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Analysis of the relationship
between daylight illuminance and
cognitive, affective and
physiological changes in visual
display terminal workers
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Abstract

This study explored the impact of daylight illuminance on cognitive load during visual display terminal use

by means of various physiological, performance and subjective measures. Repeated-measures design was

adopted to identify the impact of variations in daylight levels that were manipulated through the shading

system configurations (shading-on; shading-off). A total of 30 subjects performed visual and cognitive

demanding tests. Performance measures were supported by subjective data and eye-related measures

during the experimental analysis. Results revealed that the use of a shading system had positive impact on

sustained attention. Concerning ocular measures, percentage of eye closure values showed opposite

tendencies among vigilance and sustained attention demanding tests. Eye aspect ratio-max and blink

duration were significantly correlated with reported glare sensation. In all tests, eye aspect ratio-max

was found significantly higher in lower illuminances. Search velocity was significantly correlated with

ocular variables in higher illuminances whereas sustained attention showed an opposite trend. This,

initially, explains that even slight differences in daylight illuminance might have distinctive effects on the

relationship between different groups of assessment variables while measuring cognitive load. Secondly, it

proves the significance of carrying out sensitive experiments in terms of both light levels and test

characteristics.

Practical application: The findings of this study could suggest that a practical application, the use of a

shading device, might deliver an efficient solution on such a multifaceted question about the potential

effects of luminous environment on the evaluation of cognitive load. Work environments might be con-

sidered as cognitively efficient if only the harmony of less mental effort, more satisfaction and less health

problems exist, which together ultimately deliver higher work performance. In real-world work environ-

ments, application of such shading devices involves advantages not only for avoiding excessive daylight

exposure or optimizing energy consumption, but also facilitating cognitive, affective and physiological

processes of individuals.
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Introduction

The visual display terminal (VDT) has recently
been the most convenient tool in human–com-
puter interaction, particularly in office environ-
ments.1–3 While working with VDTs, many
cognitively demanding tasks are performed by
individuals.4 These tasks may require several
cognitive functions such as mental workload,
decision-making, sustained attention and stimu-
li interpretation, that potentially lead to a higher
degree of cognitive load. The term of cognitive
load is basically the level of measurable mental
effort exerted by an individual in response to
one or more cognitive tasks. However, determi-
nation and interpretation of cognitive load is
still challenging due to its multidimensional
character. So far, several models have been pro-
posed and used to measure cognitive load. Of
those, Paas and Van Merri€enboer5 constructed a
model suggesting that the possible causal factors
of the cognitive load were referred to character-
istics of the task, to characteristics of the subject
performing the task, or to interactions between
both. It was then modified by Choi et al.6 based
on the recent research revealing the role of phys-
ical environment characteristics on cognitive
performance. Here physical learning environ-
ment was considered as a potential causal
factor which refers to the entire range of phys-
ical attributes of a space where the activities
take place. Also, it is this model that was
taken into consideration in the current study.

According to the assumptions used in the
model of Choi et al.,6 the assessment factors are
based on the dimensions of mental load, mental
effort and performance, which are still be dis-
cussed in the literature for involving a variety
of investigation techniques.7 Although there is

not a standardized one, these techniques may
be divided into three groups: (i) subjective meas-
ures, i.e., the NASA task load index;8 (ii) various
physiological measures, i.e., EEG,9 heart rate10

or eye activity,11–13 and (iii) a wide range of per-
formance measures, i.e. memory,14 time spent on
a test15,16 or error rates (ERs).17

Until now, limited research pertaining to the
effects of physical learning environment on cog-
nitive processes have been carried out, despite
the fact that the physical attributes of a place
involve sensory stimuli that is perceived by
human senses in different forms such as vision,
temperature, smell or hearing. Such sensory
stimulations may in fact simply improve or
diminish cognitive functions via physiological,
psychological or physical paths. Physical char-
acteristics of a built environment, that are, light-
ing conditions, acoustics, thermal conditions
and air quality, accordingly have an impact on
the cognitive load and learning capacity of an
individual. Of those, luminous environment was
often treated as a control variable and kept con-
stant throughout the experiments.6

Several studies, on the other hand, have
revealed that the illuminance values,18–21 lumi-
nance distribution,22,23 types of artificial light
sources,24,25 colour temperature18,26 have an
effect on cognitive performance. However,
these studies were predominantly conducted in
static artificially lit environments and only a few
attempted to examine cognitive performance
under daylight illumination which has varying
light output.27,28 While their valuable contribu-
tion to the literature cannot be ruled out, there
as yet exists only little research on the impact of
natural light on cognitive processes in specifi-
cally VDT work environments. In support of
this lack, this article was undertaken to test
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the cognitive, physiological and affective
changes under two realistic office lighting set-
tings. Previous studies have proved that daylight
is the most preferred light source in working
spaces29 for being more efficient in physical,
visual, and psychological health.30–32 Taking
the task difficulty and the individuals’ cognitive
demands into consideration, a well-conceived
lighting design is required for preventing or
reducing visual discomfort and therefore
increasing workplace satisfaction and stimulat-
ing cognitive functions.33,34 Hence, this article
focused exclusively on daylight as the source
of illumination and investigated its cognitive,
affective and physiological effects on VDT
workers in response to changing daylighting
conditions. The main goal of the current
research was to analyse relationships between
the luminous environment, performance and
learning. Also, the influence of the luminous
environment on cognitive functions from an
affective or a physiological standpoint was
investigated in order to find out whether the
daylighting design choices can have positive
effects on cognitive functions.

Materials and methods

Subjects

A total of 30 healthy (23 male and 7 female)
undergraduate and postgraduate students with
an age ranging from 20 to 30 years (M¼ 24.6,
SD¼ 3.42) participated in the study. Two days
before the experimental session, they were asked
to keep their sleep–wake schedule as similar as
possible to their sleep routine on workdays
(�30min) as stated in Munich Chronotype
Questionnaire.35 In this way, the possibility of
confounding factors associated with general
fatigue that possibly causes irregular eye
dynamics, and consequently may be confused
with the expected influence of different illumi-
nance levels during the experiment would be
eliminated as much as possible. All subjects
had normal (visual acuity> 0.8) or corrected
sight without any colour blindness (vision test;

www.essilor.com). People between 20 and

30 years old have the similar light sensitivity

because of the aging effect on the eyes as

stated in a validated light sensitivity test by

Fortuin.36 For this reason, sampling of subjects

was applied to select subjects only who were

within this age range and were using a computer

at least 8 h every day. To avoid post-lunch

drowsiness during the afternoon sessions, the

subjects were requested to have lunch at least

1 h prior to the experiment. Finally, the scope

of the study and the expected outcomes of the

experiment were not explained to the subjects.

Experimental setup and procedure

The experiments took place in a full-scale mock-

up VDT workstation of 2m� 2m� 2.4m,

located on top of a two-story building at the

Lighting and Acoustics Laboratory of the

University of Pisa (see Figure 1). The mock-up

was side-lit by 115� southeast-oriented façade

windows consisting of double glass with a light

transmission of 80%. With the operation of an

heating, ventilation, and air conditioning

system, the room temperature of 20–24�C and

relative humidity of 20–60% were kept steady

and similar over the time of the experiments,

Datalogger with a
photometric probe

HDR camera for recording
visual information

2.4 m

2 m

Figure 1. Schematic view of the mock-up laboratory
setting.
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according to the OSHA guidelines on office

indoor air quality.37

In each experiment, the subject’s visual field

included the identical views consisting of a

workstation and a curtain fabric covering for

the sides and the ceiling. The desk was placed

parallel to the windows and the subjects faced

the glazing at a distance of about 1 m. Although

this sort of workplace setup is not highly recom-

mended, the justification for doing so is that the

impacts of changing daylighting conditions were

considered to be most distinct in the subjects’

cognitive, affective and physiological processes.
The features of the mock-up workstation and

the furnishings are described in detail in our

previous article.38 The subjects were able to

freely change their own sitting height provided

that the viewing distance of 60 cm was kept in a

constant position. The layout of the workstation

was kept identical throughout the whole exper-

iment. Surface properties were chosen in such a

way that the risks of veiling reflections, annoy-

ing brightness, etc. would be minimized in order

to avoid potential perceptual distractions due to

the luminance distribution surrounding the

screen.1 The room surfaces were measured by

using the photo-radiometer Delta Ohm

HD2102.1 and had reflectance properties of:

pcurtain¼ 0.06, ptable¼ 0.14, pfloor¼ 0.28.

Experimental equipment

Visual information was recorded with a Canon

EOS 500D camera which was placed right

above the computer screen in such a way that

focused on the eyes of the subjects, and photo-

metric measurements were carried out through-

out the sessions by using a Delta Ohm

datalogger HD2101.1 with the photometric

probe LP 471 PHOT which was properly cali-

brated and normalized prior to the study (cali-

bration uncertainty lower than 4%).

Image processing

Ocular information of the subjects was extracted

with the application of Python,39 which is a

programming language that executes code by

statement. An algorithm proposed by

Soukupová and Cech40 was used for video proc-

essing. With this algorithm, video recordings of

each subject are decomposed into a sequence of

frame image and the eye landmarks are detected

for every video frame. Finally, the eye aspect

ratio (EAR) is computed based on the ratio of

distances between facial landmarks of the eyes.

An example of an EAR of a video sequence is

shown in Figure 2. The EAR is computed auto-

matically and the moment where the eye fully

closes is indicated with x1. Blink duration (BD)

and percentage of eye closure (PERCLOS)

values are calculated by dividing the total

number of frames between y1 and y2 into 30,

because the shooting rate of the camera is

30 frames/s. The detailed definitions of ocular

parameters are further given in subsection

‘Dependent measures’.

Stimuli

Two configurations (shading-on; shading-off)

were selected to determine the effect of a solar

shading strategy on performance. Artificial light
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Figure 2. Example of the blink detection. The eye
aspect ratio (EAR) is automatically calculated by the
algorithm and the red polylines indicates the blinking
action.
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sources were turned off and the room relied only

upon daylight during the experiments. Vertical

illuminance at the eye level (EV) was recorded

every 5 s. Two types of analyses were performed

to explore the statistical difference between two

configurations. First, data distribution was

tested for normality (Kolmogorov–Smirnov

test), which revealed that the data for shading-

on setting was not normally distributed

(p¼ 0.020) while the data for shading-off setting

had normal distribution (p¼ 0.200). Hence,

non-parametric analogue of the paired t-test,

Wilcoxon signed-rank test was used to explore

the difference on EV between two groups. The

result (p¼ 0.00008, Z¼�4.453) revealed a sig-

nificant difference between two groups, hence

we named our new independent scenarios as

‘EV-low’ and ‘EV-high’ to be referred hereafter

in the following sections of this article.

Descriptive statistics for light levels of each con-

figuration are also listed in Table 1.

Study design

The data was acquired in two time periods in

which the experiments were performed between

10:00 a.m. and 12:00 a.m. or 03:00 p.m. and

05:00 p.m. for a period of three weeks in 2018

(from 8 May to 11 June) and for a period of four

weeks in 2019 (from 15 April to 13 May).

Although the experiments took place during

spring and summer, a large variability in the

external sky conditions necessarily caused over-

laps between Ev-low and Ev-high groups (see

Table 1). Time periods and associated sky con-

ditions of the experiment days are also given in

Figure 3, which give concrete clues regarding the

illuminance variations.
A within-subject repeated-measures design

was employed, which requires each subject to

perform the test twice during the experiment

for each solar shading position: (i) where the

shading system was completely inactivated and

(ii) where the slats were tilted 5� downward to

the exterior of the experimental space (see

Figure 4).

To minimize any order effects, the sequence

of the shading positions during sessions was

randomized across subjects. Besides, short train-

ing trials were performed prior to the experi-

mental sessions to avoid any learning effect.

During the experiment, subjects performed a

battery of tests aimed at measuring several cog-

nitive functions such as search velocity (SV),

vigilance and divided attention, which are of

essential characteristics of regular VDT works.

The order of the tests performed was kept the

same in every session but the stimuli presented

in each test were random (e.g., text/colour com-

binations in Stroop test). Besides performance

measures, subjective task performance (STP)

questionnaires were filled in after each test, in

order to explore the subjects’ performance

rating on the tests. Subjective sleepiness scale

(KSS) was assessed at the beginning and the

end of each experimental session. The subjects

were also asked to complete a glare sensation

vote (GSV) scale to measure the level of per-

ceived glare during the experiment. Overall,

the experimental activity of each subject includ-

ing instructions, tests, questionnaires and a

short break between two sessions took approx-

imately 1 h to complete. The time schedule of

the activities performed during the experiment

is illustrated in Figure 5.

Dependent measures

Dependent measures that were divided into

three groups according to the multidimensional

approach adopted38 are as follows:

(i) Performance measures (SV, vigilance, sus-

tained attention).

Table 1. Descriptive statistics for the independent
variables.

Solar shading strategy

EV
(Mean)

EV
(SD)

EV
(Min)

EV
(Max)

Shading-off (EV-high) 1384 574 224 2324

Shading-on (EV-low) 824 471 185 2033

€Oner et al. 5



(ii) Ocular measures (blink rate (BR), BD,
PERCLOS, EAR).

(iii) Subjective measures (subjective alertness,
GSV, STP).

Regarding the group of performance indicators,
a letter search test was initially administered for
measuring SV. Differently from the ISO stan-
dard test procedure measuring the effectiveness
of subjects’ search performance to find target
characters embedded in alphanumerics on
screen,41 in this study, an approximately 5-min
letter search test in multiple target settings was

conducted to measure SV for varying levels of
difficulty.42,43 The test consisted of a total of 50
search targets with 5, 10, 15, or 20 items.
Average response time (RT; ms) of search dis-
plays was recorded as output measures.
Vigilance performance was measured with
Mackworth clock test.44,45 The test lasted
approximately 5min depending on the partici-
pant reaction times and the score was calculated
as the sum of missed and wrongly detected
skips, which was then used as an outcome var-
iable. Sustained attention was measured with a
Stroop colour-naming test that requires to name

30%

25%

20%

15%

10%

13%

7%

13%
17%

27%
23%

5%

0%

Sunny Partly cloudy Over cast

10:00 am–12:00 am 03:00 pm–05:00 pm

Figure 3. Time periods and associated sky conditions.

Figure 4. Position of the external solar shading where the slats were (i) inactive, (ii) tilted 5� downward to the
exterior and (iii) close-up view of the slats.
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the colour of the appeared word on screen. In

this test, it takes more cognitive effort and proc-
essing time when the colour and word are incon-

gruent (e.g., the word YELLOW is displayed in
blue font colour) when compared with the effort
and time spent in congruent trials (e.g., RED

written in red font colour). In each session, a
total of 70 trials were randomly displayed at

the centre of the screen in 20-pt Arial font.42,43

Time spent on this test was approximately 5min

and the reaction time (RS) to congruent and
incongruent stimuli was used as outcome

variable.
As for the ocular measures, BR was chosen

for the first variable since lower BR is associated
with increases in cognitive demand.46 Decrease

in BR is also related to visual discomfort in
many studies47–49 in which ambient light levels
present in the room are acknowledged to play

an influential role on BR. BD was chosen as the
second ocular variable. Generally, prolonged

eye closure is usually associated with higher cog-
nitive load,50 lower performance51 or more

visual demand.52 PERCLOS, the third ocular
variable, is the percentage of time that the eye

is closed per unit of time, and that indicates slow
eye closure rather than blinks. There are actual-
ly three metrics for the identification of

PERCLOS which are P70, P80 and
EYEMEAS(EM). Among these metrics, P80 is

considered as the most reliable standard so far,
in which eye is regarded as close in the case that

palpebral fissure is decreased to a percentage of
20% and below.53 PERCLOS value is obtained
from BD data of the subjects within unit time.

Although PERCLOS defines the level of fatigue
in general terms, some previous research
adopted this metric to identify changes in cog-

nitive load,54,55 as will be adopted in this study
likewise. EAR is the last ocular variable in
which the eye landmarks are detected for

every video frame and the EAR between
height and width of the eye is computed via
algorithm developed by Soukupová and

Cech40 (see Figure 6). In this method, the
EAR values of the left and right eye are auto-
matically averaged by the algorithm since the

both eyes blink simultaneously. In the current
study, we also identified EARmin and EARmax

values differently from the approach of
Soukupová and Cech.40 Additionally, in order

to overcome a potential problem associated
with the EARmin values which can be as
low as eye blink moments, EARmax was

chosen as the only EAR parameter. According
to our approach, a decrease in EARmax level
is associated with higher visual discomfort.

Lastly, considering that every individual’s
eye openness may differ, in the current study
we estimated the EAR values of each subject

10 min

2 min

2 min

5 min

5 minx2

5 min

Instructions, practice, light adaptation

Questionnaire [KSS]

Letter search test
STP

STP

STP

Vigilance test

Stroop test

Questionnaires [KSS, GSV]

Figure 5. Time schedule of the experimental stage.

P2 P3

P5P6

P1 P4

Figure 6. Locations of the automatically detected eye
landmarks pi. The eye aspect ratio (EAR) is computed for
every video frame by equation (1).
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individually and thus administered within-
subject designs

EAR ¼ kp2 � p6k þ kp3 � p5k
2kp1 � p4k (1)

Considering the subjective measures, self-
reported alertness was measured with the
Karolinska Sleepiness Scale (KSS).56 In each
session, subjective sleepiness level was measured
with a modified Italian version of KSS just prior
to the letter search test and just after the Stroop
test. The sensation of glare experienced by the
subjects was measured with GSV, which was
developed by Hopkinson.57 This measurement
employs a 4-point scale with response options
from 1 (imperceptible) to 4 (intolerable). In
this study, subjective sensation of visual discom-
fort was examined at the end of each experimen-
tal session by using GSV scale. Finally,
subjective evaluation of cognitive efficiency
was assessed at the end of each test with a
visual analogue scale adopted from Huiberts
et al.58 The original English version of STP
was translated into Italian in this study. It con-
sisted of four questions with response options
on a scale from 0 (not at all) to 100 (very
much) where subjects rated their subjective
experience of a task: (i) overall success – how
well subjects thought they had performed on the
task; (ii) motivation – how motivated they were
to perform the task as well as possible; (iii) con-
centration – how well they could concentrate on
the task; (iv) mental effort – how much mental
effort they had to put into the task. The
Cronbach’s alpha reliability measure for all
items was between a¼ .73 and a¼ .78, with an
acceptable internal consistency.

Statistical analyses

All the statistical analyses were conducted using
IBM SPSS statistics software version 22. Prior
to the data analysis, each variable was verified
for normality with Kolmogorov–Smirnov test.
Results of the cases including SV and vigilance
performances showed a violation of normality

(p< 0.05). In addition, the Levene’s tests of
homogeneity were carried out to identify any
significant differences between variances of var-
iables. Results of the tests indicated that the
only significant violation was found in vigilance
performance data (p< 0.05). Based on the
results of the normality and homogeneity tests,
parametric tests were applied to normal data
(p> 0.05) and non-parametric tests were applied
to non-normally distributed data (p< 0.05).
A significance level of p¼ 0.05 was considered
to denote statistical significance throughout the
study. In general, data analysis consisted of
three parts.

Firstly, a paired t test was used to investigate
whether any effect of daylight variations (EV-
low and EV-high) on performance, physiological
and subjective variables could be found, and if
so, to identify in which direction.

Secondly, the relationship between the phys-
iological and performance measures was inves-
tigated separately under EV-low and EV-high
conditions and task-dependent. In doing so,
daylighting conditions that manipulated the
strengths of the relationships between physio-
logical and cognitive performance measures
were highlighted, and the more effective setting
for stronger relationships was drawn out.

The final part was to investigate whether any
relationship exists between the subjective meas-
ures and the performance measures, to check
changing daylighting conditions had affective
effects on cognitive performance of individuals.

Results

Comparisons of ocular parameters between
different luminous environments

The pairwise comparisons showed that the
EARmax was significantly higher under
low levels of vertical illuminance in letter
search test (t¼�3.604; df¼ 29; p< 0.01), vigi-
lance test (t¼�2.269; df¼ 29; p< 0.05) and
Stroop test (t¼�3.211; df¼ 29; p< 0.01).
PERCLOS values showed opposite tendencies
among vigilance and Stroop tests. PERCLOS
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was significantly lower in EV-low scenario than
in EV-high during vigilance test (t¼ 2.644;
df¼ 29; p< 0.05), whereas significantly higher
PERCLOS was found in Stroop test under low
levels of vertical illuminance (t¼ 2.644; df¼ 29;
p< 0.05). No statistically significant difference
was found on PERCLOS value in letter search
test across EV-low and EV-high scenarios
(t¼�2.399; df¼ 29; p< 0.05). Finally, no
effect of shading was found on BR in any of
the tests but it does affect BD significantly
(t¼ 2.539; df¼ 29; p< 0.05). Table 2 lists the
p values for the main effect of daylighting con-
dition on ocular variables.

Comparisons of performance parameters
between different luminous environments

As for the letter search, vigilance and sustained
attention tests, outcome performance variables
were specified as SV, ER and RT, respectively.
Table 3 shows the detailed information on
each relationship in EV-high and EV-low set-
tings. From the data, a significant difference
was observed only in RT of congruent trials
during sustained attention test, showing faster
RT in EV-low setting (t¼ 2.283; df¼ 29;
p< 0.05).

The relationships between ocular parameters

and performance indicators

The analyses of the relationship between the

ocular parameters and the cognitive perfor-

mance indicators were performed separately

under EV-low and EV-high settings. In EV-high

setting, the performance parameter ‘search

velocity’ was found to be significantly correlated

with BD and EARmax (r ¼ �0.362, p¼ 0.049),

indicating that the maximum level of EAR

increases as the average time spent on search

test increases (see Table 4).
As for the EV-low setting, BR was significant-

ly correlated with RT in congruent (r¼ 0.366,

p¼ 0.047) and RT in incongruent trials

(r¼ 0.374, p¼ 0.042), revealing that increased

frequencies of eye blinks were in line with the

reduced speed on reaction time. PERCLOS was

also found positively correlated with RT in con-

gruent (r¼ 0.368, p¼ 0.045) and RT in incon-

gruent trials (r¼ 0.368, p¼ 0.046), see Table 5.

The relationships between subjective and

objective performance indicators

Mental effort was found to be significantly

correlated with the errors made during the

Table 2. Results from the paired t tests of ocular variables with the main effect of daylighting condition.

EV-high EV-low

Dependent ocular variables Mean Mean t df p

BR – letter search test 0.28447 0.29277 �0.574 29 0.570

BR – vigilance test 0.22163 0.22037 0.055 29 0.956

BR – Stroop test 0.21907 0.21753 0.083 29 0.935

BD (ms) – letter search test 376.0360 367.1317 1.005 29 0.323

BD (ms) – vigilance test 377.8383 365.9727 1.849 29 0.075

BD (ms) – Stroop test 335.8183 319.3147 2.539 29 0.017

PERCLOS – letter search test 9.7493 10.9670 �1.330 29 0.194

PERCLOS – vigilance test 7.6877 5.7807 2.644 29 0.013

PERCLOS – Stroop test 7.2967 8.5327 �2.399 29 0.023

EARmax – letter search test 0.333640 0.357097 �3.604 29 0.001

EARmax – vigilance test 0.339817 0.357707 �2.269 29 0.031

EARmax – Stroop test 0.339463 0.355427 �3.211 29 0.003

BR: blink rate; BD: blink duration; PERCLOS: percentage of eye closure; EARmax: eye aspect ratio-max.

Differences are significant at p< 0.05 level.

€Oner et al. 9



vigilance test (r¼ 0.334, p¼ 0.009). RT in sus-

tained attention test when stimuli were

congruent was also significantly correlated with

the concentration (r¼ 0.303, p¼ 0.019) and

mental effort (r¼ 0.339, p¼ 0.008), see Table 6.

The relationships between objective

performance indicators, GSV and KSS

SV was found to be significantly correlated with

the GSV (r ¼ �0.258, p¼ 0.047) and more

Table 3. Within-subject cognitive performance comparisons in EV-high and EV-low scenarios.

EV-high EV-low

Performance variables Mean (SD) SD Mean SD t df p

SV (ms) 1001.29 172.12 1030.29 343.35 �0.448 29 0.658

VI (error rate) 4.23 4.34 3.93 2.80 0.416 29 0.680

RT (ms) – incongruent 964.03 139.58 911.20 160.28 1.467 29 0.113

RT (ms) – congruent 901.23 195.80 821.53 148.71 2.283 29 0.030

SV: search velocity; VI: vigilance; RT: reaction time.

Difference is significant at p< 0.05 level.

Table 4. Spearman’s rho correlations between the performance and ocular variables in EV-high condition.

Ocular variables

Performance variables

BR BD PERCLOS EARmax

r p r p r p r p

Search velocity (SV) �0.229 0.223 0.361 0.050 �0.179 0.343 �0.362 0.049

Vigilance (VI) �0.279 0.135 0.213 0.259 �0.164 0.387 �0.122 0.522

Reaction time (RT) – congruent 0.145 0.446 �0.123 0.516 0.104 0.583 0.148 0.435

Reaction time (RT) – incongruent 0.063 0.743 �0.185 0.329 �0.015 0.939 0.230 0.222

BR: blink rate; BD: blink duration; PERCLOS: percentage of eye closure; EARmax: eye aspect ratio-max.

Differences are significant at p< 0.05 level.

Table 5. Spearman’s rho correlation coefficients (r) and p values for the performance and ocular variables in EV-low
condition.

Ocular variables

Performance variables

BR BD PERCLOS EARmax

r p r p r p r p

Search velocity (SV) �0.065 0.734 0.256 0.173 �0.071 0.709 �0.314 0.091

Vigilance (VI) �0.203 0.283 �0.052 0.784 �0.176 0.352 �0.051 0.789

Reaction time (RT) – congruent 0.366 0.047 �0.234 0.214 0.368 0.045 0.068 0.721

Reaction time (RT) – incongruent 0.374 0.042 �0.138 0.466 0.368 0.046 0.107 0.573

BR: blink rate; BD: blink duration; PERCLOS: percentage of eye closure; EARmax: eye aspect ratio-max.

Differences are significant at p< 0.05 level.
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pronouncedly with the KSS ratings (r¼ 0.375,

p¼ 0.003). Also, a statistically significant posi-

tive correlation was found between the KSS

score and the RT in sustained attention test

when the stimuli were incongruent (r¼ 0.271,

p¼ 0.036), see Table 7.

The relationships between ocular parameters

and STP, GSV and KSS

EARmax showed significant positive correlations

with the self-rated overall scores in letter search

test (r¼ 0.501; p¼ 0.00) and in vigilance test

(r¼ 0.467; p¼ 0.00). A significant correlation

was also found between self-rated motivation

score and EARmax during letter search test

(r¼ 0.405; p¼ 0.001). Moreover, self-reported

concentration in vigilance test was found to be

significantly correlated with EARmax (r¼ 0.465;

p¼ 0.00). The level of perceived glare was

significantly correlated with BD (r¼�0.278;

p¼ 0.031) and EARmax (r¼ 0.263; p¼ 0.043).

Finally, the relationship between KSSavg and

PERCLOS was found to be statistically signifi-

cant (r¼ 0.259; p¼ 0.046). More detailed infor-

mation on each relationship was presented in

Table 8.

Discussion

Firstly, variables were tested under the impact

of two daylighting design scenarios, when shad-

ings are active (EV-low) and inactive (EV-high).

Results regarding the physiological variables

showed that some of the ocular measures were

highly sensitive to illuminance (see Table 2). For

example, significant effects of illuminance were

found on EARmax in all tests, revealing lower

EARmax as illuminance increases which might

be a good news for future research to be utilized

as a reliable ocular clue while analysing physio-

logical changes during VDT use. Concerning

PERCLOS, we found controversial PERCLOS

results among tests ranging from 3% to 30%

roughly. This result might be due to the differ-

ent cognitive functions required in each test, and

is indeed similar to what has been reported in

previous research wherein PERCLOS values

were ranging from 7.5% to 80%.59,60 This, in

fact, gives a good representation of PERCLOS

being dependent on the different levels of cog-

nitive demands. Another thought-provoking

finding was that lower PERCLOS values were

found under the influence of low levels of

Table 6. Spearman’s rho correlation coefficients (r) and p values between subjective and objective performance
variables.

Performance variables

Overall success Motivation Concentration Mental effort

r p r p r p r p

SV – search velocity �0.235 0.070 �0.133 0.312 0.232 0.074 0.148 0.260

ER – total errors �0.150 0.252 �0.104 0.428 �0.067 0.609 0.334 0.009

RT – congruent �0.243 0.061 0.016 0.901 0.303 0.019 0.339 0.008

RT – incongruent �0.241 0.064 �0.129 0.326 0.010 0.942 0.039 0.767

Differences are significant at p< 0.05 level.

Table 7. Spearman’s correlation coefficients between
cognitive performance, GSV and KSS.

Performance variables

GSV KSSavg

r p r p

SV – search velocity �0.258 0.047 0.375 0.003

ER – total errors �0.047 0.722 �0.097 0.461

RT – congruent 0.087 0.507 0.224 0.085

RT – incongruent 0.191 0.143 0.271 0.036

GSV: glare sensation vote; KSS: Karolinska Sleepiness Scale.

Differences are significant at p< 0.05 level.
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vertical illuminance during vigilance test, where-

as an opposite trend was observed during the

test requiring sustained attention. This might

be due to differences in the cognitive functions

in response to different lighting settings.

Concerning BD, only significant difference was

found during Stroop test, which may not be

enough to draw a generalizable conclusion for

being utilized as a physiological metric. Finally,

no significant effect of illuminance was found on

BR, which is also supported by earlier studies

suggesting that BR can be determined by many

factors which makes it open to contamination,

and thus is less often used as an ocular param-

eter in this field of research.61–63

Regarding performance measures, the cur-

rent results revealed that lower illuminances

improved the cognitive performance on a test

requiring sustained attention, while no signifi-

cant effects were observed on tests including

such cognitive functions as SV and vigilance

(see Table 3). This might be because the daylit

work environment has a much slighter influence

on SV and vigilance than on the performance of

a sustained-attention requiring test, and is also

in line with the findings obtained from our pre-

vious study.38

Secondly, the relationships between

ocular and performance variables were analysed

separately in EV-low and EV-high scenarios.

In EV-high condition, results revealed that

only SV was significantly correlated with

BD and EARmax (see Table 4). These

findings may suggest that BD and EARmax are

likely to be used as physiological measures

in cognitive tests evaluating SV, in such

daylit spaces wherein higher vertical illuminan-

ces with an average of 1400 lx are predominant.

Differently in EV-low condition, BR and

PERCLOS were significantly correlated with

the RT in the sustained attention test when the

stimuli were both congruent and incongruent

(see Table 5). At this point, the same interpre-

tation can be employed for BR and PERCLOS

to be utilized as ocular measures in such

tests measuring sustained attention when lower

Table 8. Correlations between ocular variables and self-reported performance, glare sensation and alertness
answers.

Test types

BR BD PERCLOS EARmax

r p r p r p r p

Overall success – letter search test �0.013 0.919 �0.231 0.076 �0.038 0.774 0.501 0.00

Overall success – vigilance test �0.030 0.821 0.151 0.251 �0.021 0.875 0.467 0.00

Overall success – Stroop test �0.099 0.451 �0.016 0.904 �0.014 0.913 0.171 0.191

Motivation – letter search test 0.035 0.788 �0.084 0.525 0.002 0.989 0.405 0.001

Motivation – vigilance test 0.224 0.085 �0.020 0.879 0.206 0.115 0.141 0.284

Motivation – Stroop test �0.152 0.246 �0.101 0.441 �0.129 0.326 0.127 0.333

Concentration – letter search test �0.133 0.310 0.187 0.153 �0.117 0.375 �0.229 0.079

Concentration – vigilance test 0.254 0.050 �0.115 0.381 0.296 0.022 0.465 0.00

Concentration – Stroop test 0.191 0.143 0.222 0.089 0.242 0.062 �0.033 0.804

Mental effort – letter search test �0.032 0.808 0.222 0.089 �0.006 0.961 �0.118 0.368

Mental effort – vigilance test �0.049 0.711 0.130 0.323 0.072 0.583 0.076 0.566

Mental effort – Stroop test 0.017 0.899 0.140 0.285 0.105 0.422 0.166 0.206

GSV 0.245 0.059 �0.278 0.031 0.189 0.149 �0.263 0.043

KSSavg 0.224 0.085 0.172 0.190 0.259 0.046 �0.199 0.127

BR: blink rate; BD: blink duration; GSV: glare sensation vote; KSS: Karolinska Sleepiness Scale; PERCLOS: percentage of eye closure;

EARmax: eye aspect ratio-max.

Differences are significant at p< 0.05 and p< 0.01 levels.
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illuminances of around 800 lx are predominant
inside the space.

Regarding the subjective performance indica-
tors, participants’ self-reported measures on
mental effort and concentration were signifi-
cantly correlated with the time spent in sus-
tained attention test while the stimuli were
congruent. Similarly, increase in the mental
effort during vigilance test was not able to
decrease the errors made. These findings suggest
that increased mental effort and concentration
during such tests are likely to arise due to the
cognitive difficulty levels (see Table 6).

Concerning the relationships between perfor-
mance variables and the GSV and KSS ratings,
SV was found highly correlated with the KSS,
revealing that the prolonged search time is
coherent with higher KSS scores that signifies
less arousal (see Table 7). The same relationship
was also found between RT and KSS scores in
Stroop test, which implies that affective state
might be considered as a useful clue for measur-
ing cognitive functions. Finally, a correlation in
unpredicted direction was found between GSV
ratings and SV, indicating a relationship
between prolonged SV and less sensation of
glare which requires a follow-up investigation.

As for the relationships between ocular and
STP variables, the results revealed that EARmax

showed the highest number of correlations with
the STP items, whereas BD and PERCLOS
showed weaker relationship with only a few
items, and BR was not found to be significantly
correlated with any STP items (see Table 8).

Considering the GSV ratings, the results
showed a significant negative correlation
between GSV and EARmax (see Table 8). This
suggests that subjective disturbance of glare can
be associated with reduced eye openness during
performing such cognitive tests. In further stud-
ies with a wider range of subjects, the robustness
of the use of EARmax needs to be enhanced for
its implementation as a metric for identifying
the physiological and affective changes in VDT
workers under various lighting conditions.
Regarding another negative correlation between
GSV and BD, one possible explanation might be

that shorter BD is in fact related to the subjec-
tive feeling of visual disturbance that forces an
individual to blink faster than usual, though
previous studies generally associate prolonged
eye closure with higher load, visual demand or
less arousal. As for the relationship between
KSS and the ocular variables, higher
PERCLOS was found to be significantly corre-
lated with less arousal, thus confirming earlier
studies suggesting this metric for measuring the
level of alertness.

Future research directions

In this study, we investigated the impacts of
varying levels of illuminance by comparing
two fixed façade settings. A next step could be
allowing users to manipulate the shading as they
prefer, to investigate whether any performance
differences will be found under default and pre-
ferred lighting settings. Moreover, this study
was undertaken in a workplace setting in
which the user was sitting and facing parallel
to the window; but it is not highly recommended
due to the possibility of glare. To find out the
magnitude of the layout impacts on cognitive
load, this study should be replicated in a work-
place setting that is recommended by the guide-
lines. Artificial light is another significant
aspect, since there is often an integration
between daylight and electrical light in workpla-
ces. We should further investigate the cognitive
load of VDT users under this sort of lighting
setting to test whether there will be any positive
cognitive, affective and physiological changes
with the contribution of artificial light.

Conclusion

Most research published in this field so far have
used different experimental methods for deter-
mining cognitive load under the influence of
luminous environment. They individually serve
to bring a deeper knowledge for better under-
standing of such clues on lighting of workspaces
as to predict cognitive processes during VDT
use. On the other hand, the whole picture
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requires more multi-directional experimental

designs also considering the fact that in reality,

various tasks are performed in such VDT work-

spaces wherein mainly dynamic daylighting

conditions are dominant. For this reason,

cognitive load of VDT workers needs to be ana-

lysed under more sensitive experimental lighting

conditions. This should be implemented with

such an approach not only by means of compar-

isons of specific assessment factors (e.g. perfor-

mance, subjective, physiological measures)

under different lighting scenarios but also

relating these measures to one another. This

will ultimately help to alleviate health, well-

being and performance related problems in

workspaces and contribute to organizational

productivity.
The aim of the present study, accordingly,

was to analyse cognitive load of VDT workers

with a multi-perspective approach based on

three groups of variables (performance, physio-

logical, subjective) while various computer-

based tests were being performed in a full-scale

mock-up daylit VDT workstation.
The findings of this study could suggest that a

practical application, the use of a shading

device, might deliver an efficient solution on

such a multifaceted question about the potential

effects of luminous environment on the evalua-

tion of cognitive load. Work environments

might be considered as cognitively efficient if

only the harmony of less mental effort,

more satisfaction and less health problems

exist, which together ultimately deliver higher

work performance. In real-world work environ-

ments, application of such shading devices

involves advantages not for only avoiding

excessive daylight exposure or optimizing

energy consumption, but also facilitating cogni-

tive, affective and physiological processes of

individuals.
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3. G€oçer €O, G€oçer K, Erg€oz Karahan E, et al. Exploring

mobility & workplace choice in a flexible office through

post-occupancy evaluation. Ergonomics 2018; 61:

226–242.

4. Boyce P, Hunter C and Howlett, O. The benefits of day-

light through windows. Troy, NY: Lighting Research

Center, 2003.

5. Paas F and Van Merri€enboer JJG. Instructional control

of cognitive load in the training of complex cognitive

tasks. Educ Psychol Rev 1994; 6: 351–371.

6. Choi HH, Van Merri€enboer JJG and Paas FGWC.

Effects of the physical environment on cognitive load

and learning: towards a new model of cognitive load.

Educ Psychol Rev 2014; 26: 225–244.

7. Brünken R, Seufert T and Paas FGWC. Measuring cog-

nitive load. In: Sweller J, Ayres P and Kalyuga S (eds)

Cognitive load theory. New York, NY: Springer, 2011,

pp.71–85.

8. Hart SG and Staveland L. Development of the NASA

task load index (TLX): results of empirical and theoret-

ical research. In: Meshkati N (ed.) Human mental work-

load. Amsterdam: North-Holland, 1988, pp.39–183.

9. €Orün €O and Akbulut Y. Effect of multitasking, physical

environment and electroencephalography use on cogni-

tive load and retention. Comput Hum Behav 2019; 92:

216–229.

10. Miyake S. Multivariate workload evaluation combining

physiological and subjective measures. Int J

Psychophysiol 2001; 40: 233–238.

14 Journal of Building Services Engineering Research and Technology 0(0)

https://orcid.org/0000-0001-5551-068X
https://orcid.org/0000-0001-5551-068X
https://orcid.org/0000-0002-0720-2380
https://orcid.org/0000-0002-0720-2380


11. Just MA, Carpenter PA and Miyake A. Neuroindices of

cognitive workload: neuroimaging, pupillometric and

event-related potential studies of brain work. Theor

Issues Ergon Sci 2003; 4: 56–88.

12. Xu J, Wang Y, Chen F, et al. Pupillary response based

cognitive workload measurement under luminance

changes. Hum–Comput Interact 2011: 178–185.

13. Martins R and Carvalho J. Eye blinking as an indicator of

fatigue and mental load – a systematic review. In: Arezes

PM, Baptista JS, Barroso MP, et al. (eds) Occupational

safety and hygiene III. London: CRC Press, 2015,

pp.231–235.

14. Mayer RE. Multimedia learning. 2nd ed. New York,

NY: Cambridge University Press, 2009.

15. Marcus N, Cooper M and Sweller J. Understanding

instructions. J Educ Psychol 1996; 88: 49–63.

16. Waters GS and Caplan D. Verbal working memory and

on-line syntactic processing: evidence from self-paced

listening. Q J Exp Psychol 2004; 57: 129–163.

17. Van Der Linden D, Frese M and Meijman, TF. Mental

fatigue and the control of cognitive processes: effects on

perseveration and planning. Acta Psychol 2003; 113:

45–65.

18. Knez I. Effects of indoor lighting on mood and cogni-

tion. J Environ Psychol 1995; 15: 39–51.

19. Hygge S and Knez I. Effects of noise, heat and indoor

lighting on cognitive performance and self-reported

affect. J Environ Psychol 2001; 21: 291–299.

20. Sun C, Lian Z and Lan L. Work performance in relation

to lighting environment in office buildings. Indoor Built

Environ. Epub ahead of print 26 December 2018. https://

doi.org/10.1177/1420326X18820089

21. Smolders KCHJ, De Kort YAV and Cluitmans PJM. A

higher illuminance induces alertness even during office

hours: findings on subjective measures, task perfor-

mance and heart rate measures. Physiol Behav 2012;

107: 7–16.

22. Eklund NH, Boyce PR and Simpson SN. Lighting and

sustained performance. J Illum Eng Soc 2000; 29:

116–130.

23. Fostervold K and Nersveen J. Proportions of direct and

indirect indoor lighting – the effect on health, well-being

and cognitive performance of office workers. Light Res

Technol 2008; 40: 175–200.

24. Hawes BK, Bruny�e TT, Mahoney CR, et al. Effects of

four workplace lighting technologies on perception, cog-

nition and affective state. Int J Ind Ergon 2012; 42:

122–128.

25. Ferlazzo F, Piccardi L, Burattini C, et al. Effects of new

light sources on task switching and mental rotation per-

formance. J Environ Psychol 2014; 39: 92–100.

26. Knez I and Hygge S. Irrelevant speech and indoor light-

ing: effects on cognitive performance and self-reported

affect. Appl Cognit Psychol 2002; 16: 709–718.

27. Yamin Garret�on JA, Rodriguez RG, Ruiz A, et al.

Degree of eye opening: a new discomfort glare indicator.

Build Environ 2015; 88: 142–150.

28. Yamin Garret�on JA, Rodriguez RG and Pattini AE.

Glare indicators: an analysis of ocular behaviour in an

office equipped with venetian blinds. Indoor Built

Environ 2016; 25: 69–80.

29. Cuttle C. People and windows in workplaces. In:

Proceedings of the people and physical environment

research conference, Wellington, New Zealand, 8–11

June 1983, pp.203–212.

30. Veitch JA and Gifford R. Assessing beliefs about light-

ing effects on health, performance, mood and social

behavior. Environ Behav 1996; 28: 446–470.

31. Veitch JA, Hine DW and Gifford R. End users’ knowl-

edge, preferences, and beliefs for lighting. J Inter Des

1993; 19: 15–26.

32. Heerwagen JH and Heerwagen DR. Lighting and psy-

chological comfort. Light Des Appl 1986; 16: 47–51.

33. Kunduraci AC, Kazanasmaz T and Hordijk T.

Examining occupancy and architectural aspects affect-

ing manual lighting control behaviour in offices based

on a user survey. Light Eng 2018; 26: 139–147.

34. Leccese F, Salvadori G, Montagnani C, et al. Lighting

assessment of ergonomic workstation for radio diagnos-

tic reporting. Int J Ind Ergon 2017; 57: 42–54.

35. Roenneberg T, Wirz-Justice A and Merrow M. Life

between clocks: daily temporal patterns of human chro-

notypes. J Biol Rhythms 2003; 18: 80–90.

36. Fortuin G. Visual power and visibility. Philips Res Rep

1951; 6: 347–371.

37. Occupational Safety and Health Administration. Indoor

air quality investigation, 1999, https://www.osha.gov/

dts/osta/otm/otm_iii/otm_iii_2.html#5 (accessed 18

June 2019).

38. Leccese F, Salvadori G, €Oner M, et al. Exploring the

impact of external shading system on cognitive task per-

formance, alertness and visual comfort in a daylit work-

place environment. Indoor Built Environ. Epub ahead of

print 2019. https://doi.org/10.1177/1420326X19864414

39. Van Rossum G and Drake FL. Python Language refer-

ence manual. Bristol: Network Theory Ltd, 2011.
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