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Abstract A scheme for incorporating the creation of radia-
tion and matter into the cosmological evolution is introduced
so that it becomes possible to merge the times before and after
the creation of radiation and matter in a single scale factor
in the Robertson–Walker metric. This scheme is illustrated
through a toy model that has the prospect of constituting a
basis for a realistic model.

1 Introduction

The question of determining the model that best describes
the universe is the ultimate goal of cosmology. The energy-
momentum content of the present universe seems to be a
perfect fluid mainly consisting of a dark sector (possibly
consisting of a dark energy and a dark matter component),
baryonic matter, and radiation [1–3]. In the standard model
of cosmology (namely, �CDM) dark matter [4] and bary-
onic matter are considered to be dust, dark energy [5–7] is
taken to be the Einstein cosmological constant, and radia-
tion is described by the usual energy-momentum term for
radiation. Although the standard model seems to be compat-
ible with observations yet it has some problems. The magni-
tudes of potential theoretical contributions to the cosmolog-
ical constant (CC) are extremely much higher than the value
of CC deduced from the energy density of the universe [8–
12]. There are many attempts to solve this problem, the CC
problem. Nevertheless none is wholly satisfactory. The best
option seems to employ a symmetry such as a metric reversal
symmetry [13–18] to cancel CC and then attribute the dark
energy to something else, e.g. to modified gravity [19], or
to some scalar field such as quintessence [20–23]. The cold
dark matter (i.e. dust-like dark matter with no or negligible
interaction with itself and with baryonic matter and photons)
scenario of�CDM as well suffers from some problems such
as rotation curves of spiral-like galaxies, i.e. the cuspy halo
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problem, and the missing satellite galaxies problem [24,25].
There are many alternatives to the cold dark matter (CDM)
scenario, including warm dark matter [26,27], Bose–Einstein
condensate dark matter [28–32], and scalar field dark matter
[33–36].

The above considerations essentially hold for the time
from the radiation dominated era till the present era. The
standard paradigm for the era before the radiation dominated
era is an inflationary era (which serves to solve the problems
of the standard cosmology such as horizon, flatness, absence
of monopoles problems) [37,38]. Usually the inflationary era
and the epoch after this era are studied separately. This is not
only due to the need to concentrate on each of these and to
try to understand each epoch better before a possible uni-
fication. In fact the most serious problem in the direction
of the unification1 of the whole cosmic history is the diffi-
culty of merging these two epochs because of the form of
the dependence of the energy density of dust and radiation
on the scale factor (i.e. on redshift). In �CDM the energy
density of radiation dominates over that of the inflaton if one
goes back to sufficiently large redshifts. This is due to the
fact that the energy density of the inflaton is essentially con-
stant during the inflationary era, while the energy density of
radiation scales like 1

a4 where a is the scale factor. In other
words, to have a true unification, the creation of radiation and
matter after the inflationary era must be taken into account in
the scale factor without destroying the standard cosmology
before and after the inflation, and this is not an easy task.
The models in literature that unify all eras of cosmological
evolution in a single model [39–42] are not wholly realis-
tic since they do not include baryonic matter, although they
are able to produce eras of cosmological evolution with cor-
rect equations of state in the corresponding eras, and some
have a graceful exit from the inflationary era. The matter
in these models must be identified with dark matter since

1 I mean a true unification i.e. description of the whole cosmological
evolution by a single scale factor in the metric.
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the energy densities of these models do not contain energy
components that scale proportional to 1

a3 for all times (or at
least for a sufficiently long time). The models in [39–41] use
the energy densities expressed in terms of simple functions
of Hubble parameter and/or scale parameter as the starting
point rather than starting from the scale factor. Although one
may, in principle, determine the scale factor from this infor-
mation, the form of scale factor may be rather complicated
in some cases. On the other hand a relatively simple scale
factor may result in a rather complicated and unmanageable
functional form for the energy density when expressed in
terms of the scale factor or the Hubble parameter. Therefore,
in some cases it may be more suitable to consider a spe-
cific ansatz for the scale factor such as in this study and in
[42]. The same approach is adopted in this study. Moreover,
the present study introduces a general prescription to include
dust and radiation into unification.

In this study, first, in Sect. 2, we introduce a scheme to
unify the cosmological evolution before and after the radia-
tion dominated era. Then we give a concrete realization of
this scheme in Sect. 3. In Sect. 4 we discuss the observational
compatibility of this scheme in the context of the model intro-
duced in Sect. 3. Finally we conclude in Sect. 5. The scale
factor in this model is a sum of two terms. The first term is a
pure dark energy contribution. The second term is responsi-
ble for the baryonic matter and radiation terms and additional
terms that may be mainly identified with dark matter. There is
also an additional term due to coupling between these terms,
and this term gives another contribution to the dark energy
and dark matter. Some of the ideas employed here have been
already studied in literature. In this study we do not make
a sharp distinction between dark energy and dark matter,
because the dark energy and dark matter terms are coupled
and the equation of state (EoS) of some terms, e.g. EoS of the
coupling term between dark matter and dark energy terms,
evolves with time. The superficiality of a distinction between
dark energy and dark matter is considered in many studies
in the literature, either explicitly or implicitly [43–47]. This
option is quite possible since dark energy and dark matter
are not observed directly. What we see observationally is a
missing element in the energy-momentum tensor of the Ein-
stein equations, other than baryonic matter and radiation, and
this missing quantity may be described by two components:
dark energy and dark matter. It is, in principle, equally pos-
sible that this quantity is composed of a single component,
say, dark fluid. In [42] we had introduced a universe com-
posed of a dark fluid (which may be written in terms of two
scalar fields). In fact the scale factor in that study is essen-
tially a1(t) in Eq. (2) of this paper. The present study may
be considered somewhat as an extension of [42] where bary-
onic matter and radiation are included. However, there are
important differences as well. The main aim of this study is
to introduce a scheme to merge the cosmological evolution

of the time before and after the production of radiation into
a single scale factor with the baryonic matter and the usual
radiation terms included. The modified form of a1(t) in [42]
only serves as a realization of this scheme. Furthermore we
do not discuss the scalar field identification of the energy
density due the part of the scale factor similar to a1(t) of
[42] (although it can easily be done), and we do not con-
sider the cosmological perturbations of these quantities, and
the inflationary era in this study because these points would
cause divergence of the main goal of the paper and would
increase the volume of this study drastically. We leave these
points to future studies.

2 Outline of the model

Consider the Robertson–Walker metric

ds2 = gμνdxμ dxν = −dt2 + a2(t)g̃i j dxi dx j . (1)

We take the 3-dimensional space be flat, i.e. g̃i j = δi j for the
sake of simplicity, which is an assumption consistent with
cosmological observations [48,49]. We let the form of the
scale factor be

a(t) = c0 (a1(t) − a2(t))

c0 = 1

A1 − A2
, A1 = a1(t0), A2 = a2(t0) (2)

where t0 denotes the present time. We will see that a1(t) is the
part of the scale factor responsible for dark energy and dark
matter, and a2(t) is the one mainly responsible for dust and
radiation and additional contribution to dark matter-energy,
and we shall see later that a mixing between the sectors due
to a1 and a2 act as an additional source of dark energy. We
assume that a1(t) and a2(t) are chosen in such a way that
a(t) > 0 for all t . In general one may identify the dust by a
mixture of baryonic matter and dust-like dark matter. The best
fit values that we could find by trial and error for the specific
toy model considered in this study for implementation of the
present scheme seem to prefer the case where the dust term
is wholly or almost wholly due to baryonic matter.

We first focus on the a2(t) term and specify it as

a2(t) = x(t) a(t) (3)

where x(t) is some function that its form will be specified
later. Equations (2) and (3) may be used to relate a(t) and
a1(t), a2(t) in a more applicable way, and to derive the cor-
responding Hubble parameter. We observe that

a2 = ax = c0(a1 − a2)x ⇒ a2 = c0x

1 + c0x
a1,

a = c0

1 + c0x
a1 = 1

x
a2. (4)

123



Eur. Phys. J. C (2014) 74:3066 Page 3 of 14 3066

In a similar way the Hubble parameter is found to be

ȧ2

a
= ȧ

a
+ ẋ ⇒ H = ȧ

a
= ȧ1n

a1n
− c0 ẋ

1 + c0x
(5)

where we have used

ȧ1

a
=
(

1 + c0x

c0

)
ȧ1

a1
,

ȧ1

a1
= ȧ1n

a1n

a1 = A1 a1n , a1n(t0) = 1. (6)

Note that a(t0) = 1 by convention.
We let

x(t) = A2
1

c1 − c2
x3(t) (c1x1(t)− c2x2(t)) , (7)

x1(t) = exp
∫ t

t0
H̃ (1)

2 dt , x2(t) = exp
∫ t

t0
H̃ (2)

2 dt, (8)

x3(t) = exp
∫ t

t0
H̃ (3)

2 dt (9)

where c1, c2 are some constant coefficients, and

H̃ (1)
2 = αo1

[
− αb

a
3
2

− αr

a2 + αx

a3

]
,

H̃ (2)
2 = αo2

[
αb

a
3
2

+ αr

a2 − αK

a

]
,

H̃ (3)
2 = αc

(
1

a3 − 1

a

)
(10)

where αo1, αo2, αb, αr , αx , αK are some other constant coef-
ficients. In fact, in Eq. (7) we could take the simpler form
where αc = 0, αo1 = αo2 = 1, c1 = 1, c2 = 0. This would
be enough as long as we are concerned only with merging
of the eras before and after the radiation domination, and
the resulting model would be compatible with Union2 data
set at an order of magnitude level. The more involved form
in Eq. (7) is used to make the model phenomenologically
more viable. This point will be discussed when we discuss
the phenomenological viability of the model in Sect. 4. One
may determine ẋ in Eq. (5) by using Eq. (7),

ẋ(t) = A2
1

c1 − c2
x3

×
[
−B(t)

(
αb

a
3
2

+ αr

a2

)
+ S(t)

αx

a3 + K (t)
αK

a

]
(11)

where

B(t) = A2

c1 − c2
x3 (c1αo1x1 + c2αo2x2) , (12)

S(t) = A2

c1 − c2
x3 [c1αo1αx x1 + αc (c1x1 − c2x2)] , (13)

K (t) = A2

c1 − c2
x3 [c2αo2αK x2 − αc (c1x1 − c2x2)] . (14)

Hence one may express (5) as

H = H1n + A(t) H̃2 + H� (15)

where

H� = −�(t) 1

a3 − ψ(t)
1

a
, (16)

A(t) = c0 B(t)

1 + c0x(t)
, H̃2 = αb

a
3
2

+ αr

a2 , (17)

�(t) = c0S(t)

1 + c0x(t)
, ψ(t) = c0 K (t)

1 + c0x(t)
. (18)

We let

H1n0 = 	̃
1
2
1 H0, A0αb = 	̃

1
2
b H0, A0αr = 	̃

1
2
r H0,

�0 = 	̃
1
2
x H0, ψ0 = 	̃

1
2
K H0 (19)

where H1n0 = H1n(t0), H0 = H(t0), A0 = A(t0), �0 =
�(t0), ψ0 = ψ(t0). Because the three-dimensional part of
metric is taken to be flat the present energy density is equal
to the critical energy density, and the above equations imply
that

	̃
1
2
1 + 	̃

1
2
b + 	̃

1
2
r − 	̃

1
2
x − 	̃

1
2
K = 1. (20)

Note that at this point 	̃1, 	̃b, 	̃r , 	̃x , 	̃K cannot be iden-
tified as density parameters since density parameters should
satisfy 	1+	b+	r +	x +	K = 1. In Chapter IV we will
see that this condition is not satisfied for the phenomeno-
logically viable sets of parameters, so 	̃1, 	̃x , 	̃K cannot
be identified as density parameters separately, instead one
must define the total density parameter for dark sector by

	
1
2
D = 	̃1 − 	̃x − 	̃K rather than the separate contribution

due to H1n and H� while we identify 	̃b, 	̃r as the den-
sity parameters corresponding dust and radiation. Therefore
to retain the physical content of this paper more evident we
will not make a distinction between 	̃b, 	̃r and the density
parameters for baryonic matter and radiation; 	b, 	r , while
we keep this distinction for the others, i.e., for the ones due
to the H1n and H� terms. The αb

a
3
2

and αr
a2 terms result in

energy densities that are identified as the energy densities for
baryonic matter and radiation. In principle, there may also be
contributions due to the � 1

a3 and ψ 1
a . The sign of the � 1

a3

term is negative of the usual stiff matter. It may be identified
as stiff matter under pressure so that it has a negative deceler-
ation parameter. The main function of this term is to dampen
the energy densities of baryonic matter and radiation in the
time before the radiation dominated era. The function of the
1
a term is similar. It ensures the behavior of the energy den-
sity in late times be well behaved (i.e. preventing the energy
density to grow too fast (through the 1

a term in x2(t) and
x3(t))). Although the ψ 1

a term is similar to that of a negative
curvature 3-space it is different from such a term since its
origin is the Hubble parameter H while a usual 3-curvature
term arises from the 3-curvature part of metric. Note that
this term arises even in a flat 3-space in this construction.
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Therefore we identify the �
a3 and ψ

a terms in H as additional
contributions to dark sector.

Another point worth to mention is; It is evident that the
square of (5) (in conjunction with (10)) results in an A2 H̃2

2

term containing A2 α
2
b

a3 and A2 α
2
r

a4 terms, which may be iden-
tified with the standard baryonic matter and radiation terms,
respectively if A is taken to be constant, while it depends
on time in this scheme as is evident from (7). In fact vari-
ation of A with time makes it possible to go to zero before
the radiation dominated era as desired. Therefore, given the
considerable success of the standard model at least in the
observed relatively small redshifts, the variation in A after
the matter–radiation decoupling time should be small so that
this scheme mimics the standard model at relatively small
redshifts where observational data is available. If one takes( d A

dt

)
t� t0

sufficiently small one may guarantee an almost con-
stant value for A for a sufficiently long time (e.g. from the
present time till the beginning of the radiation dominated
era). We will see in Sect. 4 that there exist such values of A
with reasonable phenomenological viability. Another term
arising from H̃2

2 is the cross term, A2 αbαr

a
7
2

. This term may

be identified as the energy density term due to the transi-
tory time where massive particles that act as radiation at
high energies turn into more dust-like entities at interme-
diate energies. Another term in H2 is H2

1n . This term will be
considered as a pure dark sector term. Finally the cross term
2H1n H̃2 gives an additional contribution to the dark sector
for the phenomenologically viable values of the parameters.
It may easily be shown that this term does not necessarily
imply strong interaction between the dark fluid and radiation
and baryonic matter as its form may suggest if the param-
eters of the underlying physics at microscopic scale satisfy
some restrictions. Otherwise one may use screening mecha-
nisms such as [50–55] to explain the unobservability of dark
matter-energy.

Next we derive the general form of the equation of state
for this model. We derive the explicit form of the equation
of state after (EOS) after we give the explicit form of a1(t)
in the section. However, giving the general form of EOS in
this scheme provides us a more model independent formula
and may be useful for other choices of a1(t) in future. After
using Eqs. (15–18) one obtains EOS, ω as

ω = p

ρ
=

G11
g11

G00
= −2Ḣ + 3H2

3H2

= −2Ḣ1n + 3H2
1n

3H2 −
AH1n

(
3αb

a
3
2

+ 2αr
a2

)

3H2

+
A2
(
α2

r
a4 + αbαr

a
7
2

)

3H2 − 2 ȦH̃2

3H2

+
A
(
�
a3 + ψ

a

)(
3αb

a
3
2

+ 2αr
a2

)

3H2 +
6H1n

(
�
a3 + ψ

a

)
3H2

−
2H

(
3�
a3 + ψ

a

)
+ 3

(
�2

a6 + ψ2

a2 + 2�ψ
a4

)
3H2 . (21)

The terms inside the first parentheses in the second line cor-
respond to the contribution of the dark sector term H1n . The
other terms in the same line correspond to the contributions
of dust and radiation and their coupling with dark sector
term H1n . The remaining terms are the term correspond-
ing to variation of A, the term corresponding to coupling
of curvature-like term and the stiff matter under negative
pressure with dust and radiation, the term corresponding to
coupling of curvature-like term and the stiff matter under
negative pressure with H1n , the term corresponding to cou-
pling of curvature-like term and the stiff matter under nega-
tive pressure with the other terms, and the contribution of the
curvature-like term and the stiff matter under negative pres-
sure, respectively. It is evident from (21) that the pressure
for baryonic matter is zero as it should be, and the pressure
for radiation is 1

3 as expected. A point worth to mention at
this point is; The coupling term between baryonic matter and
radiation in Eq. (21) has an equation of state 1

6 (which may
be seen by considering the ratio of the αbαr

a
7
2

in p by the cor-

responding term in ρ i.e. 2αbαr

a
7
2

). The redshift dependence of

this term is between that of baryonic matter and radiation.
This time dependence is more natural than the standard pic-
ture where there is no such term. Massive particles at high
energies act as radiation and at lower energies turn into dust.
The coupling term accounts for the transitory time when mas-
sive particles pass from the radiation to the dust state.

In order to obtain the evolution of ω as a function redshift
or time explicitly, H1n must be specified. This will be done
in the next section. However, we give a ω versus redshift
graph in Fig. 1 for a1n introduced in the next section for a
phenomenologically viable set of parameters (i.e. those with
small χ2 values and with energy densities for recombination
and nucleosynthesis as discussed in Sect. 4) to have an idea
about the evolution of ω with redshift. To draw this graph we
have converted time, t to redshift, z (for the Union2.1 data)
through the relation z = 1

a − 1, and then used Mathemat-
ica to use this relation to make the calculations (although
the original quantities are expressed in terms of time). This
procedure is applicable for small redshifts. However, in gen-
eral, it becomes inapplicable due to highly nonlinear form
of scale factor and Hubble parameter since it requires huge
RAM and CPU for computation, if it can be done at all, and
hence requires a separate computational physics project by
itself. Therefore we have used equation of state versus and
energy density versus time graphs (instead of redshift) in
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1 2 3 4 5

2

4

6

Fig. 1 ω versus redshift z graphs for �CDM (for PDG and Planck
values) and for this model (for two sets of parameters with small
χ2 values), namely, for �CDM with 	� = 0.6825, 	b = 0.3136,
	r = 1.3 × 10−3 (solid green) and with 	� = 0.73, 	b = 0.2661,
	r = 1.3 × 10−3 (dashed black); and for this model for the set of

parameters (solid blue) and for the set of parameters (r = 1.58, s = 5.3,

β = 3.1, 	
1
2
b = 0.21, ξ i1 = 0.975, A1 = c1 = αo2 = 1, A2 = 10−4,

c2 = 0.999, αr
αb

= 0.1, αac = 0.05, αo1 = 0.9, αx
αb

= αK
αb

= 0.7)
(dotted red). Here the subindex b refers to dust

Sect. 4. In fact, even that option required a long time of order
of months to make the necessary computations.

3 An explicit realization of the model

Now we focus on the a1(t) term. We take

a1(t) = A1a1n(t), (22)

a1n(t) = [p1 + p2b2t]r exp [−b1(b2t)−1/s] (23)

where A1 < 1, p1, p2, b2, b1 are some constants that to be
fixed or bounded by consistency arguments or cosmological
observations. This scale factor is a generalization of the scale
factor in [42] where r = 1, s = 6. A similar scale factor is
considered in [56] as well. One of the shortcomings of [42]
is that the present value of the equation of state parameter
in that model (for phenomenologically relevant choices of
parameters where the model mimics �CDM) is ∼ −0.4,
while the observations imply that it should be � (−0.68)−
(−0.74) [48,49]. In the present study there is an additional
contribution due to mixing of the terms due to a1 and a2 and
hence there is less need to modify the scale factor in [42].
However, we prefer to adopt the more general form in (23)
to seek a greater parameter space and to ensure the correct
equation of state parameter.

We have shown in Eq. (5) that the Hubble parameter may
be expressed as H = H1n + A(t) H̃2 + H�. Now we con-
centrate on the H1n = ȧ1n

a1n
part of the Hubble parameter. In

fact, this amounts to specifying the model wholly, since the
other terms, as well, depend on a1n as we have seen. The
corresponding H1n is given by

H1n(t) = ȧ1n

a1n
= r p2b2

(p1 + p2b2t)
+ 1

s
b2b1(b2t)

−
(

1+ 1
s

)
.

(24)

We let

1 = a1n0 = a1n(t0) = (p1 + p2b2t0)
r exp [−b1(b2t0)

− 1
s ]
(25)

and

H0t0 = ξ, (p1 + p2b2t0)
r = exp [b1(b2t0)

− 1
s ] = β > 1,

(26)

H1n0t0 = H1n(t0)t0 = r p2b2t0
(p1 + p2b2t0)

+ 1

s
b1(b2t0)

− 1
s

= ξξ1 ⇒ r p2b2t0 = β
1
r

(
ξξ1 − 1

s
ln β

)
,

p1 = β
1
r

[
1 − 1

r

(
ξξ1 − 1

6
ln β

)]
, (27)

⇒ H1(t) = H1n(t) = H1n(γ )

= 1

t0

{
ξξ1 − 1

s ln β

[1 + γ−1
r (ξξ1 − 1

s ln β)] + 1

s
γ− s+1

s ln β

}
(28)
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here γ = t
t0

where t0 is the present age of the universe. One
observes from (19) and the above expression that

H1n0 = 	̃
1
2
1 H0 = 1

t0
ξξ1 ⇒ 	̃

1
2
1 = ξ1. (29)

We will see in the next section that 	̃1 cannot be identified
as the density parameter corresponding to H1n . Instead one
must define an overall density parameter for the dark sector

by	
1
2
D= 	̃

1
3
1 − 	̃

1
3
x − 	̃

1
3
K . The observational values of H0 =( ȧ

a

)
t=t0

and 1
t0

are almost the same. Therefore ξ2ξ2
1 � ξ2

1 .
After determining the H1n we are almost ready to find

the explicit values of the energy density and the equation
of state. The only missing element for calculation of these
quantities is to find A, �, ψ in Eqs. (15–18). Another point
to be addressed is to show that there exist sets of A whose
variation with time are small for low redshifts, so that the
terms that are proportional to 1

a
3
2

and 1
a2 in A H̃2 term may

be identified with dust and usual radiation terms, respectively.
In order to determine A,�,ψ (and to determine the rate of

variation of A with time) one should derive an approximation
scheme for the evaluation of these quantities because these
quantities depend on x1(t), x2(t), x3(t) (which are defined in
Eqs. (8) and (9)), and these quantities, in turn, are defined in
a recursive way since xi (t) = exp (

∫ t
t0

H̃ (i)
2 dt) (i = 1, 2, 3)

and H̃ (i)
2 depend on a(t), and a(t), in turn, depends on xi (t)

through Eq. (4). In other words, in order to determine the
approximate values of xi (t)one must identify the zeroth order
approximation and a method of how to obtain the higher order
approximations in an iterative way. One may use the follow-
ing observations to obtain the zeroth order approximation:
A1c0(1 + c0x(0))−1 = A1

1
A1−A2 (1 + A2

A1−A2
)−1 = 1 and

Ȧ ∼ 0 ⇔ ẋi ∼ 0 (i = 1, 2, 3) i.e. ẋ ∼ 0, x(t) � x(0) = 1
for small redshifts. This implies that the zeroth order approx-
imation for the scale factor a(t) should be taken as a(0)(t) =
a1n(t) Hence for phenomenologically viable cases (where
Ȧ ∼ 0 for small redshifts) one may take the zeroth order
approximations as

x (0)i (t) = exp
∫ t

t0
H̃ (i0)

2 dt i = 1, 2, 3 (30)

where H̃ (10)
2 , H̃ (20)

2 , H̃ (30)
2 is obtained from H̃ (1)

2 , H̃ (2)
2 , H̃ (3)

2
by replacing a(t) by a1n(t) in those expression, for example,

H̃ (10)
2 = αo1αb

∫ t

t0

⎧⎨
⎩− 1

a
3
2
1n

−
αr
αb

a2
1n

+
αx
αb

a3
1n

⎫⎬
⎭ . (31)

Then

A(0)(t) = c0 B(0)(t)

1 + c0x (0)(t)
, (32)

x (0)(t) = A2

c1 − c2
x (0)3 (c1x (0)1 − c2x (0)2 ) etc. (33)

One may get the next order approximation by using

a(t) � a(1)(t) = c0 A1(1 + c0x (0))−1a1n . (34)

The next order quantities A(1), x (1) may be obtained from
(32) and (33) by replacing the superindices (0) by (1)
where

x (1)i (t) = exp
∫ t

t0
H̃ (i1)

2 dt . (35)

Here H̃ (i1)
2 is obtained from H̃ (i)

2 by replacing a(t) by
a(1)(t) = c0 A1(1 + c0x (0))−1a1n . For the kth approxima-
tion we replace a(t) by a(k)(t) = c0 A1(1 + c0x (k−1))−1a1n .
In principle, this may be done up to arbitrarily higher order
approximations but it is quite difficult to calculate even A(1)

even with the help of computers. In fact we have divided the
interval t − t0 into coarser subintervals to decrease the CPU
time and have used the approximate numerical values in the
i th interval (by assuming A(0) to be almost constant in those
intervals) by using the formula

A(0)(ti ) = A(0)(ti−1) + A(0)(ti+1)

2
(36)

to find A(1). We have seen (by trial and error) that it is possible
to find almost constant A(0) and A(1) values for many relevant
(i.e. of small χ2 values as considered in the next section)
choices of parameters, αb, r , s, ξ1, ξ1, A1, A2, c1, c2, αr , αc,
αo1, αo2, αx , αK . For example the variations of A(0) and A(1)

with time for one of the phenomenologically viable sets in
Table 3 is given in Table 1.

4 Compatibility with observations

Now we check the phenomenological viability of the model.
The observational analysis of the model for all possible val-
ues of the parameters, β, r , s, ξ , ξ1, etc. is an extremely
difficult job (if not impossible at all) because expressing the
Hubble parameter, deceleration parameter etc. in terms of
the scale factor is quite difficult since these quantities are
highly nonlinear functions of the scale factor in this model.
Therefore we adopt some guidelines to seek the phenomeno-
logically viable sets of parameters. These guidelines are:

1. We take the model to mimic the standard model, i.e., the
�CDM model, at least from the time of decoupling of
matter and radiation up to the present time. Therefore we
take the present time values of the equation of state of the
whole universe and the density parameter of the baryonic
matter and radiation to be the same as �CDM.
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Table 1 The zeroth and the first order approximations to A(t): A(0)(t)
and A(1)(t) as a function γ = t

t0
for the set of parameters, r = .138, s =

12, β = 3.3, ξ1ξ = 0.975, A1 = 1, A2 = 0.002745, c1 = 1, c2 =
0.9986, αr

αb
= 0.03, αc = 10−7, αo1 = 0.5, αo2 = 1, αx

αb
= 1, αK

αb
=

0.8, 	
1
2
b = 0.22. Note that first order value A(1) for γ = 10−8 and

smaller values of γ are not evaluated since the iteration procedure
is not applicable for such small times because of the time intervals,
ti − ti−1 = 0.1 t0, that we have used in Eq. (36) is much coarser than
10−8

γ A(0) A(1) γ A(0) A(1) γ A(0) A(1) γ A(0) A(1) γ A(0) A(1)

2 2.9352 2.9679 1.7 2.9453 2.9679 1.4 2.9494 2.9679 1.2 2.9468 2.9679 1 2.9383 2.9635

0.9 2.9317 2.9635 0.8 2.9235 2.9635 0.7 2.9142 2.9635 0.6 2.9050 2.9635 0.5 2.8983 2.9635

0.4 2.8988 2.9635 0.3 2.9169 2.9635 0.2 2.9766 2.9635 0.1 3.1490 2.9635 10−8 4.5020 –

10−10 5.8496 – 10−11 −4.6576 – 10−12 −2.2796 – 10−14 ∼10−7 – 10−16 ∼0 –

Table 2 ζ(t)= (1+c0x)
c0 A1

versus γ = t
t0

values for the set of the param-
eters; r = 2.138, s = 12, β = 3.3, ξ1ξ = 0.975, A1 = c1 =
αo2 = 1, A2 = 0.002745, c2 = 0.9986, αo1 = 0.5, αr

αb
= 0.03, αc =

10−7, αx
αb

= 1, αK
αb

= 0.8, t0 = 1
72.8 (Mpc/km) s, χ2

0 = 579.97, χ2 =
576.69. Note that ζav

ζ0
� 0.9996 is rather close to 1 where ζav , ζ0 are the

average value of ζ and the value of ζ at γ = 1, respectively

γ 1 + 10−8 0.9 + 10−8 0.8 + 10−8 0.7 + 10−8

ζ 0.9999999996313257 1.0034967688351344 1.0062228502031836 1.0072827970804177
γ 0.6 + 10−8 0.5 + 10−8 0.4 + 10−8 0.3 + 10−8

ζ 1.0051401822527948 0.9971498327626435 0.9787034586841717 0.941589630495205

2. In searching for the phenomenologically viable param-
eter space we start from the values of the parameters in
[42] i.e. r = 1, s = 6, ξ = 1, and β ∼ O(1) since the
universe studied in [42] mimics the true universe roughly.

3. Due to the highly nonlinear relation between the Hub-
ble parameter and the scale factor we seek the relevant
parameter space usually by trial and error rather than a
continuous scan of the parameter space. Therefore the
optimum values obtained here most probably may not
correspond to the best possible optimization. Rather they
hopefully correspond to a good approximation to the best
optimal values.

4.1 Compatibility with Union2.1 data

In this subsection we use the Union2.1 compilation data set
to find the optimal values of β, r , s starting from β = 3,
r = 1, s = 6. We find the theoretical values of distance
moduli, μ for the redshift values of Union2.1 and calculate
the corresponding χ2 value by using the measured values of
μ and their errors.

The expression for distance modulus is

μ = 5 Log10

(
dL

1 Mpc

)
+ 25 (37)

where

dL = c a0

a(t)

∫ t0

t

dt ′

a(t ′)
= c a0

A1c0
1+c0x(t)a1n(t)

∫ t0

t

dt
A1c0

(1+c0x(t ′))a1n(t ′)
(38)

where for small redshifts reduces to

dL � c

a1n(t)

∫ t0

t

dt ′

a1n(t ′)
(39)

where we have used the requirement that A1c0
1+c0x � 1 at small

redshifts as discussed in the preceding section (see Table 2),
and a0 = a(0) = 1. In �CDM

∫ dt
a(t) is usually expressed

in terms of redshift, z and Hubble parameter H , and then the
results for different z’s are compared with the data directly.
This is not possible in this model because H cannot be
expressed in terms of a(t) in a simple way. Therefore in
this study first we convert redshift values of Union2 to time
values by using z = 1

a(γ ) − 1 � 1
a1n(γ )

− 1 and then solve it
for γ . The corresponding expression for the theoretical value
of the luminosity distance dL in this case (i.e. in terms of γ )
is

dL � c t0 β−1+γ− 1
s[

1 + γ−1
r

(
ξξ1 − 1

s ln β
)]r

×
∫ 1

γ

dγ
β−1+γ− 1

s[
1 + γ−1

r

(
ξξ1 − 1

s ln β
)]r (40)

where a1n(t) is expressed in terms of β, r , s, γ = t
t0

by
using the parameterization given in the preceding section.
Equation (40) may be written in a more standard form in
terms of H0 by using H0t0 = ξ . Then we find Eq. (39)
numerically for each of the γ corresponding to observational
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Table 3 Some of the sets of parameters with sufficient energy densities
for recombination and nucleosynthesis with relevant redshift values.
Here γrc = trc

t0
, γns = tns

t0
; the subscripts rc and ns denote recombi-

nation and nucleosynthesis, respectively; A≡ (r = 2.138, s = 12,

β = 3.3, ξξ1 = 0.975, ξ = 1, 	
1
2
b = 0.22, A1 = 1, A2 = 0.002745,

c1 = 1, c2 = 0.9986, αr
αb

= 0.03, αc = 10−7, αo1 = 0.3, αo2 = 1,
αx
αb

= 1, αK
αb

= 0.8). The set B is the same as the set A except αo1 is

replaced by 0.5. The best χ2 values for the sets A and B correspond to
t0 = 1

72.9 km s−1 Mpc−1 � 13.25 years and t0 = 1
72.8 km s−1 Mpc−1 � 13.3

years, respectively. Note that the shape of the ω versus γ is extremely

sharp in time; hence the location of
(
ρr
ρr0

)
ns

is sensitive to the

exact value of γ . The more exact values of γ for the set A and B
where ω is minimum are (γ � 3.67027978907089 × 10−11, γ �
3.31606438849865 × 10−14) and (γ � 7.1641402601557 × 10−11,
γ � 2.246997272913787 × 10−14)), respectively. A similar case is
true for γns since it is extremely small. The more exact values of γns
for the set A and B are (1.498712948305 × 10−11, 3.1102 × 10−14),
(2.8422577892672 × 10−11, 3.06971839 × 10−14), respectively

Set χ2 ω0 � γrc � zrc ∼
(
ρr
ρr0

)
rc

(
ρ
ρ0

)
rc

ωrc

A 623.203 −0.69 5 × 10−10 1,148 2.9 × 1012 1.18 × 1018 0.245

A γns � zns ∼
(
ρr
ρr0

)
ns

(
ρ
ρ0

)
ns

ωns ωmin � ωmax

A 1.5 × 10−11 12,839 1037 9.6 × 1041 −1.67 −5 × 1029 (γ � 3.7 × 10−11) 6.22

3.1 × 10−14 7.9 × 106 2.7 × 1037 8.4 × 1035 −8.5 −5 × 1030 (γ � 3.3 × 10−14) (γ � 0.015)

B 576.69 −0.6948 5 × 10−10 1,148 6.8 × 1012 1018 0.257

B γns � zns ∼
(
ρr
ρr0

)
ns

(
ρ
ρ0

)
ns

ωns ωmin � ωmax

B 2.84 × 10−11 7,827 1.3 × 1045 1.1 × 1050 −1.67 −1.5 × 1029 (γ � 7.2 × 10−11) 28

3.1 × 10−14 8 × 106 1.5 × 1042 4.9 × 1040 −9.6 −2.8 × 1025 (γ � 2.3 × 10−14) (γ � 0.029)

redshifts. Finally we find the corresponding χ2
0 values by

using the formula

χ2
0 =

i=580∑
i=1

{
((μth(0)(γ (i), r, s, β, ξξ1, t0)− μobs

i )2

(σi )
2

}

(41)

where the subscript 0 in χ0 and the superscript (0) in μth(0)

stands for the fact that a(t) is approximated by its zeroth
order approximation, i.e. by a1n ; the superindices th and
obs stand for the theoretical and observational values of
μ, and the subindices i denote the values of the corre-
sponding quantity for the i th data point in the Union2 data
set.

One may try a better approximation by replacing a1n(t) in
(39) by a better approximation of a(t) i.e. by c0 A1

1+c0x (0)(t)
a1n(t)

where x (0)(t) is defined by Eq. (31). In principle, then, one
may evaluate the integral (38) after replacing a1n(t) by

c0 A1
1+c0x (0)(t)

a1n(t). However, this seems to be inapplicable for
standard computers because of the complicated form of the
integral. One needs a separate computational physics project
for this aim. Instead one may try a rough approximation

(hopefully better than a1n); we take the 1+c0x (0)

c0 A1
term in the

integral to outside of the integral with its γ value being the
bound of the integral. This approximation is a good approx-
imation provided that c0 A1

1+c0x(t) does not vary much in the
time interval between t0 and the time corresponding to the
given redshift value. Otherwise the higher order approxima-
tion may worsen the approximation rather than improving it.

The corresponding formulas (in the first order approxima-
tion) become

dL �
(

1 + c0x (0)

c0 A1

)2
c t0 β−1+γ− 1

s[
1 + γ−1

r

(
ξξ1 − 1

s ln β
)]r

×
∫ 1

γ

dγ
β−1+γ− 1

s[
1 + γ−1

r

(
ξ1 − 1

s ln β
)]r , (42)

χ2 =
i=580∑

i=1

{
((μth(γ (i), r, s, β, ξξ1, t0)− μobs

i )2

(σi )2

}
. (43)

By trial and error we have found many sets of parameters
with relatively small χ2

0 , χ2 values. For example the χ2
0 , χ2

values for two phenemonologically viable sets of parameters

are given in Table 3 where the reduced χ2
0 , χ2

red 0 = χ2
0

580−5 ,
and the reduced χ2 values χ2

red = χ
580−12 are in the order of

1 (where 580 is the number of data points, and 5, 12 are the
number of free parameters r , s, β etc. to be adjusted).

The sets of parameters (which we could find by trial and
error) with relatively small χ2 values satisfy c1 � c2 �
1, αc � 1. By using this information one may check the
validity of (20) and determine if one may identify 	̃1, 	̃, 	̃K

by the corresponding density parameters;	1,	x ,	K for the
phenomenologically relevant parameters by using Eqs. (19),
(17), and (18). We observe that x(0) = A2, x1(0) = x2(0) =
x3(0) = 1, c1 = 1 and for relevant values of the parameters.
Hence, after using Eq. (19), we obtain
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	̃
1
2
x

	
1
2
b

�
(

αo1

αo1 + αo2

)(
αx

αb

)
,

	̃
1
2
K

	
1
2
b

�
(

αo2

αo1 + αo2

)(
αK

αb

)
. (44)

We observe that for phenomenologically viable sets of

parameters, for example, for those in Table 3, we have 	̃
1
2
x ∼

	̃
1
2
K ∼ 1

2	
1
2
b and (20) may be satisfied since 	̃

1
2
1 = ξ1 �

0.98 ∼ 1. We notice that (	̃
1
2
1 +	

1
2
b +	

1
2
r +	̃

1
2
x +	̃

1
2
K )

2 	= 1.
However, one may define a total density parameter for the
dark sector by

	
1
2
D = 	̃

1
2
1 − 	̃

1
2
x − 	̃

1
2
K . (45)

Then the density parameters satisfies the necessary condition,

(	
1
2
D +	

1
2
b +	

1
2
r )

2 = 1. In other words, H1n and H� terms
cannot be identified as separate contributions to dark sector,
rather they must be considered as just a single object in order
not to introduce an ambiguity in their identification.

4.2 Compatibility with recombination and nucleosynthesis

In this subsection we investigate if this model is compatible
with the cosmological depiction of the recombination and
nucleosynthesis, at least, at the order of magnitude level. In
a similar vein as the preceding subsection we require this
model mimic the standard model, �CDM, as much as pos-
sible. We assume that the radiation and the baryonic mat-
ter are in thermal equilibrium in the eras of recombination
and nucleosynthesis since we adopt the same equations of
thermal equilibrium as �CDM. Therefore, in the following,
first we derive the condition for thermal equilibrium for this
model. Then we find the sets of parameters with least χ2 val-
ues that may produce successful recombination and nucle-
osynthesis eras. The correct choices should have sufficient
radiation energy densities in these eras. In other words the
redshift at the recombination time, zre should be in the order
of (1+ zre)

4 > (1+ z∗)4 � (1,100)4 where * denotes time
of last scattering surface; and in the nucleosynthesis era the
energy density of neutrinos should reach energy densities of
the order of (1 MeV)4. We seek an approximate, rough agree-
ment with �CDM since the search of the parameter space
is done by trial and error rather than a systematic search of
the whole parameter space. Therefore a detailed, thorough
analysis and compatibility survey would be too ambitious
especially considering this is a toy model.

Before checking if there exist a set of parameters com-
patible with recombination and nucleosynthesis we should
check if the thermal equilibrium is maintained in these eras

in for the given set of parameters because we adopt the stan-
dard analysis in�CDM, and that analysis assumes existence
of thermal equilibrium. As is well known, if there is thermal
equilibrium then we should have � > H where � is the
rate of the interaction between radiation and the matter and
H is the Hubble parameter. However, the implementation
of this condition in this model is not exactly the same as in
�CDM. In the case of the recombination era the implemen-
tation of this condition does not give exactly the same result
as �CDM since, in �CDM the recombination takes place
in radiation dominated era and the total energy density is
almost wholly due to radiation while, in this model, the total
energy density of the universe at this era is not almost wholly
due to radiation although the equation of state parameter for
phenomenologically relevant cases is similar that of radia-
tion dominated universe at the time of recombination and we
require the radiation energy density to be the same or almost
the same as�CDM. In the case of nucleosynthesis, even the
equation state parameter in this model does not mimic that of
a radiation dominated universe. Therefore we should derive
the corresponding conditions for thermal equilibrium for this
model.

The condition for thermal equilibrium in the recombina-
tion era is

� > H ⇒ 1.97 × 10−19s−1

× 0.0227

(
T

Tph 0

)
> α1 H0	

1
2
ph

⇒
( ρ

ρ0
ρph
ρph0

) 1
2

< 0.19

(
T

Tph 0

)
= 0.19(1 + zre).

(46)

Here we have used the identities

α2
1 = ρ

ρph
= 1

	ph

( ρ
ρ0
ρph
ρph0

)
,

ρr

ρr0
= ρph

ρph0
= a−4 (47)

where α1 � 1 is the �CDM value and α2
1 ≤ 1 at the time

of recombination and is not constant in this model, and we
have used the PDG values, H0 = 72 km Mpc−1 s−1, 	ph =
4.8× 10−5. Note that� in Eq. (46) is the same as the�CDM
value while H is different from the �CDM value.

Next consider the condition on thermal equilibrium at and
before the time of nucleosynthesis. In thermal equilibrium we
have

�ν

H
≈ 1

α2

√
45G2

wk

64π3

√
hc5

G
(kB T )3 � 1

α2

(
T

1010 K

)3

> 1

⇒
( ρ

ρ0
ρr
ρr0

) 1
2

< 	
1
2
r

(
T

1010 K

)3

(48)

where we have used the identity similar to (47), where α1 and
the subindex ph are replaced by α2 and r , respectively and
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the ratio is evaluated at the time of nucleosynthesis. In this
case, as well, �ν is the same as its �CDM value while the
expression for H in terms of temperature is different since
α2 ≤ 1 and is not a constant (i.e. it gives a different value
when evaluated at different time during nucleosynthesis) in
this model while α2 = 1 in �CDM. During thermal equi-
librium the ratio of neutrinos to all nucleons, Xn is given by

Xn = 1

1 + exp
(

Q
kB T

) (49)

where Q is the rest mass energy difference between a neutron
and a proton, Q = mn−m p = 1.239 MeV . After the thermal
equilibrium between the neutrinos and the nucleons are lost
i.e. after decoupling the value of Xn further decreases due to
decay of free neutrons as

Xn = Xn0 exp

[
−
(

t

τ0

)]
(50)

where Xn0 is the Xn of Eq. (49) at the time of decoupling,
and τ0 = 885.7 s is the lifetime of a free neutron. Therefore
the effect of this model is to change the value of Xn0 (which
depends on α2) and probably the value of Xn as well.

Now we are ready to check the viability of this model.
We could give only four graphs and three tables that par-
tially summarize the results of my calculations related to this
and the next paragraphs in order not to expand the size of
the paper too much. Otherwise the size of the manuscript
would be almost doubled. First we check the viability of the
model for recombination and nucleosynthesis eras. To this
end we have used Eqs. (17, 18, 21, 28) in the zeroth order
approximation where a(t) � a1n(t) (as discussed before
Eq. (30)) to draw ω, ρr

ρr0
, versus time graphs by using a

Mathematica code that we have prepared for this aim for
the sets of the parameters, r ,s,β,ξξ1, A1, A2, c1, c2, αr

αb
,αx
αb

,

αK
αb

, αc,αo1, αo2, t0 	
1
2
b , that correspond to some relatively

small χ2 values obtained in preceding subsection. Then we
have tried to find at least one set of parameters with phe-
nomenologically viableω0, ρr

ρr0
, ρ
ρ0

values i.e.ω0, in the range

−0.68 −−0.74; ρr
ρr0

> (1,100)2 � 1012 (in the range of
redshifts z ∼ 800 − 3,000) at the time of recombination, and
ρr
ρr0

>
(1 MeV)4

5× 10−5 (2.5× 10−3 eV)4
> 1038 at the time of nucle-

osynthesis where we have approximated x1(t), x2(t), x3(t)
by x (0)1 (t), x (0)2 (t), x (0)3 (t) (which are defined in Eq. (30)),
and a(t) by a1n(t) (which is defined in Eq. (23)) as discussed
in the preceding section. We have found two sets of parame-
ters given in Table 3 that satisfy these conditions. A comment
is in order at this point. The zeroth order approximation is
reliable only for small redshifts. However, this approxima-
tion is reliable at any redshift if one is only interested in the
energy density–redshift relation. This may be seen as fol-

lows: Assume that the energy density ρ is related to redshift
z byρ = f (z) in the zeroth order approximation (where f (z)
is an arbitrary function), and in an approximation better than
the zeroth order we have c0 A1

A1−A2
= 1

x i.e. a(t) = 1
x a1n(t).

Then the energy density after the correction is ρ′ = f (z′).
If one rescales z′ as 1

x z′ = z then one obtains the same red-
shift and energy density values. In other words the redshift–
energy density relation is invariant under such corrections.
However, this is not true for the redshift–time relation. If
the approximation is not a good approximation to the true
value then the redshift–time relation will be distorted. This,
in turn, may cause the distortion of the value of the equation
of state and the distortion of the variation of the energy den-
sities with time in an amount depending on the reliability of
the zeroth order approximation. Keeping these observations
in mind we are content to use a zeroth order approximation
for the times of recombination and nucleosynthesis because
even employing a zeroth order approximation needs a lot of
computer CPU and RAM, and in many cases the use of a first
order approximation neither does improve the situation. We
will come back to these points when we discuss the times of
recombination and nucleosynthesis.

Next we have checked if thermal equilibrium is main-
tained at the times of recombination and nucleosynthesis
and if recombination and nucleosynthesis are realized in
this model. One may have an idea on thermal equilibrium
at the time of recombination by using the values of Table 3
at z � 1,100 and Eq. (46). However, a more rigorous way is

to draw

(
ρ
ρ0
ρr
ρr0

) 1
2
(

1
0.19 T

Tph0

)
(which may be obtained from

Eq. (46)) versus time graphs to determine the time inter-
vals (and then the corresponding redshift intervals) where(

ρ
ρ0
ρr
ρr0

) 1
2
(

1
0.19 T

Tph0

)
≤ 1 for each of the sets A and B. In

fact we have used T
Tph0

= 1 + z for the relevant redshifts.

The resulting intervals are the intervals where thermal equi-
librium is maintained as shown in Fig. 4 for the set B in Table
3. The smallest redshifts where the thermal equilibrium is lost
are z = 2,317 (γ = 1.615× 10−10 with ρr

ρr0
� 5.52× 1013)

and z = 1,625 (γ = 2.82 × 10−10 ρr
ρr0

� 3 × 1013) for

the sets A and B, respectively. This implies that the photon–
electron decoupling takes place before the time of last scat-
tering at an energy of � 2,317 × 6 × 10−4 eV � 1.4 eV
and � 1,625 × 6 × 10−4 eV � 0.98 eV for the sets A and
B, respectively (assuming the transition to be directly to the
ground state of hydrogen atom) to be compared to the value
of photon energy of about � 1,100×6× 10−4 eV � 0.66 eV
for�CDM at the time of last scattering. This, in turn, implies
that photon–electron decoupling in this model for the sets of
parameters A and B is at a smaller redshift than �CDM
where thermal equilibrium is maintained until decoupling.
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(Thermal equilibrium would be maintained till z � 2.4 in
�CDM if recombination of electrons and protons to form
neutral atoms had not taken place as may be seen from (46)
by settingα1 = 1). In fact the corresponding times for decou-
pling are already smaller than that of �CDM by five orders
of magnitude. A detailed comprehensive separate study is
need to see if these imply some interesting phenomenolog-
ically viable alternatives or just an artifact of the toy model
and/or the sets of parameters considered. This may also be
due to the limitation of the applicability of the zeroth order
approximation that we have discussed above. a(t) � a1n(t)
is not violated badly at the time of recombination for the
most of the relevant sets of parameters. For example for the
sets of parameters given in Table 3 the first order approxi-
mation results in a(t) � 0.4 a1n(t) i.e. c0 A1

A1−A2
� 0.4 and

does not vary much at the time of recombination. Therefore
it seems that the effect of the limitation of the applicability
of the zeroth order approximation to the time of recombina-
tion must be limited. However, this shift does not introduce
a major problem, since the redshift values, hence the photon
energy density at recombination, remains almost the same
and thermal equilibrium is maintained. Next we have checked
if thermal equilibrium is maintained at the peaks in Table 3
where the energy densities are sufficient for nucleosynthe-
sis. We have used Eq. (48) to find the range of temperatures
where thermal equilibrium is maintained. We have found that
this condition is satisfied for T > 3× 1010 K (provided that
	r � 5 × 10−5) for the second peaks. This value gives us
Xn0 in Eq. (50) by using Eq. (49) as Xn0 � 0.39, which is
quite large compared to the for�CDM value of � 0.25. The
time that it takes 3 × 1010 K � 1 MeV to drop to 0.07 MeV
(that is, when ρr

ρr0
∼ 1032) in this model is something like

∼ 2 × 10−16 × t0 � 90 s. Therefore Xn0 does not drop
significantly through Eq. (50). In other words the final result
Xn � 0.35 is much larger than the �CDM value � 0.13
(which agrees well with observations). Probably the main
source of this discrepancy is the inapplicability of zeroth
order approximations to redhifts and energy densities to this
era to obtain correct energy density–time relations. The vari-
ations of c0 A1

A1−A2
and A are quite large and their values are

quite different from those at z ∼ 0 at the time of nucle-
osynthesis, which makes the applicability of the zeroth order
approximation extremely difficult to obtaining the correct
energy density–time relation. In other words the main source
of the discrepancy may be due to the fact that the real time
of free decay may be of the order of ∼1,000 s in this model
instead of 90 s. The use of a first order approximation does
not improve the situation because in the calculation of first
order approximations to c0 A1

A1−A2
and A(t) one uses the zeroth

order approximation a(t) � a1n(t) in the integrals for xi ,
i = 1, 2, 3. This, in turn, results in an over-contribution of
large redshifts and hence larger and more varying xi with
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Fig. 2 ω (dotted blue), ρ
ρ0

(dot-dashed red), ρx
ρx0

(solid black), ρr
ρr0

(dashed green), ρb
ρb0

(solid yellow) versus γ = t
t0

graphs for the set B

for the first energy density peak in the interval 2.8422577892× 10−11 ≤
γ ≤ 2.8422577894 × 10−11. In this graph ω, ρ

ρ0
, ρr
ρr0

, ρb
ρb0

are given as

multiples of 104, 1028, 1031, 1023, 1019, respectively

respect to their true values since xi < 1 and they get smaller,
i.e. c0 A1

A1−A2
gets larger at larger redshifts. Therefore the energy

density versus time graphs in Figs. 2, 3, and 4 must be consid-
ered with some care. The time values in those graphs should
be taken with utmost care especially in the case of nucle-
osynthesis, while the magnitudes of energy densities and the
corresponding redshifts are expected to be the same as the
exact values. All these points must be studied in more detail
in future studies. However, we have been able to show that
this scheme can produce a model that mimics the standard
model: there is a current accelerated epoch whose present
equation of state (for the whole universe) is −0.7 (that is,
at least roughly, in agreement with observations; e.g. see the
values in Table 3 for a phenomenologically relevant set of
parameters). Before this epoch ω changes sign and the time
near this sign change may be considered as the matter domi-
nated era. Although the sign change ofω occurs at a later time
in this model compared to �CDM the time and the redshift
of onset of the accelerated era (i.e. ω � − 1

3 ) are comparable
with those of �CDM. There is an epoch before the matter
dominated era where ω is on average close to 1

3 , and may
be identified by radiation dominated era, and the time of the
maximum value of ω may be considered as the time when
the universe was like stiff matter or denser (as in the cores
of stars). Then ω changes sign again reaches two minimum
peaks as mentioned before and eventually approaches to −1
as time goes to zero (due to the H1n , in particular the first
part of it and this epoch probably may be considered as the
inflationary era. Moreover, the model is able to give relatively
small reduced χ2

0 and χ2 values for the Union2.1 data set,
and it can, at least roughly, account for recombination and
nucleosynthesis times. We think this is a sufficiently good
starting point for a toy model whose main aim is to embody
the creation of matter and radiation in the scale factor of
Robertson–Walker metric. However, there are a great deal of
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(solid yellow) versus γ = t
t0

graphs for the set B

for the second energy density peak in the interval 10−15 ≤ γ ≤ 10−13.
In this graph ω, ρ

ρ0
, ρr
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are given as multiples of 10, 1028, 1031,

1027, 1020, respectively

5. 10 11 1. 10 10 1.5 10 10 2. 10 10 2.5 10 10

0.2

0.4

0.6

0.8

1.0

Fig. 4
(

ρ
ρ0
ρr
ρr0

) 1
2
(

1
0.19 T

Tph0

)
versus γ graph in the interval where ther-

mal equilibrium is maintained for the set B in Table 3 in the interval
10−12 ≤ γ ≤ 2.82 × 10−10

points to be clarified and addressed in future studies, such as
checking the whole parameter space of this model by using
a more elaborate software and to use more powerful com-
puters that may give a scan of the whole parameter space
in a better approximation than the one given here, and con-
sidering a more detailed analysis of the recombination and
nucleosynthesis epochs, studying the evolution of cosmo-
logical perturbations in this model, and considering possible
extensions of this model toward a more realistic model.

5 Conclusion

In this study a scheme for obtaining a scale factor (in
Robertson–Walker metric) that may account for the times
before, during, and after the radiation dominated eras is intro-
duced. The prescription to obtain the scale factor in this
model is quite simple; First one introduces a scale factor for

the pure dark sector, and then the full scale factor is obtained
by a relation between these two scale factors. The result is
a scheme to produce the scale factor for the whole universe,
including baryonic matter, radiation, and dark energy–matter
(i.e. dark sector) in such a way that the times before, during,
and after radiation dominated era are expressed by a single
scale factor in Robertson–Walker metric. Different choices of
the pure dark sector scale factor (denoted by a1 in this paper)
and different choices of the relation between a1(t) and the
scale factor of the full universe, a(t) give different models.
As an illustration of this scheme a model with a specific
scale factor for the pure dark sector and a specific relation
between a1(t) and a(t) is considered. The phenomenological
viability of this model is checked through its compatibility
with Union2.1 data set, and with recombination and nucle-
osynthesis by using trial and error and Mathematica software
for almost randomly chosen sets of parameters. Two sets of
parameters with relatively small χ2 values for the Union2.1
data set and that are compatible with successful recombina-
tion and nucleosynthesis at an order of magnitude level are
found. These results are encouraging in view of the fact that
only a tiny portion of the whole parameter space could be
considered in this way. A separate, detailed, and compre-
hensive computational project with more advanced software
codes and/or powerful computing facilities that may scan the
full parameter space and may employ better approximation
schemes is needed to reach a definite view on the obser-
vational viability of this scheme and/or this model. More-
over, the effect of this model on cosmological perturbations
should be considered and possible implications and exten-
sions of this scheme to the inflationary era should be studied
in future. Furthermore, different pure dark sector scale fac-
tors and different options to relate the pure dark sector and
the full universe scale factors may be considered in future to
see the full range of possibilities that this scheme may offer.
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Appendix A: Mathematica codes to evaluate χ2 and to
draw the plots

In this appendix we give the essential, non-trivial steps for
writing the Mathematica codes to find χ2

0 , χ2, and to plot
the graphs for the equation of state and the energy densities
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in this model. To find χ2
0 or χ2 in Sect. 4.1 we first find the

distance moduli given by

μ = 5 Log10

(
dL

1 Mpc

)
+ 25. (51)

Here

dL = c a0

a(t)

∫ t0

t

dt

a(t)
� c a0

a1n(t)ζ−1

∫ t0

t

dt

ζ−1a1n(t)
(52)

where ζ−1 = 1 in the calculation of χ2
0 and ζ−1 = A1c0

1+c0x (0)

in the calculation of χ2 of Sect. 4.1. In general dL is writ-
ten in terms of Hubble parameter H and redshifts since
it is more suitable for the analysis of the data, which are
given as distance moduli at various redshifts. On the other
hand, in this case, we do not express dL in terms of red-
shift because expressing Hubble parameter as a function of
redshift is not applicable in this case due to the compli-
cated form of the scale factor. Instead we convert the red-
shift values in the Union2.1 data set into time by setting
γ aγ inv[r_, s_, b_, z1_, z_] := aγ. Table[FindRoot[aγ inv
[aγ, r, s, b, z1, z]−Union2zμerror[[i, 1]]−1 = 0, aγ, 0.1],
i, 1, numberUnion2]; where γ aγ inv[r_, s_, b_, z1_, z_],
aγ inv [aγ, r, s, b, z1, z],Union2zμerror[[i, 1]] stand for
γ = t

t0
, 1

a � 1
ζ−1a1n

, and the redshift for the i th data in

the Union2.1 data set, respectively. Then χ2
0 or χ2 is calcu-

lated by numerical integration by Mathematica through the
formula χ [r_, r1_, s_, s1_, β_, b_, ξ1_, z1_, z_, Ho_] :=
Sum [((μt[γ aγ inv[r, s, b, z1, z][[i]], r1, s1, β, ξ1, z, Ho]
−μU2[i]) ∧ 2)/(σU2[i]) ∧ 2, i, 1, numberUnion2]; where
we take a(t) = a1n(t) for χ2

0 and a(t) = A1c0
1+c0x (0)

a1n(t)

for χ2, μU2[i] is the magnitude for the i th data, σU2[i]
is the error for the i th data in the Union2.1 set. 1

a1n
, for

example, may be expressed as inv[r_, s_, b_, z1_, z_, g_] :=
(1+ (1/r)∗ (g −1)∗ (z1∗ z − (1/s)∗Log[b]))∧ (−r)∗b ∧
(g ∧ (−1/s)−1). In the case of χ2 one should also write the
expressions for x (0)i to find x (0) before evaluation of χ2. To
draw the graphs we write expressions for the Hubble param-
eters due to each contribution. This may be done for H1n by
using H1n = ȧ1n

a1n
. For the other components, for example for

the dust component, by evaluating A(0) αb

a
3
2

1n

. We use the fact

ρ
ρ0

= H2

H2
0

to draw the related graphs.
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vacuum: a complete cosmological scenario. Mon. Not. R. Astron.
Soc. 431, 923 (2013). arXiv:1209.2802

40. E.L.D. Perico, J.A.S. Lima, S. Basilakos, J. Solà, Complete cosmic
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