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Wigner crystallization at graphene edges
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Using many-body configuration interaction techniques, we show that Wigner crystallization occurs at the zigzag
edges of graphene at surprisingly high electronic densities up to 0.8 nm−1. In contrast with one-dimensional
electron gas, the flatband structure of the edge states makes the system interaction dominated, facilitating
electronic localization. The resulting Wigner crystal manifests itself in pair-correlation functions, and evolves
smoothly as the edge electron density is lowered. We also show that the crystallization affects the magnetization
of the edges. While the edges are fully polarized when the system is charge neutral (i.e., high density), above the
critical density, the spin-spin correlations between neighboring electrons go through a smooth transition from
antiferromagnetic to magnetic coupling as the electronic density is lowered.
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I. INTRODUCTION

Wigner crystallization, i.e., localization of electrons in-
duced by electron-electron interactions [1], remains a key
issue in strongly interacting systems. In an electron gas,
as the electronic density is reduced, the Coulomb repulsion
energy overcomes the kinetic energy and the electrons become
localized at their classical positions. The two limits, high
density Fermi liquid and low density Wigner crystal, are well
understood. However, the crossover in between is a complex
many-body problem which was previously investigated for
various electron gas systems in various dimensions both
theoretically [2–13] and experimentally [14–19]. In particular,
it is expected that Wigner crystallization has important
implications on the transport properties of two-dimensional
[14] and one-dimensional [9,12,16–19] systems.

For graphene [20–23], the investigation of Wigner crys-
tallization remains limited [24–27] partially due to the fact
that for massless Dirac electrons with a linear dispersion (as
opposed to the quadratic dispersion of free electron gas), the
interaction strength does not depend on electronic density [28].
It is, however, possible to induce a mass term, for instance,
through application of an external magnetic field, for which the
Wigner crystal regime was studied within mean-field theory
[24,25], or through size quantization [27]. Another situation
where Wigner crystallization in graphene may occur is when
zigzag edges are present, as suggested in Ref. [26]. However,
as far as we know, a detailed analysis of the many-body
problem of Wigner crystal transitions at graphene edges is
lacking. Indeed, zigzag edges give rise to a band of half-filled
degenerate states near the Fermi level without the need for
an external magnetic field. Electrons populating these edge
states constitute a particularly interesting many-body system
since their relative kinetic energy is close to zero, thus the
properties are dominated by Coulomb interactions. So far,
most of the previous literature on interaction effects due to
edge states in various graphene systems focused on magnetic
properties [28–41]. In particular, room-temperature magnetic
properties of the zigzag edge state in graphene nanoribbons
were recently investigated experimentally [42]. However, for
the design of carbon-based next-generation devices such as
nanoribbons [29–36] and quantum dots [37–41], an in-depth
understanding of Wigner crystallization at graphene edges is

necessary and a focused investigation of the liquid to crystal
crossover is lacking.

In this paper, we use a combination of the tight-binding
method and configuration interaction technique on a two-
dimensional honeycomb lattice to show that strong Wigner
crystallization does indeed occur at the zigzag edges as the
electronic density is varied. An analysis of the pair-correlation
functions shows that the critical electronic density where the
localization occur is close to 0.8 nm−1, a value much higher
than the critical density for a one-dimensional (1D) electron
gas. Indeed, for the 1D electron gas, the formation of a Wigner
crystal was observed using tunneling spectroscopy into a
quantum wire, and clear evidence of electron localization was
found at a density of ρ1D ∼ 20 μm−1 [15], whereas quantum
Monte Carlo calculations give ρ1D ∼ 15 μm−1 [12], both
significantly lower than the critical density at the graphene
edges found in this work. Finally, we investigate ground state
magnetization and spin-spin correlation functions between
neighboring electrons to show that the spin correlations are
strongly tied to the formation of a 1D Wigner crystal as a
function of electronic density.

II. MODEL AND METHOD

In order to model the interaction effects at the zigzag edges,
we start with a graphene ribbon with a periodic boundary
condition [36], consisting of Na = 1456 atoms, with a length
of L = 12.8 nm and a width of W = 2.9 nm. This gives a
total of ns = 30 edge states [see Fig. 1(a)], i.e., 15 edge states
on each edge, which are computed using the tight-binding
technique within the next-nearest-neighbor approximation of
pz orbitals. The nearest-neighbor and next-nearest-neighbor
hopping elements are taken to be tnn = −2.8 eV and tnnn =
−0.1 eV [21]. In addition, since our main goal is to investigate
the Wigner crystal properties of a single edge, a small electric-
field perturbation perpendicular to the edges was added in
order to decouple the states belonging to opposite edges. Next,
the 15 edge states belonging to the upper edge were used to
compute the two-body scattering matrix elements 〈ps|V |df 〉
in terms of the two-body localized pz orbital scattering matrix
elements 〈ij |V |kl〉. Slater type orbitals [41] were used to
calculate the scattering matrix elements. In order to take into
account the screening effect by a surrounding medium and
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FIG. 1. (a) Tight-binding energy spectrum around the Fermi level
within the nearest-neighbor approximation. (b) Two-dimensional
pair-correlation functions for N = 14, 8, 5, and 3 electrons occupying
the zigzag graphene edge. The position of the fixed electron is
indicated by a cross (red online). At N = 14, charge oscillations only
at the atomic level are observed. At lower N values, N − 1 peaks
arise and become increasingly localized, indicating the formation of
a one-dimensional Wigner crystal.

sigma electrons, a dielectric constant of κ = 6 was used,
reducing, for instance, the on-site Coulomb interaction to
U = 2.75 eV [41]. One should note that, although the edge
states are separated from bulk states by an energy gap of the
order of 0.1 eV in our model system [see Fig. 1(a)], in the
limit of large ribbons the distinction between edge and bulk
states becomes blurry and there may be a width dependence
on the Wigner crystallization. However, as the edge states are
strongly localized at the edges and exponentially decay into the
bulk, the wave-function overlap within them is much stronger
than their overlap with bulk state wave functions. Therefore,
we expect the electronic correlations between the edge and
bulk states to be weak. Hence the configuration interaction
calculations can be performed in the subspace of edge states.
Moreover, the effects of bulk states are present in the model
in the mean-field sense. Finally, ground states in subspaces
(N,Sz) with different electron numbers N occupying the edge
states and z components of the total spin Sz are found using
diagonalization of the many-body Hamiltonian given by

HMB =
∑
s,σ

Esa
†
sσ asσ

+1

2

∑
s,p,d,f,

σ,σ ′

〈sp|V |df 〉a†
sσ a

†
pσ ′adσ ′af σ . (1)

Here, Es are the kinetic energies in the nearly degenerate
shell of edge states. By comparing the ground state energies
of different (N,Sz) subspaces, it is then possible to deduce
the ground state total spin S. In this work, the dimension of
the largest matrix we have diagonalized using the Lanczos
technique is 2 927 925 × 2 927 925.

III. RESULTS

In systems with, e.g., translational or rotational symme-
try, electronic localization can be conveniently investigated
through pair-correlation functions:

Pσ1σ2 (r1,r2) = 〈nσ1 (r1)nσ2 (r2)〉

=
∑

σ3,...,σN

∫
dr3 · · · drN

× |�(r1,σ1; . . . ; rN,σN )|2, (2)

which gives the conditional probability to find an electron
with spin σ1 at the position r1 provided another electron with
spin σ2 is located at r2. Figure 1(b) shows the pair-correlation
functions for different electron numbers N populating the
edge states. The fixed electron has spin up and is located
at the position indicated by a cross. At N = 14, i.e., close to
charge neutrality, no charge inhomogeneities (except due to
localization over single atoms) is observed. However, when
the density is reduced, oscillations start to appear. At N = 8,
oscillations are weak but seven peaks (not counting the fixed
electron) are observed, which is an indication of Wigner
crystallization. At lower densities, localization is strongly
enhanced and the overlap between the electrons is close to
zero.

Although the pair-correlation plots are convenient for the
visualization of Wigner crystallization, they do not allow one to
quantify the degree of localization and to pinpoint the liquid to
crystal crossover. This can be achieved by analyzing the power
spectrum [8], i.e., the Fourier transform F (k) of Pσσ0 (r,r0) in
the x direction along the ribbon. In Fig. 2(a), we show F (k)
for six and 11 electrons. For six electrons, we clearly see a
peak at k = 6, a signature of electronic localization at their
classical positions [8]. For N = 11, however, no localization
is observed, indicating that the electronic density is too high
to allow for Wigner crystallization. In order to pinpoint the
electronic density where the localization occurs, Fig. 2(b)
shows the power spectrum peak height F (k = N ) for N up
to 14. We see that, as the electronic density is decreased,
the peak height decreases, indicating a transition toward a
liquid state. Above N = 10, no localization is observed. In
particular, the system is in a liquid state in the vicinity of charge
neutrality, i.e., N = 15. The crossover value corresponds to a
one-dimensional density of 0.8 nm−1. This value is strikingly
higher than the critical density for 1D electron gas for which
experimental observations [15] and theoretical calculations
[12] give n1D ∼ 15–20 μm−1. We note, however, that the
specific choice of the value of the dielectric constant may
affect the value of the critical density found here. The dielectric
constant dependence of the critical density requires further
investigation.
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FIG. 2. (a) Power spectrum as a function of Fourier component k

for N = 6 electrons (solid lines, blue online) and N = 11 electrons
(dashed lines). For N = 6, a peak at k = 6 is observed which is
an indication of charge localization at classical locations. (b) Power
spectrum peak height at k = N as a function of N . Above N =
10, the peak height is practically zero, which indicates a lack of
Wigner crystallization. The solid-liquid crossover occurs at a one-
dimensional density of 0.8 nm−1.

We now analyze the ground state magnetic properties
as a function of electronic density. Figure 3(a) shows the
ground state total spin S as a function of the number of
edge electrons N . It is well established that, in agreement
with Lieb’s theorem [43], a charge neutral system gives rise
to ferromagnetic edges. In our case, this means that for
N = 15, the total spin is Smax = 15/2. However, away from
charge neutrality, correlation effects are expected to strongly
affect the magnetization [36]. In Fig. 3(a), the dashed line
shows the maximum possible polarization. The shaded area
indicates an uncertainty in S due to computational limitations,
since it becomes exponentially more difficult to diagonalize
matrices for small values of Sz at large N . Thus, the solid
line in this area represents an upper limit to S. However, the
uncertainty does not affect our estimation of the critical density
of Wigner crystallization since the crystallization is already
very weak at these N values. Nevertheless, a clear reduction in
magnetization, which is consistent with but more pronounced
than in previous calculations for smaller system sizes [32],
is observed. In Figs. 3(b)–3(d), we also investigate the spin
dependence of the power spectra for N = 8, 9, and 10. For
the fully polarized state, S = N/2, the power spectrum peak
height is found to be always higher than the depolarized ground
state, indicating stronger localization. However, the difference

FIG. 3. (a) Ground state total spin S as a function of the number
of edge electrons N . The dashed line shows the maximum possible
total spin and the shaded area indicates the uncertainty in the total spin
due to computational limitations. At N = 15, the system is charge
neutral and the edges are fully polarized. Away from charge neutrality,
a reduction in magnetization occurs. (b)–(d) Spin dependence of the
power spectra for N = 8, 9, and 10.
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FIG. 4. Ground state spin-spin correlation function along the
graphene edge for N = 9, 8, 7, 6, and 5. The small circles with arrows
represent the classical position of the localized electrons and their
effective spin relative to the fixed electron at x = 0. As the density
is lowered, the magnetic correlation between the nearest neighbors
switches from antiferromagnetic coupling to ferromagnetic coupling.
The vertical scale is kept the same in all panels.
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A. D. GÜÇLÜ PHYSICAL REVIEW B 93, 045114 (2016)

becomes negligible below N = 9, which is another indication
that the system enters the Wigner crystal regime [8].

In order to investigate further the connection between
the Wigner crystallization and the ground magnetization, in
Fig. 4 we plot the ground state spin-spin correlation functions
〈mz(x0)mz(x)〉 along the edge atoms, where mz = n↑ − n↓.
The small circles with arrows represent the classical position
of the localized electrons and their effective spin relative to the
fixed electron at x = 0. For N = 9, Wigner localization has
already started but it is weak, with a ground state total spin
of S = 3/2. The spin-spin correlation function at the nearest
neighbors is negative, indicating antiferromagnetic coupling.
For N = 8, the spin-spin correlation function does not change
significantly compared to the N = 9 case. However, as the
electronic density is decreased further, the average distance
between the electrons increases faster, and the magnetic
correlations are affected accordingly. As a result, for N = 7
and S = 3/2, the magnetic correlations between the nearest
electrons drop significantly, and become ferromagnetic for
N = 6 and S = 0. This ferromagnetic coupling between the
nearest electrons is further enhanced for N = 5 and S = 5/2.
These results show that the magnetization of the edges is
closely tied to the evolution of the Wigner crystallization.

IV. CONCLUSION

To conclude, we have shown that a one-dimensional Wigner
crystallization occurs at the zigzag edges of graphene. An
analysis of pair-correlation functions through configuration
interaction calculations indicates that the crossover from the
Fermi liquid to Wigner solid occurs near a strikingly high

critical density of 0.8 nm−1, as compared to the critical density
n1D ∼ 15–20 μm−1 for the one-dimensional electron gas.
While the spin of the ground state of the charge neutral system
is fully polarized, we observe magnetic depolarization and
oscillations as the liquid-solid crossover occurs. By analyzing
the spin-spin correlations between the neighboring electrons,
we have shown that the magnetic oscillations are accompa-
nied by a transition from antiferromagnetic to ferromagnetic
coupling between the localized electrons. Localization effects
can be observed, for instance, using tunneling spectroscopy
measurements, as was done for a one-dimensional electron
gas [17]. Clearly, for the design of carbon-based spintronic
devices, Wigner crystallization must be taken into account for
a full understanding of charge and spin transports. Finally, we
note that although we have considered an ideal edge without
any structural imperfections, inhomogeneities are expected
to amplify and not wash out the liquid to crystal transition
[6]. Thus, in more realistic graphene structures, Wigner
crystallization should be even more robust, strongly affecting
both the transport and spin properties. Identification of the
combined effects of imperfections and interaction induced
localization requires further investigations.
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[41] P. Potasz, A. D. Güçlü, A. Wojs, and P. Hawrylak, Phys. Rev. B

85, 075431 (2012).
[42] G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P.

Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto, Nature
(London) 514, 608 (2014).

[43] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).

045114-5

http://dx.doi.org/10.1103/PhysRevB.90.125446
http://dx.doi.org/10.1103/PhysRevB.90.125446
http://dx.doi.org/10.1103/PhysRevB.90.125446
http://dx.doi.org/10.1103/PhysRevB.90.125446
http://dx.doi.org/10.1143/JPSJ.67.2089
http://dx.doi.org/10.1143/JPSJ.67.2089
http://dx.doi.org/10.1143/JPSJ.67.2089
http://dx.doi.org/10.1143/JPSJ.67.2089
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1103/PhysRevLett.100.047209
http://dx.doi.org/10.1103/PhysRevLett.100.047209
http://dx.doi.org/10.1103/PhysRevLett.100.047209
http://dx.doi.org/10.1103/PhysRevLett.100.047209
http://dx.doi.org/10.1103/PhysRevLett.101.036803
http://dx.doi.org/10.1103/PhysRevLett.101.036803
http://dx.doi.org/10.1103/PhysRevLett.101.036803
http://dx.doi.org/10.1103/PhysRevLett.101.036803
http://dx.doi.org/10.1103/PhysRevB.79.235433
http://dx.doi.org/10.1103/PhysRevB.79.235433
http://dx.doi.org/10.1103/PhysRevB.79.235433
http://dx.doi.org/10.1103/PhysRevB.79.235433
http://dx.doi.org/10.1103/PhysRevLett.100.177207
http://dx.doi.org/10.1103/PhysRevLett.100.177207
http://dx.doi.org/10.1103/PhysRevLett.100.177207
http://dx.doi.org/10.1103/PhysRevLett.100.177207
http://dx.doi.org/10.1103/PhysRevB.84.115406
http://dx.doi.org/10.1103/PhysRevB.84.115406
http://dx.doi.org/10.1103/PhysRevB.84.115406
http://dx.doi.org/10.1103/PhysRevB.84.115406
http://dx.doi.org/10.1103/PhysRevB.87.035435
http://dx.doi.org/10.1103/PhysRevB.87.035435
http://dx.doi.org/10.1103/PhysRevB.87.035435
http://dx.doi.org/10.1103/PhysRevB.87.035435
http://dx.doi.org/10.1103/PhysRevB.76.245415
http://dx.doi.org/10.1103/PhysRevB.76.245415
http://dx.doi.org/10.1103/PhysRevB.76.245415
http://dx.doi.org/10.1103/PhysRevB.76.245415
http://dx.doi.org/10.1103/PhysRevLett.99.177204
http://dx.doi.org/10.1103/PhysRevLett.99.177204
http://dx.doi.org/10.1103/PhysRevLett.99.177204
http://dx.doi.org/10.1103/PhysRevLett.99.177204
http://dx.doi.org/10.1021/nl072548a
http://dx.doi.org/10.1021/nl072548a
http://dx.doi.org/10.1021/nl072548a
http://dx.doi.org/10.1021/nl072548a
http://dx.doi.org/10.1103/PhysRevLett.103.246805
http://dx.doi.org/10.1103/PhysRevLett.103.246805
http://dx.doi.org/10.1103/PhysRevLett.103.246805
http://dx.doi.org/10.1103/PhysRevLett.103.246805
http://dx.doi.org/10.1103/PhysRevB.85.075431
http://dx.doi.org/10.1103/PhysRevB.85.075431
http://dx.doi.org/10.1103/PhysRevB.85.075431
http://dx.doi.org/10.1103/PhysRevB.85.075431
http://dx.doi.org/10.1038/nature13831
http://dx.doi.org/10.1038/nature13831
http://dx.doi.org/10.1038/nature13831
http://dx.doi.org/10.1038/nature13831
http://dx.doi.org/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1103/PhysRevLett.62.1201



