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ABSTRACT 

 
PRODUCTION AND CHARACTERIZATION OF WATER SOLUBLE 

CdSeTe BASED CORE/SHELL NANOCRYSTALS AND THEIR 

APPLICATIONS IN BIOIMAGING 

 
In recent years, nanotechnology has become one of the most intensively studied 

fields. At the nanometer scale, materials have unique electrical, optical, magnetic and 

chemical properties. They can be used for a wide variety of applications such as electro-

optical devices, tagging and medical applications. The goal of this study was to produce 

water-dispersible alloyed CdSexTe1-x semiconductor nanocrystals, which are suitable to 

interact with biomolecules. CdSexTe1-x nanocrystals were synthesized by a single step 

aqueous synthesis method. Monodisperse, CdSexTe1-x nanocrystals with zinc blende 

structure were obtained in water. Synthesized nanocrystals emit in the range from 528 

nm to 620 nm. CdSexTe1-x nanocrystals have 17% photoluminescence quantum yield, 

after the CdS shell coating the photoluminescence quantum yield increased up to 22%. 

MTT test and Trypan Blue tests were used to evaluate the toxicity of CdSexTe1-x 

nanocrystals. MTT measurements reveal that the MCF7 cancer cells are not affected by 

the nanocrystals at any dosage and exposure condition, but lethal effects are determined 

at the concentration of 1.0µg/ml for the PC3 cells. The BEAS 2B cells are very sensitive 

to the nanocrystals and do not proliferate at concentration of 0.5µg/ml. Confocal 

microscopy studies show that the nanocrystals has ability to penetrate to the cytoplasm 

of cells. 
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ÖZET 

 
SUDA ÇÖZÜLEBİLEN CdSeTe TABANLI ÇEKİRDEK/KABUK 

NANOKRİSTALLERİNİN ÜRETİLMESİ, KARAKTERİZASYONU VE 

BİYOGÖRÜNTÜLEME UYGULAMALARI 

 
Nanoteknoloji, son yıllarda, en kapsamlı çalışmaların yapıldığı alanlardan biri 

haline geldi. Nanometre mertebesinde, malzemeler benzersiz elektiriksel, optik, 

manyetik ve kimyasal özelliklere sahiptirler. Eşsiz özellikleri sayesinde bu malzemeler 

elektro-optik aygıtlar, işaretleme ve tıbbi uygulamalar gibi geniş kapsamlı uygulama 

alanlarına sahiptirler. Bu çalışmanın hedefi, biyomoleküller ile etkileşmeye uygun, suda 

çözünebilen CdSexTe1-x alaşım yarı iletken nanokristaller elde etmektir. CdSexTe1-x yarı 

iletken nanokristaller tek basamakta sentez yöntemi ile elde edilmişlerdir. Eş 

büyüklükte, çinko karışım yapılı CdSexTe1-x nanokristaller su içinde çözünmüş olarak 

hazırlanmışlardır. Sentezlenen nanokristaller 528nm den 620nm ye kadar geniş aralıkta 

ışıma yapmaktadırlar. Alaşım CdSexTe1-x nanokristallerin fotoluminesans kuantum 

verimi 17% iken, CdS kabuğu ile kaplandıktan sonra fotoluminesans kuantum verimi 

22% ye yükselmiştir. CdSexTe1-x nanokristallerin toksisitelerinin belirlenmesinde MTT 

ve Trypan mavisi testleri kullanılmıştır. MTT sonuçları MCF7 hücrelerinin hiçbir doz 

ve konsantrasyonda nanokristallerden etkilenmediğini fakat PC3 hücrelerinde 1.0µg/ml 

konsantrasyonda ölümcül etkilerin başladığını ortaya koymaktadır. BEAS 2B 

hücrelerinin nanokristallere çok hassas olduğu ve 0.5µg/ml konsantrasyonda hücre 

çoğalmasının durduğu belirlenmiştir. Nanokristallerin hücre sitoplazmasına geçtme 

yetisinde oldukları, konfokal mikroskopi çalışmaları ile belirlenmiştir. 
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1. CHAPTER 1 

 

 

1. INTRODUCTION 

 

 
1.1. The Purpose of the Study 

 

The purpose of the study is to synthesize and characterize water dispersible 

CdSeTe based core/shell nanocrystals by tuning spectral properties, varying their size. 

The nanocrystals are aimed to be used in bioimaging applications, as such confocal 

microscopy. 

 

1.2. Quantum Dots and Biotechnology 
 

Developments of nanocrystal technology start in the early 1980s by two research 

groups, Alexander Efros and Alexie Ekimov were at the Yoffe Institute, Russia, and 

Louis Brus and his team was at Bell Laboratories. Two of the Bell Labs investigators, 

Moungi Bawendi and Paul Alivisatos, made the nanoparticles water-dispersible and 

devised inorganic shells to enhance their fluorescence (Edwards 2006). 

Semiconductor quantum dots (QDs) are nanocrystalline materials, mostly 

composed of periodic groups of II-VI or III-V elements. These light emitting particles 

with diameters of 1-10nm show quantum confinement behavior, as the semiconductor’s 

size becomes smaller, the band gap becomes larger. Size of the particle determines the 

electronic and physical properties of the material. 

When the size of crystal is reduced, the surface area / volume ratio increases and 

surface structure affects optical and electronic properties strongly. Furthermore, the 

crystal’s electronic properties stop behaving as bulk structure. This behavior is a result 

of quantum confinement effects, the behavior of electrons in a particle due to spatial 

restrictions.  
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Quantum dot fluorescence involves exciting an electron from the valence band 

of the semiconductor material across an energy gap, making it a conduction electron 

and leaving behind a hole. When the excited electron in the conduction band loses its 

excess energy, it returns to valance band and remerges with the hole. Light forms due to 

combination of electron and hole pair.  

The electron-hole pair, which is known as exciton, is quantum confined by the 

small size of the nanocrystals. When the electron–hole pair eventually recombines, a 

characteristic photon is emitted. The confined nanocrystals grow with time and with this 

growing the energy band gap changes, thus the color of the fluorescence photon 

changes depending on the band gap energy, as illustrated by the schematic in Figure 1.1. 

The larger the band gap energy for a given material, the shorter the wavelength of the 

emitted photon (Deerinck, et al. 2008). 

 

 
 

Figure 1.1. Schematic representation of band offsets of quantum dots. 
(Source: www.evidenttech.com) 

 

Due to the superior optical properties of QDs, they have potential applications in 

electronic devices such as memory devices and  in optical devices such as light emitting 

systems such as LEDs and Lasers. Since Nie et al. and Alivisatos et al. published the 

first reports describing the use of QDs as fluorescent labels for biomolecules in 1998, 

QDs began to biocompatible and are suitable for using in biological and biomedical 
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applications, e.g. cell imaging (Bhatia, et al. 2004), detection and targeting of specific 

cells (Wu, et al. 2002) and labeling tissues (Akerman, et al. 2002). 

QDs have broad absorption spectra, narrow and symmetric emission spectra (full 

width at half maximum ~40 nm), Figure 1.2. Long fluorescence lifetimes (hundreds of 

nanoseconds), high and stable quantum yield (the ratio of emitted to absorbed photons), 

and a large saturation intensity make them much brighter than fluorescence dyes 

(Pinaud, et al. 2006). Fluorescence dyes are limited by their narrow excitation range, 

low emission intensity and short lifetime. 

 

 
 

Figure 1.2. a) MSA-coated CdTe QDs under ambient conditions (top) and the absorption spectra 
(bottom); b) MSA-coated CdTe QDs under an UV lamp (top) and the 
photoluminescence spectra (bottom). (The photoluminescence were at a) 493 nm,  
b) 519 nm, c) 551 nm, d) 589 nm, e) 617 nm, f) 647 nm) (Source: Dong, et al. 2008) 

 

1.3. Types of Quantum Dots 
 

QDs have been synthesized using both two element systems (binary dots) and 

three-element systems (ternary alloy dots). Typical QDs are in core-shell structure (for 

example, CdSe core with a ZnS shell) or core-only (for example, CdTe) or alloyed (for 

example, CdSexTe1-x) structures functionalized with different coatings. A core type 

quantum dot consists of two or three atoms. A core/shell quantum dot where the core 

surrounded with a shell, consisting of different kinds of atoms, show a great 
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enhancement in optical properties, such as quantum yield and photostability, and 

inherent toxicity of individual ions (Cd2+, Se2- and Te2-).  

Many research groups have tried to synthesize QDs with a core or a core/shell 

structures, such as CdSe, CdTe, CdS, ZnSe, CdHgTe, CdSexS1-x PbSe, InP, CdSe/CdS, 

CdSe/ZnS, CdS/ZnS, CdTe/ZnS, CdTe/CdS, CdSe1-xTex/CdS. Mainly core/shell 

structures have been focused. Passivation of the nanocrystals surface by a thin 

semiconductor shell do not significantly change the absorption and emission 

wavelengths, but increases the quantum yield, as illustrated in Figure 1.3. 

A controlled coating with  proper shell conserves the charge carriers inside 

nanocrystals due to reducing the trap states, and  improves photo-stability. This 

improvement is also due to the reduction of crystalline defects on the core surface by 

lattice matching of the two materials structure. 

 

a)       b) 

 
 

Figure 1.3. a) Photoluminescence spectra of CdSe nanocrystals before and after passivation 
with different types of inorganic semiconductor shells. (Source: Reiss, et al. 
2003); b) Absorption and emission spectra of uncapped CdSe and ZnS capped 
CdSe QDs. (Source: Breus, et al. 2007) 

 

The core-shell-shell nanocrystals were also developed, i.e., CdSe/CdS/ZnS 

(Talapin, et al. 2004), CdSe/ZnSe/ZnS QDs (Sun, et al. 2006). Double shell cause a 

better passivation of the core nanocrystal surface. The middle shell allows considerable 

strain relaxation between the inner core and the outer shell, and helps to further improve 

the fluorescence efficiency and photostability. 
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1.3.1. Classification of Core/Shell Systems 
 

Depending on the relative position of electronic energy levels of the core and 

shell materials, two types;type-I and type-II, confinement regimes can be explained for 

core/shell QDs. The two types  are illustrated in Figure 1.4. 

In type-I core/shell QDs, the valence band edge of core is higher in energy than 

that of shell and the energy of conduction band edge of core is lower than that of shell, 

both the electron and hole are localized in the same region and can recombine very 

quickly, as shown in Figure 1.4.  

In type-II regime, the energy of both valence and conduction band edges of core 

are higher than those of shell, the electron and hole are prone to being spatially 

separated between the core and shell for lower energy states.The regime results in 

longer lifetime of excitons before recombination (Reiss, et al. 2009) , as shown in 

Figure 1.4. 

 

  
 

Figure 1.4. Schematic representation of the energy band alignment of type-I and type-II 
core/shell QD’s. (Source: Tretiak and Piryatinski 2006) 

 

The CdS/ZnS, ZnSe/CdS core/shell QDs are some examples of type I, and the 

CdSe/CdS, CdTe/CdSe, CdSe/ZnTe QDs are the examples of type II confinement 

regime. 
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1.4. CdSexTe1-x / CdS Core / Shell Quantum Dots 
 

CdSexTe1-x/CdS, an alloyed type core/shell nanocrystals, is not studied widely 

and still has terms to be developed. Core structure is called as alloy because both Te and 

Se precursors are added together at the same time during synthesis. However, because 

of the differences in reaction rates of Te and Se precursors, inner side of crystal 

structure is assumed to be Te or Se rich. 

Nie et al. reported that in the alloyed semiconductor QDs (ternary CdSeTe), both 

the alloy composition (Se:Te molar ratio) and the internal structure can be controlled in 

a single step by varying the relative amounts of the starting materials. 

After water solubilization, these alloy type QDs loses its fluorescence intensity 

and long term stability. To overcome this problem, Jiang et al. synthesized a CdS shell 

around CdSexTe1-x alloy-core by using organometallic route at very high temperature 

(3250C) and they saw that the core shell nanoparticles had high quantum yield and 

narrow emission, near IR colored (Jiang, et al. 2006).  

QDs with alloyed composition, are well suited for engineering materials with 

different electronic and optical properties, application in vivo molecular imaging and 

biocompetible materials for medical implants (Bailey and Nie 2003). 

Piven et al. successfully synthesized water soluble CdSexTe1-x alloy type QDs by 

using short chain thiols as capping agent. The group adapts the method used by Rogach 

et al. in 1996, 1999 for synthesis of CdTe and CdSe respectively. NaHTe and NaHSe 

were used as tellurium and selenium precursors; thioglycolic acid was used as surface 

ligand. In their method, first Cd-thiolate complex formed in water and then Te/Se 

precursors were added respectively at 1000C. At the end CdSexTe1-x nanocrystals with 

zinc-blend structure, which is characteristic for water soluble thiol stabilized CdTe and 

CdSe nanocrystals, were synthesized (Piven, et al. 2008). 

 

1.5. Synthesis of Quantum Dots 
 

Until now, different types of synthetic methods have been developed to produce 

nanocrystals. It is very important to grow monodisperse nanocrystals and to prevent 

dramatic drop in optical properties of these nanocrystals. 
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1.5.1. Organometallic Synthesis Method 
 

Organometallic route, which is high-temperature synthesis in coordinating 

solvents in airless media provides tunable sizes and better surface passivation, improved 

by Bawendi, et al. 1993. Cadmium precursor and selenium, tellurium or sulfur 

precursors are dissolved in surfactant (TOPO or TOP generally) under nitrogen or argon 

atmosphere, at very high temperature (3000C) nucleation occurs and by lowering 

temperature a little (2800C), growth starts and monodisperse quantum dots forms. 

 

P
O

       
 

Figure 1.5. Structure of TOPO and TOP respectively 

 

Trioctylphosphine oxide, TOPO, and Trioctylphosphine, TOP, (Figure 1.5.) are 

widely used organics in quantum dot synthesis, which function as both a solvent and as 

the stabilizing ligand. During the synthesis, functional groups of the ligands (phosphine 

oxides, phosphines and amines) bind to the QD surface, then the alkyl chains of the 

ligands leave direct away from the QD surface. As a model reaction path, the Figure 1.6 

illustrates the growth of the CdSe NCs with addition of coordinated Cd and Se ions on 

the surface. 

 

 
 

Figure 1.6. Model of a CdSe nanocrystal growing in a TOPO matrix due to the influx of Cd and 
Se ions selectively bound to an amphiphile molecule (TOPO and TOP).  
(Source: Dushkin et al. 2000) 
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Talapin et.al synthesized CdSe / CdS nanoparticles via “greener” method using 

cadmium acetate as cadmium precursor (Talapin, et al. 2003). Capping the core with a 

higher band gap material, shell, like CdS removes the surface defects and improve 

fluorescence quantum yield (Smith, et al. 2004). 

 

1.5.2. Two – Phase Synthesis Method 
 

This method allows synthesis of quantum dots in low temperature and under 

atmospheric pressure. Cd precursor (Cadmium Myristate, synthesized from CdO and 

Myristic Acid) dissolves in oil phase (toluene or heptane) and Se or S precursor 

dissolves in aqueous phase and reaction occurs at interface of the two phases, as shown 

in Figure 1.7. Pan et al. synthesized CdS nanoparticles at atmospheric conditions at very 

low temperature (at 1000C) corresponding to organometallic synthesis route (at 3000C) 

(Pan, et al. 2004).  

 

 
 

Figure 1.7. A proposed mechanism for formation of CdSe in oil phase 
(Source: Pan, et al. 2007) 
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1.5.3. Aqueous Synthesis Method 
 

Development of aqueous synthesis methods to produce less toxic quantum dots 

with high quantum yield, which is suitable for bioimaging applications, has been widely 

studied. These methods are simple, less expensive and more reproducible.  

In recent years, the synthesis of QDs directly in water has been studied and  

Gaponik et al. synthesized photostable thiol-capped CdTe nanocrystals with quantum 

yield up to 40%. H2Te gas (produced by the reaction of Al2Te3 - H2SO4) was used as Te 

precursors and passed through the solution together with nitrogen flow at 1000C. 

Different thiol groups, such as,1-thioglycerol, 2-mercaptoethanol,thioglycolic acid, 2-

mercaptoethylamine were used as capping agents (Gaponik, et al. 2002). 

Rogach’s group synthesized the citrate-stabilized CdSe nanocrystals in water at 

700C with low quantum yield, at 0.1-0.15%, but size distribution was relatively narrow 

and the size distribution at fwhm was about 30-50 nm (Rogach, et al.2000). 

Deng et al. also reported citrate-stabilized CdSe and CdSe/CdS nanoparticles 

synthesis method in aqueous solutions below 1000C by bubbling the Cd-citrate-water 

solution with H2Se and H2S gases as selenium and sulfide precursors, Figure 1.8. They 

incorporated a photoactivation procedure by putting the nanoparticles under ambient 

light for a few days. They hypothesized that this would eliminate topological surface 

defects and QY increased, reporting a final QY of 4%. (Deng, et al. 2006). 

Peng et.al described a one pot synthesis method for CdTe/CdS nanoparticles 

using thioglycolic acid (TGA) as capping agent (Peng, et al. 2007). Gu et.al synthesized 

3–mercaptopropionic (3-MPA) acid capped CdTe/CdS nanoparticles and obtained 

highly luminescent by using NaHTe as Te precursor (Zhong, et al. 2008). 

 



10 
 

 
 

Figure 1.8. Schematic presentation of the synthetic route of water-soluble CdSe and CdSe/ CdS 
NPs. (Source: Deng, et al.2006) 

 

Maysinger et al. modify the cysteamine capped CdTe QD surface with  an 

antioxidant,  N-acetylcysteine (NAC), to have less cytotoxic nanoparticles for using in 

cancer research. NAC covalently bind to cysteamine on the CdTe QD surface (Figure 

1.9) and NAC-conjugated CdTe QDs prodeced, thus net surface charge decreased. As a 

result of charge-charge complexation of NAC with cysteamine formed NAC-capped 

CdTe QDs with carboxylic groups on the surface.  

 

  
 

Figure 1.9. Structure of N-acetylcysteine (NAC) 

 

Liu et al. synthesized 3-MPA stabilized CdTe and to accelerate the growth of 

CdTe QDs, they chosed one kind of chemical reagent rather than heat or radiation. 

Because the hydrogen telluride is sensitive to oxygen in the solution, they used 

hydrazine hydrate as reducing reagent to protect HTe− to get high quality CdTe QDs. 



11 
 

QDs grown at room temperature, after 6 h, the PL QY reached the maximum value of 

62%.  

 

 
 

Figure 1.10. The hypothetical growth of CdTe NCs initiated by hydrazine hydrate.  
(Source: Liu et al. 2008) 

 

Growth mechanism was illustrated with the schematics in Figure 1.10. Several 

CdTe molecules clustered together into a crystal nucleus shown in Figure 1.10-a; the 

complex between cadmium monomers and MPA, and than NH2–NH2 is close to the 

crystal nucleus shown in Figure 1.10-b; the other side of NH2–NH2 reacts with 

cadmium of the crystal nucleus and is replaced the position of oxygen in MPA (Figure 

1.10-c and d ); NH2–NH2 divorces from the surface of CdTe after cadmium monomers 

deposited on it (Figure 1.10-e); MPA is chelated with CdTe NCs as before and a CdTe 

crystal nucleus grew on the NCs successfully (Figure 1.10-f and g), and the CdTe NCs 

continually grows in this way cyclically (Figure 1.10-h) (Liu, et al. 2008). 

 

1.5.4. Microwave Synthesis Method 
 

Short reaction times, lower reaction temperatures and ambient atmospheric 

conditions during reaction are the advantages of microwave synthesize method, but this 

method was generally used to have hydrophobic QDs. Microwave power and 
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temperature are critical in producing the highest structural, monodisperse, and optically 

qualified crystals.  

Wang et al. synthesized CdSe and CdSe/CdS semiconductor QDs by using 

sodium citrate as a stabilizer. They heated the precursors in microwave oven (900 W) 

for 50s. To obtain biocompetible semiconductors, they used silica shell encapsulation 

method. Quantum yield was increased after certain illuminationin in presence of oxygen 

and after photoactivation process. Core CdSe QDs had QY of up to 20%, compared to 

0.01-0.43% QY at the beginning state. (Wang, et al. 2004) 

Ziegler et al. synthesized tri-n-octylphosphine oxide (TOPO), hexadecylamine 

(HDA) capped CdSe/ZnS QDs which have emission wavelengths between 580 to 635 

nm with 50% quantum yield. During synthesis microwave was operated at 2.44 GHz, 

with 800 W power with 2000C temperature (Ziegler, et al. 2007). 

Strouse and co-workers synthesized CdSe and CdTe nanocrystals by using 

solvents of different alkyl chain lengths (CdSe 5s-10 min, CdTe 5s-1 min) and they 

operated the microwave at 300 W, 2.45 GHz. Cadmium stearate (CdSA) ,TOP-Se and 

TOP-Te were used as starting materials (Washington and Strouse 2008). 

 

1.5.5. Hydrothermal Synthesis Method 
 

As the temperature of liquid water increases, the static dielectric constant 

decreases, also hydrogen bonding and surface tension become less pronounced. A lower 

surface tension increases wettability, and when coupled with the high temperature 

water, could effectively anneal the surface of the nanocrystal and reduce the number of 

surface defects (Geens, et al. 2005). 

Adschiri group (2001) and Arai group (2003) synthesized nanocrystalline metal 

oxides by using high-temperature water. Crystal size and crystal structure can be 

controlled by changing temperature, reaction time and pressure (Arai, et al. 2003).  

Zhao et al. synthesized water-soluble near-infrared emitting CdTe/CdS QDs in 

aqueous solution by using thiol ligand N-acetyl-L-cysteine (NAC) as capping agent, via 

a one step hydrothermal route. CdCl2 and NAC were dissolved in 40 mL water and the 

NaHTe precursor solution was added, then solution was loaded into a 40-mL Teflon-

lined stainless steel autoclave and incubated in an 2000C oven for 53-69 min. The 

synthesized QDs had 45-62% quantum yields( Zhao, et al. 2009). 
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1.6. Water Solubilization of Quantum Dots 
 

For biomedical applications, quantum dots synthesized via organometallic route 

must be modified. Different methods can be used to make hydrophobic QDs 

biocompetible. 

In 1998, Alivisatos et al. and Nie et al. confirmed that semiconductor QDs could 

be made water soluble and conjugated via biological molecules.  

 

1.6.1. Ligand Exchange Method 
 

Ligand exchange method is widely used to make QDs water soluble. First oil 

soluble quantum dots with high quantum yield was synthesized, and then hydrophobic 

surfactant was replaced with a hydrophilic surfactant which can be dissolved in water, 

as shown in Figure 1.12. 

3 – Mercaptopropionic acid and Thioglycolic acid are commonly used capping 

agents in ligand exchange procedures (Figure 1.11). These capping agents bind quantum 

dots’ surface from thiol group (-SH) and free carboxylic groups (-COOH) facing the 

solution, this allow 3-MPA or TGA capped quantum dots to be able to dissolve in 

aqueous media. 

 

O

OHHS
HS

O

OH  
 

Figure 1.11. 3 – Mercaptopropionic acid and Thioglycolic acid, respectively. 

 

After ligand exchange surface modification, surface defects in crystal structure 

mostly present and quantum yield of quantum dot may reduce. 
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Figure 1.12. A schematic depicting water repelling ends (TOPO) substituted with hydrophilic 
ends (-COOH group in MPA) (Source: Kumar, et al. 2008) 

 

1.6.2. Surface Silanization Method 
 

In surface silanization, silane groups can be polymerized into a silane shell  

around the QDs. Silanization of the NC surface was widely used in particular by the 

Alivisatos group. This method requires multiple-time consuming steps.  

Functional organosilicone molecules containing –NH2 or –SH, are incorporated 

into the shell and provide surface functionalities for biomedical applications.  

 

 
 

Figure 1.13. Schematic of SiO2 capping of CdSe/ZnS structure with various functional groups 
(Source: Gerion, et al. 2001). 
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Gerion et al., from Alivisatos’s group, reported a method of SiO2 capping of ZnS 

capped CdSe quantum dots using silane precursors to form a network of siloxane bonds 

around the individual CdSe particles and eventually producing a SiO2 shell. Figure 1.13 

shows a schematic of the shell structure they proposed. Silica coating needs to be 

carried out at dilute conditions, which does not permit large quantity fabrication 

(Gerion, et al. 2001). 

 

1.6.3. Encapsulation Amphiphilic Phospholipid Micelles  
 
In a QD micelle synthesis procedure, a concentrated suspension of QDs in 

chloroform is added to an aqueous solution containing a mixture of surfactants or 

phospholipids with different functional head groups such as ethylene glycol (-PEG) and 

amine (-NH2).  

PEG is used to improve biocompatibility and amine groups provide sites for 

bioconjugation. The formation of a micelle with trapped TOPO-capped CdSe 

nanoparticles is shown by the schematic in Figure 1.14. Hydrophobic alkyl end of 

TOPO capped CdSe which binds to the hydrophobic end of the surfactant and its 

hydrophilic –COOH/–OH group make it biocompatible in the aqueous media (Kumar, 

et al. 2008). 

 

 
 

Figure 1.14. Schematic showing the formation of a micelle with trapped TOPO-capped CdSe 
nanoparticles (Source: Kumar, et al. 2008). 
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1.7. Characterization Techniques 
 

Characterization is the most important part of the research, which give us 

information to understand the structure and composition of synthesized materials. 

Characterization techniques of nanoparticles can be divided into two as optical 

characterization and structural characterization.  

Our purpose was to synthesize nanosized semiconductor crystals and to control 

their size-tunable optical characteristics, so Fluorescence and UV – Vis Spectrometries 

are widely used to characterize nanocrystals’ optical properties.  

X – Ray Diffractometer (XRD) are generally used for defining crystal structure 

of quantum nanocrystals because, each crystalline material has its own characteristic X-

Ray diffraction powder pattern.  

As a microscopic techniques, Transmission Electron Microscopy (TEM) can be 

used to help the structure determination and Scanning Electron Microscope (SEM) 

coupled with the energy dispersive x-ray detector (EDX) can be used to determine the 

chemical composition of a nanocrystal. Also, elemental analysis can be carried out via 

Inductively Coupled Plasma Mass Spectroscopy (ICPMS) .  

Toxicity is a very important property when the synthesized QDs are used in 

biological applications. MTT and Trypan blue tests can be performed to determine 

toxicity of quantum dots. At last confocal microscope can be used in bioimaging 

applications. 

 

1.7.1. Spectroscopic Characterization 
 

Quantum dots have unique optical properties, thus their characterization should 

be carried out carefully. Fluorescence and UV – Vis spectrometers are used to 

determine optical properties of QDs.  

 

1.7.2. UV-Vis Absorption and Fluorescence Spectroscopy 
 

Spectroscopic properties are related with the size and the elctronic structure. As 

the band gap increases by decreasing the particle size, then absorption shifts from 

infrared to visible region.  
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By reducing the particle size, absorption shifts to higher energies and different 

allowed possible transitions results in different discrete bands  due to the size dependent 

quantum confinement. 

QDs have Gaussian shaped sharp emission peaks, small Stokes shift can be 

observed via the recombination of electron hole pairs. Figure 1.15 shows typical 

absorption and fluorescence spectra of CdSe nanocrystals in colloidal solution.  

Stokes shift is the difference between band maxima of fluorescence and 

absorption spectra of the same electronic transition. This difference is the result of a 

combination of relaxation into shallow trap states and the size distribution 

Stokes shift (Δυ) can be calculated with this formula;  

 

  Δυ = υabsorbance - υfluorescence  (1.1)

 

 

 

 
 

Figure 1.15. Normalized linear absorbance and PL spectra of TGA-capped CdSe-ZnS core-shell 
quantum dots in solution. (Source: Wang, et al. 2006) 

 

In absorption of a quantum of light, an electron is excited from valence band to 

conducton band energy levels over the band gap (excited states). This is followed by a 

very fast nonradiative vibrational relaxation process, which brings the electron to the 

lowest excited state in conduction band. This process can be followed by fluorescence 

emission, the system emits a photon (fluorescence) and relaxes to the ground state in 
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valence band. During relaxation of electron, the trapping of electrons and holes by trap 

states within band gaps can cause alternative pathways (Figure 1.16). 

At longer wavelength, broader bands can be observed for particles consisting of 

surface defect states, and this leads to quenching of the band gap emission and 

appearance of weak deep trap long-wavelength emission.  

The width of the peak, typically reported as the full-width-at-half-maximum 

(FWHM), is generally used to appraise the particle size distribution, in other words, 

FWHM is used to determine monodispersity of quantum dots. 

 

 
 

Figure 1.16. Schematic path for absorption of light, vibrational relaxation and fluorescence 
emission or relaxation through trap states. (Source: Klimov, et al. 2000) 

 

1.7.2.1. Measurement of Quantum Yield (QY) 
 

The fluorescence quantum yield is the ratio of the number of emitted photons to 

the number of absorbed photons. The quantum yield is then calculated by using the 

Equation (1.2.). 

 

 

 

 

(1.2) 

 

where QY is the quantum yield, nQD,dye is the refractive index, IQD,dye is the integrated 

fluorescence signal for the QD and dye solutions and ODQD,dye is the absorbance of QD 

and dye at the excitation wavelength respectively. 
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1.7.3. Structural Characterization 
 

Structural characterization of semiconductor nanoparticles can be determined 

X–Ray Diffractometer (XRD) and Transmission Electron Microscopy (TEM). 

 

1.7.3.1. X-ray Diffraction 
 

X-ray diffraction (XRD) technique is useful for investigating the crystal 

structure of a solid with lattice constants and geometry. By comparing hkl indexes of 

bulk and nano structures, unknown crystal structure and size can be determined. 

Depending upon synthesis method, CdTe and CdSe QDs have been reported either 

wurtzite or zinc-blende structure. (Figure 1.17). The structure of individual dots depends 

on the growth mechanism, applied pressure and temperature. 

Both structure types share the same immediate atomic ordering where each 

metal (Cd) and nonmetal (Se/Te) atom is tetrahedrally coordinated by unlike atoms. 

Their crystallographic symmetry is different, zinc blende has cubic structure and 

wurtzite has hexagonal structure. 

 

 
 

Figure 1.17. a) Schematic of wurtzite structure, b) schematic of zinc-blend structure. 

 

Also, core and core shell crystal structure can be determined by using XRD 

through observing peak shifts in XRD spectrum, (Figure 1.18).  
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Figure 1.18. Top: X-ray diffraction patterns from (bottom to top): CdTeSe, CdTeSe/CdS, and 
CdTeSe/CdZnS QDs. Bottom: Theoretical X-ray diffraction patterns for bulk zinc 
blende CdTe, CdSe, CdS, and ZnS. Dashed lines are guidelines for the eyes. 
(Source: Pons, et al.,2009) 

 

X-rays are produced by colliding a high speed electron with a metal target under 

the high voltage system. Produced X-ray beams fall on a specimen, then they are 

diffracted by the crystalline phases in the specimen according to the Bragg’s law shown 

in Equation (1.3). 

 

 θλ sin2dn =  (1.3)

  

where n is the order, λ is the wavelength of X – Rays, d is the interplanar spacing 

between planes in the atomic lattices and θ is the angle between incident beam and 

scattering plane. 

Average crystallite size (D) can be estimated by using x-ray diffraction pattern 

with applying Debye Scherrer’s equation (Equation (1.4.)): 
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(1.4)
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where D is the diameter of the nanocluster, λ the wavelength of the incident X-rays, B is 

the full-width at the half-maximum of the Bragg peak , and θB is the diffraction angle. 

The compositions of nanocrystals can be estimated from XRD - pattern by 

applying Vegard’s law (Equation (1.9)).For hexagonal structures crystal growth occurs 

in c-axis but for cubic structures growth of crystal occurs in a – axis.  

For Hexagonal structures;  
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For Cubic structures;  
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by combining these equations and Bragg’s law (Equation (1.3)), a is represented as; 
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     (1.7) 

 

Most intense XRD peak can be used to calculate a,where n is1and λ is 1.54 A, 

 

θsin
33.1

=a  A       (1.8) 

 

By using Vegard’s law (Equation (1.9)) mole ratios of alloy CdSeTe 

nanocrystals which have cubic structures can be calculated,  

 

 a(x) = x . aCdSe + (1 - x) . aCdTe   

 

(1.9) 

where x is mole ratio and a is lattice parameters. 
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1.7.4. Transmission Electron Microscope 
 

Transmission electron microscope (TEM) is commonly used technique to 

investigate the nanocrystals morphology, because objects can seen to the order of a few 

angstrom. 

In TEM, electrons are used as light source, because their lower wavelength 

makes it possible to get a better resolution than a light microscope. A light source emits 

the electrons then the electrons travel through vacuum in the column of the microscope. 

Electromagnetic lenses are used in TEM to focus the electrons into a very thin beam; 

this beam then travels through the specimen. The unscattered electrons hit a fluorescent 

screen at the bottom of the microscope and depend on the density; different parts of the 

specimen can be displayed in varied darkness. The observed image can be photographed 

with a camera. 

Crystal structure, size dispersity of synthesized nanocrystals can be determined 

by using TEM (Figure 1.19). 

 

 
 

Figure 1.19. Typical TEM overview of alloyed CdSexTe1-x NCs a), and HRTEM images of 
CdSe(0.1)Te(0.9) b), and CdTe c) NCs grown for 24 h.(Source: Piven, et al. 
2008) 

 

1.8. MTT Test 
 
Because the QDs contain toxic elements such as cadmium and selenium, they 

should be tested before used in live cells. Cd cause cell death via mitochondrial damage 

and oxidative stress (Drezek, et al. 2008). Capping QDs via hydrophilic shells makes 

them non-toxic. However, if the surface coating is not stable or CdSe exposed oxidation 
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then, Cd2+ released and QDs become toxic, this makes them unfavored for live cell 

experiments. Many research groups study dependence of cell deths with higher 

concentrations (Alivisatos, et al. 2005). 

Toxicity of nanocrystals can be determined by MTT assay, which is a  

quantitative colorimetric test, and by the assay the color change is observed in living 

organisms. MTT test works based on the action of mitochondrial dehydrogenases of cells that 

cleave the tetrazolium ring of yellow colored 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) and forming purple formazan crystals (Burgess, et al. 

2006). 

By comparing the change in metabolic activity of cancer cells, before and after 

injection of QDs gives us information about cytotoxicity of nanocrystals. 

 

1.9. Confocal Microscopy 
 

The confocal microscope has been used for alive or fixed cell imaging (Figure 

1.20). Quantifying the temporal dynamics of the intermittent fluorescence typical of 

nanocrystals yields information on their electronic structure, and the fast on-off 

fluorescence can be captured with high speed optical detectors, like the photomultiplier 

tube (PMT) or the avalanche photodiode (APD), attached to the confocal. 

By splitting the light coming back from the sample, sending half to an APD and 

the remainder through a prism onto a CCD, high resolution time and spectral data can 

be collected simultaneously.  

 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Methyl
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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Figure 1.20. Confocal images following incubation with QD–DNA conjugates at different time. 
Cells were stained with SYTO-16 nuclear stain. a), c), and e) are 
photomicrographs of the red channel for the QD–DNA conjugate and b), d), and f) 
are micrographs showing the overlapped images of the green and the red channels. 
(Source: Burgess, et al. 2006) 

 

1.10. Biological Applications of Quantum Dots 
 

Semiconductor nanocrystals can be widely used in biological applications 

because of their unique optical properties. In the early stages, QDs were commonly used 

in imaging applications in stead of organic dyes. After the observation that QDs kept on 

emitting fluorescent light for weeks the brilliant potential of these materials was 

realized. This was advancement for microscopic imaging, which helped in unfolding 

many cellular processes. Different compositions of the same material but of different 

sizes had been made, which can generate different colors after excitation by light of a 

single wavelength. It was then confirmed that QDs tagged with biomolecules such as 

antibodies, peptides etc. can be employed to detect specific molecules on the cell 

surface or inside the cell (Vashist, et al. 2006).  

Nanocrystals have some favorable futures compare to organic dyes. Molar 

extinction coefficient of QDs 10 to 50 times larger than organic dyes thus, absorption 

rates are faster. QDs have large absorption cross section which allows wide wavelength 

selection and straight excitation and emission separation. QDs show size-tunable 

fluorescence emission compared to organic dyes, this makes them ideal for 



25 
 

simultaneous detection of multiple fluorophores by excitation of a single light source 

(Kotov, et al. 2005) 

They have higher photoluminescence quantum yield, also they are more stable 

against photobleaching than organic dyes. QDs have low photo-degradation rates, this 

make continuous or long-term monitoring of slow biological processes possible 

(Gengeret, al. 2008) 

QDs are larger than organic dyes in size, when multicolor experiments required 

in biomolecules with QDs of different sizes, this can result in some complication due to 

the large differences in the QD sizes. Because organic dyes have poor photostability and 

low quantum yields in biological media, QDs are a desirable alternative (Bailey, et al. 

2004). 

 

1.10.1. Immunofluorescence Labeling 
 

Alivisatos’ group used TOP/TOPO capped CdSe/ZnS QDs in multicolor 

labeling of fixed mouse 3T3 fibroblasts. They used silica shell to make QDs water 

soluble, then biotinylated QDs with red photoluminescence selectively stained 

cytoskeletal filaments modified with streptavidin. Green-emitting QDs with acetate 

groups showed high affinity to the cell nucleus (Bruchez, et al. 1998).  

Chan and Nie prepared water soluble CdSe QDs by exchanging organic ligand 

with  mercaptoacetic acid, that were labeled with the protein transferrin underwent 

receptormediated endocytosis in cultured HeLa cells, and those QDs were labeled with 

immunomolecules recognized specific antibodies or antigens. (Chan, et al. 1998). 

Dahan group linked the glycine receptor (GlsRs) to QDs through primary 

antibody and secondary fragment bridges then studied dynamics in neuronal 

membranes. They analyzing the trajectories then obtained localizations and diffusion 

coefficients (Dahan, et al. 2003). 

Ness group used QDs in immunohistochemical process to detect intracellular 

antigens in rat and mouse brain tissues. Their study showed that QD 

immunohistochemical labeling is more sensitive than immunohistochemical approaches 

using organic dyes (Ness, et al. 2003). 
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1.10.2. In Vivo Imaging 
 

Semiconductor QDs also were used as tagging agent for in vivo imaging of 

prelabeled cells. Akerman group first reported the use of QD–peptide conjugates to 

target receptors on blood vessels with exquisite binding specificity. This work 

demonstrates the feasibility of in vivo targeting, but not of in vivo imaging (Akerman, 

et al. 2002).  

Another group, Debertret et al. reported the microinjection of  phospholipid 

coated QDs into xenopus embryos to study the behaviour of embryogenesis (Debertret, 

et al.2002). Microinjection technique is a very strenuous technique that does not allow 

high volume analysis. 

Gao group reported a new class of multifunctional QD probes for targeting and 

imaging of tumors in live animals. The structural design involves encapsulating 

luminescent QDs with an amphiphilic triblock copolymer, and linking this amphiphilic 

polymer to tumor-targeting ligands and drug delivery functionalities. In vivo targeting 

studies of human prostate cancer growing in nude mice indicate that the QD probes can 

be delivered to tumor sites by both enhanced permeation and retention and through 

antibody binding to cancer-specific cell-surface biomarkers (Gao, et al. 2004). 

There are some difficulties in animal body imaging. The main difficulty is 

toxicity of quantum dots and also autofluorescence of tissues is another difficulty in 

fluorescence tissue monitoring. Tissue autofluorescence minimizes in near infrared 

region (700 – 1000 nm) and fabricating quantum dots that emit light in near infra red 

region can solve this problem.  

Still, the cellular toxicity and in vivo degradation mechanisms of QD probes 

need to be studied. In vivo toxicity is an important criteria in determining if the QD 

imaging probes would be approved by regulatory agencies for human clinical use. 
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2. CHAPTER 2 

 

 

2. SYNTHESIS AND CHARACTERIZATION METHODS 

OF CdSeTe BASED NANOPARTICLES 

 

 
2.1. Experimental Procedure 

 

Synthesis of water dispersible alloyed CdSeTe nanocrystals was carried out by a 

modified method reported by Piven et al. CdSexTe1-x /CdS nanocrystals were stabilized 

with short-chain thiols as a ligand (Piven, et al. 2008). 

 

2.1.1. Synthesis of NaHSe as Se and NaHTe as Te Precursor 
 

Aqueous solutions of NaHSe and NaHTe as selenium and tellurium precursors 

were prepared respectively, under N2 atmosphere. Precursors were prepared by 

reduction of powders of elemental Se and Te with NaBH4 according to the following 

reactions: 

 
4 NaBH4 (aq) + 2 Se(s)  2 NaHSe (aq) + Na2B4O7(s) + 14 H2(g) 

4 NaBH4 (aq) + 2 Te(s)  2 NaHTe (aq) + Na2B4O7(s) + 14 H2(g) 

 

To prepare the Se precursors, Se powder (0.026 mmol, 2.05mg) and NaBH4 

(0.05 mmol, 1.9mg) were put into a reaction flask under N2 atmosphere and 2.0 ml of 

ultra pure water was added to the reaction flask. Resulting clear solution of NaHSe was 

obtained with a side product of Na2B4O7 formed at the bottom of the sealed vial in1 

hour, at room temperature. 

The Te precursor was prepared by mixing Te powder (0.15 mmol, 19.2mg) and 

NaBH4 (0.3 mmol, 11.4mg) in a reaction flask under N2 atmosphere.Then 2.0 ml of 
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ultra pure water was added to the reaction flask and the flask was heated to 800C. 

Resulting dark-purple NaHTe solution was obtained in 2 hours, at 800C (Figure 2.1).  

Because both NaHSe and NaHTe are very sensitive to air, freshly synthesized 

precursor solutions were used in all experiments, without any purification.  

 

 
 

Figure 2.1. Schematic representation of resulting NaHTe and NaHSe solutions, respectively. 

 

2.1.2. Synthesis of CdSexTe1-x Nanoparticles 
 

First, 0.58 mmol (0.1076g) CdCl2 was dissolved in 40ml ultra pure water and 

0.93 mmol (66µl) surface ligand thioglycolic acid (TGA) was added was added to the 

solution under stirring. pH of the solution was adjusted to 11.5 by addition of 1.0 M 

NaOH. Reaction was performed under N2 atmosphere and vigorous stirring. 

Temperature was set 900C and 1000C as optimization parameters. Cd - thiolate complex 

was formed in 1 hour.  

2.0 ml of freshly prepared solution of NaHSe and freshly prepared solution of 

NaHTe were simultaneously injected into the nitrogen-saturated, vigorously stirred Cd-

thiolate complex by the help of two syringes. NaHSe solution prepared by using 0.026 

mmol (2.1 mg) Se-powder, 0.052 mmol (1.9 mg) NaBH4 in 1 ml ultra pure water, under 

N2. NaHTe solution prepared by using 0.15 mmol (18.8 mg) Te-powder, 0.30 mmol 

(11.4 mg) NaBH4 in 1 ml ultra pure water, at 800C under N2. 

 
NH2

S

H2N

 
 

Figure 2.2. Structure of thiourea 
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Formation of water dispersed TGA capped CdSexTe1-x particles can be 

accompanied by the change of appearance of the solution from colorless to dark red 

under the day light (Figure 2.3). After the synthesis of CdSexTe1-x nanocrystals, 

following the addion of Se/Te precursors, sulfur source which was prepared by 

dissolving 0.26 mmol (19.8 mg) thiourea  in 2.0 ml water was added to the sotution of 

CdSexTe1-x nanocrystals (Figure 2.2) to coat the  core nanocrystals. 

 

Before Se/Te addition

CdCl2
+

Thioglycolic Acid (TGA)
+

H2O

Add NaOH
pH ~11,5

Reflux 
at 90ºC

under N2

Cd 2+ precursor

Formation of precursors 

 

 

 
 

Figure 2.3. Schematic representation of water dispersed synthesis of CdSexTe1-x/CdS. 
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Aliquots from reaction flask at different time intervals were taken to monitor the 

formation of nanoparticles by using UV – Vis and fluorescence spectroscopy. Reaction 

was stopped by cooling the solution to room temperature when the size of nanoparticles 

was reached to desired size. Nanoparticles were precipitated by addition of the 2-

propanol in to the crude solution and centrifugation was performed at 6000rpm. 

Precipitated nanoparticles were then dried at room temperature. 

In order to optimize optical properties of nanoparticles, mole ratios of Cd/TGA 

and Se/Te precursors were varied and CdSeTe/CdS nanocrystals with better crystal 

structure and higher quantum yield were obtained by this optimization. Optimization 

conditions were summarized in the Table 2.1. 

 
Table 2.1. Experimental information of CdSeTe/CdS nanocrystals synthesis. 

 

CODE 
MOLE 
RATIO 
Cd:TGA 

MOLE 
RATIO 

Cd:(Se+Te) 

MOLE 
RATIO 
Te:Se 

MOLE 
RATIO 
Se : S 

pH Temp. 
(0C) 

Reaction 
Volume 

(ml) 

A1 : CdSeTe-Core 1 : 2.4 1 : 0.3 0.5:0.5 No 
thiourea 11.2 100 120 

A2 : CdSeTe/CdS 1 : 2.4 1 : 0.3 0.9:0.1 1:10 12.1 100 40 

A3 : CdSeTe/CdS 1 : 2.4 1 : 0.03 0.5:0.5 1:10 11.6 100 20 

A4 : CdSeTe/CdS 1 : 2.4 1 : 0.3 0.75:0.25 1:10 11.3 100 40 

A5 : CdSeTe/CdS 1 : 2.4 1 : 0.3 0.8:0.2 1:10 11.3 100 40 

A6 : CdSeTe/CdS 1 : 4.8 1 : 0.3 0.8:0.2 1:10 11.2 100 40 

A7 : CdSeTe/CdS 1 : 3.6 1 : 0.3 0.8:0.2 1:10 11.3 100 40 

A8 : CdSeTe/CdS 1 : 3.0 1 : 0.3 0.8:0.2 1:10 11.3 100 40 

A9 : CdSeTe/CdS 1 : 1.6 1 : 0.3 0.85:0.15 1:10 11.5 90 40 

A10 : CdSeTe/CdS 

1 : 0.9 
(0.1M 

Sodium 
Citrate) 

1 : 0.3 0.85:0.15 1:10 11.5 90 40 

A11 : CdSeTe-Core 1 : 1.6 1 : 0.3 0.85:0.15 No 
thiourea 11.5 90 40 

A12 : CdSeTe/CdS 1 : 1.6 1 : 0.3 0.85:0.15 1:10 11.5 90 20 

A13 : CdSeTe/CdS 1 : 1.6 1 : 0.3 0.85:0.15 1:10 11.5 90 100 
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First, CdCl2 / TGA mole ratio was kept constant at 1.0:2.4 and Te:Se mole ratios 

were changed between 0.9:0.1, 0.85:0.15, 0.8:0.2, 0.75:0.25 and 0.5:0.5, keeping the 

mole ratio of Cd:(Te+Se) as 1.0:0.3. After determination of the most suitable mole ratio 

of Se to Te, the mole ratio of CdCl2 to TGA was changed, namely Cd to TGA= 1.0:4.8, 

1.0:3.6, 1.0:3.0, 1.0:2.4 and 1.0:1.6. Sodium Citrate (SC) as a co-ligand was also used 

one time with TGA in the CdSeTe / CdS synthesis. The final concentration of SC was 

0.1M. The ratio of S to Se precursor was kept constant as 1.0:10 in all trials.  

 

2.2. Spectroscopic and Microscopic Characterization 
 

Spectral properties of CdSexTe1-x and CdSexTe1-x / CdS were investigated at 

room temperature by using Varian Cary 50 UV-Vis Spectrometer and Varian Cary 

Eclipse Fluorescence Spectrometer. Aliquots taken from flask at different times to 

monitor particles growth. Nanocrystals have absorption spectra ranging from 480nm to 

570nm and their emission spectra changes from 534nm to 610nm. 

X-ray powder diffraction (XRD) measurements were done at IYTE-MAM with 

Philips X-pert Pro Powder Diffractometer with CuKα radiation (λ=1.5406 Å). X-ray 

source is the Philips high intensity ceramic sealed tube. Data was collected for 2θ values 

of 20° to 60°. After one step purification with 2-Propanol, precipitated particles were 

dried at room temperature and then powdered form was used in XRD. The average 

particle sizes were determined by using recorded with a X’Pert PRO MPD 

diffractometer (Cu Kγ radiation, with grazing angle 0.5°) in Physics Department at 

IYTE. 

TEM measurements were carried out at UNAM (National Nanotechnology 

Research Center at Bilkent University in Ankara) to study size distribution, crystal 

structure and morphology with Tecnai G2 F30 TEM (FEI). Synthesized nanocrystals 

was droped on grids for TEM analysis. 

Scanning Electron Microscope (SEM) coupled with the energy dispersive x-ray 

detector (EDX) was used to determine the chemical composition of nanocrystals. 

Purified nanoparticles was used for the elemental analysis. 

Elemental analysis was also carried out by using Agilent 7500ce Inductively 

Coupled Plasma Mass Spectroscopy (ICP-MS). A calibration curve was established, 1.0 

ppm control solution was prepared by Se, Cd and Te standarts and diluted to 750, 500, 
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250, 100, 50, 20, 10, 5, 2, 1, 0.5, 0.1 and 0.05 ppb, which contain 1 % HNO3. CdSeTe 

and CdSeTe/CdS dispersions with 0.1 ppm containing 1 % HNO3, were analysed. 

To study biological responce of nanocrystals of cancer cells (PC3 and MCF7) 

MTT test was performed. Purified and sterilized nanoparticles were used in MTT test at 

different concentrations. Results were obtained by taking average of the three replicates 

for each concentration. It also was repeated for 24, 48 and 72 hours of exposure times. 

Trypan blue staining was used to to assume cell proliferation. MCF7, A549 and   

BEAS-2B cell suspensions were used for 24 hours of exposure time in trypan blue cell 

viability test. 

Bioimaging was performed with a confocal microscope (Andor Revolution). 

During this study, MCF7 cancer cells were used.  

1 µg/ml CdSeTe and CdSeTe/CdS nanocrystals in PBS solution were injected 

into cell medium in 6-well plates, then they were incubated for desired times at 370C. 

The media was aspirated from wells and washed with PBS, then cells was fixed with 

paraformaldehyde for 10 minutes and fixative solution was aspirated and washed with 

PBS for 5-10 minutes by shaking. The cells were blocked with 10 % FBS in PBS for 30 

minutes with vigorous shaking and washed with PBS  three times. After aspiration of 

the PBS solution, slides were removed from wells and dried. The mounting media was 

droped onto slide and covered with the dried coverslip, then slides were analysed under 

confocal microscope with appropriate filters. 
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CHAPTER 3 

 

 

3. PHYSICOCHEMICAL PROPERTIES OF CdSeTe 

BASED NANOCRYSTALS 

 

 
3.1. Spectroscopic Properties of CdSexTe1-x / CdS Core / Shell 

Nanocrystals 
 

All absorbance and fluorescence studies were done by taking aliquots from 

reaction flask at different times. The growth dynamics of nanocrystals can easily be 

monitored by absorption and fluorescence spectra. The color change of nanocrystals 

depending on the size, can be observed under UV-lamp. 

 

3.1.1. UV-Vis Absorption and Fluorescence Spectroscopy 
 

Optical properties of synthesized CdSexTe1-x / CdS nanocrystals were 

determined by UV-Vis and fluorescence spectroscopies. In CdSexTe1-x / CdS 

nanocrystal synthesis part of this study, various mole ratios of reactants and reaction 

conditions were used to optimize spectroscopic properties; e.g. the quantum yield of 

nanocrystals. In Table 2.1 the reaction parameters were listed for different conditions, 

each synthesis were coded with a letter A and a number.  

In the study of Pan et al. CdSe core was synthesized then it is surrounded with 

CdS (Pan, et al. 2005). In our work, NaHSe and NaHTe as Se and Te precursors were 

added to the reaction media at the same time to form alloy structure and then CdS shell 

was surrounded around CdSexTe1-x core, by adding thiourea. 

Absorption and emission spectra of synthesized nanoparticles with different 

compositions are shown respectively, A2 in Figure 3.1, A4 in Figure 3.2, A5 in Figure 3.3, 

A6, A7, A8 in Figure 3.4, A9 in Figure 3.9 - Figure 3.11, A10 in Figure 3.5, A11 in Figure 
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3.6, A12 in Figure 3.7, A13 in Figure 3.8. The specimen, which coded as A1 and A3 were 

give no result so their UV-Vis and emission spectra were not shown.  

During the reactions, without any purification aliquots were taken at different 

times and their UV-Vis and emission spectra were obtained, photoluminescence 

quantum yield was calculated by Equation (1.2.). Spectral properties, UV-Vis and 

emission wavelengths, FWHM of emission peaks and calculated photoluminescence 

quantum yields were listed in Table 3.1. Since we aimed to use these nanocrystals in 

cellular bioimaging applications, higher photoluminescence quantum yields are 

important to quantify biological processes in cells. 

 
 
Figure 3.1. UV-Vis and fluorescence spectra of A2-CdSeTe/CdSe nanoparticles. 

 
Figure 3.2. UV-Vis and fluorescence spectra of A4-CdSeTe/CdSe nanoparticles. 
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Figure 3.3. UV-Vis and fluorescence spectra of A5-CdSeTe/CdSe nanoparticles. 

 

 
Figure 3.4. UV-Vis and fluorescence spectra of a) A6-CdSeTe/CdSe b) A7-CdSeTe/CdSe        

c) A8-CdSeTe/CdSe nanoparticles. 
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Figure 3.5. UV-Vis and fluorescence spectra of A10-CdSeTe/CdSe nanoparticles. 
 

 
 

Figure 3.6. UV-Vis and fluorescence spectra of A11-CdSeTe core nanoparticles. 
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Figure 3.7. UV-Vis and fluorescence spectra of A12-CdSeTe/CdSe nanoparticles. 

 

 
 

Figure 3.8. UV-Vis and fluorescence spectra of A13-CdSeTe/CdSe nanoparticles. 
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Table 3.1. Spectral properties of synthesized CdSeTe/CdS nanocrystals. 
 

CODE- Absorption 

Wavelength 

(nm) 

Emission 

Wavelength

(nm) 

FWHM 

(nm) 

Quantum 

Yield 

 Reaction Parameters that is Varying

 
  [Cd:TGA      [Cd:(Se+Te)]        [Te:Se] 

A1CdSeTe-Core - - - Not  emitting 1 : 2.4 1:0.3 0.5:0.5 

A2 CdSeTe/CdS 555 560 60 7.7% 1 : 2.4 1 : 0.3 0.9:0.1 

A3 CdSeTe/CdS 560 655 65 Not emitting 1 : 2.4 1 : 0.03 0.5:0.5 

A4 CdSeTe/CdS 534 574 55 6.6% 1 : 2.4 1 : 0.3 0.75:0.25 

A5 CdSeTe/CdS 552 584 65 8.2% 1 : 2.4 1 : 0.3 0.8:0.2 

A6 CdSeTe/CdS 560 603 70 2.1% 1 : 4.8 1 : 0.3 0.8:0.2 

A7 CdSeTe/CdS 563 606 90 0.5% 1 : 3.6 1 : 0.3 0.8:0.2 

A8 CdSeTe/CdS 556 602 55 0.2% 1 : 3.0 1 : 0.3 0.8:0.2 

A9 CdSeTe/CdS 516 551 50 22.2% 1 : 1.6 1 : 0.3 0.85:0.15 

A10CdSeTe/CdS 

TGA-SC capped 

495 553 52 5.6% 1 : 0.9 
(0.1M Sodium

Citrate) 

1 : 0.3 0.85:0.15 

A11 CdSeTe 485 535 55 17.3% 1 : 1.6 1 : 0.3 0.85:0.15 

A12CdSeTe/CdS 502 540 55 7.5% 1 : 1.6 1 : 0.3 0.85:0.15 

A13CdSeTe/CdS 506 598 50 11% 1 : 1.6 1 : 0.3 0.85:0.15 

 

These systematic studies led to the optimization of synthetic parameters for 

preparing CdSeTe/CdS nanocrystals with high quantum yield and with narrow FWHM. 

The optimum reaction conditions and molar ratios were determined based on the highest 

photoluminescence quantum yield of the nanocrystals. The best sample is A9; its 

quantum yield was 22, 2% and FWHM of emission spectrum of A9 was 50nm.  

In our study, the FWHM of emission spectra of different samples, from A2 to 

A13, varied from 50nm to 90nm. In Piven et.al.’s study, FWHM of CdSeTe / CdS 
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nanoparticles varied from 42 nm to 110 nm by changing the Se/ Te ratio in alloy 

composition. In their study, they obtained larger FWHM as increasing the Se ratio 

(Piven, et al. 2008). In our study FWHM were not change with Se/Te mole ratio. 

Increase in FWHM may be due to polydispersity of CdSeTe / CdS nanoparticles or may 

cause from the decreasing crystalline quality of samples. 

As the number of defect states is decreased, nanoparticles should have better 

crystal structure and as a result, the photoluminescence quantum yields of the 

nanoparticles should increase. In literature, Jiang et al. mentioned that alloyed CdSeTe 

nanocrystals synthesized by organometallic route have quantum yield around 30% 

which is considered as to be high (Jiang, et al. 2006). Even we synthesis the particles in 

aqueous medium, we get 22% of quantum yield that produces a higher brightness (a 

measure of observing emitting scale of materials) for cellular imaging applications. 

 

 
 

Figure 3.9. Normalized UV-Vis spectra of A9 – CdSeTe / CdS nanoparticles, aliquots taken at 

different times. 
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The growth of CdSeTe/CdS nanoparticles can be observed by using UV-Vis 

spectroscopy (Figure 3.9). A steady shift of spectra to higher wavelengths is obvious; 

indicating an increase in the size of CdSeTe / CdS nanoparticles. 

Nanocrystals can be continuously excited in a range from 350nm to 600nm 

which is an advantageous in labeling applications. 

In this study, green, yellow and orange colors were clearly observed due to 

change in the size of CdSeTe / CdS nanoparticles. The color change of CdSeTe / CdS 

nanoparticles under day light and under UV-lamp can be seen in Figure 3.10. Color 

change in CdSeTe / CdS observed in this work was convenient with literature (Rogach, 

et al. 2007, Gaponik, et al. 2002, Peng, et al. 2007). The color of the CdSeTe / CdS 

nanoparticles can be tuned by time from green to orange because the conduction and 

valance band in quantum dots get closer when quantum dots are larger. The band gaps 

of particles are decreased as the particle size increased (Table 3.2.). 

 
   a)      b) 

 
 

Figure 3.10. Images of CdSeTe / CdS nanoparticles, a) under day light b) under UV lamp. 
 

Emission spectra show time dependent growth of CdSeTe / CdS nanoparticles. 

During the growth of CdSeTe / CdS nanoparticles, the spectra shift to higher 

wavelengths (Figure 3.11). At the beginning of the reaction, nanocrystals emit at 534nm 

and after 48 hours, the emission wavelength reaches to 610nm. As the size of particles 

increase, as a consequence of quantum confinement effect red shifted emission spectra 

were obtained. The fluorescence spectra of the nanocrystals show a symmetrical shape 

with a spectral width (FWHM) of around 50 nm.  



41 
 

 
 

Figure 3.11. Normalized fluorescence spectrum of A9 - CdSeTe / CdS nanoparticles, aliquots 
was taken at different time intervals. 

 

Quantum yields (QY) of the nanoparticles were calculated by using Rhodamine 

6G in water (QY: 95%) as reference. QY of A9 CdSeTe/CdS nanoparticles varied 

between 8% and 22%, the highest QY was observed from emission spectra at 550nm 

when the color was yellow. At the beginning of the reaction (emission wavelength at 

534nm), alloy CdSeTe nanocrystals’ QY was 12% but after CdS shell coating, QY of 

CdSeTe/CdS nanocrystals increased to 22%. This increase in QY was followed by a 

decrease around 8% (emission wavelength at 600 nm).  

When the size of nanocrystals becomes closer to bulk, quantum yield decreases 

and the changes depend on crystal structure of nanocrystals (Zhong, et al. 2008). At the 

beginning of the reaction, during the formation of nanocrystals, crystal structure is not 

perfectly orderred, so QY is low. Within increase in reaction time, nanocrystals are 

larger in size and better in crystal structure with less surface defects, and then QY is 

increased. However, when nanocrystals are close to bulk structure, around red color, 
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this time the surface of nanocrystals start to deform and structural defects form, 

nanocrystals tend to agglomerate, and QY decreases 

In Figure 3.12, the growth of CdSeTe / CdS nanoparticles is shown. At the 

beginning of the reaction, particle growth was quick but when the particle size 

increased, the growth slowed down. As the size of particles increases, capping agent 

might need more time to cover the surface of particles and because the total surface area 

of all QDs increases the initial growth rate is high. The gradual decrease in growth rate 

could be caused by a decrease in the concentration of monomers that are consumed during 

the reaction or larger particles might have more surface defect with respect to smaller 

ones. 

 
 

Figure 3.12. Temporal evolution of fluorescence peaks of CdSeTe / CdS nanoparticles. 
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Table 3.2 Photophysical Parameters of CdSeTe / CdS nanoparticles (A9) 
 

Sample Name - 
Growth Time (h) 

Absorbance
Wavelength

(nm) 

Emission 
Wavelength

(nm) 

Quantum 
Yield  
(%) 

Stokes 
Shift 
(nm) 

FWHM 
(nm) 

Bandgap
(eV) 

A9 CdSeTe - 
1 

480 534 12 46 45 2,24 

A9 CdSeTe/CdS - 
1,5 

500 547 16 53 50 2,18 

A9 CdSeTe/CdS - 
2,5 

515 550 22 65 50 2,14 

A9 CdSeTe/CdS - 
16 

540 583 13 43 60 2,03 

A9 CdSeTe/CdS - 
45 

570 600 8 30 60 1,96 

 

3.2. Structural Characterization 
 

Structural characterization of semiconductor nanoparticles can be conducted by 

X-Ray Diffractometer (XRD) and Transmission Electron Microscopy (TEM). 

 

3.2.1.  X – Ray Diffractometer (XRD) 
 

XRD is used to estimate the crystal structure of CdSexTe1-x core and     

CdSexTe1-x / CdS core/shell nanoparticles and also it is used to calculate average 

crystalline size.  

By comparing CdS and CdTe bulk structures hkl indices, CdSexTe1-x 

nanoparticles crystal structure was estimated to be face centered cubic. The diffraction 

pattern closely matches with a zinc blend structure model. XRD results are convenient 

with the literature. (Rogach, et al. 2007, Piven, et al. 2007, Deng, et al. 2006). 

For comparison the powder patterns which correspond to the (111), (220), and 

(311) planes of zinc-blende phase for cubic CdS and CdTe are shown in the black and 

red lines, respectively in Figure 3.13. The X-ray diffraction patterns of nanocrystals 
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coated with CdS show a strong influence of the CdS shell on the overall diffraction 

patterns. 

 
 

Figure 3.13. XRD spectra of core CdSeTe alloy nanoparticles (red), core /shell CdSeTe/CdS 
nanoparticles (blue). 

 

Standard patterns of CdS and CdTe are found from literature, Pons, et al. 2009, 

which are shown in Figure 3.13. XRD peaks of nanoparticles are located between CdTe 

and CdS phase. From Figure 3.13 CdS shell formation around CdSeTe core can be 

estimated, in Core / shell nanoparticles’ XRD pattern there is a shift through the CdS 

location.  

Core / shell structure of CdSeTe / CdS nanoparticles can be estimated by XRD 

studies. If nanoparticles are composed of only core CdSeTe, the XRD peaks should not 

shift to the higher diffraction angles, they should remain unshifted. The shift of 

nanoparticles to the larger angles points out that CdS shell grows around CdSeTe core. 

The shift in XRD pattern after thiourea addition for CdS shell formation can be seen in 

our work. The results agree with literature, (Figure 1.8 , Pons, et al. 2009).  

Average crystallite sizes of A11-CdSexTe1-x core and A9-CdSexTe1-x/CdS 

core/shell nanoparticles were determined from XRD patterns, as illustrated in Figure 

3.15, by applying FWHM to the most intense peak using Debye Scherrer equation, 

(Equation (1.4)). Determined particle size of core A11-CdSeTe and core/shell           

A9-CdSeTe/CdS nanoparticles are 3.7nm and 4.6nm, respectively.  
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Figure 3.14. XRD patterns of CdSeTe/CdS nanoparticles with different compositions        
(Table 2.1). 
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Figure 3.15. XRD pattern of synthesized A9-CdSeTe/CdS core/shell (black) and A11-CdSeTe 
core (red) nanocrystals . 

 

Compositions of A2, A4, A5, A9 and A1l nanoparticles were determined from 

XRD patterns, as illustrated in Figure 3.14 and Figure 3.15 by applying Vegard’s law to 

most intense (111) peaks (Equation (1.9)). At the beginning of reactions different mole 

ratios of Se and Te precursors were used (Table 2.1). Determined alloy compositions are 

listed in Table 3.3. 

 

Table 3.3. Compositions of nanoparticles contain different amounts of Se and Te precursors 
 

Code 
Te:Se Mole 

Ratio 

Composition from 

Vegard’s Law 

A2-CdSexTe1-x/CdS  0.9 : 0.1 CdSe0,792Te0,208 

A4-CdSexTe1-x/CdS  0.75 : 0.25 CdSe0,437Te0,563 

A5-CdSexTe1-x/CdS  0.8 : 0.2 CdSe0,271Te0,729 

A9-CdSexTe1-x/CdS  0.85 : 0.15 CdSe0,635Te0,365  

A11-CdSexTe1-x 0.85 : 0.15 CdSe0,315Te0,685 

 

Crystallite size calculations were done for A13-CdSeTe/CdS nanocrystals with 

aliquots taken from reaction flask at different times by applying FWHM of the most 
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intense peak to Debye–Scherrer equation(Equation (1.4)) and listed in Table 3.4. 

Average crystallite sizes were determined from XRD patterns, illustrated in Figure 3.16. 

 

 
 

Figure 3.16. XRD spectra of A13 CdSeTe / CdS nanoparticles, aliquots were taken at different 
times. 

 

Table 3.4 Photophysical and Structural Properties of CdSeTe / CdS nanoparticles 
 

Name 
Absorbance
Wavelength

(nm) 

Emission 
Wavelength

(nm) 
Absorbance 
Onset (nm)

Bandgap 
(eV) 

Size From 
XRD (nm)

1-CdSeTe/CdS 497 545 576 2.15 1.7 

2-CdSeTe/CdS 518 568 600 2.06 1.9 

3-CdSeTe/CdS 536 577 605 2.04 2.1 

4-CdSeTe/CdS 540 590 611 2.03 2.3 

5-CdSeTe/CdS 555 598 623 1.99 2.7 

6-CdSeTe/CdS 565 600 658 1.98 3.2 
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3.2.2. Transmission Electron Microscopy (TEM) 
 

TEM images provide information about size and morphology of nanoparticles. 

TEM grids were prepared by dropping diluted dispersions of CdSeTe/CdS nanocrystals 

to observe size and structures of the nanocrystals. The particle size for sample A10 is 

determined to be 5.0 nm. The particles indicate almost same monodispersity (Figure 

3.17). A crystalline structure can be seen from the TEM images which indicate crystal 

formation at nanometer scale. 

 

 

 
 

Figure 3.17. TEM images of CdSeTe/CdS core/shell nanoparticles. (Scales are 5nm). 
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Information about distribution of Se and Te in nanoparticles was also 

investigated by energy filtered TEM images. In Figure 3.18. (a) shows Se mapping and 

(b) shows the Te mapping. We can conclude that almost all nanocrystals contain both 

Se and Te. 

 

a)              b) 

 
 

Figure 3.18. EF-TEM images of CdSeTe / CdS core/shell nanoparticles shows a) selenium and 
b) tellerium mapping (Scales are 10nm). 

 

3.3. Elemental Analysis 
 

Elemental analysis was carried out by using Agilent 7500ce Inductively Coupled 

Plasma Mass Spectroscopy (ICP-MS). All samples were dissolved in aqueous solution 

1% HNO3. The CdSexTe1-x and CdSexTe1-x / CdS nanoparticles are prepared with 0.1 

ppm concentration ns. Concentration of Cd, Te and Se are shown in Table 3.5. Mole 

ratios of Cd to (Se+Te) was 1:0.3 and Se:Te was 1.5:8.5 at the beginning of reaction. 

ICP-MS analysis showed that both CdSexTe1-x core and CdSexTe1-x / CdS core/shell 

nanoparticles contain trace amount of selenium compared to amount of Cd and Te 

(Table 3.5). This is an expected result since very small amount of Se was injected to 

reaction media during synthesis. 
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Table 3.5. ICP-MS results of core and core/shell nanoparticles. 
 

Sample Se (ppb) Te (ppb) Cd (ppb) Se:Te Cd/(Se+Te)

CdSeTe  
Core 26 218 755 0.19 3.29 

CdSeTe/CdS  
Core/Shell 6 226 669 0.04 3.22 

 

Scanning Electron Microscope (SEM) Energy dispersive x-ray (EDX) spectrum 

were also used for elemental analysis. Qualitative determination of A9-CdSeTe/CdS 

core and A11-CdSeTe/CdS core/shell nanocrystals were done by EDX analysis, which 

is illustrated in Figure 3.19 Cd, Se, Te and S elements were present in the analysed area.  

 

 

 
 

Figure 3.19. EDX analysis a) CdSeTe/CdS core/shell and b) CdSeTe core 
nanocrystals. SEM images are provided for the area analysed by 
EDX. 
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CHAPTER 4 

 

 

4. EVALUATING BIOLOGICAL RESPONSE OF HUMAN 

CELLS TO CdSeTe NANOPARTICLES 

 

 
In this chapter biological response of human prostate cancer cells (PC3) and 

breast cancer cells (MCF7) to CdSeTe / CdS nanocrystals are evaluated by MTT test 

and confocal microscopy. 

Carcinomic human alveolar basal epithelial cells (A549), human bronchial 

epithelial cells (BEAS-2B) were used to evaluate cell membrane integrity and thus 

assume cell proliferation by trypan blue staining.  

 

4.1. MTT Studies 
 

To understand the cytotoxic activity of synthesized nanoparticles MTT assay 

was performed for identification of proliferation the cell populations. The determination 

of cell growth was done by counting viable cells after staining with a yellow MTT (3-

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) which was reduced to 

purple formazan in the mitochondria of living cells. Human Prostate Cancer (PC3) cell 

line and breast cancer (MCF7) cell line were used during this process.  

PC3 cell line was kindly provided by Associate Professor Kemal Sami Korkmaz 

(Ege University, Engineering Faculty, Department of Bioengineering), MCF7 cell line 

was obtained from Professor Neşe Atabey (Dokuz Eylül University, Medical School, 

Department of Medical Biotechnology and Genetics). PC3 cells were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) containing 5% fetal bovine serum 

(FBS), 100µg/mL streptomycin/100IU/mL penicillin. MCF7 cell line was maintained in 

Roswell Park Memorial Institude-1640 (RPMI-1640) containing 15% FBS (BIO-IND), 

100µg/mL streptomycin/100IU/ml penicillin incubated at 370C in the dark with 5% CO2 
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humidified incubator. The cells were passaged when they reached 80-85% confluency. 

Cells used in experiments were maintained up to 20th passages. 

At the beginning of MTT protocol, the stock solution (5mg/ml) in PBS was 

prepared and sterilized by using filter, it should be stored at 40C (solution is stable ~ 6 

weeks). MTT stock solution can be used by adding 1:10 ratio into wells (directly from 

stock for suspension cells). Wells should be covered with foil to avoid exposure of 

direct light.  

The nanoparticles were added in 96-well microculture plates, at 1x104 cells 

density per well, while the final concentration were; 0.0001µg/ml, 0.001µg/ml, 

0.01µg/ml, 0.1µg/ml, 1µg/m, l2.5µg/ml, 5µg/ml, 10µg/ml, 25µg/ml, 50µg/ml, 

100µg/ml for both A9-CdSeTe / CdS nanoparticles and A10–CdSeTe / CdS 

nanoparticles. Each measurement was repeated 3 times (triplicate). Cells were treated 

with the nanoparticles for 24, 48 and 72 hours, and cytotoxic effects were determined 

by tetrazolium based colorimetric assay. Briefly; 4 hours before the end of each 

incubation period, medium of the cells was removed and wells were washed by pre-

warmed phosphate-buffered saline (PBS) to remove any trace of the nanoparticles and 

to prevent color interference while optical density determination. MTT stock solution 

(5mg/ml) was diluted at 1:10 ratio into complete culture media, 100µl of MTT dilution 

was added into each well and incubated. After 3.5 hours, the plates were centrifuged at 

1800 rpm for 10 minute at room temperatures and then supernatant was removed by 

tapping. Mitochondrial dehydrogenases of viable cells cleave the tetrazolium ring, 

yielding purple MTT formazan crystals which are insoluble in aqueous solutions. 

Formazan crystals were dissolved with 100µl DMSO by shaking the wells at 150 rpm 

for 5min. The resulting purple solution was spectrophotometrically measured. An 

increase in cell number results in an increase in the amount of MTT formazan formed 

and an increase in absorbance. The absorbance was determined at 540nm. Results were 

represented as percentage viability and calculated by the following formula: 

 

 % viability=100-[(ODs-ODb/ODc-ODb)x 100]    (4.1) 

 

where ODb,ODs, and ODc indicate the optical density of blank, sample and control 

respectively.  

Lethal concentrations were measured by determining the concentration of      

A9-CdSeTe / CdS nanoparticles (Figure 4.1 and Figure 4.2) and A10-CdSeTe / CdS 



53 
 

nanoparticles (Figure 4.3 and Figure 4.4). The relative error bars were shown for each 

24h, 48h and 72h incubation periods. Each measurement was repeated 3 times 

(triplicate). 

For A9-CdSeTe/CdS nanoparticles, the lethal concentration of free cadmium 

ions, Cd+2, which cause damage in mitochondria and oxidative stress in cells, was 

observed above the concentration of 1µg/ml for PC3 cell lines. We observed that 

synthesized nanoparticles have no significant toxic effect on PC3 cells below the 

concentration range of 0.1µg/mL (Figure 4.1). Nanoparticles show toxic effects 

depending on concentration and also incubation period. For 48 hours and 72 hours 

2.5µg/mL and above concentrations showed cell viability around 1%, on the other hand 

for 24 hours at the same concentrations cell viability gradually decreased.  

On the other hand, A9-CdSeTe / CdS nanoparticles showed less toxic effects for 

MCF7 cells than PC3 cells. The lethal concentration of free cadmium ions, Cd+2, was 

observed above the concentration of 10µg/ml for MCF7 cells (Figure 4.2). 

 

 
 

Figure 4.1. MTT results for A9-CdSeTe / CdS quantum dots in PC3 cells for 24h, 48h and 72h 
treatment (size of nanocrystal determined by XRD as 4.6nm, emitting at 600nm). 

 

For A10-CdSeTe/CdS nanoparticles, the lethal concentration of free cadmium 

ions, Cd+2, was observed above the concentration of 1µg/ml for PC3 cells (Figure 4.3). 

A10-CdSeTe/CdS nanoparticles have no any significant toxic effect on PC3 cells below 
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the concentration 0.1µg/mL. The lethal concentration of free cadmium ions, Cd+2, was 

observed above the concentration of 25µg/ml MCF7 cells (Figure 4.4). 

 

 
 

Figure 4.2. MTT results for A9-CdSeTe/CdS quantum dots in MCF7 cells for 24h, 48h and 72h 
treatment (size of nanocrystal determined by XRD as 4.6nm, emitting at 600nm). 

 
 

 
 

Figure 4.3. MTT results for A10-CdSeTe / CdS quantum dots in PC3cells for 24h, 48h and 72h 
treatment (size of nanocrystal determined by TEM as 5.5nm, emitting at 580nm). 
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Figure 4.4. MTT results for A10-CdSeTe/CdS quantum dots in MCF7cells for 24h, 48h and 72h 
treatment (size of nanocrystal determined by TEM as 5.5nm, emitting at 580nm). 

 

MTT test was carried out to be incubated with PC3 and MCF7 cells with CdCl2 

and thiourea for 24 hours, CdCl2 was used as free Cd+2 source. Lethal concentration of 

Cd2+ ions was 25.0µg/ml for MC7 cells and 1.0µg/ml for PC3 cells (Figure 4.5, Figure 

4.6) 

 
 

Figure 4.5. MTT results for CdCl2 in MCF7 cells for 1 day. 
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Figure 4.6. MTT results for CdCl2 in PC3 cells for 1 day. 
 

As S-source, thiourea was used and it was observed that thiourea is not toxic for 

MCF7 and PC3 cells (Figure 4.7, Figure 4.8) for given concentrations. 

 

 
 

Figure 4.7. MTT results for thiourea in MCF7 cells for 1 day. 
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Figure 4.8 MTT results for Thiourea in PC3 cells for 1 day 
 

4.2. Trypan Blue Staining 
 

Trypan blue is a vital stain used to selectively colour dead cells blue. It is a diazo 

dye. Live cells with intact cell membranes are not coloured, hence, dead cells are shown 

as a distinctive blue colour under a microscope. Trypan blue staining is a simple way to 

assume cell proliferation or death.  

A549 and BEAS-2B cell lines were kindly provided by Professor Doctor Hasan 

Bayram (Gaziantep University, Medical School). 

During this procedure, 100 μL volume of MCF7, A549 and Beas2B cell 

suspensions, which were incubated for 24 hours with synthesized A9 and A10 

nanoparticles, were placed in appropriate tubes and 200 μL volume of 0.5% Trypan 

blue was added in each tube and let stand for 2 minutes at room temperature.  

The coverslip was placed over the counting chambers of hemocytometer. Both 

counting chambers were loaded with the cell suspensions using a micropipette. 10 μL 

would be required per side. The pipette tip was placed at the edge of the coverslip, and 

the cell suspension was allowed to fill the space by capillary action. The entire volume 

of the chamber was filled and the number of viable (unstained) cells were counted. 

Trypan blue measurements reveal that the A549 and MCF7 cancer cells are not 

affected by the nanocrystals at any dosage, but lethal effects are determined at the 

concentration of 50µg/ml for the BEAS-2B cells. The BEAS 2B cells are very sensitive 

to the nanocrystals and do not proliferate at concentration of 0.5µg/ml. 
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Figure 4.9. % Cell viability of A9 and A10 nanocrystals in A549 cell lines. 
 

 

 
 

Figure 4.10. % Cell viability of A9 and A10 nanocrystals in BEAS-2B cell lines. 
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Figure 4.11. % Cell viability of A9 and A10 nanocrystals in MCF7 cell lines. 
 

4.3. Confocal Microscopy 
 

Confocal microscope was used to determine whether the nanoparticles can 

interact with MCF7 cancer cells or not. Secondly, it was used to verify the location of 

the CdSeTe/CdS nanoparticles in the PC3 and MCF7 cells. 

MCF7 cell line was obtained from Professor Neşe Atabey (Dokuz Eylül 

University, Medical School, Department of Medical Biotechnology and Genetics). 

1.0µg/ml CdSeTe and CdSeTe/CdS nanocrystals in PBS solution were injected 

in to cell medium in 6-well plates, and then incubated for 1hour at 370C. The media was 

aspirated from wells and washed with PBS, then cells was fixed with paraformaldehyde 

for 10 minute and fixative solution aspirated and wash with PBS for 5-10 minutes by 

shaking. The cells were blocked with 10% FBS in PBS for 30 minutes with vigorous 

shaking and washed with PBS three times and slides were removed from wells and 

dried. The mounting media was droped onto slide and cover the dried coverslip, then 

slides were analysed under confocal microscope with 488 nm laser. 
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Figure 4.12. Confocal microscopy images of a) A11 -  CdSexTe1-x (λem=545nm) and 
b) A9 - CdSexTe1-x/CdS (λem=600nm), ( λlaser=488nm). 

 

CdSeTe core nanoparticles have fluorescence emission at 545nm, which gives 

green light under UV light (Figure 4.12 - a) and CdSeTe/CdS core/shell nanoparticles 

have fluorescence emission at 600nm where the particles give orange color under UV 

light (Figure 4.12 - b). In confocal microscopy images in Figure 4.12 (a) and (b), it is 

seen that both CdSeTe/CdS and CdSeTe nanoparticles penetrate into MCF7 cells and 

disperse in cell cytoplasm, however they do not enter the nucleus of cells. 

We investigated the effect of incubation period on cells exposed to 

nanoparticles. Different incubation periods and different concentrations of A9-

CdSeTe/CdS core/shell and A11-CdSeTe core nanoparticles were used with MCF7 cell 

lines in confocal imaging applications.  

In Figure 4.13 the images of MCF7 cells, which contain 0.05µg/ml A9-

nanoparticles, can be seen. In Figure 4.13 (a) and (b) bright field and confocal images 

after 10min incubation period and in (c) and (d) bright field and confocal images after 

30min incubation period are shown, respectively. The nanoparticles were penetrated 

into MCF7 cells and dispersed in cell cytoplasm, for both 10min and 30min. 
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Figure 4.13. Confocal microscopy images of A9 – CdSeTe/CdS with 0,05µg/ml concentration 
(λem=600nm). a) bright field image after 10min incubation b) colored confocal 
image after 10 min incubation c) bright field image after 30min incubation d) 
colored confocal image after 30 min incubation time, (λlaser=488nm). 

 

In Figure 4.14 the images of MCF7 cells which contain 0.1µg/ml A9-

nanoparticles were taken. In Figure 4.14 confocal image of MCF7 cells can be seen 

after (a) 5min, (b) 10min, (c) 30min. The larger amounts of nanoparticles were 

penetrated into MCF7 cells after 30min incubation period than both 5min and 10min 

incubation periods. Both 5min and 10min incubation periods were enough for 

penetration into cell, but as the incubation period increases, the amount of nanoparticles 

in cell cytoplasm and aggregation were increased. 
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Figure 4.14. Confocal microscopy images of A9 – CdSeTe/CdS (λem=600nm) with 0.1µg/ml 
concentration. a) 5min b) 10min c) 30min incubation times, (λlaser=488nm). 
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Figure 4.15. Confocal microscopy images of A11 – CdSeTe (λem=545nm) with 0.05µg/ml 
concentration.      a) bright field image after 5 min incubation b) colored confocal 
image after 5 min incubation c) bright field image after 10 min incubation d) 
colored confocal image after 10 min e)bright field image after 30 min incubation 
f) colored confocal image after 30 min incubation time, (λlaser=488nm). 

 

In Figure 4.15 both confocal and bright field images of A11 – CdSeTe with 

.05µg/ml concentration can be seen. These three incubation periods were enough for 
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penetration into cell cytoplasm. After 30 min incubation period (Figure 4.15 (f)) some 

aggregate formation was observed. 

 

 
 

Figure 4.16. Confocal microscopy images of A11–CdSeTe (λem=545nm) with 0.1µg/ml 
concentration. a) bright field image after 5 min incubation b) colored confocal 
image after 5 min incubation c) bright field image after 10min incubation            
d) colored confocal image after 10 min e)bright field image after 30 min 
incubation f) colored confocal image after 30 min incubation time, (λlaser=488nm). 

 

In Figure 4.16 confocal and bright field images of A11–CdSeTe with 0.1µg/ml 

concentration can be seen. Figure 4.15 shows (a) bright field image after 5min 

incubation, (b) shows colored confocal image after 5min incubation, (c) shows bright 

field image after 10min incubation, (d) shows colored confocal image after 10min, (e) 

shows bright field image after 30min incubation, (f) shows colored confocal image after 
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30 min incubation time. For 0.1µg/ml A11 – CdSeTe nanoparticles, the amount of 

nanoparticles that penetrated into cell cytoplasm were increased as the incubation time 

increased. 
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7. CHAPTER 5 

 

 

5. CONCLUSION 

 

 
Water dispersible, TGA capped alloy CdSexTe1-x core and CdSexTe1-x / CdS 

core/shell nanocrystals were synthesized by a single step aqueous synthesize method 

below 1000C. After optimization of the suitable mole ratios of reactants and reaction 

conditions, characterization was performed by using spectroscopic methods, XRD, 

TEM and confocal microscopy.  

Optimum reaction conditions and molar ratios were determined based on the 

photoluminesence quantum yield obtained from nanocrystals. Upon testing different 

TGA/Cd ratios from 4.8 to 1.6 it was conclude that decreasing mole ratio of the 

TGA/Cd leads to a increase in the photoluminesence quantum yield of the particles. 

Also, different Se/Te ratios from 0.1:0.9 to 0.5:0.5 were tested. Se/Te mole ratio have 

also an important role, as the mole ratio of Se is decreased in reaction the 

photoluminesence quantum yield of the particles is increased. 

Spectral properties of nanocrystals can be tuned by size controlling reflux time. 

Size dependent spectral properties were monitored by fluorescence and UV-Vis spectra. 

Fluorescence quantum yields scale up to 22% with 50nm FWHM. The size of 

CdSeTe/CdS nanoparticles varies from 3.7 nm to 5 nm.  

The high quantum yields and narrow spectral widths indicates that, the alloy 

nanocrystals are highly crystalline in structure and monodisperse in size. 

Optimized synthesis provides TGA-capped CdSeTe/CdS nanocrystals with 

bright (22% quantum), emission tunable from 534 to 610 nm. They can be excited from 

350nm to 600nm. The energy band gap of the synthesized nanocrystals was estimated 

by the absorption measurements. As the particle size increases the energy gap of 

nanoparticles decreases from 2.15 eV to 1.88 eV. 

According to the literature, crystal structure of synthesized CdSeTe/CdS 

nanoparticles is estimated to have, zinc blend form. CdS shell formation around CdSeTe 
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alloy can be estimated from XRD pattern. After the CdS shell formation, XRD peaks 

shift to higher diffraction angles, close to 2� degree of the bulk CdS.  

Average crystalline sizes of CdSeTe/CdS nanoparticles were determined by 

using Debye – Scherrer equation (Equation (1.4)). Particle size of core/shell 

CdSeTe/CdS nanoparticles were determined from 1.7 nm, to 3.2nm, sampled at 

different reaction times.  

MTT tests were proved that toxicity of CdSeTe/CdS nanoparticles below 

1.0µg/ml concentration are not lethal for PC3 and MCF7 cells and this concentration is 

suitable for biological applications and confocal microscopy studies. Lethal 

concentrations of CdCl2 and thiourea were also determined by MTT test. Lethal 

concentration of Cd2+ ions was 15.0µg/ml for MC7 cells and 2.5µg/ml for PC3 cells. 

Thiourea is not toxic for MCF7 and PC3 cells. 

Trypan blue measurements reveal that the A549 and MCF7 cancer cells are not 

affected by the nanocrystals but he BEAS-2B cells are very sensitive to the nanocrystals 

and do not proliferate at concentration of 0.5µg/ml. 

Confocal microscope was used to monitor the nanoparticles in MCF7 cancer 

cells. Microscopy images show that, after one hour incubation time, alloy CdSeTe core 

(λem=545nm) and CdSeTe/CdS core/shell nanoparticles (λem=600nm) were 

successfully enter and stay in cell cytoplasm. Both core and core/shell nanoparticles are 

suitable for cell imaging applications.  
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