 + ec∆t + e2c∆t + e3c∆t + . . . + e(n−1)c∆t]T̂∆t (3.58)

Since

ec∆t ≤ e2c∆t ≤ e3c∆t ≤ . . . ≤ e(n−1)c∆t (3.59)

we get

En ≤ ne(n−1)c∆tT̂∆t (3.60)

Since T = n∆t and En ≤ 0, we get the boundary for error as following

0 ≤ En ≤ e−c+T T̂ T (3.61)

3.4 Computer Programming

We write a FORTRAN code to solve the finite difference equations (3.6).

The program allows us to solve the system of parabolic equations (2.22), to find

the thickness of the interface, to calculate the interfacial energy for different

orientations and different degrees of anisotropy. In this section, we explain how

the program is written and how it works.

We first restrict the domain for space variables to [−5, 5] since the solution

does not change when we extend the length size. Similarly we restrict the interval

for time to [0, 5] since we observe that the system reaches equilibrium at t = 5,

i.e; the solutions are the same for t ≥ 5. We use the stability criteria (3.8) and

we pick ∆ζ = 0.05 and ∆t = 0.001. For this purpose, we use 200 points for space

variable and 5000 points for time variable. In order to simulate the orientation

dependence profiles, the azimuthal angle θ, the polar angle φ, and degree of

anisotropy ε2, are used as input parameters. Next, by using equations (2.26),

we obtain the components of the unit normal vector to the interface, nx, ny and

nz. By using these components, the program calculates the coefficients of the

second derivatives; λx, λy and λz, with the help of (2.21). Then the code solves

the system of equations by using the boundary and initial conditions for all order

parameters.
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Chapter 4

RESULTS

In the present chapter, we examine the behavior of the interface boundaries

between the disordered phase and ordered phase at critical temperature. We per-

form the numerical calculation of the interface structures: First, we simulate the

evaluation of order parameters, and then thickness of the interface as a function

of orientation and time. Interfacial energy anisotropy of the IPPs is determined

for different orientation and degree of anisotropy. We also add the convection

term to the reaction-diffusion equation for [111] equation and simulate the effect

of this term.

We use ∆ζ = 0.05, ∆t = 0.001 and ε2 = 0.005 in our calculations and we

observe no change after t = 5 second for equations of orientations [111], [110] and

[100]; i.e the system reaches equilibrium at time t = 5.

4.1 Evolution of Order Parameters

For [111] orientation, computed solutions of the equation (2.28) are shown

in Figure 4.1 and Figure 4.2. Figure 4.1 shows the one dimensional solution for

order parameters. Due to the normal vector ~n = ( 1√
3
, 1√

3
, 1√

3
) and λ2

x = λ2
y =

λ2
z = λ2 = 1

3
(1 + 2ε2), all order parameters are equal. As can be seen in this

figure, thickness of interface is getting larger and the solution is getting smoother

when the time evolves. The occupation densities are computed as a function

of spatial variables and exhibited in Figure 4.2 for t = 0.1 and t = 5. This

figure is also indicates how the thickness of the interface is changing with time.

The case ρ1 = ρ2 = ρ3 = ρ4 corresponds to the disordered phase, and that of

ρ1 6= ρ2 = ρ3 = ρ4 corresponds to the ordered phase.

For [110] orientation, since nx = ny = 1√
2
, nz = 0 and λ2

x = λ2
y = 1+ε2

2
, λ2

z =

ε2, we have X = Y . The solution of the system (2.22) for [110] orientation is

shown in Figure 4.3. The difference between X and Z is small due to the small

relative sizes of derivative coefficient.
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Figure 4.1: Evolution of order parameters for [111] orientation for seconds t=
0, t=0.1, t=5.
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Figure 4.2: Changing of the occupation densities with respect to spatial vari-
ables for [111] orientation for seconds t=0.1 and t=5.
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Figure 4.3: Evolution of order parameters for [110] orientation for seconds t=
0, t=0.1, t=5.

For an interface oriented in the [100] orientation, we have nx = 1, ny =

nz = 0 and λ2
x = 1, λ2

y = λ2
z = ε2. Computed order parameters are shown in

the Figure 4.4. Because of the symmetries in the free energy functional, the be-

havior of the interface structures are the same for [001] and [010] orientations,

therefore we only consider the [100] orientation. For those cases, any two of the

order parameters are equal. Since the difference between the second derivative

coefficients for [100] orientation is twice bigger than that of the [110] orientation,

the separation between the order parameters for former orientation is larger than

the latter one.

Finally, we compute the solutions of equation (2.22) for general orienta-

tion at critical temperature. The solution is shown in Figure 4.5 for azimuthal

angle θ = 20◦ and polar angle φ = 40◦. All three non-conserved order parameters

X, Y and Z are distinct for this case.

4.2 Thickness of Interface

The mathematical model, we are studying, assumes that there is a finite

thickness of the interface because of the gradient term in the free energy of the

system. We compute the thickness of the interface for different orientations and

different degrees of anisotropy.

The computations are based on the following definition:
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Figure 4.4: Evolution of the order parameters for [100] orientation for seconds
t= 0, t=0.1, t=5.
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Figure 4.5: Evolution of the order parameters for θ = 20◦, and φ = 40◦ for
seconds t= 0, t=0.1, t=5.
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Definition 2.

Thickness of the interface at t = t0 is the absolute value of the difference

between the projection of the biggest left point (BLP) the smallest right point

(SRP) on axis for spatial variable.

BLP is the point that satisfies the following conditions.

sup
X(a)

{a ∈ [−L,L]}, such that X(a) = 0, X ′(a) = 0 (4.1)

and SRP is the point that satisfies

inf
X(a)

{a ∈ [−L,L]}, such that X(a) = 1, X ′(a) = 0. (4.2)

The comparison of the thickness of interface for the orientations [111],

[110], and [100] are exhibited in Figure 4.6 when the time evolves. As it can be

seen, thickness of the interface is the largest in [111] orientation and the smallest

for [100] orientation. This indicates that, it’s approached to the edge of the

spherical triangle, the thickness of the interface becomes smaller.
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Figure 4.6: The changing of the thickness of the interface with time for different
orientations.

The changing of the thickness of the interface with time for [100] orienta-

tion for different degrees of anisotropy is shown in Figure 4.7. As can be seen in

this figure, the thickness of interface is proportional to degree of anisotropy.
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Figure 4.7: The changing of the thickness of the interface with time for [100]
orientation for ε2 = 10−2, ε2 = 5.10−3, ε2 = 10−8.

4.3 Interfacial Energy

After solving the system of equations (2.22) in terms of order parameters,

we use the equation

γ =

∫ 5

−5

{
λ2

xX
2
ζ + λ2

yY
2
ζ + λ2

zZ
2
ζ

}
dζ, (4.3)

to compute the interfacial energy γ which is a work that must be done at constant

temperature and pressure to create unit area of the interface.

The integral that gives the interfacial energy is approximated by the trape-

zoidal rule from -5 to 5 by using the coefficients λx, λy, λz and calculating Xζ ,

Yζ and Zζ .

Figure 4.8 shows the decaying profile for [100] orientation for ε2 = 0.005.

This figure indicates that the transition between two states is so fast near critical

temperature.
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Figure 4.8: The changing of the interfacial energy with time for [100] orienta-
tion.

4.4 Solving the Problem with Different Initial Condition

In this section, we concern with the solutions of equations

Xt = λ2Xζζ − 4a2X(X − 1)(X − 1

2
)

in Figure 4.9 for following initial condition

X(ζ, 0) = Y (ζ, 0) = Z(ζ, 0) =





0 ζ ∈ [−L, −L
3

)

1
2

ζ ∈ [−L
3

, L
3
)

1 ζ ∈ [L
3
, L]

(4.4)

As is can be seen from the figure, the solution is bounded with the initial

condition. Thus, the problem is well posed.

The solution imitates collision of two kinks (domain walls) (solitons) mov-

ing in opposite directions and creating one static kink.

It raises question if moving interface kink can be obtained as exact analytic

solution and what is the velocity of this kink.
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Figure 4.9: The solution of [111] equation for initial condition (4.4).

4.5 Relationship Between Three Simple Roots and the Wave Speed

To clarify these questions, in this section, we consider two types of non-

linear reaction-diffusion equations

Ut = Uxx − (U − a1)(U − a2)(U − a3) (4.5)

and

Ut + αUUx = Uxx − β(U − a1)(U − a2)(U − a3) (4.6)

where a1, a2, a3 are distinct real numbers; α and β are constants. The equation

(4.5) has only non-linear reaction part and it is the generalization of dynamical

[111] equation (2.28) for properly normalized function U, while the equation (4.6)

has additional non-linear transport term. For both cases, the reaction part has

the form of the third order polynomial which has three distinct roots. In the

phase transition content, these three distinct roots correspond to the order of the

system phases. From the phase plane analysis, the system has two stable and

one unstable phases or one stable and two unstable phases. In the last case, no

stable kink soliton can exist. The solutions of (4.5) and (4.6) give the connection

between two stable phases correspond to the one soliton solutions. If solution of

the problem is written with background value of one of the unstable phases, say

a3, then it gives the connection between two stable phases, a1 and a2. In the

paper [41], one analytic soliton solution for the equations (4.5) and (4.6) are pre-

sented and also the relationship between three simple roots and the wave speed of

the soliton for both equations is given. For equation (4.5), it’s found that if one of
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the roots is mean value of the other two roots, then the speed of soliton solutions

is zero. For equation (4.6), it’s shown that the restriction is removed on three

distinct roots to obtain the non-stationary soliton by adding non-linear diffusion

to the first equation by sketching the graphs of solutions [41]. The solution of

equation (4.5) appears as travelling waves. The velocity of the waves is found as

[41]

v = ±a1 + a2 − 2a3√
2

(4.7)

In Figure 4.10, the roots are considered as a1 = 0, a2 = 1, a3 = 0.5 for

equation (4.5). For this choice of roots, the velocity is of the soliton waves are

calculated as v = 0. As it can be seen in this figure, there is no movement through

either left or right.

On the other hand, when we consider the roots as a1 = 0, a2 = 1, a3 = 0.4

for equation (4.5), it’s seen that the velocity of the travelling wave is different

from zero. The moving travelling wave solutions are exhibited in Figure 4.11 with

the velocity v =
√

2
10

.

For equation (4.6), the velocity of the waves is given by the formula as [41]
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Figure 4.10: Evolution of the travelling wave with v = 0. The parameters are
a1 = 0, a2 = 1, a3 = 0.5.

v =
2(a1 + a2 − 2a3)

β
− (

a2 + a1

2
)α (4.8)

For simplicity, we pick α = β = 1 in equation (4.6). Figure 4.12 shows

that the velocity of the solution waves for equation (4.6) is different from zero as

we expected from equation (4.8).
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Chapter 5

CONCLUSIONS

In this thesis, we extended the previous steady-state diffuse-interface model

developed by Braun et al [16] to a non-steady-state problem. We then calculated

the dynamics of microstructural changes for Cu − Au alloys. We obtained the

system of non-linear parabolic equations with the help of Langevin Equations.

The finite differences method was implemented to solve the non-linear system

of parabolic equations. The forward difference discretization was applied for the

first derivative of the solution with respect to time and centered difference dis-

cretization was applied for the second order derivative of the solution with respect

to spatial variable. Thus, order of convergence for the explicit finite difference

is O(∆t) + O((∆ζ)2). The stability criteria was also established to guarantee

the convergence of the scheme. We also found the error bound for this scheme.

The FORTRAN code was implemented and the package, MATLAB, was used for

simulation.

First, we simulated the evolution of the order parameters for [111], [110]

and [100] orientations. We found that the thickness of the interface is expanded

as the time evolves. After very short time, the ordering process is ending. In or-

der to see this result better, the thickness of the interface was simulated for [111],

[110] and [100] orientations. We observed that the interface becomes thicker as

the [111] orientation was approached. We also simulated the effect of the degree

of anisotropy. For [100] orientation, we observed that thickness of the interface

was getting narrower as the degree of anisotropy was getting smaller.

In order to see the speed of the process, we plotted graph of energy versus

time. We found that ordering process is so fast for this system. We also showed

the asymptotical stability. We plotted the exact solution of the equilibrium equa-

tion and the numerical solution of [111] equation at t = 5. We found that these

two solutions are in a good agreement. Finally, we solve the system for [111]

orientation by using different initial condition, and observed that the solution is



bounded with the initial condition. Thus, we saw that the problem is well-posed.

Our solutions exhibit the static travelling wave solution although we stud-

ied the dynamical model. We just observed the extension of the thickness of the

interface when the time evolves.

Figure 5.1 shows the phase-plane for [111] equation. As can be seen in

this figure, there are three equilibrium points, which are the solutions for this

equation. Two stable points, a1 = 0 and a2 = 1, correspond to disordered

and ordered phases respectively. Mathematically points of view, phase transi-

tion problem is considered as to find the minimum path to connect two stable

points or disordered-ordered phases. The solution of this equation becomes a

one-soliton-solution.

Figure 5.1: Phase plane for [111] equation.

Figure 5.2 shows the first derivative of the free energy functional. Since

the total area is zero, the soliton solution does not move to the left or right. This

result can be seen from the equation (4.7). In order to obtain travelling wave

soliton, the transport term uux might be added to this equation.

In this study, we got more information about the ordering process for

Cu − Au system by extending the static problem to the non-stationary one. We

believe that these information are very useful for the material scientists. The
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phase field model is also very powerful to simulate the dynamics of microstructural

changes in real alloys.
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APPENDIX

Here, the FORTRAN code we wrote to solve the system of equations and

to obtain the data for simulation is given.

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

DOUBLE PRECISION X(250),XL(6010),T(6010),

+U(250,6010),UP(250,6010),XR(6010),V(250,6010),

+VP(250,6010),W(250,6010),WP(250,6010),

+S(250,6010),SP(250,6010),ENER(6010)

OPEN(11,FILE=’U.txt’,STATUS=’UNKNOWN’)

OPEN(12,FILE=’V.txt’,STATUS=’UNKNOWN’)

OPEN(13,FILE=’W.txt’,STATUS=’UNKNOWN’)

OPEN(14,FILE=’S.txt’,STATUS=’UNKNOWN’)

OPEN(15,FILE=’UP.txt’,STATUS=’UNKNOWN’)

OPEN(16,FILE=’VP.txt’,STATUS=’UNKNOWN’)

OPEN(17,FILE=’WP.txt’,STATUS=’UNKNOWN’)

OPEN(18,FILE=’XL.txt’,STATUS=’UNKNOWN’)

OPEN(19,FILE=’XR.txt’,STATUS=’UNKNOWN’)

OPEN(20,FILE=’DIFFERENCE.txt’,STATUS=’UNKNOWN’)

OPEN(21,FILE=’ENERGY.txt’,STATUS=’UNKNOWN’)

OPEN(22,FILE=’U1.txt’,STATUS=’UNKNOWN’)

OPEN(23,FILE=’U2.txt’,STATUS=’UNKNOWN’)

OPEN(24,FILE=’U4.txt’,STATUS=’UNKNOWN’)

OPEN(25,FILE=’V1.txt’,STATUS=’UNKNOWN’)

OPEN(26,FILE=’V2.txt’,STATUS=’UNKNOWN’)

OPEN(27,FILE=’V4.txt’,STATUS=’UNKNOWN’)

OPEN(28,FILE=’W1.txt’,STATUS=’UNKNOWN’)

OPEN(29,FILE=’W2.txt’,STATUS=’UNKNOWN’)

OPEN(30,FILE=’W4.txt’,STATUS=’UNKNOWN’)

TOL=1.0D-5

PI = 4.0D0*ATAN(1.0D0)

A41=1.0D0



A2=2.0D0

A42=1.0D0

A3=-12.0D0

L=5.0D0

M=200.0D0

DX=(2.0D0*L) / DFLOAT(M)

DT=0.0010D0

T(1)=0.0D0

R=((6-T(1))/DT)+1

EPS=0.0050D0

WRITE(*,*) ’WRITE THETA’

READ(*,*) THETA

WRITE(*,*) ’WRITE PHI’

READ(*,*) PHI

TT = THETA * PI/180.0D0

P = PHI * PI/180.0D0

ANX = DSIN(P) * DCOS(TT)

ANY = DSIN(P) * DSIN(TT)

ANZ = DCOS(P)

EPSX = ANX**2 + EPS*ANY**2 +EPS*ANZ**2

EPSY = EPS*ANX**2 +ANY**2 + EPS*ANZ**2

EPSZ = EPS*ANX**2 + EPS*ANY**2 + ANZ**2

DO 10 N=1,R

U(1,N)=0

U(M+1,N)=1

V(1,N)=0

V(M+1,N)=1

W(1,N)=0

W(M+1,N)=1

10 CONTINUE
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DO 30 N=2,R

T(N)=T(1)+(N-1)*DT

30 CONTINUE

X(1)=-L

DO 5 I=2,M+1

X(I)=X(1)+(I-1)*DX

5 CONTINUE

DO 20 I=1,M+1

IF (X(I).LT.0.0D0) THEN

U(I,1)=0.0D0

V(I,1)=0.0D0

W(I,1)=0.0D0

ELSE

U(I,1)=1.0D0

V(I,1)=1.0D0

W(I,1)=1.0D0

ENDIF

20 CONTINUE

DO 35 N=1,R-1

DO 40 I=2,M

U(I,N+1)=(U(I+1,N)-2*U(I,N)+U(I-1,N))*EPSX*

+DT/(DX*DX)-(2*A2*U(I,N)+A3*V(I,N)*W(I,N)+4*A41

+*U(I,N)*U(I,N)*U(I,N)+2*A42*U(I,N)*(V(I,N)*

+V(I,N)+W(I,N)*W(I,N)))*DT+U(I,N)

V(I,N+1)=(V(I+1,N)-2*V(I,N)+V(I-1,N))*EPSY*

+DT/(DX*DX)-(2*A2*V(I,N)+A3*U(I,N)*W(I,N)+4*A41

+*V(I,N)*V(I,N)*V(I,N)+2*A42*V(I,N)*(U(I,N)*

+U(I,N)+W(I,N)*W(I,N)))*DT+V(I,N)

W(I,N+1)=(W(I+1,N)-2*W(I,N)+W(I-1,N))*EPSZ*
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+DT/(DX*DX)-(2*A2*W(I,N)+A3*U(I,N)*V(I,N)+4*A41

+*W(I,N)*W(I,N)*W(I,N)+2*A42*W(I,N)*(U(I,N)*

+U(I,N)+V(I,N)*V(I,N)))*DT+W(I,N)

40 CONTINUE

35 CONTINUE

DO 36 N=1,R

DO 38 I=1,M+1

IF ((EPSX.LE.EPSY).AND.(EPSX.LE.EPSZ)) THEN

S(I,N)=U(I,N)

ENDIF

IF ((EPSY.LE.EPSX).AND.(EPSY.LE.EPSZ)) THEN

S(I,N)=V(I,N)

ENDIF

IF ((EPSZ.LE.EPSX).AND.(EPSZ.LE.EPSY)) THEN

S(I,N)=W(I,N)

ENDIF

38 CONTINUE

36 CONTINUE

DO 42 N=1,R

DO 44 I=1,M

UP(I,N)=(U(I+1,N)-U(I,N))/DX

VP(I,N)=(V(I+1,N)-V(I,N))/DX

WP(I,N)=(W(I+1,N)-W(I,N))/DX

44 CONTINUE

42 CONTINUE

DO 50 N=1,R

DO 52 I=1,M

IF ((EPSX.LE.EPSY).AND.(EPSX.LE.EPSZ)) THEN

SP(I,N)=UP(I,N)

ENDIF

IF ((EPSY.LE.EPSX).AND.(EPSY.LE.EPSZ)) THEN

SP(I,N)=VP(I,N)
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ENDIF

IF ((EPSZ.LE.EPSX).AND.(EPSZ.LE.EPSY)) THEN

SP(I,N)=WP(I,N)

ENDIF

52 CONTINUE

50 CONTINUE

DO 46 N=1,R

DO 47 I=1,M+1

IF (((SP(I+1,N).GT.TOL).AND.(SP(I,N).LT.TOL))) THEN

XL(N)=X(I)

WRITE(18,*) XL(N)

ENDIF

47 CONTINUE

46 CONTINUE

DO 58 N=1,R

DO 57 I=M+1,2,-1

IF (((SP(I,N).LT.TOL).AND.(SP(I-1,N).GT.TOL))) THEN

XR(N)=X(I)

WRITE(19,*) XR(N)

ENDIF

57 CONTINUE

58 CONTINUE

DO 65 N=1,R

WRITE(20,*) T(N),XR(N)-XL(N)

65 CONTINUE

DO 80 N=1,R

ENER(N)=0

DO 81 I=2,M

ENER(N)=ENER(N)+((EPSX*UP(I,N)*UP(I,N))+(EPSY*

+VP(I,N)*VP(I,N))+(EPSZ*WP(I,N)*WP(I,N)))*DX
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81 CONTINUE

80 CONTINUE

DO 82 N=1,R

WRITE(21,*) T(N),ENER(N)

82 CONTINUE

DO 60 I=1,M+1

WRITE(22,*) X(I),U(I,1)

WRITE(23,*) X(I),U(I,101)

WRITE(24,*) X(I),U(I,5001)

WRITE(25,*) X(I),V(I,1)

WRITE(26,*) X(I),V(I,101)

WRITE(27,*) X(I),V(I,5001)

WRITE(28,*) X(I),W(I,1)

WRITE(29,*) X(I),W(I,101)

WRITE(30,*) X(I),W(I,5001)

60 CONTINUE

STOP

END
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