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We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within
supersymmetric gauge extensions of the standard model with a generalized supersymmetry breaking
sector. If the superpotential neutrino Yukawa terms are forbidden by the gauge symmetry [such as a
U�1�0], sub-eV scale effective Dirac mass terms can arise at tree level from hard supersymmetry breaking
Yukawa couplings, or at one loop due to nonanalytic soft supersymmetry breaking trilinear scalar
couplings. The radiative neutrino magnetic and electric dipole moments vanish at one-loop order.
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The discovery of neutrino oscillations has confirmed
that neutrinos are massive and that leptons exhibit non-
trivial mixing, providing the first particle physics evidence
for physics beyond the standard model (SM). Neutrino
masses require the existence of novel matter species not
found in the SM spectrum and/or the violation of the global
symmetries of the SM via higher-dimensional operators.
Extensions incorporating such additional structure should
ideally be capable of improving the ultraviolet behavior of
the SM beyond Fermi energies. Low-energy softly broken
supersymmetry thus provides a well-motivated theoretical
framework in which to incorporate neutrino mass genera-
tion mechanisms.

Many mechanisms are known for generating light
Majorana or Dirac neutrino masses (see, e.g., [1–4]).
Several scenarios rely upon the supposition that the right-
handed neutrinos have no gauge quantum numbers with
respect to the low-energy gauge group. One example is the
celebrated seesaw mechanism [1], in which large right-
handed Majorana mass terms occur together with electro-
weak scale Dirac mass terms to generate ultralight
Majorana neutrinos which are (primarily) left-handed, by
mixing. The right-handed Majorana masses most naturally
arise if these fields have no gauge quantum numbers.
Right-handed neutrinos are SM gauge singlets, but they
can be charged under additional low-energy gauge sym-
metries (as is generic in four-dimensional string models). If
right-handed neutrinos are not complete (low scale) gauge
singlets, then these mass generation scenarios are not
viable, at least not in their simplest implementation.

A notable exception is the case of Dirac neutrinos,
which result if the lepton number is an exact symmetry.
As Dirac neutrino masses originate from electroweak
breaking, the neutrino Yukawa couplings must be exceed-

ingly small. This can occur if they are forbidden at the
renormalizable level by symmetries and generated from
higher-dimensional operators. Previous work [5] assumes
that such operators occur in the superpotential.

In this Letter, we demonstrate that appropriately sup-
pressed Dirac neutrino mass terms can arise from general-
ized supersymmetry breaking terms in models in which
the right-handed neutrinos are charged under additional
gauge symmetries. Such symmetries forbid the usual
neutrino superpotential Yukawa terms, but allow higher-
dimensional operators which lead to suppressed effective
Dirac neutrino masses upon supersymmetry breaking.

Fermion masses represent the breakdown of chiral flavor
symmetries, and thus can be parametrized by scalar field
vacuum expectation values (VEVs) of scalar fields charged
under the flavor symmetry. In theories with low-energy
supersymmetry, it has long been known [6] (see also [7])
that such chiral flavor symmetries may be broken by the
VEVs of auxiliary fields, rather than their scalar counter-
parts. If the renormalizable superpotential Yukawa cou-
plings and right-handed neutrino Majorana mass terms are
forbidden, fermion masses are generated either (i) at
tree level due to hard supersymmetry breaking effective
Yukawa terms, with

 mf � YeffhHi; (1)

or (ii) radiatively via sfermion–neutralino loops:

 mf �
�

2�

~AM�hHi

~m2 ; (2)

in which � denotes a typical gauge coupling, ~A denotes a
soft trilinear scalar coupling, M� denotes a gaugino mass,
and ~m denotes a typical sfermion mass.
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In generic supersymmetry breaking models, Eqs. (1) and
(2) are naturally in the experimentally favored ranges for
neutrino masses. The effective Yukawa interaction of
Eq. (1) is due to a higher-dimensional Kähler potential
operator suppressed by a high scale M (the messenger
scale). Hence, Yeff � ~m=M, and

 

�
m�

10�3 eV

�
�

�
~m

100 GeV

��
M

1016 GeV

�
�1
: (3)

Because of the large suppression, these effective Yukawa
couplings do not spoil the resolution to the hierarchy
problem, although they are technically hard supersymme-
try breaking operators [8].

Let us now focus on the radiative mass terms of Eq. (2).
These terms are suppressed due to the specific trilinear
scalar couplings (the ~A terms) allowed by the flavor sym-
metry. To understand this suppression, recall that there are
two classes of ~A terms: (i) the standard analytic or ‘‘hol-
omorphic’’ terms, which are coefficients of operators of the
form ���, and (ii) the nonanalytic or ‘‘nonholomorphic’’
terms, which accompany ���� operators.

The nonanalytic trilinear scalar terms, which have pre-
viously been considered in the context of radiative SM
fermion mass generation [6], are well known to be sup-
pressed in typical models by ~m=M [8,9]. Recently, it has
been claimed that without this strong suppression,
Goldstino loops can reintroduce the hierarchy problem
[10]. If these terms are so strongly suppressed, they are
irrelevant for most phenomenological analyses and cannot
provide the dominant contribution to charged fermion
masses. This suppression, however, is of the right order
to be relevant for Dirac neutrino masses:

 

�
m�

10�3 eV

�
�
�

2�

�
~m

100 GeV

��
M

1016 GeV

�
�1
; (4)

which can fall within the experimentally allowed range
without excessive tuning. In addition, the associated radia-
tive neutrino magnetic and electric dipole moments vanish
at the one-loop level.

The nonanalytic terms contribute to quadratic divergen-
ces through tadpole diagrams [11], and thus by definition
are not soft in the presence of gauge singlets. If SM singlets
such as right-handed neutrinos are present these terms can
be rendered soft only if the SM gauge group is extended,
and all SM singlets are charged under the additional gauge
group(s). The simplest extension is an extra Abelian U�1�0,
which can also provide a resolution of the supersymmetric
� problem [12]. The U�1�0 charges can be assigned such
that the neutrino superpotential Yukawa couplings and the
associated trilinear Kähler potential terms are forbidden,
while the nonanalytic trilinear couplings are allowed. The
U�1�0 symmetry also forbids bare Majorana mass terms.

We will now provide a detailed analysis of these points.
Consider the minimal supersymmetric standard model
augmented by three right-handed neutrino superfields,
N̂i � �~�ciR ; �

ci
R �. Supersymmetry breaking occurs in a hid-

den sector via the F component VEVof a chiral superfield
X̂, with hX̂i � F��, and is communicated to the visible
sector at a large scale M via nonrenormalizable inter-
actions. The F component of the neutrino superpotential
Yukawa coupling then gives an analytic scalar trilinear
coupling (the extension to quarks and charged leptons is
straightforward):

 

1

M
�X̂ L̂ �ĤuY�N̂�F � ~L �HuA�~�cR; (5)

with A� � �F=M�Y� � ~mY�, in which F=M� ~m sets the
scale of soft-breaking masses (with ~m� TeV). There are
alsoD term contributions from the Kähler potential, which
are intrinsically nonanalytic. These contributions lead to
suppressed effective Yukawa couplings

 

1

M2
�X̂yL̂ � Ĥu

�Y�N̂�D � L �Hu
~Y��cR; (6)

with ~Y��F=M2� �Y� � � ~m=M� �Y�, which have previously
been studied [13], as well as hard supersymmetry breaking
effective fermion Yukawa couplings of the ‘‘wrong-Higgs-
coupling’’ form (i.e., which couple to Hc

d rather than Hu):

 

1

M2
�X̂yL̂ � Ĥc

d
�Y0�N̂�D � L �Hc

d
~Y0��cR; (7)

with ~Y0� � �F=M2� �Y0� � � ~m=M� �Y0�. In addition to the
usual scalar mass squares,

 

1

M2
�X̂X̂yN̂cK�N̂�D � ~�TRm2

~N
~�cR; (8)

with m2
~N
� �F=M�2K� � ~m2K�, D terms also lead to

‘‘wrong-Higgs-coupling’’ nonanalytic trilinear terms (un-
like the holomorphic couplings, the nonholomorphic cou-
plings are independent of the superpotential):

 

1

M3
�X̂X̂yL̂ � Ĥc

dY0�N̂�D � ~L �Hc
dA0�~�cR; (9)

with A0� � �F2=M3�Y0� � � ~m2=M�Y0�. Thus, A0� is sup-
pressed by F=M2 � ~m=M with respect to A� � F=M. It
is the F=M2 suppression which plays a key role in gen-
erating the appropriate neutrino mass scale. The F=M2

suppression has been discussed previously [13,14]; how-
ever, these works present models in which nonholomorphic
terms lead to Majorana masses and holomorphic operators
lead to Dirac masses, and do not typically allow for the
right-handed neutrinos to have nontrivial charges under
additional gauge symmetries.

To allow the ‘‘wrong-Higgs-couplings’’ of Eqs. (7) and
(9) and forbid the usual neutrino Yukawa couplings [both
tree level and effective, as in Eqs. (5) and (6)], we assume
that the right-handed neutrinos are charged under an ex-
tended gauge group. This prevents N̂i from acquiring a
large tree-level Majorana mass (see [15] for related work
involving discrete gauge symmetries), in contrast to the
seesaw mechanism. It also has the added advantage that the
nonanalytic trilinear couplings of Eq. (9) now are ‘‘soft’’
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supersymmetry breaking terms (i.e., no quadratic diver-
gences are induced in the scalar sector). The simplest
gauging, though not the only logical possibility, is to add
a new Abelian U�1�0 group, with charges that satisfy

 QL 	QHu
	QN � 0; (10)

 QL �QHd
	QN � 0: (11)

These conditions are clearly inconsistent with having a
bare superpotential � term. The remedy is to replace the
� parameter by a chiral SM singlet Ŝ with a nonvanishing
U�1�0 charge QS, with QS 	QHu

	QHd
� 0 [12], such

that an effective � term is induced by the VEV of S. (One
can also require that charged fermion masses are generated
radiatively, which requires much larger soft trilinear cou-
plings.) Upon U�1�0 breaking, superpotential holomorphic
couplings of the form

 

1

M
Ŝ L̂ �ĤuY00�N̂ (12)

may also be generated. As discussed in [5], these may give
rise to an additional (‘‘right-Higgs-coupling’’) contribution
to the Dirac masses of a similar order of magnitude:

 mf �
hSi
M

Y00�hH0
ui �

~m
M

Y00�hH0
ui: (13)

We assume any U�1�0 gauge anomalies are canceled by

GUT remnants at the TeV scale; one can also consider
anomaly free family-dependent U�1�0 groups [7].

We now turn to a more precise analysis of the neutrino
masses generated by Eqs. (7) and (9). The Yukawa inter-
action Eq. (7) induces a Dirac neutrino mass

 m� � hH
0
di

~Y0�; (14)

in agreement with Eqs. (1) and (3). This interaction is
technically hard, but the resulting Higgs mass shift
�m2

Hd
� �
1=�8�2��~Y0y� ~Y0�M2 � �
1=�8�2�� ~m2 �Y0y� �Y0� is

too small to leave any impact on the gauge hierarchy.
For the radiatively induced neutrino masses, the requi-

site Lagrangian terms are

 

gY���
2
p ~�yLN i	

0
i �L 	

���
2
p
g0YQN ~�TRN

0
Z0i	

0
i �

c
R 	 H:c:; (15)

in which N0

0i

denotes the contamination of the neutralino

gauge eigenstate 
0 2 f~Z0; ~B; ~W3; ~H0
d; ~H0

u; ~Sg in the ith
neutralino 	0

i (i � 1; . . . ; 6), and N i is

 N i � cot�WN
0
W3i
� N0

Bi 	 2QL
g0Y
gY
N0
Z0i: (16)

These interactions induce Dirac neutrino masses at
one loop, as shown in Fig. 1 (because of small mixing,
the ~B and ~W3 contributions are typically subdominant to
that of the ~Z0):

 m �ab �
gYg

0
YhH

0
diQN

32�2 fSLac�S
y
LA0�SR�cdS

y
Rdbm	0

i
N0
Z0iN iF�m2

~�Lc
; m2

~�Rd
; m2

	0
i
�g; (17)

in which repeated indices are summed over, and SL and SR
are the sneutrino mixing matrices, defined via

 S yLm2
~�L
SL � diag:�m2

~�L1
; m2

~�L2
; m2

~�L3
�; (18)

 S T
Rm2

~�R
S�R � diag:�m2

~�R1
; m2

~�R2
; m2

~�R3
�: (19)

Their mass squares are obtained by adding the associated
D-term contributions

 

m2
~�L
� m2

~L
	 1

2 cos2�M2
Z 	

1
2QL�

2
Z0

m2
~�R
� m2

~N
	 1

2QN�2
Z0 ;

(20)

with �2
Z0 � 2g02Y �QHu

hH0
ui

2 	QHd
hH0

di
2 	QShSi

2�. hSi
sets the effective � parameter below the U�1�0 breaking
scale [12]. The loop function appearing in Eq. (17) is given
by

 F�m2
1; m

2
2; m

2� �
1

m2
1 �m

2
2

�
ln�1

�1 � 1
�

ln�2

�2 � 1

�
: (21)

�i � m2=m2
i reduces to 1=2m2 when m1 � m2 � m.

Equation (17) shows that neutrinos acquire Dirac masses
radiatively only if the right-handed neutrinos are gauged
under the U�1�0 symmetry. U�1�0 invariance thus not only
ensures that the nonanalytic trilinear terms are soft, but
also provides the chirality flip required for neutrino mass
generation through the ~Z0, which couples to both left- and
right-handed neutrinos.

For M�MGUT, the neutrino masses are in the right
range [the �=2� suppression can be countered by relaxing
the degeneracy among the superpartner masses; this factor
is absent for the tree-level masses of Eq. (14)]. IfM�MPl,
an enhancement is required. For other mediation mecha-

νL νR

νR
~νL

~

Hd
0

 W
3~

Z’
~

Z’
~~B, ,

FIG. 1. The one-loop diagram that generates radiative Dirac
neutrino masses.
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nisms the messenger scale can be lowered, depending on
the details of the model.

The flavor structure of the tree-level Dirac neutrino mass
Eq. (14) depends only on �Y0� in Eq. (7). However, the flavor
structure of the radiative neutrino masses involves m2

~�L
,

m2
~�R

, and A0�. If the left-handed and right-handed sneutri-
nos are approximately degenerate in mass, the neutrino
mixings are controlled by the nonanalytic trilinear cou-
pling A0� alone. Alternatively, A0� may be strictly diagonal,
such that neutrino mixings arise from nontrivial flavor
structures of m2

~�L
and m2

~�R
.

The radiative mechanism that leads to fermion masses
also generically induces electric and magnetic dipole mo-
ments [6,16]. However, in this scenario, the neutrino dipole
moments vanish at one loop. This occurs because the right-
handed neutrinos do not couple directly to the Higgsinos
through Yukawa interactions, and they do not have any
charged gaugino with which to interact. Dirac neutrino
masses also induce dipole moments within the SM of order
10�19�B, which are much smaller than the best available
bounds (of order 10�12�B) [17].

In this Letter, we have discussed mechanisms to in-
duce naturally suppressed neutrino Dirac masses within
gauge-extended models with low-energy supersymmetry.
Neutrino mass terms are generated either at tree level from
formally hard (but in practice safe) effective Yukawa cou-
plings, or radiatively due to nonanalytic soft supersymme-
try breaking interactions. The neutrino mass scale naturally
falls within the experimentally allowed range due to the
F=M2 � ~m=M suppression. Moreover, this mechanism is
operational for models in which the right-handed neutrinos
are not complete singlets of the low-energy gauge group.
This scenario, apart from providing an understanding of
the origin of naturally suppressed Dirac neutrino masses,
allows for a natural resolution of the supersymmetric �
problem and leads to TeV-scale U�1�0 physics which
should be testable at forthcoming colliders such as the
LHC.
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