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ABSTRACT

First the basic extra dimensional theory (i.e. Kaluza-Klein theory) and the
main aspects of solitons are reviewed. Then the current status of extra dimen-
sional models and the application of solitons (especially kinks) in this context are
studied. The extra dimensional models for fermion localization are considered
with a particular emphasis. Finally a variation of these models which tries to in-
corporate the best aspects of various models for fermion localization is presented.
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ÖZ

İlk aşamada ekstra boyut teorilerinin kaynağı olan Kaluza-Klein teorisi ve
solitonların temel kavramları gözden geçirildi. Daha sonra ekstra boyut teori-
lerinin şu andaki durumu ve solitonların (özellikle de kinklerin) bu çerçeve içinde
uygulamaları tartışıldı. Ekstra boyutlu fermiyon lokalizasyon modelleri özel bir
önemle ele alındı. Son olarak değişik fermiyon lokalizasyon modellerinin önemli
yönlerini birleştirmeye çalışan bir model sunuldu.
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Chapter 1

INTRODUCTION

The first rigorous model which increases the number of space-time dimen-

sions from four to five was proposed by T. Kaluza [1] - [4] and O. Klein [5] in

the early 1920’s and this idea was based on a theory of unification of electromag-

netism with gravitation. In this approach electromagnetism was considered as

the force of gravity corresponding to the (fifth) extra dimension. This idea was

extended to include all the other forces such as weak and strong interactions in

early 60’s and attracted increasing attention starting from early 1970’s when it

is recognized that string theories (the only unification scheme which can unify

gravity with other forces) need more than four dimensions i.e., 10 in the case

of superstring theory, 26 in the case of bosonic string theory [6, 7]. Starting

from [8], the idea of extra dimensions received even more attention because it

was shown that it is possible to consider extra dimensions of the order 100 µm

without conflict with modern experimental data. In addition, the new studies

on string theories showed that it is possible to construct string theories at these

scales. This has lead to intense interest of phenomenologicists and theorists be-

cause this made it possible to detect extra dimensions in the next generation of

experiments. Moreover it is shown that the use of extra dimensions can throw

light on the problem of explaining fermion families and chirality.

In this study we review the current status of extra dimensional models

and give particular emphasis on the explanation of right handedness and left

handedness of fermion in the context of extra dimensional models by means of

kink solutions.

In chapter 2 we begin with brief overview of Kaluza-Klein theory. Af-

ter historical introduction to Kaluza-Klein theory we show that introducing a

fifth dimension allows one to combine the general theory of relativity with the

Maxwell’s electromagnetism. In this context, gauge symmetry is explained as

a geometric symmetry of space-time. We see that it is possible to extract also

Brans-Dicke scalar field theory from Kaluza-Klein idea. Then, we indicate how

these ideas can be used for quantization of electric charge and some estimation on
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the scale of extra dimensions. Moreover, generalization of Kaluza-Klein theory

to higher dimensions is briefly discussed.

In chapter 3, we review some of the standard facts on soliton theory. After

giving a few aspects of the theory, we discuss the soliton solutions of some systems

in nonlinear field theory in various dimensions.

Chapter 4 is devoted to the study of localization of fields in extra dimen-

sions. It is explained how some solitons in nonlinear field theory discussed in

chapter 3 motivates one to construct new extra dimensional models [9].

In chapter 5, we first briefly sketch the recent models on extra dimen-

sions starting from ADD (Arkani-Hamed, Dimopoulos and Dvali) model. The

main goal of these models is to explain some longstanding puzzles in high energy

physics. We show that in 5.1, by proposing the standard model fields living on

a brane embedded in a higher dimensional space-time while gravity allows the

extra dimensions to be as large as 1µm and the hierarchy between the Planck

scale and the weak scale is explained. It is shown that one may explain the origin

of fermion masses by using overlap of fermion wave functions in extra dimensions

[10].

In 5.2, alternative extra dimensional models called RS (Randall Sundrum

Models), based on a curved space-time metric in contrast to the previous extra

dimensional models, is discussed. In section 5.2.1 RS1 model [11] is treated and

it is shown that it gives a solution to the hierarchy problem. In the second

RS model [12], by using a noncompact extra dimension, it is shown that the

massless graviton (zero mode) is localized on the brane whereas massive modes

are nonlocalized with continuous spectrum. These massive modes are responsible

for the corrections of Newton’s law which does not contradict with experiments

at distances r À k−1 when the parameter k chosen to be k ∼Mpl.

In 5.3, we address the problem of fermion localization in RS models. First,

we review domain wall solution obtained by [13] in the framework of RS model.

Then, we consider a model [14] where the problem of fermion families and chirality

is discussed and some progress has been made. We replace the complicated form

of scalar potential by the usual φ4 potential used in the study of [13] and repeat

the similar procedure as done in [14] for this solution.

2



In this way, we get an improved model of fermion localization and chirality

(i.e. the disparity between the right handed and left handed weak interactions).
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Chapter 2

KALUZA-KLEIN THEORY

2.1 Five-dimensional Kaluza-Klein Theory
(Unification of Gravity with Electromagnetism)

2.1.1 Historical Introduction to Kaluza-Klein Theory

When we achieve a true understanding of nature, even familiar ideas such

as space and time, the number of dimensions in which we live will have to be

derived. The reason why we seem to live in three space dimensions appeared

surprisingly long time ago. The first scientists to publish on the question may

have been Paul Ehrenfest. He realized in 1917 that the equations describing

the motion of planets around the sun, and similar equations for electrons bound

to nuclei in atoms, only had stable solutions if the dimension of space is three.

However, the first rigorous idea of extra dimensions was probably stimulated by

Minkowski, showing the time as an extra dimension.

In 1864 James Clerk Maxwell find the proper equations that govern the

unified electromagnetic phenomena. Albert Einstein later realized in 1905 that

Maxwell equations obey the principle of special relativity, that the laws of physics

should be invariant to all observers who are in uniform relative motion. In special

relativity, which treats time as a fourth dimension, time t and the space coordi-

nates x, y, z are collectively denoted xµ where the index µ runs over 0, 1, 2, 3.

The 0 refers to time and 1, 2, 3 to the three space coordinates (x, y, z):

(x0, x1, x2, x3) = (ict, x, y, z)

Throughout this report, Greek indices α, β, ... run over 0, 1, 2, 3, and capital Latin

indices A,B, ... run over 0, 1, 2, 3, 5.

The successes of Maxwell’s unified electromagnetic theory and Einstein’s

special relativity could be understood geometrically if time, along with space,

were considered part of a four dimensional spacetime manifold via x0 = ict.

Maxwell’s electromagnetic field also has four components collectively denoted
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Aµ. The field depend on its position in spacetime and so is a function of the 4

spacetime coordinates xµ.

In 1916, Einstein introduced the principle of general relativity, that the laws

of physics should be same to all observers. In this theory, gravitational field can

be represented by a second rank tensor, gµν , which also has geometrical meaning -

pseudo Riemannian metric, the quantity that describes the infinitesimal distance

ds between two points in four dimensional spacetime.

ds2 = gµν(x) dx
µdxν (2.1)

Note that the Minkowski geometry of flat spacetime must be replaced by the

pseodo-Riemannian geometry of curved spacetime for which the metric tensor is

itself a function of the spacetime coordinates.

Inspired by the close ties between Minkowski’s four dimensional space-

time and Maxwell’s unification of electricity and magnetism, Nordstöm [15] in

1914 and (independently) Theodor Kaluza [1] in 1921 were the first to try uni-

fying gravity with electromagnetism in a theory of five dimensions. In other

words,physics was to take place - for as-yet unknown reasons - on a four-dimensional

hypersurface in a five-dimensional universe (Kaluza’s cylinder condition). Kaluza

was able to do by the ingenious device of postulating a fifth dimension with co-

ordinate θ. The five coordinates are denoted collectively xA where the index A

runs over 0, 1, 2, 3, 5.

(x0, x1, x2, x3, x5) = (t, x, y, z, θ)

He imagined a five dimensional pseudo Riemannian geometry with metric

tensor ĝAB(x) which describes the infinitesimal distance ds between two points

in this five dimensional spacetime.

dŝ2 = ĝAB(x) dx
AdxB (2.2)

Similar to Einstein’s gravity theory, where distances depend locally on the rie-

mannian metric identified with gravitational potential, he introduce extra di-

mension such that the generalized distance depends also on the electromagnetic

potential . Although Kaluza’s idea was attractive, it suffered from two obvious

drawbacks. Firstly, there is no obvious reason the dependence of the fields on

the extra coordinate θ. Secondly, if there is a fifth dimension why have not we

seen it? The resolution of both these problems was supplied by Oskar Klein 1 in

1Not to be confused with Felix Klein, inventor of the Klein bottle.
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1926 [5]. He show that Kaluza’s cylinder condition would arise naturally if the

fifth dimension has a circular topology so that the fifth coordinate θ is periodic,

0 ≤ θ ≤ 2π.

2.1.2 Effective 4-Dimensional Action

Five-dimensional Kaluza-Klein theory unifies electromagnetism with grav-

itation by using a theory of Einstein vacuum gravity in five dimensions. Thus the

initial theory has five-dimensional general coordinate invariance. However, it is

assumed that one of the spatial dimensions compactifies so as to have the geome-

try of a circle S1 of very small radius. Then, there is a residual four-dimensional

general coordinate invariance, and an Abelian gauge invariance associated with

transformations of the coordinate of the compact manifold, S1, as we will see

in 2.1.3. Put another way, the original five-dimensional general coordinate in-

variance is spontaneously broken in the ground state. In this way, we arrive at

an ordinary theory of gravity in four dimensions, together with a theory of an

Abelian gauge field, with connections between the parameters of the two theo-

ries because they both derive the same initial five-dimensional Einstein gravity

theory.

The ground-state metric after compactification is (We are not going to

discuss the compactification mechanism here and for a brief review on compact-

ification mechanisms, see [16])

ĝ
(0)
AB = diag{ηµν ,−g̃55}.

Here

ηµν = (1,−1,−1,−1) (2.3)

is the metric of Minkowski space, M4, and

g̃55 = R̃2 (2.4)

is the metric of the compact manifold S1, where R̃ is the radius of the compact

dimension. The identification of the gauge field arises from an expansion of the

metric about the ground state. Quite generally, the coordinates or gauge are

chosen so as to write the 5-dimensional metric tensor in the form:

ĝAB =




gαβ(x, θ)−Bα(x, θ)Bβ(x, θ)Φ(x, θ) −Bα(x, θ)Φ(x, θ)

−Bβ(x, θ)Φ(x, θ) −Φ(x, θ)



 (2.5)
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To extract the graviton and the Abelian gauge field Aα it is necessary to replace

Φ(x, θ) by its ground-state value g̃55, and to use the ansatz without θ dependence:

ĝAB =




gαβ(x)− ξ2Aα(x)Aβ(x)g̃55 ξAα(x)g̃55

ξAβ(x)g̃55 −g̃55



 (2.6)

Here we have rescaled the electromagnetic potential Aα by a constant ξ in order

to get the right multiplicative factors in the action later on.

It is well known that fundamental physical laws can be put in the form

a principle of least action. For example, Einstein’s equations are derivable from

the following the Einstein-Hilbert action functional

I =
−1

16πG

∫

d4x
√

(− det g) R (2.7)

where G is the 4-dimensional gravitational constant , g is the determinant of

the 4-dimensional metric tensor and R is the 4-dimensional Ricci scalar. So 4-

dimensional Einstein’s equations in vacuum can be found by the variation of this

action (δI = 0):

Gµν = Rµν −
1

2
gµν R = 0 (µ, ν = 0, 1, 2, 3)

where Gµν is the Einstein tensor in 4-dimensions.

Original Kaluza-Klein idea can be put in the form of the variational prin-

ciple, that is, 5-D vacuum action functional can be divided into two parts corre-

sponding to 4-D Einstein vacuum gravity and Maxwell equations.2 .

Ī =
−1

16πḠ

∫

d5x
√

(− det ḡ) R̄ (2.8)

where Ḡ is five dimensional gravitational constant , R̄ - five dimensional scalar

curvature defined as R̄ = gABRAB , RAB - five dimensional Ricci tensor.

Five dimensional Ricci tensor in terms of the 5D Christoffel symbols is

given by,

RAB = (ΓCAB),C − (ΓCAC),B + ΓCABΓ
D
CD − ΓCADΓ

D
BC (2.9)

where

ΓCAB =
1

2
gCD{gDA,B + gDB,A − gAB,D}. (2.10)

Here a comma denote the partial derivative

2Additional matter fields or supergravitational actions can also be considered.
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(ΓCAB),C =
∂ΓCAB
∂xC

gDA,B =
∂gDA
∂xB

Putting A → α, B → β in (2.9) gives us the 4D part of the quantity.

Expanding some summed terms on the right hand side by letting C → λ , 5 etc.

and rearranging gives

R̂αβ = (Γλαβ),λ + (Γ5
αβ),5 − (Γλαλ),β − (Γ5

α5),β + ΓλαβΓ
µ
λµ +

ΓλαβΓ
5
λ5 + Γ5

αβΓ
D
5D − ΓµαλΓ

λ
βµ − Γ5

αλΓ
λ
β5 − ΓDα5Γ

5
βD (2.11)

Part of this is the conventional Ricci tensor that only depends on indices 0,1,2,3,

so

R̂αβ = Rαβ − (Γ5
α5),β + ΓλαβΓ

5
λ5 + Γ5

αβΓ
D
5D − Γ5

αλΓ
λ
β5 − ΓDα5Γ

5
βD (2.12)

To evaluate this we need the Christoffel symbols.

Γ̂αβγ = Γαβγ +
g̃55
2
ξ2(AβF

α
γ + AγF

α
β)

Γα55 = 0

Γ5
55 = 0

Γαβ5 =
1

2
g̃55ξF

α
β (2.13)

Γ5
5β =

−1
2
g̃55ξ

2AλFλβ

Γ5
αβ =

ξ

2
(Aα;β + Aβ;α)−

g̃55ξ
3

2
[Aλ(AαFλβ + AβFλα)]

where Aα;β = Aα,β − ΓλαβAλ and a semicolon denotes the ordinary 4D covariant

derivative. With the help of (2.10) we have ΓDαD = Γλαλ and ΓD4D = 0. Using these

results, we can find the components of the 5D Ricci tensor:

R̂αβ = Rαβ +
g̃55
2
ξ2FαλF

λ
β +

g̃55
2
ξ2(AαF

γ
β;γ) +

g̃55
2
ξ2(AβF

γ
α;γ)

+
g̃255
4
ξ3AαAβF

µνFµν

R5α =
g̃55
2
ξF λ

α;λ +
g̃255
4
ξ3AαF

µνFµν (2.14)

R55 =
g̃255
4
ξ2F µνFµν

And inverse of the metric tensor in (2.6) can be calculated as

ĝAB =




gαβ −ξAα

−ξAβ −g̃−1
55 + ξ2AµAµ



 (2.15)
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From definition, Ricci scalar is

R̄ = gABRAB. (2.16)

Substituting the components of the Ricci tensor into (2.16) we find

R̄ = R +
g̃55
4
ξ2F µνFµν (2.17)

As for Einstein-Hilbert action in 5D, it is easy to see that determinant of 5D

metric tensor can be expressed by the 4D one by using some properties of deter-

minants.

det ḡ = −g̃55 det g (2.18)

Therefore, 5D action functional can be divided into two parts.

Ī =
−2πR̃
16πḠ

∫

d4x
√

− det g R− ξ2g̃55
16πḠ

∫

d4x
√

− det g F µνFµν (2.19)

The four dimensional gravitational constant G is identified as

G = Ḡ/2πR̃

and to obtain standard normalization for the Gauge field we must then choose

ξ2 =
16πG

g̃55
=
κ2

R̃2
(2.20)

where

κ2 = 16πG (2.21)

Then the effective four-dimensional action is

I = [
−1

16πG

∫

d4x
√

− det g R
︸ ︷︷ ︸

4D Einstein′sAction

]− [
1

4

∫

d4x
√

− det g F µνFµν
︸ ︷︷ ︸

Maxwell′sAction

] (2.22)

2.1.3 Abelian Gauge Symmetry and Extra Dimensions

The key idea how extra dimensions lead to unification of electomagnetism

with gravity lies in the fact that coordinate transformations associated with the

coordinate θ of the compact manifold can be interpreted as gauge transforma-

tions, as we now show. Consider the following transformation

θ → θ′ = θ + ξε(x) (2.23)

For a general coordinate transformations, the metric transforms as a second rank

tensor:

gAB = gA′B′

∂xA
′

∂xA
∂xB

′

∂xB
(2.24)

9



For the particular transformation (2.23), the off-diagonal elements of the metric

become

g5µ = −Bµg̃55 = ξAµg̃55

ξAµg̃55 = g′5µ
∂xµ

′

∂xµ
+ g′55

∂x5
′

∂xµ

ξAµg̃55 = ξA′
µg̃55 − g̃55ξ ∂µε(x)

Thus the transformation (2.23) of the coordinates of the compact manifold in-

duces an Abelian gauge transformation on Aµ

A′
µ = Aµ + ∂µε (2.25)

This means that the compact manifold is providing the internal symmetry space

for the Abelian gauge group, and internal symmetry has now to be interpreted

as just another space-time symmetry, but associated with the extra spatial di-

mension.

2.1.4 Conformal Rescaling and Brans-Dicke Theory

Starting from the general parametrisation of the metric (2.5), it is also

possible to extract a massless scalar field. It means that if Φ 6= constant, then

Kaluza’s five dimensional theory contains besides electromagnetic effects a Brans-

Dicke-type scalar-tensor field theory [17]. This becomes clear when one considers

the case in which the electromagnetic potentials vanish, Aµ=0 (see [18, 19]).

Without the cylinder condition, this would be no more than a choice of coordi-

nates, and would not entail any loss of algebraic generality. (It would be exactly

analogous to the common procedure in ordinary electrodynamics of choosing co-

ordinates in which either the electric or magnetic field disappears.) With the

cylinder condition, however, we are effectively working in a special set of coor-

dinates, so that the theory is no longer invariant with respect to general five-

dimensional coordinate transformations. The restriction Aµ=0 is, therefore, a

physical and not a merely mathematical one, and restricts us to the graviton-

scalar sector of the theory. This is acceptable in some contexts - in homogenous

and isotropic situations, for example, where off-diagonal metric coefficients would

pick out preferred directions; or in early-universe models which are dynamically

dominated by scalar fields. In the absence of the Aµ-fields, then

ĝAB =




gαβ 0

0 −Φ(x)



 (2.26)
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Substituting this metric into the Einstein-Hilbert action for five-dimensions, we

get the effective four-dimensional action

I =
−2π
16πḠ

∫

d4x
√

− det g (Φ)1/2R. (2.27)

The (Φ)1/2 multiplying the four-dimensional curvature scalar may be removed by

a Weyl scaling,

gµν → gµν (Φ)
−1/3 (2.28)

Φ→ (Φ)2/3.

Here, five-dimensional metric tensor is rescaled by the same factor as the four-

dimensional one. Then

I =
−1

16πG

∫

d4x
√

− det g

[

R− 1

6
(Φ)−2∂µΦ∂µΦ

]

(2.29)

or with further change of variables(in terms of dilaton field)

σ =
κ−1

√
3
ln(Φ) (2.30)

we have

I =
−1

16πG

(∫

d4x
√

− det g R +
1

2

∫

d4x
√

− det g ∂µσ∂µσ

)

(2.31)

This is a particular case of four-dimensional Brans-Dicke theory.

2.1.5 Geometrical Quantization of Electric Charge

Since fifth coordinate has a circular topology S1, all fields can be Fourier

expanded. (Any quantity f(x, θ), where x = (x0, x1, x2, x3) becomes periodic;

f(x, θ) = f(x, θ + 2π))

gαβ(x, θ) =
∞∑

n=−∞
g
(n)
αβ (x) e

inθ (2.32)

Aα(x, θ) =
∞∑

n=−∞
A(n)
α (x) einθ (2.33)

φ(x, θ) =
∞∑

n=−∞
φ(n)(x) einθ (2.34)

where the superscript (n) refers to the n th Fourier mode. The expansion of

the fields into Fourier modes suggests a possible mechanism to explain charge

quantization.
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The simplest kind of matter is a massless five-dimensional scalar field φ.

Equations of motion corresponding the massless scalar φ (Klein-Gordon),

[

¤x − R̃−2 ∂
2

∂θ2

]

φ(x, θ) = 0 (2.35)

where ¤x is four-dimensional d’Alembertian operator. Then, this gives the equa-

tions for the Fourier components:

[
¤x +m2

n

]
φ(n)(x) = 0 (2.36)

where

m2
n =

n2

R̃2
. (2.37)

So a massless state in the higher dimensional theory show up in the lower di-

mensional theory as a tower of equally spaced massive states. Here the fields

φ(n)(x) are the mass eigenstates in four dimensions, and the field φ(0)(x) is the

only massless one. The other fields φ(n)(x) have masses of order R̃−1, which

we would expect to be comparable to the Planck mass. These modes carry a

momentum in the extra dimension and if the radius of the extra dimension is

small enough, then the momenta in extra dimension of the n=1 modes will be so

large as to put them beyond the reach of the experiment. Hence only the n=0

modes, which are independent of extra coordinate, will be observable, as required

in Kaluza’s theory because the Kaluza-Klein ansatz amounts to simply dropping

the θ dependency of gαβ, Aα, and φ, giving the effective four-dimensional “ low-

energy ” theory of the graviton g
(0)
αβ , photon A

(0)
α and a scalar φ0. If we apply the

coordinate transformation

θ → θ′ = θ + ξε(x) (2.38)

to the field φ(x, θ) of (2.34), we have

φ(n)(x)→ exp[inξε(x)]φ(n)(x) (2.39)

Since the Abelian gauge field transforms as in (2.25)(Compare with the minimal

coupling rule ∂α → ∂α + ieAα of quantum electrodynamics), this means that

φ(n)(x) has charge

q = −nξ = −n κ
R̃

(2.40)

where we have used the normalization condition (2.20). Thus charge is quantized

in units of κ/R̃. The radius of the compact manifold may now be estimated from

R̃2 =
κ2

e2
=

4G

(e2/4π)
(2.41)
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Thus, identifying e with the quantum of electric charge

R̃ ≈ 10−33 cm

As we have seen, a characteristic feature of Kaluza-Klein theories is the

appearance of the infinite set of KK modes (called the KK tower of modes) and

upon compactification of the additional dimensions, all fields which propagate in

the bulk are Fourier expanded into a complete set of modes-(KK) tower of states,

with mode numbers n labeling the KK excitations. Similar to a particle in a box,

the momentum of the bulk field is quantized in the compactified dimensions,

given by p2 = n2/R̃2. From the 4d perspective of an observer, each allowed

momentum in the compactified volume appears as a KK excitation of the bulk

field with mass given in (2.37) . This builds a KK tower of states where each

KK excitation carries identical spin and gauge quantum numbers. Kaluza-Klein

states are a generic feature of models with compactified dimensions. The above

assumes that all additional dimensions are of the same size and are flat. In more

complicated compactifications, the Fourier expansion must be generalized, and

the mass formula no longer takes on the above simple form. Correspondingly, a

characteristic signature of the existence of extra dimensions would be detection

of series of KK excitations with a spectrum of the form (2.37). So far no evidence

of such excitations has been observed in high energy experiments. The bound on

the size R̃, derived from the absence of signals of KK excitations of the particles

of the Standard Model in the available experimental data, is

m ∼ 1

R
& 1 TeV.

2.2 (4+D) Dimensional Kaluza-Klein Theory
(Unification of Gravity with Non-Abelian Gauge Fields)

2.2.1 Introduction to Higher Dimensional Kaluza-Klein Theory

Various modifications of Kaluza’s five-dimensional scheme, including Klein’s

idea of compactifying the extra dimension were suggested by Einstein, Jordan,

Bergmann, and a few others over the years, but it was not extended to more than

five dimensions until theories of the strong and weak nuclear interactions were

developed. The obvious question was whether these new forces could be unified

with gravity and electromagnetism by the same method. The key to extend-

ing the Kaluza-Klein formalism to strong and weak nuclear interactions lies in

13



recognizing that electromagnetism has been effectively incorporated into general

relativity by adding U(1) local gauge invariance to the theory, in the form of local

coordinate invariance with respect to θ, as shown in 2.1.3. To extend the same

approach to more complicated symmetry groups, one goes to higher dimensions

[20], [21], [22], [23], and [24]. In the five-dimensional case, an abelian gauge group

arose from the coordinate transformation

θ → θ′ = θ + ξε(x) (2.42)

on the single coordinate θ of the compact manifold. In the (4+D)-dimensional

case we must look for symmetries of the compact manifold which generalize

(2.42). The appropriate transformations to study are the isometries of the man-

ifold.

Isometry Group of a Manifold

Let us denote the coordinates of ordinary four-dimensional space by xµ,

and the coordinates of the compact manifold K by yn. An isometry of K is a

coordinate transformation y → y′ which leaves the form of the metric g̃mn for K

invariant:

y → y′ : g̃′mn(y
′) = g̃mn(y

′) (2.43)

Isometries form a group, with generators ta and structure constants Cabc, in the

following way. The general infinitesimal isometry is

I + i εa ta : yn
′

= yn + εa ξna (y) (2.44)

where the infinitesimal parameters εa are independent of y, and Killing vectors

ξna , which are associated with the independent infinitesimal isometries, obey the

algebra:

ξmb ∂mξ
n
c − ξmc ∂mξnb = −Cabc ξ

n
a (2.45)

Correspondingly, by considering the commutator of two infinitesimal isometries,

we can show that

[ta, tb] = i Cabc tc. (2.46)

For instance, the N-dimensional sphere SN has isometry group SO(N + 1), and

the 2N(real) - dimensional complex projective plane CPN has isometry group

SU(N + 1). The isometry group for the compact manifold S1 of the five-

dimensional theory is just the SO(2) (or U(1))group of transformations of (2.42).

As we shall discuss later, it is possible to choose the compact manifold to obtain

the isometry group SU(3) × SU(2) × U(1), which is the (observed)gauge group

of electroweak and strong interactions.
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2.2.2 Effective 4-Dimensional Action

The ground state metric for the compactified (4+D)-dimensional theory

may be written as

ĝ
(0)
AB = diag{ηµν ,−g̃mn(y)} (2.47)

where ηµν is the metric of Minkowski space M4 as in 2.1.2, and g̃mn(y) is the

metric of the compact manifold. The non-Abelian gauge fields of the theory may

be displayed by the expansion about the ground state

ĝAB =




gµν − g̃mn(y) ξma (y)Aa

µ ξ
n
a (y)A

a
ν ξna (y)A

a
µ

ξma (y)Aa
ν −g̃mn(y)



 (2.48)

The action for Einstein gravity in (4+D) dimensions is

Ī =
−1

16πḠ

∫

d4+Dx
√

− det ḡ R̄ (2.49)

where R̄ is the (4+D)-dimensional curvature scalar, and Ḡ is the gravitational

constant for (4+D)-dimensions. Substituting the ansatz (2.48) for ĝAB , and inte-

grating over the compact degrees of freedom y gives an effective four-dimensional

action

I = −(
∫

dDy
√

− det g̃) (16πḠ)−1

∫

d4x
√

− det g R (2.50)

−(
∫

dDy
√

− det g̃ ξma (y)ξnb (y) g̃mn(y))

×(16πḠ)−11

4

∫

d4x
√

− det g F a
µν(F

µν)b (2.51)

with

F a
µν = ∂µA

a
µ − ∂νAa

ν − CabcA
b
µA

c
ν (2.52)

and R denoting the four-dimensional curvature scalar. The four-dimensional

gravitational constant G is thus identified by

κ−2 = (16πG)−1

∫

dDy | det g̃|1/2

and standard normalization of the gauge fields requires the Killing vectors to be

scaled so that

< ξma ξ
n
b g̃mn >= κ2δab (2.53)

where we have introduced the notation (of Weinberg 1983)

< f(y) >=

∫
dDy| det g̃|1/2f(y)
∫
dDy| det g̃|1/2 (2.54)
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Then we have the standard action for Einstein gravity plus non-Abelian gauge

fields in four-dimensions:

I = −(16πG)−1

∫

d4x | det g|1/2 − 1

4

∫

d4x | det g|1/2F a
µν(F

µν)a (2.55)

2.2.3 Non-Abelian Gauge Symmetry and Extra Dimensions

Non-Abelian gauge transformations arise by considering the effect on the

components ĝµν of the metric of the infinitesimal isometry with x-dependent

parameters:

yn → yn + ξna (y) ε
a(x) (2.56)

We then find

Aa
µ → Aa′

µ = Aa
µ + ∂µε

a(x) + Cabc ε
bAc

µ (2.57)

which is just the usual Yang-Mills transformation if we display the gauge coupling

constant g explicitly by writing

Cabc = gfabc (2.58)

and

ta = g Ta (2.59)

so that

[Ta, Tb] = ifabcTc (2.60)

Thus, non-Abelian gauge transformations are generated by x-dependent infinites-

imal isometries of the compact manifold K.

2.3 Modern Kaluza-Klein Theory

Many of the major developments in fundamental physics of the past cen-

tury arose from identifying and overcoming contradictions between existing ideas.

For example incompatibility of Maxwell equations and Galilean invariance led to

Einstein to propose the special theory of relativity. Similarly, the inconsistency

of special relativity with Newtonian gravity led him to develop the general theory

of relativity. We are now facing another crisis of the same character. Namely,

general relativity appears to be incompatible with quantum field theory. Any

straightforward attempt to quantize general relativity leads to a nonrenormaliz-

able theory. This means that the theory is inconsistent and needs to be modified

at short distances (i.e. high energies). The way that string theory does this is
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to give up one of the basic assumptions of quantum field theory, the assump-

tion that elementary particles are mathematical points, and instead to develop a

quantum field theory of one-dimensional extended objects, called strings. There

are few consistent theory of this type, but superstring theory shows great promise

as a unified quantum theory of all fundamental forces including gravity. For our

point of view, the most important point is that string theory requires extra di-

mensions, in other words, string theory lives in extra dimensions. For example,

bosonic string theory is described in 26 spacetime dimensions. One can con-

struct string theories using the idea of compactification and this is the reason

how Kaluza-Klein theories become important nowadays. This idea amounts to

take 26 dimensional spacetime as the product of a (25-d) dimensional compact

manifoldM with euclidean signature and a (d+1) dimensional Minkowski space

Rd,1 like Kaluza-Klein. Then in the limit when the size of the compact mani-

fold is sufficiently small so that the present day experiments can not resolve this

distance. The world will effectively appear to be (d+1) dimensional. Choosing

d=3 will give us a (3+1) dimensional theory. Of course we can not choose ar-

bitrary manifoldM for this purpose; It must satisfy the equations of motion of

the effective field theory that comes out of the string theory. There are many

known examples of manifolds satisfying these restrictions e.g. tori of different

dimensions, Calabi Yau manifolds, etc. The simplest class of compact manifolds

are tori, i.e. product of circles. The effect of this compactification is to period-

ically identify some of the bosonic fields in the string world-sheet theory3 - the

fields which represent coordinates tangential to the compact circles. One effect

of this is that the momentum carried by any string state along any of these cir-

cles is quantized in units of 1/R, where R is the radius of the circle. But there

is another important effect: we now have new states that correspond to strings

wrapped around a compact circle. For such states, as we go once around the

string, we also go once around the compact circle. These states are known as

winding states or string solitons and play a crucial role in the anaysis of duality

symmetries.

3As a string evolves in time it sweeps out a two dimensional surface in spacetime, which is

called the world sheet of the string.
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Chapter 3

SOLITONS IN NONLINEAR FIELD THEORY

3.1 Why Solitons ?

I was observing the motion of a boat which was rapidly drawn along

a narrow channel by a pair of horses, when the boat suddenly stopped,

a large solitary elevation, a rounded, smooth and well-defined heap of

water....I followed it on horseback, and overtook it still rolling on a

rate of eight or nine miles an hour, preserving its original figure...after

a chase of one or two times. I lost it in the windings of the channel.

J. Scott Russel, 1834

The physics of 20th century, which was initiated by Maxwell’s completion

of the theory of electromagnetism, can, with some justification, be called the era

of linear physics. With few exceptions, the methods of theoretical physics have

been dominated by linear equations(Maxwell, Schrödinger), linear mathematical

objects(vector spaces, in particular Hilbert spaces), and linear methods(Fourier

transforms, perturbation theory, linear response theory).

Beginning with the Navier-Stokes equations, the importance of nonlinearity

naturally was recognized in the Einstein’s gravitational theory and the interac-

tions of particles in solids, nuclei, and quantized fields. However, it was hardly

possible to treat the effects of nonlinearity exactly, except as a perturbation to

the basic solution of the linearized theory.

During the last decade, it has become more widely recognized in many areas

of “ field theory ” that nonlinearity can result in qualitatively new phenomena

which can not be constructed via perturbation theory starting from linearized

equations. By “ field theory ” we mean all those areas of theoretical physics for

which the description of physical phenomena leads one to consider field equations,

or partial differential equations of the form

φt or φtt = F (φ, φx, ...) (3.1)
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for one- or many-component “ fields ” φ(t, x, y, ...) (or their quantum analogs).

These include classical areas, such as hydro- and magnetohydrodynamics, some

areas of meteorology, oceanography, and plasma physics, as well as elementary

particle physics, solid state physics, and nonlinear optics. Nonlinear field equa-

tions arising in those areas admit new type of solitary wave solutions or solitons,

playing crucial rule in all above mentioned fields. The reason why we are in-

terested in solitons lies in the fact that it plays very important role in higher

dimensional field theories, for example, in magnetic monopole solutions, in string

theory, and localization of particles in higher dimensions.

3.2 Solitary Waves and Solitons

Solitary waves and solitons are defined as certain special solutions of non-

linear wave equations [25]. In order to fully appreciate special solutions, we recall

properties of the simplest relativistic wave equations, namely

¤φ = ∂µ∂µφ

=

(
1

c2
∂2

∂t2
− ∂2

∂x2

)

φ(x, t) = 0 (3.2)

where φ is a real scalar field in (1+1)-dimensions, and, c is the velocity of light.

As it is well known, solution to this equation is both linear and dispersionless.

As a result it has two features of relevance to our discussion.

(i) Any real well-behaved function of the form f(x ± ct) is a solution of

Eq.(3.2). In particular, if we choose a localized function f , we can construct a

localized wave packet

f(x− ct) =
∫

dk (a1(k) cos(kx− ωt) + a2(k) sin(kx− ωt)) (3.3)

that will travel with uniform velocity ±c and without distortion of its shape. The

fact that the wave packet f(x− ct) travels undistorted with velocity c lies in the

fact that all its plane-wave components have the same phase velocity ω/k = c.

(ii) Since the wave equation is linear, superposition principle suggests us

that if it is given two localized wave packet solutions f1(x − ct) and f2(x + ct),

their sum f3(x, t) = f1(x − ct) + f2(x + ct) is also a solution. At large negative

time f3(x, t) consists of the two packets widely separated and approaching each

other essentially undistorted and after a finite time, they will collide. After

collision they will asymptotically separate into the same two packets retaining

their original shapes and velocities. For the system (3.2), this property holds for

more than two packets as well.
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These two features clearly hold for Eq.(3.2) since that particularly simple

system is both linear and dispersionless. However, typical wave equations in

many branches of physics are much more complicated: They can contain non-

linear terms, dispersive terms, and several coupled wave fields with more than

one space-dimensionality. Now one can ask if such equations admit solutions

with the properties (i) and even (ii) despite of their complexity compared with

(3.2)? Answer is affirmative as we will show.

Note that adding the simplest kinds of terms to (3.2) tends to destroy these

nice features, even in (1+1) dimensions. Consider for example the Klein-Gordon

equation in two dimensions,

(¤+m2c2)φ(x, t) =

(
1

c2
∂2

∂t2
− ∂2

∂x2
+m2c2

)

φ(x, t) = 0 (3.4)

This equation is still linear and plane waves cos(kx ± ωt) and sin(kx ± ωt) still
form a complete set of solutions. But now ω2 = k2c2 +m2c4 and so the equation

is dispersive i.e., different wavelengths travel at different velocities ω(k)/k. Any

localized wave packet having, at t = 0, the form

∫

dk (a1(k) cos(kx) + a2(k) sin(kx)) (3.5)

will spread as time goes on. Thus, feature (i) is lost, and so is the feature (ii).

Similarly, consider adding a simple non-linear term to Eq.(3.2) as in

(
1

c2
∂2

∂t2
− ∂2

∂x2

)

φ(x, t) + φ3(x, t) = 0. (3.6)

Not all solutions of this equation are known, but one can persuade oneself through

numerical or approximate calculations that an arbitrary wave packet will spread.

It is however possible that for some equations where both dispersive and

non-linear terms are present, their effects might balance each other in such a way

that some special solutions essentially admits feature (i). This can happen in

one, two or three space dimensions, and such solutions are called solitary waves.

In a small subset of these cases when feature (ii) is also exhibited, those solutions

are called solitons.

Our definition of solitons will be in terms of the energy density rather

than the wave-fields themselves. This means that we are restricting ourselves to

those field equations that have an associated energy density ε(x, t) which is some

function of the fields φi(x, t). Its space integral is the conserved total energy

functional E[φi]. A large class of equations, including field equations in particle
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physics, satisfy this property. For physical systems having an energy bounded

from below we can without loss of generality set the minimal value reached by

E as equal to zero. Given this framework, we shall use the adjective “localized”

for those solutions to the field equation whose energy density ε(x, t) at any finite

time t is localized in space, i.e. it is finite in some bounded region of space and

falls to zero at spatial infinity sufficiently fast as to be integrable. Note that for

those systems where E[φi] = 0 if and only if φi(x, t) = 0, a localized solutions

as defined above also has the fields φi(x, t) themselves localized in space. For

instance, Eq.(3.6) has an associated conserved energy given by

E[φ] =

∫ ∞

−∞
dx

[

1

2c2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+
1

4
φ4

]

(3.7)

which is minimized by φ(x, t) = 0. Localized solutions of this system, if any,

would asymptotically go to φ(x, t) = 0 as x → ±∞, at any given time t. The

derivatives ∂φ
∂x

and ∂φ
∂t

must also vanish in this limit. By contrast, the equation

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
− φ+ φ3 = 0 (3.8)

has an associated energy

E[φ] =

∫ ∞

−∞
dx

[

1

2c2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+
1

4

(
φ2 − 1

)2

]

. (3.9)

where E[φ] is minimized by φ(x, t) = ±1 and this is one of the simplest example

of “spontaneous symmetry breaking” in the quantized version of field systems.

Now a localized solution must approach φ = ±1 as x→ ±∞ at any instant.

Given localization in the sense of energy density, a solitary wave is defined

as localized non-singular solution of non-linear field equation (or coupled equa-

tions, when several fields are involved) whose energy density, as well as being

localized, has a space-time dependence of the form (travelling wave)

ε(x, t) = ε(x− ut) (3.10)

where u is some velocity vector. In other words, the energy density should move

undistorted with constant velocity. Among systems that do have an associated

energy density this definition permits a larger class of solutions than the one

given by Scott[26] who require that the fields themselves have such a travelling

wave space-time dependence.

Note that Eq.(3.10) defines solitary waves in one or more space dimensions.

Moreover, any static (time-independent) localized solution is automatically a soli-

tary wave, with the velocity u = 0. Many of the solitary waves which we will
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discuss will be obtained as static solutions. However, for systems with relativis-

tic (or Galilean) invariance, the moving single solutions is trivially obtained by

boosting the static solution, i.e. transforming to a moving coordinate frame.

We now turn to solitons: These are solitary waves with an added require-

ment given below, which is a somewhat generalized and precisely stated version

of feature (ii). Consider some (possibly coupled) non-linear equation(s). Let

them have a solitary wave solution whose energy density is some localized func-

tion ε0(x− ut). Consider any other solution of this system which in the far past

consists of N such solitary waves, with arbitrary initial velocities and positions.

Then, the energy density ε(x, t) of this solution will have the following form

ε(x, t)→
N∑

i=1

ε0(x− ai − uit), as t→ −∞ (3.11)

Given this configuration at t = −∞, it will then evolve in time as governed by

the non-linear evolution equations. Suppose this evolution is such that

ε(x, t)→
N∑

i=1

ε0(x− ai − uit+ δi) as t→ +∞ (3.12)

where δi are some constant vectors. Then such a solitary wave is called a soliton.

In other words, solitons are those solitary waves whose energy density profiles

are asymptotically (as t → ∞) restored to their original shapes and velocities.

The vectors δi represent the possibility that the solitons may suffer a bodily

displacement compared with their pre-collision trajectories. This displacement

should be the sole residual effect of collisions if they are to be solitons. Obviously

this is a remarkable property for solutions of a non-linear field equation to have.

While all solitons are solitary waves, the converse is clearly not true. In

order to find a solitary-wave solution to a given non-linear equation, we only need

to look for one localized solution satisfying Eq.(3.10). This is often hard enough

to do, but several equations have yielded solitary waves by now. In contrast, to

ensure that a solution is a soliton we must find not merely that solution, but

infinitely many time-dependent solutions consisting of arbitrary numbers of soli-

tons, and check that Eq.(3.11) and Eq.(3.12) are satisfied. Thus, it is very hard

to tell, given a non-linear wave equation, whether it even permits soliton solu-

tions, letting alone evaluate them explicitly. Of course a large body of powerful

techniques has been developed for solving soliton-bearing equations and studying

their properties. These include the inverse scattering method, Bäcklund transfor-

mations, the use of conserved quantities, Hirota bilinear method etc. While these
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techniques offer elegant ways of solving and understanding such systems, they

are not as yet very helpful towards identifying new equations carrying solitons,

or in deciding whether a given equation has this property. Not surprisingly then,

very few soliton-bearing equations have been found.

3.3 Some Solitary Waves in 2 Dimensions : Kinks

We shall now present some examples of solitary waves, beginning with

the simplest one. As mentioned earlier, any localized static (time-independent)

solution is a solitary wave. We shall therefore concentrate in this section on

static solutions in the simplest context where they occur, namely scalar fields in

two (one space+one time) dimensions. Consider first a single scalar field φ(x, t)

whose dynamics is governed by the Lorentz-invariant Lagrangian density

L =
1

2
(φ̇)2 − 1

2
(φ′)2 − U(φ) (3.13)

where henceforth a dot or a prime represents differentiation with respect to time

or the space variable x, respectively, and the velocity of light c is set equal to

one. The potential U(φ) is any positive semi-definite function of φ, reaching a

minimum value of zero for some value or values of φ. When the variational action

principle

δ

[∫

dt

∫ ∞

−∞
dx L(x, t)

]

= 0 (3.14)

is applied to this Lagrangian, one obtains the wave equation

¤φ = φ̈− φ′′ = −∂U
∂φ

(3.15)

whose non-linear terms depend on the choice of U(φ). The equation conserves

the total energy functional E given by

E[φ] =

∫ ∞

−∞
dx

[
1

2
(φ̇)2 +

1

2
(φ′)2 + U(φ)

]

(3.16)

Let the absolute minima of U(φ) occur at M points M ≥ 1, which are also its

zeros. That is, let

U(φ) = 0 for φ = g(i) ; i = 1, ...,M (3.17)

Then the energy functional is also minimized when the field φ(x, t) is constant

in space-time and takes any one of these values. That is,

E[φ] = 0
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if and only if

φ(x, t) = g(i) ; i = 1, ...,M (3.18)

Now, we are interested in static solutions, for which Eq.(3.15) reduces to

φ′′(x) =
∂2φ

∂x2
=
∂U

∂φ
(3.19)

Further, a solitary wave must have finite energy and the localized energy density.

In view of Eq.(3.17), its field must approach one of the values g(i), as x→ ±∞.

If the U(φ) has a unique minimum at φ = g, then our static solution must reach

φ(x)→ g as x→ ±∞. If there are several degenerate minima, then φ must tend

to any one of the g(i) as x → −∞, and either the same or any other of the g(i)

as x→∞.

Subject to these boundary conditions, we solve Eq.(3.19) for φ(x). Since

this is an ordinary second-order differential equation, it can easily be solved by

quadrature for any U(φ). Before doing that, it will be useful to notice that

Eq.(3.19) has a mechanical analogue. Such mechanical analogues to static solu-

tions have been pointed out by several people (see for example Coleman [27]). If

we think of the variable x as time and φ as the coordinate of a unit-mass point

particle, then Eq.(3.19) is just Newton’s second law for this particle’s motion

in a potential given by [−U(φ)]. The solution φ represents the motion of this

analogue particle. The total conserved energy of this motion is given by

W =
1

2
(dφ/dx)2 − U(φ) (3.20)

The boundary conditions discussed earlier demand that as x → ±∞, U(φ) → 0

and (∂φ/∂x) → 0, hence W = 0. The energy W of the analogue particle is not

to be confused with the energy E, given in Eq.(3.16) of the original field system.

For a static solution φ(x), E is given by

E =

∫ ∞

−∞

[
1

2
(
dφ

dx
)2 + U(φ)

]

dx (3.21)

and clearly represents the total action functional of the analogue particle’s mo-

tion. Our static solution therefore corresponds to some finite action, zero-energy

trajectory of the particle. Finally, upon multiplying Eq.(3.19) by φ′ and inte-

grating once, we have ∫

φ′φ′′ dx =

∫
dU

dφ
φ′ dx (3.22)

or
1

2
(φ′)2 = U(φ) (3.23)
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Figure 3.1: The potential (−U(φ)) of the analogue particle when U(φ) has a
unique minimum at φ1.

Since both φ′ and U(φ) vanish at x→ −∞, the integration constant is zero. Eq.

(3.23) is just a virial theorem for the analogue-particle.

Armed with this mechanical analogy, we consider potential first potential

U(φ) which has a unique minimum, at φ = φ1, where U(φ1) = 0. The analogue

particle sees a potential [−U(φ)] as in Figure(3.1), with a maximum at φ = φ1

and a negative value for all other φ.

Once the particle takes off from φ = φ1 in either direction, it will not

return. Its kinetic energy will never be zero again since its zero total energy

W will always be larger than its potential energy [−U(φ)]. Consequently, the

particle can never stop and turn back towards φ1. In terms of the static field

solution φ(x), this means that once we fix the boundary condition as φ = φ1 and

dφ/dx = 0 at x = −∞, the same condition at x = +∞ will not be satisfied by a

non-trivial non-singular solution. Therefore, without explicitly solving Eq.(3.19)

and independent of the details of U(φ), we see that if U(φ) has a unique absolute

minimum, no static solitary wave exists. Of course, the trivial solution φ(x) = φ1
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for all x, is permitted.

Next, let U(φ) have two or more degenerate minima, where it vanishes. For

example, let U(φ) has three minima at φ1 , φ2 and φ3. The boundary conditions

now state that the particle must leave any one of these points at x = −∞ and

end up at x = ∞ at any of them. This is now possible. The particle can take

off from the top of the hill φ1 at x = −∞, and roll up to the top of the hill

φ2 asymptotically as x = ∞. Or, it can begin at φ2 and end up at φ3. Or it

can undergo the reverse of these two motions. These are the elementary four

non-trivial possibilities for this example. Thus, the mechanical analogy helps us

conclude that (i) when U(φ) has a unique absolute minimum, there can be no

static solitary wave, and (ii) when U(φ) has n discrete degenerate minima, we

can have 2(n− 1) types of solutions, connecting any two neighboring minima, as

x varies from −∞ to ∞.

Apart from these general consideration, one can also explicitly solve Eq.(3.19)

by quadrature. We have found from Eq.(3.23),

dφ/dx = ±[2U(φ)]1/2. (3.24)

Upon integration

x− x0 = ±
∫ φ(x)

φ(x0)

dφ̄

[2U(φ̄)]1/2
(3.25)

where the integration constant x0 is any arbitrary point in space where the field

has value φ(x0). Our earlier discussion tells us that as x → ±∞, φ(x) must

approach any two neighboring minima of U(φ) and φ(x) lies between these two

minima. Consequently, U(φ) will vanish only as x → ±∞, and be positive for

finite x. The integrand in Eq.(3.25) will therefore be non-singular except at the

end points if x→∞ or x0 → −∞. The solution φ(x) can be obtained in principle

explicitly, given an x0, and a φ(x0), by integrating Eq.(3.25) and inverting it. In

practice, it may be possible to do this analytically only for some U(φ). Note that

varying x0, keeping φ(x0) fixed, merely shifts the same solution in x-space. This

is just a reflection of the translational invariance of the Eq.(3.15).

As an illustration of this method, let us consider the ’kink’ solution of the

φ4 theory (Dashen et al.[28], Goldstone and Jackiw [29], Polyakov [30]). The

Lagrangian density has the form of Eq.(3.13) with

U(φ) =
1

4
λ(φ2 −m2/λ)2 (3.26)

where λ and m2 are positive constants. The equation of motion,

φ̈− φ′′ = m2φ− λφ3 (3.27)
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Figure 3.2: A schematic plot of the static kink solution

is essentially the same as Eq.(3.8) except for constants. Here U(φ) vanishes at

two degenerate minima φ = ±m/
√
λ. Consequently localized solutions must

tend to ±m/
√
λ as x→ ±∞. In particular, static solutions can be of two types,

as per earlier arguments. They can begin from φ = −m/
√
λ at x = −∞ and end

up with φ = +m/
√
λ at x =∞, or vice versa. Specifically, the static equation

φ′′ =
dU

dφ
= λφ3 −m2φ (3.28)

can be solved using Eq.(3.25) to give

x− x0 = ±
∫ φ(x)

φ(x0)

dφ̄
√

λ/2(φ̄2 −m2/λ)
(3.29)

Upon choosing φ(x0) = 0, integrating over φ̄ and inverting, we have

φ(x) = ±(m/
√
λ) tanh[(m/

√
2)(x− x0)]. (3.30)

The solution with the plus sign plotted in Figure 3.2 is called the ‘kink’ and

the one with the minus sign the ‘antikink’. The effect of translational invariance is

explicitly seen, since a change in x0 merely shifts the solution in space. The other

symmetries of the Lagrangian, under x↔ −x and separately under φ↔ −φ are

reflected in the relations which take on a particularly simple form when x0 is

chosen equal to zero:

φkink(x) = −φantikink(x) = φantikink(−x). (3.31)

The energy density of the kink solution,

ε(x) =
1

2
(φ′)2 + U(φ) = 2U(φ) (3.32)
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Figure 3.3: The energy density of the kink. It is localized, with a width charac-
terized by 1

m
.

using Eq.(3.24)

ε(x) = (m4/2λ) sech4[m(x− x0)/
√
2] (3.33)

is plotted in Figure 3.3 and is clearly localized near x0. The total kink energy,

sometimes called the classical kink mass, Mcl is given by

Mcl =

∫ ∞

−∞
dx ε(x) =

2
√
2

3

m3

λ
(3.34)

and is finite. The kink in this model is therefore a legitimate solitary wave. So

is the antikink. It resembles a ‘lump’ of matter in the sense that it is static, self-

supporting localized packet of energy. The resemblence to an extended particle

goes further: because the system is Lorentz invariant, given the static solution

of Eq.(3.30), one can Lorentz-transform it to obtain a moving kink solution.

Remembering that φ is a scalar field, we need only to transform the coordinate

variables in Eq.(3.30). This gives

φu(x, t) =
m√
λ
tanh

[
m√
2

(
(x− x0)− ut√

1− u2

)]

(3.35)

where 1 < u < −1 is the velocity. This is a solution of the field Eq.(3.27) as can be

verified by substitution. Whereas the spatial width of the static kink, in the sense

of its energy density (3.33), is characterized by 1/m, the corresponding width

of the moving kink in Eq.(3.35) is
√
1− u2/m, as would happen from Lorentz

contraction for a lump of matter. Further, the energy of the time-dependent

solution (3.35) as per (3.16) is

E[φu] =

∫ ∞

−∞
dx

[
1

2
(φu)

2 +
1

2
(φ′u)

2 + U(φu)

]
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=

∫ ∞

−∞
dx

m4

2λ(1− u2) sech
4

(
m√
2

x− x0 − ut√
1− u2

)

=
2
√
2

3

m3

λ

1√
1− u2

=
Mcl√
1− u2

(3.36)

where Mcl is the static kink energy in (3.34). The relationship of Eq.(3.36) to

Eq.(3.34) is again the same as the Einstein mass-energy equation for a particle.

Therefore it should not be surprising that in the quantum version of this theory,

the kink solution leads to a particle-state. Another important feature of φkink(x)

is that it is not analytical in the nonlinear coupling constant λ near zero. Thus

it can not be obtained by mere perturbation expansion starting from the linear

equation. Since φkink is non-perturbative, so are many consequences which flow

from it in the quantized theory.

3.4 Topological Indices

In the last section we discussed a single scalar field in one space dimension

with more than one ground state admits time independent solutions of finite

energy (kink or antikink solutions). Besides these features of solutions , stability

of them is another interesting feature. Now we will show that these solutions are

stable under small perturbations [27]. The equation of motion for our system

was given by (3.15)

¤φ+
∂U

∂φ
= 0

Let us consider a solution of the form

φ(x, t) = f(x) + δ(x, t), (3.37)

where f(x) is our time-independent solution and δ is the small perturbation.

Inserting this expression in the equation of motion and only retaining terms of

first order in the perturbation, we find

¤δ +
∂2U(f)

∂φ2
δ = 0. (3.38)

This equation is invariant under time translations, so we can express a general

small perturbation as a superposition of modes. That is to say, the general

solution is of the form

δ(x, t) = <e
∑

n

ane
iωntψn(x), (3.39)
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where a’s are arbitrary complex coefficients, and the ψ’s and ω’s obey the equa-

tion

−d2ψn
dx2

+ U ′′(f)ψn = ω2
nψn. (3.40)

Note that this is a one-dimensional Schrödinger equation, with potential U ′′(f).

Our solution is stable under small perturbations if and only if none of the energy

eigenvalues of this Schrödinger equation are negative. We will now show that

this is always the case. Spatial translation invariance tells us that if f(x) is a

solution of the equation of motion, so is f(x + a). Thus we already know an

energy eigenfunction of our Schrödinger equation,

ψ0 = df/dx. (3.41)

We also know the associated eigenvalue; it is zero. Since f is always a monotone

function of x; therefore ψ0 has no nodes. It is a well-known theorem that for a

one dimensional Schrödinger equation with arbitrary potential the eigenfunction

with no nodes is the eigenfunction of the lowest energy[31].

This stability indicates the presence of a conserved current and charge and

as we will see that solutions of the equations of motion can be grouped according

to their topological conserved quantity which is called topological charge. Now

let us recall our discussion of a single scalar field φ(x, t) in two dimensions. Let

the potential U(φ) in Eq.(3.13) have a discrete number of degenerate absolute

minima, where it vanishes. Now we are interested in non-singular finite energy

solutions, of which solitary waves and solitons are special cases. Therefore the

field, whether static or time-dependent, must at any instant t, to a minimum of

U(φ) at every point on spatial infinity, in order that the energy E in Eq.(3.16) be

finite. In one space-dimension, spatial infinity consists of two points, x = ±∞.

Consider x =∞, for instance. Let, at some given instant t0,

lim
x→∞

φ(x, t0) ≡ φ(∞, t0) = φ1 (3.42)

where φ1 has to be one of the minima of U(φ). Then, as time develops (either

forward or backward, starting from t0), the field φ(x, t) will change continuously

with t at every x as governed by the differential equation Eq.(3.15). In particular,

φ(∞, t) will be some continuous function of t. On the other hand, since the energy

of that solution is conserved and remains finite, φ(∞, t) must always be one of

the minima of U(φ), which are a discrete set. It can not jump from φ1 to another

of the discrete minima if it is to vary continuously with t. Therefore φ(∞, t)
must remain stationary at φ1. The same arguments apply to x = −∞, where

φ(−∞, t) = φ2, must also be time-independent and a minimum of U(φ), but not

necessarily the same as φ1 in the case of degenerate minima.
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We can therefore divide the space of all finite-energy non-singular solutions

into sectors, characterized by two indices, namely, the time-independent values of

φ(x =∞) and φ(−∞). These sectors are topologically unconnected, in the sense

that fields from one sector can not be distorted continuously into another without

violating the requirement of finite energy. In particular, since time evolution is an

example of continuous distortion, a field configuration from any one sector stays

within that sector as time evolves. Of course, when U(φ) has a unique minimum,

there is only one permissible value for both φ(∞) and φ(−∞) and therefore only

one sector of solutions exists.

As illustration consider the system Eq.(3.26) in the preceding section. The

potential has two degenerate minima, at φ = (±m/
√
λ). Consequently, all finite-

energy non-singular solutions of this system, whether static or time-dependent,

fall into four topological sectors. These are characterized by the pairs of indices

(−m/
√
λ,m/

√
λ), (m/

√
λ,−m/

√
λ), (−m/

√
λ,−m/

√
λ) and (m/

√
λ,m/

√
λ)

respectively, which represent the values of (φ(x = −∞), φ(x = ∞)). Thus,

the kink, the antikink, and the trivial constant solutions φ(x) = ∓(m/
√
λ), are

members of the four sectors respectively. When a kink from the far left and an

antikink from the far right approach one another, the field configuration belongs

to the (−m/
√
λ,−m/

√
λ) sector. Even though we may not be able to calculate

easily what happens after they collide, we can be sure that the resulting field

configuration will always stay in the (−m/
√
λ,−m/

√
λ) sector.

Topological charge can be defined as

Q = (
√
λ/m)[φ(x =∞)− φ(−∞)] (3.43)

with an associated conserved current,

jµ = (
√
λ/m)εµν∂νφ (3.44)

where µ, ν = 0, 1 and εµν is the antisymmetric tensor. Clearly

∂µj
µ = 0 and Q =

∫ ∞

−∞
dx j0. (3.45)

Here divergencelessness of the current follows from independently of the equations

of motion and Q is just the difference between the two indices (
√
λ/m)φ(∞) and

(
√
λ/m)φ(−∞). The adjective topological is sometimes bestowed on solitary

waves which have Q 6= 0. Waves with Q = 0 are non-topological. Thus the kink

and the antikink solutions (3.30) are topological solutions, while trivial solutions

φ(x) = ±(m/
√
λ) are non-topological.

31



Note that these topological indices are different from the more familiar

conserved quantities like energy, momentum, charge etc. The latter, as is very

well known in classical and quantum field theory, can be traced to the existence of

continuous symmetries of the Lagrangian, such as under time translation, space

translation, internal groups and so on. By contrast, the topological indices are

boundary conditions, conserved because of finiteness of energy. Indeed, in many

cases, these indices are closely related to a certain kind of breaking of some

symmetry. That is, suppose the Lagrangian and U(φ) are invariant under some

symmetry transformation acting on φ(x). If U(φ) had a unique minimum at

some φ = φ0, then φ0 itself must remain invariant under that transformation.

But in order to get non-trivial topological sectors, we need to have two or more

degenerate minima. In that case while the full set of minima is invariant under

the transformation, each individual minimum need not be so. For instance, the

system (3.26) which permits four topological sectors, has a U(φ) invariant under

φ → −φ. But its two minima, φ = −m/
√
λ and φ = m/

√
λ are not separately

invariant. Rather, they are transformed into one another. This fact has great

importance in the quantum theory as well as the statistical mechanics of the field

system and is called spontaneous symmetry breaking. So we observe the relation

of non-trivial topological sectors to the existence of several degenerate minima of

the potential, which in turn is connected to spontaneous symmetry breaking.

3.5 Solitons of the Sine-Gordon System

Historically, sine-Gordon equation first appeared in differential geometry.

It enters geometry in the following way:

On a two-dimensional Riemannian manifold, there exist some special co-

ordinates in some neighborhood of any point such that

ds2 = du2 + dυ2 + 2du dυ cos θ(u, υ). (3.46)

In terms of such coordinates, a simple computation shows that the statement

that the manifold has constant negative curvature is equivalent to

∂2θ/∂u ∂υ = α sin θ, (3.47)

where α is a constant related to the magnitude of the curvature. This is the

sine-Gordon equation, in light-cone coordinates.

Sine-Gordon system can be also considered as the equations of motion
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governed by the following Lagrangian density,

L(x, t) = 1

2
(∂µφ)(∂

µφ) + (m4/λ){cos[(
√
λ/m)φ]}. (3.48)

This system has been used in the study of a wide range of phenomena, including

propagation of crystal dislocations, of splay waves in membranes, of magnetic flux

in Josephson lines, Bloch wall motion in magnetic cyristals, and two-dimensional

models of elementary particles. This last application has been especially inter-

esting due to the fact that its quantized form (with φ regarded as a boson field)

is equivalent to the massive Thirring model, which is a model for interacting

fermions in one space dimension.

If this Lagrangian density expand in powers of the coupling constant λ,

L(x, t) = 1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2 +

λφ4

4!
− λ2φ6

m26!
+ . . . (3.49)

As λ → 0, this is just the free Klein-Gordon system, and the O(λ) term is the

familiar quartic coupling. The field equation from Eq.(3.43) is the sine-Gordon

equation

¤φ+ (m3/
√
λ) sin[(

√
λ/m)φ] = 0 (3.50)

To eliminate some of the unwanted constants, let us make the following substi-

tution

x̄ = mx, t̄ = mt and φ̄ = (
√
λ/m)φ. (3.51)

Under this change of variables, the Lagrangian density becomes

L̄(x̄, t̄) = (m4/λ)

[
1

2
(∂̄µφ̄)(∂̄µφ̄) + (cos(φ̄)− 1)

]

. (3.52)

Then the equation of motion simply reads

∂2φ̄

∂t̄2
− ∂2φ̄

∂x̄2
+ sin[φ̄(x̄, t̄)] = 0 (3.53)

and the conserved energy is

E =
m3

λ

∫

dx̄

[

1

2

(
∂φ̄

∂t̄

)2

+
1

2

(
∂φ̄

∂t̄

)2

+
(
1− cos φ̄

)

]

. (3.54)

The Lagrangian and the field equation admits the following discrete symmetries

φ̄(x̄, t̄)→ −φ̄(x̄, t̄) (3.55)

and

φ̄(x̄, t̄)→ φ̄(x̄, t̄) + 2Nπ ; N = . . .− 2,−1, 0, 1, 2, . . . (3.56)
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Consistent with these symmetries, the energy E vanishes at the absolute minima

of

U(φ̄) = 1− cos φ̄ (3.57)

which are,

φ̄(x̄, t̄) = 2Nπ. (3.58)

As we know from earlier discussion, all finite energy configurations, whether static

or time-dependent, can be divided into an infinite number of topological sectors,

each characterized by a conserved pair of integer indices (N1, N2) corresponding

to the asymptotic values 2N1π and 2N2π that the field must approach as x̄ tends

to −∞ and∞ respectively. If on physical grounds we decide that only φ̄ modulo

2π is meaningful, as will happen in applications where φ̄ is an angle variable,

then only the topological charge

Q = N1 −N2 =
1

2π

∫ ∞

−∞
dx̄

∂φ̄

∂x̄
(3.59)

matters. By φ̄ modulo 2π, we mean that at any one space-time point φ̄(x̄, t̄) can

be picked modulo 2π. At other points, it is fixed by continuity requirements.

Let us begin with static localized solutions. Our general considerations

tells us that for a single scalar in one space-dimension, static solutions must

connect only neighbouring minima of U(φ̄). That is, they must carry Q = ±1.
Explicit solutions are easily obtained using Eq.(3.25):

x̄− x̄o = ±
∫ φ̄(x̄)

φ̄(x̄0)

dφ
√

2U(φ)
= ±

∫ φ̄(x̄)

φ̄(x̄0)

dφ

2 sin(φ/2)
. (3.60)

This is easily integrated to give

φ̄(x) = 4 arctan[exp(x̄− x̄0)] = φsol(x̄− x̄0) (3.61)

or

φ̄(x) = −4 arctan[exp(x̄− x̄0)] = φ̄antisol(x̄− x̄0) = −φ̄sol (3.62)

The solution with the plus sign (3.61) goes from φ̄ = 0 to φ̄ = 2π(fig 5a), or

equivalently from 2π to 4π, 4π to 6π etc. It corresponds to Q = 1, and is often

called the soliton of the system. The other solution (3.62) has Q = −1 and is

called the antisoliton. Each has energy Ms = 8m3/λ as calculated by inserting

Eq.(3.61) and Eq.(3.62) into Eq.(3.54). Moving soliton solutions can, as before,

be obtained on Lorentz-transforming of Eq.(3.61), i.e. on replacing x̄ − x̄0 by

[(x̄ − x̄0 − ut̄)/
√
1− u2]. The solution Eq.(3.61) is roughly similar to the kink

although the function, in detail, is different.
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3.6 Vortex Lines

In addition to these two dimensional (1+1) models, we have more com-

plicated solutions in higher dimensions for example vortex lines and monopole

solutions as we will see.

Now consider a complex scalar field in 2-dimensional space. The ‘boundary’

of this space is the circle S1 at infinity. The Lagrangian and Hamiltonian are

L=1

2

(
∂φ

∂t

)2

− 1

2
|∇φ|2 − V (φ), (3.63)

H=1

2

(
∂φ

∂t

)2

+
1

2
|∇φ|2 + V (φ). (3.64)

Now let us consider a static configurations with, for example,

V (φ) = (a2 − φ∗φ)2 (3.65)

so that V = 0 on the boundary. Then the field on the boundary takes the value

φ = aeinθ (r →∞) (3.66)

where r and θ are polar coordinates in the plane, a is a constant, and, to make

φ single-valued, n is an integer. From Eq.(3.66), we have

∇φ =
1

r
(inaeinθ)θ̂. (3.67)

Then as r →∞
H=1

2
|∇φ|2 = n2a2

2r2
(3.68)

and the energy (mass) of the static configuration is

E ≈
∫ ∞
H r dr dθ = πn2a2

∫ ∞ 1

r
dr. (3.69)

This is logarithmically divergent, so the kink, as it stands, cannot be generalized

to two dimensions - nor to more than two, for it turns out that in all these cases

the energy is divergent. To avoid these difficulties we add a gauge field and

replace standard derivative with the covariant one.

Dµφ = ∂µφ+ ieAµφ. (3.70)

At the boundaries for Eq.(3.66) the gauge field of the form

A=− 1

e
∇(nθ) (r →∞), (3.71)
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i.e.

Ar → 0, Aθ → −
n

er
(r →∞) (3.72)

we find that at r =∞

Dθφ =
1

r

(
∂φ

∂θ

)

+ ieAθφ = 0, Drφ = 0 (3.73)

so Dµφ → 0 on the boundary at infinity. The Lagrangian is now modified by

gauge field

L=− 1

4
F 2
µν + |Dµφ|2 − V (φ). (3.74)

Since Eq.(3.72) is a pure gauge,

Aµ → ∂µχ (r →∞), (3.75)

then Fµν → 0. For a static configuration H= − L, and with V (φ) given by

Eq.(3.65) we have H→0 as r →∞, making possible a field configuration of finite

energy. We shall now see that the effect of adding the gauge field is to give

the soliton magnetic flux. Consider the integral
∮
A · dl round the circle S1 at

infinity. By Stokes’ theorem, this is
∫
B · dS = Φ, the flux enclosed, hence

Φ =

∮

A · dl =
∮

Aθ r dθ = −
2πn

e
, (3.76)

and the flux is quantized. So we have, after all, constructed a 2-dimensional

field configuration of a charged scalar field and a gauge field (the electromagnetic

field!). It carries magnetic flux, and since Dµφ→ 0 and Fµν → 0 on the boundary

at infinity, it appears to have finite energy. It is clear that by adding a third

dimension (the z-axis) on which the fields have no dependence, this configuration

becomes a vortex line. Apart from the presence of the scalar field, it is the

same as the solenoid under the Bohm-Aharanov effect; and just as that effect

is attributable to the topology of the gauge group U(1), so here also the same

topology ensures stability of the vortex.

The Lagrangian (3.74) with V (φ) given by Eq.(3.65) is that of the Higgs

model, that is, scalar electrodynamics with spontaneous symmetry breaking. Ac-

tually this Lagrangian is the relativistic version of Landau-Ginzburg free energy,

which describes superconductivity. It is known that on the occasions when mag-

netic flux does penetrate superconductors (that is, in type II superconductors), it

creates quantized flux lines, called Abrikosov vortices. Thus the above solutions

for the field φ are describing the BCS condensate state in superconductors. Now,

let us discuss how the idea of vortex lines work for in (3+1) dimensions. For

example the Higgs Lagrangian

L=− 1

4
FµνF

µν + |(∂µ + ieAµ)φ|2 −m2φ∗φ− λ(φ∗φ)2. (3.77)
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Spontaneous symmetry breaking has to appear when m2 < 0, and the vacuum is

then given by

|φ|vac = a =

(−m2

2λ

)1/2

. (3.78)

The equations of motion obtained from Eq.(3.77) are

Dµ(Dµφ) = −m2φ− 2λφ|φ|2, (3.79)

ie(φ ∂µφ
∗ − φ∗∂µφ) + 2e2Aµ|φ|2 = ∂νFµν . (3.80)

These equations allow the solutions (3.66) and (3.72) at infinity. Since by con-

struction Dµφ = 0 as r → ∞, the left-hand side of Eq.(3.79) vanishes; and so

does the right-hand side when φ takes on its vacuum value of Eq.(3.78). Since

Aµ is a pure gauge (see Eq.(3.75))Fµν = 0 as r → ∞, so the right-hand side of

Eq.(3.80) vanishes. In view of Eq.(3.66) and Eq.(3.72) the left-hand side vanishes

identically when µ = r, and when µ = θ. Hence our particular choices for Aµ

and φ are allowed by the equations of motion.

As r becomes finite, and particularly as r → 0, of course, the values of Aµ

and φ change. Let us now treat the problem as one in three dimensions, with

cylindrical symmetry about the z-axis. Then, since there is magnetic flux, the

magnetic field component Bz must be non-zero, which means that A cannot be

a pure gauge everywhere. Also, continuity requires that φ → 0 as r → 0; since

this is not the vacuum value, the 2-dimensional soliton will have an energy, and

the vortex will have a corresponding mass per unit length. The forms of A and φ

can be found from the equations of motion. Taking B with a z-component only,

and A with a θ component only, we have

B = Bz =
1

r

d

dr
[r A(r)] , A(r) = Aθ = A. (3.81)

In addition, φ is of the form

φ = χ(r)einθ (3.82)

with

χ(r)−−−→
r → 0

0 χ(r)−−−−→r →∞a. (3.83)

In the static case, the equation of motion (3.79) then becomes

(∂i + ieAi)
2φ− (m2 + 2λ|φ|2)φ = 0 (3.84)

which gives

1

r

d

dr

(

r
dχ

dr

)

−
[(n

r
− eA

)2

+m2 + 2λχ2

]

χ = 0 (3.85)
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On the other hand, the θ component of Eq.(3.80) gives

− ie
r
(2in)χ2 + 2e2Aχ2 = −∂iFθi

and hence
d

dr

(
1

r

d

dr
(rA)

)

− 2e
(n

r
+ eA

)

χ2 = 0. (3.86)

One should now solve the coupled non-linear equations of motion (3.85) and

(3.86). No exact analytical solution, however, has yet been found. In the ap-

proximation where χ ' a is a constant (i.e. for r →∞), Nielsen and Olesen [32]

found

A = − n

er
− c

e
K1(|e|ar)−−−−→r →∞−

n

er
− c

e

(
π

2|e|ar

)1/2

e−|e|ar + . . .

with magnetic field

Bz = cχK0(|e|ar)→
c

e

(
πa

2|e|r

)1/2

e−|e|ar + . . . (3.87)

where c is a constant of integration and K1 and K0 are modified Bessel functions.

For nonhomogenous deviations from the vacuum state

χ(r) = a+ ρ(r);

then one has

ρ(r) ' e−
√
−m2r (3.88)

(−m2 > 0). Why these solutions are stable? As with the kink case, the reason is

topological. The Lagrangian is invariant under a symmetry group -in this case

U(1), the electromagnetic gauge group. The group space of U(1) is a circle S1,

since an element of U(1) may be written exp(iθ) = exp(i(θ + 2π)), so the space

of all values of θ is a line with θ = 0 identified with θ = 2π, and the line becomes

a circle S1. The field φ in Eq.(3.66) is a representation basis of U(1), but it is

also the boundary value of the field in a 2-dimensional space. This boundary is

clearly S1(the circle r → ∞, θ = (0 → 2π)). Hence φ defines a mapping of the

boundary S1 in physical space onto the group space S1:

φ : S1 → S1, (3.89)

the mapping being specified by the integer n. Now a solution characterized by

fixed value of n is stable since it cannot be continuously deformed into a solution

with different value of n(a rubber band which fits twice round a circle cannot be
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continuously deformed into one which goes once round the circle). This is to say

that the first homotopy group of S1, the group space of U(1), is not trivial:

π1(S
1) = Z. (3.90)

Z is the additive group of integers (see [33] and [34]). The status of a topological

argument like this is that it provides a very general condition which must be ful-

filled in order that solitons exist in a particular model. If, as in the model above,

the topological argument indicates that soliton solutions are possible in princi-

ple then one goes to the equations of motion to find them. Topology therefore

provides possibilities of soliton existence and stability arguments.

Another type of nontrivial topological solitons are magnetic monopoles in

gauge theory. Historically, magnetic monopoles was introduced to make Maxwell

equations symmetric between electricity and magnetism (electromagnetic dual-

ity). Now let us review the properties of magnetic monopole in electrodynamics.

3.7 The Dirac Monopole

The Dirac monopole is based upon a straightforward generalization of the

electric monopole [35]. By analogy, the electric field E of a point electric charge

can be generalized to the magnetic field B of a point magnetic monopole:

E = e
r

r3
−→ B = g

r

r3
(3.91)

(we are using Gaussian units). Then Maxwell’s equations are generalized to

include a nontrivial divergence of the magnetic field:

∇ · E = 4πe δ3(r) −→ ∇ ·B = 4πg δ3(r) (3.92)

Since B is radial, the total flux through a sphere surrounding the origin is

Φ = 4πr2B = 4πg. (3.93)

Consider a particle with electric charge e in the field of this monopole. The wave

function for a free particle is

ψ = |ψ| exp
[
i

~
(p · r− Et)

]

. (3.94)

In the presence of an electromagnetic field, p −→ p− (e/c)A, so

ψ −→ ψ exp

(

− ie
~c

A · r
)
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or the phase α changes by

α −→ α− e

~c
A · r

Consider a closed path at fixed r, θ, with φ ranging from 0 to 2π. The total

change in phase is

∆α =
e

~c

∮

A · dl

=
e

~c

∫

∇× A · dS (Stokes′Theorem)

=
e

~c

∫

B · dS

=
e

~c
(Flux through cap) =

e

~c
Φ(r, θ) (3.95)

Φ(r, θ) is the flux through the cap defined by a particular r and θ. As θ is varied

the flux through the cap varies. As θ → 0 the loop shrinks to a point and the

flux passing through the cap approaches zero:

Φ(r, 0) = 0.

As the loop is lowered over the sphere the cap encloses more and more flux until,

eventually, at θ → π we should have, from Eq.(3.93),

Φ(r, π) = 4πg. (3.96)

However, as θ → π the loop has again shrunk to a point so the requirement

that Φ(r, π) is finite entails, from Eq.(3.95), that A is singular at θ = π. This

argument holds for all spheres of all possible radii, so it follows that A is singular

along the entire negative z axis. This is known as the Dirac string. It is clear

that by a suitable choice of coordinates the string may be chosen to be along any

direction, and, in fact, need not be straight, but must be continuous.

The singularity in A gives rise to the so-called Dirac veto - that the wave

function vanish along the negative z-axis. Its phase is therefore indeterminate

there and referring Eq.(3.95) there is no necessity that as θ → π, ∆α → 0.

However, we must have ∆α = 2πn in order for ψ to be single-valued. From

Eq.(3.95) and Eq.(3.96) we then have

2πn =
e

~c
4πg,

eg =
1

2
n~c. (3.97)
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This is the Dirac quantization condition. It implies that if there exist a magnetic

charge anywhere in the universe all electric charges will be quantized:

e = n
~c

2g
. (3.98)

This is a possible explanation for the observed quantization of electric charge

(also electric charge quantization can be realized in Kaluza-Klein theory as we

discussed in 2.1.5.) In units ~ = c = 1, Eq.(3.97) becomes

eg =
1

2
n. (3.99)

We would like to make a final remark about Dirac magnetic monopoles. One can

find fault with the previous presentation because of the existence of the singular

Dirac string. Although the Dirac string can be moved in any direction and also

has no physical consequences, one suspects that there is another formulation of

the monopole in which the Dirac string is absent. This new representation of

the magnetic monopole uses the theory of fibre bundles. It has the advantage

that the representation is completely nonsingular and also is formulated in a

well-established mathematical formalism.

Let A be the vector potential for the previous monopole, in which the

Dirac string goes through the south pole. However, there is, of course, another

vector potential Ã in which the Dirac string runs through the north pole. Our

strategy is to split the sphere surrounding the magnetic monopole into two pieces

along the equator. For the northern hemisphere, we take the field configuration

A and simply throw away the Dirac string running through the south pole. In

the southern hemisphere we take the field configuration Ã (and throw away the

Dirac string that runs through the north pole).

Thus, A defines the monopole field in the northern hemisphere, while Ã

describes the field in the southern hemisphere. Neither A nor Ã are singu-

lar.However, there is a price we have to pay for this sophisticated construction;

that is, we have to piece together these two distinct patches in order to cover

the sphere. We will ‘glue’ the two vector potentials along the equator. The final

gluing process between these two different field configurations is accomplished by

making a gauge transformation between them along the equator; that is;

A = Ã+∇Ω (3.100)

Since a gauge transformation cannot affect the physics, we now have a description

that covers the entire sphere. To see how this gluing is actually accomplished,
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let us write down the explicit representation of the vector fields. For A, we have:

Ax = −g y

r(r + z)

Ay = g
x

r(r + z)

Az = 0 (3.101)

Actually, a more convenient description of the monopole field is given in terms

of spherical coordinates. Let θ be the polar angle, which is 0 at the north pole

and π along the south pole. Let φ be the azimuthal angle, which ranges from 0

to 2π. Then the field configuration is given by:

Ar = 0

Aθ = 0 (3.102)

Aφ = ±g1∓ cos θ

r sin θ
(3.103)

Notice that we have two solutions, given by the sign of ±. The − solution

corresponds to A, while the + corresponds to Ã. We can now ‘glue’ the two

configurations together along the equator by a gauge transformation:

Ãφ = Aφ −
2g

r sin θ
= Aφ − (i/e)S∇φS

−1 (3.104)

where

S = e2igeφ (3.105)

There is also another way to get rid of non physical singularities by introducing

a scalar potential for magnetic field and a vector potential for electric field [95].

3.8 ‘t Hooft-Polyakov Monopole

The previous discussion of magnetic monopoles is in fact not compelling,

because ordinary electrodynamics does not require that monopoles should exist.

Electrodynamics without monopoles is perfectly consistent theory. However, non-

abelian gauge theory coupled to scalar fields possess monopole solutions given by

independently ‘t Hooft [36] and Polyakov [30] and this fact is related to sponta-

neous symmetry breaking. They are not artificially superimposed on the theory

as was the case with the Dirac formulation of monopoles. Instead, in this case

the magnetic monopoles arises naturally from the equations of motion. Assume

a theory with gauge group O(3) and the Lagrangian:

L = −1

4
F a
µνF

aµν +
1

2
Dµφ

aDµφa − 1

2
m2φaφa − λ

4!
(φaφa)2. (3.106)
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One can show that there exists a solution with the asymptotic behavior (r →∞):

Aa
i −→ −εiab

rb

er2

Aa
0 −→ 0

φa −→ (−6m2/λ)
ra

r
(3.107)

such that φa is covariantly constant at infinity (i.e.,Dµφ
a = 0). This is the

‘t Hooft-Polyakov monopole. To compare this O(3) monopole, with the usual

Dirac monopole, we define a new Maxwell tensor Fµν that will reduce to the

usual one when φa becomes fixed in isospin space:

Fµν ≡ ∂µAν − ∂νAµ −
1

e|φ|3 εabc φ
a(∂µφ

b)(∂νφ
c)

Aµ ≡
1

|φ|φ
aAa

µ (3.108)

With this definition, we can now calculate the magnetic and electric charge of

the monopole. We find that Aµ = 0 (r 6= 0) and that;

F0i = 0, Fij = −
1

er3
εijk r

k, Bk =
rk

er3
(3.109)

With this value of the magnetic field, then, we can show that the total flux

through a sphere surrounding the monopole is given by 4π/e. But the total flux

of a monopole is 4πg, so the monopole magnetic charge then obeys the constraint:

eg = 1 (3.110)

which is twice the Dirac case. To reveal the topological nature of these monopole

solutions, we remark that the sole contribution to Fµν comes from the Higss

sector, since Aµ = 0. The magnetic current is given by Kµ = ∂νF̃
µν and can be

written entirely in terms of Higss field φ̂a = φa/|φ|. A direct calculation shows

that the conserved magnetic current is,

Kµ = − 1

2e
εµνρσ εabc ∂νφ̂

a ∂ρφ̂
b ∂σφ̂

c (3.111)

Since ∂µK
µ = 0, the corresponding magnetic charge can be written as

M =
1

4π

∫

K0 d3x

= − 1

8eπ

∫

εijk εabc ∂iφ̂
a ∂jφ̂

b ∂kφ̂
c d3x (3.112)

= − 1

8eπ

∮

S2

εijk εabc φ̂
a ∂jφ̂

b ∂kφ̂
c dSi (3.113)
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where we have integrated by parts, so that this volume integral becomes a two-

dimensional surface integral taken over S2 at infinity, which is the boundary of

the static field φ̂. Comparing this with the definition of the winding number, we

find the magnetic charge M is proportional to the winding number that maps

the sphere S2 onto S2. But we know topologically that

π2(S
2) = Z (3.114)

so we are left withM = n/e, where n is the winding number. Finally, the previous

results may be generalized to more complicated phenomenologically acceptable

groups. The key element of this monopole solution was the existence of a function

φ̂ that smoothly mapped S2 onto S2. If we have a group G that is broken down

to the subgroup H, then monopole solutions will exist if there are nontrivial

mappings of S2 onto G/H; that is:

π2(G/H) = Z (3.115)

where G/H is called the coset space. Any gauge theory with this group property

may have monopole solutions. For example, this can be satisfied if H has U(1)

factors. For example, the GUT (Grand Unified Theory) based on SU(5) can be

shown to have monopole solutions because it has a nontrivial homotopy group.

In addition, these monopoles have finite energy and mass given, roughly 137MW ,

where MW is a vector meson mass, so the monopole can be extremely heavy.

3.9 The Kaluza-Klein Monopole

K-K theory unifying gravity with electromagnetism suggests that monopoles

could appear as a pure gravitational configuration on 5-dimensions and it was

found by Sorkin [37], Gross and Perry [38]. The main point of their construction

is that 4 dimensional gravitational instantons 1 solve the static equations of 4+1

dimensional gravity. The solution is a generalization of the self-dual Euclidean

Taub-NUT solution [39], and is described by the following metric

ds2 = −dt2+V (dx5+4m(1−cos θ)dφ)2+ 1

V
(dr2+r2 dθ2+r2 sin2 θ dφ2), (3.116)

where 1
V

= 1 + 4m
r

and (r, θ, φ) are polar coordinates. From this solution the

Taub-NUT instanton can be found by setting dt = 0. There is singularity point

at r = 0, which is a so called NUT singularity and it is absent if x5 is periodic

1instantons are classical localized finite-action solutions to the Euclidean equations of motion

which obey special properties.
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with period 16πm [40]. Since we are interested in constructing solutions of the

five-dimensional field equations that approach the vacuum solution: gAB = ηAB

(or V = 1, Aµ = 0, gµν = ηµν) at spatial infinity, we must identify 16πm with

2πR. Accordingly,

m =
1

8
R =

√
πG

2e
. (3.117)

The gauge field Aµ is clearly that of a monopole from 5D Kaluza-Klein metric

ds2 = V (dx5 + Aµ)
2 + gµνdx

µdxν , which is exactly Eq.(2.6),

Aφ = 4m(1− cos θ), (3.118)

and

B = ∇×A =
4mr

r3
. (3.119)

and it is easily seen it has a Dirac string singularity running from r = 0 to ∞.

This singularity is not a physical one if and only if the period of x5 is equal to that

of 16πm. This is the geometrical analogue of Dirac’s argument. The metric is

regular on the half axis θ = 0, but has a singularity at θ = π since the (1− cos θ)

term in the metric means that a small loop around this axis does not shrink to

a zero length at θ = π. By a change of coordinates x′5 = x5 + 8mφ the metric

becomes regular at θ = π but not at θ = 0. In order to get rid of singularities one

can then use (x5, t, r, θ, φ) to cover the northern hemisphere, and (x′5, t, r, θ, φ)

to cover the southern hemisphere. Since x5 and φ are periodic with periods 2πR

and 2π respectively, 2πR must be identified with 16πm.

The magnetic charge of our monopole is thus fixed by the radius of the

Kaluza-Klein circle. Scaling the magnetic field so as to have the proper normal-

ization, B → (16πG)−1/2B, we find that the magnetic charge g is

g =
4m√
16πG

=
R

2
√
16πG

=
1

2e
. (3.120)

Thus, our monopole has one unit of Dirac charge. The above geometrical in-

terpretation of the Dirac monopole indicates on existence of intimate relation

between quantum theory and Kaluza-Klein 5-dimensional gravity [41].
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Chapter 4

LOCALIZATION OF FIELDS ON DOMAIN WALLS
AND BRANES

The possibility that our space has more than three spatial dimensions has

been attracting continuing interest for many years, starting from Kaluza-Klein

idea. Strong motivation for considering space as multidimensional one comes from

theories which incorporate gravity in a reliable manner - the string theory and

the so-called M-theory. In parallel to developments in the fundamental theory,

studies along more phenomenological lines have recently give rise to new insights

on whether and how extra dimensions may manifest themselves, and whether

and how they may help to solve long-standing puzzles in particle physics, for

example, hierarchy problem, cosmological constant problem, etc.

An important issue in multi-dimensional theories is the mechanism by

which extra dimensions are hidden, so that the space-time is effectively four-

dimensional insofar as known physics is concerned. Until recently, the main

emphasis was put on theories of Kaluza-Klein type, where extra dimensions are

compact and essentially homogenous. In that picture, the compactness of extra

dimensions provides the space-time to be effectively four-dimensional at distances

exceeding the compactification scale (size of extra dimensions). Hence the size

of the extra dimensions must be microscopic ; a ‘common wisdom’ was that this

size was roughly of the order of the Planck scale as we discussed in 2.1.5. With

the Planck length `P` ∼ 10−33 cm and the corresponding energy scaleMP` ∼ 1019

GeV, probing extra dimensions directly appeared to be hopeless. However, one

of the problem with the Klein’s idea on small extra space is that it can not ex-

plain why the extra space has to be markedly different in topology and in size

from other space coordinates. One of alternative approaches attempting to ad-

dress this problem is that the particles are trapped inside of the four-dimensional

hypersurface by a potential well [9],[42] or by topological reasons [43].

So, the emphasis has recently shifted towards “brane world” picture which

assumes that ordinary matter is trapped to a three-dimensional submanifold -
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brane- embedded in multi-dimensional space. This idea provides a way basically

different from the standad compactification. In the brane world scenario, extra

dimensions may be large, and even infinite; as we will see that they may then have

experimentally observable effects. Certainly, the potential detectability of large

and infinite extra dimensions is one of the main reason why they are interesting.

Another reason is that lower dimensional manifolds, p-branes, are inherent in

string/M-theory. Some kinds of p-branes are capable of carrying matter fields;

for example, D-branes have gauge fields residing on them (for a review, see [44].

Hence, the general idea of brane world appears naturally in M-theory context,

and, indeed, realistic brane-world models based on M-theory have been proposed

[45]. Even though the phenomenological models to be discussed in this thesis

may have nothing to do with M-theory p-branes, one hopes that some of their

properties will have counterparts in the fundamental theory. We note in this

regard that the term “brane” has quite different meaning in different context;

we shall use this term for any three-dimensional submanifold to which ordinary

matter is trapped, irrespectively of the trapping mechanism.

4.1 Localization of Scalar Fields via Domain Wall

Localization of scalar fields on domain wall or branes was considered as sim-

ple field-theoretical models by V.Rubakov and M.Shaposhnikov [9]. One possible

mechanism of breaking the translational invariance in (3 +N) + 1 - dimensional

space-time is associated with the compactification of extra dimensions; in this

way one arrives at Kaluza-Klein type theories. Within this approach the space-

time manifold is assumed to be M (3,1)×R1, where M (3,1) is the usual Minkowski

space and R1 is some compact manifold. The main purpose here is to discuss

another mechanism of the translation invariance breaking for the space M (3+N,1)

with (3 + N) spatial dimensions, and ordinary particles confined inside a po-

tential well, which is sufficiently narrow along N directions and flat along three

others. The origin of this well can be purely dynamical; the simplest possibility

is that the well is formed due to a nonlinearity of classical equations of motion.

To illustrate the idea, consider the toy quantum field model with the Lagrangian

describing one scalar field ϕ in the (4+1)-dimensional space-time M (4,1) with the

metric gAB = diag(1,−1,−1,−1,−1).

L =
1

2
∂Aϕ ∂

Aϕ− V (ϕ), A = 0, 1, ..., 4 (4.1)
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where

V (ϕ) =
λ

4

(

ϕ2 − m2

λ

)2

(4.2)

which is exactly the same as Eq.(3.26). From Eq.(4.1), equation of motion can

be found as,

∂A∂
Aϕ−m2ϕ+ λϕ3 = 0. (4.3)

Similar to discussion in section 3.3, the classical equations of motion admit a kink

solution ϕcl(x4), which is independent of three spatial coordinates (x1, x2, x3) = x

and the time x0. The form of this solution coincides with (1 + 1) dimensional

kink,

ϕcl(x4) = (m/
√
λ) tanh(mx4/

√
2). (4.4)

of the Eq.(4.3).

This classical field provides a potential well discussed above, if it is narrow

in the fourth direction. It can be realized that m is sufficiently large since the

energy density of this configuration is localized in the vicinity of the hyperplane

x4 = 0 within a region of thickness ∼ 1/m as shown in Figure 3.3.

In the WKB approximation, the spectrum of quantum fluctuations in the

presence of the domain wall can be easily solved by the linearized equation of

motion for the field ϕ′ = ϕ− ϕcl,

−∂A∂Aϕ′ +m2ϕ′ − 3λ(ϕcl)2ϕ′ = 0. (4.5)

There exist three types of perturbations:

(i) the first one is

ϕ′(x0,x, x4) = [dϕcl/dx4] exp(−ik · x+ iEx0), (4.6)

E2 = k2, (4.7)

and the corresponding particles are confined inside the wall; (ii) the second one

is

ϕ′(x0,x, x4) = u(x4) exp(−ik · x+ iEx0), (4.8)

E2 = k2 +
3

2
m2, (4.9)

where u(x4) is a normalizable solution [28] to the following Schrödinger equation

(see the explicit form of the solution [46])

[−∂24 −m2 + 3λ(ϕcl)2]u =
3

2
m2u (4.10)
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and these perturbations are also confined. (iii)there exist perturbations which

are not confined inside the domain wall; At large x4 these are

ϕ′(x0,x, x4) = exp(−ik · x)− ik4x4 + iEx0, (4.11)

E2 = k2 + (k4)2 + 2m2. (4.12)

Therefore the spectrum of quantum fluctuations around the kink solution includes

a zero mode which corresponds to translational symmetry of the theory in (i),

one massive mode in (ii) and a continuous states in (iii). For low enough energies

only the discrete modes are excited, and effectively the theory describes fields

moving inside the potential well along the plane x4 = 0. This model provides

an example of dynamical localization of fields on the hyperplane which plays the

role of our three-dimensional space embedded into the four-dimensional space.

This hyperplane is referred to as a wall or 3-brane. If the energy is high enough

the modes of the continuous spectrum are excited, this leads to a manifestation

of particles escaping into the fifth dimension.

4.2 Localization of Spinor Fields via Domain Wall

In a similar way fermions coupled to the scalar fields can be localized on

the wall [9]. The models under discussion can naturally account for massless

fermions living in (3+1) dimensions. To see this, let us introduce fermions into

the above model with the lagrangian

LΨ = iΨ̄ΓA∂AΨ+ hΨ̄Ψϕ. (4.13)

Here Ψ is a four component spinor, h is Yukawa coupling constant, and the

minimal representation of spinors in (4+1)-dimensions can be chosen to be four

dimensional. The (4+1)-dimensional Cllifford algebra can then be constructed

from the usual four dimensional one by adding the γ5 matrix to close the algebra.

So (4+1)-dimensional gamma matrices,

Γµ = γµ, µ = 0, 1, ..., 3, Γ4 = iγ5,

γµ,γ5 being the standard Dirac matrices. Dirac equation corresponding to fermions

in the domain wall background field is

iΓA∂AΨ+ hϕclΨ = 0. (4.14)

A key point is that there exists a zero mode solution to Eq.(4.14). For this mode

one has iγµ∂µΨ
(0) = 0, and the Dirac equation (4.14) becomes

γ5∂4Ψ
(0) = hϕclΨ(0). (4.15)
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Then solution to Eq.(4.15) is

Ψ(0)(x0,x, x4) = exp

[

−h
∫ x4

0

ϕcl(x′4) dx′4

]

× ψ(x0,x) (4.16)

where ψ(x0,x) is a left-handed massless (3+1)-dimensional spinor (γ5ψ = ψ),

which is the usual solution of the four-dimensional Weyl equation. The wave

function (4.16) is also confined inside the domain wall, and the corresponding

particles are just massless fermions in the (3+1)-dimensional world. The zero

mode (4.16) is localized near x4 = 0, i.e.,at the domain wall, and at large |x4| it
decays exponentially, because domain wall solution

ϕcl → m/
√
λ, x4 →∞

and

ϕcl → −m/
√
λ, x4 → −∞.

that is,

Ψ(0) ∝ exp(−h|x4|), h > 0.

Of course, there exist excitations not confined inside the wall, but their

energy exceeds mh/
√
λ and they can be created only in high energy collisions.

Massless four-dimensional fermions localized on the domain wall, zero modes, are

meant to mimick our matter. They propagate with the speed of light along the

domain wall, but do not move along x4. At low energies, their interactions can

produce only zero modes again, so physics is effectively four-dimensional. Zero

modes interacting at high energies, however, will produce continuum modes, the

extra dimension will open up, and particles will be able to leave the brane, escape

to |x4| =∞ (if the size of the extra dimension is infinite) and literally disappear

from our world. For our four-dimensional observer (composed of particles trapped

to the brane), these high energy processes will look like e+ e− → nothing or

e+ e− → γ + nothing. It is worth noting that the existence of massless (3+1)-

dimensional fermions is closely related to the existence of a (1+1)-dimensional

kink. From Eq.(4.15) one can also realized that right-handed spinor does not

lead to localization since its solution exponentially growing. Another point here

is that if background field were antikink, then right-handed massless fermions

would play the localization role.

The above construction is straightforwardly generalized to more than one

extra dimensions. This is done by considering, instead of the domain wall, topo-
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logical defects of higher dimensions: the Abrikosov-Nielsen-Olesen vortex in six-

dimensional space-time, ‘t Hooft-Polyakov monopole in seven dimensional space-

time, etc. Explicit expressions for fermion zero modes in various backgrounds

are given in [47],[48],[49]. The number of fermion zero modes may be greater

than one, so from one family of multi-dimensional fermions one can obtain sev-

eral four-dimensional families. This possibility of explaining the origin of three

Standard Model generations has been considered in [50] and [51]
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Chapter 5

PHENOMENOLOGICALLY VIABLE EXTRA DIMENSIONAL
MODELS AND FERMION LOCALIZATION

In chapter 2 we explained basics of the traditional Kaluza-Klein approach,

which will be essential to us and also outlined some recent ideas, which lie in

the basis of the new type Kaluza-Klein models. In contrast to the main goal

of the traditional Kaluza-Klein theories unifying of various types of interactions

within a gravity interaction in the multidimensional space-time, the aim of the

new models with extra dimensions is to solve some long-standing problems, for

example, hierarchy problem and cosmological constant problem, etc. Hierarchy

problem can be stated as follows: As it is well known that the electroweak scale

is defined to be the energy scale in the Standard Model description of elementary

particle physics at which the electromagnetic interaction unifies with the weak

interaction. The Planck energy scale is theoretically calculated to lie at MP` =√
~c
G

= 1019 GeV or at 10−35 m, while electroweak scale is roughly 103 GeV , or

10−19m. At the Planck scale, a theory of Quantum Gravity should be revealed,

and it is hoped that the gravitational interaction unifies with the remaining

three interactions described by the Standard Model. The hierarchy of sixteen

orders of magnitude between these two scales (namely MEW/MP` ∼ 10−16) is

called the hierarchy problem. This problem, however, can not be studied in the

context of the chapter 4 because gravity is excluded in that section. In the next

two sections we consider two different approaches to solve hierarchy problem by

including gravitation.

5.1 Large Extra Dimensions

5.1.1 General Aspects of Large Extra Dimensions

One of the approach, [8], [52] hereafter called ADD model (Arkani-Hamed,

Dimopoulos, Dvali), is to neglect the brane tension and consider compact extra

dimensions. In this way Kaluza-Klein picture is reintroduced. The size of extra
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dimension R is not so small i.e., not in the scale of standard model. The dis-

tances at which non-gravitational interactions cease to be four-dimensional are

determined by the dynamics on the brane, and are much smaller than R. Only

gravity becomes multi-dimensional at scales just below R. The four-dimensional

law of gravitational attraction has been established experimentally down to dis-

tances of about 0.2 mm [53], so the size of extra dimension is allowed to be large

as 0.1 mm.

This possibility opens up a new way to address the hierarchy problem. In

multi-dimensional theories, the four dimensional Planck scale is not a fundamen-

tal parameter. Rather, the mass scale of multi-dimensional gravity, which we

denote simply by M , is fundamental, as it is this latter scale that enters the full

multi-dimensional gravitational action,

S = − 1

16πG(D)

∫

dDX
√

g(D)R(D) (5.1)

where

G(D) =
1

MD−2
≡ 1

Md+2
(5.2)

is the fundamental D-dimensional Newton’s constant, d = D − 4 is the number

of extra dimensions, and dDX = d4x ddz, z being extra coordinates.

In ADD picture, the long-distance four-dimensional gravity is mediated

by the graviton zero mode whose wave function is homogenous over extra di-

mensions. Hence the four-dimensional effective action describing long-distance

gravity is obtained from Eq.(5.1) by taking the metric to be independent of

extra coordinates z. The integration over z is then trivial, and the effective

four-dimensional gravitational action is

Seff =
Vd

16πG(D)

∫

d4x
√

g(4)R(4) (5.3)

where Vd ∼ Rd is the volume of extra dimensions. We see that the four-

dimensional Planck mass is, up to a numerical factor of order one, equal to

MP` =M(MR)
d
2 (5.4)

If the size of extra dimensions is large compared to the fundamental length M−1,

the Planck mass is much larger than the fundamental gravity scale M . One

way push this line of reasoning to extreme and suppose that the fundamental

gravity scale is of the same order as the electroweak scale, M ∼ 1 TeV. Then

the hierarchy between MP` and MEW is entirely due to the large size of extra

dimensions. The hierarchy problem becomes now the problem of explaining why
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R is large. This is certainly an interesting reformulation. Assuming that M ∼
1 TeV, one calculates from Eq.(5.4) the value of R,

R ∼M−1

(
MP`

M

) 2

d

∼ 10
32

d · 10−17cm (5.5)

For one extra dimension one obtains unacceptably large value of R. An

interesting case is d = 2 when roughly R ∼ 1 mm. This observation [52], [54], [55]

stimulated recent activity in experimental search for deviations from Newton’s

gravity law at sub-milimeter distances. Experimental data show that the mass

scale M ∼ 1 TeV is excluded for d = 2 by astrophysics and cosmology. A more

realistic value M ∼ 30 TeV implies R ∼ 1 − 10 µm. This motivates search for

deviations from Newton’s law in a micro-meter range, which is difficult but not

impossible and that is the main reason why extra dimensions become important.

For d > 2, Eq.(5.5) results in smaller values of R. For example, for d = 3 and

M ∼ 1 TeV one obtains R ∼ 10−6cm. Search for violation of Newton’s law

at these scales appears hopeless. For d = 6 (full dimensionality of space-time

D = 10, as suggested by superstring theory), one has R ∼ 10−12cm, which is

still much larger than the electroweak scale, (1 TeV)−1 ∼ 10−17cm. We note,

however, that the compactification scales of different extra dimensions are not

guaranteed to be of the same order; if some of these are much smaller than the

others, the situation with deviations from Newton’s gravity in spaces with d > 2

may be similar to that of d = 2. In other words, deviations from Newton’s gravity

law may occur in micro-meter range even for d > 2. Now let us see what kind

of modification of Newton’s gravity is needed when compact extra dimensions

are introduced. We assume that the space is of the structure M4 × T n, where

M4 is the 3+1 dimensional Minkowski space, and T n is an n dimensional torus.

The analysis we will carry out here is similar to the discussion of the massless

scalar in section 2.1.5, where the role of the scalar is taken over by the Newtonian

potential. Let us denote the coordinates with a vector (x,y), where x corresponds

to the M 4 and y to the T n. For simplicity we assume that the torus is described

by a quadratic lattice and uniform length of a cycle is 2πR, i.e.,

y ≡ y + 2πR (5.6)

The n + 4 dimensional Newton potential Vn+4 of a point particle with mass µ

located at the origin is given by

4n+3Vn+4 = (n+ 1)Ωn+2Gn+4µδ
n+3(x,y), (5.7)

where 4n+3 is the three dimensional flat Laplacian and Ωn+2 is the volume of a

unit n+2 sphere. Any solution (5.7) should be periodic under (5.6). This can be
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ensured by expanding the potential in terms of eigenfunctions ψk(y) of a Laplace

operator. The eigenvalue equation is

4nψk(y) = −m2
kψk(y). (5.8)

Thus an orthonormal set of eigenfunctions is

ψk(y) =
1

(2πR)n/2
e

k·y
R (5.9)

where k is an n-dimensional vector with integer entries. We expand the higher

dimensional Newton potential into a series of the eigenfunctions with r = |x|
dependent coefficients.

Vn+4 =
∑

k

φk(r)ψk(y). (5.10)

Substituting this ansatz into Eq.(5.7), Fourier coefficients can be found

φk(r) = −
ΩnGn+4 µψ

∗
k(0)

2

1

r
e−

|k|
R . (5.11)

Now, we consider the case that all particles with which we can test the gravi-

tational potential are localized at y = 0. (This is the natural from the brane

picture since we can test gravity only with matter which is confined to live on

the brane.) We are interested in the Newton potential at y = 0. This leads to

V4 ≡ Vn+4 = −
G4µ

r

∑

k

e−r
|k|
R , (5.12)

where the four dimensional and the higher dimensional Newton constant are

related via

G4 =
ΩnGn+4

2(2πR)n
. (5.13)

For k = 0 we obtain the usual four-dimensional Newton potential. The other

terms are additive Yukawa potentials. They arise due to the change of massive

Kaluza Klein gravitons. Experimentalists usually parametrize deviations from

Newton’s law with the following expression [56]

V4(r) = −
G4µ

r

(
1 + αe

r
λ

)
. (5.14)

However, it is important fact that no deviation from Newton’s law up to the

order of micrometers has been observed so far.
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5.1.2 Fermion Localization in Large Extra Dimension

Suggestions that extra dimensions may not be compact [8, 9, 12, 57, 58,

59], or large [52, 60] can provide new insights for a solution of gauge hierarchy

problem, of cosmological constant problem, and give new possibilities for model

building. One of the interesting questions, related to these ideas, is localization

of different fields on a brane. It has been shown that the graviton [12] and the

massless scalar field [61] have normalizable zero modes on branes of different

types, that the abelian vector fields are not localized in the Randall-Sundrum

(RS) model in five dimensions but can be localized in some higher-dimensional

generalizations of it [62]. In contrast, in [61] it was shown that fermions do not

have normalizable zero modes in five dimensions, while in [62] the same result

was derived for a compactification on a string [63] in six dimensions. It is known,

though, that fermion interaction with a scalar domain wall in five dimensions can

lead to localization of chiral fermions [9, 10].

5.1.3 Arkani-Hamed-Shmaltz Model

One Chiral Fermion in 5 Dimensions

The action a five dimensional fermion Ψ coupled to the background scalar

Φ is

S =

∫

d4x dx5Ψ̄
[

i∂̂4 + iγ5 + Φ(x5)
]

Ψ. (5.15)

where ∂̂ = γµ∂µ and the coordinates of our 3+1 dimensions are represented by x

whereas the fifth coordinate is x5; five dimensional fields are denoted with capital

letters whereas four-dimensional fields will be lower case. This Dirac operator is

separable, and it is convenient to expand the Ψ fields in a product base

Ψ(x, x5) =
∑

n

< x5|Ln > PLψn(x) +
∑

n

< x5|Rn > PRψn(x) (5.16)

Ψ̄(x, x5) =
∑

n

ψ̄n(x)PR < Ln|x5 >+
∑

n

ψ̄n(x)PL < Rn|x5 > (5.17)

where the ψn are arbitrary four-dimensional Dirac spinors and PL,R = (1± iγ5)/2
are chiral projection operators. We use a bra-ket notation for the eigenfunctions

which diagonalize the x5-dependent part of the Dirac operator; the kets |Ln >
and |Rn > are solutions of

aa†|Ln >= (−∂25 + Φ2 + Φ̇)|Ln >= µ2n|Ln > (5.18)

a†a|Rn >= (−∂25 + Φ2 − Φ̇)|Rn >= µ2n|Rn > (5.19)
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respectively. Here Φ̇ ≡ ∂5Φ, and a† and a are “creation” and “annihilation”

operators defined as

a = ∂5 + Φ(x5) (5.20)

a† = −∂5 + Φ(x5). (5.21)

The |Ln > and |Rn > each form an orthonormal set and for non-zero µ2
n are

related through |Rn >= (1/µn)a|Ln > as can be verified easily from Eq.(5.18)

and Eq.(5.19). The eigenfunctions with vanishing eigenvalues need not be paired

however. It is no accident that we use simple harmonic oscillator (SHO) notation.

For the special choice Φ(x5) = 2µ2x5 the operators a and a† become the usual

SHO creation and annihilation operators up to a normalization factor
√
2µ, and

the operator a†a becomes the number operator N . The eigenkets are then related

to the usual SHO kets by |Ln >= |n > and |Rn >= |n − 1 >. Expanding in

|Ln > and |Rn > the action for a 5-d Dirac fermion (5.15) can be re-written in

terms of a 4-d action for an infinite number of fermions

S =

∫

d4x

[

ψ̄Li∂̂4PLψL + ψ̄Ri∂̂4PRψR +
∞∑

n=1

ψ̄n(i∂̂4 + µn)ψn

]

. (5.22)

The first two terms correspond to 4-d two-component chiral fermions, they arise

from the zero modes of (5.18) and (5.19). The third term describes an infi-

nite tower of Dirac fermions corresponding to the modes with non-zero µn in

the expansion. The zero mode wave functions are easily found by integrating

a†|Ln >= 0 and a|Rn >= 0. The solutions

< x5|L, 0 >∼ exp

[

−
∫ x5

0

Φ(s)ds

]

(5.23)

and

< x5|R, 0 >∼ exp

[∫ x5

0

Φ(s)ds

]

(5.24)

are exponentials with support near the zeros Φ. In the infinite system that we

are considering these modes cannot both be normalizable. It is easy to see that

|b, 0 > is normalizable if Φ(−∞) < 0 and Φ(+∞) > 0. Also if Φ(−∞) > 0 and

Φ(+∞) < 0 then the mode |f, 0 > is normalizable. In the other cases there is no

normalizable zero mode. For definiteness let us now specialize to the SHO. Then

< x5|L, 0 >=
µ1/2

(π/2)1/4
exp

[
−µ2x25

]
(5.25)

and < x5|R, 0 > is not normalizable. Thus the spectrum of four dimensional

fields contains one left-handed chiral fermion in addition to an infinite tower of

massive Dirac fermions. The shape of the wave function of the chiral fermion is
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Gaussian, centered at x5 = 0. Note that coupling Ψ to −Φ would have rendered

< x5|R, 0 > normalizable and we would have instead localized a massless right

handed chiral fermion. For clarity, let us write the wave function of the massless

chiral fermion in the chiral basis

Ψ(x, x5) =




< x5|L, 0 > ψ(x)

0



 . (5.26)

Many Chiral Fermions

Eq.(5.15) can be generalized to the case of several fermion fields. For

simplification, we can assume that all 5-d fermions couple to the same scalar Φ

S =

∫

d5x
∑

i,j

Ψ̄i

[

i∂̂5 + λΦ(x5)−m
]

ij
Ψj. (5.27)

Here we allowed for general Yukawa couplings λij and also included masses mij

for the fermion fields. Mass terms for the five-dimensional fields are allowed by

all the symmetries and should therefore be present in the Lagrangian. In the case

that we will eventually be interested in - the standard model - the fermions carry

gauge charges. This force the couplings λij and mij to be block diagonal, with

mixing only between fields with identical gauge quantum numbers. For simplicity

λij is taken as δij, then mij can be diagonalized with eigenvalues mi. We can find

the massless four-dimensional fields with the analogy to the single fermion case.

Each 5-d fermion Ψi leads to a single 4-d left chiral fermion. Similar to Eq.(5.25)

the wave functions in the 5th coordinate are Gaussian, but in this case their

localization are centered around the zeros of Φ−mi. In the SHO approximation

this is at xi5 = mi/2µ
2. The five dimensional action action describes a set of non-

interacting four-dimensional chiral fermions localized at different 4-d “slices” in

the 5th dimension at energies below µ. So we now exhibit the field content

of the 5-d theory which can reproduce the chiral spectrum of the 4-d SM as

localized zero modes. If λ’s are chosen as positive, then left handed chiral Weyl

spinors are localized and this implies that it is possible to construct the SM by

means of only left handed spinors, the right handed fields are represented by

their charge conjugates ψ̄c. Then the SM arises simply by choosing 5-d Dirac

spinors (Q,U c, Dc, L, Ec) transforming like the left handed SM Weyl fermions

(q, uc, dc, l, ec).
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Yukawa Couplings

By this mechanism it is possible to generate hierarchial Yukawa couplings

in four dimensions. The action of five-dimensional fermion fields for only one

generation and the lepton sector only,

S =

∫

d5x L̄
[

i∂̂5 + Φ(x5)
]

L+ Ēc
[

i∂̂5 + Φ(x5)−m
]

Ec + κHLTC5E
c. (5.28)

where C5 = γ0γ2γ5. As discussed in the previous section, we find a left handed

massless fermions l from L localized at x5 = 0 and ec from Ec localized at

x5 = r ≡ m/(2µ2). For simplicity, the Higgs field is assumed to be delocalized

inside the wall. We now determine what effective four-dimensional interactions

between the light fields results from the Yukawa coupling in Eq.(5.28). So L and

Ec will be expanded as in Eq.(5.16) and Eq.(5.17), then replace the Higgs field

H by its lowest Kaluza-Klein mode which has an x5-independent wave function.

We get the Yukawa coupling

SY uk =

∫

d4xκh(x) l(x) ec(x)

∫

dx5 φl(x5)φec(x5). (5.29)

Here φl(x5) and φec(x5) are the zero-mode wave functions for the lepton doublet

and singlet respectively. φl is a Gaussian centered at x5 = 0 whereas φec is

centered at x5 = r. The overlap of Gaussians is itself a Gaussian and we find

∫

dx5 φl(x5)φec(x5) =

√
2µ√
π

∫

dx5 e
−µ2x2

5 e−µ
2(x5−r)2 = e−µ

2r2/2. (5.30)

Any coupling between the two chiral fermions is necessarily exponentially sup-

pressed because the two fields are separated in space. The coupling is then pro-

portional to the exponentially small overlap of the wave functions. In this model

it has not been imposed any chiral symmetries in the fundamental symmetry by

O(1). Even with chiral symmetry maximally broken in the fundamental theory,

an approximate chiral symmetry in the low energy, 4-d effective theory, has been

obtained.

5.2 Randall-Sundrum Models

The discussion in previous section assumes that the extra dimensions are

flat or at least weakly curved, but another possibility is to take the extra di-

mension be strongly curved or warped by a large cosmological constant. This

models are based on solutions for five-dimensional background metric obtained

59



by L. Randall and R. Sundrum in Refs. [11, 12]. The form of the metric is

ds2 = a2(z)ηµν dx
µdxν + dz2 (5.31)

where z is the extra dimension and a is some function depending on it. Until

now the energy density of the brane itself has been ignored, i.e., the gravitational

field that the brane produces. Here we shall see that a gravitating brane induces

an interesting geometry in multi-dimensional space, and that a number of novel

properties emerge.

5.2.1 RS-1 Model

Let us consider two 3-branes [11]. One of the 3-branes are located at

φ = 0 with positive tension, the other with negative tension located at φ = π,

where 0 ≤ φ ≤ π. Allowing the negative tension brane to vibrate freely give

rise to physical excitations of arbitrarily large negative energy [64]. To overcome

this problem, the branes are placed at fixed points of an orbifold, that is, the

fifth dimension is compactified on an orbifold S1/Z2, where Z2 is defined by the

transformation φ→ −φ. An Orbifold is defined as the quotient space Γ ≡M/G,

where M is some manifold and G is a discrete group acting on M. As we see

that there are fixed points inM, which do not transform under the action of G

(For detailed discussion see [65]). The action in this model is of the form

S = Sbulk + Svis + Shid, (5.32)

where Svis and Shid denote the actions on the branes. For the bulk action we

take the five-dimensional gravity with a bulk cosmological constant,

Sbulk =

∫

d4x

∫ π

−π
dφ
√
−G(2M 3R− Λ), (5.33)

whereM denotes the five-dimensional Planck mass andGMN is the five-dimensional

metric. The branes are located in φ and the brane coordinates are identified with

the remaining 5-D coordinates xµ. Then the induced metrics on the branes are

gvisµν = Gµν |φ=π ghidµν = Gµν |φ=0 (5.34)

It is assumed that the fields being localized on the branes are in the trivial vacuum

and take into account only nonzero vacuum energies on the branes. Calling those

vacuum energies Vvis and Vhid, the brane actions read

Svis + Shid = −
∫

d4x (Vvis
√

−gvis + Vhid
√

−ghid) (5.35)
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Instead of working out the solutions to the system on an interval S1/Z2, it is

technically easier to construct a solution in a non compact space, such that the

solution is periodic in

φ ≡ φ+ 2π, (5.36)

and even under

φ→ −φ. (5.37)

Then the equations of motion read

√
−G(RMN −

1

2
GMNR) = − 1

4M3
[Λ
√
−GGMN

+ Vvis
√

−gvisgvisµν δ
µ
Mδ

ν
Nδ(φ− π)

+ Vhid
√

−ghidghidµν δ
µ
Mδ

ν
Nδ(φ)]. (5.38)

The delta functions appearing in Eq.(5.38) are defined on a real line. The most

general metric ansatz possessing a four-dimensional Poincarè transformation as

isometry is

ds2 = e−σ(φ)ηµν dx
µdxν + r2c dφ

2 (5.39)

where rc is the radius of the extra dimension.

We could rescale φ such that the rc dependence drops out, but that would

change the periodicity condition [66]. Substituting this ansatz into the equation

of motion yields

6σ′2

r2c
= − Λ

4M3
, (5.40)

3σ′′

r2c
=

Vhid
4M3rc

δ(φ) +
Vvis

4M3rc
δ(φ− π) (5.41)

The solution to Eq.(5.40) by direct integration

σ = rc|φ|
√

−Λ
24M3

+ c (5.42)

where c is the integration constant. Without loss of generality c can be chosen

zero because it just amounts to an overall constant rescaling of the xµ. So

σ = rc|φ|
√

−Λ
24M3

(5.43)

The modulus function is defined as usual in the interval −π < φ < π,

|φ| =







−φ ,−π < φ < 0

φ , 0 < φ < π
(5.44)
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This ensures that the solution is even under φ → −φ. We define the modulus

function on the real line by the periodic continuation of Eq.(5.44). Away from

the points at φ = 0 and integer multiples of π, the second derivative of σ vanishes

and Eq.(5.41) is fulfilled in those regions. In order to take into account the delta

function sources in Eq.(5.41), this equation can be integrated over an infinitesimal

neighborhood around the location of the brane sources. Integration near zero,

∫ ε

−ε
σ′′dφ =

rcVhid
12M3

(5.45)

it is found

2rc

√

−Λ
24M3

=
rcVhid
12M3

(5.46)

From this equation

Vhid = 24M 3k (5.47)

where

k2 =
−Λ
24M3

(5.48)

By the same way integration near π leads to

Vvis = −24M 3k (5.49)

So solution is obtained if Vvis, Vvis, Λ are related in terms of a single scale k,

Vhid = −Vvis = 24M 3k, k =
−Λ
24M3

(5.50)

This gives rise to the constraints on the parameters of the model. These con-

straints can be thought of as fine-tuning conditions for a vanishing effective cos-

mological constant in four-dimensions and this is equivalent to the usual cosmo-

logical constant problem. Solution is then

ds2 = e−2krc|φ|ηµν dx
µdxν + r2c dφ

2. (5.51)

where k2 is defined in Eq.(5.50), and k is taken to be positive (for a negative k,

φ can be redefined as π − φ).

We observe that by taking into account the back reaction of the branes

onto the geometry, we obtain a metric which depends on the position in the

compact direction. For the particular model we consider this dependence is

exponential. That opens up an interesting alternative explanation for the large

hierarchy between the Planck scale and the electroweak scale. We take all the

input scales (M, Λ, rc) to be the order of the Planck scale. First we should check
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whether this provides the correct four dimensional Planck mass. To this end, we

expand a general four-dimensional metric around the solution (5.51)

ds2 = e−2krc|φ|(ηµν + h̃µν(x, φ))dx
µdxν + r2c dφ

2 (5.52)

Here, h̃µν represents tensor fluctuations around Minkowski space and is the phys-

ical graviton of the four-dimensional effective theory (and is the massless mode

in the Kaluza-Klein decomposition of Gµν). In principle we should also allow

the four-four component of the metric r2c to fluctuate. Since rc is an integra-

tion constant, such fluctuations will be seen as massless scalars in the effective

four-dimensional theory. This is common problem known as moduli stabilization

problem. We will assume here that some unknown mechanism gives a mass to

the fluctuations of G55 and take it to be frozen at the classical value r2c . One can

use the gauge

g55 = −1, g5µ = 0 (5.53)

As the next step the field hµν is decomposed over an appropriate system of

orthonormalized functions:

hµν(x, φ) =
∞∑

n=0

h(n)µν χn(φ) (5.54)

where

χ0(φ) = 2
√

krc e
−2krc|φ|, (5.55)

χn(φ) = Nn

[

C1Y2

(mn

k
ekrcφ

)

+ C2J2

(mn

k
ekrcφ

)]

, (n 6= 0). (5.56)

Here J2 and Y2 are the Bessel functions, Nn are the normalization factors. The

boundary conditions on the branes, that are due to the δ-function terms, fix

the constants C1 = Y1(mn/k) and C2 = −J1(mn/k) and lead to the eigenvalue

equation

J1(βne
−krcπ)Y1(βn)− Y1(βne−krcπ)J1(βn) = 0. (5.57)

The numbers βn are related to mn by mn = βnk e−krcπ. For small n ≥ 1 this

equation reduces to the approximate one: J1(βn) = 0, and βn’s are equal to

βn = 3.83, 7.02, 10.17, 13.32, ... for n = 1, 2, 3, 4, ... The zero mode field h
(0)
µν (x)

describes the massless graviton. Within the five-dimensional picture it appears

as a state localized on hidden brane(the one of which vacuum energy is denoted

by Vhid).

Substituting Eq.(5.52) into action we can calculate the zero mode sector

of the effective theory

Seff ⊃
∫

d4x

∫ π

−π
dφ 2M3rc e

−2krc|φ|√−g R(4) (5.58)
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where R(4) denotes the four-dimensional Ricci scalar made out of gµν(x) (gµν =

ηµν + h̄µν), in contrast to the five-dimensional Ricci scalar, R, made out of

GMN(x, φ). Because the low-energy fluctuations do not change the φ dependence

(the effective fields depend on x alone), we can explicitly perform the φ integral to

obtain a purely four-dimensional action. From this the four-dimensional Planck

mass MP` is given by

M2
P` =M3rc

∫ π

−π
dφ e−2krc|φ| =

M3

k
[1− e−2krcπ]. (5.59)

This equation tells us that choosing five-dimensional scales of the order of the

Planck scale gives the correct order of magnitude for the four-dimensional Planck

scale and it can be inferred that MP` depends on weakly on rc in the large krc

limit. Even though the exponential has very little effect in determining the Planck

scale, it plays a crucial role in the determination of the visible sector masses, as

we will see now.

In order to determine the matter field Lagrangian we need to know the

coupling of the 3-brane fields to the low-energy gravitational fields, in particular,

the metric gµν(x). From Eq.(5.34) it is easy to see that ghidµν = gµν . However, this

is not the case for the visible sector fields; gvisµν = e−2krcπgµν . By properly nor-

malizing the fields we can determine the physical masses. Consider for example

a fundamental Higgs field being located at the visible brane,

Svis ⊃
∫

d4x
√−gvis

[
gµνvisDµH

†DνH − λ(|H|2 − υ0)2
]
, (5.60)

which contains one mass parameter υ0. Substituting Eq.(5.34) into this action

yields

Svis ⊃
∫

d4x
√−g e−4krcπ

[
gµνe2krcπDµH

†DνH − λ(|H|2 − υ0)2
]
, (5.61)

where the overall exponential factor originates from the determinant. Rescaling

the Higgs field H such that the kinetic term in Eq.(5.61) takes its canonical form

H → ekrcπH, we obtain

Svis ⊃
∫

d4x
√−g

[
gµνDµH

†DνH − λ(|H|2 − e−2krcπυ0)
2
]
. (5.62)

This means that a symmetry-breaking scale which is written as υ0 into the model

effectively is multiplied by a factor of e−krcπ.

υ0 → υeff = e−krcπυ0. (5.63)
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This result is completely general: any mass parameter m0 on the visible 3-brane

in the fundamental higher-dimensional theory will correspond to a physical mass

m0 → meff = e−krcπm0 (5.64)

when an effective description in which kinetic terms are canonically normalized.

If the quantity krc is chosen to be the order of 10, the exponential in Eq.(5.64)

takes the Planck sized input masses to effective masses of the order of a TeV .

Hence, in the above model it has been obtained that the TeV scale from the

Planck scale without introducing large numbers, provided we live on the visible

brane. Some problems with the above model are that the fine-tuning between

the weak scale and the Planck scale is replaced by the fine-tuning between k and

the brane separation rc. This is related to the problem of treating the scalar field

that describes the relative motion between the branes. For consistency reasons,

this so-called radion has to be a massive field with the correct expectation value

in order to maintain stability of the solution. For more detail about stability see

Appendix A.

5.2.2 RS-2 Model

In this section we are going to consider a variant of the model presented

in section 5.2.1, where the second brane is removed. To solve hierarchy problem,

it was necessary that the observers live on the visible brane. However, we now

give up the goal of solving the hierarchy problem. The construction of the single

brane solution is very simple. The extra dimension is not compact anymore and

therefore we use the coordinate y instead of φ. We do not impose the periodicity

condition but still require a Z2 symmetry under

y → −y (5.65)

Further, we remove Svis from the action (5.32). Since the extra dimension is not

compact, we can rescale y in order to remove the rc dependence of ansatz (5.51).

Without loss of generality we take rc = 1. Thus, in the single brane case, the

solution for the metric is

ds2 = e−2k|y|ηµν dx
µdxν + dy2. (5.66)

Let us consider small gravitational fluctuations around the background (5.66)

GMN = e−2k|y|ηµν + hµν (5.67)
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Now we need to determine whether the spectrum of the general fluctuations is

consistent with four-dimensional experimental gravity. In order to get a Kaluza-

Klein reduction down to four-dimensions, we need to do a separation of variables:

h(x, y) = ψ(y)eip·x, where p2 = m2 and m2 permits a solution to the linearized

equation of motion for tensor fluctuations following from Einstein’s equations

expanded about Eq.(5.66):

[−m2

2
e2k|y| − 1

2
∂2y − 2kδ(y) + 2k2

]

ψ(y) = 0, (5.68)

where boundary conditions which is Eq.(5.65) give rise to consider only even

functions of y, describing the infinite half-line. Here the indices µ, ν are omitted

without loss of generality, because we are free to choose the gauge, where ∂µhµν =

hµµ = 0.

It is more convenient to do a change of variables in such a way that the

terms with m2 will be unit. As we will see that then the form of the resulting

equation become an analog non relativistic quantum mechanical problem, i.e.

Schrödinger equation: So if the new coordinate z

z ≡ sgn(y)

k

(
ek|y| − 1

)
. (5.69)

With

ψ̂(z) = ψ(y) e
k|y|
2 (5.70)

then Eq.(5.68) takes the following form

[

−1

2
∂2z + U(z)

]

ˆψ(z) = m2 ˆψ(z), (5.71)

Analogous to our previous discussion we plan to expand the solution h into a

series eigenfunctions, that is, we are looking for solutions of the Eq.(5.71), which

is exactly the same as Shrödinger equation with potential U , where

U(z) =
15k2

8(k|z|+ 1)2
− 3k

2
δ(z). (5.72)

The general behaviour of solution can be understood by the general shape of this

analog non relativistic potential. Roughly speaking, this problem is equivalent

to one dimensional motion of a particle in the presence of this potential. Near

z = 0 the dominant term is coming from the Dirac delta-potential. So this leads

to the localization of the particle near z = 0, i.e. in our case the particle will

be graviton. However, to be more accurate let us consider the problem in more

detail:
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It can be easily note that the solution has both discrete and continuous

spectrum. As it is seen from Eq.(5.72), potential consists of two parts; the one

which is Dirac delta-function is responsible for a single normalizable state mode

[67]. The other part corresponds to continuum modes. Let us discuss first zero

mode, i.e. the solution to Eq.(5.71) with m2 = 0. The zero mode is found to be

ψ̂0(z) ≡ ψ̂(0, z) =
N0

(k|z|+ 1)3/2
, (5.73)

Now, we take m > 0. For z > 0 the general solution to the above equation can

be written as a superposition of Bessel functions

ψ̂ (m, z) =

√

|z|+ 1

k

[

c1J2

(

m

(

|z|+ 1

k

))

+ c2Y2

(

m

(

|z|+ 1

k

))]

, (5.74)

where Jν denotes the Bessel functions of the first kind whereas Yν stands for

the Bessel functions of the second kind and c1,2 are constants to be fixed below.

Because the solution (5.74) is written as a function of |z|, the second derivative

with respect to z in Eq.(5.71) will yield a term containing a δ (z) (and other

terms). One can fix the ratio c1/c2 by matching the factor in front of this delta

function with the factor in front of the delta function in Eq.(5.74). We will do

this in an approximate way. The most severe corrections to Newton’s law are

to be expected from gravitons with small m (because they carry interactions

over longer distances). In matching the coefficients of the delta functions, only a

neighborhood around z = 0 matters. Therefore, we replace the Bessel functions

by their asymptotics for small arguments, which are

J2

(

m

(

|z|+ 1

k

))

∼ m2
(
|z|+ 1

k

)2

8
, (5.75)

Y2

(

m

(

|z|+ 1

k

))

∼ − 4

πm2
(
|z|+ 1

k

)2 −
1

π
. (5.76)

Plugging the asymptotic approximation into Eq.(5.74) and then into Eq.(5.71)

one finds that the overall coefficient in front of the delta function vanishes if

c1
c2

=
4k2

πm2
. (5.77)

Hence, our general solution (5.74) reads

ψ̂ (m, z) = Nm

√

|z|+ 1

k

[

Y2

(

m

(

|z|+ 1

k

))

+
4k2

πm2
J2

(

m

(

|z|+ 1

k

))]

(5.78)

where we replaced c2 = Nm because this remaining integration constant will turn

out to depend on the eigenvalue m.
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Recall that the extra dimension y (or z) is not compact. Thus the eigen-

value m is continuous. Therefore, we normalize

∫

dz ψ̂ (m, z) ψ̂ (m′, z) = δ (m−m′) , (5.79)

for m,m′ > 0. For m ≥ 0 we impose the normalization condition

∫

dz ψ̂0 (z) ψ̂ (m, z) = δm,0, (5.80)

such that the completeness relation reads

ψ̂0 (z) ψ̂0 (z
′) +

∫ ∞

0

dmψ̂ (m, z) ψ̂ (m, z′) = δ (z − z′) . (5.81)

The orthonormalization condition (5.79) fixes Nm. It turns out that the computa-

tion simplifies essentially in the approximation where the arguments of the Bessel

functions are large, since the corresponding asymptotics yields plane waves. Ex-

plicitly, for large mz the Bessel functions are approximated by

√
zJ2 (mz) ∼

√

2

πm
cos

(

mz − 5π

4

)

, (5.82)

√
zY2 (mz) ∼

√

2

πm
sin

(

mz − 5π

4

)

. (5.83)

Because we are mainly concerned about large distance modifications of Newton’s

law we focus on the contribution of the “light” modes (m
2

k2 ¿ 1). (Recall that k

is of the order of the Planck mass.) Then Eq.(5.79) yields for the normalization

constant (for m > 0)

Nm =
πm

5

2

(4k2)
. (5.84)

The condition (5.80) is satisfied for m > 0 to a good approximation. Evaluating

Eq.(5.80) for m = 0 fixes

N0 =
√
k. (5.85)

Now, we expand ĥ (x, z) into eigenfunctions ψ̂0 (z) and ψ̂ (m, z) with x dependent

coefficients ϕm (x)

ĥ (x, z) = ϕ0 (x) ψ̂0 (z) +

∫ ∞

0

dmϕm (x) ψ̂ (m, z) . (5.86)

In the presence of a point particle with mass µ at the origin, the non relativistic

limit of linearized equation for h is modified as

[
∆3 − e−2k|y| (∂2y + 4kδ (y)− 4k2

)]
h (x, y) = Gµδ3(x)δ(y), (5.87)
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By plugging the ansatz (5.86) into the wave equation for ĥ, we find that form ≥ 0

and r = |x|
ϕm (x) = −Gµ

r
e−mram, (5.88)

with the constants am taken such that

a0ψ̂0 (z) +

∫

dmamψ̂ (m, z) = δ (z) . (5.89)

Comparison with Eq.(5.81) yields

a0 = ψ̂0 (0) , am = ψ̂ (m, 0) . (5.90)

In the current setup we are interested in corrections to Newton’s law as an ob-

server on the brane at the origin would measure them. Defining the four dimen-

sional Newton constant G4 as

G4 = Gk, (5.91)

we find from Eq.(5.86)

ĥ (x, 0) = h (x, 0) = −G4µ

r

(

1 +

∫ ∞

0

dm
m

k2
e−mr

)

, (5.92)

where once again we took into account only modes with m/k ¿ 1 such that we

could use the asymptotics (5.75) and (5.76) in order to evaluate ψ̂ (m, 0). Finally,

performing the integral in (5.92) leads to

h (x, 0) = −G4
µ

r

(

1 +
1

r2k2

)

. (5.93)

Therefore, Fluctuations around the solution include a state with zero mass, which

describes the massless graviton, and massive states. The massless graviton is

localized on the brane, hence no contradiction with the Newton’s law appears at

distances r À k−1 with the parameter k chosen to be k ∼ MP`. Non-zero KK

states are non-localized and form the continuous spectrum starting from m = 0

(no mass gap). The RS2 model gives an elegant example of localized gravity with

non-compact extra dimension.

For k being of the order of the Planck mass (5.93) is in very good agreement

with the experimental values. This may look a bit surprising. Even though the

extra dimension is not compact, we obtain a four dimensional Newton potential

for observers who live on the brane at y = 0. This non trivial result finds its

explanation in the exponentially warped geometry. It is this geometry which is

responsible for the fact that the amplitude of the zero mode has its maximum

at the brane and vanishes rapidly for finite z. On the other hand, the massive
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modes reach their maximal amplitudes asymptotically far away from the brane.

Therefore, they have very little influence on the gravitational interactions on the

brane, although the masses of the extra gravitons can be arbitrarily small.

The corrections to Newton’s law has power law behaviour at large r, in con-

trast to theories with compact dimensions where the corrections are suppressed

exponentially at large distances. However, this correction is negligible at dis-

tances exceeding the anti-de Sitter radius k−1. It has been explicitly shown in

[68] and [69] that the tensor structure of the gravitational interactions at large

distances indeed correspond to (the weak field limit) the four-dimensional gen-

eral relativity. Note that the radion is absent in RS2 set up. We have already

mentioned that in RS2 set up with one brane, extra dimension does not help to

solve the hierarchy problem. It was pointed out, however, that modest extension

of this set up leads to exponential hierarchy even if extra dimension is infinite

(The Lykken-Randall model [70]). This model is a combination of the RS1 and

RS2 models. Brane 1 is located at y = 0 and its tension determines the same

background solution for the metric as in the RS2 model. Brane 2 is regarded as

a probe brane, i.e. the tension V2 ¿ V1, so that it does not affect the solution.

The second brane is located at z = zc, and the value of rc is adjusted in such a

way that

MP` e
−krcπ ∼MP` · 10−15 ∼ 1 TeV. (5.94)

This ensures that the hierarchy problem is solved on the second brane. Therefore,

it is considered to be our brane, i.e. the brane where the SM is localized. Randall-

Sundrum set up is analogous to the Horova-Witten scenario [71],[72], [73] which

arises in M-theory. For a discussion of how the scenario above may arise from

string theory compactifications is considered in [74], and supergravity solutions

which also exhibit exponential hierarchies are worked out in [75]

Randall and Sundrum’s theory may explain the existence of dark matter -

which is invisible and makes up 90 percent of our universe. Dark matter emits

or absorbs no light and is evident only through its gravity. It could simply

come from another universe from which we can sense gravitons. In addition,

Randall and Sundrum’s theory can explain why dark matter is usually found in

the halos around galaxies. According to the theory, large masses on different

branes are attracted to each other through hyperspace with mutual gravitational

pulls. Thus, a galaxy on our universe may be mirrored by a galaxy from another

universe, with only the gravity from its edges apparent. The static Randall-

Sundrum solution has been also extended to time dependent solutions and their

cosmological properties have been extensively studied in [76] - [89].

70



5.3 Some Models of Fermion Localization in The Context of RS Mod-
els

5.3.1 Domain Wall Solutions in RS Models

In this thesis, by using the Randall-Sundrum type metric with scalar field

which Ichinose [90, 91] used, we will show that the fermions interacting with

this field are localized. The scalar potential V (φ) and metric tensor gAB under

consideration are,

V (φ) = λ(φ2 − υ2)2, (5.95)

ds2 = e−2σ(y)ηµν dx
µdxν + dy2. (5.96)

The action in this model is given by:

S =

∫

d5x
√−g

[

Λ− 1

2
M3R− 1

2
gAB∂Aφ∂Bφ− V (φ)

]

. (5.97)

Equations of motion corresponding to this action are

6M3(
dσ

dy
)2 =

1

2
(
dφ

dy
)2 − λ(φ2 − υ2)2 + Λ (5.98)

3M3d
2φ

dy2
= (

dφ

dy
)2. (5.99)

Even though the equations of motion are nonlinear, they have been solved by

usual perturbative technique. Now let us briefly discuss the solution to the equa-

tions of motion given in [13]. With the convenient dimensionless rescaled variables

ϕ = υ−1φ, (5.100)

z =

√

3ΛM3

2υ4
y. (5.101)

Although σ is dimensionless, it is useful to define new dimensionless variables s

and ζ given by

s =
3M3

υ2
σ, (5.102)

ζ =
ds

dz
. (5.103)

The equations of motion in terms of these variables read

ζ ′ = (ϕ′)2, (5.104)

ζ2 = 1 +
3M3

4υ2
ϕ′2 − λυ4

Λ
(ϕ2 − 1)2, (5.105)
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where the symbol ′ denotes the differentiation with respect to z. These are first

order differential equations whose general behaviour can be visualized in a phase

space constructed by (ϕ, ζ). Flows of phase points are determined by

dζ

dϕ
=
ζ ′

ϕ′ = ϕ′ = ±A
√

(1− ϕ2)2 − ε(1− ζ2), (5.106)

where the dimensionless parameters A and ε are given by

A =

√

4λυ6

3ΛM3
, (5.107)

ε =
Λ

λυ4
. (5.108)

It is sufficient to consider only the branch corresponding to the positive sign in

Eq.(5.106). Since dζ/dϕ is a real function, it is clear that the allowed region of

the phase space is restricted by the condition Cε(ϕ, ζ) ≥ 0, where

Cε(ϕ, ζ) = (1− ϕ2)2 − ε(1− ζ2). (5.109)

The shape of the boundary of the forbidden region, which we name it the island,

depends on ε. If the islands for different values of ε are drawn, it is seen that

they are symmetric under the separate reflections of ϕ and ζ. When we assume

that the domain wall is located at z = 0, it becomes clear that the origin of the

phase space, ϕ = ζ = 0, should be in the allowed region of the phase space. It is

possible only when 0 < ε ≤ 1.

The coefficient A given in Eq.(5.106) determines the initial flow direction

at the origin ϕ = ζ = 0. The same equation shows that for a given shape

of island, which is determined by ε, flows in the phase space either terminate

at the island or diverge indefinitely depending on A. There is unique A(ε) by

which the flow line starting at the origin terminates at ϕ = ζ = 1. When A

is less than this critical value A(ε), the flow line reaches the island, and stays

there forever. But if it is slightly larger than A(ε), the flow bypasses the island,

and runs indefinitely. In this case it becomes unstable. The numerical result

of the computation of this behaviour is given in [13]. To understand stabilities

one should find A(ε) corresponding to the critical flow. Even though the flow

equation is highly nonlinear, one may use the usual perturbation technique to

solve it. We assume that ϕ and ζ both reach the critical values, ϕ → 1 and

ζ → 1, as z → ∞. We have seen, for the stable solution, that 0 < ε ≤ 1. It

allows us to expand the flow equation (5.106) in terms of ε,

dζ

dϕ
= A[1− ϕ2 − ε

2

1− ζ2
1− ϕ2

+
ε2

8

(1− ζ2)2
(1− ϕ2)3

+ . . .]. (5.110)

72



One can solve this equation perturbatively under the conditions

ζ(ϕ = 0) = 0, ζ(ϕ = 1) = 1. (5.111)

Firstly, we find A(ε) corresponding to this critical flow, and then solve (15). The

curve A(ε) in the parameter space (ε, A) divides it up into the stable and unstable

regions. The general formula for A(ε) is hidden in
∫ 1

0

dζ

dϕ
dϕ = 1. (5.112)

Using the ε independent part of Eq.(5.110), we have

1 = A(ε)

∫ 1

0

(1− ϕ2)dϕ =
2

3
A(ε). (5.113)

That is, to the order of O(ε0), A(ε) = 3
2
. Then by Eq.(5.110), one has

ζ =
3

2
(ϕ− 1

3
ϕ3). (5.114)

Substituting this in Eq.(5.110) again, one gets the following equation,

dζ

dϕ
= A(ε)[1− ϕ2 − ε

2

(1− 9
4
(ϕ− ϕ3

3
)2)

(1− ϕ2)
]. (5.115)

From this we find that A(ε) and ζ(ϕ), to the order O(ε), are

A(ε) =
3
2

1− 19
40ε

, (5.116)

ζ(ϕ) = ζ0(ϕ) + εζ1(ϕ). (5.117)

Here ζ0 is the same as Eq.(5.115), and

ζ1(ϕ) = −
3

80
(ϕ− 2ϕ3 + ϕ5). (5.118)

To solve ϕ as a function of z, we combine Eq.(5.106) and Eq.(5.110),

dϕ

dz
=

dζ

dϕ
= A(ε)[1− ϕ2 − ε

2

(1− 9
4
(ϕ− ϕ3

3
)2)

(1− ϕ2)
]. (5.119)

This can be integrated to give the following

z =
ε

12
ϕ+

10− ε
30

log
1 + ϕ

1− ϕ, (5.120)

It is valid up to the order O(ε). Solving ϕ in terms of z, one gets

φ = ϕυ = υ

(

tanh
3z

2
+

3

2
ε(
z

10
− 1

12
tanh

3z

2
)(1− tanh2

3z

2
) +O(ε2)

)

. (5.121)

which has interesting z linear term. By neglecting higher order terms in ε, σ is

given in the form

σ =
1

15
(10− ε) ln[cosh 3z

2
] +

ε

60
sech2

3z

2

+
3ε

80
sech4

3z

2
− ε

10
z tanh

3z

2
+

ε

20
z sech2

3z

2
tanh

3z

2
+O(ε2)(5.122)
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5.3.2 Erdem’s Model for Fermion Localization

In [14], it is shown that the Lagrangian

L =
1

2
gBC∂Bφ1∂Cφ1 +

1

2
gBC∂Bφ2∂Cφ2

+
3µ2

2λ
e2

√
λ/µφ1 +

3µ2

2λ
e−2

√
λ/µφ2

+ V1(σ) (|φ1| − φ3) + V2(σ) (|φ2| − φ3) (5.123)

with

ds2 = gABdx
AdxB = e2Aηµν dx

µdxν − (3ay2 + b)2e2Bdy2, (5.124)

where A = − tanh η(y), B = −2 ln cosh η(y)− tanh η(y),

ηµν = diag(1,−1,−1,−1), µ = 0, 1, 2, 3.

leads to domain wall and anti-domain wall solutions given by

φ1 = φ3 = φcl =
µ√
λ
tanh η, φ2 = φAcl = −

µ√
λ
tanh η (5.125)

provided that V1(σ) = −V2(σ) and

V1(σ) =
µ√
λ

(

−5 e2 tanh η + η′′

(η′)2(1− tanh2 η)
− 2 tanh η

(1− tanh2 η)

)

, (5.126)

One considers fermions interacting with the domain wall and the anti-

domain wall pair as follows:

L = iΨ̄ΓµDµΨ+ iΨ̄Γ4∂4Ψ+ g1Ψ̄φ1Ψ+ g2Ψ̄φ2Ψ

= iΨ̄γµetanh ηDµΨ+ iΨ̄(−iγ5)
1

(3ay2 + b)
(1− tanh2 η)−1etanh η

∂Ψ

∂y

+ g1Ψ̄φ1Ψ+ g2Ψ̄φ2Ψ, (5.127)

where

Γµ = etanh ηγµ (5.128)

Γ4 = −iγ5
etanh η

(3ay2 + b)
(1− tanh2 η)−1 (5.129)

Dµ = ∂µ. (5.130)

Hence in the presence of a background consisting of a domain wall-anti-domain

wall pair, the five dimensional Dirac equation is

ietanh ηγµDµΨ+ etanh η
1

3ay2 + b
(1− tanh2 η)γ5

∂Ψ

∂y
+ gφclΨ = 0 (5.131)
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where g = g1 − g2 and φAcl = −φcl. It is considered that the solutions which

propagate in the usual four dimensions as free fields whose form is

Ψ = e−i[(e
2A)(p0x0−p·x)]χ(y). (5.132)

At η = 0 for the free field solutions becomes

γµpµΨ+mγ5Ψ = 0 (5.133)

where

m =
1

χ

(
∂χ

∂η

)

|η=0 =




mL 0

0 mR



 (5.134)

Then after replacing Eq.(5.132) and Eq.(5.133) in Eq.(5.131) one gets

−me− tanh ηγ5Ψ+
1

3ay2 + b
(1− tanh2 η)−1etanh ηγ5

∂Ψ

∂y
+ β tanh ηΨ = 0, (5.135)

where β = g µ√
λ
. Eq.(5.135) may be written in terms of ΨL = 1

2
(1 − γ5)Ψ, and

ΨR = 1
2
(1 + γ5)Ψ as

∂ΨL

∂y
− ∂ΨR

∂y
+ η′(1− tanh2 η)

× [
(
β tanh ηe− tanh η −mLe

−2 tanh η
)
ΨL

+
(
β tanh ηe− tanh η +mRe

−2 tanh η
)
ΨR] = 0 (5.136)

The solutions of Eq.(5.136) are

ΨR = exp

[

−1

2
mRe

−2 tanh η − β(1 + tanh η)e− tanh η

]

ψR,

ΨL = exp

[

−1

2
mLe

−2 tanh η + β(1 + tanh η)e− tanh η

]

ψL. (5.137)

where ψ is the solution of (iγµ∂µ +mγ5)ψ = 0.

Different profiles of ΨR and ΨL in the extra dimension gives an explanation

of the source of chirality. One gets phenomenologically interesting values for some

of the values of the parameters. If one assumes that the photon is localized in a

narrow range of η where the magnitude of the ΨL and ΨR are almost the same

while the gauge bosons of the weak interactions can penetrate into the bulk more

deeply (where the average magnitude of ΨR is suppressed with respect to that of

ΨL) then one may explain why the electromagnetic interactions are vector-like,

while weak interactions are chiral. For example for mL = 3, mR = −0.3 and

β = 3 the average magnitude of the y dependent part of ΨR is about the same

as ΨL at −0.4 < η < −0.3, while most of the values of η the y dependent part

75



in ΨL is much greater than that of ΨR. One may assume that the photon is

localized about η ' −0.35(for instance, in the interval −0.37 < η < −0.33),
while the weak bosons propagate in the region where −0.3 < η < 0.4. The

average density of ΨL in the region −0.3 < η < 0.4 is much higher than that of

ΨR. This may explain why the right handed weak currents are highly suppressed

with respect to the left handed ones. The fact that the neutral weak currents

have a right handed component while the charged weak currents are purely left

handed could be understood if the wave function of the W bosons (compared to

the wave function of the Z boson)is assumed to be localized in a smaller region,

where the average value of ΨL is much greater than the average value of ΨR when

compared to the broader region where the Z boson is localized. For example if

we take mL = 3, mR = −0.3, β = 3 and assume that Z is localized in the

region −0.3 < η < 0.4, while the W bosons are localized in 0 < η < 0.3, then

the average value of ΨL interacting with Z bosons is about 15 times that of the

average value of ΨR while the average value of ΨL interacting with W bosons

is about 50 times that of the ΨR. So in this way Z bosons have an appreciable

amount of vector interactions, while W bosons are effectively purely left handed.

In fact, each of the curves describing the η dependence of ΨL and ΨR

corresponds to three curves, the same in form but translated in the y-direction

because to each value of η = ay3 + by+ c there exist three values of y in general.

One can assume that each of these equation η(y) = zL(R) (where zL(R) denotes

the values of η overlapping with our brane) has three distinct real roots for each

value of zL(R). As long as we chose the width of the brane in the fifth dimension

sufficiently small one can find such pieces of curves provided the equation η =

zL(R) has three distinct real roots for one value of zL(R) because the variation of

zL(R) corresponds to the variation of the location of the curves η = ay3+by+c in

the η- direction. This does not change the property that there are three distinct

real roots provided the variation is small enough (i.e. the width of the brane is

small enough). These three curves could be interpreted as three generations of

fermions. Eq.(5.133) suggest that the masses of all the generations of fermions

are the same. In order to break this degeneracy one may either explicitly break

degeneracy in an ad hoc way or one introduce a direct y dependence into the

metric. The second way is more promising. However, in that case to find a

appropriate Lagrangian which satisfies the Einstein equations becomes a rather

non-trivial matter. So at this step degeneracy for the masses of the fermion

generations is assumed (although this is not realistic). Despite the fact that the

φ1(2)−Ψ interactions do not discriminate between different fermions in the same
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family, gravity does. So in principle there are universality breaking effects because

of the gravitational interactions for different fermions. Nevertheless, we assume

that these effects are so small (i.e. the four dimensional brane is so narrow in

the fifth dimension) that they cannot be detected at present. The relevant part

of ΨL(R) at low energies is the portion of their curve in the η-direction which

overlaps with the portion in the fifth coordinate in which our four dimensional

world is located.

5.3.3 An Improved Model for Fermion Localization Through The Do-
main Wall Solutions

We follow the same strategy that we considered for the potential (5.126)to

explain the fermion localization and chirality by means of more simple potential

form given in Eq.(5.95) [92]. For this purpose we consider the following fermion-

scalar interaction Lagrangian:

L = iΨ̄ΓµDµΨ+ iΨ̄Γ4∂4Ψ+ gΨ̄γ5φΨ

= iΨ̄γµe−σDµΨ+ iΨ̄(−iγ5)
∂Ψ

∂y
+ gΨ̄γ5φΨ, (5.138)

with the RS-like metric

ds2 = e−2σ(y)ηµν dx
µdxν − dy2. (5.139)

Five dimensional gamma matrices ΓA are defined with the help of the vielbein

EA
B and flat space gamma matrices γA

ΓA = E A
B γB (5.140)

where vielbeins are defined by

gAB = ηABE
A
CE

B
D

ηAB = gCDEA
CE

B
D (5.141)

i.e. they are, in some sense, square root of the metric. The coordinate vielbein

for the metric Eq.(5.139)

E ν
µ = eσδ ν

µ

E µ
5 = 0

E 5
µ = 0

E 5
5 = 1 (5.142)
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The covariant derivative is defined as

DA = ∂A +
1

2
ωBCA σBC (5.143)

where ωBC is spin connection and σBC = 1
4
[ΓB,ΓC ] are generators of five dimen-

sional Lorentz group. Spin connection can be found from zero torsion condition,

TA = dEA + ωAB ∧ EB = 0 (5.144)

Here

EA = EA
B dxB (1− form)

ωAB = ωABC dxC (1− form) (5.145)

Substituting these into Eq.(5.144) we get the components of spin connection,

ω5α
β = − σ′ e−σ

(1 + e−σ(y))
δαβ (5.146)

and all other terms vanishes. Then Lorentz covariant derivative with spin con-

nection

Dµ ≡ ∂µ −
σ′(y)e−σ(y)

2(1 + e−σ(y))
γµγ

4 (5.147)

We are interested in the solutions near zero and we assume that σ ′ at zero is zero

provided that e−σ and Ψ does not blow up near zero. So under these restrictions

(5.147) becomes just ordinary partial derivative and equations of motion derived

from the Lagrangian (5.138),

iγµeσ∂µΨ+ γ5
∂Ψ

∂y
+ g γ5 φΨ = 0 (5.148)

Let us consider the solutions propagating in the usual four dimensions as free

fields in the form,

Ψ = e−i[(e
−2σ)(p0x0−p·x)]χ(y). (5.149)

We impose

γµpµΨ+mΨ = 0. (5.150)

This simply means that we take the lower and upper components of 4-spinor Ψ

be dotted and undotted representations (i.e. left handed and right handed ) of

SL(2, C) , [33, 93]. Then after putting Eq.(5.149) and Eq.(5.150) in Eq.(5.148)

we get

−m e−σΨ+ γ5
∂Ψ

∂y
+ g γ5 φΨ = 0 (5.151)
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Figure 5.1: Localization of fields ΨR and ΨL.

By the help of projection operators 1
2
(1 − γ5) and 1

2
(1 + γ5), Eq.(5.151) may be

written as

∂ΨR

∂y
= −mRe

−σΨR − g φΨR (5.152)

∂ΨL

∂y
= mLe

−σΨL − g φΨL (5.153)

solutions are given

ΨR = exp(−mR

∫

e−σ dy − g
∫

φ dy)ψR (5.154)

ΨL = exp(mL

∫

e−σ dy − g
∫

φ dy)ψL (5.155)

where ψ(R)L is the solution of Eq.(5.150). By using the Eq.(5.121) and Eq.(5.122),

we get
∫

φ dy =
1

15
(10− ε) ln(cosh(3ξ y

2
)) +

ε

24
sech2(

3ξ y

2
) +

ε

10
ξ y tanh(

3ξ y

2
) (5.156)

where ξ =
√

3ΛM3

2υ4 is scaling factor defined in section 5.3.1 and

∫

e−σ dy =

∫

dy exp(−( 1
15

(10− ε) ln[cosh 3ξy

2
] +

ε

60
sech2

3ξy

2
+

3ε

80
sech4

3ξy

2

− ε

10
ξy tanh

3ξy

2
+

ε

20
ξy sech2

3ξy

2
tanh

3ξy

2
)) (5.157)

We can see that the behavior of the functions near z = 0, ΨL and ΨR are

found to be as eay+by
3−cy2

and e−ay−by
3−cy2

, respectively. Here a, b, c are positive

constants. So with various values of parameters ΨL and ΨR are localized at

different positions in extra dimensions (as shown in Figure 5.1 for a = 1, b = 1,

c = 5, and ξ = 1) provided that mL is a positive constant and mR is a negative

one. Although we have determined the general form of ΨR and ΨL for small
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values of y, it is true for all values of y since dominating term in Eq.(5.154) and

Eq.(5.155) are exp(−g
∫
φ dy). For large values of y the shape of the graphs of

ΨR and ΨL are distorted with respect to the graphs we obtained although the

localization properties of ΨR and ΨL are preserved.
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CONCLUSIONS

We have seen that the idea of extra dimensions is very attractive since one

may understand almost all properties of elementary particles and fundamental

forces through the use of extra dimensions. Although the idea of explaining the

fundamental forces through the geometry of extra dimensions is old, the new

studies suggest that some other properties of elementary particles may be ex-

plained by localizing different particles at different points in extra dimensions.

Accounting for different masses and chirality of fermions is especially interesting

since it can not be explained in other means. We have considered different re-

cent studies in this perspective. We have combined different interesting aspects

of some of these models to get an improved model of fermion localization and

fermion chirality. The extra dimensions in the original Kaluza-Klein theory was

at the Planck scale, so almost impossible to detect in a foreseenable future while

there are modern extra dimensional models at scales as large as 100-200 µm.

Moreover the extra dimensional models are becoming more realistic and phe-

nomenologically more viable. However, there is still a long way to go. No extra

dimension or indirect signature of it is detected so far. Although we have now a

good framework to apply the theoretical results into phenomenological models,

one still does not a single comprehensive extra dimensional model accounting for

all properties of elementary particles simultaneously in a phenomenologically and

experimentally perfect set up. There is intense current research in this direction.

So we hope that extra dimensional approach will be successful in near future,

at least up to a good portion of its ambitious program. The next generation of

accelerators will also help to constrain the vast amount of alternatives for extra

dimensional models. We think that the problem of explaining fermion properties

through the use of extra dimensions is especially appealing.
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[41] V. Fock, Zur Shrödingershen Wellenmechanik, ZS. f. Phys. 38, 242, 1926.

[42] V.A. Rubakov, Large and Infinite Extra Dimensions: An Introduction,

Lectures at ITEP, Moskow, and University of Barcelona, hep-ph/0104152,

(2001).

[43] G.W. Gibbons, D.L. Wiltshire, Space-time as a membrane in higher di-

mensions, Nucl. Phys. B 287 (1987) 717.

[44] J. Polchinski, TASI lectures on D-branes, hep-th/9611050.

[45] P. Horava and E. Witten, Nucl. Phys. B 460 (1996) 506 ,hep-th/9510209;

A. Lukas, B. A. Ovrut, K. S. Stelle and D. Waldram, Phys. Rev. D 59

(1999) 086001, hep-th/9803235.

[46] L.D. Landau and E.M. Lifshitz, Quantum Mechanics ,Volume 3 of Course

of Theoretical Physics, Pergoman Press, (1973).

[47] R. Jackiw and C. Rebbi, Phys. Rev. D 13 (1976) 3398.

[48] R. Jackiw and P. Rossi, Nucl. Phys.B 190 (1981) 681.

[49] G.‘t Hooft, Phys. Rev. D 14 (1976) 3432.

[50] M.V. Libanov and S. V. Troitsky, Nucl. Phys. B 599 (2001) 319 [hep-

ph/0011095].

84



[51] J.M. Frere, M. V. Libanov and S. V. Troitsky, Three generations on a local

vortex in extra dimensions, hep-ph/0012306.

[52] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. B 429 (1998)

263.

[53] C.D. Hoyle, U. Schmidt, B.R. Heckel, E.G. Adelberger, J.H. Gundlach,

D.J. Kapner and H.E. Swanson, Phys. Rev. Lett. 86 (2001) 1418.

[54] J.C. Long, et al, New experimental limits on macroscopic forces below 100

microns. Preprint hep-ph/ 0210004 available at karXiv.orgl (2002).

[55] S.R. Beane, On the importance of testing gravity at distances less than 1

cm. Gen. Rel. Grav. 29, 945951 (1997).

[56] J.C. Long, H. W. Chan, and J. C. Price. Experimental status of gravita-

tional strength forces in the submlimeter regime. Nucl. Phys. B539:23-34,

(1999).

[57] V.A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B125 (1983) 139.

[58] K. Akama, in Proceedings of the Symposium on Gauge Theory and Gravita-

tion, Nara, Japan, eds. K. Kikkawa, N. Nakanishi and H. Nariai (Springer-

Verlag, 1983); M. Visser, Phys. Lett. B159 (1985) 22.

[59] S. Randjbar-Daemi and C. Wetterich, Phys. Lett. B166 (1986) 65.

[60] I. Antoniadis, Phys. Lett. B246 (1990) 377.

[61] B. Bajc and G. Gabadadze, Phys. Lett. B474 (2000) 282.

[62] I. Oda, hep-th/0006203.

[63] T. Gherghetta and M. Shaposhnikov, Phys. Rev. Lett. 85 (2000) 240.

[64] L. Pilo, R. Rattazzi and A. Zaffaroni, JHEP0007 (2000)056.

[65] M. Nakahara, Geometry, Topology and Physics, Institute of Physics Pub,

2nd edition (2003).

[66] S. Förste, Strings, Branes and Extra Dimensions, Fortsch.Phys. 50 221-403

(2002).

[67] R. Shankar, Principles of Quantum Mechanics, Plenum Press, (1994).

[68] J. Garriga and T. Tanaka, Phys. Rev. Lett. 84 (2000) 2778.

85



[69] S.B. Giddings, E. Katz and L. Randall, JHEP 0003 (2000) 023.

[70] J. Lykken and L. Randall, JHEP 0006 (2000) 014.

[71] P. Horova and E. Witten, Nucl. Phys. B460 (1996) 506.

[72] E. Witten, Nucl. Phys. B471 (1996) 135.

[73] P. Horova and E. Witten, Nucl. Phys. B475 (1996) 94.

[74] H. Verlinde, Holography and Compactification, hep-th/9906182.

[75] A. Kehagias, Exponential and Power-Law Hierarchies from Supergravity,

hep-th/9906204.

[76] N. Kaloper and A. Linde, Phys. Rev. D59 (1999) 101303.

[77] N. Kaloper, Phys. Rev. D60 (1999) 123506.
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APPENDIX A

RADION STABILIZATION

In the previous section, we have already mentioned the internal metric component

G55 gives rise to a massless field in effective description. This means that its

vacuum expectation value rc is very sensitive against any perturbation and rather

unstable. For the discussion of the hierarchy problem it is important that the

distance of the branes rc is of the order of the Planck length. Therefore it is

desirable to stabilize this distance, i.e. to give a mass to G55 in the effective

description. In the present section we briefly discuss how a stabilization might

be achieved via an additional scalar living in the bulk [94]. We will neglect

the back reaction of the scalar field on the geometry. This means that we just

consider a scalar field in the RS1 background constructed in the previous section.

The action consists of out of three parts

S = Sbulk + Shid + Svis (A.1)

where Sbulk defines the five-dimensional dynamics of the field and Shid and Svis

its coupling to the respective brane. We choose

Sbulk =
1

2

∫

d4x

∫ π

−π
dφ
√
−G(GMN∂MΦ ∂NΦ−m2Φ2), (A.2)

where Φ is the scalar field and GMN is given in Eq.(5.51). The coupling to the

branes is taken to be

Shid = −
∫

d4x
√

−ghidλhid(Φ2 − υ2hid)2, (A.3)

Svis = −
∫

d4x
√

−gvisλvis(Φ2 − υ2vis)2, (A.4)

where υi and λi are dimensionfull parameters whose values will be discussed

below. With the ansatz that Φ does not depend on the xµ for µ = 0, 1, 2, 3 the

equation of motion for the scalar is

1



0 = − 1

r2c
∂φ(e

−4krc|φ|∂φΦ) +m2e−4krc|φ|Φ4e−4krc|φ|λhidΦ(Φ
2 − υ2hid)

δ(φ)

rc

+ 4e−4krc|φ|λvisΦ(Φ
2 − υ2vis)

δ(φ− π)
rc

, (A.5)

Away from the boundaries at φ = 0, π, this equation has the general solution

Φ(φ) = e2krc|φ|
[
Aekrc|φ|ν +Be−krc|φ|ν

]
, (A.6)

with ν =
√

4 +m2/k2 and the integration constant will be fixed below. Putting

this solution into the scalar field action and integrating over φ yields an effective

four-dimensional potential for rc which has the form

VΦ(rc) = k(ν + 2)A2(e2νkrcπ − 1) + k(ν − 2)B2(1− e−2νkrcπ)

+ λvise
−4νkrcπ(Φ(π)2 − υ2vis)2 + λhid(Φ(0)

2 − υ2hid)2. (A.7)

The unknown coefficients A and B are determined by imposing appropriate

boundary conditions on the 3-branes. We obtain these boundary conditions by

inserting Eq.(A.6) into the equations of motion and matching the delta functions:

0 = k[(2 + ν)A+ (2− ν)B]− 2λhidΦ(0)[Φ(0)
2 − υ2hid], (A.8)

0 = ke2krcπ[(2 + ν)eνkrcπA+ (2− ν)e−νkrcπB]

+ 2λvisΦ(π)[Φ(π)− υ2vis]. (A.9)

Instead of writing down and solving those equations explicitly we consider the

simplified case that λhid and λvis are large enough for the approximation

Φ(0) = υhid, Φ(π) = υvis (A.10)

to be sufficiently accurate. In this approximation we get

A = υvise
−(2+ν)krcπ − υhide−2νkrcπ, (A.11)

B = υhid
(
1 + e−2νkrcπ

)
− υvise−(2+ν)krcπ, (A.12)

where subleading powers of exp(−krcπ) have been neglected. Now suppose that

m/k ¿ 1 so that ν = 2 + ε, with ε ' m2/4k2 a small quantity. In the large krc

limit, the potential becomes

VΦ(rc) = kευ2hid + 4ke−4krcπ
(
υvis − υhide−εkrcπ

)2
(

1 +
ε

4

)

− kευhide
−(4+ε)krcπ

(
2υvis − υhide−εkrcπ

)
(A.13)

2



where terms of order ε2 are neglected (but εkrc is not treated small). Ignoring

terms proportional to ε, this potential has a minimum at

krc =

(
4

π

)
k2

m2
ln

[
υhid
υvis

]

. (A.14)

With ln
(
υhid
υvis

)

of order unity, we only need m2/k2 of order 1/10 to get krc ∼
10. Clearly, no extreme fine tuning of parameters is required to get the right

magnitude for krc. For instance, taking υhid/υvis = 1.5 and m/k = 0.2 yields

krc ' 12. Even though this mechanism is the commonly established method for

solving the problem of moduli stabilization, it is one of the most prominent lines

of thought in the context of Randall Sundrum model.
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