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ABSTRACT 
 

OUT-OF-PLANE VIBRATIONS OF PLANAR CURVED BEAMS 

HAVING VARIABLE CURVATURE AND CROSS-SECTION 

 

In this study, out of plane vibration characteristics of curved beams having 

variable curvatures and cross-sections are studied by FDM (Finite Difference Method). 

The effects of curvature and cross-section of the curved beam on natural frequencies are 

investigated for the curved beams having; variable curvature & constant cross-section 

and variable curvature & variable cross-section. Mathematical model of the present 

problem is based on the coupled differential eigenvalue problem with variable 

coefficients. Numerical solutions of the problem in this study are obtained by the 

computer program developed in Mathematica. The accuracy of the present results 

obtained from the developed program is evaluated by comparing with FEM (Finite 

Element Method) results found from solid model created in ANSYS. Good agreement is 

obtained in the comparisons of the present results with other results. All results are 

presented in tabular and graphical forms. 
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ÖZET 
 

DEĞĠġKEN EĞRĠLĠK VE KESĠTE SAHĠP DÜZLEMSEL EĞRĠ 

ÇUBUKLARIN DÜZLEM DIġI TĠTREġĠMLERĠ 

 

Bu çalıĢmada, değiĢken eğrilik yarıçapı ve kesit alanına sahip eğri çubukların 

düzlem dıĢı titreĢim karakteristikleri Sonlu Farklar Yöntemi ile incelenmiĢtir. Eğri 

çubuğun eğriliğinin ve kesitinin doğal frekanslara etkileri; değiĢken eğrilik-sabit kesit 

ve değiĢken eğrilik-değiĢken kesit durumları için araĢtırılmıĢtır. Mevcut problemin 

matematiksel modeli değiĢken katsayılı bağlaĢık diferansiyel özdeğer problemine 

dayanmaktadır. Bu çalıĢmadaki problemin sayısal çözümü Mathematica’da geliĢtirilmiĢ 

bilgisayar programı ile elde edilmiĢtir. GeliĢtirilen programdan elde edilen çözümlerin 

doğruluğu ANSYS de oluĢturulan katı modelden bulunan Sonlu Elemanlar Metodu 

sonuçları ile karĢılaĢtırılarak değerlendirilmiĢtir. Mevcut sonuçların diğer sonuçlar ile 

karĢılaĢtırılmasından iyi uyum elde edilmiĢtir. Tüm sonuçlar tablolar ve grafikler olarak 

sunulmuĢtur. 
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CHAPTER 1  

 

GENERAL INTRODUCTION 

 

Vibration is the motion of a particle, system of particles or continuous elastic 

body displaced from a position of equilibrium. In other words, vibration is the study for 

dynamics of elastic bodies. Vibrations are generally undesired motions for most of the 

machines and structures. They cause higher stresses, energy loses, increased bear loads, 

induced fatigue, wear of machine parts, damage to machines and buildings and 

discomfort to human beings. On the other hand, vibrations have a vital importance for 

humans if you think about;  

 Beating of heart, 

 Breathing - Oscillation of lungs, 

 Walking - Oscillation of legs and hands, 

 Shivering - Oscillation of body in extreme cold, 

 Hearing - Ear receives vibrations to transmit message to brain, 

 Speaking - Vocal chords vibrates to make sound. 

Curved beam structures have been used in many engineering applications since 

the nineteenth century. The utilization of these structures can be mostly found out in the 

mechanical, civil, aerospace engineerings and various fields. These applications can be 

listed for mechanical engineering as follows: spring design, brake shoes within drum 

brakes, tire dynamics, circumferential stiffeners for shells, turbo machinery blades, in 

the piping systems of chemical plants, thermal power plants. Also other engineering 

applications can be found such as: curved girder bridges, design of arch bridges, 

highway construction, long span roof structures, curved wires in missile-guidance 

floated gyroscopes, wings of an airplane, propellers of an helicopter; and earthquake 

resistant structures. It is really necessary to have a sound knowledge of vibrations for a 

design engineer. 

Curved beams can be classified depending on their geometrical properties as; 

 in the shape of a space curve or a plane curve, 

 constant or variable curvature, 

 constant or variable cross section. 
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In general, the out-of-plane and the in-plane vibrations of curved beams are 

coupled. However, if the cross-section of the curved beam is uniform and doubly 

symmetric, then the out-of-plane and the in-plane vibrations are independent (Ojalvo 

1962). 

Many investigators have been studied out-of-plane vibrations of the curved 

beams because of the wide usage of curved beams and until now, insignificant 

researches have been performed for variable curvatures and cross-sections. Some of 

those researches are introduced in the next paragraphs with the inclusion of their various 

methods. 

Volterra and Morell (1961) used the Rayleigh-Ritz method to determine the 

lowest natural frequencies of elastic arcs with clamped ends. They managed to 

formulate the relationships for the length and the radius of curvature of a circle, a 

cycloid, a catenary and a parabola. 

Chang and Volterra (1969) developed an extended method based on the 

differential operator theory to determine the upper and the lower bounds of the first four 

natural frequencies of simply-supported arcs with central lines in the forms of circles, 

cycloids, catenaries and parabolas. The numerical values of the frequencies are 

compared with the results obtained by the Rayleigh-Ritz. 

Wang (1975) studied the analysis of the lowest natural frequency of the out-of-

plane vibration for a clamped elliptic arc of constant section. The Rayleigh-Ritz method 

is employed to obtain the frequency equation and the numerical results are presented in 

the form of curves. The effects of the opening angle on the natural frequencies of the arc 

are shown in these curves. 

Takahashi and Suzuki (1977) studied the vibrations of an uniform bar, of which 

the center line is an arc of ellipse and which vibrates perpendicularly to the plane of 

center line, neglecting the rotary inertia and the deformation due to shear. From the 

Lagrangion of the bar, equation of motion and the boundary conditions are obtained. By 

integrating the curvature along center line a new independent variable introduced to 

simplify these equations and boundary conditions. The solution was found out as a form 

of power series. 

Suzuki et al. (1978) used the Rayleigh-Ritz and Lehmann-Maehly methods to 

determine frequencies and mode shapes of various curved bars with clamped ends. At 

the same time, they carried out numerical calculations about symmetric ellipse, sine 
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catenary, hyperbola, parabola and cycloid arcs. They obtained a common tendency for 

the vibrations of curved bars.  

Irie et al. (1980) presented an analysis of the steady state out-of-plane vibration 

of a free-clamped Timoshenko beam with internal damping by using the transfer matrix 

approach. The equations of the beam are written in a matrix differential equation of first 

order by use of this method. The method is applied to free-clamped non-uniform beams 

with circular, elliptical, catenary and parabolical neutral axes. The elements of the 

matrix are determined by numerical integration, thus from the matrix and the boundary 

conditions, all the other variables are determined. 

Suzuki and Takahashi (1981) presented a method for a free out-of-plane 

vibrations of a plane curved bar including the effects of the bending, the torsion, the 

shear deformation and the rotatory inertia of bar. Timoshenko’s beam theory is used to 

derive the basic equations. First, the Lagrangian of vibration of a curved bar is obtained 

and the equations of vibration and the boundary conditions are determined. Then, the 

equations are solved exactly by series solution. Natural frequencies and mode shapes for 

symmetric catenary, parabola and cycloid curved bars with clamped ends are obtained. 

The numerical results with this theory are compared with the ones by the classical 

theory. A good agreement is reached and the effects of the shear deformation and the 

rotator inertia are clarified. 

Suzuki et al. (1983) used classical theory for the out-of-plane free vibrations of a 

plane curved bar with an arbitrary varying cross-section. The equations and the 

boundary conditions are determined from the Lagrangian of the bar. Equations are 

solved exactly in series solution. The natural frequencies and the mode shapes of an 

elliptic arc bars with both clamped ends and both simply supported ends are obtained. 

Kawakami et al. (1995) presented a method for the free vibration analysis for 

both the in-plane and the out-of-plane cases of horizontally curved beams with arbitrary 

shapes and variable cross-sections. Firstly, the fundamental equations of a curved beam 

are transformed into integral equations and the discrete Green functions are obtained by 

approximate solution of these equations. Secondly, according to the integral theorem, 

the fundamental equations transformed into equivalent boundary integral equations. 

Finally, the eigenvalues for free vibration are obtained by applying the Green function 

and using the numerical integration. Numerical results are compared with those 

obtained by a FEM and the effectiveness of the proposed method is confirmed. 



 4 

Huang and Chang (1998) presented an extended methodology for analyzing the 

out-of-plane dynamic responses or arches which was used to solve in-plane ones before. 

An exact solution is formulated for the transformed governing equations in the Laplace 

transform domain. Key elements for the solution such as dynamic stiffness matrix and 

equivalent nodal loading vector for a curved bar are also formulated. The analytical 

solution in the Laplace domain is obtained by using the Frobenius method. The results 

for the displacement component and the stress resultants are given to show the accuracy 

of this method. The most important advantage of this method is providing accurate 

dynamic responses both for the displacement components and for the higher derivatives 

of displacement without any difficulties. 

Huang et al. (2000) investigated the linear out-of-plane dynamic responses of 

planar curved beams with arbitrary shapes and cross-sections including the effects of 

shear deformation and rotary inertia. Frobenius method is used to develop a series 

solution for curved beams in terms of polynomials. The exact solution for the out-of-

plane free vibration of a curved beam is established by transforming the solution in the 

Laplace domain into the frequency domain. This solution is not limited with symmetry; 

both symmetric and anti-symmetric modes are formulated together. Accurate results can 

be obtained with the help of Laplace transform and an analytical solution in the Laplace 

domain is concluded in higher accuracy for stress resultants. A convergence study is 

also presented to demonstrate the validity o f proposed solution. 

Lee and Chao (2000) derived the governing equations for the out-of-plane 

vibrations of a curved non-uniform beam of constant radius via Hamilton’s principle. A 

non-uniform beam with double symmetric cross-section situation is considered. The 

thickness of the beam assumed as so small in comparison with the radius of the beam. 

Thus, the shear deformation, the rotary inertia and the warping effects are not taken into 

account. By introducing two physical parameters, the analysis is simplified and it is 

found that the torsional displacement and its derivative can be explicitly expressed in 

terms of the flexural displacement. The two coupled governing characteristic 

differential equation are decoupled and reduced to one sixth-order ordinary differential 

with variable coefficients in the out-of-plane flexural displacement. Exact solutions for 

the out-of-plane vibrations of non-uniform curved beams are obtained. The study for a 

curved non-uniform beam is successfully revealed with the help of explicit relations. 

The influence of taper ratio, center angle and arc length on the first two natural 

frequencies of the beam is also studied. 
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Kim et al. (2003) presented an improved energy formulation for spatially 

coupled free vibration and buckling of non-symmetric thin-walled curved beams with 

variable curvatures. By introducing the displacement field and considering the effects of 

variable curvatures, the total potential energy of non-circular curved beam is derived 

and then a beam element for Finite Element Analysis is developed. Numerical solutions 

are illustrated to show the accuracy and the validity of this element. The influences of 

the arch rise to span length ratio on spatial vibrations and buckling behaviors of non-

circular beams with the parabolic and elliptic shapes are also investigated. 

Tüfekçi and Doğruer (2006) aimed to give the exact solution to the governing 

equations of the out-of-plane deformation of an arch of general geometry and also 

exhibit the advantages of the solution by using the initial value method considering the 

shear deformation effect. The stress resultants and displacements throughout the beam 

are found with the help of initial values of these parameters. The main advantage of this 

method is that the higher degree of statically indeterminacy does not add any difficulty 

to the solution. The examples in the literature are also solved and the results are 

compared with each others. 

Lee at al. (2008) derived the governing differential equations out-of-plane free 

vibrations of the elastic, horizontally curved beams with variable curvatures and solved 

numerically to obtain natural frequencies and mode shapes for parabolic, sinusoidal and 

elliptic beams with hinged-hinged, hinged-clamped and clamped-clamped end 

constraints. The effects of the shear deformation, rotatory and torsional inertias are 

considered whereas the warping of the cross-section is excluded. Non-dimensional 

equations of the stress resultants are formulated to present the mode shapes and 

deformations. Experimental methods are also described for measuring the free vibration 

frequencies for parabolic beams, which agree well with those predicted by theory. 

In spite of the fact that, there is no considerable amount of the researches, so the 

vibration characteristic is seemed to be an interesting and a worth studying subject since 

the variety and the complexity of the effects of the parameters are taken into account. 

Therefore, in this study, the effects of variable radius of curvature and cross-section on 

vibration characteristics of curved beams are studied. Finite Difference Method is used 

to reduce to differential eigenvalue problem to discrete eigenvalue problem to solve 

numerically. A symbolic computer program is developed in Mathematica to determine 

the eigenvalues. Using the developed program, natural frequencies are obtained and the 

effects of parameters such as variable radius of curvature and cross-section are found. 
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The accuracy and numerical precision of the developed program are evaluated 

by using the finite element model results found from the solid model created and solved 

in ANSYS. A very good agreement is reached in the comparisons of the present results 

with FEM results. The effects of cross-section and curvature variation parameters are 

given in tabular and graphical form. 
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CHAPTER 2 

 

DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS 

 

2.1. Introduction 

 

In this chapter, all the necessary information to identify the problem is given. 

The geometry of the beam is given and the radius of the curvature is expressed in 

desired form. Newtonian method and Hamilton’s principle are presented which are used 

to derive the equation of motions. Boundary conditions are listed for different types of 

end conditions: clamped, pinned and free. 

The governing differential equations of motions for free vibrations which are 

derived from the Hamilton’s principle based on the energy equations are introduced. By 

using the separation of variable method, the problem is transformed into one 

dimensional eigenvalue problem with variable coefficients. 

A numerical approach is needed to solve this eigenvalue since the differential 

equations having variable coefficients are analytically unsolvable in most cases. The 

differential eigenvalue problem is reduced to discrete eigenvalue problem by using 

Finite Difference Method. Finally, discrete eigenvalue problem regarding the natural 

frequencies and the mode shapes is introduced as generalized eigenvalue problem. 

 

2.2. Description of the Problem 

 

The out-of-plane free vibrations of a uniform curved beam of which the center 

line is a plane curve having variable curvature and cross-section are considered. The 

material of the beam is assumed as isotropic. The problem is chosen as a cantilever 

beam; one end is fixed and other end is free. The boundary conditions are written for 

this end conditions. The cases of variable radius of curvature and constant cross-section 

and variable radius of curvature and variable cross-section are investigated in order to 

find out the effects of the parameters on vibration characteristics. 
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2.3. Geometry of Curved Beam 

 

 In this study, a curved beam in the shape of a catenary curve is selected. 

Geometrical properties of the selected curve are presented with the aid of Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Parameters of catenary beam 

 

The function of the catenary curve in cartesian coordinate system is written as follows 

(Yardimoglu, 2010): 

 

]1)/[cosh()( 00  RzRzx     (2.1) 

 

The slope α of the curve at any point is obtained by differentiation of Equation 2.1 with 

respect to z as 

 

)/sinh(/)(tan 0Rzdzzdx     (2.2) 

 

The tip co-ordinates of the curved beam (zr, xr) can be expressed in terms of αr as 

 

)sinh(tan0 rr arcRz      (2.3) 

 

)1cos/1(0  rr Rx       (2.4) 

 

z 

R0 

R(α) 

α 

x 

0 

αr 
(zr, xr) 

sL 
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Since the arc length s from origin to any point (z, x) on the curve is determined by using 

the well-know equation (Riley et al. 2006) 

 

dzdzzdxs
s

 
0

2)/)((1(     (2.5) 

 

the following relationship between s and α is obtained: 

 

tan0Rs        (2.6) 

 

Similarly, the arc length sL from origin to point (zr, xr) can be expressed as 

 

rL Rs tan0       (2.7) 

 

Radius of curvature at z is found as 

 

 
)/(cosh

/)(

)/)((1
)( 0

2

022

2
3

2

0 RzR
dzzxd

dzzdx
z 


  (2.8) 

 

Eliminating the variable z in Equation 2.8 by using Equation 2.2, radius of curvature can 

be written in terms of α as follows: 

 

 2

00 cos/)( R      (2.9) 

 

Now, cos α can be expressed in terms of s by using Equation 2.6 as 

 

22

00 /cos sRR      (2.10) 

 

Therefore, radius of curvature can also be written in terms of s as follows: 

 

0

2

00 /)( RsRs       (2.11) 

 



 10 

 A planar curved beam with variable curvature and cross section is shown Figure 

2.2. The breadth and depth functions of the curved beam are selected as follows 

 

sbbsb 10)(       (2.12) 

 

shhsh 10)(       (2.13) 

 

where b0 and h0 are breadth and depth of curved beam at s=0, respectively. Also, b1 and 

h1 are breadth and depth parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. A planar curved beam with variable curvature and cross section 

 

 

2.4. Derivation of the Equation of Motion 

 

In this section, derivations of equations of motion for out of plane motion of 

curved beam having variable radius of curvature and variable cross-section are 

presented by two methods which are Newtonian Method and Hamilton’s Principle. The 

advantages of Hamilton’s principle are stated. Then, physical interpretations for 

boundary conditions are listed. 
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2.4.1. Newtonian Method 

 

Newtonian method is a vectorial approach in order to obtain the equilibrium 

equations. The main drawback of the Newtonian method is that it requires free-body 

diagram of the system including all forces and moments acting on the system. Also, 

linear and angular accelerations of the system are necessary. 

Newtonian method is based on the following two vectorial equations: 

 

amF
i

i


      (2.14) 

 

 
i

i IM 


     (2.15) 

 

 

Figure 2.3. A curved beam with internal forces and moments 

 

Internal forces due to the out of plane motion of a planer curved beam are shown 

in Figure 2.3. By using Equations 2.14 and 2.15, force and moment equilibrium 

equations of the present curved beam can be obtained as follows (Love 1944): 

 

vmF
ds

dV
y

y       (2.16) 

 

x 

z 

y 

Mz 

Nz 

Vy Mx 
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0
0

 y
zx V

M

ds

dM


     (2.17) 

 




iT
M

ds

dM
z

xz 
0

    (2.18) 

 

where the overdot shows the differentiation with respect to time, m and i are mass per 

unit length and mass polar moment inertia per unit length, respectively. They can be 

written in terms of density ρ and cross-sectional properties A and J as follows: 

 

Am       (2.19) 

 

Ji       (2.20) 

 

where A(s) and J(s) are cross-sectional area and torsional constant of cross-section. 

Bending and twisting moments in Equation 2.17 and 2.18 are given as 

 

xxx EIM       (2.21) 

 

GJM z       (2.22) 

 

in which 

)(
2

2

0 s

v









     (2.23) 

 

)
1

(
0 s

v

ds

d








     (2.24) 

 

 It should be noted that external force in y direction Fy and external twisting 

moment about z axis Tz are zero for free vibration analysis. 

 The disadvantage of this method is expressing the boundary conditions which 

are based on the understanding of the internal forces and moments. 
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2.4.2. Hamilton’s Method 

 

 The Hamilton's principle is the most powerful variational principle of 

mechanics. It permits the formulation of problems of dynamics in terms of two scalar 

functions, the kinetic energy and the potential energy, Moreover, it gives associated 

boundary conditions where Newtonian method encounters difficulties, especially in 

distributed-parameter systems. 

The principle can be stated as follows; “Of all possible time histories of 

displacement states that satisfy the compatibility equations and the constraints or the 

kinematic boundary conditions and that also satisfy the conditions at initial and final 

times t1 and t2, the history to the actual solution makes the Langrangian a minimum” 

(Meirovitch 1967). The principle can be defined mathematically as follows: 

 

0)(
2

1

 dtVT

t

t

      (2.25) 

 

Where T is the kinetic energy and V is the elastic strain energy due to the out of 

plane motions of the curved beam. Kinetic energy and elastic strain energy of the 

curved beam are given as follows; 
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S
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If Equations 2.19 and 2.20 are substituted into Equation 2.26, and Equations 

2.21 and 2.22 are substituted into Equation 2.27, the following equations are written: 

 

dsJvAT
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0
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Using the kinetic and elastic energies given in Equations 2.28 and 2.29 along 

with Equations 2.23 and 2.24 in Equation 2.25, governing differential equations for 

vibrations of curved beams having variable radius of curvature and cross-section and 

associated boundary conditions can be obtained as follows: 
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The associated boundary conditions are: 
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In Equation 2.32, prime represents the differentiation with respect to s. 

Physical interpretations for boundary conditions corresponding to Equations 

2.32-2.34 are as follows, respectively: 

a) Either bending moment is zero (pinned or free), or slope is zero (clamped). 

b) Either twisting moment is zero (pinned or free), or rotation is zero (clamped). 

c) Either shear force is zero (free), or displacement is zero (pinned or clamped) 

 

If the boundary conditions of the curved beam are homogeneous as in Equations 2.32-

2.34, the solutions of Equations 2.30-2.31 are assumed as 
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)()(),( tTsVtsv      (2.35) 

 

)()(),( tTsBts      (2.36) 

 

where )(sV  and )(sB are linear and angular displacements as function of s, respectively. 

Time dependent function can be chosen as )exp()( titT   in which ω is the circular 

natural frequency of the harmonic vibrations. Thus, Equations 2.30-2.31 are reduced to 

following coupled differential eigenvalue problem in terms of )(sV  and )(sB : 
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The new boundary conditions as functions of s can be obtained easily by replacing d 

instead of  in Equations 2.32-2.34 since there is no time dependent term in BCs. 

 Geometrical properties as function of s are detailed in this paragraph. Area 

moment of inertia of the cross-section about xx-axis is determined by 

 

12

)()(
)(

3shsb
sI xx       (2.39) 

 

Equation 2.11 is given here again for completeness, 

 

0

2

00 /)( RsRs       (2.40) 

 

Torsional constant J for rectangular cross-section is given as (Popov 1998) 

 

3)()()( shsbCsJ       (2.41) 
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where the values of parameter Cβ depends on the ratio of b/h. By using the Equations 

2.39-2.41 in Equations 2.37-2.38, the present problem equations are obtained to solve 

by Finite Difference Method which will be explained in next section. 

 

2.5. Natural Frequencies by Finite Difference Method 

 

The Finite Difference Method is a numerical method for solution of differential 

equations by using approximate derivatives (Hildebrand 1987). 

Since the differential equations having variable coefficients are analytically 

unsolvable except for equations having special combinations of coefficients, the Finite 

Difference Method can be used. 

 

 

 

 

 

 

Figure 2.4. A domain divided into six subdomains for approximation 

 

In the Finite Difference Method, the derivatives of dependent variables in the 

differential equations are replaced by the finite difference approximations at mesh 

points and these equations are enforced at each mesh points. Therefore, n simultaneous 

algebraic equations are obtained. In this study, central difference approximation which 

is detailed in Table 2.1 is used. 

Therefore, differential eigenvalue problem given by Equation 2.37-2.38 and 

associated boundary conditions is reduced to discrete eigenvalue problem which can be 

written as follows: 

 

    XBXA ][      (2.42) 

Solutions of the generalized eigenvalue problem given by Equation 2.42 can be 

obtained by a mathematical software such as Matlab, Mathematica or Maple. 
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Table 2.1. Finite difference equations 

 

Term Central Difference Expressions for required derivatives of V(s) and B(s) 
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CHAPTER 3 

 

NUMERICAL RESULTS AND DISCUSSION 

 

3.1. Introduction 

 

In this chapter, numerical applications are carried out for curved beams with 

different curvature and cross-sectional properties. The main numerical data are as 

follows: bo=ho=0.01 m, E=200 GPa, G=80 GPa, ρ=7850 kg/m
3
, sL=0.12 m. Other data 

are given in table and figure legends. The numerical results are found and compared 

with FEM results obtained from solid model created in ANSYS. The results given in 

tabular and graphical forms are discussed. 

 

3.2. Comparisons and Applications for Variable Curvature and 

Constant Cross-Section 

 

 In this section, as first step, in order to determine the proper number of node in 

finite difference mesh, the first natural frequencies are found for different number of 

node and shown in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Convergence of first natural frequency for R0=50 mm and b1=h1=0. 
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 Considering the tendancy of the curve shown in Figure 3.1, the proper number of 

node for FDM is selected as 100 for all calculations. 

 To evaluate the results of FDM for the case of variable curvature and constant 

cross-section, four different solid models depending on R0 are created in ANSYS by 

using 4x4x50 Solid 95 elements. 

 The natural frequencies found for different R0 by Finite Difference Models and 

Finite Element Models are tabulated in Table 3.1 and plotted in Figure 3.2. The mode 

shapes are given in Figure 3.3. 

 

Table 3.1. Comparison of natural frequencies found for different R0 by FDM with 

 FEM results (b1=h1=0) 

  R0=50 mm R0=100 mm R0=150 mm R0=200 mm 

f1 (Hz) 

bending 1 

FDM 556.2 562.9 564.7 565.4 

FEM 569.7 568.4 566.6 565.6 

f2 (Hz) 

bending 2 

FDM 3084.5 3157.9 3275.8 3358.3 

FEM 3035.6 3115.0 3221.0 3291.0 

f3 (Hz) 

torsion 1 

FDM 7802.6 7481.7 7186.7 7009.3 

FEM 7812.2 7489.7 7244.8 7106.6 

f4 (Hz) 

bending 3 

FDM 9556.1 9810.8 9891.1 9913.9 

FEM 8968.7 9215.7 9274.6 9283.7 

f5 (Hz) 

bending 4 

FDM 18942.1 19160.5 19227.6 19274.6 

FEM 16909.0 17081.9 17155.1 17194.7 

f6 (Hz) 

torsion 2 

FDM 21118.5 20546.6 20329.9 20217.0 

FEM 21482.7 20993.2 20787.6 20689.9 

f7 (Hz) 

bending 5 

FDM 31422.2 31798.7 31920.0 31982.1 

FEM 26565.2 26778.3 26862.5 26902.5 

f8 (Hz) 

torsion 3 

FDM 34216.9 33656.5 33486.2 33403.8 

FEM 34929.3 34525.7 34379.8 34313.2 
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  a) Bending 1     b) Bending 2 

 

 

 

 

 

 

 

  c) Torsion 1     d) Bending 3 

 

 

 

 

 

 

 

  e) Bending 4     f) Torsion 2 

 

 

 

 

 

 

 

  g) Bending 5     h) Torsion 3 

Figure 3.2. Comparisons of natural frequencies found for different R0 by FDM with 

 FEM results. 
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a) First bending mode 

 

 

 

 

 

 

 

b) Second bending mode 

 

 

 

 

 

 

 

c) First torsion mode 

 

 

 

 

 

 

 

d) Third bending mode 

Figure 3.3. Mode shapes for for R0=50 mm and b1=h1=0 (cont. on next page) 
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e) Fourth bending mode 

 

 

 

 

 

 

 

f) Second torsion mode 

 

 

 

 

 

 

 

g) Fifth bending mode 

 

 

 

 

 

 

 

h) Third torsion mode 

Figure 3.3. (cont.) 
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Natural frequencies are plotted in Figures 3.2.a-h separately in the order of mode 

shapes to see the difference of FDM and FEM results clearly. 

In order to show the effect of the R0 on the natural frequencies of the beam, 

Figures 3.2.a-h are illustrated as natural ferqunecies versus R0. It can be seen from the 

Figures 3.2.a-h that the results of FDM and FEM have the same tendancy except first 

bending mode. For the first bending mode, the parameter R0 is very effective on the 

results of FDM and FEM. It is very interesting that the FDM and FEM results are 

almost the same for R0=200 mm. For other cases, it is obvious that when the mode 

number increases, the differences become more significant. 

The beam is in x-z plane as shown in Figures 2.1 or 2.3. The mode shapes given 

in Figure 3.3.a-h are obtained from FEM. In these figures, bending displacements are in 

y direction and torsional displacements are about local z axis. 

 

3.3. Applications for Variable Curvature and Cross-Section 

 

Numerical applications for the case of variable curvature and variable cross-

section are presented for various radius of curvatures in this section. 

 Effects of parameter R0 on natural frequencies for different tapering ratios are 

studied and the results are given in Table 3.2-4. 

 

Table 3.2. Effects of parameter R0 on natural frequencies for b1=h1=2/120 

 

 R0=50 mm R0=100 mm R0=150 mm R0=200 mm 

f1 (Hz) 610.87 617.486 619.338 619.993 

f2 (Hz) 3059.72 3113.66 3201.41 3260.86 

f3 (Hz) 8749.87 8428.42 8229.44 8117.2 

f4 (Hz) 8985.88 9218.79 9215.24 9188.5 

f5 (Hz) 17232.7 17436.8 17517.9 17561.1 

f6 (Hz) 21528.1 20964.9 20733.5 20623.2 

f7 (Hz) 28486.4 28772.1 28878.8 28929.5 

f8 (Hz) 34413.5 33915.4 33745.5 33667.3 
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Table 3.3. Effects of parameter R0 on natural frequencies for b1=h1=4/120 

 

 R0=50 mm R0=100 mm R0=150 mm R0=200 mm 

f1 (Hz) 685.64 692.20 694.00 694.63 

f2 (Hz) 3005.03 3041.14 3102.00 3142.39 

f3 (Hz) 7979.17 8060.64 8111.62 8148.87 

f4 (Hz) 10580.03 10378.29 10132.53 9968.70 

f5 (Hz) 15430.34 15592.03 15659.79 15693.52 

f6 (Hz) 22246.65 21760.07 21551.76 21454.86 

f7 (Hz) 25384.20 25560.93 25638.50 25674.15 

f8 (Hz) 34764.11 34399.54 34255.01 34188.85 

 

 

Table 3.4. Effects of parameter R0 on natural frequencies for b1=h1=6/120 

 

 R0=50 mm R0=100 mm R0=150 mm R0=200 mm 

f1 (Hz) 797.00 803.45 805.16 805.72 

f2 (Hz) 2930.13 2951.87 2990.30 3015.51 

f3 (Hz) 7133.35 7217.49 7267.87 7296.38 

f4 (Hz) 12720.34 12602.01 12392.65 12259.42 

f5 (Hz) 13710.32 13671.04 13680.67 13690.12 

f6 (Hz) 21633.21 21871.94 21967.59 22022.12 

f7 (Hz) 24084.31 23533.63 23312.78 23198.85 

f8 (Hz) 32110.80 32415.48 32528.06 32583.23 

 

 By using the numerical results given in Tables 3.2-4, different types of figures 

can be plotted. The first group plots are given in Figures 3.4-6 separately in the order of 

mode shapes, to see the effect of R0 on the natural frequencies for three different values 

of taper parameters b1=h1 in the range of each natural frequency. The second group 

plots are given in Figure 3.7 to combine all the parameters in one plot. 
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 a) Natural frequency 1   b) Natural frequency 2 

 

 

 

 

 

 

 

 c) Natural frequency 3   d) Natural frequency 4 

 

 

 

 

 

 

 

 e) Natural frequency 5   f) Natural frequency 6 

 

 

 

 

 

 

 

 g) Natural frequency 7   h) Natural frequency 8 

Figure 3.4. Natural frequencies for b1=h1=2/120. 
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 a) Natural frequency 1   b) Natural frequency 2 

 

 

 

 

 

 

 

 c) Natural frequency 3   d) Natural frequency 4 

 

 

 

 

 

 

 

 e) Natural frequency 5   f) Natural frequency 6 

 

 

 

 

 

 

 

 g) Natural frequency 7   h) Natural frequency 8 

Figure 3.5. Natural frequencies for b1=h1=4/120. 
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 a) Natural frequency 1   b) Natural frequency 2 

 

 

 

 

 

 

 

 c) Natural frequency 3   d) Natural frequency 4 

 

 

 

 

 

 

 

 e) Natural frequency 5   f) Natural frequency 6 

 

 

 

 

 

 

 

 g) Natural frequency 7   h) Natural frequency 8 

Figure 3.6. Natural frequencies for b1=h1=6/120. 
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    a) First natural frequencies 

 

 

 

 

 

 

 

 

 

 

    b) Second natural frequencies 

 

 

 

 

 

 

 

 

 

 

    c) Third natural frequencies 

Figure 3.7. Natural frequencies for different b1=h1 (cont. on next page) 
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    d) Fourth natural frequencies 

 

 

 

 

 

 

 

 

 

 

    e) Fifth natural frequencies 

 

 

 

 

 

 

 

 

 

 

    f) Sixth natural frequencies 

Figure 3.7 (cont.) 

6500

7500

8500

9500

10500

11500

12500

13500

50 100 150 200

Ro (mm)

f4 (Hz)

b1=h1=0 b1=h1=2/120

b1=h1=4/120 b1=h1=6/120

12000

13000

14000

15000

16000

17000

18000

19000

20000

50 100 150 200

Ro (mm)

f5 (Hz)

b1=h1=0 b1=h1=2/120

b1=h1=4/120 b1=h1=6/120

20000

20500

21000

21500

22000

22500

50 100 150 200

Ro (mm)

f6 (Hz)

b1=h1=0 b1=h1=2/120

b1=h1=4/120 b1=h1=6/120



 30 

 

 

 

 

 

 

 

 

 

 

    g) Seventh natural frequencies 

 

 

 

 

 

 

 

 

 

 

    h) Eighth natural frequencies 

Figure 3.7 (cont.) 

 

It is clear that, due to the frequency range used in each plot in Figures 3.7.a-h, 

just effects of different tapering factors b1=h1 on natural frequencies can be discussed. It 

can be seen from Figures 3.7.a-h that there is no certain tendency depending on taper for 

all modes. 

 When the first two natural frequencies in Figures 3.7.a-b are examined, which 

are both belong to bending, the increase in the taper ratio leads to an increase in the first 

natural frequencies. However, for the second natural frequencies, aforementioned case 

is reversed. 

 Third natural frequencies that are the first torsional frequencies are plotted in 

Figure 3.7.c. In this figure, it is seen that for b1=h1=0 and 2/120, natural frequencies are 
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decreased with the increasing of R0. On the contrary, this tendancy is inverted for 

b1=h1=4/120 and 6/120. 

 For the fourth natural frequencies, the effects similar to the third natural 

frequencies are also observed. But in this time, the decrease turns into an increase. The 

reason of this change is directly related to mode shapes. Third natural frequencies are 

related with torsional motion whereas fourth natural frequencies are bending motions. 

 Taper ratios affect the fifth natural frequencies in similar fashion with the 

increasing of R0. 

 Sixth natural frequencies that are the second torsional frequencies are plotted in 

Figure 3.7.f. It is partially similar to Figure 3.7.c. The only difference is the variation of 

natural frequencies with R0 for the taper parameters b1=h1=6/120. It is similar for the 

curve for b1=h1=0. 

 Seventh natural frequencies are very similar to the second and the fifth natural 

frequencies. Taper effects are the same in these three groups. 

 Eighth natural frequencies that are the third torsional frequencies are plotted in 

Figure 3.7.h. The exceptional behavior can be seen for b1=h1=6/120. 

Considering the all plots given in Figures 3.7.a-h, as the parameter R0 increases, 

the effects of taper parameters become more important. It can be said that R0=100 mm 

is a critical value since the tendency of some curves in these figures are changed 

sharply. 
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CHAPTER 4 

 

CONCLUSIONS 

 

In this study, the differential equations governing the free out-of plane vibrations 

of curved beams with variable curvature and variable cross-section are presented. The 

equations of motions are derived by using both Newtonian Method and the Hamilton’s 

principle. Since the coefficients of the derived differential equations are not constant, it 

is not possible to express an exact solution. 

For free vibration analysis, the coupled differential eigenvalue problem obtained 

by using separation of variables technique. It is reduced to discrete eigenvalue problem 

by using FDM (Finite Difference Method). 

In the existing literature, for the free out-of-plane vibrations of curved beams, 

most of the researchers investigated the symmetrical boundary conditions such as both 

ends fixed, pinned or free conditions. 

With this study, as far as the author is aware, for the first time, the natural 

frequencies for out-of plane vibrations of curved beams with variable curvature and 

variable cross-section as well as mode shapes are studied and presented for fixed-free 

condition. 

In order to validate the developed computer program to solve the differential 

eigenvalue problem based on FDM, the solid models are created for Finite Element 

analysis. The results, found out from FDM, are compared with the results from FEM 

(Finite Element Method). Good agreement is obtained for lower modes. 

The effects of taper and curvature parameters on natural frequencies are found 

for the linearly tapered curved beams in the shape of catenary with selected geometries. 
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