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ABSTRACT 

STOCHASTIC RESONANCE IN CHUA’S CIRCUIT                        

DRIVEN BY ALPHA-STABLE NOISE 

 

The main aim of this thesis is to investigate the stochastic resonance (SR) in 

Chua's circuit driven by alpha-stable noise which has better approximation to a real-

world signal than Gaussian distribution. SR is a phenomenon in which the response of a 

nonlinear system to a sub-threshold (weak) input signal is enhanced with the addition of 

an optimal amount of noise. There have been an increasing amount of applications 

based on SR in various fields. Almost all studies related to SR in chaotic systems 

assume that the noise is Gaussian, which leads researchers to investigate the cases in 

which the noise is non-Gaussian hence has infinite variance. In this thesis, the spectral 

power amplification which is used to quantify the SR has been evaluated through 

fractional lower order Wigner Ville distribution of the response of a system and 

analyzed for various parameters of alpha-stable noise. The results provide a visible SR 

effect in Chua’s circuit driven by symmetric and skewed-symmetric alpha-stable noise 

distributions. Furthermore, a series of simulations reveal that the mean residence time 

that is the average time spent by the trajectory in an attractor can vary depending on 

different alpha-stable noise parameters.  
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ÖZET 

ALPHA-KARARLI GÜRÜLTÜYLE SÜRÜLMÜŞ CHUA 

DEVRESİNDE STOKASTİK REZONANS 

 

Bu tezdeki temel amaç gerçek hayattaki sinyallere Gauss dağılımından daha iyi 

yaklaşım veren alpha-kararlı gürültüyle sürülmüş Chua devresinde stokastik rezonansı 

(SR) incelemektir. SR olgusu doğrusal olmayan dinamik sistemlerin zayıf sinyallere 

karşı performansının ek gürültüyle arttırılmasıdır. SR’a dayalı uygulamalar çeşitli 

alanlarda gittikçe artmaktadır. SR ile ilgili kaotik sistemlerde yapılan çalışmaların çoğu 

gürültünün Gauss olduğunu varsaymaktadır. Bu durum gürültünün Gauss olmadığı 

dolayısıyla sonsuz varyansa sahip olduğu durumları incelemeye yönlendirmiştir. Bu 

tezde, SR etkisini gözlemlemek için kullanılan spektral güç yükseltimi için sistem 

tepkisinin kesirli düşük mertebeli Wigner Ville dağılımı hesaplanmış ve çeşitli alpha-

kararlı gürültü parametrelerine bağlı olarak analiz edilmiştir. Sonuçlar alpha-kararlı 

simetrik ve simetrik olmayan gürültüyle sürülmüş Chua devresinde gözle görülür bir SR 

etkisi sağladığını göstermiştir. Ayrıca tek bir çekicide ortalama kalma süresinin çeşitli 

alpha-kararlı gürültü parametrelerine bağlı olarak değişebileceği gözlemlenmiştir.  
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 CHAPTER 1

 

INTRODUCTION 

 

In general, noise is considered to have negative effects on the performance of 

any system. In order to suppress or eliminate noise from system, filtering and feedback 

compensation are carried out. However, over the last thirty years the studies have shown 

the positive effects of noise. In nonlinear dynamical systems, the presence of an optimal 

amount of noise provides a better system response than in the absence of noise such as 

enhancement of the degree of coherence (Gang, Ditzinger et al. 1993), amplification of 

the weak periodic signals (Jung and Hänggi 1991) and increase of signal-to-noise ratio 

(SNR) (Benzi, Sutera et al. 1981). This phenomenon is called as stochastic resonance 

(SR) and originally introduced to explain the periodic climatic changes of the Earth’s 

ice ages  (Benzi, Sutera et al. 1981). 

The global climate is modeled as a symmetric double well potential by (Benzi, 

Sutera et al. 1981). The well has two states in which one state represents the Earth’s 

temperature in the ice regime while the other state is in the warm regime. According to 

the climate records, the period for Earth’s climate switching between ice ages and 

warmer regime is around 100.000 years. This time coincides with the period of the 

eccentricity of the Earth’s orbit. However it is considered that the combination of 

stochastic perturbations along with the changing eccentricity cause such dramatic 

changes in climate rather than the eccentricity alone. The tiny oscillations of the Earth’s 

orbital eccentricity are considered as a periodic forcing signal and short-term climate 

fluctuations, due to the annual fluctuations in solar radiation, are modeled as the 

Gaussian white noise and the transition from ice climate to warm climate perturbed by 

the earth’s orbital eccentricity have been induced in the presence of a non-zero noise 

level of the atmosphere (Benzi, Parisi et al. 1982; Benzi, Parisi et al. 1983). 

Stochastic resonance has evolved from a very specific context but later on it has 

been observed in many fields of science such as physics (Gammaitoni, Hänggi et al. 

1998; Anishchenko, Neiman et al. 1999), electronic circuits (Anishchenko and 

Safonova 1992; Anishchenko, Neiman et al. 1993) (Gomes, Mirasso et al. 2003) 

(Korneta, Gomes et al. 2006), chemical reactions (Leonard and Reichl 1994), biological 
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systems (Moss, Ward et al. 2004), biomedical applications (Collins, Imhoff et al. 1996) 

(Richardson, Imhoff et al. 1998) (Kurita, Shinohara et al. 2011) (Morse and Evans 

1996) telecommunication (He, Lin et al. 2010). 

Usually stochastic resonance is observed when a sub-threshold signal (the signal 

below a specified threshold) is subjected to an optimal amount of noise. In such systems 

when the input signal is supra-threshold (the signal above a specified threshold) then the 

addition of noise will not have any beneficial effect on the systems output. However, 

studies have shown that SR can also occur when the input forcing is supra-threshold or 

aperiodic signal. The term aperiodic SR (ASR) (Collins, Chow et al. 1995) and supra-

threshold SR (SSR) (Stocks 2000; McDonnell, Stocks et al. 2008) has been defined to 

describe this type of behaviors.  

The characteristics of SR such as the spectral power amplification (SPA), the 

signal-to-noise ratio (SNR) or cross-correlation between the input and output signals 

measure have a maximum at an optimal amount of noise. For sub-threshold periodic 

signals, the peak value corresponding to the input signal frequency in the output power 

spectrum enhances with the addition of an optimal amount noise. This enhancement in 

the presence of noise reveals the effect of SR. Since the SNR is not appropriate method 

for aperiodic signals to quantify the SR, the correlation between the input and output 

signals has been proposed to characterize the system’s response (Collins, Chow et al. 

1995). Other measures of SR, based on residence time distribution have been introduced 

in (Gammaitoni, Marchesoni et al. 1995) . 

 

1.1. Outline of the Thesis 

 

The main structure of this thesis is divided into six parts. The first chapter gives 

a general overview of stochastic resonance introducing the motivation and applications. 

Chapter 2 provides the detailed study of SR beginning with its physical background. 

The α-stable distributions and the spectral representations in impulsive environments 

are explained in Chapter 3. In Chapter 4, the Chua’s circuit driven α-stable noise and 

the harmonic balance method used to analyze the dynamics of the model theoretically 

are introduced. The simulation results to observe the effect of SR in the framework of 

spectral power amplification and the mean residence times under the various noise 

parameters are presented in Chapter 5. The simulations will be implemented by using 
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computational software program Matlab
®
. Finally, Chapter 6 concludes with the main 

results of the thesis and proposes the future work. 

 

1.2. Motivation and Applications 

 

     There have been increasingly important applications of SR in various fields.  

According to the Web of Science, the total number of publications with the topic of 

stochastic resonance is around 5000 over a period of a thirty years and physics, 

engineering, mathematics, computer science and neurosciences are the first-five subject 

areas. Even there are 54 papers focused on stochastic resonance in telecommunication. 

The works related to stochastic resonance show that how stochastic resonance is still an 

interesting subject to work on. Some of many interesting research results are briefly 

explained below: 

The first demonstration of stochastic resonance in biology utilized the 

mechanoreceptors, sensory hairs, located on the tail fan of the crayfish. These receptors 

evolved for the purpose of long-range detection of predators are sensitive to the water 

vibrations and pressure waves caused by the prey or enemies. The presence of an 

optimal amount of noise may enhance the sensitivity of receptors to detect weak signals 

of the crayfish predator’s while it’s still far enough away and enable to crayfish escape 

(Douglass, Wilkens et al. 1993) (Bahar and Moss 2003). 

The noise-enhanced feeding behaviour of the paddlefish (Polyodon spathula) 

has been investigated by (Russell, Wilkens et al. 1999). Paddlefish uses electroreceptors 

to detect its feed Daphnia. Electroreceptors in paddlefish form a passive sensory system 

to detect electrical signals from external sources such as swarms of Daphnia. A 

randomly varying electrical field was applied in the environment of paddlefish. The 

amplitude of noise has been varied and the strike locations where the paddlefish catch 

the prey were measured. It was found that with the optimal amount of noise the distance 

that the paddlefish can sense and capture the prey will be increased. For higher noise 

levels, the sensitivity of the electroreceptors gradually decreases again, resulting in 

almost no detection (Russell, Wilkens et al. 1999; Freund, Schimansky-Geier et al. 

2002). 

Stochastic resonance has been also observed in biomedical applications. The 

human tactile sensation has been observed in (Collins, Chow et al. 1995). A non-zero 
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level of random vibration added to the stimulator enhances the detection of weak 

touches on the observers’ fingers (Collins, Imhoff et al. 1996). Direct electrical 

stimulation of the touch receptors with a randomly varying electrical current added to a 

touch stimulus resulted in SR for tactile sensation (Richardson, Imhoff et al. 1998). 

Medical devices such as vibrating gel-based insoles have been created based on 

the effect of stochastic resonance to improve the balance of elderly people and nerve 

sensitivity of patients with diabetic neuropathy or stroke. This enhancement of 

sensitivity in the foot nerves potentially reduces the risk of fall and sway (Priplata, 

Niemi et al. 2003; Priplata, Patritti et al. 2006) .  

The wearable orthopaedic device, named sensorimotor enhancer, has been 

designed to enhance one’s sense of touch through a small vibrator attached to the side of 

the fingertip (Kurita, Shinohara et al. 2011) in which the experimental results in various 

sensing ability tests have confirmed that the application of appropriate vibrations 

enhanced the tactile sensitivity of the fingertip. This special glove can hold objects 

using less force, sense filaments at lighter filaments and assist people with medical 

conditions that reduce their sense of touch. 

The effective auditory noise significantly increased tactile sensations of the 

finger, decreased luminance and contrast visual thresholds (Lugo, Doti et al. 2008) 

The application of stochastic resonance for efficient encoding of auditory 

information has been used in cochlear implants (Morse and Evans 1996; Stocks, 

Allingham et al. 2002).  The hair cells of the inner ear normally convert mechanical 

sound vibrations into electrical signals. Hair cells can be severely damaged and the loss 

of hair cells causes hearing loss. Since an acoustic stimulus cannot produce neural 

activities in the loss of hair cells the amplification of sounds by a hearing aid will not be 

helpful. Cochlear implants which are surgically inserted into the ear restore hearing to 

the profoundly deaf people. They replace the function of the hair cells and work by 

direct electrical stimulation of the cochlear nerve. The addition of an optimum amount 

of noise to cochlear implant signals can improve the detection of low amplitude signals 

at the threshold level and the discrimination of smaller frequency differences at the 

supra-threshold level (Morse and Roper 2000).  The addition of noise providing 

randomness to the output of cochlear implant electrical signals also enables to stimulate 

nerve fibres in a natural way. 
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SSR has been investigated to improve speech comprehension in patients with 

cochlear implants in (Stocks, Allingham et al. 2002). 

(Kay, Michels et al. 2006)  has presented the occurrence of SR in a suboptimal 

detector. The enhancement of detection performance can be achieved by adding noise to 

the data under certain conditions. The criterion for the detection performance has been 

chosen as the probability of a decision error and the probability density function of this 

optimal noise has been determined as a Dirac delta function for the minimum 

probability of a decision error in which the optimal additive noise corresponds to a 

constant signal (Kay, Michels et al. 2006).  

A spectrum-sensing method for cognitive radio (CR) based on SR has been 

proposed in (He, Lin et al. 2010) in which the performance of secondary users (SU) to 

detect weak signals of primary signals (PU), especially under low SNR conditions, can 

be enhanced and the spectrum utility in CR networks can be improved. 

The effect of noise on the memory elements such as memristors, memcapacitors 

and meminductors have been investigated in (Stotland and Di Ventra 2011).  In their 

study, a physical model of memory resistor has been used to illustrate the phenomenon 

of SR to show that under specific conditions on the noise intensity the memory can 

actually be enhanced. 

(Marks, Thompson et al. 2002)  has studied the enhancement of the appearance 

of an image using stochastic resonance. 

Stochastic resonance can be used to improve the detection of small features such 

as lesions or tumours in mammograms (Peng, Chen et al. 2009) 

The effects of background white noise on the memory performance of 

inattentive school children have been investigated in (Söderlund, Sikström et al. 2010) 

 

1.3. Objective of the Thesis 

 

According to literature, noise-added systems and in particular stochastic 

resonance are still an interesting subject to work on. Almost all studies related to the 

stochastic resonance phenomenon in the chaotic systems assume the noise is Gaussian 

hence has a finite variance. Instead, in this thesis we consider non-Gaussian noise case 

and investigate the stochastic resonance in a Chua’s circuit subjected to alpha-stable 
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noise which has better approximation to a real-world signal than Gaussian distribution 

in certain cases.  

 

The aims of this thesis can be listed as follows: 

i. To determine the threshold amplitude value of periodic input forcing as a 

function of its frequency, 

ii. to study the amplification of the sub-threshold input periodic signal as a 

function of the noise intensity to observe the effect of SR and analyze the 

response of model by varying alpha-stable parameters, 

iii. to determine the mean residence time in an attractor under the various noise 

parameters to investigate the change of the average lifetime of a trajectory in 

an attractor. 

 

 

 

 

 

 

 

 



 

7 

 

 CHAPTER 2

 

STOCHASTIC RESONANCE 

 

In nonlinear systems the response of a sub-threshold periodic input signal can be 

improved by the presence of a particular amount of noise. This sub-threshold signal is 

too weak to switch between states; however threshold crossings can occur with the 

addition of noise to the system.  

SR has been observed in a variety of physical systems and even in biological 

sensory neurons, suggesting that it may play an important role in such systems. 

Experiments have demonstrated that stochastic resonance occurs in sensory systems 

such as human tactile sensation (Collins, Imhoff et al. 1996), human visual perception 

and human vision (Lugo, Doti et al. 2008). The existence of stochastic resonance has 

been investigated also at the level of vital animal behaviour such as mechanoreceptors 

in crayfish (Douglass, Wilkens et al. 1993) and the animal feeding behavior (Russell, 

Wilkens et al. 1999).  

SR can be observed in bistable systems as well as chaotic systems (Anishchenko 

and Safonova 1992). SR phenomenon has been also investigated in Chua’s circuit 

driven by Gaussian noise and either amplitude-modulated or frequency modulated 

signal (Anishchenko and Safonova 1994). SR in the presence of multiplicative noise 

and the effect of oscillations in a symmetric double well potential driven by a sub-

threshold periodic forcing has been demonstrated in (Gammaitoni, Hänggi et al. 1998). 

Although traditional SR requires the weak and periodic signal, aperiodic (Collins, Chow 

et al. 1995) (Barbay, Giacomelli et al. 2000) and suprathreshold signals (Stocks 2000; 

McDonnell, Stocks et al. 2008) can also be the input of certain SR systems.  High 

frequency SR in Chua’s circuit and the effect of SR in a Chua’s circuit perturbed by 

Gaussian noise has been studied experimentally in (Gomes, Mirasso et al. 2003) and 

(Korneta, Gomes et al. 2006), respectively. The most common and extensively studied 

noise is the additive zero-mean white Gaussian noise however it can be non-Gaussian 

noise or chaotic signals. The investigation of the double-well potential model driven by 

the α-stable and Lѐvy type noise have shown the presence of stochastic resonance in 

(Dybiec and Gudowska-Nowak 2006) (Dybiec and Gudowska-Nowak 2009). 
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The other effect is coherence resonance in which the optimum response (in the 

sense of optimal periodicity) occurs for a non-zero value of noise  but in the absence of 

periodic forcing (Palenzuela, Toral et al. 2001). 

In (Kosko and Mitaim 2001) (Kosko and Mitaim 2003) a forbidden interval has 

been defined in the studies of stochastic resonance in threshold based systems. The 

forbidden interval theorem gives both necessary and sufficient conditions for the SR 

effect. The forbidden interval is defined as the region           where   is the 

threshold value and binary signal takes values from {    }. According to forbidden 

interval theorem, SR will occur for all finite variance noise distributions if and only if 

the mean of the noise is outside the forbidden interval and for all infinite variance stable 

noise distributions, if and only if the location parameter of the noise is outside the 

forbidden interval. Although in SR studies the noise is usually assumed to be finite 

variance such as Gaussian, (Kosko and Mitaim 2001) concludes that SR occurs also for 

impulsive noise.  

 

2.1. Physical Background 

 

The physical mechanism of Stochastic Resonance can be simply explained by 

investigating the model of an over-damped bistable system shown as in Figure 2.1. 

The potential of the particle at any position x is given by V(x)  

 

 ( )   
 

 
   

 

 
   (2.1) 
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Figure 2.1. The bistable potential with the parameters       

 

 

The well has two stable states and the minima of V(x) are located at      

where     (  ⁄ )    and unstable one at    . In the absence of external forcing 

signal, the particle will stay in one of the equilibrium states at the bottom of the wells. 

The motion of a Brownian particle in a double well potential V(x) perturbed by 

an external periodic forcing and noise is described as (Gammaitoni, Hänggi et al. 1998) 

 

  ( )

  
  

  ( )

  
      (   )   ( ) (2.2) 

 

where   ( ) is the position of particle and      (   )  is the deterministic forcing 

signal acting on the system.  

 ( ) indicates white Gaussian noise,   ( )  (   )      ( )   with 

intensity D. 

The time-dependent bistable potential shown as in Figure 2.2 is described as 

 

 (   )   ( )         (   ) (2.3) 

 

where    and    are the amplitude and frequency of the periodic signal respectively. 
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Figure 2.2. The cyclic variation of bistable potential with periodic modulation. 

 

 

  If a weak periodic force is applied to the system, the potential well is tilted 

asymmetrically up (Figure 2.2 (b)) and down one period later (Figure 2.2 (d)). The 

raising and lowering the wells continues periodically, as shown in Figure 2.2. 

Since the periodic forcing is too weak there is no crossing from one potential 

well to the other one. The particle will oscillate in one of the wells but will not hop to 

the other. However, a sufficiently strong level of noise can cause the particle to 

overcome the energy barrier and move into the deeper potential well. At the next half 

cycle the potential well is tilted again so noise can again push the particle into the 

adjacent well. The arrows shown in Figure 2.2 indicate the possible direction of 

crossing the well in the presence of noise.  

In the absence of periodic forcing the particle fluctuates around one of the 

equilibrium points of the potential wells. With the addition noise, the particle switches 

between two wells with a mean rate (frequency) given by the Kramer’s rate   .  

The Kramer’s rate is defined as the characteristic escape rate from a stable state 

of the potential  
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  (    )

    (    )         ( 
  

 
)  (2.4) 

 

where      
   ( )

    ,       and      are the coordinates of the potential maximum and 

minimum, respectively.    is the potential barrier and D is the noise intensity. 

The Kramer’s rate depends on the noise intensity. The reciprocal of the 

Kramer’s rate refers to the periodicity or mean residence time in one of the potential 

well and given as 

 

  ( )      ( ) (2.5) 

 

When a weak periodic forcing is applied to the system  noise induced switching 

between the potential wells can become synchronized with the weak periodic forcing. 

The synchronization between the input signal and noise occurs when the mean 

residence time satisfies the time-scale matching requirement 

 

      ( ) (2.6) 

 

where TΩ is the period of the input periodic forcing term. 

The Kramer’s rate also determines the probabilities of switching events.  

 

2.2. Characteristic of Stochastic Resonance 

 

The quantitative characteristics of Stochastic Resonance depend on the physical 

mechanism of the system, the kind of nonlinear system driven, the character of the input 

signal and the noise. These characteristics such as spectral power amplification (SPA) 

(Jung and Hänggi 1991), signal-to-noise ratio (SNR) (Benzi, Sutera et al. 1981), mutual 

information (Bulsara and Zador 1996), correlation coefficient (Collins, Chow et al. 

1995) and residence-time distributions (Gammaitoni, Hänggi et al. 1998) can be 

calculated analytically and numerically, or measured in physical systems.  
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2.2.1. The Spectral Power Amplification (SPA) 

 

Spectral power amplification is defined by the ratio of the power stored in the 

response of system at the frequency of input signal to the the power of the input forcing 

signal at the frequency of input signal (Jung and Hänggi 1991).  

 

  
    (  )

   (  )
   (2.7) 

 

where      (  ) and    (  ) are the power spectrums of the output and input signals 

calculated at the frequency    of the input signal, respectively. 

 

2.2.2. The Signal-to-Noise Ratio (SNR) 

 

The signal-to-noise ratio is defined as the ratio of the output signal power at the 

input signal frequency to the background noise power spectrum (Anishchenko, Neiman 

et al. 1999): 

 

    
 

    
( )

(  )
 ∫     ( )  

    

    

  (2.8) 

 

 ∫     ( )  
     

     
 indicates the output signal power and the noise background     

( )( ) 

is calculated at the frequency of the input signal,     . The frequency range 

corresponds to       and    is the frequency resolution. 

 

2.2.3. The Residence-time Distribution 

 

The output of bistable system can be converted into a two-state dynamics by 

setting two crossing levels, for instance 

 

 ( )  {
    ( )            

    ( )             
 (2.9) 
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where c is a constant and            is the crossing threshold value. In the two-state 

dynamics the system resides at any time in either one of the two states. 

The residence time     is defined as the time the particle spends in one state. The 

distribution of the residence time decays exponentially of the following form  

 

 ( )       (    ) (2.10) 

 

where  ( ) indicates the residence time distribution function. 

 The area under the peak of the residence time distribution corresponding to the 

input forcing signal frequency goes through a maximum as a function of noise intensity. 

The switching time    is the time between two consecutive arrivals to one of the 

states. The probability distribution of switching times is usually determined for the 

stochastic resonance phenomenon in biological systems. It corresponds e.g. to an inter-

spike interval histogram recorded from real periodically forced sensory neurons 

(Longtin 1993). 

 

2.3. Response to a Weak Signal 

 

The theoretical analysis of stochastic resonance systems is often very difficult 

due to the complexity of the systems. Approximation models  have been adopted in 

some cases. Some of them for the theoretical analysis are two-state model, Fokker-

Planck equation and linear-response theory. 

The dynamical equation of the model of over-damped oscillator given in 

Equation 2.2 is rewritten as 

 

 ̇            (     )  √   ( )  (2.11) 

 

The corresponding Fokker-Planck equation (FPE) for the transition probability 

density   (            ) gives the evolution of probability density function (pdf) in 

time (Anishchenko, Neiman et al. 1999): 
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{           (     )  }   

   

   
 (2.12) 

 

The equation can be rewritten in the form 

 

   

  
              (2.13) 

 

where     is the unperturbed Fokker-Planck operator (   ) and     ( ) represents the 

periodic perturbation: 

 

    
 

  
(    )   

  

   
     (2.14) 

 

    ( )        (     )    ⁄     (2.15) 

 

The probability in the asymptotic limit        is expanded into Fourier series 

 

    (      )  ∑   ( )exp  (      ) 

 

    

 (2.16) 

 

The nonlinear response of the stochastic system to the harmonic force can be 

found  in (Anishchenko, Neiman et al. 1999): 

 

〈 ( )〉    ∑    exp  (      ) 

 

    

 (2.17) 

 

where the    are the complex amplitudes that depend on the noise intensity D, the 

signal frequency  , and the amplitude A. 
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The spectral power amplification η is defined as (Jung and Hänggi 1991) 

 

  (
     

 
)

 

    (2.18) 

 

2.4. Two-State Theory  

 

The master equation for the probabilities   
 
( ) of residing in one of the two 

states      is defined as (Anishchenko, Neiman et al. 1999) 

 

       
 
( )̇     ( )  

 
   ( ) (2.19) 

 

where   
 

 and      are the transition rates from one state to another. 

Using the normalization condition   
 
( )      , Equation 2.19 can be 

rewritten as the form 

 

     
 
( )̇   [  ( )  

 
   ( )]      ( ) (2.20) 

 

The solution of this rate equation can be found analytically for a given   
 
( ).  

The following form for the transition probability densities   ( ) is proposed by 

(McNamara and Wiesenfeld 1989) 

 

  ( )     exp [ 
   

 
    (  )] (2.21) 

 

where     is the Kramer’s rate. 

It is clear from Equation 2.21 in the absence of external force signal (   ) the 

probability densities of switching   ( ) are equal to the Kramer’s rate   . 

Any statistical characteristics of the process can be evaluated by conditional 

probabilities. Using the solution of Equation 2.20 the conditional probability is 

determined as (Anishchenko, Neiman et al. 1999) 
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 (         )    
 
( ) (    )    ( ) (    )  (2.22) 

 

The mean value obtained by averaging the  ( ) with initial conditions           

    (  ) over the ensemble of the noise realizations is given by the following 

expression 

 

〈 ( )      〉  ∫  (         )   (2.23) 

 

The asymptotic limit (    ) is obtained in (Anishchenko, Neiman et al. 

1999) 

 

〈 ( )〉      
     

〈 ( )      〉    ( )        ( )  (2.24) 

 

with the amplitude    ( ) and the phase lag  ( ). 

 

  ( )  
   

 

 

   

√       
 (2.25) 

 

 ( )        (
 

   
) (2.26) 

 

The autocorrelation function is defined as 

 

〈 (   ) ( )      〉  ∫∫    (         ) (         )     (2.27) 

 

The phase-averaged power spectral density  ( ) is defined as 

 

 ( )  ∫      〈〈 (   ) ( )〉〉
 

  

   (2.28) 
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where the inner brackets denote the ensemble average over the realizations of the noise 

and outer brackets indicate the average over the input initial phase   in (2.26). 

The spectral power amplification (SPA) is determined in (Anishchenko, Neiman 

et al. 1999) 

 

  
   

   
 

  (       )
 (2.29) 

 

And the signal-to-noise ratio for the two state model  

 

     (
   

 
)
 

   (2.30) 

 

From Equation 2.30 it is seen that a single maximum as a function of the noise 

intensity D occurs.   
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 CHAPTER 3

 

ALPHA-STABLE DISTRIBUTIONS 

 

The Gaussian distribution have played an important role in signal processing. 

This is because it is characterized completely by the first moment and the second 

moment of the distribution and  it often leads to reduction in the analytical complexity 

of a system and ensures analytical solution in most cases. 

However, many physical phenomena are non-Gaussian and show a very 

impulsive (heavy-tailed) distribution. Gaussian distribution is inadequate for modeling 

such heavy-tailed and asymmetric densities. Stable distributions, also sometimes 

referred to as the α-stable distributions, have received a growing interest due to the 

ability to model signals of this impulsive nature. This type of a signal tends to produce 

outliers. These distributions share same characteristics with the Gaussian distribution 

such as the stability property and central limit theorems. The parameter α, is the 

characteristic exponent that varies over      . In fact, the Gaussian distribution is 

a special case of the alpha-stable distribution (   ).   

Stable distributions have found numerous applications in various fields such as 

economics, hydrology, physics, biology and telecommunication. The most important 

application of the stable distribution in signal processing is in the area of impulsive 

noise modeling.  

The signal detection method in non-Gaussian environment can be found in 

(Chiang and Nikias 1990; Tsihrintzis and Nikias 1995). The frequency estimation of the 

sinusoidal signals in α-stable noise environment has been analyzed in (Altınkaya, Deliç 

et al. 2002). The methods for parameter estimation (Ma and Nikias 1995; Tsihrintzis 

and Nikias 1996) and blind channel identification with the non-Gaussian input of 

parameters have been introduced in (Ma and Nikias 1995). Parameter estimation of 

skewed α-stable distributions has been presented in (Kuruoglu 2001). 

Statistical moments give information on the characteristics of  signals. Although 

the whole spectrum of statistical moments range from order 0 to order   shown as in 

Figure 3.1 (Nikias and Shao 1995), the traditional signal processing methods utilize 

only the second-order moments. However, signal processing methods based on  -stable 



 

19 

 

distributions have no finite first-or higher order moments for       and , they have 

only the first moments for       and all the fractional lower order moments 

(FLOMs) of order p where    .  

 

 

 

 

Figure 3.1. Statistical moments 

(Source: Nikias and Shao 1995) 

 

 

3.1. Alpha Stable Random Variables 

 

Two of the most important properties of the stable distribution are the stability 

property and the Generalized Central Limit theorem.  

The stability property is defined as a characteristic of the stable distribution. The 

sum of independent, identically distributed (i.i.d.) stable random variables will retain the 

shape of the original distribution. 

The generalized central limit theorem states that the sum of many random 

variables with identical distributions, not necessarly with finite variances, converges to 

a stable distribution. 

 

Definition 3.1.1 (Samorodnitsky, 1994): A random variable X is said to have a 

stable distribution if for any positive numbers A and B, there is a positive number C and 

a real number D such that  

 

 
(3.1) 
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where    and    are independent realizations of  , and denotes equality in 

distribution.  

 

Definition 3.1.2 (Samorodnitsky1994): A random variable X is said to have a 

stable distribution if for any    , there is a positive number    and a real number    

such that  

 

                  (3.2) 

 

where            are identical independent distributions (i.i.d). 

 

Definition 3.1.3 (Samorodnitsky 1994): A random variable X is said to have 

stable distribution if there are parameters                             

     and   -        such that its characteristic function can be described as: 

 

 ( )  {
  exp {       (    (sign  )   

  

 
)     }     if  α 1

   exp {        (    (sign  )   
  

 
)     }     if  α=1

                    

 

(3.3) 

where 

 

    ( )  {
         if     
         if     
         if     

     (3.4) 

 

A stable distribution is characterized by four parameters: α, β, µ, σ and denoted 

by   (     ): The characteristic exponent denoted by α measures the thickness of the 

tails of the distribution and show the impulsiveness of the signal. A stable distribution 

with characteristic exponent α is called α-stable. The skewness parameter β describes 

the symmetry and µ is a location parameter, it is the mean when      and the 

median when      . The scaling σ or the dispersion parameter       determines 

the spread of distribution around its location parameter µ in the same way that the 

variance of a Gaussian distribution determines the spread around the mean. 
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The α-stable distribution is symmetric when     and represented by      . 

“~” refers to “has distribution”. 

For     distributions, the location parameter   is the mean when       and 

the median when      . 

The characteristic function of the     distribution is in the form 

 

 ( )     {         } (3.5) 

 

In this case, the characteristic function of a     distribution is determined only 

by the characteristic exponent and dispersion,  

 

 ( )     {      }             (3.6) 

 

where              and       

A     distribution is standard if    . 

The probability density function (pdf) of  α-stable distributions can be found by 

taking the conjugate of inverse Fourier transform of the characteristic function 

(Shanmugan and Breipohl 1988). 

 

 ( )  
 

  
∫  ( )     

 

  

            (3.7) 

 

However, with few exceptions, there is no closed form expression for the 

probability density function. The exceptions are: 

 

I. Gaussian distribution,    (     )  

 ( )  
 

  √ 
   { 

(   ) 

   
}  (3.8) 
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II. Cauchy distribution ,    (     )  

 

 ( )  
  

 ((   )     )
        (3.9) 

 

III. Lévy distribution,      (     )  

 

 ( )  
 

√  (   ) 
    ( 

 

 (   )
)     (3.10) 

 

 

3.1.1. Properties of α-Stable Distributions 

 

The following properties shown below are the basic properties of stable 

distributions given by (Samorodnitsky and Taqqu): 

 

Property 3.1.1.1   Let    and    be independent random variables with 

     (        ) and      (        ) then         (     ) with 

 

  (  
    

 )       
    

      
 

  
    

 
                  (3.11) 

 

 

Property 3.1.1.2   Let X be a random variable with location µ,      (     ) and c 

be a real constant then         (       ). 

 

Property 3.1.1.3   Let     (     ) and c be a non-zero real constant then  

 

     (      sign( )    )                                       if   α 1  (3.12) 
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     (      sign( )     
 

 
 (ln     ))             if   α=1 (3.13) 

 

   For any        

 

    (     )       (      )  (3.14) 

 

Property 3.1.1.4       (     ) is symmetric about µ if and only if     .  

 

Property 3.1.1.5   Let     (     ) with       then 

 

 {    }            for any            (3.15) 

  

This implies that α-stable distributions with     have infinite second and 

higher order moments and  if       then 

 

                for all         (3.16) 

  

  If      then even first-order moment   { }   . 

 

 {    }            for any          (3.17) 

 

3.1.2. Generation of Stable Random Variables 

 

For any symmetric α-stable random variables     (     ) where   (     can 

be generated applying the following transformation. 

 

  
    (  )

{    ( )}   
   {

    (    )

 
}
(   )  

   (3.18) 

 

where V is a random variable uniformly distributed on (   ⁄    ⁄ ) and W is an 

exponential random variable with mean one (Janicki and Weron 1994). 
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The following algorithm provides a good technique of computer simulation of skewed 

stable random variables (Janicki and Weron 1994). 

 

    (     ) with   (   )  (       and           (3.19) 

 

       
   ( (      ))

{   ( )}
 
 

 {
   (   (      ))

 
}

   
 

  (3.20) 

 

     
        (     (    ))

       
   (3.21) 

 

     [   (       (     (    )))]
   

 (3.22) 

 

where V is a random variable uniformly distributed on (   ⁄    ⁄ ) and W is an 

exponential random variable with mean one. 

Using a numerical approximation of the formula in Equation 3.7 α-stable 

densities can be constructed in the general case. Figures 3.2- 3.6 present the result of 

computer simulations of such densities for different values of α, β, σ parameters and 

also show how α-stable density functions illustrated as  ( ) depend on parameters. The 

location parameter µ is set to zero for all case. 

It is shown as in Figure 3.2 that the distribution is highly impulsive with small 

characteristic exponent α. Figure 3.3 shows the dependence of density on scaling 

parameter σ. When the skewness parameter β is positive, the distribution is skewed to 

the right when β is negative, it is skewed to the left shown as in Figures 3.4-3.5. The 

decrease of parameter α leads to the increase of non-symmetric behavior of distributions 

in skewed distributions (i.e., β is different from 0) shown as in Figure 3.6-3.7. 
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Figure 3.2. Symmetric stable distributions for various α with σ=1.0 

 

 

Figure 3.3. Symmetric stable distributions for various σ with α=1.2 
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Figure 3.4. Stable distributions for various β with α=0.8 and σ=1. 

 

 
 

Figure 3.5. Stable distributions for various β with α=0.5 and σ=1. 
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Figure 3.6. Stable distributions for various α with β=0.8 and σ=1. 

 

 
 

Figure 3.7. Stable distributions for various α with β=-0.8 and σ=1 
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3.2. Fractional Lower Order Moments (FLOMs) 

 

Moments of a distribution provide important statistical information about the 

distribution. However integer moments such as second and higher orders are not valid 

for α-stable distributions. Although the second-order moment of a SαS random variable 

with       does not exist, all moments of order less than α exists and are called the 

fractional lower order moments (FLOMs) (Shao and Nikias 1993). 

The p-th order moment for a SαS random variable X is defined as 

 

 (    )   (   ) 
 
                 (3.23) 

    

where 

 (   )  
     (

   
 ) ( 

 
 )

 √  ( 
 
 
)

   (3.24) 

and  ( ) is the gamma function defined by 

 

 ( )  ∫     
 

 

         (3.25) 

 

 Covariation which is analogous to covariance (Shanmugan and Breipohl 1988) 

can be computed using the fractional lower order moments (FLOM) (Shao and Nikias 

1993). 

Let X and Y be jointly SαS random variables with       , location 

parameter    , and dispersions    and    respectively then the covariation between X 

and Y is defined by 

 

       
 (       )

 (    )
   (3.26) 

 

where 

     { 
                                
        ( )                   

 (3.27) 
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It has been also shown that a     random variable has also finite negative-order 

moments (Ma and Nikias 1995). 

Let X be a SαS random variable with    . Then the negative moments are 

defined as 

 

 (    )   (   ) 
 
              (3.28) 

 

where  (   ) has the same form as in Equation 3.24. 

Let X be a SαS random variable with dispersion      and the location 

parameter    . The norm of X is defined as 

 

‖ ‖  {
  

                     
                           

    (3.29) 

 

If     and  {  }    
  

 
  then 

 

‖ ‖       
 
  ( {  })

 
  

 

√ 
 (3.30) 

 

Thus, the norm ‖ ‖  is a scaled version of the dispersion and determines the 

distribution of X through the characteristic function  

 

 ( )  {
   { ‖ ‖ 

       }       

   { ‖ ‖      }      
 (3.31) 

 

3.2.1. Fractional Lower-Order Covariance (FLOC)  

 

The covariation does not work when characteristic exponent      since it is 

defined for           

To overcome this limitation, the fractional-lower order covariance (FLOC) of α-

stable distribution is defined as a new measure of similarity (or difference) between two 

p-th order processes (Ma and Nikias 1996). 
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The FLOC between the two random process            is described as 

 

     
( )    (  ( )

     (   )   )     for        
 

 
     

 

 
  (3.32) 

 

where     denotes operation as given in Equation 3.27. 

The FLOC between two random processes                  can be calculated 

using time average of the sample (Ma and Nikias 1996). If the sample is 

{                    }  m=1, 2 then the FLOC is estimated by  

 

 ̂    
∑                        (            )    

      

     
 (3.33) 

 

where       (    )        (     )      (   )      

 

3.3. Parameter Estimation for Skewed-Symmetric Stable Distributions 

 

Several parameter estimators have been proposed in the literature. The methods 

for parameter estimation with the special case of symmetric stable distributions (   ) 

have been introduced in (Ma and Nikias 1995). Kuruoglu (2001) has developed 

estimators for the parameters of skewed α-stable distributions as a generalizations of 

previously suggested methods for symmetric case. 

The characteristic exponent α can be computed by using the sinc estimator 

(Kuruoglu 2001). 

The solution of Equation 3.34 gives the estimate of characteristic exponent α 

 

    (
  

 
)  [ (

     

    
          )]

  

  (3.34) 

 

where   
  

 
  and the absolute and signed fractional moments are given as 
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∑    

 

 

   

              
 

 
∑   

   

 

   

 (3.35) 

3.4. Spectral Representations in Impulsive Environments 

 

Suppose that { ( )} is a wide-sense stationary sequence with zero mean. The 

second-order moment, i.e. the autocorrelation sequence is defined by 

 

  ( )     (   ) ( )   (3.36) 

 

where E is the expectation operator and the power spectrum 

 

  ( )  ∑   ( )     

 

    

 (3.37) 

 

Since the α-stable distribution process have no second or higher-order statistics 

the power spectrum cannot be applied and new spectral analysis are needed to define for 

impulsive environments. 

 

3.4.1. Covariation Spectrum 

 

In (Jiang and Zha 2008) a fractional order spectrum called covariation spectrum 

has been proposed. 

The covariation spectrum is as the Fourier transform of autocovariation 

function    ( ): 

 

   ( )  ∫    ( )
 

  

        (3.38) 

 

 

 

where 

 

 



 

32 

 

   ( )    ( )  (   )   
 ( ( ) (   ))     )

 (  (   )  )
  (   )              (3.39) 

  

3.4.2. α-Spectrum 

 

Fractional lower-order spectrum named α-spectrum of the output is defined in 

(Ma and Nikias 1995) as: 

 

  ( )        ( )   [   ∑      
 

   

    

]

 

    ((
 

 
)

     

) ( ( ))         (3.40) 

 

where           is the generalized output covariation ,  ( ) is the windowed z-

transform of the channel output     

 

  ( )  ∑      
 

 

    

 (3.41) 

 

and the input-output relation of the linear system with impulse response    is given by 

the convolution sum  

 

   ∑       

 

   

    (3.42) 

 

and the z-transform of the impulse response is as 

 

 ( )  ∑      

 

   

  (3.43) 

 

   is impulse response coefficients of finite impulse response system and the 

input    is i.i.d SαS random variable with dispersion     

The α-spectrum of the output   ( ) calculated on the unit circle       is 



 

33 

 

 

  (   )     (   )( (   ))        | (   )|
 

 (3.44) 

This relation coincides with the relation in (Shanmugan and Breipohl 1988)  for 

   . 

In (Jiang and Zha 2008) the connection between α-spectrum and covariation 

spectrum has been proved such that α-spectrum on unit circle is q-order interceptive 

form of covariation spectrum 

 

   ( )     
   

{  ( )}           (3.45) 

 

3.4.3. Fractional Lower order Pseudo Power Spectrum (FLOPPS) 

 

A fractional lower order pseudo power spectrum (FLOPPS) or in short pseudo-

power spectrum (PPS) has been defined to analyze better frequency domain 

characteristics of alpha-stable distribution noise in (Jiang, Huang et al. 2010). 

The α-stable distribution signal has no second-order moments hence no power 

spectrum. However sampled sequences x(n) can be transformed to  ̃( ) 

 

 ̃( )   ( )                    (3.46) 

 

where      is defined as in Equation 3.27. 

Then the autocorrelation function of  ̃( ) is 

 

   ( )     ̃( ) ̃ (   )   [ ( ) 
 
 
   (   ) 

 
 
 ]           

                     ( )    ( )   (   ) 
 
  ( )                       

(3.47) 

 

The FLOPPS is calculated as the Fourier transform of the autocorrelation 

function of transformed signal  

 

 (   )  ∑  ( )      

 

    

  (   ) 
 
    (3.48) 
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All processes are assumed to be stationary in the estimation of α-spectrum and 

covariation spectrum. Since these spectrums are not applicable to non-stationary 

signals, we need to define a new approach for the spectrum analysis of non-stationary 

processes in an impulsive environment. The next section presents the time-varying 

spectral representation. 

 

3.5. Time-Frequency Analysis 

 

Time-frequency representation (TFR) are useful tools for analyzing the behavior 

of non-stationary signals whose spectral properties change with time.  

The Wigner Ville distribution (WVD) is one of the quadratic time frequency 

representations (QTFR). The WVD can be used to analyze signals that are contaminated 

by noise that is Gaussian. The chaotic waveforms have also been analyzed in the time-

frequency domain especially by Wigner distribution because of the non-stationary 

nature of the chaotic waveforms (Özkurt 2004). However in the presence of additive 

impulsive noise the WVD can be severely degraded and any information about the 

desired signal is lost. A robust Wigner Ville distribution using fractional lower order 

statics (FLOS), called as fractional lower order Wigner Ville Distribution (FLOWVD), 

which is capable of analyzing non-stationary signals in impulsive environment has been 

introduced in (Griffith Jr, Gonzalez et al. 1997).  This method combines the traditional 

WVD with the FLOC. On the other hand, a robust FLOS-based Polynomial Wigner 

Ville Distribution, Fractional Lower-Order Polynomial Wigner-Ville Distribution 

(FLOPWVD) has been introduced in (Djeddi and Benidir 2004). 

 

3.5.1. Wigner-Ville Distribution 

  

Wigner Ville spectrum is an effective tool of time-frequency analysis for non-

stationary random processes. The Wigner distribution of the signal  ( ) is expressed as 
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  (   )  ∫  (  
 

 
)   (  

 

 
)          

 

  

 (3.49) 

 

For the given associated spectrum  ( ) of the signal  ( ), WVD has the 

following form in the frequency domain 

 

  (   )  ∫  (  
 

 
)  (  

 

 
)          

 

  

 (3.50) 

 

A discrete-time WVD (DWVD) has the form 

 

  (   )   ∑ (   )  (   )          

 

   (3.51) 

 

where    is the sampling rate. 

The most critical properties of WVD are listed as: 

Property 3.5.1.1    WVD conserves total energy 

 

   ∫ ∫   (   )    
 

  

 

  

 (3.52) 

 

Property 3.5.1.2    WVD satisfies marginal properties 

 

∫  (   )     ( )  

 

  (3.53) 

 

∫  (   )     ( )  

 

      (3.54) 

 

Property 3.5.1.3   If a signal y is the convolution of x and h, the WVD of y is the 

convolution in time  between the WVD of x and the WVD of h 

 

 ( )  ∫  (   ) ( )  
 

  

    (3.55) 
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                                               (   )  ∫   (     )  (   )  
 

  

     

 

3.5.2. The Evolutive Spectrum 

 

Since the WVD is formed by taking the Fourier transform of the autocorrelation 

of a signal  ( ) with respect to the delay variable τ, the evolutive spectrum of a random 

process is defined as (Griffith Jr, Gonzalez et al. 1997) 

 

  (   )  ∫ { (  
 

 
)   (  

 

 
)}          

 

 (3.56) 

 

By interchanging the integration and expectation operators, the evolutive 

spectrum can be interpreted as the expectation of all the WVDs corresponding to their 

respective members of the ensemble of random processes { ( )},  

 

  (   )   {  (   )}  (3.57) 

 

The evolutive spectrum for discrete time stochastic signals is described as 

 

  (   )  ∑  (   )       

 

   (3.58) 

 

where   (   )   { (   )  (   )} is the autocorrelation function of the 

stochastic process { ( )}.  

 

 

3.5.3. Fractional Lower Order Wigner Ville Distribution (FLOWVD) 

 

In the presence of α-stable noise, second-order measures such as the 

autocorrelation function and the higher-order moments of signals become unbounded 

and variance could not use as a measure of dispersion. Since the evolutive spectrum is 

based on the use of the autocorrelation function for calculating the power spectrum, it 



 

37 

 

becomes useless for characterizing impulsive noise processes such as α-stable 

signals (   ).  

The solution to this problem has been introduced in (Griffith Jr, Gonzalez et al. 

1997)  by defining a new WVD based on fractional-lower order covariance measure. 

The Fourier transform of the FLOC defined as in (3.44) is as fractional lower-

order evolutive spectrum  

 

  
   (   )   {    } 

  
   (   )  ∫ {    (     )     (     )}         

 

 
(3.59) 

 

which is  the expectation of an ensemble of TFRs of the form (FLOWVD) 

 

  
   (   )  ∫    (     )     (     )         

 

    (3.60) 

 

i.e,   
   (   )   {  

 (   )}  is similar to Equation 3.57. 

 

The discrete-time version of fractional lower-order Wigner Ville distribution 

(FLOWVD) is in the form 

 

  
   (   )   ∑    (   )     (   )       

 

 (3.61) 

 

The FLOWVD is itself a standard WVD, where the input signal is     ( ) 

rather than  ( ) and has the following properties (Griffith Jr, Gonzalez et al. 1997): 

 

 

Property 3.5.3.1   The FLOWVD is real i.e., 

  
   (   )  [  

   (   )]
 
   (3.62) 

 

Property 3.5.3.2   The FLOWVD is time-invariant for all p  where      . 

If  ( )   (    )   then 
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   (   )    

   (      )  (3.63) 

 

Property 3.5.3.3   The FLOWVD is frequency-invariant. 

If  ( )   ( )       ,   where            and       is the supremum of the 

support of X(f) in the interval         , then 

 

  
   (   )    

   (      )   (3.64) 

 

Property 3.5.3.4   The marginal energy density with respect to time is  

 

∫  
   (   )     ( )     

 

   (3.65) 
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 CHAPTER 4

 

CHUA’S CIRCUIT 

 

4.1. Introduction 

 

Most real-world phenomena are nonlinear and linear systems are not able to 

describe the real world but only are valid for certain ranges of physical variables. Rich 

repertoire of nonlinear dynamic systems may display a variety of behaviors such as 

limit-cycle, bifurcation and chaos.  

Chaos can be defined as aperiodic long-term behavior in a deterministic system 

that exhibits sensitive dependence on initial conditions (Strogatz). Aperiodic long-term 

behavior means that the system’s trajectories do not settle down to fixed points or 

periodic orbits as time tends to infinity. 

The most important property of chaotic systems is sensitive dependence on 

initial conditions. This property implies that a slightest change in the initial conditions 

can cause a completely different behavior in the output.  The other properties are given 

as (Parker and Chua 1987). 

i)  Trajectories are bounded, 

ii)  the limit set for a chaotic behavior is related to fractals and Cantor sets, 

iii) chaotic systems have noise-like spectrum. 

 

Chaos theory has been applied in many scientific and engineering disciplines 

such as mathematics, physics, chemistry, economics, biology,  ecology, mechanical 

systems, nonlinear electronic circuits and secure communication (Pecora and Carroll 

1990) (Cuomo and Oppenheim 1993) in which two synchronized sequences of chaotic 

signals can be used for encoding private electronic communications. It has been also 

shown that the sensitivity of chaotic systems to small perturbations can be used to 

stabilize or control the systems. Since a chaotic system is composed of an infinite 

number of unstable periodic orbits, the trajectories can be directed to a desired periodic 
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orbit. This is done by perturbing the input parameters just enough to make the system 

on that closed orbit when the trajectory comes nearby the desired periodic orbit.  

Similar efforts are being made to control epileptic brain seizures which exhibit 

chaotic behavior (Schiff, Jerger et al. 1994).  

Chua’s circuit is an example of a chaotic system. It can be easily implemented in 

many different ways.  An experimental confirmation of n-double scrolls has been given 

by (Gotz, Feldmann et al. 1993). Higher dimensional Chua’s circuits have been 

investigated in (Chua, Wu et al. 1993). Secure communications via chaotic 

synchronization have been experimentally demonstrated using Chua’s circuit (Parlitz, 

Chua et al. 1992; Cuomo and Oppenheim 1993). 

In the rest of the chapter the Chua circuit is investigated in detail. 

 

4.2. Chua’s Circuit 

 

  Chua’s circuit is the simplest autonomous circuit which exhibits a rich variety 

of dynamical behaviors including bifurcations and chaos. It can be constructed by three 

linear elements (one inductor and two capacitors) and one nonlinear resistor 

experimentally. The behavior of the Chua’s circuit with respect to its parameters has 

been extensively studied both in simulations and experiments in many papers (Parker 

and Chua 1987; Chua, Wu et al. 1993). 
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Figure 4.1. Chua’s Circuit 
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Figure 4.2. Chua’s Circuit nonlinear characteristic function 

 

 

The dynamics of autonomous Chua circuit is described by the following set of 

three differential equations (Parker and Chua 1987) 

 

 
  

  
                        

      

   

  
 

(     )

 
  (  ) 

    

  

  
  

(     )

 
   

(4.1) 

 

where    and    are the voltages across capacitors    and    respectively, I is the 

current through the inductor and  the characteristic of nonlinear resistor    described by 

the piecewise-linear function  (  )  is given as 

 

 (  )       
     

 
(               )   (4.2) 
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By making the following changes 

 

        
  

  
   

  

  
       

  

  
         

  
  

  
      

   
 

 
            

                   ̃  
  

  
        ̃  

  

  
       

 

   
   

(4.3) 

 

The dimensionless form of Equation 4.1 is obtained as 

 

     ̇   (     ( )) 

    ̇                   

 ̇                       

(4.4) 

 

where  

 

 ( )    ̃  
  ̃    ̃

 
(           )    (4.5) 

 

4.2.1.  The Chua’s Circuit Driven by α-Stable Noise 

 

The equations describing the nonautonomous Chua’s circuit driven by α-stable 

noise shown in Figure 4.3 are defined by 

  

 
  

  
      ( )   ( ) 

  

   

  
 

(     )

 
  (  ) 

   

  

  
  

(     )

 
   

 

 

(4.6) 

 

where  ( )        (     ) represents the external deterministic forcing signal and 

 ( ) indicates α-stable noise and the piecewise nonlinear function is as Equation 4.5. 
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Figure 4.3. Chua’s circuit driven by α-stable noise 

 

 

In our study the parameters of dimensionless form of autonomous Chua’ circuit 

are selected to be such that  

 

               ⁄       ̃             ̃       ⁄   ⁄  (4.7) 

 

4.3.  Harmonic Balance Method 

 

The aim of this section is to provide the approximation behavior of nonlinear 

dynamic system for the given parameters and compute the oscillation frequency 

theoretically which will be compared with the one obtained from simulation results. 

The chaotic behavior of nonlinear dynamic system is investigated by the 

harmonic balance method (Genesio and Tesi 1991; Genesio and Tesi 1992). The 

method focuses on determination and stability analysis of equilibrium points and limit 

cycles of nonlinear dynamic systems. 

The dynamic system is governed by the form 

 

 ( ) ( )   ( ) ( )    (4.8) 

 

where y(t) denotes the output of system, D is the differential operator,  ( ) and   ( ) are 

two polynomial operators and   ( ) is a nonlinear real valued function. 
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The system described by Equation 4.8 can be considered as a feedback structure 

shown as in Figure 4.4 where the linear part can be modeled by the transfer function  

 ( )  
 ( )

 ( )
  and the nonlinear subsystem is represented by the single-valued real 

function  N(y). 
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Figure 4.4. Lur’e form 

 

 

Conjecture (Genesio and Tesi 1989):  A Lur’e feedback system presents chaotic 

behavior when a stable predicted limit cycle (PLC) and an unstable equilibrium point 

(EP) interact with a suitable filtering effect along the system.  

The conjecture can be reduced to the satisfying the following conditions: 

i) existence of a seperate unstable EP, 

ii) existence of a stable LC, 

iii) interaction between LC and EP, 

iv) suitable filtering effect along the system. 

 

4.3.1. Existence of an Equilibrium Point 

 

The equilibrium points are the solution of Equation 4.8 which satisfy  

 

    ( ) (  )          (4.9) 
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Apart from the singularity occurring at     , the other equilibrium point must satisy 

the relation 

 

 (  )

  
 

 

 ( )
       (4.10) 

 

The stability of equilibrium points can be checked by linearizing  ( ) at    and by 

determining the eigenvalues of the linearized system. 

 

4.3.2. Existence of a Predicted Limit Cycle (PLC) 

 

It is known that there must exist at least two limit cycles for the chaotic motion. 

Therefore the conditions for the presence of limit cycle can be done approximately by 

the well-known describing function method. 

The solution of the Equation 4.8 is assumed in the form 

 

 ( )          (  )               (4.11) 

 

The corresponding output f(y) is expanded in Fourier series as  

 

 ( ( ))    (     )     (     )     (  )    (4.12) 

 

The nonlinear system N is characterized by the dual describing function terms as: 

 

  (     )  
 

    
∫  (         )  

 

  

 (4.13) 

 

  (     )  
 

   
∫  (         )       

 

  
     (4.14) 

 

By discarding the higher harmonics in Equation 4.12 and substitute the 

Equations 4.11, 4.13 and 4.14 into the dynamic system governed by 4.8 then the 

conditions given below are obtained  
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 ( )  (     )           

 (  )  (     )             
(4.15) 

 

A PLC must satisfy the conditions given in Equation 4.15. 

 

4.3.3. Interaction of PLC and EP 

 

The condition expressing the possibility of interaction between the PLC and EP 

follows from the solutions of equations 4.11 and 4.15 in the form 

 

            (4.16) 

 

4.3.4. Filtering effect 

 

The accuracy of the prediction of limit cycles for the system (4.8) is based on 

the filtering effect which was approximately translated in 

 

  (  )    (   )                   (4.17) 

 

The condition requires a suitable filtering effect of the system in the sense that 

high values of this element ensure a pure oscillation corresponding to the PLC, whereas 

its reduction leads to a domain of parameters where the chaotic behaviour occurs.  

Hence the final behaviour of the system under consideration depends on its 

filtering properties. 

 

4.4.  Chaos Prediction on Chua’s Circuit Using Harmonic Balance      

Method 

 

Chua circuit can be transformed into the following third-order scalar differential 

equation 
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 (   )

   

   
  

  

  
      (

   ( )

   
 

  ( )

  
   ( ))     (4.18) 

 

From a system theoretical point of view Chua’s circuit can be considered as a 

particular case of a Lur’e system. 

The corresponding linear part is described by  

 

 ( )  
 ( )

 ( )
 

 (      )

   (   )        
    (4.19) 

 

For the nonlinear part the piecewise linear function given in Equation 4.5 is 

replaced with a smooth cubic function given as  

 

 ( )         
     (4.20) 

 

This is done by a least square fit of the cubic function to the piecewise-linear 

function over an interval approximation         (Gonzalo 2010) where 

 

       
  ̃  (            )(  ̃    ̃)

    
   (4.21) 

and 

   
   (    ) (  ̃    ̃)

    
   (4.22) 

 

For the parameters   ̃        ̃      ⁄          ⁄  corresponding 

smooth cubic parameters are obtained as                         . 

Since this cubic function preserves the dynamical behavior of original piecewise 

function, we use the cubic function to represent the characteristics of nonlinear resistor 

so that it provides computational facility in our theoretical analysis. 

 ( )    is found from Equation 4.15 and since   ( )         
   and the 

equilibrium points which are solutions of Equation 4.9 are calculated as 

 

     
             

           
           (4.23) 
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Equations 4.13-4.14 can be solved with respect to             to give the 

parameters of approximate periodic solutions in the form of Equation 4.11. 

Since   (     ) is a real number then from Equation 4.15 

 

  ( (  ))           (4.24) 

 

 is obtained. 

Hence the oscillation frequency w of the PLC can be found using Equation 4.24 

and it depends only on the linear part of the system. 

Substituting Equation 4.20 into Equation 4.24 and solving for w, 

 

        (
   

 
)  [(

   

 
)
 

  ]

 

  (4.25) 

 

gives two real values for the characteristic frequency           and          . 

Substituting Equation 4.9 into Equation 4.13 and 4.14 the describing function 

terms are obtained as  

 

     (     )         
  

 

 
    

  (4.26) 

 

     (     )          
  

 

 
    

      (4.27) 

 

The application of harmonic balance with Equation 4.15 yields the parameters 

 

  ̂   √
    

   
 

 

    (  )
            ̂  √

       

    
 

 

     (  )
       (4.28) 
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Equation 4.28 requires the following predicted limit cycle (PLC) condition  

 

 (  )  
 

     
     (4.29) 

 

For  (   )           parameters are evaluated such as 

 

  ̂          and     ̂               (4.30) 

 

The stability of the PLCs can be checked by the application of the Loeb criterion 

(Tesi, Abed et al. 1996) 

 

   (  (  )   )

  
|
  

   {
 

  
 (  )  }        (4.31) 

 

Since L(jw)  is real-valued, the Loeb stability condition reduces to the condition 

 

   (  (  )   )

  
|
  

            (4.32) 

 

The condition of interaction given in Equation 4.16 is also satisfied that there is 

no interaction between the PLCs and equilibrium points  

 

      ̂    ̂ (4.33) 

 

For the autonomous Chua’s circuit parameters given as below  

 

               ⁄    ̃             ̃       ⁄⁄  

 
(4.34) 

the largest Lyapunov exponent has been also computed as 0.3167 which is positive as 

expected (Strogatz ; Parker and Chua 1987). 
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According to harmonic balance method two symmetrical predicted limit cycles 

with respect to the origin have been observed for the chosen parameters and they have 

projections on x around the equilibrium points.  
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 CHAPTER 5

 

SIMULATION RESULTS 

 

In this chapter the simulation results provide the main results of this research. 

The circuit proposed in Chapter 4 is simulated by means of a Runge Kutta integration 

rule with step size       .  

In the absence of an external noise a phase trajectory belongs to either one or 

another attractor depending on the initial conditions shown as in Figure 5.1. The 

parameters of Chua circuit have been chosen in such a way that two single-scroll 

symmetrical attractors are present in the absence of external forcing and which attractor 

is chosen depends on initial conditions.  

 

 

 

Figure 5.1. Two symmetrical single-scroll attractor 
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The voltage  ( ) and its power spectrum are shown in Figure 5.2 and Figure 5.3, 

respectively. 

 

 
 

Figure 5.2. Voltage on x(t) for one single-scroll attractor 

 

 

Figure 5.3. Power Spectrum of Autonomous Chua Circuit 
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The power spectrum confirms the chaotic nature since it has continuous 

broadband spectrum. The characteristic (oscillation) frequency of autonomous Chua’s 

circuit is indicated as a maximum in the power spectrum and denoted as    . The 

maximum peak is located at               (                ). It coincides with 

the analytical result which is found approximately                  in Chapter 4. 

The spectrum is also characterized with several peaks at other relatively high 

frequencies. 

Without noise and external forcing there is no possibility to jump from one 

attractor to the other. However the presence of external periodic forcing signal can 

induce jumps between the attractors only if it is suprathreshold which means its 

amplitude is above a certain threshold value. A minimum amplitude value of periodic 

signal required to induce jumps is determined as a function of its frequency. This 

threshold value is plotted as a function of the ratio of input frequency    to the 

characteristic frequency     in Figure 5.4. 

 

 
 

Figure 5.4. The dependence of the threshold value of the external periodic forcing signal 

on its frequency   . 
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The results indicate that the threshold amplitude is relatively low for low 

frequencies. At high frequencies the threshold amplitude to induce jumps increases. If 

we look into the Figure 5.4 and then it is realized that the threshold is low when it is  

close to the characteristic frequency and it increases for smaller and larger frequencies. 

 

 

 

 

 

Figure 5.5. Threshold value of the external periodic signal as a function of the ratio of its 

frequency     to the characteristic frequency    . 
  

 

 

The frequency of the external periodic forcing is set at               where 

     ⁄      corresponds to the region around the lowest value of threshold amplitude. 

Since we want to induce jumps between the attractors by the addition of noise, the 

amplitude of the external forcing is set close to but below the minimum threshold value 

to ensure that the input signal is sub-threshold. Under these conditions, the addition of 

small amount of noise enables to  induce jumps between the attractors.  
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In this section, spectral power amplification (SPA) denoted by η, has been used 

to quantify the stochastic resonance. Since we deal with the non-stationary signals, we 

need to describe the power in terms of  time and frequency. Therefore, we use fractional 

lower order Wigner Ville distribution (FLOWVD) which is the modification of WVD in 

impulsive environments described in Chapter 3. 

In order to characterize the noise-dependent amplification, we define a spectral 

amplification parameter 

 

  
    (  )

    (  )    
 

(5.1) 

 

where    is the frequency (rad/s),      (  ) is the power spectral density of output at 

the input frequency,     (  )      is the power spectral density of output at the input 

frequency in the absence of noise signal and   is a scale parameter of external α-stable 

noise. 

The amplification of the sub-threshold input periodic signal as a function of the 

noise intensity with      is shown as in Figures 5.6-5.10 whereas with     is 

shown as in Figures 5.11-5.12 and with      in Figures 5.13-5.14. The results have 

been averaged over 50 realizations.  

All simulations show a visible stochastic resonance (SR) effect in Chua’s circuit 

driven by α-stable noise with         and     . Figures also show multiple 

maxima as a function of noise scale parameter which is called stochastic multi-

resonance (SMR) (Vilar and Rubi 1997). The SR effect fades as the noise grows more 

impulsive (Kosko and Mitaim 2001) (Kosko and Mitaim 2003). The optimal scale 

parameter      becomes smaller as the noise becomes more impulsive.      is the value 

of noise scale parameter in which the SPA has a maximum and the SR effect occurs. 



 

56 

 

 

Figure 5.6. The spectral power amplification vs. σ for              . 

 

 

Figure 5.7. The spectral power amplification vs. σ for              . 
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Figure 5.8. The spectral power amplification vs. σ for              . 

 

 

Figure 5.9. The spectral power amplification vs. σ for              . 
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.  

Figure 5.10. The spectral power amplification vs. σ for              . 

 

 

Figure 5.11. The spectral power amplification vs. σ for              . 
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Figure 5.12. The spectral power amplification vs. σ for              . 

 

 

Figure 5.13. The spectral power amplification vs. σ for               . 
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Figure 5.14. The spectral power amplification vs. σ for               . 
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Figure 5.15. shows the relation between characteristic exponent α and scale 

parameter σ for                  . For small α values the maximum response 

occurs at small scale parameter hence      becomes small and for large α values the 

     increases for all three skewness parameter β. However, in skew-symmetric 

cases,             , the dependence is almost flat for some intermediate α values 

between 1.2 and 1.9. 

 

 

 

 

Figure 5.15. The relation between characteristic exponent and scale parameter 

 

 

 

 

 

 

 

 

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

characteristic exponent 

s
c
a
le

 p
a
ra

m
e
te

r 


o
p
t

 

 

=0

beta=-1

beta=1



 

62 

 

 

The fading effect for     can be generalized as an exponential relationship 

between the optimal noise dispersion      and the characteristic exponent α is shown in 

Figure 5.16. The      becomes smaller as the noise becomes more impulsive. The 

relation between dispersion and scale parameter is given as seen in Chapter 3.1.  

For skew-symmetric cases the relation between the optimal noise dispersion 

     and the characteristic exponent α is shown as in Figures 5.17-5.18. From the 

figures it can be observed that for some α values the relation provides a resonance 

effect. 

 

 

 

Figure 5.16. Exponential law for      and α for    . 
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Figure 5.17. The relation between      and α for    . 

 

 

 

 

Figure 5.18. The relation between      and α for     . 
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Figures 5.19 and 5.21 show the effect of noise parameter skewness with 

                , respectively.  

The two-state process which takes into account only transitions between the 

attractors and ignores the detailed motion within each attractor, denoted by  ( ) takes 

values only    depending on the selected attractor as either below or above the 

specified threshold level.  The threshold level for crossing is chosen as 1 V.  

 

 

 

Figure 5.19. Trajectories of the output with       
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Figure 5.20. Trajectories of the output with     

 

 

Figure 5.21. Trajectories of the output with      . 
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Beginning with the Gaussian noise which is special case of α-stable noise 

(   ) Figures 5.22-5.27 show the variation of the mean residence time as a function 

of scale parameter of noise σ for the skew symmetric case (   ).  

Two-state dynamics have been used to compute the MRs in a selected attractor 

i.e. upper scroll attractor in our case. The results have been averaged for a set of 100 

residence times. 

As α decreases, MRs also decrease as a function of scale parameter σ. On the 

other hand, as scale parameter σ increases for each α value, MRs first increase and then 

decrease. 

 

 

 

Figure 5.22. Mean residence time vs. scale parameter σ for Gaussian case. 
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Figure 5.23. Mean residence time vs. scale parameter σ for α=1.9 

 

 

 

Figure 5.24. Mean residence time vs. scale parameter σ for α=1.8 
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Figure 5.25. Mean residence time vs. scale parameter σ for α=1.6 

 

 

Figure 5.26. Mean residence time vs. scale parameter σ for α=1.3 
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Figure 5.27. Mean residence time vs. scale parameter σ for α=1.2 
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The mean residence times in a single-scroll attractor for a specified 

characteristic exponent (i.e.      ) and for symmetric and skew-symmetric noise 

distributions,          are shown as seen in Figure 5.28. MRs first increase and 

then decrease as a function of scale parameter. 

 

 

 
Figure 5.28. Mean residence time vs. σ for α=1.6 with             
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The mean residence time for various characteristic exponents in the case 

            is shown as in Figure 5.29, 5.30 and 5.31, respectively. When α 

becomes larger mean residence time also becomes larger for symmetric and skew-

symmetric cases. 

 

 

 

 

Figure 5.29. Mean residence time vs. scale parameter σ for various α and β=0. 
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Figure 5.30. Mean residence time vs. scale parameter σ for various α and β=1. 

 

 
 

 

Figure 5.31. Mean residence time vs. scale parameter σ for various α and β=-1. 
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The mean residence times for various characteristic exponents α for a specified 

σ are shown as in Figure 5.32.  MRs decrease when noise becomes more impulsive for 

both symmetric (    ) and skew-symmetric cases (i.e.     ).  From the Figure 

5.32 it can be seen that with the increase of α MR increases however, when     

(Gaussian case) mean residence time decreases. 

 

 

 

Figure 5.32. Mean residence time vs. α for σ=0.01. 
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 CHAPTER 6

 

  CONCLUSION 

 

In this thesis, we studied the stochastic resonance in Chua’s circuit driven by 

alpha-stable noise. We first determined a threshold value for the amplitude of input 

periodic signal as a function of its frequency to ensure that it could not induce jumps 

between the attractors in the absence of noise. Then the response of system in the 

presence of noise was evaluated through fractional low order Wigner Ville distribution 

in the framework of spectral power amplification as a measure of SR. All simulations 

have shown a visible stochastic resonance (SR) effect in Chua’s circuit driven by α-

stable noise with β=0, 1 and also-1. Simulation results also show multiple maxima as a 

function of noise scale parameter. It has been observed that the optimum noise 

dispersion in the case that SPA has a maximum decreases as the noise distribution 

becomes more impulsive. The maximum of amplification factor decreases with 

decreasing characteristic exponent for symmetric case. Hence the SR effect fades as the 

noise grows more impulsive. In skew- symmetric cases for some characteristic exponent 

α values the relation between the optimal noise dispersion and α provides a resonance 

effect. 

Another aim of this thesis is to analyze the effect of noise parameters on lifetime 

of a trajectory spent in an attractor. By investigating the mean residence times it has 

been observed that when α decreases, MRs also decrease as a function of scale 

parameter σ. On the other hand, as scale parameter σ increases for small α values (i.e. 

a=1.2, 1.3), MRs decrease whereas for α values between the 1.3 and 2, MRs first 

increase and then decrease. 

As a further study Chua’s circuit driven by α-stable noise can be implemented in 

Field Programmable Gate Array (FPGA) to use in secure digital chaotic communication 

system. The performance of sensor network i.e. olfactory system can be enhanced by the 

addition of an optimum amount noise. 
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