
NEURO-FUZZY CONTROLLER IN REAL-TIME FEEDBACK
SCHEDULERS

Tolga AYAV, Prof. Dr. Sinan YILMAZ
Department of Computer Engineering, Faculty of Engineering, Ege University

tayav@likya.iyte.edu.tr, syilmaz@staff.ege.edu.tr

Abstract - Traditional scheduling algorithms worked
on closed and highly predictable environments.
However present day systems need to work in more
open and unpredictable environments; such as
mobile robots, on-line trading, e-commerce,
multimedia that cannot be driven well with
traditional open-loop algorithms. A new scheduling
paradigm, feedback control scheduling, therefore
has been presented recently to fulfil the
requirements of such systems. This algorithm defines
error terms for schedules, monitors the error, and
continuously adjusts the schedule to maintain stable
performance. When PID (Proportional-Integral-
Derivative) controller is used to control the CPU
utilization, one of the problems faced is that when
utilization setpoint is closer to 100%, in severely
overloaded conditions, systems can have a longer
settling time than the analysis based on the linear
model since utilization feedback saturates at 100%.
To overcome this problem, a neuro-fuzzy controller
is designed instead of PID. Simulations showed that
settling time with the neuro-fuzzy controller is
approximately four times shorter than the one with
the PID controller.

I. INTRODUCTION

Real-time scheduling algorithms fall into two
categories: static and dynamic. In static scheduling,
the scheduling algorithm has complete knowledge of
the task-set and its constraints such as deadlines,
computation times etc. In dynamic scheduling,
however, the scheduling algorithm does not have the
complete knowledge of the task-set and its
constraints. Dynamic scheduling can be further
divided into two categories: scheduling algorithms
that work in resource sufficient environments and
those work in resource insufficient environments.
EDF (Earliest-deadline-first) is an optimal dynamic
scheduling algorithm in resource sufficient
environments. However in overload situations
EDF’s performance degrades rapidly. EDF, RM
(Rate-Monotonic) and other scheduling algorithms
are all open-loop algorithms. Here, open-loop means
that; once schedules are created they are not adjusted

subsequently based on continuous feedback. While
open-loop scheduling algorithms can perform well
in static and dynamic systems in which the
workloads can be accurately modeled, they can
perform poorly in unpredictable systems [1]. Many
real-world complex problems such as agile
manufacturing, robotics are not predictable. As a
cost effective approach to achieve performance
guarantees in unpredictable environments, adaptive
scheduling algorithms have been developed. While
early research on real-time scheduling was
concerned with guaranteeing complete avoidance of
undesirable effects such as overload and deadline
misses, adaptive real-time systems are designed to
handle such effects dynamically.

There are many open research questions in
adaptive real-time scheduling. In particular, how can
a system designer specify the performance
requirements of an adaptive real-time system; and
how can a designer systematically design a
scheduling algorithm to satisfy the system
performance specifications. The design methodology
for automatic adaptive systems has been developed
in feedback control theory [2]. However, feedback
control theory has been mostly applied in
mechanical and electrical systems. In trying to apply
feedback control theory to a computer system
domain, the modelling and implementation of
adaptive real-time systems face significant
challenges. One of these challenges in particular is
undertaken in this paper, and relevant solutions are
proposed.

II. APPLICATION OF CONTROL THEORY TO
SCHEDULING

The mapping of control theory to scheduling
provides a systematic and scientific method for
designing scheduling algorithms. A typical control
system is composed of a controller, a plant to be
controlled, actuators, and sensors. It defines a
controlled variable which represents the part of the
output that is measured and controlled. Setpoint
represents the correct value of the controlled
variable. The difference between the current value of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324144203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the controlled variable and the setpoint is the error.
The manipulated variable is the quantity that is
varied by the controller so as to affect the value of
the controlled variable. The system is composed of a
feedback loop as follows:
• The system periodically monitors controlled

variable and determines the error.
• The controller computes the required control

based on the error.
• The actuators change the value of the

manipulated variable to control the system.
In terms of scheduling, the controlled variable

can be CPU utilization u(k). The manipulated
variable must be able to affect the value of the
controlled variable. Here, the manipulated variable
is the percentage of the optional parts of tasks to be
executed. The imprecise computation model tells us
that tasks consist of two parts: mandatory and
optional. The mandatory part of a task should always
be executed before its deadline, however, the
optional part may be omitted or postponed if the
system is heavily loaded. The utilization of CPU
u(k) at the kth sampling instant is the percentage of
CPU busy time in a sampling window),(1−kk tt . In
[2][3], deadline miss ratio was used as the controlled
variable. However, here we have chosen CPU
utilization since we wish always zero deadline miss
ratio and utilization has also a direct linkage with
deadline miss ratio.

Our feedback control EDF scheduler consists of
a PID controller, an EDF scheduler and a service
level controller. Service level controller is the
actuator of the system that simply adds the output of
the controller to the percentage of the task’s optional
parts to be executed.

Figure 1. Feedback control EDF Scheduling

The PID controller generates a quantity of change in
the percentage of optional parts of tasks to be
executed according to the following formula:

)(1−−++= ∑ nndIW iinp eeKeKeKoutput (1)

One of the problems faced in this figure is that
because the utilization of CPU u(k) saturates at
100%, controller cannot detect how severely the
system is overloaded when u(k) remains at 100%.
Hence, in severely overloaded conditions system can
have a longer settling time than the analysis result
based on the linear model. The closer the reference
is to 100%, longer the settling time will be. This is
because the smallness of difference between the
setpoint and utilization feedback causes an
insignificant change at the output of the PID
controller. For example, suppose the total requested
utilization is 200% and the setpoint is 99%. In this
case, the error measured by the controller would be
0.99-1= -0.01. However, the error should have been
0.99-2= -1.01 according to the linear model.
Therefore in such systems, setpoint should be
sufficiently far away from 100% to alleviate the
impact of saturation on the control performance.
Another approach proposed in this paper is to utilize
a neuro-fuzzy controller to prevent this non-
linearity. Neuro-fuzzy controllers are proved to
solve non-linear problems quite successfully.

III. NEURO-FUZZY CONTROLLER

A first order Takagi-Sugeno fuzzy network
model with three rules was employed in this work.
This network is shown in figure 2. A common rule
set for three fuzzy if-then rules is the following:

1Rule :if error is 11A and setpoint is 12A then y is 1y
2Rule :if error is 21A and setpoint is 22A then y is 2y

3Rule :if error is 31A and setpoint is 32A then y is 3y
Where: ijA is a fuzzy set for ith rule and jth linguistic
variable. Note that the error is the difference
between utilization and the setpoint. Every
membership function in this controller was defined
as generalized bell function:

)(x
ijAµ =

ijb

ij

ij

a
cx

2

1

1

−
+

(2)

For the application of the rules we need to
define a fuzzy inference mechanism. In this case we
will take the product operator as T-norm. This
means that the firing strength of each rule is

1u =
11Aµ

12Aµ , 2u =
21Aµ

22Aµ , 3u =
31Aµ

32Aµ

Thus the output of the network is

y=
i

n
i

ii
n
i

u
ku

1

1

=

=

∑
∑

=
321

1

uuu
u

++
 1k +

321

2

uuu
u

++ 2k

+
321

3

uuu
u

++ 3k = iii ku3
1=∑ . (3)

 Figure 2. The Neuro-Fuzzy Controller

A. Learning
Learning procedure is an approach to the

parameter estimation problem and there are several
methods described in the literature. The method used
in this paper is a supervised learning procedure.

Figure 3. Closed-loop adaptation

Supervised learning procedures are an
application of adaptive algorithms in the form of a
closed-loop adaptive system as seen in figure 3 [4].
The error signal is the difference between the
desired output and the actual output of the system.
Using this error, an adaptive algorithm adjusts the
parameters of the system, altering its response
characteristics by minimizing a measure of the error.
The aim is to find an extremum of a criterion (loss)
or energy function V considered as a function of the

parameters of the unknown system. The criterion
function is usually defined as:

V=)(1 2
1 te

N
N
t=∑ , where N is the number of training

patterns. (4)

The parameter vector z shown below consists of the
parameters of the membership functions (eq. 2).

z = []33232211121212111111 ,,,...,,,,,,,, kcbakcbacba

Therefore, the iterative learning rule can be defined
as:

k
kk z

zVtztz
∂

∂−=+)()()1(η (5)

We used the following training data. All except the
17th were obtained directly from the PID controller’s
output (Kp=0.2, Ki=0.1 and Kd=0) according to
equation 1. The 17th pattern is changed as ∆output
gives ten times of the PID’s output to reduce the
aforementioned settling time.

Input Output
Pattern

No
Error:

setpoint-
utilization

Setpoint ∆∆∆∆(Reject
percent)

1 -0.2 0.5 -0.08
2 -0.1 0.5 -0.04
3 -0.05 0.5 -0.02
4 -0.01 0.5 -0.004
5 0.01 0.5 0.004
6 0.05 0.5 0.02
7 0.1 0.5 0.04
8 0.2 0.5 0.08
9 -0.2 0.8 -0.08

10 -0.1 0.8 -0.04
11 -0.05 0.8 -0.02
12 -0.01 0.8 -0.004
13 0.01 0.8 0.004
14 0.05 0.8 0.02
15 0.1 0.8 0.04
16 0.2 0.8 0.08
17 -0.01 0.98 0.04
18 0.01 0.98 0.004
19 0.05 0.98 0.02
20 0.1 0.98 0.04
21 0.2 0.98 0.08

Table 1. Training data

Training was stopped after approximately 80,000
iterations when the energy reached to 0.000704.

B. Simulation
First, PID and neuro-fuzzy controllers were

compared with setpoints changed from 0.6 to 0.8.

Figure 4 and 5 shows the results. As seen, the
designed neuro-fuzzy controller shows a successful
similarity to the PID controller.

The other simulation was performed to show the
differences of the responses of the two controllers

Figure 4. The response of the PID controller to the change
in setpoint from 0.6 to 0.8.

Figure 5. The response of the neuro-fuzzy controller to
the change in setpoint from 0.6 to 0.8.

0 400 SP
Figure 6. The PID controller’s response to the workload

change when utilization setpoint is 0.98.

0 400 SP
Figure 7. The Neuro-Fuzzy controller’s response to the

workload change when utilization setpoint is 0.98.

when the setpoint is very close to 100% (i.e 98%).
Two different workloads were generated and the
system was simulated for workload changes from
low to high for both PID and neuro-fuzzy controller.

In the simulation work carried out, the execution
times of mandatory parts of tasks were generated
from a uniform distribution; in the range of [5, 8]
and optional execution times were generated from a
uniform distribution [5, 15]. Two workloads differed
only with respect to the number of tasks, and not the
distributions involved. The first workload has 15
periodic tasks and the second has 20 periodic tasks.
There is no aperiodic task and all periodic tasks are
independent. The deadline of the tasks are also their
periods that are generated from the uniform
distribution [200, 250]. SP is the sampling period at
which the utilization is monitored and the controller
generates an output. It is set to 600 time units.
Figure 6 and 7 show the results of the second
simulation.

IV. CONCLUSION

In this paper, we propose a control theory based
framework for real-time schedulers. Feedback
control real-time scheduler has been an important
research issue recently and it still has many open
research questions such as: the right choices of
controlled, manipulated and other variables,
modeling of feedback control system and the
necessity of an adaptive form of the PID controller.
As stated above, one of the main problems with the
PID controller is the degradation of the controller’s
performance in the case of utilization feedback being
too close to 100%. To overcome this problem, a
neuro-fuzzy controller was designed instead of PID
and simulations showed that the neuro-fuzzy
controller is as successful as PID and has a shorter
settling time when the setpoint is close to 100%.

REFERENCES

[1] Chenyang Lu, John A. Stankovic, Gang Tao, Sang H.
Son, “Design and Evaluation of a Feedback Control
EDF Scheduling Algorithm”.

[2] Chenyang Lu, John A. Stankovic, Gang Tao, Sang H.
Son, “Feedback Control Real-Time Scheduling:
Framework, Modeling, and Algorithms”, Proc. Of
IEEE Real-Time System Symposium.

[3] D.A.Lawrence, J.Guan, S.Mehta, L.R. Welch,
“Adaptive Scheduling via Feedback Control for
Dynamic Real-Time Systems”, Proc. Of 2001 IEEE.

[4] Jelena Godjevac, Nigel Steele, “Neuro-fuzzy control
of a mobile robot”, Neurocomputing’1999, Elsevier.

	Simulation

