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Abstract– In this paper, the tracking control of a three
degree-of-freedom marine vessel is examined. The novelty of
this work is the transformation of the asymmetric inertia
matrix into a symmetric, positive definite matrix. The asym-
metry arises from the added mass common to practical surface
vessels and creates a significant challenge for control design.
The control design is further complicated by the parametric
uncertainties in the dynamic model of the vessel. Two adap-
tive control schemes with a projection-based adaptation law
are proposed: a full-state feedback controller and an output
feedback controller. Both controllers are known to yield a
uniformly ultimately bounded tracking result in the presence
of parametric uncertainty. Numerical simulation results are
shown to demonstrate the validity of the proposed controllers.

I. Introduction

From a control perspective, the properties of the
dynamic model of a marine vessel are of great im-
portance. Specifically, the symmetry and the positive
definiteness of the inertia matrix are crucial for control
design and it is usually assumed to be constant (or slowly
varying), strictly positive definite, and usually symmet-
ric. However, these are satisfied only under the ideal
conditions such as moving at low speed or interacting
with an ideal fluid by assuming close to zero relative
velocity. Non-ideal conditions such as imbalance of the
ship, hydrodynamic forces and moments due to the ship
and ocean current velocities, disturbances, parametric
uncertainties or limited availability of signals can be
encountered in many situations.
The inertia matrix of a vessel is commonly defined

to be equal to the sum of the rigid-body inertia matrix
and the added mass terms. The added mass terms result
from the hydrodynamic forces and moments due to the
motion of the vessel body and the interaction with the
ocean fluids. The rigid-body inertia matrix is a strictly
symmetric matrix, but the added mass matrix in surface
vessel dynamic models can easily become asymmetric,
especially in non-ideal conditions. This asymmetry in the
added mass terms will result in an asymmetric inertia
matrix which may cause system instability or a failure
in meeting the control objectives when ignored.
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The research into control of marine surface vessels can
be grouped by topic into maneuvering [1,2], dynamic
positioning [3,4], tracking (including path following or
way-point tracking) [7,9], and formation control [5].
In [6], Skjetne et al. identified the model of a three
degree-of-freedom (DOF) marine vessel, Cybership II,
and designed an adaptive maneuvering controller when
the inertia matrix was symmetric and positive-definite.
In [7], Do and Pan presented a global tracking controller
where the system matrices are positive definite with
nonzero off-diagonal entries. In [9], Behal et al. designed a
tracking controller for underactuated surface vessels with
nonintegrable dynamic models where the inertia matrix
was diagonal. In [8], Do proposed robust and adaptive
output feedback controllers for positioning of a surface
vessel subject to parametric uncertainties and distur-
bances, and assumed the system matrices to be positive
definite for low speed. Braganza et al. [12] investigated
the positioning of a disabled vessel by controlling six
tugboats where the uncertain inertia matrix for the ship
was assumed to be symmetric and positive definite. Much
of the relevant past research assumed a symmetric inertia
matrix. However, some researchers have addressed the
asymmetry of the inertia matrix. For example, Skjetne
et al. in [2] developed the dynamic model with Coriolis-
centripetal matrix model of the ship derived from the
asymmetric added mass matrix. Recently, Lee et al. [13]
proposed robust controllers for a surface vessel having
an asymmetric inertia matrix.
In this paper, the dynamic model of a surface vessel

is assumed to have asymmetric added mass terms which
results in an asymmetric inertia matrix. To address this
problem, this research has focused on transforming the
inertia matrix into a symmetric form. The novelty of
this transformation is the multiplication of the dynamic
model with an upper triangular matrix to obtain a
dynamic model with a symmetric inertia matrix. After
this transformation, the adaptive full-state feedback
(FSFB) and the adaptive output feedback (OFB) control
strategies in [10]1 are tailored for the control of surface
vessels. Projection-based, on-line parameter estimation
laws are then designed to estimate the unknown dynamic
parameters.
The paper is organized as follows. Section II presents

the dynamic and the kinematic models of a 3 DOF

1The adaptive control development in [10] differs from the
development in [11] in a matrix decomposition, which does not
affect our development. Thus, although we refer to [10] throughout
the paper, the control development in [11] could also be utilized.
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surface vessel. The error system development and the
feedback control strategies including adaptation law are
provided in Section III. A FSFB controller is proposed
in Section III-A and an OFB controller is proposed
in Section III-B. The numerical simulation results are
shown in Section IV and the concluding remarks are
presented in Section V.

II. System Model

In this section, the system model and relevant proper-
ties are presented. The coordinate frame of the surface
vessel is depicted in Figure 1 where B is the body-
fixed reference frame of the vessel and the fixed inertial
frame, approximated by the earth-fixed frame (North-
East-Down convention), is denoted by I. The dynamic
and kinematic models of a 3 DOF surface vessel are given
as [1], [2]

M ν̇ + Cν +Dν = τ (1)

ẋ = Rν (2)

where M(θ1, θ2), C(ν, νr, θ1, θ3), and D(ν, νr, θ4, θ5) ∈
R3x3 represent the inertia matrix, Coriolis-centripetal
matrix, and hydrodynamic damping terms, respectively,
which are assumed to be uncertain and continuously
differentiable up to their second time derivatives. In (1),
the vectors ν(t) = [u, v, ψ̇]> ∈ R3 and ν̇(t) denote
the linear and angular velocities and accelerations of
the ship, respectively where u(t) describes the forward
velocity of the vessel, v(t) is the velocity perpendicular
to u(t), and ψ̇(t) is the angular velocity about the Z-axis.
τ(t) = [τ1, τ2, τ3]

> ∈ R3 represents the control input
vector in which τ1(t) and τ2(t) are the translational
forces along the X- and Y -directions and τ3(t) is the
moment about the Z-axis. The vector vr(t) ∈ R3 denotes
the relative velocity between the vessel and the current
and θi (i = 1, ..., 5) are the unknown constant parameters
in the system matrices. In (2), x(t) = [xp, yp,ψ]> ∈ R3
denotes the linear position (xp, yp) along the X- and
the Y -axes and the yaw angle, ψ(t), which is the angle
measured from the X-axis in the I-frame to the positive
u(t) direction in B-frame in a clock-wise direction, and
ẋ(t) ∈ R3 is the position and orientation rate expressed
in the I-frame. The matrix, R(ψ) ∈ SO(3), denotes the
rotation matrix from the origin of B to the origin of
I and requires only the yaw angle. All the body-fixed
states are measured from the center point (CP) of the
ship frame in B rather than the center of gravity (CG)
point which causes some extra forces and moments in the
system matrices and xg denotes the distance between the
CP and CG of the ship. The inertia matrix, M(θ1, θ2),
of the ship is defined as [2]

M ,MRB(θ1) +MA(θ2) (3)

where M(θ1, θ2) is a real matrix with non-zero leading
principals, MRB(·) ∈ R3x3 represents strictly symmetric
rigid-body inertia matrix, andMA(·) ∈ R3x3 accounts for
the asymmetric added mass which causes M(·) to be an

Fig. 1. Surface Vessel Coordinate Frames

asymmetric matrix. To facilitate the subsequent control
development, the dynamic model in (1) will now be
modified to obtain a symmetric inertia matrix. An upper
triangular matrix, T (·) ∈ R3x3, is proposed such that the
multiplication of T (·) and M(·) results in a symmetric,
positive definite matrix, denoted by Ms(·) ∈ R3x3. After
multiplying (1) with T (·) the following expression is
obtained

Msν̇ = −T (C +D)ν + T τ . (4)

From (4), the following expression can be obtained

MsR
>ẍ =

h
ψ̇MsS3 − T (C +D)

i
R>ẋ+ T τ (5)

where (2) and its time derivative were used along with
the time derivative of the rotation matrix and a skew-
symmetric matrix S3 ∈ R3x3 according to

Ṙ>(ψ) = −ψ̇S3R>, S3 ,
⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ . (6)

After premultiplying (5) with R(ψ), the following model
is obtained

M̄ẍ = C̄ẋ+RT τ (7)

where M̄(ψ, θ1, θ2) and C̄(x, ẋ, ν, νr, θ3, θ4, θ5) ∈ R3x3
are defined as

M̄ , RMsR
>, (8)

C̄ , R
h
ψ̇MsS3 − T (C +D)

i
R>. (9)

Property1: The matrix M̄(·) is positive definite, sym-
metric, and satisfies the following inequalities

λ1 kξk2 ≤ ξT M̄ξ ≤ λ2 kξk2 ,∀ξ ∈ R3 (10)

where λ1, λ2 ∈ R are positive bounding con-
stants.
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III. Control Development

A. Full-State Feedback Control

The controller development in this section is based
on the assumption that all the states of the vessel are
measurable.
1) Error Development: The tracking error, denoted

by e1(t) ∈ R3, is defined as
e1 , xd − x (11)

where xd(t) ∈ R3 is the desired trajectory. For the
subsequent analysis, the desired trajectory and its first
and second time derivatives are assumed to be bounded
(i.e., xd(t), ẋd(t), and ẍd(t) ∈ L∞). To facilitate the
subsequent error development, a filtered error, denoted
by e2(t) ∈ R3, is defined as

e2 , ė1 + e1. (12)

In order to simplify the error signals and to facilitate the
stability analysis, another filtered tracking error, r(t) ∈
R3, is introduced as

r , e1 + e2. (13)

The time derivative of r(t) can be obtained as follows

ṙ = ẍd − ẍ+ 2ė1 (14)

where the time derivative of (12) was utilized along with
the second time derivative of (11). After premultiplying
(14) with M̄(·), the following expression is obtained

M̄ṙ = M̄ẍd − C̄ẋ−RT τ + 2M̄ ė1 (15)

where (7) was utilized. The expression in (15) can be

rearranged after adding and subtracting the terms 12
.

M̄r
(t), e1(t), and Rτ(t) to the right-hand side as

M̄ṙ = Y θ − 1
2

.

M̄r −e1 −Rτ (16)

where Y (·) ∈ R3xp is a measurable regression matrix,
θ ∈ Rp is the unknown parameter vector, and Y (·)θ is a
linear parameterization defined as

Y θ , M̄(ẍd+2e1)− C̄ẋ+ 1
2

.

M̄r +e1−R(T −I3)τ . (17)
Paralleling the approach in [10], an auxiliary error vector
denoted by z(t) ∈ R6 is introduced as

z = [e>1 , r
>]>, (18)

and taking its time derivative yields

ż = Az +Bṙ (19)

where (12) and (13) were utilized and A(·) ∈ R6x6, and
B(·) ∈ R6 are defined as

A =

∙ −2I3 I3
O3 O3

¸
, B =

∙
O3
I3

¸
(20)

where I3 ∈ R3x3 is an identity matrix and O3 ∈ R3x3 is
a matrix of zeros.

2) Control Input: Based on assumption that all states
are available, the control input τ (t) is designed as [10]

τ , R>
h
Y θ̂ +Kr + k1 kY k2 r

i
(21)

where θ̂(t) ∈ Rp is the estimate of θ, K and k1 ∈ R3x3 are
constant diagonal positive-definite control gain matrices,
and kY k2 r is a feedforward term. To avoid potential sin-
gularities in the control design, the unknown parameters
are assumed to satisfy the following inequalities

θj ≤ θj ≤ θj , (j = 1, ..., p) (22)

where θj is the jth parameter of θ in Y θ, and θj , θj ∈ R
are the lower and upper bounds of θj , respectively. The
adaptation law is designed using the projection-based
update algorithm in [15] as

.

θ̂= Proj{ΓY >r, θ̂} (23)

where Γ ∈ Rpxp is a constant diagonal matrix and Proj{·}
is the parameter projection operator [12]. In (23), the
use of projection algorithm guarantees the parameter
estimates θ̂(t) stay within a known compact set. After
substituting (21) into (16), the following closed-loop
error signals can be obtained

M̄ṙ = Y θ̃ − 1
2

.

M̄r −e1 −
³
K + k1 kY k2

´
r (24)

where θ̃(t) = θ − θ̂ denotes the parameter estimation
error.
Remark 1: The development in this section is an ap-

plication of the previously proposed general methodology
in [10] where the stability analysis yields an uniformly,
ultimately bounded (UUB) tracking result (the reader is
referred to [10] for a detailed stability analysis).

B. Output Feedback Control

The controller development in this section is based on
the assumption that the position and the orientation of
the ship are the only states available to the controller.
1) Observer Design: To facilitate the subsequent con-

trol development, the following expression can be ob-
tained for the dynamics of z(t)

ż =

∙ −2e1 + r
ṙ

¸
(25)

where (11) was utilized. An estimation form of z(t) is
introduced as follows

ẑ ,
£
ê>1 , r̂

>¤> (26)

where ê1(t) ∈ R3 and r̂(t) ∈ R3 are high-gain observers
that are introduced to estimate the error signals e1(t) and
r(t), respectively. The time derivative of (26) is defined
as follows [10]

.

ẑ,
" .

ê1
.

r̂

#
=

∙
r̂ − 2ê1 + α1

ε (e1 − ê1)α
2

ε2 (e1 − ê1)
¸
. (27)
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where ε, α1, and α2 ∈ R are positive observer gains. To
develop the subsequent analysis, observer errors, denoted
by η1(t) and η2(t) ∈ R3, are introduced as

η1 = 1
ε (e1 − ê1) (28)

η2 = r − r̂. (29)

The dynamics for the observer errors can be obtained as
follows

η̇1 =
1
ε (−α1η1 + η2 − 2εη1) (30)

η̇2 = −α2
ε η1 + ṙ (31)

where (27), (28), and (29) were utilized. After combining
(30) and (31), the following simplified expression can be
obtained

ε
.
η̄= Aoη̄ + εg (32)

where η̄ (t) , [η>1 , η>2 ]> ∈ R6 and the signals g (t) ∈ R6
and Ao ∈ R6x6 are defined as follows

Ao =

∙ −α1I3 I3
−α2I3 O3

¸
, g = −

∙
2η1
−ṙ

¸
. (33)

2) Control Design: The controller is designed follow-
ing the general approach given in [10] as

τ , R>
∙
Ŷ θ̂ +Ksat {r̂}+ k1

°°°Ŷ °°°2 {r̂}¸ (34)

where sat{·} represents the vector saturation function
and Ŷ (·) ∈ R3xp is the estimate of the regression matrix.
Similar to (23), the adaptation law under the parameter
condition (22) is updated using r̂(t) and Ŷ (·) as follows

.

θ̂= Proj{ΓŶ >(·)r̂, θ̂}. (35)

Substituting (34) into (16) yields the following closed-
loop error signals

M̄ṙ = Y θ− 1
2

.

M̄r −e1+Ŷ θ̂−Ksat {r̂}−k1
°°°Ŷ °°°2 sat {r̂} .

(36)
Remark 2: Since the output feedback controller in this

section is a special case of the development in [10], the
uniformly, ultimately bounded (UUB) tracking result will
apply to this control.

IV. Numerical Simulation Results

Two numerical simulations were performed to show the
validity of the proposed controllers. The inertia matrix
of the vessel is obtained by combining the rigid-body
inertia matrix and the added mass terms as

M(θ1, θ2) =

⎡⎣ m−Xu̇ 0 0
0 na nb
0 nc nd

⎤⎦ (37)

where na, nb, nc, and nd are auxiliary terms that are
defined as follows

na = m− Yv̇, nb = mxg − Yṙ,
nc = mxg −Nv̇, nd = Iz −Nṙ . (38)

If the values of Yṙ and Nv̇ are different (Yṙ 6= Nv̇), then
the resulting matrix is asymmetric. For the simulation,
the following values were chosen for these parameters

Yṙ = −0.5, Nv̇ = −1.0, (39)

which results in an asymmetric inertia matrix. Based on
the inertia matrix in (37), the following matrix (similar
to [10, 11]) is defined to transform the system dynamic
model

T =

⎡⎣ 1 0 0

0
n2c
d − nand

d
nanb
d − nanc

d
0 0 nbnc

d − nand
d

⎤⎦ (40)

where d ∈ R is a non-zero term defined as follows

d = −mIz +mNṙ + Yv̇Iz − Yv̇Nṙ + (mxg)2
−mxgNv̇ −mxgYṙ + YṙNv̇.

The Coriolis-centripetal term C(·) in (1) is defined by
combining the rigid-body matrix CRB(ν, θ1) ∈ R3x3 and
corresponding added mass CA(ν, νr, θ3) ∈ R3x3 as

C(ν, νr, θ1, θ3) =

⎡⎣ 0 0 c2
0 0 −c1
−c2 c1 0

⎤⎦ (41)

where c1(νr) = mu+(−Xu̇ur) and c2(ν, νr) = −m(xgψ̇+
v) + (Yv̇vr + .5(Yṙ +Nv̇)ψ̇).
The damping matrix D(·) in (1) is defined by com-

bining the linear matrix term DL(ν, θ4) ∈ R3x3 and
nonlinear matrix DNL(ν, νr, θ5) ∈ R3x3 as

D(ν, νr, θ4, θ5) =

⎡⎣ d11 0 0
0 d22 d23
0 d32 d33

⎤⎦ (42)

where d11(νr) = −Xu + (−X|u|u |ur| − Xuuuu
2
r),

d22(ν, νr) = −Yv + (−Y|v|v |ur| − Yrv
¯̄̄
ψ̇
¯̄̄
), d33(ν, νr) =

−Nr + (−Y|v|v |ur| − Y|r|v
¯̄̄
ψ̇
¯̄̄
), d23(ν, νr) = −Yr +

(−Y|v|r |ur| − Y|r|v
¯̄̄
ψ̇
¯̄̄
), and d32(ν, νr) = −Nv +

(−N|v|v |vr| − Nrv
¯̄̄
ψ̇
¯̄̄
). The relative velocity νr(t) be-

tween the body-fixed vessel and the ocean current
velocity νc(t) ∈ R3, acting as a disturbance, is defined
as [2,7]

νr(t) = ν − νc = ν −R(ψ)>ẋc (43)

where ẋc(t) = [3, 3, 0]> [m/s] is expressed in I. The upper
and lower bounds of the vector saturation function used
in each control input were set to ±200. The upper and
lower bounds for the unknown parameters were set to
±30% of their real values.
The parameter values describe the Cybership II, refer

to [2], which has the dimensions L×B=1.255 m × 0.29 m
and mass 23.8 kg. The desired position and orientation
are specified as

xd(t) =

⎡⎣ 10 sin(0.1t) (m)
10 cos(0.1t) (m)
−0.1t (rad)

⎤⎦ (44)
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Fig. 2. Tracking Demonstration in the XY-Plane (OFB)

and the vessel was considered to be initially at rest in
the following configuration

x(0) = [0.1, 1, -π8 ].
>

A. Full-State Feedback Control

For the FSFB controller, the constant control parame-
ters were chosen as

K = diag
©
500 500 200

ª
,

k1 = diag
©
1 1 1

ª
, γ = 200.

where γ is the diagonal gain value of Γ(·).
(the simulation results can be seen in [16])

B. Output Feedback (OFB) Control

For the OFB controller simulation, the control gains
were chosen as

K = diag
©
600 600 200

ª
and k1 = diag(1, 1, 1),

γ = 200, and α1 = 100, α2 = 800, ε = 0.05.

The upper and lower bounds of the vector saturation
function for the estimated error r̂(t) in (34) were set
to ±100. In addition, the estimated velocity, ν̂(t), was
used in C(·) and D(·) matrices instead of ν(t). In Figure
2, the actual position and the desired trajectory of the
surface vessel in the XY -plane is demonstrated. Figure
3 displays the tracking error signals at each axis where
small, bounded tracking errors are seen. From Figure 4 it
is clear that the control objectives were met. In Figure
4, the control input τ (t) is presented. The high-gain
observer outputs defined in (27) are shown in Figure
5. Figure 6 shows the relative velocity as an added
disturbance. Some parameter estimates are shown in
Figures 7 (more simulation results in OFB can be seen
in [16]).

Fig. 3. Tracking Errors in Position (xp, yp) and Yaw Angle (ψ)
(OFB)

Fig. 4. Forces and Torque Input (OFB)

V. Conclusion

The control problem of surface vessels having asym-
metric inertia matrices and parametric uncertainties was
addressed. An important contribution of this work was
the modification of the inertia matrix by pre-multiplying
an upper triangular matrix to obtain a symmetric form.
Then, a full-state feedback and an output feedback
controller were designed. The estimated parameters were
updated by the adaptation laws utilizing the projection
algorithm. Numerical simulation results were shown to
demonstrate the proposed control strategies.
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Fig. 5. Observer Output, ê1(t) (left) and r̂(t) (right), (OFB)

Fig. 6. Added Disturbance: Relative Velocity (OFB)
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