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Department of Physics,
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ABSTRACT

Q-PERIODICITY, SELF-SIMILARITY AND WEIERSTRASS-MANDELBROT
FUNCTION

In the present thesis we study self-similar objects by method’s of the q-calculus.

This calculus is based on q-rescaled finite differences and introduces the q-numbers, the q-

derivative and the q-integral. Main object of consideration is the Weierstrass-Mandelbrot

functions, continuous but nowhere differentiable functions. We consider these functions

in connection with the q-periodic functions. We show that any q-periodic function is

connected with standard periodic functions by the logarithmic scale, so that q-periodicity

becomes the standard periodicity. We introduce self-similarity in terms of homogeneous

functions and study properties of these functions with some applications. Then we intro-

duce the dimension of self-similar objects as fractals in terms of scaling transformation.

We show that q-calculus is proper mathematical tools to study the self-similarity. By us-

ing asymptotic formulas and expansions we apply our method to Weierstrass-Mandelbrot

function, convergency of this function and relation with chirp decomposition.
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ÖZET

Q-PERİODİKLİK, KENDİNE BENZERLİK VE WEIERSTRASS-MANDELBROT
FONKSİYONU

Bu tezde q-hesaplama metodlarıyla kendine benzeyen nesneler çalışılmıştır. Bu

hesaplama metodu q-yeniden ölçeklendirilen sonlu farklar ve tanımlanan q-sayılar, q-

türev ve q-integral temeline dayanmaktadır. Ana nesne olarak her yerde sürekli fakat

hiçbir yerde türevi olmayan Weierstrass-Mandelbrot fonksiyonları düşünülmüştür. Bu

fonksiyonların q-periyodik fonksiyonlarla bağlantılı olduğu düşünülmüştür. Herhangi

bir q-periyodik fonksiyonun, logaritmik ölçek altında standart periyodik fonksiyonlarla

bağlantısı gösterilmiş, böylece q-periyodiklik, standart periyodiklik olmuştur. Kendine

benzerlik yerine homojen fonksiyonlar tanımlanmış ve bu fonksiyonların özellikleri bazı

uygulamalarla birlikte çalışılmıştır. Fraktallar gibi kendine benzeyen nesneler için ölçek

dönüşümü altında boyut kavramı tanımlanmıştır. Kendine benzer nesneler üstünde çalış-

mak için q-hesaplama, özel bir matematiksel metod olarak gösterilmiştir. Bazı asimptotik

formüller ve açılımlar kullanılarak Weierstrass-Mandelbrot fonksiyonunun yakınsaklığı

ve bu fonksiyonun chirp ayrışması ile ilgisi gösterilmiştir.
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CHAPTER 1

INTRODUCTION

”Geometry has two great treasures; one is the theorem of Pythagoras; the other,

the division of a line into extreme and mean ratio. The first we may compare to a

measure of gold, the second we may name precious jewel. ” J. Kepler

From ancient times, proportions in architecture, in human body, in nature, in mu-

sic,etc. are related with concept of beauty, and become the origin of first mathematical

discoveries. Proportions by integer numbers form the counting as an origin of arithmetic,

number theory and music. And this proportions are used for the first measurement. Then,

the rational numbers and music proportions were explored by Pythagoreans. Counting

fractional parts by rational numbers increase the precision of measurement by many times.

When different measurement units were invented (depending on instruments), it becomes

necessary to connect different measurement scales. These scales are chosen similar geo-

metrical shape. This relativity of scales is related with invariance of an object to different

instruments, measuring its size. This way the scale invariance becomes important concept

of modern science.

Mathematically the scale invariance is related with dilatation of space and can be

formulated as property of the self-similarity. Idea of the homogeneous function fixes in

exact form, what means the self-similarity. A function of one variable f(x) is said to be

scale invariant if under re-scaling of the argument we get the same function, up to the

multiplication constant: f(qx) = Cf(x). In many situations constant C is a function of

scale parameter q: C = F (q) so that f(qx) = F (q)f(x). Exact definition of the scale

invariant or homogeneous function, fixes this function as some power of q: F (q) = qd.

Then we have definition f(qx) = qdf(x) for some exponent d ∈ R. This definition can

be extended to the homogeneous functions of several variables.

The famous Euler theorem, and homogeneous ordinary differential equations, are

two remarkable examples in mathematics, related to these functions. It turns out that these

functions describe many interesting objects with self-similar properties. We mention first

that the mechanical similarity, when the potential energy is a homogeneous function of

coordinates. For example in the Kepler problem. Then possible to make general conclu-

sions about behavior such systems (Landau & Lifshitz, 1960).
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Another application field is probability distribution as a homogeneous function,

which is subject of study the random walk on hierarchical lattices (Erzan & Gorbon,

1999) and probability densities of homogeneous functions and networks (Blumenfeld,

1988).

In Economics, the homogeneity (or scale invariance) means that on the real market

with normal concurrence, does not exist any special time interval. It can be formulated

as: Let X(t) describes changes of the price, then the function ln X(t) has next property:

the increment distribution at any time interval, ln X(t + d)− ln X(t), does not depend on

d (Mandelbrot & Hudson, 2004).

In music, the musical scale is related with musical harmony. In ancient time music

was considered as a strictly mathematical discipline, handling with number relationships,

ratios and proportions. In the quadrivium (the curriculum of the Pythagorean School) the

music was placed on the same level as arithmetic, geometry and astronomy. Music was the

science of sound and harmony. People had realized very early that two different notes do

not always sound pleasant when play together. Moreover the ancient Greeks discovered

that to a note with a given frequency only a those other notes whose frequencies were

integer multiples of the first one, could be properly combined. If, for example, a note

of the frequency 220 Hz was given the notes of frequencies 440 Hz, 660 Hz, 880 Hz,

1100 Hz and so on sounded best when played together with the first one. Furthermore,

examination of different sounds showed that these integer, multiples of the base frequency,

always appear in a weak intensity when the basic note is played. If a string whose length

defines a frequency 220 Hz is vibrating, the general sound also contains components of the

frequencies 440 Hz, 660 Hz, 880 Hz, 1100 Hz and so on. The most important frequency

ratio 1 : 2 is called octave in the Western system of music notation. The different notes

in such a relation are often considered as principally the same, only varying in their pitch

but not their character. The Greek saw in octave the ’cyclic identity’. The following ratios

build the musical fifth (2 : 3), fourth (3 : 4), major third (4 : 5) and minor third (5 : 6).

These ratios corresponds not only to the sounding frequencies but also relative to string

lengths. All this studies of ’harmonic’ ratios and proportions were the essence of music

during Pythagorean times (Rothwell, 1977).

The human ear has a logarithmic response to sound so that the perceived difference

between notes on a scale is the same if their frequencies are spaced as a power law.

For keyboard instruments the entire frequency range can be partitioned into a number of

discrete notes spaced at equal logarithmic intervals. And in this context appearance of

logarithmic scale is natural due to logarithmic spiral structure of our ears.
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The logarithm spiral (see Fig.2.2) has the self-similarity property. The self sim-

ilarity means a similar shape to the original one after scaling. Remarkable geometrical

objects realizing idea of self-similarity are fractals, introduced and intensively studied

by Mandelbrot (Mandelbrot, 1982). In his paper, Mandelbrot used the coast of Britain to

show how an object might have a longer length the smaller the increment of measurement.

He described how Britain could be measured with a long ruler to give a rough approxima-

tion of the length of the coast. Then make that ruler half as long, and the approximation

will be more similar to the true object. One can continue this process many, many times

and never level off; one could never know exactly how long the coast of Britain is (if it

were a true fractal). In his paper, Mandelbrot used the work of English meteorologist

Lewis Richardson, who discovered that the length of a coastline grows the smaller the

unit used to measure it. In fractals we have fixed scale for self-similar object so that it

is related to the dimension of this object. For fractals this dimension is different from

integer valued (topological dimension).

Self-similarity is also used in images and fractal image compression. The advance

of the information age the need for mass information storage and fast communication

links grows. Storing images in less memory leads to a direct reduction in storage cost

and faster data transmissions. These facts justify the efforts, of private companies and

universities, on new image compression algorithms. This algorithm is fractal image com-

pression (Hezar, 1997).

Another application of self-similarity is statistically self-similar signals and signal

processing with fractals. A random process is statistically self-similar with parameter H

if for any real a > 0 it obeys the scaling relation x(t) = a−Hx(at) (Borgnat & Flandin,

2002). Self-similar solutions: T (x, t1) at the some moment t1, is similar to solution

T (x, t0) at some previous moment t0.

As a non-differentiable objects, prolegomena of fractals started from the end of

the nineteenth century, when some mathematicians visualized that it was possible to find

a class of functions that were continuous everywhere but nowhere differentiable. Karl

Weierstrass was one of the first to propose such functions. Extension of this function

by Mandelbrot, called the Weierstrass-Mandelbrot function is an example of fractal in

graph of the function. And it appears in the signal processing and wavelets theory. For

example, the chirp signal processing; the chirp (Compressed High Intensity Radar Pulse)

techniques have been used for a number of years above the water in many commercial

and military radar systems. The techniques used to create an electromagnetic chirp pulse

have now been modified and adapted for acoustic imaging sonar systems.

3



It is worse to notice that in XIX century also new type of calculus take the origin

the so called q-calculus. The q-Calculus, is based on the finite difference re-scaling. First

results in q-Calculus belong to Euler, who discovered Euler’s Identities for q-exponential

functions and Gauss, who discovered the q-binomial formula. These results lead to an in-

tensive research on q-Calculus in XIX century. Discovery of Heine’s formula (Heine,

1846) for a q-Hypergeometric function as a generalization of the hypergeometric se-

ries and relation with the Ramanujan product formula; relation between Euler’s iden-

tities and the Jacobi Triple product identity, are just few of the remarkable results ob-

tained in this field. Euler’s infinite product for the classical partition function, Gauss

formula for number of sums of two squares, Jacobi’s formula for the number sums of four

squares are natural outcomes of q-Calculus. The systematic development of q-calculus

begins from F.H.Jackson who in 1908 reintroduced the Euler-Jackson q-difference op-

erator (Jackson,1908). Integral as a sum of finite geometric series has been considered

by Archimedes, Fermat and Pascal (Andrew & Askey, 1999). Fermat introduced the

first q-integral of the particular function f(x) xα by introducing the Fermat measure at

q-lattice points x = aqn. Then Thomae in 1869 and Jackson in 1910 defined general

q-integral on finite interval (Ernst, 2001). Subjects involved in modern q-Calculus in-

clude combinatorics, number theory, quantum theory, quantum groups, quantum exactly

solvable systems, statistical mechanics. In the last 30 years q-calculus becomes a bridge

between mathematics and physics and intensively used by physicist. It turns out that the

q-Calculus is best adapted for studying the self-similar systems. A q-periodic functions as

a solution of the functional equation f(qx) = f(x) or Dqf(x) = 0 plays in the theory of

the q-difference equations the role similar to an arbitrary constant in the differential equa-

tions. The famous Weierstrass-Mandelbrot function, which is continuous but nowhere

differentiable, is related with q-periodic function. In XX century it becomes connected

with structure of fractal sets discovered by Mandelbrot (Mandelbrot, 1982). It seams that

q-calculus is most suitable mathematical techniques to study the fractals.

In this thesis we are going to study the self-similar objects like fractals in the

form of the Weierstrass-Mandelbrot function by the method of the q-calculus. Those

functions have proved to be very useful to simulate irregular patterns found in nature and

are interesting mathematical objects. The thesis organized as follows;

In Chapter 2 we introduce the basic concepts of q-Calculus as q-number. Specially

the q-periodic functions are described in details. Then we introduce the concept of self-

similarity and homogeneous functions.Results related with homogeneous functions and

some of their applications in geometry and theory of differential equations are presented

4



in Section 2.3.1. In Section 2.3.2 we discuss dimension of the self similar objects. And

in Section 2.3.3, relations of these objects with q-Calculus are established. At the end of

Chapter 2 the Mellin transform and logarithmic scale are derived. In our study we follow

notations from book of Kac and Cheung (Kac & Cheung, 2002).

In Chapter 3 we study some basic asymptotic formulas which are necessary to

understand convergency of infinite sum (Weierstrass-Mandelbrot function). We start from

definitions and theorems on asymptotic expansions and till Bernoulli polynomials, the

Gamma and Beta functions. The last Section 3.1.6 is dealing with the Euler-Maclaurin

formula and Stirling’s asymptotic formula.

In Chapter 4 we apply all above results to study the Weierstrass-Mandelbrot func-

tion and applications in signal processing like the chirp decomposition. In Section 4.1.

we discuss the history of continuous but nowhere differentiable function (Weierstrass-

Mandelbrot function). And Section 4.1.1 we study the self-similarity property of the

Weierstrass-Mandelbrot function. In Section 4.1.2 we show a relation between q-periodic

function and the Weierstrass-Mandelbrot function.In Section 4.1.3 we show convergency

of Weierstrass-Mandelbrot function and in Section 4.1.4 we get the Mellin expansion of

q-periodic functions. We plot the graphs of Weierstrass-Mandelbrot functions in Sec-

tion 4.1.5. In Section 4.2.1 we consider a relation between the stationarity and the self-

similarity. We show that the shift invariant functions are stationary and the scale invariant

functions are self similar. And in Section 4.2.2 we define transformation from the shift

invariance (Fourier transform) to the scale invariance (Mellin transform), which we call

the Lamperti transformation. As a tone is the building block for the Fourier transform,

chirp is the building block for the Mellin transform. At the end of Chapter 4 we study the

chirp decomposition of Weierstrass-Mandelbrot function.

In conclusions we summarize main results obtained in this thesis.
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CHAPTER 2

QUANTUM CALCULUS AND SELF-SIMILARITY

2.1. q-Calculus

The quantum calculus (q-calculus) is an old, classical branch of mathematics,

which can be traced back to Euler and Gauss with important contributions of Jackson

a century ago. In recent years there are many new developments and applications of the

q-calculus in mathematical physics, especially concerning special functions and quantum

mechanics. In this section, we shall give some definitions and properties of q-calculus.

Definition 2.1.0.1 For any positive integer number n,

[n]q =
qn − 1

q − 1
= 1 + ..... + qn−1, (2.1)

is called q-basic number of n. As q → 1, we have [n]q = 1+ .....+qn−1 = 1+ ....+1 = n.

As we shall see [n]q plays the same role in q-calculus as the integer n does in ordinary

calculus.

We can extend our definition of [n]q;

Definition 2.1.0.2 For any real number ζ ,

[ζ]q =
qζ − 1

q − 1
. (2.2)

Example 2.1 Let us compute [1]q, [2]√2, [∞]q ;

1. [1]q = q1−1
q−1

= 1.

2. [2]√2 =
√

2
2−1√
2−1

=
√

2 + 1.

3. [1
2
]q = q1/2−1

q−1
= 1− q1/2 + q1/4 + ..., q < 1.

4. [∞]q = 1 + q + q2 + ... =
∑∞

j=0 qj = 1
(1−q)

|q| < 1.
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We can also extend the definition of q-number (2.1) to complex number;

Definition 2.1.0.3 For any complex number z,

[z]q =
qz − 1

q − 1
. (2.3)

If z = x + iy then we get the q-complex number as follows;

[z]q = [x + iy]q =
qx+iy − 1

q − 1

=
(qxeiy ln q)− 1

q − 1

=
(qx(cos(y ln q) + i sin(y ln q)))− 1

q − 1

=
qx cos(y ln q)− 1

q − 1
+ i

qx sin(y ln q)

q − 1
. (2.4)

As easy to see, the q-complex valued number is a complex function. In addition, this

function is a holomorphic function, since,

∂

∂z
[z]q =

∂

∂z

(
qz − 1

q − 1

)
= 0. (2.5)

So the function

[z]q =
qz − 1

q − 1
=

ez ln q − 1

q − 1

=
1

1− q
+

∞∑
n=0

(ln q)n

n!
zn, (2.6)

is analytic in whole complex plane z, and it is an entire function of z. Therefore we can

extend definition of q-number to q-operator.

Example 2.2 We consider q-number operator of h d
dx

operator and if we choose q = e

then we get [
h

d

dx

]

e

=
eh d

dx − 1

e− 1
, (2.7)
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and if we apply this operator to the function of f(x) we get

[
h

d

dx

]

e

f(x) =
1

1− e
(eh d

dx f(x)− f(x)) =
h

1− e

f(x + h)− f(x)

h
=

h

1− e
Dhf(x).

Thus h d
dx

[ ]e−→ h
1−e

Dhf(x) where Dh is the h-derivative.

Another examples are related to the exponential mapping, the angular momentum and the

q-matrix operator.

Example 2.3 We choose again q = e and we consider the exponential mapping. The

exponential mapping carries a Lie algebra to a Lie group. This means, that if A is the

element of a Lie algebra and if we apply to this the operator, exp (exponential map), then

we get exp A which is the element of the Lie group. By applying the q-number operator,

we get

[A]e =
exp A− 1

e− 1
=

1

e− 1
exp A− 1

e− 1
. (2.8)

Thus we again get the element of Lie group.

Example 2.4 We consider angular momentum operator ~L = (~r × ~p) where ~r is the posi-

tion operator and ~p is the momentum operator. In quantum mechanics ~L, ~p, ~r are oper-

ators having representation in cartesian coordinates ~L = {Lx, Ly, Lz}, ~p = {px, py, pz}
and ~r = (x, y, z). Thus

Lx = y pz − z py = −i~
(

y
∂

∂z
− z

∂

∂y

)

Ly = z px − x pz = −i~
(

z
∂

∂x
− x

∂

∂z

)

Lz = x py − y px = −i~
(

x
∂

∂y
− y

∂

∂x

)
, (2.9)

and also

L2 = L2
x + L2

y + L2
z. (2.10)
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In Cartesian coordinates the commutation relations between Li (i = x, y, z) are

[Lx, Ly] = i~Lz

[Ly, Lz] = i~Lx

[Lz, Lx] = i~Ly. (2.11)

The commutation relations between x, y, z components of the angular momentum oper-

ator in quantum mechanics form a representation of a three-dimensional Lie algebra,

which is the Lie algebra so(3) of the three-dimensional rotation group. Applying the

previous example, and choosing A = iϕLz = ϕ~
(

∂
∂y
− ∂

∂x

)
and q = e then we get

[iϕLz]e =
eϕ~( ∂

∂y
− ∂

∂x) − 1

e− 1
. (2.12)

Therefore the result is: iϕLz
[ ]e−→ eiϕLz−1

e−1
.

Example 2.5 The Pauli matrices form a set of three 2 × 2 complex matrices which are

Hermitian and unitary:

σ1 =

(
0 1

1 0

)
σ2 =

(
0 i

−i 0

)
σ3 =

(
1 0

0 −1

)
. (2.13)

The Pauli matrices (after multiplication by i to make them anti-hermitian), also generate

transformations in the sense of Lie algebras, and the matrices iσ1,iσ2,iσ3 form a basis for

su(2), which exponentiates to the spin group SU(2). Now if we apply [ ]e to iaσ2 then we

get

[iaσ2]e =
eiaσ2 − 1

e− 1
, (2.14)

and eiaσ2 = I cos(a) + iσ2 sin(a) where I is the 2× 2 identity matrix. Thus we get

[iaσ2]e =
1

e− 1
[I cos(a) + iσ2 sin(a)] +

I

1− e
. (2.15)
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Definition 2.1.0.4 Consider an arbitrary function f(x). Its q- differential is defined as

dqf(x) = f(qx)− f(x). (2.16)

Definition 2.1.0.5 The following expression

Dqf(x) =
dqf(x)

dqx
=

f(qx)− f(x)

(q − 1)x
, (2.17)

is called the q-derivative of the function f(x).

Note that, for f(x) differentiable

lim
q→1

Dqf(x) = lim
q→1

f(qx)− f(x)

(q − 1)x
= lim

q→1
f ′(qx) =

df(x)

dx
. (2.18)

Example 2.6 Compute the q-derivative of f(x) = xn where n is positive integer. By

definition,

Dqx
n =

qxn − xn

(q − 1)x
=

qn − 1

(q − 1)
xn−1, (2.19)

equation (2.19) becomes

Dqx
n = [n]qx

n−1. (2.20)

Proposition 2.1.0.6 For any two functions f(x) and g(x) the following properties hold;

1. Dq(f(x) + g(x)) = Dqf(x) + Dqg(x), (q-sum rule)

2. Dq(f(x)g(x)) = f(qx)Dqg(x) + g(x)Dqf(x), (q-Leibniz rule)(*)

3. Dq(f(x)g(x)) = f(x)Dqg(x) + g(qx)Dqf(x), (q-Leibniz rule)(**)

4. Dq(
f(x)
g(x)

) = g(qx)Dqf(x)−f(qx)Dqg(x)

g(x)g(qx)
, g(x) 6= 0 (q-quotient rule)
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Proof 2.1.0.7 Firstly we consider q-sum rule;

Dq(f(x) + g(x)) =
dq(f(x) + g(x))

(q − 1)x
=

(f(qx)− f(x) + g(qx)− g(x))

(q − 1)x
, (2.21)

and hence,

Dq(f(x) + g(x)) = Dqf(x) + Dqg(x). (2.22)

Secondly we consider q-Leibniz rules;

Dqf(x)g(x) =
dq(f(x)g(x))

(q − 1)x
=

f(qx)dqg(x) + g(x)dqf(x)

(q − 1)x
, (2.23)

and hence,

Dqf(x)g(x) = f(qx)Dqg(x) + g(x)Dqf(x). (2.24)

By the symmetry, we can interchange f and g and obtain

Dqf(x)g(x) = f(x)Dqg(x) + g(qx)Dqf(x), (2.25)

which is equivalent to q-Leibniz rule.

Finally we consider q-quotient rule, if we apply q-Leibniz rule to derivative of

g(x)
f(x)

g(x)
, g(x) 6= 0, (2.26)

we obtain

g(qx)Dq

(f(x)

g(x)

)
+

f(x)

g(x)
Dqg(x) = Dqf(x), (2.27)
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and thus,

Dq

(f(x)

g(x)

)
=

g(x)Dqf(x)− f(x)Dqg(x)

g(x)g(qx)
. (2.28)

However if we use (2.25), we get

g(x)Dq

(f(x)

g(x)

)
+

f(qx)

g(x)
Dqg(qx) = Dqf(x) (2.29)

and

Dq

(f(x)

g(x)

)
=

g(qx)Dqf(x)− f(qx)Dqg(x)

g(x)g(qx)
.¥ (2.30)

2.2. q-Periodic Functions

Definition 2.2.0.8 A function f is called a q − periodic if it satisfies

Dqf(x) ≡ 0 or f(x) ≡ f(qx). (2.31)

Example 2.7 Consider first order q-difference equation

Dqf(x) = 1, (2.32)

the general solution is

f(x) = x + Cq(x), (2.33)

where Cq(x) is a q-periodic function.
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In the limit q → 1 the first order q-difference equation (2.32) reduces to the first order

differential equation;

d

dx
f(x) = 1, (2.34)

with the general solution

f(x) = x + c, (2.35)

where c is an arbitrary constant, c = limq→1 Cq(x) and Dqc = 0. Therefore the constant

c is a q-periodic function for an arbitrary values of q.

Example 2.8 Consider f(x) = sin
(

2π
ln q

ln x
)

, for q > 0 and q 6= 1. This function is a

q-periodic function, since

f(qx) = sin

(
2π

ln q
ln qx

)
= sin

(
2π

ln q
(ln q + ln x)

)

= sin

(
2π +

2π

ln q
ln x

)
= sin

(
2π

ln q
ln x

)
= f(x). (2.36)

Example 2.9 Consider the Euler differential equation,

x2 d2y

dx2
+ x

dy

dx
+ ω2y = 0. (2.37)

By substitution x = et and using

x
d

dx
=

d

dt
, (2.38)

then we obtain the harmonic oscillator equation,

d2y

dt2
+ ω2y = 0. (2.39)
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The particular solutions of equation (2.39) are

y(t) = Ae±iωt. (2.40)

They imply the solutions of the Euler equation,

y(x) = Ae±iω ln x. (2.41)

These functions are q-periodic Dqy(x) = 0 with q = e
2π
ω . If we summarize above results

then the Euler differential equation

x2 d2y

dx2
+ x

dy

dx
+

4π2

(ln q)2
y = 0, (2.42)

has the general solution

y(x) = A cos

(
2π

ln q
ln x

)
+ B sin

(
2π

ln q
ln x

)
, (2.43)

which is q-periodic (y(qx) = y(x)).

Definition 2.2.0.9 A q-dilatation operator Mq is defined as

Mq ≡ qx∂x ≡ ex∂x ln q, ∂x =
∂

∂x
. (2.44)

With using formal expansion in the Taylor series its action on the power-law function

gives

Mqx
n = qx∂xxn =

∞∑
m=0

[ln q(x∂x)]
m

m!
xn =

∞∑
m=0

(n ln q)m

m!
xn = (qx)n, (2.45)
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and we get

Mqx
n = (qx)n. (2.46)

Then for an arbitrary analytical function f(x) one obtains in a similar manner ;

Mqf(x) =
∞∑

m=0

[∂xf(x)|x=0]
m

m!
Mqx

m =
∞∑

m=0

[∂xf(x)|x=0]
m

m!
(qx)m = f(qx), (2.47)

and we get

Mqf(x) = f(qx). (2.48)

Definition 2.2.0.10 The function F(x) is a q-antiderivative of f(x) if DqF (x) = f(x) and

it is denoted by

∫
f(x) dqx. (2.49)

The question is if q-antiderivative is unique. From ordinary calculus we know the next;

Theorem 2.2.0.11 (Mean-Value Theorem)(Thomas, 2009)

Suppose f(x) is continuous on a closed interval [a, b] and differentiable on the interval’s

interior (a, b). Then there is at least one point c in (a, b) at which

f(b)− f(a)

b− a
= f ′(c). (2.50)

Corollary 2.2.0.12 If f ′(x) = 0 at each point x of an open interval (a, b), then f(x) = C

for all x ∈ (a, b), where C is a constant.

Corollary 2.2.0.13 If f ′(x) = g′(x) at each point x of an open interval (a, b), then there

exists a constant C such that f(x) = g(x) + C. That is, f − g is a constant on (a, b).
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In ordinary calculus the above theorem and corollaries show that an antideriva-

tives is unique up to constant. But the situation in quantum calculus is different. Given

Dqf(x) = 0 if and only if f(qx) = f(x), which does not necessarily imply that f is a

constant. However if we take

f(x) =
∞∑

n=0

anx
n, (2.51)

the condition f(qx) = f(x) implies qnan = an for each n. It is possible only when

an = 0 for any n ≥ 1. So that f is a constant. Therefore, if f(x) is a formal power series,

then f(x) has a unique q-antiderivative up to a constant term, which is

∫
f(x) dqx =

∞∑
n=0

anxn+1

[n + 1]q
+ C, (2.52)

where C is an arbitrary constant. If f(x) is a general function, then we use the following

proposition;

Proposition 2.2.0.14 (Kac&Cheung, 2002) Let 0 < q < 1. Then, up to adding a con-

stant, any function f(x) has at most one q-antiderivative that is continuous at x = 0.

The proposition tells us that the uniqueness of the q-antiderivative is required by

continuity at x = 0.

Now we like to find q-antiderivative of a function in an explicit form. Suppose

f(x) is an arbitrary function. To construct its q-antiderivative F(x), recall the operator Mq,

defined by Mq(F (x)) = F (qx). Then we have by the definition of a q-derivative:

1

(q − 1)x
(Mq − 1)F (x) =

F (qx)− F (x)

(q − 1)x
= f(x). (2.53)

Note that the order is important, because operators (1−Mq) and 1
(q−1)x

do not commute.

We can then formally write the q-antiderivative as

F (x) =
1

(1−Mq)
((1− q)xf(x)) = (1− q)

∞∑
j=0

Mq
j(xf(x)), (2.54)
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using the geometric series expansion, and thus we get;

Definition 2.2.0.15

∫
f(x) dqx = (1− q)x

∞∑
j=0

qjf(qjx). (2.55)

This series is called the q-integral (the Jackson integral) of f(x).

From this definition one easily derives a more general formula:

∫
f(x) Dqg(x) dqx = (1− q)x

∞∑
j=0

qjf(qjx)Dqg(qjx)

= (1− q)x
∞∑

j=0

qjf(qjx)
g(qjx)− g(qj+1x)

(1− q)qjx

=
∞∑

j=0

f(qjx)(g(qjx)− g(qj+1x)). (2.56)

The integral given in (2.55) does not always converge to a real valued function F(x), even

if the q-antiderivative exists. We now examine some of the cases under which the Jackson

Integral converges to a q-antiderivative.

Theorem 2.2.0.16 (Kac&Cheung, 2002) Suppose 0 < q < 1. If |f(x)xα| is bounded

on the interval (0, A] for some 0 ≤ α < 1, then the Jackson Integral defined by (2.55)

converges to a function F(x) on (0, A], which is a q-antiderivative of f(x). Moreover, F(x)

is continuous at x = 0 with F (0) = 0.

Proof 2.2.0.17 Suppose |f(x)xα| < M on (0, A]. Fix x ∈ (0, A]. Then for all j ≥ 0,

|f(qjx)| < M(qjx)−α. (2.57)

Multiplying by qj , we have;

|qj f(qjx)| < M qj (qjx)−α. (2.58)
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Taking the sum from j = 0 to j = ∞ it follows that;

∞∑
j=0

∣∣qj f(qjx)
∣∣ <

∞∑
j=0

M x−α(q1−α)j =
M x−α

1− q1−α
, (2.59)

since 1 − α > 0 and 0 < q < 1. Thus, the sum in the Jackson Integral is majorized by

a convergent geometric series, and so this sum converges to a function F(x). We observe

from (2.55) that F (0) = 0. To prove that F(x) is continuous at x = 0, we observe that for

0 < x ≤ A,

(1− q)x
∞∑

j=0

∣∣qj f(qjx)
∣∣ <

M(1− q) x1−α

1− q1−α
, (2.60)

which approaches 0 as x → 0, since 1 − q > 0. To verify the definition of the Jackson

Integral given in (2.55) is a q-antiderivative of f(x), we can q-differentiate it;

DqF (x) =
1

(q − 1)x
((1− q)qx

∞∑
j=0

qjf(qj+1x)− (1− q)x
∞∑

j=0

qjf(qjx))

= −(
∞∑

j=0

qj+1f(qj+1x)−
∞∑

j=0

qjf(qjx))

=
∞∑

j=0

qjf(qjx)−
∞∑

j=1

qjf(qjx)

= f(x).¥ (2.61)

Example 2.10 Let f(x) = xn where n is positive integer.

∫
xn dqx = (1− q)x

∞∑
j=0

qj qjn xn

= (1− q)xn+1

∞∑
j=0

qj(n+1)

=
1− q

1− qn+1
xn+1 =

xn+1

[n + 1]q
. (2.62)
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Definition 2.2.0.18 Suppose 0 < a < b. The definite q-integral is defined as;

∫ b

0

f(x) dqx = (1− q)b
∞∑

j=0

qjf(qjb), (2.63)

and

∫ b

a

f(x) dqx =

∫ b

0

f(x) dqx−
∫ a

0

f(x) dqx, (2.64)

a more general formula:

∫ b

0

f(x) dqg(x) =
∞∑

j=0

f(qjb)(g(qjb)− g(qj+1b)). (2.65)

Figure 2.1. The definite q-integral correspond to the area of the union of an infinite
number of rectangles.

On the interval [ε, b], where ε is a small positive number, the sum consists of

finitely many terms, and is in fact a Riemann sum. Therefore, as q → 1, the width of

rectangles approaches zero in Fig.(2.1), and the sum tends to the Riemann integral on

[ε, b]. Since ε is arbitrary, we thus have, f(x) is continuous in the interval [0, b].
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Example 2.11 Let’s evaluate the Jackson integral for f(x) = ln x and compare it with

the standard integral when q → 1;

∫ b

0

f(x) dqx = (1− q)b
∞∑

j=0

qjf(qjb);

∫ b

0

ln x dqx = (1− q)b
∞∑

j=0

qj ln(qjb)

= (1− q)b
∞∑

j=0

qj[j ln q + ln b]

= (1− q)b(
∞∑

j=0

qjj ln q +
∞∑

j=0

qj ln b)

= (1− q)b ln q

∞∑
j=0

qjj + (1− q)b ln b

∞∑
j=0

qj

= (1− q)b ln q
q

(1− q)2
+ (1− q)b ln b

1

(1− q)
. (2.66)

Therefore we get;

∫ b

0

ln x dqx =
b q ln q

(1− q)
+ b ln b. (2.67)

Here we use

∞∑
j=0

qjj = q
d

dq

∞∑
j=0

qj = q
d

dq

1

(1− q)
=

q

(1− q)2
when |q| < 1. (2.68)

Let’s check as equation (2.67) in the limit q → 1 reduces to the standard definite integral;

lim
q→1

(

∫ b

0

ln x dqx) = lim
q→1

( b q ln q

(1− q)
+ b ln b

)

= b ln b + lim
q→1

( b q ln q

(1− q)

)

= b ln b− b =

∫ b

0

ln x dx. (2.69)
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Definition 2.2.0.19 The improper q-integral of f(x) on [0, +∞) is defined to be

∫ ∞

0

f(x) dqx =
∞∑

j=−∞

∫ qj

qj+1

f(x) dqx, 0 < q < 1 (2.70)

or equivalently

∫ ∞

0

f(x) dqx =
∞∑

j=−∞

∫ qj+1

qj

f(x) dqx, q > 1. (2.71)

Theorem 2.2.0.20 (Kac&Cheung, 2002) The improper q-integral defined above converges

if xαf(x) is bounded when x is the neighborhood of x = 0 for some α < 1 and for suffi-

ciently large x for some α > 1.

Proof 2.2.0.21 We have,

∫
f(x) dqx = |1− q|

∞∑
j=−∞

qjf(qj). (2.72)

If we split up the summation

∞∑
j=−∞

qjf(qj) =
∞∑

j=0

qjf(qj) +
∞∑

j=1

q−jf(q−j), (2.73)

is the same whether we have q or q−1, we can consider, without loss of generality the case

where q < 1. The first sum converges by the proof in Theorem 2.2.0.15. For the second

sum, if we suppose that for large x, |f(x)xα| < M for some α > 1 and M > 0. Then for

sufficiently large j,

|q−jf(q−j)| = qj(α−1)|q−jαf(q−j)| < M qj(α−1). (2.74)

So the second sum is smaller than a convergent geometric series, and thus converges as

well, meaning the whole summation converges.¥
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Theorem 2.2.0.22 (Fundamental Theorem of q-calculus) (Kac&Cheung, 2002)

If F(x) is an antiderivative of f(x) and F(x) is continuous at x = 0 we have

∫ b

a

f(x)dqx = F (b)− F (a), (2.75)

where 0 ≤ a, b ≤ ∞.

2.3. q-Calculus on a Fractal Sets

In this section we apply q-calculus to the fractal sets, because it is dealing with

re-scaling of functions, measured by q-derivative. In fractals, the self similarity property

under re-scaling is crucial for definition of fractals.

2.3.1. Homogeneous Functions and Euler’s Theorem

Definition 2.3.1.1 For any d ∈ R, a function f : Rn → R is homogeneous of degree d if

f(λx) = λdf(x), (2.76)

where ∀λ > 0 and x ∈ Rn. A function is homogeneous of degree d for some d ∈ R.

For example, the function f(x) = 3x2 is a homogenous function of degree 2,

f(x, y, z) = xy2 + z3 is a homogeneous function of degree 3, but f(x, y) = exy − xy is

not homogeneous function.

Proposition 2.3.1.2 Let f be a differentiable function of n variables that is continuous of

degree d. Then each of its partial derivatives f ′i (for i=1,...,n) is homogeneous of degree

d− 1.

Proof 2.3.1.3 The homogeneity function means that

f(λx1, ..., λxn) = λdf(x1, ..., xn), ∀λ > 0, (2.77)
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Now differentiate both sides of this equation with respect to xi, to get

λf ′i(λx1, ..., λxn) = λdf ′i(x1, ..., xn), (2.78)

and divide both sides by λ to get

f ′i(λx1, ..., λxn) = λd−1f ′i(x1, ..., xn), (2.79)

so that f ′i is homogeneous of degree d− 1.¥

Example 2.12 This result can be used to demonstrate a nice result about the slope of the

level curves of a homogeneous function. The slope of the level curve of the function f

through (x1, x2) at this point is

−∂f/∂x1(x1, x2)

∂f/∂x2(x1, x2)
= −f ′1(x1, x2)

f ′2(x1, x2)
, (2.80)

assuming f ′2(x1, x2) 6= 0 and suppose f homogeneous function of degree d, and consider

the level curve through (cx1, cx2) for some c > 0. At (cx1, cx2), the slope of this curve is

−f ′1(cx1, cx2)

f ′2(cx1, cx2)
. (2.81)

f ′1 and f ′2 are homogeneous of degree d− 1, so this slope is equal to

−cd−1f ′1(x1, x2)

cd−1f ′2(x1, x2)
= −f ′1(x1, x2)

f ′2(x1, x2)
. (2.82)

That is the slope of level curve through (cx1, cx2) at the point (cx1, cx2) is exactly the

same as the slope of the level curve through (x1, x2) at the point (x1, x2). Let f be a

differentiable function of two variables that is homogeneous of some degree. Then along

any given ray from the origin, the slopes of the level curves of f are the same.
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Theorem 2.3.1.4 (Euler’s Theorem)

Let f(x1, ..., xn) be a homogeneous function of degree d. That is

f(λx1, ..., λxn) = λdf(x1, ..., xn). (2.83)

Then the following identity holds

n∑
i=1

xi
∂f

∂xi

= d f(x1, ..., xn). (2.84)

Proof 2.3.1.5 To prove’s Euler’s theorem, simply differentiate the homogeneity condition

(2.83) with respect to λ;

d

dλ
f(λx1, ..., λxn) =

d

dλ
[λdf(x1, ..., xn)], (2.85)

we get,

n∑
i=1

xi
∂f

∂λxi

= dλd−1f(x1, ..., xn). (2.86)

Then setting λ = 1, we have

n∑
i=1

xi
∂f

∂xi

= d f(x1, ..., xn).¥ (2.87)

Condition (2.84) may be written more compactly, using the notation ~∇f for the gradient

vector of f and letting x = (x1, ..., xn) as

x~∇f(x) = d.f(x), for all x. (2.88)

Therefore the homogeneous functions are eigen-functions of Euler operator with degree

of homogeneity as the eigen-value.
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2.3.2. Mechanical Similarity and Scale Invariance

Mathematically any function f(x) that satisfies equation (2.76) for an arbitrary λ is

called homogeneous function. A homogeneous function is scale invariant for an arbitrary

λ i.e., if we change the scale of measuring x so that x → x′(≡ λx), the new function

f̂(x′)(≡ f(x)) still has the same shape as the old one f(x). This fact is guaranteed since

f(x) = λ−df(x′) by equation (2.76) and hence f̂(x′) ∼ f(x). Now we give definition of

scale invariance;

Definition 2.3.2.1 A function f(x) is said to be scale-invariant if it satisfies the following

property;

f(λx) = λdf(x), (2.89)

for some choice of exponent d ∈ R and fixed scale factor λ > 0, which can be taken to be

a length or size of re-scaling.

Here we like to stress the difference between homogeneous function and self-

similar object. Homogeneous function satisfies the self-similarity condition for some

fixed value of re-scaling λ, while homogeneous function is self-similar for all possible

values of re-scaling λ.

Now we consider mechanical problems with potential energy in the form of ho-

mogeneous function. The potential energy is a homogeneous function of the coordinates

and the problem is referred as the mechanical similarity (Landau & Lifshitz, 1960). This

means potential energy

U(λr1, ....., λrn) = λdU(r1, ....., rn). (2.90)

Here, d is the degree of homogeneity of U .

Now we re-scale equations of motion, suppose re-scaling of space and time is;

ri = αr̂i, t = βt̂ (2.91)
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Then

dri

dt
=

α

β

dr̂i

dt̂
,

d2ri

dt2
=

α

β2

d2r̂i

dt̂2
(2.92)

The force Fi is given by

Fi = − ∂

∂ri

U(r1, ....., rn)

= − ∂

∂αr̂i

αdU(r̂1, ....., r̂n)

= αd−1F̂i (2.93)

or equivalently

Fi = αd−1F̂i. (2.94)

Thus, Newton’s second law say,

α

β2
mi

d2r̂i

dt̂2
= αd−1F̂i. (2.95)

If we require

α

β2
= αd−1 ⇒ β = α1− 1

2
d, (2.96)

then the equations of motion are invariant under the re-scaling transformation. This means

that if r(t) is a solution of the equations of motion, then so is αr(α
1
2
d−1t). If r(t) is

periodic with period T , then ri(t; α) is periodic with period T ′ = α1− 1
2
dT . Thus

T ′

T
=

(
L′

L

)1− 1
2
d

. (2.97)
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Here, α = L′
L

is the ratio of length scales. Velocities, energies and angular momenta are

scaled accordingly;

v =
L

T
⇒ v′

v
=

L′/L
T ′/T

= α
1
2
d, (2.98)

E =
ML2

T 2
⇒ E ′

E
=

(L′/L)2

(T ′/T )2 = αd, (2.99)

L =
ML2

T
⇒ L′

L
=

(L′/L)2

(T ′/T )
= α1+ 1

2
d. (2.100)

Example 2.13 Let us apply the mechanical similarity to the harmonic oscillator, the po-

tential energy is U = kx2 where k is the spring constant and x is the vibration amplitude.

In this problem d = 2 and therefore,

T ′

T
=

(
L′

L

)1− 1
2
d

=

(
L′

L

)0

= 1, (2.101)

the time-scale ratio is unity. It means that the frequencies for both re-scaled systems are

the same. In other words, the frequencies of a lumped spring-mass system is unaffected

by their vibration amplitudes.

x(t) → x(t; α) = αx(t). (2.102)

Thus, re-scaling lengths alone gives another solution.

Example 2.14 Let us now consider the motion of two satellites around heavenly body.

Newton’s law of universal gravitational states

F =
GM m

r2
⇒ U = −GM m

r
, (2.103)

where G is the universal gravitational constant, M and m are the masses of the heavenly

body and the satellite and r is the distance between two bodies. Here d = −1. Thus

r(t) → r(t; α) = αr(α−
3
2 t). (2.104)
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Thus, r3 ∝ t2 i.e.

T ′

T
=

(
L′

L

)1− 1
2
d

=

(
L′

L

)3/2

(2.105)

or equivalently

(
T ′

T

)2

=

(
L′

L

)3

, (2.106)

which states that square of the revolution ratio of the two satellites is proportional to the

cube of the ratio of the orbital sizes (the Kepler third law).

2.3.3. Self-Similar Objects and Their Dimensions

The scale invariance means that if a part of a system is magnified to the size of the

original system, this magnified part and the original system will look similar to each other.

Therefore, scale invariant system must be self-similar and vice-versa. In this section we

define self-similar objects and their dimensions.

Definition 2.3.3.1 A self-similar object is exactly or approximately similar to a part of

itself (i.e. the whole has the same shape as one or more of the parts).

Example 2.15 We can consider the Logarithmic spiral for the self-similarity under rota-

tion. Its defining equation in polar coordinates (r,θ) is :

r(θ) = r0e
dθ, (2.107)

where r0 and d are arbitrary real constants and r0 > 0.

A logarithmic spiral is given by equation parametric equation;

x(θ) = r(θ) cos(θ) = r0e
dθ cos(θ) (2.108)

y(θ) = r(θ) sin(θ) = r0e
dθ sin(θ), (2.109)
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Figure 2.2. The logarithmic spiral, r0 = 3, d = 0.1, 0 ≤ θ ≤ 60

.

and we rotate the curve an angle 2π and define a new curve r̂(θ) of r(θ) as follows;

r̂(θ) = r(θ + 2π) = e2πd(r0e
dθ) = e2πdr(θ). (2.110)

As we see from the above equation, the curve r̂(θ) can be obtained by scaling r(θ), by the

factor e2πd. Therefore the logarithmic spiral has the self-similarity under rotation.

At the beginning of this section we mentioned that the self-similar object must

be self-similar. The following example shows the relation between scale-invariance and

self-similar object.

Example 2.16 Consider a straight line segment. Dividing the segment into N self-similar

pieces by applying a ruler of length η, the length of the segment is then;

L(η) = ηN. (2.111)

If L(η) = 1, then the ruler must have length η = 1/N to exactly cover the line. Similarly

the square of area L2(η) can be covered by N square elements, each of area η2, so that

L2(η) = η2N. (2.112)

We have η = (1/N)1/2 for L2(η) = 1. In a similar way in three dimensions, a unit cube
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is covered by N elementary cubes of side η = (1/N)1/3. Generalizing for an arbitrary

integer dimension d the volume is

Ld(η) = ηdN, (2.113)

and for Ld(η) = 1 we have ηdN = 1. It implies η = (1/N)1/d and,

N = η−d. (2.114)

Note that in each of these examples we constructed smaller objects of the same geomet-

rical shape as the larger object in order to cover it. This geometrical equivalence is the

basis of our notion of self-similarity. We can also see here the scale invariance law; For

a line (d = 1)

L(η) = ηN

L(λη) = (λ)dηN

= ληN = λL(η). (2.115)

For a square (d = 2),

L2(η) = Nη2

L2(λη) = (λ)dηN

= (λ)2ηN = (λ)2L2(η). (2.116)

So we can write general formula for scale-invariance of the hyper-cubes volume in d-

dimensions,

Ld(λη) = λdLd(η). (2.117)

Here showing that it is the homogeneous function of degree d. λ is an arbitrary scale
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factor and self-similar dimension is d. Explicit formula for the volume of hyper-cubes

V1(x1) = x1

V2(x1, x2) = x1.x2

... .......

Vn(x1, x2, ..., xn) = x1.x2...xn, (2.118)

shows that it is a homogeneous function degree n:

V (qx1, qx2, ..., qxn) = qn.V (x1, x2, ..., xn). (2.119)

In the above example we defined the dimension of objects. Now we give the formal

definition of dimension;

Definition 2.3.3.2 Equation (2.114) can be used to define the dimension d of a set in

terms of the number N of elementary covering elements (of length,area,volume,etc.) that

are constructed from basic intervals of length η. Taking the logarithm of both sides of

(2.114) and rearranging yields

d =
ln N

ln(1/η)
. (2.120)

Example 2.17 If we apply this formula for straight line in Fig.(2.3) N = 3, η = 1/3 then

we get;

d =
ln N

ln(1/η)
=

ln 3

ln 3
= 1. (2.121)

If we apply this formula for square in Fig.(2.3) N = 9, η = 1/3 then we get;

d =
ln N

ln(1/η)
=

ln 9

ln 3
= 2. (2.122)

Similar calculation for cube in Fig.(2.3), we get d = 3.

31



Figure 2.3. Geometrical objects for integer dimension.

As we expected, for smooth curve’s (straight line), for surface’s (square) and for

volume’s (cube) dimension d is integer valued. This take place for the objects which

are smooth. If the dimension d is an integer then we call topological dimension. But

in general the dimension d does not necessarily be integer as clear from (2.120). If the

dimension d is non-integer then we will call it the self-similar dimension. A fractal is by

definition a set for which the self-similar dimension strictly different from the topologi-

cal dimension. Now we apply definition of self-similar dimension to non-integer valued

object (a geometrical fractal).

Example 2.18 Let us consider the Cantor set. This set is constructed by starting with

the line segment of unit length and removing the middle third. This leaves two line seg-

ments,each of length η(1) = 1/3 at the first generation, k = 1. We then remove the

middle third from each of these two line segments, leaving four line segments, each of

length η(2) = 1/9, at the second generation, k = 2. Continuing this process, at the kth

generation there are a total of N(k) = 2k line segments,each of length η(k) = 3−k.

Using the values of N and η at the kth generation and then taking the limit as the

number of generations goes to infinity, k →∞, we obtain for the self-similar dimension;

d = lim
k→∞

ln N(k)

ln(1/η(k))
= lim

k→∞
k ln 2

k ln 3
=

ln 2

ln 3
≈ 0.6309. (2.123)

Thus, this dimension classifies the set as being between a line (d = 1) and a point (d = 0).
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Figure 2.4. The steps of Cantor set.

The Cantor set is self-similar object with re-scaling parameter λ = 1
3
. This means that the

above recursion steps can be considered as images of the Cantor set at different scales.

Number of these scales is infinite but countable.

Example 2.19 Another example is the Koch snowflake curve. This closed plane curve

has an infinite length,but encloses a finite area. Starting with an equilateral triangle (the

generator), the second stage is generated by replacing middle third of each line in the

generator by a scaled down version of the generator. In Fig.2.5 the scaled-down version

of the triangle is 1/3 of the size of the generator in the preceding generation. Continuing

this procedure result in a curve that is the limit of an infinite number of generations.

Unlike the case of the middle-third Cantor set, where each line segment at the preceding

stage, the Koch snowflake generates four new line segments for each line segment at the

preceding stage.

Thus, in the Koch snowflake, the length of a line segment at the kth stage is η(k) =

3−k just as before, however the number of line segments is N(k) = 4k. The dimensionality

of the limiting set is therefore given by

d = lim
k→∞

ln N(k)

ln(1/η(k))
= lim

k→∞
k ln 4

k ln 3
=

ln 4

ln 3
= 2

ln 2

ln 3
≈ 1.2618. (2.124)

So that the self-similar dimension of the Koch snowflake is twice that of the middle-third

Cantor set.
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Figure 2.5. The steps of Koch snowflake.

Thus, this dimension classifies the set as being between a plane and a line.

2.3.4. Self-Similar Sets and q-calculus

In this section we show how to relate self-similar objects with q-calculus. By ap-

plication of q-dilatation operator in (2.44) to the scale-invariant(as well as to homogenous)

function f(x), satisfying;

f(qx) = qdf(x), (2.125)

where λ = q in (2.89) and d is an arbitrary real number, we get the eigenvalue equation

Mqf(x) = f(qx) = qdf(x), (2.126)

for the q-dilatation operator Mq. This means that the scale invariant function is eigen-

function of the q-dilatation operator with eigen-value qd.
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On the other hand, the q-derivative of a function is defined as

Dqf(x) =
f(qx)− f(x)

(q − 1)x
=

Mq − 1

(q − 1)x
f(x). (2.127)

Now we are going to apply this definition to the scale invariant function. For this first we

prove the next proposition.

Proposition 2.3.4.1 The ordinary commutator of q-derivative and x gives the q-dilatation

operator;

Dqx− xDq = [Dq, x] = Mq. (2.128)

Proof 2.3.4.2 Let’s apply the [Dq, x] to f(x);

[Dq, x]f(x) = Dq(xf(x))− x(Dqf(x))

= f(qx)Dqx + x(Dqf(x))− x(Dqf(x))

= f(qx) = Mqf(x).¥ (2.129)

Next we have the following proposition;

Proposition 2.3.4.3 A homogenous function f of degree d satisfies

(xDq)f(x) = [d]qf(x). (2.130)

Here [d]q is the q-basic number

[d]q =
qd − 1

q − 1
. (2.131)

Proof 2.3.4.4 From equation (3.73) we know that;

Mqf(x) = qdf(x). (2.132)
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Then applying the commutator

[Dq, x]f(x) = qdf(x)

Dq(xf(x))− x(Dqf(x)) = qdf(x)

qxDqf(x) + f(x)(Dqx)− x(Dqf(x)) = qdf(x)

(q − 1)xDqf(x) = (qd − 1)f(x)

xDqf(x) =
qd − 1

q − 1
f(x). (2.133)

Finally for the self-similar function f we get the q-difference equation with fixed q;

(xDq)f(x) = [d]qf(x).¥ (2.134)

This equation is valid also for homogeneous function, but for any base q. Now we con-

sider the general solution of this q-difference equation. We consider two cases. In the first

case, d is positive integer number. Suppose that f(x) =
∑∞

k=0 akx
k, is analytic in a disk,

then

xDq

( ∞∑

k=0

akx
k
)

= [d]q
( ∞∑

k=0

akx
k
)

(2.135)

or equivalently

x
( ∞∑

k=1

akx
k−1[k]q

)
= [d]q

( ∞∑

k=0

akx
k
)
, (2.136)

and hence

( ∞∑

k=1

ak[k]qx
k
)

= [d]q
( ∞∑

k=0

akx
k
)

(2.137)

or equivalently

a1[1]qx + a2[2]qx
2 + ... = [d]q(a0 + a1x + a2x

2 + ...). (2.138)
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Comparing equal power terms, we find a0 = a1 = ..... = 0 except ad 6= 0 and

only non-vanishing term is with k = d. It gives solution f(x) = adx
d where ad is a

constant or a q-periodic function. In the second case, d is non-integer number. We have

no power series solution of this equation.

Instead of this we consider an Ansatz f(x) = axd where a is an arbitrary constant

or a q-periodic function, so that equation is satisfied automatically.

As a result we found the general solution of the q-difference equation (2.130), in

the following form,

f(x) = Aq(x)xd, (2.139)

where Aq(x) is a q-periodic function.

As we can see, this solution is composed from the homogeneous function xd and

the q-periodic function Aq(x). This solution is self-similar with scale factor q. Since

a function q-periodic for all q is just a constant function, the solution for all q is just

homogeneous function. Note that the following series ;

Aq(x) = x−α

∞∑
n=−∞

q−nαg(qnx), (2.140)

represents a q-periodic function Aq(qx) = Aq(x), where function g(x) is continuously

differentiable at x = 0 and α > 0, q 6= 1 . Indeed,

Aq(qx) = qαx−α

∞∑
n=−∞

q−nαg(qn+1x)

= x−α

∞∑
n=−∞

q−(n+1)αg(qn+1x)

= Aq(x). (2.141)

Therefore the general solution of equation (2.130) has in the following form;

f(x) = Aq(x)xd

= xd−α

∞∑
n=−∞

q−ndg(qnx). (2.142)
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Example 2.20 Consider g(x) = sin x, if we substitute equation (2.142) we get;

Aq(x) = x−α

∞∑
n=−∞

sin (qnx)

qnα
, 0 < α < 1, q > 1. (2.143)

This function is q-periodic since;

DqAq(x) =
Aq(qx)− Aq(x)

(q − 1)x

=
(qx)−α

∑∞
n=−∞ q−nα sin (qn+1x)− x−α

∑∞
n=−∞ q−nα sin (qnx)

(q − 1)x

=
x−α

(q − 1)x

( ∞∑
n=−∞

q−(n+1)α sin(qn+1x)−
∞∑

n=−∞
q−nα sin(qnx)

)
= 0.

Example 2.21 Consider g(x) = 1− eix then, if we substitute equation (2.142) we get;

Aq(x) = x−α

∞∑
n=−∞

1− eiqnx

qnα
, 0 < α < 1, q > 1. (2.144)

This function is q-periodic since DqAq(x) = 0 and is called the q-periodic part of

Weierstrass-Mandelbrot function.

Proposition 2.3.4.5 The q-periodic function Aq(x) is either a constant or a function that

is periodic in t = lnx, with period T = lnq.

Proof 2.3.4.6 If Aq(x) is q-periodic function then

DqAq(x) = 0 or Aq(qx) = Aq(x). (2.145)

If Aq(x) is a constant function then (2.145) is satisfied automatically. In more general

case we have by change of variables

Aq(qx) = Aq(x) ⇒ Aq(e
teT ) = Aq(e

t) ⇒ F (t + T ) = F (t). (2.146)
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where t = ln x, T = ln q and F (t) ≡ Aq(e
t). This implies that function F (t) is periodic

with period T = ln q, and Aq(x) = F (ln x).¥

Proposition 2.3.4.7 If F has period T, F (t + T ) = F (t) and is integrable over [−T, T ],

then it can be expanded to series

F (t) =
∞∑

n=−∞
cne

i2πnt
T , (2.147)

with coefficients;

cn =
1

T

∫ T

0

F (t)e−
i2πnt

T dt, (2.148)

is called the Fourier series for F; the numbers cn are called the Fourier coefficients of F.

Proof 2.3.4.8 If f(z) analytic in annular domain then it can be expanded to the Laurent

series

f(z) =
∞∑

n=−∞
cnz

n, cn =
1

2πi

∮

|z|=1

f(z)

zn+1
dz. (2.149)

If we apply this expansion to |z| = 1, so that z = eit, then

f(eit) ≡ F (t) =
∞∑

n=−∞
cne

int, (2.150)

and since z = eit with 0 ≤ t ≤ 2π, one has dz = izdt and the formula for cn becomes

cn =
1

2πi

∮

|z|=1

f(z)

zn+1
dz =

1

2π

∫ 2π

0

f(eit)

ei(n+1)t
eit dt =

1

2π

∫ 2π

0

F (t)e−intdt. (2.151)

This function F(t) is periodic with T = 2π.

For function F(t) periodic with an arbitrary period T, F (t + T ) = F (t), by re-
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scaling the argument we get

F (t) =
∞∑

n=−∞
cne

i2πnt
T , cn =

1

T

∫ T

0

F (t)e−
i2πnt

T dt.¥ (2.152)

According to this result and proposition (2.3.4.5), an arbitrary q-periodic function

analytic in an annular domain can be represented by complex series

Aq(x) = F (ln x) =
∞∑

n=−∞
cne

i2πn
T

t, (2.153)

where t = ln x, T = ln q. As a result we get next representation of q-periodic function;

Aq(x) =
∞∑

n=−∞
cne

i2πn
ln q

ln x =
∞∑

n=−∞
cnxi 2πn

ln q , (2.154)

where

cn =
1

T

∫ eT

1

Aq(x)x−i 2πn
T

dx

x
=

1

ln q

∫ q

1

Aq(x)x−i 2πn
ln q

dx

x
. (2.155)

Then combining the above result we get;

Proposition 2.3.4.9 The self-similar function f(x) as a solution of equation (2.130) can

be represent in the following form;

f(x) =
∞∑

n=−∞
cnx

dn , (2.156)

where dn = d + i2πn
ln q

and

cn =
1

ln q

∫ q

1

f(x)xdn
dx

x
. (2.157)
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Proof 2.3.4.10 The general solution of equation (2.130)

f(x) = Aq(x)xd, (2.158)

and Aq(x) is a periodic in ln x, with period ln q.

If we use Fourier expansion for Aq(x) then we get;

f(x) = Aq(x)xd

= xd

∞∑
n=−∞

cne
i 2πn
ln q

ln x

=
∞∑

n=−∞
cnxd+i 2π

ln q
n

=
∞∑

n=−∞
cnxdn . (2.159)

To find coefficients;

cn =
1

T

∫ T

0

F (T )e−i 2πnt
T dt =

1

ln q

∫ q

1

Aq(x)x−i 2πn
ln q

dx

x

=
1

ln q

∫ q

1

f(x)x−d−i 2πn
ln q

dx

x
=

1

ln q

∫ q

1

f(x)xdn
dx

x
.¥ (2.160)

Expansion (2.156) for function f(x) is called the Mellin series. Convergency of

this series require to study asymptotic formulas for special functions. In next Chapter we

are going to introduce basic notations related with this analysis. And In Chapter 4 we

return back to convergency of Mellin series.
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CHAPTER 3

ASYMPTOTIC EXPANSIONS OF SPECIAL FUNCTIONS

In the previous chapter we considered q-periodic functions and their series repre-

sentations such as Mellin series. To study convergency of these series in this chapter we

are going to introduce basic notations of asymptotic expansions, Bernoulli polynomials

and numbers, the gamma and the beta functions. On this basis we shall derive the Euler-

Maclaurin formula and Stirling’ s asymptotic formula. This allows as in Chapter 4 study

convergency properties of q-periodic functions.

3.1. Asymptotic Expansions

In many problems of engineering and physical sciences we attempt to write the

solutions as infinite series of functions. The simplest series representation is the power

series. Given a function f(x) of a real variable x containing a number x0 in its domain of

definition, we try to find a power series of the form

f(x) =
∞∑

j=0

aj(x− x0)
j, (3.1)

which provides a valid representation of f(x) in the interval I of convergence of the power

series. The so-called remainder term in the Taylor expansion plays a crucial role. When

we write the above series as

f(x) =
n∑

j=0

f (j)(x0)

j!
(x− x0)

j + Rn(x), (3.2)

the remainder Rn(x) is given by

Rn(x) =
f (n+1)(x)

(n + 1)!
(x− x0)

n+1. (3.3)
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If C denotes a uniform bound of f (n+1)(x) in I , that is, |f (n+1)(x)| ≤ C, x ∈ I ,

the error introduced by using the Taylor polynomial

fn(x) =
n∑

j=0

f (j)(x0)

j!
(x− x0)

j, (3.4)

for f(x) is the same order of magnitude as the first term which is neglected in the Taylor

series. Also observe that in this case

lim
n→∞

|f(x)− fn(x)| = 0. (3.5)

The important feature of the Taylor polynomial fn(x) given by (3.4) is that it is a

function fn(x) = g(n, x) of two independent variables. The convergent series approach is

to consider x fixed and determine the behavior of g(n, x) as n increases. Accordingly,the

approximation is considered adequate if the error in using the Taylor polynomial can be

made sufficiently small by choosing n appropriately large (Estrada & Kanwal 1994).

The concept of an asymptotic series reverses the role of n and x in g(n, x). That

is, the approximation is considered adequate if the error can be made sufficiently small,for

any fixed number of terms, by using values of x sufficiently close to some value.

We devote this chapter to the basic notions of asymptotic analysis. We also present

some simple methods for approximation of integrals and sums.

3.1.1. Order Symbols, Asymptotic Sequences and Series

Let M be a set of real or complex numbers with a limit point x0. Let f, g : M → R
(or f, g : M → C) be some functions on M. In this section we introduce order symbols,

asymptotic sequences and series for Stirling’s asymptotic formula.

Definition 3.1.1.1 Let f(x) and g(x) be functions defined in M. We say that f(x) is ”big O”

of g(x) as x → x0 and write

f(x) = O(g(x)) as x → x0, (3.6)
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if there exists a constant C > 0 such that

|f(x)| ≤ C|g(x)|,∀x ∈ M. (3.7)

Observe that if g(x) does not vanish near x0, then the relation f(x) = O(g(x)), as x → x0

is equivalent to the condition

lim
x→x0

∣∣∣f(x)

g(x)

∣∣∣ < ∞. (3.8)

Here limx→x0 denotes the limit superior as, x → x0.

Definition 3.1.1.2 Let f(x) and g(x) be functions defined in M. We say that f(x) is ”little

o” of g(x) as x → x0 and write

f(x) = o(g(x)) as x → x0, (3.9)

if for each ε > 0 such that

|f(x)| ≤ ε|g(x)|,∀x ∈ M, (3.10)

if g(x) does not vanish near x0, the condition f(x) = o(g(x)), as x → x0 is equivalent to

the vanishing of the limit

lim
x→x0

f(x)

g(x)
= 0. (3.11)

Example 3.1 The function f(x) = 3x3 + 4x2 is O(x3) as x →∞. We have that

g(x) = x3.

lim
x→x0

∣∣∣f(x)

g(x)

∣∣∣ = lim
x→∞

∣∣∣3x
3 + 4x2

x3

∣∣∣ = lim
x→∞

∣∣∣3 +
4

x

∣∣∣ < ∞. (3.12)
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Example 3.2 The function f(x) = 3x3 + 4x2 is o(x4) as x →∞. We have that

g(x) = x4.

lim
x→x0

f(x)

g(x)
= lim

x→∞
3x3 + 4x2

x4
= lim

x→∞

(
3

x
+

4

x2

)
= 0. (3.13)

Definition 3.1.1.3 The functions f(x) and g(x) are called asymptotically equivalent as

x → x0 if

f(x)− g(x) = o(g(x)) as x → x0. (3.14)

In this case we write

f(x) ∼ g(x) as x → x0. (3.15)

The relation ∼ is symmetric since actually f ∼ g as x → x0, iff in a neighborhood of x0

the zeros of f and g coincide and

lim
x→x0

f(x)

g(x)
= 1. (3.16)

Example 3.3 We consider some functions and their asymptotic equivalences;

1. sin z ∼ z (z → 0).

2. n! ∼ √
2πne−nnn (n →∞).

Definition 3.1.1.4 Let ϕn : M → R, n ∈ N, and x0 be a limit point of M. Let ϕn(x) 6= 0

in neighborhood Un of x0. The sequence {ϕn} is called asymptotic sequence at x → x0,

x ∈ M , if ∀n ∈ N;

ϕn+1(x) = o(ϕn(x)) (x → x0, x ∈ M). (3.17)

Example 3.4 We consider power asymptotic sequences;

45



1. {(x− x0)
n}, as x → x0.

2. {x−n}, as x →∞.

3. Let {αn} be a decreasing sequence of real numbers, i.e. αn+1 < αn, and let

0 < ε ≤ π
2
. Then the following equation is an asymptotic sequence

ϕn(z) = eαnz, z →∞, |arg z| ≤ π

2
− ε. (3.18)

Definition 3.1.1.5 Let {ϕn} be an asymptotic sequence as x → x0, x ∈ M . We say that

the function f is expanded in an asymptotic series;

f(x) ∼
∞∑

n=0

anϕn(x), (x → x0, x ∈ M), (3.19)

where an are constants, if ∀N ≥ 0

RN(x) ≡ f(x)−
N∑

n=0

anϕn(x) = o(ϕN(x)), (x → x0, x ∈ M). (3.20)

This series is called asymptotic expansion of the function f with respect to the asymptotic

sequence {ϕn}. RN(x) is called the rest term of the asymptotic series.

Remark 3.1

1. The condition RN(x) = o(ϕn), means, in particular, that

lim
x→x0

RN(x) = 0 for any fixed N. (3.21)

2. Asymptotic series could diverge. This happens if

lim
N→∞

RN(x) 6= 0 for some fixed x. (3.22)
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3.1.2. Bernoulli Polynomials and Bernoulli Numbers

In this subsection we introduce Bernoulli polynomials and the Bernoulli numbers.

They play important role in asymptotic formulas (Euler-Maclaurin formula), (Kac&Cheung,

2002).

Definition 3.1.2.1 In the Taylor expansion,

∞∑
n=0

Bn(x)

n!
zn =

zezx

ez − 1
. (3.23)

Bn(x) are polynomials in x, for each nonnegative integer n. They are known as Bernoulli

polynomials.

Remark 3.2 If we differentiate both sides of (3.23) with respect to x, we get

∞∑
n=0

B
′
n(x)

n!
zn = z

zezx

ez − 1
=

∞∑
n=0

Bn(x)

n!
zn+1. (3.24)

Equating coefficients zn, where n ≥ 1, yields

B
′
n(x) = nBn−1(x). (3.25)

Together with the fact that B0(x) = 1, which may be obtained by letting z tend to zero

on both sides of (3.23), it follows that the degree of Bn(x) is n and its leading coefficient

is unity. Using (3.25), we can determine Bn(x) one by one, provided that their constant

terms are known.

Definition 3.1.2.2 For n ≥ 0,Bn = Bn(0) are called Bernoulli numbers.

If we use definition of Bernoulli polynomials as x = 0 then we get

∞∑
n=0

Bn

n!
zn =

z

ez − 1
. (3.26)
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Since using Taylor’s expansion we have

z

ez − 1
=

1

1 + z
2

+ z2

6
+ z3

24
+ ....

, (3.27)

we can use long division to find the Bernoulli numbers. However,we would like to deter-

mine Bn and Bn(x) in an easier and more systematic way.

Proposition 3.1.2.3 For any n ≥ 1,

Bn(x + 1)−Bn(x) = nxn−1. (3.28)

Proof 3.1.2.4 Comparing the coefficient of zn in

∞∑
n=0

Bn(x + 1)

n!
zn −

∞∑
n=0

Bn(x)

n!
zn =

zez(x+1) − zezx

ez − 1
= zezx =

d

dx
ezx, (3.29)

where

ezx =
∞∑

n=0

xnzn

n!
, (3.30)

we have the following equality,

Bn(x + 1)−Bn(x) =
d

dx
xn = nxn−1. (3.31)

as desired.¥

Proposition 3.1.2.5 For any n ≥ 0,

Bn(x) =
n∑

j=0

(
n

j

)
Bjx

n−j. (3.32)
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Proof 3.1.2.6 Let

Fn(x) =
n∑

j=0

(
n

j

)
Bjx

n−j. (3.33)

It suffices to show that

1. Fn(0) = Bn for n ≥ 0.

2. F
′
n(x) = nFn−1(x) for any n ≥ 1.

Since these two properties uniquely characterize Bn(x). The first property is obvious.

As for the second property, using the fact that for n > j ≥ 0,

(n− j)

(
n

j

)
=

n!

j!(n− j − 1)!
= n

(
n− 1

j

)
, (3.34)

we have for n ≥ 1

d

dx
Fn(x) =

n−1∑
j=0

(
n

j

)
(n− j)Bjx

n−j−1 = n

n−1∑
j=0

(
n− 1

j

)
Bjx

n−j−1, (3.35)

as desired.¥

Putting x = 1 in (3.32), we have

Bn(1) =
n∑

j=0

(
n

j

)
Bj = Bn +

n−1∑
j=0

(
n

j

)
Bj n ≥ 1. (3.36)

But, for any n ≥ 2, we have Bn(1) = Bn, which follows from (3.28) with x = 0.

Therefore, we obtain the obtain the formula

n−1∑
j=0

(
n

j

)
Bj = 0 n ≥ 2. (3.37)
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This formula allows us to compute the Bernoulli numbers inductively. The first few of

them are

B0 = 1, B1 =
−1

2
, B2 =

1

6
, B3 = 0, B4 =

−1

30
, B5 = 0, B6 =

1

42
. (3.38)

Proposition 3.1.2.7 For any n ≥ 1,

n−1∑
j=0

(
n

j

)
Bj(x) = nxn−1. (3.39)

Proof 3.1.2.8 We will use mathematical induction. The case where n = 1 is obvious. If

we assume that (3.39) is true for some k ≥ 1, we have, by (3.25)

d

dx

k∑
j=0

(
k + 1

j

)
Bj(x) =

k∑
j=1

j

(
k + 1

j

)
Bj−1(x)

= (k + 1)
k∑

j=1

(
k

j − 1

)
Bj−1(x)

= (k + 1)
k−1∑
j=0

(
k

j

)
Bj(x)

= (k + 1)kxk−1 = (k + 1)
d

dx
xk (3.40)

or equivalently

k∑
j=0

(
k + 1

j

)
Bj(x) = (k + 1)xk + C, (3.41)

for some constant C. Putting x = 0 and using (3.37) show that C=0. Hence, by induction,

(3.39) is true for any positive integer.¥

As has been mentioned above , formula (3.25) and the knowledge of Bernoulli numbers

allow us to determine the Bernoulli polynomials inductively.
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The first six of them are listed below;

B0(x) = 1,

B1(x) = x− 1

2
,

B2(x) = x2 − x +
1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x,

B4(x) = x4 − 2x3 + x2 − 1

30
,

B5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
. (3.42)

3.1.3. The Gamma and the Beta Functions

Definition 3.1.3.1 The gamma function is defined as,

Γ(z) =

∫ ∞

0

e−ttz−1dt, for z ∈ C, <z > 0. (3.43)

Theorem 3.1.3.2

Γ(z + 1) = zΓ(z), <z > 0. (3.44)

Proof 3.1.3.3 From definition of gamma function and using integration by part, we obtain

Γ(z + 1) =

∫ ∞

0

e−ttzdt = −
∫ ∞

0

tz d(e−t) = −e−ttz|∞0 +

∫ ∞

0

e−t d(tz)

= z

∫ ∞

0

e−ttz−1dt = zΓ(z), <z > 0.¥ (3.45)

Further we have

Γ(1) =

∫ ∞

0

e−tdt = −e−t|∞0 = 1. (3.46)
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Combining (3.44) and (3.46), this leads to

Γ(n + 1) = n!, n = 0, 1, 2, ... (3.47)

The definition of gamma function in eqn.(3.87) give us the Γ(z) is analytic for <z > 0.

The functional relation (3.44) also holds for <z > 0.

Let −1 < <z ≤ 0, then we have <(z + 1) > 0. Hence, Γ(z + 1) is defined by the

integral representation (3.45). Now we define

Γ(z) =
Γ(z + 1)

z
, −1 < <z ≤ 0, z 6= 0. (3.48)

Then the gamma function Γ(z) is analytic for <z > −1 except z = 0. For z = 0 we have

lim
z→0

zΓ(z) = lim
z→0

Γ(z + 1) = Γ(1) = 1. (3.49)

This implies that Γ(z) has a single pole at z = 0 with residue 1. This process can be

repeated for −2 < <z ≤ −1, −3 < <z ≤ −2, etcetera. Then the gamma function turns

out to be an analytic function on C except for single poles at z = 0,−1,−2,−3, ....

The residue at z = −n equals

lim
z→−n

(z + n)Γ(z) =
Γ(1)

(−n)(−n + 1)....(−1)

=
(−1)n

n!
, n = 0, 1, 2, .... (3.50)

Alternatively we can define the gamma function as follows.

Definition 3.1.3.4 For all complex numbers z 6= 0,−1,−2, .. the gamma function is de-

fined by

Γ(z) = lim
n→∞

n!nz

(z)n+1

, (3.51)

where (z)n =
∏n−1

k=1(z + k) and (z)0 = 1.
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This definition comes from as the following integral;

∫ 1

0

(1− t)ntz−1dt =
n!

(z)n+1

, (3.52)

for <z > 0 and n = 0, 1, 2, .... In order to prove (3.52) by induction we first take n = 0

to obtain for <z > 0

∫ 1

0

tz−1dt =
1

z
=

0!

(z)1

. (3.53)

Now we assume that (3.52) holds for n = k. Then we have

∫ 1

0

(1− t)k+1tz−1dt =

∫ 1

0

(1− t)(1− t)ktz−1dt =

∫ 1

0

(1− t)ktz−1dt−
∫ 1

0

(1− t)tzdt

=
k!

(z)k+1

− k!

(z + 1)k+1

=
(k + 1)!

(z)k+2

, (3.54)

which is (3.52) for n = k + 1. This proves that (3.52) holds for all n = 0, 1, 2, ....

Now we set t = u/n into (3.52) to find that

1

nz

∫ n

0

(
1− u

n

)n

uz−1 du =
n!

(z)n+1

⇒
∫ n

0

(
1− u

n

)n

uz−1 du =
n! nz

(z)n+1

. (3.55)

Since we have

lim
n→∞

(
1− u

n

)n

= e−u, (3.56)

we conclude that

Γ(z) =

∫ ∞

0

e−uuz−1du = lim
n→∞

n!nz

(z)n+1

. (3.57)
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Definition 3.1.3.5 The beta function is defined as,

B(u, v) =

∫ 1

0

tu−1(1− t)v−1dt, <u,<v > 0. (3.58)

The connection between the beta and the gamma function is given by the following theo-

rem;

Theorem 3.1.3.6

B(u, v) =
Γ(u)Γ(v)

Γ(u + v)
, <u,<v > 0. (3.59)

Proof 3.1.3.7 From the definition of gamma function, we get

Γ(u)Γ(v) =

∫ ∞

0

e−ttu−1dt

∫ ∞

0

e−ssv−1ds =

∫ ∞

0

∫ ∞

0

e−(s+t)tu−1sv−1dtds. (3.60)

Now we apply change of variables t = xy and s = x(1− y) to this double integral. Note

that t+s = x and that 0 < t < ∞ and 0 < s < ∞ imply that 0 < x < ∞ and 0 < y < 1.

The Jacobian transformation is

∂(t, s)

∂(x, y)
= −x. (3.61)

Since x > 0 we conclude that dt ds =
∣∣∣ ∂(t,s)
∂(x,y)

∣∣∣ dx dy = x dx dy. Hence we have

Γ(u)Γ(v) =

∫ 1

0

∫ ∞

0

e−x xu−1 yu−1 xv−1 (1− y)v−1 x dx dy (3.62)

=

∫ ∞

0

e−x xu+v−1 dx

∫ 1

0

yu−1 (1− y)v−1 dy = Γ(u + v) B(u, v).

This proves (3.59).¥
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3.1.4. The Euler-Maclaurin Formula and the Stirling’s Asymptotic

Formula

In this subsection we give a precise formula for the approximation of sums by

integrals, the celebrated Euler-Maclaurin formula.

Theorem 3.1.4.1 (Euler-Maclaurin Formula) (Olver, 1974)

If f ∈ C2m[a, b], a and b integers,then

b∑
n=a

f(n) =

∫ b

a

f(t)dt +
1

2
f(a) +

1

2
f(b)

+
m∑

k=1

B2k

(2k)!
{f (2k−1)(b) − f (2k−1)(a)} −

∫ b

a

B2m(x− [x])

(2m)!
f (2m)(x)dx. (3.63)

where Bn(x) is the nth Bernoulli polynomial, Bn is nth Bernoulli numbers, and m is any

positive integer. The symbol [x] for a real number x denotes the fractional part of x.

The Euler-Maclaurin make the connection between the sum and the integral ex-

plicit for sufficiently smooth functions. We will use these formulas to get asymptotic

expansions of gamma function known as Stirling’s asymptotic formula. This formula

play important role in the convergence of infinite sums.

Now we apply this formula to get Stirling’s asymptotic formula.

Theorem 3.1.4.2 (Andrew, 1999) Let z ∈ C− (−∞, 0],

log Γ(z) = (z − 1

2
) log z − z +

1

2
log(2π) +

m∑
j=1

B2j

2j(2j − 1)
z1−2j

− 1

2m

∫ ∞

0

B2m(t− [t])

(z + t)2m
dt. (3.64)

Proof 3.1.4.3 Start with the following expression of the gamma function,

Γ(z) = lim
n→∞

n∏

k=1

k

z + k − 1

(
k + 1

k

)z−1

. (3.65)

55



Then

log Γ(z) = lim
n→∞

[
(z − 1) log(n + 1)−

n∑

k=1

log(
z + k − 1

k
)

]
, (3.66)

where the principal branch of the log function in z ∈ C − (−∞, 0] is chosen. In Euler-

Maclaurin formula, take

f(t) = log

(
t + z − 1

t

)
= log(t + z − 1)− log t, (3.67)

to get the following equality,

n∑

k=1

log(
z + k − 1

k
) = log z +

n∑

k=2

log(
z + k − 1

k
)

= log(z) +

∫ n

1

[log(t + z − 1)− log(t)]dt

+
m∑

j=1

B2j

2j(2j − 1)

[
1

(n + z − 1)2j−1
− 1

n2j−1
− 1

z2j−1
+ 1

]

+
1

2
[log(n + z − 1)− log n− log z]

+
1

2m

∫ n

0

B2m(t− [t])

[
1

(z + t− 1)2m
− 1

t2m

]
dt. (3.68)

Here we have used the fact that B1 = −1
2

and B2j+1 = 0 for j ≥ 0. Compute the first of

the above integrals and observe that some cancellation the terms involve n.

(n + z − 1) log(n + z − 1) − n log n +
1

2

[
log(n + z − 1)

n

]
(3.69)

+
m∑

j=1

B2j

2j(2j − 1)

[
1

(n + z − 1)2j−1
− 1

n2j−1

]
.

Subtract this from (z − 1) log(n + 1) and let n →∞ to compute the limit in (3.65).
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The result is

log Γ(z) = (z − 1

2
) log z − z + 1 +

m∑
j=1

B2j

2j(2j − 1)
(z1−2j − 1) (3.70)

− 1

2m

∫ ∞

0

B2m(t− [t])

[
1

(t + z − 1)2m
− 1

t2m

]
dt. (3.71)

We know that from Euler-Maclaurin formula for f(t) = log t and m = 1 as n →∞,

log n!−
(

n +
1

2

)
log n + n = 1 +

∫ n

0

B1(t− [t])

t
dt. (3.72)

If we use Riemann-zeta function (Andrew, 1999) then we get,

ζ ′(0) = −1−
∫ n

0

B1(t− [t])

t
dt = −1

2
log(2π). (3.73)

If we use equations (3.72) and (3.73) then we get

lim
z→∞

[log Γ(z)−
(

z +
1

2

)
log z + z] =

1

2
log(2π). (3.74)

So let z →∞ in (3.74) to see that

1−
m∑

j=1

B2j

2j(2j − 1)
+

1

2m

∫ ∞

0

B2m(t− [t])

t2m
=

1

2
log(2π). (3.75)

The result combined with (3.71) gives the formula in theorem (3.1.4.2).¥

Now give an asymptotic formula for Γ(z) for <z large, when =z is fixed.

Theorem 3.1.4.4 (Andrew, 1999)

Γ(z) ∼
√

2πzz−1/2e−z as <z →∞. (3.76)
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Proof 3.1.4.5 Denote the right side of the equation

Γ(z + n) =
n−1∑

k=1

log(k + n) + Γ(z + 1), (3.77)

by cn, so that

cn+1 + cn = log(z + n). (3.78)

By the analogy between the derivative and the finite difference we consider cn to be ap-

proximately the integral of log(z + n) and set

cn = (n + z) log(z + n)− (n + z) + dn, (3.79)

Substitute this in the previous equation to obtain

log(z + n) = (n + 1 + z) log(n + 1 + z)

− (n + z) log(z + n) + dn+1 − dn − 1. (3.80)

Thus we have,

dn+1 − dn = 1− (n + z + 1) log
(
1 +

1

n + z

)

= 1− (n + z + 1)
[ 1

n + z
+

1

2(n + z)2
+

1

3(n + z)3
+ ....

]

= − 1

2(n + z)
+

1

6(n + z)2
+ .... (3.81)

Proceeding as before, take

dn = en − 1

2
log(n + z), (3.82)
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and substitute in the previous equation to get

en+1 − en =
1

2
log(1 +

1

n + z
)− 1

2(n + z)
+

1

6(n + z)2
+ ...

= − 1

12(n + z)2
+ O

( 1

(n + z)3

)
. (3.83)

Now

en − e0 =
n−1∑

k=0

(ek+1 − ek) =
n−1∑

k=0

[
− 1

12(k + z)2
+ O

( 1

(n + z)3

)]
. (3.84)

Therefore, limn→∞(en − e0) = K1(z) exist. If we set the following equation then we

obtain,

en = K(z) +
1

12(k + z)
+ O

( 1

(n + z)2

)
, (3.85)

where K(z) = K1(z) + e0. The term (n + z)−1 comes from completing the sum in (3.84)

to infinity and approximating the added sum by an integral. So we can write

cn = (n + z) log(n + z)− (n + z)− 1

2
log(n + z)

+ log C(z) +
1

12(n + z)
+ O

( 1

(n + z)2

)
, (3.86)

where K(z) = log C(z). This implies that

Γ(z + n) = C(z)(n + z)n+z− 1
2 exp

[
− (n + z) +

1

12(n + z)
+ O

( 1

(n + z)2

)]
. (3.87)

We claim that C(z) is independent of z. By the definition of the gamma function

lim
n→∞

Γ(z1 + n)

Γ(z2 + n)
nz2−z1 =

Γ(z1)

Γ(z2)
lim

n→∞
(z1)n

(z2)n

nz2−z1 =
Γ(z1)

Γ(z2)
.
Γ(z2)

Γ(z1)
= 1. (3.88)
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Now, from (3.87) and (3.88) we can conclude that

1 = lim
n→∞

n−z Γ(z + n)

Γ(n)
=

C(z)

C(0)
lim

n→∞
(1 +

z

n
)ne−z =

C(z)

C(0)
. (3.89)

Thus C(z) is a constant and

Γ(z) ∼ Czz−1/2e−z as <z →∞. (3.90)

To find C, we use the Wallis formula (Andrew, 1999);

√
π = lim

n→∞
22n(n!)2

(2n)!

1√
n

= lim
n→∞

22nC2n2n+1e−2n+O( 1
n

)

C(2n)2n+ 1
2 e−2n+O( 1

n
)

=
C√
2
. (3.91)

This gives C =
√

2π and proves the theorem.¥

From theorem (3.1.4.2) the following corollary is immediately obtained.

Corollary 3.1.4.6 For δ > 0 and |argz| ≤ π − δ,

Γ(z) ∼
√

2πzz−1/2e−z as <z →∞. (3.92)

Corollary 3.1.4.7 When z = a + ib, a1 ≤ a ≤ a2 and |b| → ∞, then

|Γ(a + ib)| =
√

2π|b|a−1/2e−π|b|/2[1 + O(1/|b|)]. (3.93)

Proof 3.1.4.8 Take |b| > 1, a > 0. We use Bernoulli polynomial B2 − B2(t) = t − t2.

Thus 1
2
|B2 −B2(t)| ≤ 1

2
|t(1− t)| ≤ 1

8
for 0 ≤ t ≤ 1. So (3.63) with m = 1 is

Γ(a + ib) = (a + ib− 1

2
) log(a + ib)− (a + ib) +

1

2
log 2π + R(x), (3.94)
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and

|R(x)| ≤ 1

8

∫ ∞

0

dt

|t + z|2 =
1

8

∫ ∞

0

dt

(a + t)2 + b2
=

1

8|b| tan−1 |b|
a

, b 6= 0. (3.95)

Now we consider the following equation,

<[(a + ib− 1

2
) log(a + ib)] = (a− 1

2
) log(a2 + b2)1/2 − b arctan

b

a
. (3.96)

Also,

log(a2 + b2)1/2 =
1

2
log b2 + log(1 +

a2

b2
) = log |b|+ O

( 1

b2

)
. (3.97)

Moreover,

arctan
b

a
+ arctan

a

b
=

{
π
2

if b > 0

−π
2

if b < 0.
(3.98)

This gives

−b arctan
b

a
= −b

[
± π

2
− a

b
+ O

( 1

b2

)]

= −π

2
|b|+ a + O

( 1

b2

)
. (3.99)

Putting all together gives

log |Γ(a + ib)| = (a− 1

2
) log |b| − π

2
|b|+ 1

2
log 2π + O

( 1

|b|
)
.¥ (3.100)
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CHAPTER 4

WEIERSTRASS-MANDELBROT FUNCTIONS AND THE

CHIRP DECOMPOSITION

In this Chapter we are going to apply q-periodic functions from Chapter 2 and

asymptotic formulas from chapter 3 to fractal functions and expansion in their harmonics.

4.1. The Weierstrass-Mandelbrot Function

In 1872, Karl Weierstrass introduced a function defined by

Ŵ (t) =
∞∑

k=0

ak cos(bkπt), (4.1)

with 0 < a < 1, ab > 1 + 3
2
π and b > 1 an odd integer, t ∈ R, as an example of a con-

tinuous and nowhere differentiable function (Edgar, 1993). The basic idea is to construct

a function as an infinite convergent series of continuous functions, but with divergent

derivative. This example created a sensation in the mathematical world because it chal-

lenged the then widespread belief among mathematicians that continuous functions had

to be differentiable everywhere except possibly at isolated ”singular” points. A. Ampere

had even published a proof of this fact in 1806. Weierstrass’s example thus brought to an

end of a long string of futile attempts to show that differentiability somehow follows from

continuity.

Weierstrass was not the first to claim the existence of an everywhere continuous,

nowhere differentiable function, but he was the first provide a rigorous proof. About 1830,

Bolzano had constructed a similar example but was unable to prove that it was nowhere

differentiable (Jarnik, 1922).

In 1860, the Swiss mathematicians Charles Cellerier gave another example,

C(t) =
∞∑

k=1

sin(akt)

ak
, (4.2)
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which is nowhere differentiable when a is a sufficiently large positive integer. His result

was not published, however until 1890, whereas ”Weierstrass” result was published in

1875 (Cellerier, 1890).

According to Weierstrass, Riemann claimed in his lectures in 1861 that the func-

tion

R(t) =
∞∑

k=1

sin(k2t)

k2
, (4.3)

is nowhere differentiable, or at least nondifferentiable on a dense subset of R (Riemann,

1854). Weierstrass was unable to verify nondifferentiability of Riemann’s function (4.3)

and subsequently constructed his own example, the function (4.1) above. In 1970, J.Gerver

proved that in fact Riemann’s function (4.3) is differentiable at infinitely many points

namely when x = aπ, where a = 2p+1
2q+1

for p, q ∈ Z (Gerver, 1970).

In 1878 Italian mathematician Ulisse Dini proposed more general class of contin-

uous nowhere differentiable functions. He had generalized Weierstrass function (4.1) as

the following;

ŴD1(t) =
∞∑

k=1

ak

1.3.5.....(2k − 1)
cos(1.3.5....(2k − 1)πt), (4.4)

and

ŴD2(t) =
∞∑

k=1

ak

1.5.9.....(4k + 1)
cos(1.5.9....(4k + 1)πt), (4.5)

where |a| > 1 + 3
2
π (Dini, 1877).

Polish mathematicians Karol Hertz gave in his paper from 1879 another general-

ization of Weierstrass function (4.1) namely,

ŴH(t) =
∞∑

k=1

ak cosp(bkπt), (4.6)

where a > 1, p ∈ N is odd, b odd integer and ab > 1 + 2
3
pπ (Hertz, 1879).
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In 1916 Hardy proved that the function Ŵ defined above is continuous and nowhere

differentiable if 0 < a < 1, ab ≥ 1 and b > 1 (not necessarily odd integer), t ∈ R.

Theorem 4.1.0.9 (Hardy, 1916) The Weierstrass function,

Ŵ (t) =
∞∑

k=0

ak cos(bkπt), (4.7)

for 0 < a < 1, ab ≥ 1 and b > 1, t ∈ R, is continuous and nowhere differentiable

function on R.

Proof 4.1.0.10 We start with establishing continuity of this function and, observe that

0 < a < 1 implies geometric series
∑∞

k=0 ak = 1
1−a

< ∞. This together with inequality

supt∈R |ak cos(bkπt)| ≤ ak gives, using the Weierstrass M-test (the comparison test), that
∑∞

k=0 ak cos(bkπt) converges uniformly to Ŵ on R. The continuity of Ŵ now follows

from the uniform convergence of the series just established and from corollary (A.0.0.10)

in appendix A.

Now we are going to show nowhere differentiability of Ŵ (t). We will calculate

and compare derivative of Ŵ from the left and right hand sides. During rest of this proof

we assume that Weierstrass original assumptions hold, i.e. ab > 1 + 3π/2 and b > 1 an

odd integer. For a more general proof with ab ≥ 1 and b > 1 we refer to (Hardy, 1916).

Let t0 ∈ R be arbitrary but fixed and let m ∈ N be arbitrary. Choose αm ∈ Z
such that bmt0 − αm ∈ (−1

2
, 1

2

]
and define tm+1 = bmt0 − αm. Put

ym =
αm − 1

bm
and zm =

αm + 1

bm
. (4.8)

This gives the inequality

ym − t0 = −1 + tm+1

bm
< 0 <

1− tm+1

bm
= zm − t0, (4.9)

and therefore ym < t0 < zm. As m → ∞, ym → t0 from the left and zm → t0 from the

right.
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a) First consider the left-hand difference quotient;

Ŵ (ym)− Ŵ (t0)

ym − t0
=

∞∑

k=0

(
ak cos(bkπym)− cos(bkπt0)

ym − t0

)

=
m−1∑

k=0

(
(a b)k cos(bkπym)− cos(bkπt0)

bk(ym − t0)

)
(4.10)

+
∞∑

k=0

(
am+k cos(bm+kπym)− cos(bm+kπt0)

ym − t0

)
= S1 + S2.

We treat this sum separately, starting with S1. Since
∣∣∣ sin(t)

t

∣∣∣ ≤ 1 we can, by using the

trigonometric identity, bound the sum by

|S1| =

∣∣∣∣∣
m−1∑

k=0

(a b)k(−π) sin(
bkπ(ym + t0)

2
)
sin( bkπ(ym−t0)

2

bkπ (ym−t0)
2

∣∣∣∣∣

≤
m−1∑

k=0

π(a b)k =
π((a b)m − 1)

(a b)− 1
≤ π((a b)m)

(a b)− 1
. (4.11)

Considering the sum S2 we can use b > 1 as an odd integer and αm ∈ Z,

cos(bm+kπym) = cos

(
bm+kπ

αm − 1

bm

)
= cos(bkπ(αm − 1))

= [(−1)bk

](αm−1) = −(−1)αm , (4.12)

and

cos(bm+kπt0) = cos

(
bm+kπ

αm + tm+1

bm

)

= cos(bkπαm) cos(bkπtm+1)− sin(bkπαm) sin(bkπtm+1)

= [(−1)bk

]αm cos(bkπtm+1)− 0 = (−1)αm cos(bkπtm+1), (4.13)
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to express the sum as

S2 =
∞∑

k=0

am+k−(−1)αm − (−1)αm cos(bkπtm+1)

−1+tm+1

bm

= (a b)m(−1)αm

∞∑

k=0

ak 1 + cos(bkπtm+1)

1 + tm+1

. (4.14)

Each term in the series above is non-negative and tm+1 ∈
(−1

2
, 1

2

]
so we can find a lower

bound by

∞∑

k=0

ak 1 + cos(bkπtm+1)

1 + tm+1

≥ 1 + cos(πtm+1)

1 + tm+1

≥ 1

1 + 1
2

=
2

3
. (4.15)

The inequalities (4.11) and (4.15) ensures the existence of an ε1 ∈ [−1, 1] and an η1 > 1

such that

Ŵ (ym)− Ŵ (t0)

ym − t0
= (−1)αm(a b)mη1

(
2

3
+ ε1

π

(a b)− 1

)
. (4.16)

b) As with the left-hand difference quotient, for the right-hand quotient we do pretty much

the same, starting by expressing the said faction as

Ŵ (zm)− Ŵ (t0)

zm − t0
= S ′1 + S ′2. (4.17)

As before it can be deduced that

|S ′1| ≤
π((a b)m)

(a b)− 1
. (4.18)

The cosine term containing zm can be simplified again since b > 1 is an odd integer.

cos(bm+kπzm) = cos

(
bm+kπ

αm − 1

bm

)
= cos(bkπ(αm − 1))

= [(−1)bk

](αm−1) = −(−1)αm , αm ∈ Z, (4.19)
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which gives

S2 =
∞∑

k=0

am+k−(−1)αm − (−1)αm cos(bkπtm+1)
1−tm+1

bm

= −(a b)m(−1)αm

∞∑

k=0

ak 1 + cos(bkπtm+1)

1− tm+1

. (4.20)

as before we can find a lower bound for the series by

∞∑

k=0

ak 1 + cos(bkπtm+1)

1− tm+1

≥ 1 + cos(πtm+1)

1− tm+1

≥ 1

1− (−1
2

) =
2

3
. (4.21)

By the same argument as for the left-hand difference quotient (but by using the inequalities

(4.18) and (4.21) instead), there exists an ε2 ∈ [−1, 1] and an η2 > 1 such that

Ŵ (zm)− Ŵ (t0)

zm − t0
= −(−1)αm(a b)mη2

(
2

3
+ ε2

π

(a b)− 1

)
. (4.22)

By assumption ab > 1+ 3
2
π, which is equivalent to π

ab−1
< 3

2
, the left-hand and right-hand

difference quotients have different signs. Since also (a b)m → ∞ as m → ∞ it is clear

that Ŵ has no derivative at t0. The choice of t0 ∈ R was arbitrary so it follows that Ŵ (t)

is nowhere differentiable.¥

4.1.1. Self-Similarity of Weierstrass-Mandelbrot Function

Now we are going to study self-similarity property of function Ŵ (t). Before we

check the self-similarity, we choose special values of a and b as a = q−d and b = q and

πt → t in equation (4.1). So we get

Ŵ (t) =
∞∑

n=0

q−nd cos(qnt), 0 < d < 1, q > 1. (4.23)
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It is easy to see that this function is not truely self-similar since,

Ŵ (qt) = qd[Ŵ (t)− cos t] 6= qdŴ (t). (4.24)

To find the self-similar of Ŵ (t), Mandelbrot proposed the natural generalization of (4.23)

by extension of summation to all integer numbers,

W (t) =
∞∑

n=−∞
q−nd(1− eiqnt)eiϕn , (4.25)

where an extra degree of arbitraries is determined by phases ϕn. Function (4.25) called

the Weierstrass-Mandelbrot function has been widely used as an example of fractal with

dimension 2 − d (Barros & Bevilacqua, 2001). Below we consider the case, where the

phases are ϕn = ϕ1n, n = 0,±1,±2, ....

Then W (t) obeys the following equation;

W (qt) =
∞∑

n=−∞
q−nd(1− eiqn+1t)eiϕ1n

= eiϕ1qd

∞∑
n=−∞

q−nd(1− eiqnt)eiϕ1n

= eiϕ1qdW (t) (4.26)

or equivalently

W (qt) = eiϕ1qdW (t). (4.27)

For ϕ1 = 0 it means that function W (t) is self-similar function. Moreover this equation

implies that the whole function W can be reconstructed from its value in the range t0 ≤
t < qt0, t0 6= 0. Indeed, according to this formula it is determined in intervals,

... ∪ [
1

q
t0, t0) ∪ [t0, qt0) ∪ [qt0, q

2t0) ∪ [q2t0, q
3t0) ∪ ... (4.28)
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or equivalently

∪∞n=−∞[qnt0, q
n+1t0). (4.29)

Then for t0 > 0 it determines W (t) on R+ and for t0 < 0 it determines W (t) on R−. If

we apply q-difference operator on W (t) then we get

DqW (t) =
W (qt)−W (t)

(q − 1)t
=

eiϕ1qdW (t)−W (t)

(q − 1)t

=
qd+i

ϕ1
ln q − 1

(q − 1)t
W (t) (4.30)

or equivalently,

(tDq)W (t) =

[
d + i

ϕ1

ln q

]

q

W (t). (4.31)

where
[
d + i ϕ1

ln q

]
q

is complex q-number.

Note that although limq→1
tW ′(t)
W (t)

is undefined and the function is not differentiable,

the q-derivative of W (t) is well defined.

lim
q→1

(tDq)W (t)

W (t)
= lim

q→1

[
d + i

ϕ1

ln q

]

q

. (4.32)

In the limit q → 1 and ϕ1 ≡ 0, Dq → d
dt

and function W (t) is divergent, but this

expression is finite and equal d.

4.1.2. Relation with q-periodic Function

In this subsection we are going to find relation between W (t) and the q-periodic

functions. Function W (t) satisfies equation (4.31) which is the complex version of equa-

tion (2.130). Following the similar arguments as for of equation (2.130) we can see that
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W (t) can be represented in the form;

W (t) = td+i
ϕ1
ln q Aq(t), (4.33)

where Aq(t) is q-periodic function. Since Aq(t) is q-periodic, it can be expressed by

Aq(t) =
∞∑

m=−∞
cme

i2πm
ln q

ln t, (4.34)

from equation (2.153). So we can write W(t) in the following form;

W (t) = td+i
ϕ1
ln q

∞∑
m=−∞

cme
i2πm
ln q

ln t

=
∞∑

m=−∞
cmtd exp

[
i(ϕ1 + 2πm)

ln t

ln q

]

=
∞∑

m=−∞
cmfm(t). (4.35)

or equivalently

W (t) =
∞∑

m=−∞
cmfm(t), (4.36)

where

fm(t) = td exp

[
i(ϕ1 + 2πm)

ln t

ln q

]
. (4.37)

To find coefficients cm in this expansion, we start from definition of W (t) by infinite sum

(4.25). By using the Poisson summation formula (Berry&Lewis, 1979)

∞∑
n=−∞

f(n) =
∞∑

k=−∞

∫ +∞

−∞
f(t)ei2πktdt, (4.38)
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we can transform the sum over n in (4.25) to the integral

W (t) =
∞∑

m=−∞

∫ +∞

−∞
dn

(
1− eiqnt

qd n

)
ei(ϕ1+2πm)n. (4.39)

Now we calculate this integral, by substitution qn = en ln q and en = z then we get

∫ +∞

0

dz

z

(
1− ei t zln q

zd ln q

)
zi(ϕ1+2πm) = I1 + I2. (4.40)

where

I1 =

∫ +∞

0

zi(ϕ1+2πm)−d ln q−1 dz = 0, (4.41)

and

I2 = −
∫ +∞

0

ei t zln q

zi(ϕ1+2πm)−d ln q−1dz. (4.42)

If we choose t zln q = iτ then we get i dτ = t ln q zln q−1 dz and z = ( i τ
t
)

1
ln q and if we

substitute these equations in the above integral we get

I2 = −
∫ +∞

0

e−τ

(
i τ

t

) 1
ln q

(i(ϕ1+2πm)−d ln q−ln q)

i
dτ

t ln q
(4.43)

or equivalently

I2 =
−i

t ln q

(
i

t

) i(ϕ1+2πm)
ln q

−d−1 ∫ +∞

0

e−ττ
i(ϕ1+2πm)

ln q
−d−1dτ, (4.44)
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and last integral can be expressed as Γ function, with the result

W (t) =
ei π

2
(d+2)e−

π
2
ϕ1 ln q

ln q

∞∑
m=−∞

fm(t)e
−π2m

ln q Γ

(
−d + i

ϕ1 + 2πm

ln q

)
, (4.45)

where fm(t) = td exp
[
i(ϕ1 + 2πm) ln t

ln q

]
. This expression is explicit realization of series

expansion (4.36) in terms of functions (4.37).

4.1.3. Convergency of Weierstrass-Mandelbrot Function

To study convergency property of Weierstrass-Mandelbrot function in representa-

tion (4.45) we apply Stirling’s asymptotic formula;

|Γ(a + ib)| ∼
√

2π|b|a−1/2e−π|b|/2, |b| → ∞, (4.46)

Γ

(
−d + i

ϕ1 + 2πm

ln q

)
∼

√
2π

∣∣∣∣
ϕ1 + 2πm

ln q

∣∣∣∣
(−d− 1

2
)

e−|ϕ1+2πm
ln q |π2 (4.47)

=
√

2π

(
2π|m|
ln q

)−(d+ 1
2) ∣∣∣1 +

ϕ1

2πm

∣∣∣
−(d+ 1

2)
e−

π
2 ln q

2π|m||1+
ϕ1

2πm |.

Since |m| → ∞, the term ϕ1

2πm
→ 0 and we get

Γ

(
−d + i

ϕ1 + 2πm

ln q

)
∼ (2π)−d(ln q)(d+ 1

2)|m|−(d+ 1
2)e−

π2|m|
ln q . (4.48)

If we substitute this formula in equation (4.45) then we get

W (t) ≈ ei π
2
(d+2)e−

π
2
ϕ1 ln q

ln q

∞∑
m=−∞

fm(t)e−
π2m
ln q (2π)−d(ln q)(d+ 1

2)|m|−(d+ 1
2)e−

π2|m|
ln q .(4.49)
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We have found fm(t) = td exp
[
i(ϕ1 + 2πm) ln t

ln q

]
, if we arrange this equation for m À 1

then we get

fm(t) = tdei2πm(1+
ϕ1

2πm) ln t
ln q

∼ tdei2πm ln t
ln q (4.50)

or equivalently

fm(t) = tdei c m, (4.51)

where c = 2π ln t
ln q

and m À 1. Therefore we obtain;

W (t) ≈ −(2π)−d(ln q)(d− 1
2)e−

π
2
(ϕ1 ln q−i d)td

∞∑
m=−∞

ei c me−
π2m
ln q |m|−(d+ 1

2)e−
π2|m|
ln q .(4.52)

Using Stirling’s formula and ratio test, we show that the series is convergent.

4.1.4. Mellin Expansion for q-periodic function

Now we consider the real part of the Weierstrass-Mandelbrot function when all

the phases are chosen zero,

f(t) = <(W (t))|ϕn=0 =
∞∑

n=−∞
q−nd(1− cos(qnt)). (4.53)

If we scale the time in (4.53) by the parameter q we obtain;

f(qt) =
∞∑

n=−∞
q−nd(1− cos(qn+1t)) = qd

∞∑
n=−∞

q−nd(1− cos(qnt)) = qdf(t). (4.54)
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or equivalently

f(qt) = qdf(t). (4.55)

So that the function f(t) is scale-invariant and from equation (2.139) the solution to the

scaling equation, (4.55), is given by the functional form;

f(t) = tdAq(t), (4.56)

where Aq(t) q-periodic function. From (2.153), the general form of the q-periodic func-

tion is given by

Aq(t) =
∞∑

n=−∞
cnei 2πn

ln q
ln t. (4.57)

Note that we can write the solution of the scaling equation (4.56) in terms of a complex

exponent as

f(t) =
∞∑

n=−∞
cnt

dn , (4.58)

where the exponent is indexed by the integer n,

dn = d + i
2πn

ln q
. (4.59)

In Chapter 2 we have seen the scale invariance and how to related it to the q-periodic

functions. In equation (4.58) we get the Mellin form of the function as equation (2.159).

This form is very important. Because section 4.2 we show how to relate self-similarity

and Mellin representation.
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4.1.5. Graphs of Weierstrass-Mandelbrot Function

Each graph plots −10 ≤ n ≤ 10 terms in equation (4.53) and D = 2 − d is the

self-similar dimension of the Weierstrass-Mandelbrot function.

-4 -2 2 4

10

20

30

40

Figure 4.1. Weierstrass-Mandelbrot fractal function; q = 1.01, D = 1.5, ϕn = π
2
,

−5 ≤ t ≤ 5.

-4 -2 2 4

146 247

146 248

146 249

Figure 4.2. Weierstrass-Mandelbrot fractal function; q = 10, D = 1.5, ϕn = π
2
, −5 ≤

t ≤ 5.

Figures (4.1) and (4.2) show how almost smooth curve with q = 1.01 Fig.(4.1)

becomes a curve with fractal microstructure for q = 10 Fig.(4.2).
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Figure 4.3. Weierstrass-Mandelbrot fractal function; q = 3, D = 1.99, ϕn = π,
−0.5 ≤ t ≤ 0.5.
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159 597

159 598

159 598
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Figure 4.4. Weierstrass-Mandelbrot fractal function; q = 3, D = 1.01, ϕn = π,
−0.5 ≤ t ≤ 0.5.

The dimension of Weierstrass-Mandelbrot fractal function change between 1 <

D < 2 and D is non-integer number. As we found in Chapter 2, the non-integer dimension

is related with nowhere differentiability of the function. This means that geometrically

the slope between any two points on this curves is undefined because the curves are never

stop themselves. In addition, the fractal dimension characterizes the measure of space-

filling. For D = 1.99, which is close to the dimension of plane D = 2, the curve cover

the big portion (almost full) of plane Fig.(4.3). For D=1.01 which is close to dimension

of a smooth curve looks like one dimensional continuous curve, though not so smooth.
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0.35

Figure 4.5. Weierstrass-Mandelbrot fractal function; q = 5, D = 1.5, ϕn = 0, −0.5 ≤
t ≤ 0.5.
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11 306.3

11 306.3

11 306.4

Figure 4.6. Weierstrass-Mandelbrot fractal function; q = 5, D = 1.5, ϕn = π,−0.5 ≤
t ≤ 0.5.

Differences in the function plots related to different phase are shown in Fig.(4.5)

(ϕn = 0) and in Fig.(4.6) (ϕn = π).
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Figure 4.7. Weierstrass-Mandelbrot fractal function; q = 10, D = 1.5, ϕn = 0,
−0.05 ≤ t ≤ 0.05.
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Figure 4.8. Weierstrass-Mandelbrot fractal function; q = 10, D = 1.5, ϕn = 0,
−0.5 ≤ t ≤ 0.5.

The self-similarity of f(t) defined by (4.55) is shown in Fig.(4.7), (4.8), (4.9).

Change in the scale by q = 10 in Fig.(4.8) and by q−1 = 10−1 in Fig.(4.9) does not

change the shape of the curve.
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0.030

Figure 4.9. Weierstrass-Mandelbrot fractal function; q = 10, D = 1.5, ϕn = 0,
−0.0005 ≤ t ≤ 0.0005.
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0.005

0.010

0.015

0.020

Figure 4.10. Weierstrass-Mandelbrot fractal function; q = 10, D = 1.5, ϕn = 0,
−0.0002 ≤ t ≤ 0.0002.

However if the scale change in not by q±n = 10±n, then the figure change the

shape, as shown in Fig.(4.10) for scale 250.
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4.2. Tones and Chirps

In the previous section we discussed the scale invariance (self-similarity) and re-

lation with q-periodicity for the Weierstrass-Mandelbrot function. By using Fourier series

and proper transformation of the argument we derived the Mellin series for Weierstrass-

Mandelbrot function. In this section we define Fourier transformation and Mellin trans-

formation in general. These two transformations are both characterized by stationarity

and self-similarity respectively. The stationarity (shift invariance) of a function will be

called tone (Fourier mode) and the self-similarity (scale invariance) will be called chirp

(Mellin mode). We show this relation by the Lamperti transformation. The Lamperti

transformation defines one to one correspondence between stationary processes on the

real line (Fourier Mode) and self-similar processes on the real half line (Mellin Mode).

4.2.1. Stationarity and Self-Similarity

The idea of stationarity is equivalent to the shift or translation invariance and this

concept is related to Fourier transformation. Since the Fourier transformation is shift or

translation invariant. The self similarity is equivalent to the scale invariance and this con-

cept is related to Mellin transformation. Since the Mellin transformation is scale invariant.

In this subsection we define stationarity and self-similarity processes.

Definition 4.2.1.1 Given τ ∈ R, the shift or translation operator Sτ operates on pro-

cesses {Y (t), t ∈ R} according to;

(SτY )(t) ≡ Y (t + τ). (4.60)

Definition 4.2.1.2 Given H > 0 and λ > 0, the renormalized dilation operator MH,λ,

operates on processes {X(t), t > 0} according to;

(MH,λX)(t) ≡ λ−HX(λt). (4.61)
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Definition 4.2.1.3 A process {Y (t), t ∈ R} is said to be stationary if

{(SτY )(t), t ∈ R} ≡ {Y (t), t ∈ R}. (4.62)

Definition 4.2.1.4 A process {X(t), t > 0} is said to be self-similar of index H if

{(MH,λX)(t), t > 0} ≡ {X(t), t > 0}, (4.63)

for any λ > 0.

4.2.2. Transformations for Chirps

Definition 4.2.2.1 (Borgnat&Flandrin, 2002) We will call ’chirps’ any complex signals

of the form a(t)exp{iψ(t)}, with ψ(t) = 2πn log t and a(t) > 0.

We can consider a q-periodic function as an example of chirp. In Chapter 2 We defined

q-periodic function expansion as;

Aq(x) =
∞∑

n=−∞
cne

i2πn
ln q

ln t, (4.64)

It shows the q-periodic function representation in the chirp form. For example;

Aq(t) = cos

(
2π

ln t

ln q

)
=

1

2
ei 2π

ln q
ln t +

1

2
e−i 2π

ln q
ln t, (4.65)

where q > 0 and q 6= 1. Therefore any q-periodic function is super-position of chirp. And

we know that q-periodic function is self-similar. So any (convergent) super-position of

chirp is given by self-similarity.
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Figure 4.11. The graph of cos
(
2π ln t

ln q

)
, q = 5, 0 < t < 3π

10 20 30 40

-1.0

-0.5

0.5

1.0

Figure 4.12. The graph of cos
(
2π ln t

ln q

)
, q = 5, 0 < t < 15π

It is illustrated in Fig.(4.11), (4.12) with q = 5 the scale difference in these two

figures is by coefficient 5. And we can see complete identity of figures at these different

scales.

Definition 4.2.2.2 Given H > 0, the Lamperti transform LH operates on processes

{Y (t), t ∈ R} according to:

(LHY )(t) = tHY (log t), t > 0, (4.66)

and corresponding inverse Lamperti transform L−1
H operates on processes {X(t), t > 0}

according to:

(L−1
H X)(t) = e−HtX(et), t ∈ R. (4.67)
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The Lamperti transform is invertible, which guarantees that that (L−1
H LHY )(t) = Y (t)

for any process {Y (t), t ∈ R} and (LHL−1
H X)(t) = X(t) for any process {X(t), t > 0}.

We can however remark that, given two different parameters H1 and H2, we only have

(L−1
H2
LH1Y )(t) = eH1−H2Y (t), (4.68)

and, in a similar way

(LH2L−1
H1

X)(t) = tH2−H1X(t). (4.69)

Lemma 4.2.2.3 (Borgnat&Flandin, 2002) The Lamperti transform (4.66)-(4.67) guar-

antees an equivalence between the shift operator (4.60) and the renormalized dilation

operator (4.61) in the sense that for any λ > 0

L−1
H MH,λLH = Slog λ. (4.70)

Proof 4.2.2.4 Assuming that {Y (t), t ∈ R} is stationary and using the equations (4.60),

(4.61) and (4.66) we may write

(L−1
H MH,λLHY )(t) = (L−1

H MH,λ)(t
HY (log t))

= L−1
H (λ−H(λt)HY (log λt))

= e−Ht(sHY (log λs))s=et

= Y (t + log λ)

= (Slog λY )(t).¥ (4.71)

This lemma is the key ingredient for establishing a one to one connection between sta-

tionarity and self-similarity. This fact is referred to as Lamperti’s theorem.

Theorem 4.2.2.5 (Lamperti, 1962) If {Y (t), t ∈ R} is stationary, its Lamperti transform

{(LHY )(t), t ∈ R} is self-similar with index H. Conversely, {X(t), t > 0} is self-similar

with index H, its inverse Lamperti transform {(L−1
H X)(t), t > 0} is stationary.
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Proof 4.2.2.6 Let {Y (t), t ∈ R} be stationary process. Using equation (4.62) and lemma

(4.2.2.3), we have for any λ > 0,

{Y (t), t ∈ R} ≡ {(Slog λY )(t) = (L−1
H MH,λLHY )(t), t ∈ R}, (4.72)

and it follows from equation (4.63) that the Lamperti transform X(t) ≡ (LHY )(t) is

self-similar with index H. Since

{(MH,λX)(t), t > 0} ≡ {X(t), t > 0}, (4.73)

for any λ > 0.

Conversely, let {X(t), t > 0} be a self-similar process with index H. Using equa-

tion (4.63) and lemma (4.2.2.3) we have for any λ > 0,

{X(t), t > 0} ≡ {(MH,λX)(t) = (LHSlog λL−1
H X)(t), t > 0}, (4.74)

and it follows from equation (4.62) that inverse Lamperti transform Y (t) ≡ (L−1
H X)(t) is

stationary since

{Y (t), t ∈ R} ≡ {(Slog λY )(t), t ∈ R}, (4.75)

for any λ > 0.¥

Self-similar process can be obtained by ”lampertizing” corresponding stationary process.

A transformation F on a self-similar process with index H, {X(t), t > 0} can be equiva-

lently achieved as F = LHFL−1
H , according to the commutative diagram:

X(t) F //

inverse Lamperti
²²

(F X)(t) _?/o/o/o/o (self-similarity world)

(L−1
H X)(t)

F

// (FL−1
H X)(t)

Lamperti

OO

_?/o/o/o/o (stationarity world)

OO
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Example 4.1 The stationary random phase ”tone”

Y0(t) ≡ a cos(2πf0t + ϕ), t ∈ R, (4.76)

with a, f0 > 0 and ϕ ∈ [0, 2π], is ”lampertized” into the (self-similar) random phase

”chirp”

X0(t) ≡ (LHY0)(t) = atH cos(2πf0 log t + ϕ), t > 0. (4.77)

Figure 4.13. Tones and Chirps

Remark 4.1 X0(t) = <{aeiϕms(t)} with s = H + i2πf0 and ms(t) = ts the basic

building block of the Mellin transform.

The Lamperti transform of a tone is a ”chirp” with a power law amplitude modulation and

logarithmic frequency modulation. Said in other words, the Lamperti transform maps the

Fourier basis onto a Mellin basis.

Lamperti transform allows for a one-to-one correspondence between periodic and

self-similar functions. Periodic functions can be expanded on ”tones”(or Fourier modes):

en(t) = ei2πnt, (4.78)
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whose Lamperti transform expresses straightforwardly as:

CH,n(t) = (LHen)(t) = tH+i2πn, t > 0. (4.79)

Definition 4.2.2.7 Given s ∈ R and es(t) as in (4.78), the Fourier transform of a function

{Y (t), t ∈ R} is defined by:

(FY )(s) =

∫ +∞

−∞
Y (t)es(t)dt, (4.80)

with the corresponding reconstruction formula:

Y (t) =

∫ +∞

−∞
(FY )(s)es(t)ds. (4.81)

Definition 4.2.2.8 Given H > 0, s ∈ R and CH,s(t) as in (4.79), the Mellin transform of

a function {X(t), t > 0} is defined by:

(MHX)(s) =

∫ +∞

0

X(t)CH,s(t)dt/t2H+1, (4.82)

with the corresponding reconstruction formula:

X(t) =

∫ +∞

−∞
(MHX)(s)CH,s(t)ds. (4.83)

Now we consider the self-similarity (scale invariant) of Mellin transform and stationarity

(shift invariant) of Fourier transform.

The scale invariance of Mellin transform is shown by considering a function

X(λt). Then

(MH,λX)(s) =

∫ +∞

0

X(λt) t−α−1 dt = λ−α(MHX)(s) (4.84)
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or equivalently

(MH,λX)(s) = λ−α(MHX)(s), (4.85)

where α = H + i2πs.

In a similar way the Fourier transform

(FX)(s) =

∫ +∞

−∞
X(t) e−i2πst dt, (4.86)

can be shown to be shift or translation invariant by considering a function X(t− a)

(FX)(s, a) =

∫ +∞

−∞
X(t− a) e−i2πst dt = e−i2πsa(FX)(s) (4.87)

or equivalently

(FX)(s, a) = e−i2πsa(FX)(s). (4.88)

Clearly, for the Fourier transform under translation, we have

|(FX)(s, a)| = |(FX)(s)|, (4.89)

while for the Mellin transform under re-scale

|(MH,λX)(s)| = λ−H |(MHX)(s)|. (4.90)

Therefore the Mellin transform is scale invariant and the Fourier transform is shift invari-

ant. In the next section we define chirp decomposition of the generalized Weierstrass-

Mandelbrot function and we will see that this function represents, the Mellin transform.

87



4.2.3. Chirp Form of the Generalized Weierstrass-Mandelbrot

Function

In this subsection we shall define the chirp decomposition of the generalized

Weierstrass-Mandelbrot function. For this purpose firstly we must write the general form

of Weierstrass-Mandelbrot function.

We know the Weierstrass-Mandelbrot function representation in the q-periodic

form from equation (4.33),

W (t) = td+i
ϕ1
ln q Aq(t), (4.91)

where Aq(t) is q-periodic function and ϕ1 is an arbitrary phase. If we choose ϕ1 = 0 then

we get

W (t) = tdAq(t). (4.92)

We have written q-periodic function in equation (2.140);

Aq(t) = t−d

∞∑
n=−∞

q−ndg(qnt), (4.93)

where g(t) can be periodic function, provided that it is continuously differentiable at t = 0.

Now if we substitute equation (4.93) to (4.92) then we obtain

W (t) =
∞∑

n=−∞
q−ndg(qnt). (4.94)

The specific form of the Weierstrass-Mandelbrot function given in (4.94) can itself be

generalized to;

Wg(t) =
∞∑

n=−∞
(q−ndg(qnt))eiϕn , (4.95)
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where ϕn is an arbitrary phase and g(t) can be any periodic function, provided that it

is continuously differentiable at t = 0. This function is called generalized Weierstrass-

Mandelbrot function.

Proposition 4.2.3.1 (Borgnat&Flandrin, 2002) The scale-invariant generalized Weierstrass-

Mandelbrot function admits the chirp decomposition:

Wg(t) =
∞∑

m=−∞
amCd,m/ log q(t), (4.96)

where

am =
(Mdg)(m/ log q)

log q
, Cd,m/ log q(t) = td+i2π m

log q , (4.97)

with (Mdg)(.) the Mellin transform of g(t).

Proof 4.2.3.2 Suppose that ϕn = 0 in equation (4.95). We obtain;

(L−1
d Wg)(t) = (L−1

d Wg)(t + k log q), (4.98)

k ∈ Z, thus proving that the inverse Lamperti transform of a scale-invariant generalized

Weierstrass-Mandelbrot function is periodic of period log q.

As a periodic function, it can be expanded in a Fourier series;

(L−1
d Wg)(t) =

∞∑
m=−∞

amem/ log q(t), (4.99)

with:

am =
1

log q

∫ log q

0

(L−1
d Wg)(t)em/ log q(t)dt. (4.100)

Inverting (4.99) and using the fact that the Lamperti transform of a Fourier tone is a chirp,
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we get

Wg(t) =
∞∑

m=−∞
amCd,m/ log q(t), (4.101)

with:

am =
1

log q

∫ log q

0

[e−dθ

∞∑
n=−∞

q−ndg(qneθ)]em/ log q(θ)dθ

=
1

log q

∞∑
n=−∞

q−nd

∫ qn+1

qn

g(u)(q−nu)−dem/ log q(log u− n log q)du/u

=
1

log q

∞∑
n=−∞

∫ qn+1

qn

g(u)C−d,m/ log q(u)du/u

=
1

log q

∫ ∞

0

g(u)Cd,m/ log q(u)du/u2d+1

=
(Mdg)(m/ log q)

log q
.¥ (4.102)

Example 4.2 Let us consider the standard Weierstrass-Mandelbrot function (4.94) with

ϕn = 0. We have in this case g(t) = 1− eit and

am =
1

log q

∫ ∞

0

(1− eiu)u−α−1du, (4.103)

with α = d + i2πm
log q

. An integration by parts leads to

am =
1

log q

[
e−iπ/2

α

∫ ∞

0

eiuu(1−α)−1du

]
, (4.104)

with <(1− α) = 1 − d > 0, since 0 < d < 1, thus guaranteeing the convergence of the

integral. Making the change of variable v = ue−iπ/2, we finally find the result,

am = − 1

log q
exp

{
−i

π

2

(
d +

i2πm

log q

)}
Γ(−d− i2πm

log q
). (4.105)
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CHAPTER 5

CONCLUSIONS

In the present thesis we studied self-similar objects by methods of the q-calculus.

We have introduced the basic notations of q-calculus, q-numbers, q-derivative and q-

integral.

Then we introduced q-periodic functions and their relation with periodic func-

tions by the Mellin transform. We applied our technique to the self-similar objects. We

introduced self-similarity in connection with homogeneous functions and studied some

properties of these functions. Then we considered some applications of these functions in

geometry and theory of ordinary differential equations.

Self-similar object of fractal type were introduced and dimension of these objects

calculated. Relation with q-calculus was explicitly demonstrated.

We have reviewed some basic formulas of asymptotic analysis with the goal to

study special type of fractal curves as the Weierstrass-Mandelbrot function. Several re-

sults on convergency and asymptotics of this function were derived.

For self-similarity is the special transform to the logarithm scale like the Lamperti

transform were derived. Chirp decomposition of the generalized Weierstrass-Mandelbrot

function was found.
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APPENDIX A

CONVERGENCY OF SERIES

Many constructions of nowhere differentiable continuous functions are based on

infinite series of functions. Therefore we will give a few general theorems about series

and sequences.

Definition A.0.0.3 A sequence Sn of functions on the interval I is said to converges point-

wise to a function S on I if for every x ∈ I

lim
n→∞

Sn(x) = S(x), (A.1)

that is

∀x ∈ I, ∀ε > 0,∃N ∈ N,∀n ≥ N, |Sn(x)− S(x)| < ε. (A.2)

The convergence is said to be uniformly on I if

lim
n→∞

sup
x∈I

|Sn(x)− S(x)| = 0 (A.3)

that is

∀ε > 0,∃N ∈ N,∀n ≥ N, sup
x∈I

|Sn(x)− S(x)| < ε. (A.4)

Theorem A.0.0.4 The sequence Sn converges uniformly on I if and only if an uniformly

Cauchy sequence on I , that is

lim
m,n→∞

sup
x∈I

|Sn(x)− Sm(x)| = 0 (A.5)
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or equivalently

∀ε > 0, ∃N ∈ N,∀m,n ≥ N, sup
x∈I

|Sn(x)− Sm(x)| < ε. (A.6)

Proof A.0.0.5 First, assume that Sn converges uniformly to S on I , that is

∀ε > 0,∃N ∈ N, ∀n ≥ N, sup
x∈I

|Sn(x)− S(x)| < ε

2
. (A.7)

For such ε > 0 and for m,n ∈ N with m,n ≥ N we have

sup
x∈I

|Sn(x)− Sm(x)| ≤ sup
x∈I

(|Sn(x)− S(x)|+ |S(x)− Sm(x)|) (A.8)

≤ sup
x∈I

|Sn(x)− S(x)|+ sup
x∈I

|S(x)− Sm(x)| < 2
ε

2
= ε.

Conversely, assume that {Sn} is a uniformly Cauchy sequence i.e.

∀ε > 0,∃N ∈ N,∀m,n ≥ N, sup
x∈I

|Sn(x)− Sm(x)| < ε

2
. (A.9)

For any fixed x ∈ I , the sequence {Sn(x)} is clearly Cauchy sequence of real numbers.

Hence the converges to a real number, say S(x). From the assumption and the pointwise

convergence just established we have

∀ε > 0,∃N ∈ N,∀m,n ≥ N, sup
x∈I

|Sn(x)− Sm(x)| < ε

2
. (A.10)

and

∀ε > 0,∀x ∈ I, ∃mx > N, |Smx(x)− S(x)| < ε

2
. (A.11)
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If ε > 0 is arbitrary and n > N , then

sup
x∈I

|Sn(x)− S(x)| ≤ sup
x∈I

(|Sn(x)− Smx(x)|

+ |Smx(x)− Sm(x)|) <
ε

2
+

ε

2
= ε. (A.12)

Hence the convergence of Sn to S is uniform on I.¥

Theorem A.0.0.6 (Weierstrass M-test) Let fk : I → R be a sequence of functions such

that supx∈I |fk(x)| ≤ Mk for every k ∈ N. If
∑∞

k=1 Mk < ∞ then the series
∑∞

k=1 fk(x)

is uniformly convergent on I .

Proof A.0.0.7 Let m,n ∈ N with m > n. Then

sup
x∈I

|Sn(x)− Sm(x)| = sup
x∈I

∣∣∣∣∣
n∑

k=1

fk(x)−
m∑

k=1

fk(x)

∣∣∣∣∣

= sup
x∈I

∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣ ≤
n∑

k=m+1

sup
x∈I

|fk(x)|

≤
n∑

k=m+1

Mk =
n∑

k=1

Mk −
m∑

k=1

Mk. (A.13)

Since M =
∑∞

k=1 Mk < ∞ it follows that

n∑

k=1

Mk −
m∑

k=1

Mk = M −M = 0 as m,n →∞, (A.14)

which gives that {Sn} is uniformly Cauchy sequence on I . Using above theorem we

obtain the series
∑∞

k=1 fk(x) is uniformly convergent on I .¥

Theorem A.0.0.8 If {Sn} is a sequence of continuous functions on I and Sn converges

uniformly to S on I , then S is continuous function on I .

Proof A.0.0.9 Let x0 ∈ I be arbitrary. By assumption we have

∀ε > 0,∃N ∈ N, ∀n ≥ N, sup
x∈I

|Sn(x)− S(x)| < ε

3
. (A.15)
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and

∀ε > 0,∃δ such that |x− x0| < δ ⇒ |Sn(x)− S(x0)| < ε

3
. (A.16)

Let ε > 0 be given, x ∈ I , n ∈ N with n > N and |x− x0| < δ. Then

|S(x)− S(x0)| ≤ |S(x)− Sn(x)|+ |Sn(x)− Sn(x0)|
+ |Sn(x0)− S(x0)| < 3

ε

3
= ε, (A.17)

and therefore S is continuous at x0. Since x0 was arbitrary, S continuous on I .¥

Corollary A.0.0.10 If fk : I → R is continuous function for every k ∈ N and
∑∞

k=1 fk(x)

converges uniformly to S(x) on I , then S is continuous function on I .
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