
Int J Comput Vis (2012) 100:122–133
DOI 10.1007/s11263-011-0489-0

Joint Optimization for Object Class Segmentation and Dense
Stereo Reconstruction

Lubor Ladický · Paul Sturgess · Chris Russell ·
Sunando Sengupta · Yalin Bastanlar ·
William Clocksin · Philip H.S. Torr

Received: 22 December 2010 / Accepted: 1 August 2011 / Published online: 7 September 2011
© Springer Science+Business Media, LLC 2011

Abstract The problems of dense stereo reconstruction and
object class segmentation can both be formulated as Ran-
dom Field labeling problems, in which every pixel in the
image is assigned a label corresponding to either its dispar-
ity, or an object class such as road or building. While these
two problems are mutually informative, no attempt has been
made to jointly optimize their labelings. In this work we pro-
vide a flexible framework configured via cross-validation
that unifies the two problems and demonstrate that, by re-
solving ambiguities, which would be present in real world
data if the two problems were considered separately, joint
optimization of the two problems substantially improves
performance. To evaluate our method, we augment the Leu-
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ven data set (http://cms.brookes.ac.uk/research/visiongroup/
files/Leuven.zip), which is a stereo video shot from a car
driving around the streets of Leuven, with 70 hand labeled
object class and disparity maps. We hope that the release of
these annotations will stimulate further work in the challeng-
ing domain of street-view analysis. Complete source code
is publicly available (http://cms.brookes.ac.uk/staff/Philip-
Torr/ale.htm).

Keywords Object class segmentation · Dense stereo
reconstruction · Random fields

1 Introduction

Many tasks require both object class and depth labeling. For
an agent to interact with the world, it must be capable of rec-
ognizing both objects and their physical location. For exam-
ple, camera based driverless cars must be capable of differ-
entiating between road and other classes, recognizing where
the road ends. Similarly, several companies (e.g. Yotta 2011)
wish to provide an automatic annotation of assets (such as
street light, drain or road sign) to local authorities. In order
to provide this service, assets must be identified, localized
in 3D space and an estimation of the quality of the assets
made.

The problems of object class segmentation (Shotton et
al. 2006; Ladicky et al. 2009), which assigns an object
label such as road or building to every pixel in the im-
age and dense stereo reconstruction, in which every pixel
within an image is labeled with a disparity (Scharstein and
Szeliski 2002), are well suited for being solved jointly.
Both approaches formulate the problem of providing a cor-
rect labeling of an image as one of Maximum a Posteri-
ori (MAP) estimation over a Random Field (RF), which is
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typically a Potts or truncated linear model. Thus both may
use graph cut based move making algorithms, such as α-
expansion (Boykov et al. 2001), to solve the labeling prob-
lem. These problems should be solved jointly, as a correct
labeling of object class can help depth labeling, and stereo
reconstruction can improve object labeling. Indeed it opens
the possibility for the generic stereo priors used previously
to be enriched by information about the shape of specific ob-
jects. For instance, object class boundaries are more likely
to occur at a sudden transition in depth and vice versa, while
the height of a point above the ground plane is an extremely
informative cue regarding its object class label; e.g. road or
sidewalk lie in the ground plane, and pixels taking labels
pedestrian or car must lie at a constrained height above the
ground plane, while pixels taking label sky must occur at
an infinite depth (zero disparity) from the camera. Figure 1
shows our model which explicitly captures these properties.

Object recognition provides substantial information
about the 3D location of points in the image. This has
been exploited in recent work on single view reconstruc-

tion (Hoiem et al. 2005; Ramalingam et al. 2008; Gould et
al. 2009; Liu et al. 2010), in which a plausible pop-up pla-
nar model of a scene is reconstructed from a single monoc-
ular image using object recognition and prior information
regarding the location of objects in typically photographed
scenes. Such approaches only estimate depth from object
class, assuming the object class is known. As object recogni-
tion is itself a problem full of ambiguity and often requiring
knowledge of 3D such a two stage process must, in many
cases, be suboptimal.

Other works have taken the converse approach of us-
ing of 3D information in inferring object class; Hoiem et
al. (2006) showed how knowledge of the camera viewpoint
and the typical 3D location of objects can be used to im-
prove object detection, while Leibe et al. (2007) employed
Structure-from-Motion (SfM) techniques to aid the tracking
and detection of moving objects. However, neither object
detection nor the 3D reconstruction obtained gave a dense
labeling of every pixel in the image, and the final results
in tracking and detection were not used to refine the SfM

Fig. 1 (Color online) Graphical model of our joint RF. The system
takes a left (A) and right (B) image from a stereo pair that has been
rectified. Our formulation captures the dependencies between the ob-
ject class segmentation problem (E, Sect. 2.1) and the dense stereo
reconstruction problem (F, Sect. 2.2) by defining a joint energy on the
recognition and disparity labels both on the unary/pixel (blue) and pair-
wise/edge variables (green) of both problems. The unary potentials of
the joint problem encodes the fact that different objects will have differ-

ent height distributions (G, (17)) learned from our training set contain-
ing hand labeled disparities (Sect. 5). The pairwise potentials encode
that object class boundaries, and sudden changes in disparity are likely
to occur together, but could also encode different shape smoothness
priors for different types of object. The combined optimization results
in an approximate object class segmentation (C) and dense stereo re-
construction (D). See Sects. 3 and 4 for a full treatment of our model
and Sect. 6 for further results
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results. The CamVid (Brostow et al. 2008) data set pro-
vides sparse SfM cues, which have been used by several
object class segmentation approaches (Brostow et al. 2008;
Sturgess et al. 2009) to generate pixel based image labeling.
In these the object class segmentation was not used to refine
the 3D structure.

Previous works have attempted to simultaneously solve
the problems of object class detection and 3D reconstruc-
tion. Hoiem et al. (2007) fitted a 3D model to specific ob-
jects, such as buses or cars within an image by simultane-
ously estimating 3D location, orientation and object class,
while Dick et al. (2004) fitted a 3D model of a building to
a set of images by simultaneously estimating a wire-frame
model and the location of assets such as window or col-
umn. In both of these papers the 3D models are intended
to be plausible rather than accurate, and these models are
incomplete—they do not provide location or class estimates
of every pixel.

None of the discussed works perform joint inference to
obtain dense stereo reconstruction and object class segmen-
tation. In this work, we demonstrate that these problems are
mutually informative, and benefit from being solved jointly.
We consider the problem of scene reconstruction in an ur-
ban area (Leibe et al. 2007). These scenes contain object
classes such as road, car and sky that vary in their 3D lo-
cations. Compared to typical stereo data sets that are usu-
ally produced in controlled environments, stereo reconstruc-
tion on this real world data is noticeably more challenging
due to large homogeneous regions and problems with photo-
consistency. We efficiently solve the problem of joint esti-
mation of object class and depth using modified variants of
the α-expansion (Boykov et al. 2001), and range move algo-
rithms (Kumar et al. 2011).

No real world data sets are publicly available that con-
tain both per pixel object class and dense stereo data. In
order to evaluate our method, we augmented the data set
of Leibe et al. (2007) by creating hand labeled object class
and disparity maps for 70 images. These annotations have
been made available for download. Our experimental eval-
uation demonstrates that joint optimization of dense stereo
reconstruction and object class segmentation leads to a sub-
stantial improvement in the accuracy of final results.

The structure of the paper is as follows: In Sect. 2 we
give the generic formulation of RFs for dense image label-
ing, and describe how they can be applied to the problems of
object class segmentation and dense stereo reconstruction.
Section 3 describes the formulation allowing for the joint
optimization of these two problems, while Sect. 4 shows
how the optimization can be performed efficiently. The data
set is described in Sect. 5 and experimental validation fol-
lows in Sect. 6.

2 Overview of the Random Field Formulations

Our joint optimization consists of two parts, object class seg-
mentation and dense stereo reconstruction. Before we for-
mulate our approach we give an overview of the typically
used random field (RF) formulation for both problems and
introduce the notation used in Sect. 3. Both problems have
previously been defined as a dense RF where the set of ran-
dom variables Z = {Z1,Z2, . . . ,ZN } corresponds to the set of
all image pixels i ∈ V = {1,2, . . . ,N}. A clique c ∈ C is a
set of random variables Zc ⊆ Z. Any possible assignment of
labels to the random variables will be called a labeling and
denoted by z, similarly we use zc to denote the labeling of a
clique. Each zi ∈ L, where L is the set of labels. Figure 1E
and F depict this lattice structure as a blue dotted grid, the
variables Zi are shown as blue circles.

Random field formulation can be seen as a structured
classifier minimizing the cost of the labeling z:

z∗ = arg min
z

E(z) = arg min
z

∑

c∈C
ψc(zc), (1)

where C is the set of all cliques. The term ψc(zc) is known
as the potential function of the clique c ⊂ V where zc = {zi :
i ∈ c}. Potential functions typically take the form:

ψc(zc) = wc · Φc(zc), (2)

where Φc(zc) is a cost function vector containing a cost for
each configuration of zc and wc a weight vector weighting
the importance of each cost function. The weight vectors
are constant for all cliques for each type of potential (unary,
pairwise, . . .). Even though there exists an underlying prob-
abilistic distribution corresponding to any RF, the state-of-
the-art algorithms for learning the potential functions ψc(·)
are typically trained discriminatively and the final classifier
does not have any real probabilistic interpretation. Thus, all
the weights and parameters are either hand-tuned on the val-
idation set or trained using any discriminative max-margin
method (Taskar et al. 2004; Tsochantaridis et al. 2005;
Alahari et al. 2010). Probabilistic interpretations whilst the-
oretically well grounded are hard to achieve in practise, as
the probabilistic distributions are exceptionally difficult to
model.

2.1 Object Class Segmentation Using a RF

We follow (Shotton et al. 2006; Kohli et al. 2008; Ladicky et
al. 2009) in formulating the problem of object class segmen-
tation as finding a minimal cost labeling of a RF defined over
a set of random variables X = {X1, . . . ,XN } each taking a
state from the label space L = {l1, l2, . . . , lk}. Each label lj
indicates a different object class such as car, road, building
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or sky. These energies take the form:

EO(x) =
∑

i∈V
ψO

i (xi) +
∑

i∈V ,j∈Ni

ψO
ij (xi, xj )

+
∑

c∈C
ψO

c (xc). (3)

The unary potential ψO
i of the RF describes the cost of

a single pixel taking a particular label. We followed the
approach in Ladicky et al. (2009), Sturgess et al. (2009),
where the unary cost for a pixel taking certain label is based
on the boosted (Torralba et al. 2004) classifier based on
shape filters (Shotton et al. 2006) and multiple feature re-
sponses (Ladicky et al. 2009). We refer the reader to Shot-
ton et al. (2006), Ladicky et al. (2009) for more details.
The pairwise terms ψO

ij encourage similar neighboring pix-
els in the image to take the same label. These potentials are
shown in Fig. 1E as blue circles and green squares respec-
tively. ψO

ij (xi, xj ) takes the form of a contrast sensitive Potts
model:

ψO
ij (xi, xj ) =

{
0 if xi = xj ,
g(i, j) otherwise,

(4)

where the function g(i, j) is an edge feature based on the
difference in colors of neighboring pixels (Boykov and Jolly
2001), typically defined as:

g(i, j) = θp + θv exp(−θβ‖Ii − Ij‖2
2), (5)

where Ii and Ij are the color vectors of pixel i and j respec-
tively. θp , θv , θβ ≥ 0 are model parameters learned using
training data. We refer the interested reader to Boykov and
Jolly (2001), Rother et al. (2004), Shotton et al. (2006) for
more details.

The higher order terms ψO
c (xc) describe potentials de-

fined over cliques containing more than two pixels. In our
work we follow (Ladicky et al. 2009) and use their hierar-
chical potentials based upon histograms of features, evalu-
ated on segments, obtained by unsupervised segmentation
methods (Comaniciu and Meer 2002; Shi and Malik 2000).
This significantly improves the results of object class seg-
mentation method. Nearly all current RF based object class
segmentation methods (Rabinovich et al. 2007; Batra et al.
2008) can be represented within this formulation via differ-
ent choices for the higher order cliques (Ladicky et al. 2009;
Russell et al. 2010) and can be included in the framework.

2.2 Dense Stereo Reconstruction Using a RF

We use the energy formulation of Boykov et al. (2001),
Scharstein and Szeliski (2002) for the dense stereo recon-
struction Sect. 2.2 part of our joint formulation. They for-
mulated the problem as one of finding a minimal cost la-
beling of a RF defined over a set of random variables Y =

Fig. 2 An illustration of how 3D information can be reconstructed
from a stereo camera rig. Also shown, the relation between disparity
(the movement of a point between the pair of images) and height, once
ground plane is known

{Y1, . . . , YN }, where each variable Yi takes a state from the
label space D = {d1, d2, . . . , dm} corresponding to a set of
disparities, and can be written as:

ED(y) =
∑

i∈V
ψD

i (yi) +
∑

i∈V ,j∈Ni

ψD
ij (yi, yj ). (6)

The unary potential ψD
i (yi) of the RF is defined as a mea-

sure of color agreement of a pixel with its corresponding
pixel i from the stereo-pair given a choice of disparity yi .
The pairwise terms ψD

ij encourage neighboring pixels in the
image to have a similar disparity. The cost is a function of
the distance between disparity labels:

ψD(yi, yj ) = f (|yi − yj |), (7)

where f (.) usually takes the form of a linear truncated func-
tion f (y) = min(k1y, k2), where k1, k2 ≥ 0 are the slope and
truncation respectively. The unary (blue circles) and pair-
wise (green squares) potentials are shown in Fig. 1F. Note
that the disparity for a pixel is directly related to the depth
of the corresponding 3D point (see Fig. 2). To partially re-
solve ambiguities in disparities for low textured objects a
Gaussian filter is applied to the unary potentials.

2.3 Monocular Video Reconstruction

With minor modification, the formulation of Sect. 2.2 can
also be applied to monocular video sequences, by perform-
ing stereo reconstruction over adjacent frames in the video
sequence (see Fig. 3). Under the simplifying assumption that
the scene remains static, the formulation remains the same.
However, without a fixed baseline between the camera po-
sitions in adjacent frames the estimation of disparities, and
the mapping of disparities to depths is more complex.
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Fig. 3 An illustration of how 3D information can be reconstructed
from the monocular sequence. Details of the conversion of the monoc-
ular 3D reconstruction problem into the standard stereo reconstruction
are given in Sect. 2.3

We first pre-process the data, by performing SIFT match-
ing (Lowe 2004) over adjacent frames, before using
RANSAC (Fischler and Bolles 1981; Torr and Murray 1997)
to simultaneously estimate the fundamental matrix, and a
corresponding set of inliers from these matches. The funda-
mental matrix gives us both the epipoles1 and the epipolar
lines, and this allows us to solve the stereo correspondence
efficiently by searching along corresponding epipolar lines
for a match. Given two images 1, and 2, we write x, x′ for
a pair of matched points in images 1 and 2 respectively, and
use e, e′ for the epipoles present in each image. The dispar-
ity d is estimated as:

d = ∣∣|e − x| − |e′ − x′|∣∣. (8)

Note that we compute the disparity between pixels in a par-
ticular frame with those in its previous frame. As the cam-
era moves forward into the image, this guarantees that ev-
ery unoccluded pixel can be matched. Matching pixels from
the current frame against the next would mean that pixels
about the edge of the image could not be matched. As with
standard stereo reconstruction, the unary potential of a par-
ticular choice of disparity, or equivalently a match between
two pixels, is defined as the pixel difference in RGB space
between them.

Converting Monocular Disparity to Stereo Disparity Un-
like conventional stereo, disparities in our video sequence
are not simply inversely proportional to distances, but also
depend on other variables. There are two reasons for this:

– Firstly, the distance traveled between frames by the cam-
era varies with the speed of the vehicle and this implies
that the baseline varies from frame to frame.

1The epipoles typically lie within the image as the camera points in the
direction of motion.

– Secondly, when the epipole lies in the image the camera
can not be approximated as orthographic. The effective
baseline, which we define as the component of the base-
line normal to the ray, varies substantially within an image
from pixel to pixel.

We will describe how disparities in the monocular sequence
correspond to distances, and use this to map them into stan-
dard form stereo disparities. This allows us to reuse the joint
potentials learned for the stereo case, and to directly evalu-
ate both approaches by comparing against the same ground
truth.

We define a ray λr , as the set of all values taken by a
3D unit vector r , multiplied by a scalar λ ∈ 	. We define
the baseline Bf as the 3D distance traveled by the camera
between a pair of frames f and f + 1.2 We let θ be the
angle between B and r . Then we define e the epipole, as the
intersection point of the baseline and the image plane, and
x as the point in the image that the ray λr passes through.
Given a disparity d of a point on the ray, the distance s of
that point from the camera is:

s = K|(Bf − Bf · r)|/d
= K|Bf |

√
1 − cos2 θ/d

= K|Bf | × |sin θ |/d, (9)

where K is a constant based on the internal properties of the
camera.

Noting that |e − x| ∝ tan θ , i.e. γ |e − x| = tan θ for some

value γ , and that |sin θ | =
√

tan2 θ

1+tan2 θ
, we have

s = K|Bf |
√

γ 2(e − x)2

1 + γ 2(e − x)2

/
d. (10)

Solving s for a conventional stereo pair gives the related
equation

s = K|B ′|/d ′, (11)

where K is the same constant based on intrinsic camera pa-
rameters, |B ′| is the distance between the pairs of cameras,
assumed to be constant and orthogonal to the field of view
of both cameras, and d ′ is the stereo disparity. Matching the
two equations, and eliminating s, we have

d ′ = |B ′|
|Bf |

d
√

γ 2(e−x)2

1+γ 2(e−x)2

. (12)

2This value is a part of the standard Leuven data-set, see Sect. 5, and
does not require estimating, in our application, see Sect. 6.
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In case the movement of the camera is very close to trans-
lation, orthogonal to the image plane, γ is sufficiently small
and the disparity can be approximated by:

d ′ ≈ |B ′|d
|Bf |γ |e − x| . (13)

Given this relationship, unary potentials defined over the
monocular disparity d , can be mapped to unary potentials
over the conventional stereo disparity d ′. This allows stan-
dard stereo reconstruction on monocular sequences to be
performed as in Sect. 2.2, and joint object class and 3D re-
construction from monocular sequences to be performed as
described in the following section.

3 Joint Formulation of Object Class Labeling
and Stereo Reconstruction

We formulate simultaneous object class segmentation and
dense stereo reconstruction as an energy minimization of a
dense labeling z over the image. Each random variable Zi =
[Xi,Yi]3 takes a label zi = [xi, yi], from the product space
of object class and disparity labels L × D and correspond
to the variable Zi taking object label xi and disparity yi .
In general the energy of the RF for joint estimation can be
written as:

E(z) =
∑

i∈V
ψJ

i (zi) +
∑

i∈V ,j∈Ni

ψJ
ij (zi, zj )

+
∑

c∈C
ψJ

c (zc), (14)

where the terms ψJ
i , ψJ

ij and ψJ
c are a sum of the previously

mentioned terms ψO
i and ψD

i , ψO
ij and ψD

ij , and ψO
c and ψD

c

respectively, plus some terms ψC
i , ψC

ij , ψC
c , which govern

interactions between X and Y. However, in our case ED(y)

(see Sect. 2.2) does not contain higher order terms ψD
c , and

the joint energy is defined as:

E(z) =
∑

i∈V
ψJ

i (zi) +
∑

i∈V ,j∈Ni

ψJ
ij (zi, zj )

+
∑

c∈C
ψO

c (xc). (15)

If the interaction terms ψC
i , ψC

ij are both zero, then the prob-
lems x and y are independent of one another and the en-
ergy would be decomposable into E(z) = EO(x) + ED(y)

and the two sub-problems could each be solved separately.
However, in many real world data sets such as the one we

3[Xi,Yi ] is the ordered pair of elements Xi and Yi .

describe in Sect. 5, this is not the case, and we would like
to model the unary and pairwise interaction terms so that a
joint estimation may be performed.

3.1 Joint Unary Potentials

In order for the unary potentials of both the object class seg-
mentation and dense stereo reconstruction parts of our for-
mulation to interact, we need to define some function that
relates X and Y in a meaningful way. We could use depth
and objects directly, as it may be that certain objects appear
more frequently at certain depths in some scenarios. In road
scenes we could build statistics relative to an overhead view
where the positioning of the objects in the ground plane may
be informative, since we expect that buildings will lie on the
edges of the ground plane, sidewalk will tend to lie between
building and road which would occupy the central portion
of the ground plane. Building statistics with regard to the
real-world positioning of objects gives a stable and mean-
ingful cue that is invariant to the camera position. However,
models such as this require a substantial amount of data to
avoid over-fitting.

In this paper we need to model these interactions with
limited data. We do this by restricting our unary interaction
potential to only modeling the observed fact that certain ob-
jects occupy a particular range of real world heights. After
calibration we are able to obtain the height above the ground
plane via the relation:

h(yi, i) = hc + (yh − yi)b

d
, (16)

where hc is the camera height, yh is the level of the horizon
in the rectified image pair, yi is the height of the ith pixel
in the image, b is the baseline between the stereo pair of
cameras and d is the disparity. This relationship is modeled
by estimating the a priori cost of pixel i taking label zi =
[xi, yi] by

ψC
i ([xi, yi]) = − log(H(h(yi, i)|xi)), (17)

where

H(h|l) =
∑

i∈T δ(xi = l)δ(h(yi, i) = h)∑
i∈T δ(xi = l)

(18)

is a histogram based measure of the naive probability that a
pixel taking label l has height h in the training set T . The
combined unary potential for the joint RF is:

ψJ
i ([xi, yi]) = wu

OψO
i (xi) + wu

DψD
i (yi)

+ wu
CψC

i (xi, yi), (19)

where ψO
i , and ψD

i ,are the previously discussed costs of
pixel i being a member of object class xi or disparity yi
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given the image. wu
O , wu

D , and wu
C are weights. Fig. 1G gives

a graphical representation of this type of interaction shown
as a blue line linking the unary potentials (blue circles) of x
and y via a distribution of object heights.

3.2 Joint Pairwise Interactions

Pairwise potentials enforce the local consistency of ob-
ject class and disparity labels between neighboring pixels.
The consistency of object class and disparity are not fully
independent—an object classes boundary is more likely to
occur here if the disparity of two neighboring pixels signifi-
cantly differ. To take this information into account, we chose
tractable pairwise potentials of the form:

ψJ
ij ([xi, yi], [xj , yj ]) = w

p
OψO

ij (xi, xj ) + w
p
DψD

ij (yi, yj )

+ w
p
CψO

ij (xi, xj )ψ
D
ij (yi, yj ), (20)

where w
p
O,w

p
D > 0 and w

p
C are weights of the pairwise po-

tential. Figure 1 shows this linkage as green line between a
pairwise potential (green box) of each part.

4 Inference for the Joint RF

Optimization of the energy E(z) is challenging. Each ran-
dom variable takes a label from the set L × D consequen-
tially, in the experiments we consider (see Sect. 5) they have
700 possible states. As each image contains 316 × 256 ran-
dom variables, there are 700316×256 possible solutions to
consider. Rather than attempting to solve this problem ex-
actly, we use graph cut based move making algorithms to
find an approximate solution.

Graph cut based move making algorithms start from an
initial solution and proceed by making a series of moves or
changes, each of which leads to a solution of lower energy.
The algorithm is said to converge when no lower energy so-
lution can be found. In the problem of object class labeling,
the move making algorithm α-expansion can be applied to
pairwise (Boykov et al. 2001) and to higher order poten-
tials (Kohli et al. 2007, 2008; Ladicky et al. 2009) and often
achieves the best results; while in dense stereo reconstruc-
tion, the truncated convex priors (see Sect. 2.2) mean that
better solutions are found using range moves (Kumar et al.
2011) than with α-expansion.

In object class segmentation, α-expansion moves allow
any random variable Xi to either retain its current label xi or
transition to the label α. More formally, given a current solu-
tion x the α-expansion algorithm searches through the space
Xα of size 2N , where N is the number of random variables,
to find the optimal solution, where

Xα = {
x′ ∈ LN : x′

i = xi or x′
i = α

}
. (21)

In dense stereo reconstruction, a range expansion move
defined over an ordered space of labels, allows any random
variable Yi to either retain its current label yi or take any la-
bel l ∈ [la, la + r]. That is to say, given a current solution y a
range move searches through the space Yl of size (r + 1)N ,
which we define as:

Yl = {
y′ ∈ DN : y′

i = yi or y′
i ∈ [l, l + r]}. (22)

A single iteration of α-expansion, is completed when one
expansion move for each l ∈ L has been performed. Simi-
larly, a single iteration of range moves is completed when
|D| − r , moves has been performed.

4.1 Projected Moves

Under the assumption that energy E(z) is a metric (as
in object class segmentation see Sect. 2.1) or a semi-
metric (Boykov et al. 2001) (as in the costs of Sects. 2.2
and 3) over the label space L × D, either α-expansion
or αβ swap respectively can be used to minimize the en-
ergy. One single iteration of α-expansion would require
O(|L||D|) graph cuts to be computed, while αβ swap re-
quires O(|L|2|D|2) resulting in slow convergence. In this
sub-section we show graph cut based moves can be applied
to a simplified, or projected, form of the problem that re-
quires only O(|L| + |D|) graph cuts per iteration, resulting
in faster convergence and better solutions. The new moves
we propose are based upon a piecewise optimization that
improves by turn first object class labeling and then depth.

We call a move space projected if one of the components
of z, i.e. x or y, remains constant for all considered moves.
Alternating between moves in the projected space of x or
of y can be seen as a form of hill climbing optimization
in which each component is individually optimized. Con-
sequentially, moves applied in the projected space are guar-
anteed not to increase the joint energy after the move and
must converge to a local optima.

We will now show that for energy (15), projected
α-expansion moves in the object class label space and range
moves in the disparity label space are of the standard form,
and can be optimized by existing graph cut constructs. We
note that finding the optimal range move or α-expansion
with graph cuts requires that the pairwise and higher or-
der terms are constrained to a particular form. This con-
straint allows the moves to be represented as a pairwise sub-
modular energy that can be efficiently solved using graph
cuts (Boykov and Kolmogorov 2004); however neither the
choice of unary potentials nor scaling the pairwise or higher
order potentials by a non-negative amount λ ≥ 0 affects if
the move is representable as a pairwise sub-modular cost.
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4.2 Expansion Moves in the Object Class Label Space

For our joint optimization of disparity and object classes,
we propose a new move in the projected object-class label
space. We allow each pixel taking label zi = [xi, yi] to either
keep its current label or take a new label [α,yi]. Formally,
given a current solution z = [x,y] the algorithm searches
through the space Zα of size 2N . We define Zα as:

Zα =
{

z′ ∈ (L × D)N : z′
i = [x′

i , yi] and
(x′

i = xi or x′
i = α)

}
. (23)

One iteration of the algorithm involves making moves for
all α in L in some order successively. As discussed ear-
lier, the values of the unary potential do not affect the sub-
modularity of the move. For joint pairwise potentials (20)
under the assumption that y is fixed, we have:

ψJ
ij ([xi, yi], [xj , yj ])
= (

w
p
O + w

p
CψD

ij (yi, yj )
)
ψO

ij (xi, xj )

+ w
p
DψD

ij (yi, yj )

= λijψ
O
ij (xi, xj ) + kij . (24)

The constant kij does not affect the choice of optimal
move and can safely be ignored. If ∀yi, yj λij = w

p
O +

w
p
CψD

ij (yi, yj ) ≥ 0, the projection of the pairwise potential
is a Potts model and standard α-expansion moves can be ap-
plied. For w

p
O ≥ 0 this property holds if w

p
O + w

p
Ck2 ≥ 0,

where k2 is defined as in Sect. 2.2. In practice we use a vari-
ant of α-expansion suitable for higher order energies (Rus-
sell et al. 2010).

4.3 Range Moves in the Disparity Label Space

For our joint optimization of disparity and object classes
we propose a new move in the project disparity label space.
Each pixel taking label zi = (xi, yi) can either keep its cur-
rent label or take a new label from the range (xi, [la, lb]). To
formalize this, given a current solution z = [x,y] the algo-
rithm searches through the space Zl of size (2 + r)N , which
we define as:

Zl =
{

z′ ∈ (L × D)N : z′
i = [xi, y

′
i] and

(y′
i = yi or y′

i ∈ [l, l + r])
}

. (25)

As with the moves in the object class label space, the values
of the unary potential do not affect the sub-modularity of this
move. Under the assumption that x is fixed, we can write our
joint pairwise potentials (20) as:

ψJ
ij ([xi, yi], [xj , yj ])
= (

w
p
D + w

p
CψO

ij (xi, xj )
)
ψD

ij (yi, yj )

+ wO
d ψO

ij (xi, xj )

= λijψ
D
ij (yi, yj ) + kij . (26)

Again, the constant kij can safely be ignored, and if
∀xi, xj λij = w

p
D + w

p
CψO

ij (xi, xj ) ≥ 0 the projection of
the pairwise potential is linear truncated and standard range
expansion moves can be applied. This property holds if
w

p
D + w

p
C(θp + θv) ≥ 0, where θp and θv are the weights

of the Potts pairwise potential (see Sect. 2.1).

5 Data Set

We augment a subset of the Leuven stereo data set4 of Leibe
et al. (2007) with object class segmentation and disparity
annotations. The Leuven data set was chosen as it provides
image pairs from two cameras, 150 cm apart from each
other, mounted on top of a moving vehicle, in a public ur-
ban setting. In comparison with other data sets, the larger
distance between the two cameras allows better depth res-
olution, while the real world nature of the data set allows
us to confirm our statistical model’s validity. However, the
data set does not contain the object class or disparity anno-
tations, we require to learn and quantitatively evaluate the
effectiveness of our approach.

To augment the data set all image pairs were rectified, and
cropped to 316×256, then the subset of 70 non-consecutive
frames was selected for human annotation. The annotation
procedure consisted of two parts. Firstly we manually la-
beled each pixel in every image with one of 7 object classes:
Building, Sky, Car, Road, Person, Bike and Sidewalk. An
8th label, Void, is given to pixels that do not obviously be-
long to one of these classes. Secondly disparity maps were
generated by manually matching by hand the corresponding
planar polygons, some examples of which are shown in the
Fig. 4A, B, and D.

We believe our augmented subset of the Leuven stereo
data set to be the first publicly available data set that con-
tains both object class segmentation and dense stereo recon-
struction ground truth for real world data. This data differs
from commonly used stereo matching sets like the Middle-
bury (Scharstein and Szeliski 2002) data set, as it contains
challenging large regions which are homogeneous in color
and texture, such as sky and building, and suffers from poor
photo-consistency due to lens flares in the cameras, specu-
lar reflections from windows and inconsistent luminance be-
tween the left and right camera. It should also be noted that
it differs from the CamVid database (Brostow et al. 2008) in
two important ways, CamVid is a monocular sequence, and
the 3D information comes in the form of a set of sparse 3D

4http://www.vision.ee.ethz.ch/ bleibe/cvpr07/datasets.html.

http://www.vision.ee.ethz.ch/~bleibe/cvpr07/datasets.html
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Fig. 4 (Color online) Qualitative object class and disparity results for
Leuven data set. (A) Original Image. (B) Object class segmentation
ground truth. (C) Proposed method Object class segmentation result.

(D) Dense stereo reconstruction ground truth. (E) Proposed method
dense stereo reconstruction result. (F) Stand alone dense stereo recon-
struction result (LT)

points with outliers.5 These differences give rise to a chal-
lenging new data set that is suitable for training and eval-
uating models for dense stereo reconstruction, 2D and 3D
scene understanding, and joint approaches such as ours.

6 Experiments

For training and evaluation of our method we split the data
set (Sect. 5) into three sequences: Sequence 1, frames 0–
447; Sequence 2, frames 512–800; Sequence 3, frames 875–
1174. Augmented frames from sequence 1 and 3 are selected
for training and validation, and sequence 2 for testing. All
void pixels are ignored. Due to insufficient size of the data
the class Person is also set to void and the parameters for ob-
ject class domain were chosen the same as in Ladicky et al.
(2009). The depth domain and joint parameters were learnt
on the training set same as in Ladicky et al. (2009). The per-
formance on the training set in the depth domain is not sig-
nificantly better than on the test set and this approach does
not lead to an over-fitting of the parameters.

5The outlier rejection step was not performed on the 3D point cloud in
order to exploit large re-projection errors as cues for moving objects.
See Brostow et al. (2008) for more details.

We quantitatively evaluate the object class segmentation
by measuring the percentage of correctly predicted labels
over non void pixels in the test sequence. The dense stereo
reconstruction performance is quantified by measuring the
number of pixels which satisfy |di −d

g
i | ≤ δ, where di is the

label of ith pixel, dg
i is corresponding ground truth label and

δ is the allowed error. We increment δ from 0 (exact) to 20
(within 20 disparities) giving a clear picture of the perfor-
mance. The total number of disparities used for evaluation
is 100.

6.1 Object Class Segmentation

The object class segmentation RF as defined in Sect. 2.1
performed extremely well on the data set, better than we
had expected, with 95.7% of predicted pixel labels agreeing
with the ground truth. Qualitatively we found that the per-
formance is stable over the entire test sequence, including
those images without ground truth. Quantitative comparison
of the stand alone and joint method is given in Table 1.

6.2 Dense Stereo Reconstruction

The Potts (Kolmogorov and Zabih 2001) and linear trun-
cated (LT) baseline dense stereo reconstruction models de-
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Table 1 Quantitative results for object class segmentation of stand
alone and joint approach. The pixel accuracy (%) for different ob-
ject classes. The ‘global’ measure corresponds to the total propor-
tion of pixels labeled correctly. Per class accuracy corresponds to

recall measure commonly used for this task (Shotton et al. 2006;
Sturgess et al. 2009; Ladicky et al. 2009). Minor improvement were
achieved for smaller classes that had fewer pixels present in the data
set. We assume the difference would be larger for harder data sets

Global Building Sky Car Road Sidewalk Bike

Stand alone 95.7 96.7 99.8 93.5 99.0 60.2 59.3

Joint approach 95.8 96.7 99.8 94.0 98.9 60.6 59.5

Fig. 5 Quantitative comparison of the performance of disparity RFs.
We can clearly see that our joint approach Sect. 3 (Proposed Method)
outperforms standard dense stereo approaches based on the Potts (Kol-
mogorov and Zabih 2001) (Potts Baseline), Linear truncated models
described in Sect. 2.2 (LT Baseline) and Linear truncated with Gaus-
sian filtered unary potentials (LT Filtered). The correct pixel ratio is
the proportion of pixels which satisfy |di − d

g
i | ≤ δ, where di is the

disparity label of ith pixel, d
g
i is corresponding ground truth label and

δ is the allowed error. See Sect. 6 for discussion

scribed in Sect. 2.2 performed relatively well, with large δ,
considering the difficulty of the data, plotted in Fig. 5 as
‘Potts baseline’ and ‘LT baseline’. We found that on our
data set a significant improvement was gained by smoothing
the unary potentials with a Gaussian blur6 before incorporat-
ing the potential in the RF framework with linear truncated
model, as can be seen in Fig. 5 ‘LT Filtered’. For qualitative
results see Fig. 4E.

6.3 Joint Approach

Our joint approach defined in Sects. 3 and 4 consistently out-
performed the best stand-alone dense stereo reconstruction
as can be seen in Fig. 5. Improvement of the object class
segmentation was less dramatic, with 95.8% of predicted
pixel labels agreeing with the ground truth. We expect to see
a more significant improvement on more challenging data
sets, and the creation of an improved data set is part of our
future work. Qualitative results can be seen in Fig. 4C and E.

6This is a form of robust matching measure, see Sect. 3.1 of (Scharstein
and Szeliski 2002) for further examples.

Fig. 6 Quantitative comparison of the performance of disparity RFs,
on monocular sequences. As with the stereo pair, we can clearly see
that our joint approach Sect. 3 (Proposed Method) outperforms the
stand alone approaches with baseline Potts (Kolmogorov and Zabih
2001) (Potts Baseline), Linear truncated potentials Sect. 2.2 (LT Base-
line) and Linear truncated with Gaussian filtered unary potentials (LT
Filtered). The correct pixel ratio is the proportion of pixels which sat-
isfy |di − d

g
i | ≤ δ, where di is the disparity label of ith pixel, d

g
i is cor-

responding ground truth label and δ is the allowed error. See Sect. 6.4
for discussion, and Fig. 5 to compare against conventional stereo

6.4 Monocular Reconstruction

Reconstruction from a monocular sequence is substantially
harder than the corresponding stereo problem. Not only does
it suffer from the same problems of varying illumination and
homogeneous regions, but the effective base-line is substan-
tially shorter making it much harder to recover 3D infor-
mation with any degree of accuracy, particularly in the re-
gion around the epipole (see Sect. 2.3 and Fig. 7). Despite
this, plausible 3D reconstruction is still possible, particu-
larly when performing joint inference over object class and
disparity simultaneously, quantitative results can be seen in
Fig. 6. Note that the joint optimization of monocular dis-
parity and object class out performs the pre-existing meth-
ods (LT Baseline and Potts Baseline) over conventional two
camera stereo data, and is comparable to the two camera re-
sults on LT filtered. In Fig. 7 qualitative results can be seen.
As expected, these show the quality of reconstruction im-
proves with the distance from the epipole. Consequentially,
one of the regions most successfully reconstructed is marked
as void in the two camera disparity maps, as it is not in the
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Fig. 7 (Color online) Monocular results. (A) Original Image. (B) Ob-
ject class segmentation ground truth. (C) Proposed method Object class
segmentation result. (D) Dense stereo reconstruction ground truth. (E)

Proposed method dense stereo reconstruction result. (F) Stand alone
dense stereo reconstruction result (LT). The quality of reconstruction
improves with the distance from the epipole

field of view of both cameras. This suggests that the numeric
evaluation of Fig. 6 may be overly pessimistic.

7 Conclusion

Traditionally the prior in stereo has been fixed to some stan-
dard tractable model such as truncated linear on disparities.
Within this work we open up the intriguing possibility that
the prior on shape should take in account the type of scene
and object we are looking at. To do this, we provided a new
formulation of the problems, a new inference method for
solving this formulation and a new data set for the evalua-
tion of our work. Evaluation of our work shows a dramatic
improvement in stereo reconstruction compared to existing
approaches. We assume statistically significant gain can be
achieved also for object class segmentation, but it would re-
quire more challenging data set. This paper has proposed a
formulation in which distributions of height maps for each
object class in road scenes are used, one might also easily
extend this idea to the unsupervised case, with an online
learning, and this extension is investigated in Bleyer et al.
(2011). The method can be generalized to any other scenes
where mutual information between 3D location and object
label is present and can be learnt using discriminative meth-
ods. Furthermore, it allows the incorporation of other cues
commonly used in RFs such as object-class dependent pair-
wise potentials (Batra et al. 2008) or incorporation of occlu-
sions (Kolmogorov and Zabih 2001) or 2nd order smooth-
ness priors Woodford et al. (2008) in the depth domain. This
work puts us one step closer to achieving complete scene un-
derstanding, and provides strong experimental evidence that
the joint labeling of different problems can bring substantial
gains.
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